Sample records for recombiners

  1. Recombinant cells and organisms having persistent nonstandard amino acid dependence and methods of making them

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, George M.; Mandell, Daniel J.; Lajoie, Marc J.

    Recombinant cells and recombinant organisms persistently expressing nonstandard amino acids (NSAAs) are provided. Methods of making recombinant cells and recombinant organisms dependent on persistently expressing NSAAs for survival are also provided. These methods may be used to make safe recombinant cells and recombinant organisms and/or to provide a selective pressure to maintain one or more reassigned codon functions in recombinant cells and recombinant organisms.

  2. Correlated Template-Switching Events during Minus-Strand DNA Synthesis: a Mechanism for High Negative Interference during Retroviral Recombination

    PubMed Central

    Anderson, Jeffrey A.; Teufel, Ronald J.; Yin, Philip D.; Hu, Wei-Shau

    1998-01-01

    Two models for the mechanism of retroviral recombination have been proposed: forced copy choice (minus-strand recombination) and strand displacement-assimilation (plus-strand recombination). Each minus-strand recombination event results in one template switch, whereas each plus-strand recombination event results in two template switches. Recombinant proviruses with one and more than one template switches were previously observed. Recombinants with one template switch were generated by minus-strand recombination, while recombinants containing more than one template switch may have been generated by plus-strand recombination or by correlated minus-strand recombination. We recently observed that retroviral recombination exhibits high negative interference whereby the frequency of recombinants containing multiple template-switching events is higher than expected. To delineate the mechanism that generates recombinants with more than one template switch, we devised a system that permits only minus-strand recombination. Two highly homologous vectors, WH204 and WH221, containing eight different restriction site markers were used. The primer binding site (PBS) of WH221 was deleted; although reverse transcription cannot initiate from WH221 RNA, it can serve as a template for DNA synthesis in heterozygotic virions. After one round of retroviral replication, the structures of the recombinant proviruses were examined. Recombinants containing two, three, four, and five template switches were observed at 1.4-, 10-, 65-, and 50-fold-higher frequencies, respectively, than expected. This indicates that minus-strand recombination events are correlated and can generate proviruses with multiple template switches efficiently. The frequencies of recombinants containing multiple template switches were similar to those observed in the previous system, which allowed both minus- and plus-strand recombination. Thus, the previously reported high negative interference during retroviral recombination can be caused by correlated template switches during minus-strand DNA synthesis. In addition, all examined recombinants contained an intact PBS, indicating that most of the plus-strand DNA transfer occurs after completion of the strong-stop DNA. PMID:9445017

  3. Fine-Scale Recombination Maps of Fungal Plant Pathogens Reveal Dynamic Recombination Landscapes and Intragenic Hotspots

    PubMed Central

    Stukenbrock, Eva H.; Dutheil, Julien Y.

    2018-01-01

    Meiotic recombination is an important driver of evolution. Variability in the intensity of recombination across chromosomes can affect sequence composition, nucleotide variation, and rates of adaptation. In many organisms, recombination events are concentrated within short segments termed recombination hotspots. The variation in recombination rate and positions of recombination hotspot can be studied using population genomics data and statistical methods. In this study, we conducted population genomics analyses to address the evolution of recombination in two closely related fungal plant pathogens: the prominent wheat pathogen Zymoseptoria tritici and a sister species infecting wild grasses Z. ardabiliae. We specifically addressed whether recombination landscapes, including hotspot positions, are conserved in the two recently diverged species and if recombination contributes to rapid evolution of pathogenicity traits. We conducted a detailed simulation analysis to assess the performance of methods of recombination rate estimation based on patterns of linkage disequilibrium, in particular in the context of high nucleotide diversity. Our analyses reveal overall high recombination rates, a lack of suppressed recombination in centromeres, and significantly lower recombination rates on chromosomes that are known to be accessory. The comparison of the recombination landscapes of the two species reveals a strong correlation of recombination rate at the megabase scale, but little correlation at smaller scales. The recombination landscapes in both pathogen species are dominated by frequent recombination hotspots across the genome including coding regions, suggesting a strong impact of recombination on gene evolution. A significant but small fraction of these hotspots colocalize between the two species, suggesting that hotspot dynamics contribute to the overall pattern of fast evolving recombination in these species. PMID:29263029

  4. Fine-Scale Recombination Maps of Fungal Plant Pathogens Reveal Dynamic Recombination Landscapes and Intragenic Hotspots.

    PubMed

    Stukenbrock, Eva H; Dutheil, Julien Y

    2018-03-01

    Meiotic recombination is an important driver of evolution. Variability in the intensity of recombination across chromosomes can affect sequence composition, nucleotide variation, and rates of adaptation. In many organisms, recombination events are concentrated within short segments termed recombination hotspots. The variation in recombination rate and positions of recombination hotspot can be studied using population genomics data and statistical methods. In this study, we conducted population genomics analyses to address the evolution of recombination in two closely related fungal plant pathogens: the prominent wheat pathogen Zymoseptoria tritici and a sister species infecting wild grasses Z. ardabiliae We specifically addressed whether recombination landscapes, including hotspot positions, are conserved in the two recently diverged species and if recombination contributes to rapid evolution of pathogenicity traits. We conducted a detailed simulation analysis to assess the performance of methods of recombination rate estimation based on patterns of linkage disequilibrium, in particular in the context of high nucleotide diversity. Our analyses reveal overall high recombination rates, a lack of suppressed recombination in centromeres, and significantly lower recombination rates on chromosomes that are known to be accessory. The comparison of the recombination landscapes of the two species reveals a strong correlation of recombination rate at the megabase scale, but little correlation at smaller scales. The recombination landscapes in both pathogen species are dominated by frequent recombination hotspots across the genome including coding regions, suggesting a strong impact of recombination on gene evolution. A significant but small fraction of these hotspots colocalize between the two species, suggesting that hotspot dynamics contribute to the overall pattern of fast evolving recombination in these species. Copyright © 2018 Stukenbrock and Dutheil.

  5. Evidence of animal mtDNA recombination between divergent populations of the potato cyst nematode Globodera pallida.

    PubMed

    Hoolahan, Angelique H; Blok, Vivian C; Gibson, Tracey; Dowton, Mark

    2012-03-01

    Recombination is typically assumed to be absent in animal mitochondrial genomes (mtDNA). However, the maternal mode of inheritance means that recombinant products are indistinguishable from their progenitor molecules. The majority of studies of mtDNA recombination assess past recombination events, where patterns of recombination are inferred by comparing the mtDNA of different individuals. Few studies assess contemporary mtDNA recombination, where recombinant molecules are observed as direct mosaics of known progenitor molecules. Here we use the potato cyst nematode, Globodera pallida, to investigate past and contemporary recombination. Past recombination was assessed within and between populations of G. pallida, and contemporary recombination was assessed in the progeny of experimental crosses of these populations. Breeding of genetically divergent organisms may cause paternal mtDNA leakage, resulting in heteroplasmy and facilitating the detection of recombination. To assess contemporary recombination we looked for evidence of recombination between the mtDNA of the parental populations within the mtDNA of progeny. Past recombination was detected between a South American population and several UK populations of G. pallida, as well as between two South American populations. This suggests that these populations may have interbred, paternal mtDNA leakage occurred, and the mtDNA of these populations subsequently recombined. This evidence challenges two dogmas of animal mtDNA evolution; no recombination and maternal inheritance. No contemporary recombination between the parental populations was detected in the progeny of the experimental crosses. This supports current arguments that mtDNA recombination events are rare. More sensitive detection methods may be required to adequately assess contemporary mtDNA recombination in animals.

  6. Complexity of genetic mechanisms conferring nonuniformity of recombination in maize.

    PubMed

    Pan, Qingchun; Deng, Min; Yan, Jianbing; Li, Lin

    2017-04-26

    Recombinations occur nonuniformly across the maize genome. To dissect the genetic mechanisms underlying the nonuniformity of recombination, we performed quantitative trait locus (QTL) mapping using recombinant inbred line populations. Genome-wide QTL scan identified hundreds of QTLs with both cis-prone and trans- effects for recombination number variation. To provide detailed insights into cis- factors associated with recombination variation, we examined the genomic features around recombination hot regions, including density of genes, DNA transposons, retrotransposons, and some specific motifs. Compared to recombination variation in whole genome, more QTLs were mapped for variations in recombination hot regions. The majority QTLs for recombination hot regions are trans-QTLs and co-localized with genes from the recombination pathway. We also found that recombination variation was positively associated with the presence of genes and DNA transposons, but negatively related to the presence of long terminal repeat retrotransposons. Additionally, 41 recombination hot regions were fine-mapped. The high-resolution genotyping of five randomly selected regions in two F 2 populations verified that they indeed have ultra-high recombination frequency, which is even higher than that of the well-known recombination hot regions sh1-bz and a1-sh2. Taken together, our results further our understanding of recombination variation in plants.

  7. Genome-wide recombination dynamics are associated with phenotypic variation in maize.

    PubMed

    Pan, Qingchun; Li, Lin; Yang, Xiaohong; Tong, Hao; Xu, Shutu; Li, Zhigang; Li, Weiya; Muehlbauer, Gary J; Li, Jiansheng; Yan, Jianbing

    2016-05-01

    Meiotic recombination is a major driver of genetic diversity, species evolution, and agricultural improvement. Thus, an understanding of the genetic recombination landscape across the maize (Zea mays) genome will provide insight and tools for further study of maize evolution and improvement. Here, we used c. 50 000 single nucleotide polymorphisms to precisely map recombination events in 12 artificial maize segregating populations. We observed substantial variation in the recombination frequency and distribution along the ten maize chromosomes among the 12 populations and identified 143 recombination hot regions. Recombination breakpoints were partitioned into intragenic and intergenic events. Interestingly, an increase in the number of genes containing recombination events was accompanied by a decrease in the number of recombination events per gene. This kept the overall number of intragenic recombination events nearly invariable in a given population, suggesting that the recombination variation observed among populations was largely attributed to intergenic recombination. However, significant associations between intragenic recombination events and variation in gene expression and agronomic traits were observed, suggesting potential roles for intragenic recombination in plant phenotypic diversity. Our results provide a comprehensive view of the maize recombination landscape, and show an association between recombination, gene expression and phenotypic variation, which may enhance crop genetic improvement. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Recombination phenomena in high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1985-01-01

    The dominant recombination phenomena which limit the highest efficiency attainable in silicon solar cells under terrestrial sunlight are reviewed. The ultimate achievable efficiency is limited by the two intrinsic recombination mechanisms, the interband Auger recombination and interband Radiative recombination, both of which occur in the entire cell body but principally in the base layer. It is suggested that an optimum (26%) cell design is one with lowly doped 50 to 100 micron thick base, a perfect BSF, and zero extrinsic recombination such as the thermal mechanism at recombination centers the Shockley-Read-Hall process (SRH) in the bulk, on the surface and at the interfaces. The importance of recombination at the interfaces of a high-efficiency cell is demonstrated by the ohmic contact on the back surface whose interface recombination velocity is infinite. The importance of surface and interface recombination is demonstrated by representing the auger and radiative recombination losses by effective recombination velocities. It is demonstrated that the three highest efficiency cells may all be limited by the SRH recombination losses at recombination centers in the base layer.

  9. Exceptionally high levels of recombination across the honey bee genome.

    PubMed

    Beye, Martin; Gattermeier, Irene; Hasselmann, Martin; Gempe, Tanja; Schioett, Morten; Baines, John F; Schlipalius, David; Mougel, Florence; Emore, Christine; Rueppell, Olav; Sirviö, Anu; Guzmán-Novoa, Ernesto; Hunt, Greg; Solignac, Michel; Page, Robert E

    2006-11-01

    The first draft of the honey bee genome sequence and improved genetic maps are utilized to analyze a genome displaying 10 times higher levels of recombination (19 cM/Mb) than previously analyzed genomes of higher eukaryotes. The exceptionally high recombination rate is distributed genome-wide, but varies by two orders of magnitude. Analysis of chromosome, sequence, and gene parameters with respect to recombination showed that local recombination rate is associated with distance to the telomere, GC content, and the number of simple repeats as described for low-recombining genomes. Recombination rate does not decrease with chromosome size. On average 5.7 recombination events per chromosome pair per meiosis are found in the honey bee genome. This contrasts with a wide range of taxa that have a uniform recombination frequency of about 1.6 per chromosome pair. The excess of recombination activity does not support a mechanistic role of recombination in stabilizing pairs of homologous chromosome during chromosome pairing. Recombination rate is associated with gene size, suggesting that introns are larger in regions of low recombination and may improve the efficacy of selection in these regions. Very few transposons and no retrotransposons are present in the high-recombining genome. We propose evolutionary explanations for the exceptionally high genome-wide recombination rate.

  10. Genetic Diversity of Infectious Laryngotracheitis Virus during In Vivo Coinfection Parallels Viral Replication and Arises from Recombination Hot Spots within the Genome

    PubMed Central

    Hartley, Carol A.; Vaz, Paola K.; Diaz-Méndez, Andrés; García, Maricarmen; Spatz, Stephen; Devlin, Joanne M.

    2017-01-01

    ABSTRACT Recombination is a feature of many alphaherpesviruses that infect people and animals. Infectious laryngotracheitis virus (ILTV; Gallid alphaherpesvirus 1) causes respiratory disease in chickens, resulting in significant production losses in poultry industries worldwide. Natural (field) ILTV recombination is widespread, particularly recombination between attenuated ILTV vaccine strains to create virulent viruses. These virulent recombinants have had a major impact on animal health. Recently, the development of a single nucleotide polymorphism (SNP) genotyping assay for ILTV has helped to understand ILTV recombination in laboratory settings. In this study, we applied this SNP genotyping assay to further examine ILTV recombination in the natural host. Following coinoculation of specific-pathogen-free chickens, we examined the resultant progeny for evidence of viral recombination and characterized the diversity of the recombinants over time. The results showed that ILTV replication and recombination are closely related and that the recombinant viral progeny are most diverse 4 days after coinoculation, which is the peak of viral replication. Further, the locations of recombination breakpoints in a selection of the recombinant progeny, and in field isolates of ILTV from different geographical regions, were examined following full-genome sequencing and used to identify recombination hot spots in the ILTV genome. IMPORTANCE Alphaherpesviruses are common causes of disease in people and animals. Recombination enables genome diversification in many different species of alphaherpesviruses, which can lead to the evolution of higher levels of viral virulence. Using the alphaherpesvirus infectious laryngotracheitis virus (ILTV), we performed coinfections in the natural host (chickens) to demonstrate high levels of virus recombination. Higher levels of diversity in the recombinant progeny coincided with the highest levels of virus replication. In the recombinant progeny, and in field isolates, recombination occurred at greater frequency in recombination hot spot regions of the virus genome. Our results suggest that control measures that aim to limit viral replication could offer the potential to limit virus recombination and thus the evolution of virulence. The development and use of vaccines that are focused on limiting virus replication, rather than vaccines that are focused more on limiting clinical disease, may be indicated in order to better control disease. PMID:28939604

  11. The potential of shifting recombination hotspots to increase genetic gain in livestock breeding.

    PubMed

    Gonen, Serap; Battagin, Mara; Johnston, Susan E; Gorjanc, Gregor; Hickey, John M

    2017-07-04

    This study uses simulation to explore and quantify the potential effect of shifting recombination hotspots on genetic gain in livestock breeding programs. We simulated three scenarios that differed in the locations of quantitative trait nucleotides (QTN) and recombination hotspots in the genome. In scenario 1, QTN were randomly distributed along the chromosomes and recombination was restricted to occur within specific genomic regions (i.e. recombination hotspots). In the other two scenarios, both QTN and recombination hotspots were located in specific regions, but differed in whether the QTN occurred outside of (scenario 2) or inside (scenario 3) recombination hotspots. We split each chromosome into 250, 500 or 1000 regions per chromosome of which 10% were recombination hotspots and/or contained QTN. The breeding program was run for 21 generations of selection, after which recombination hotspot regions were kept the same or were shifted to adjacent regions for a further 80 generations of selection. We evaluated the effect of shifting recombination hotspots on genetic gain, genetic variance and genic variance. Our results show that shifting recombination hotspots reduced the decline of genetic and genic variance by releasing standing allelic variation in the form of new allele combinations. This in turn resulted in larger increases in genetic gain. However, the benefit of shifting recombination hotspots for increased genetic gain was only observed when QTN were initially outside recombination hotspots. If QTN were initially inside recombination hotspots then shifting them decreased genetic gain. Shifting recombination hotspots to regions of the genome where recombination had not occurred for 21 generations of selection (i.e. recombination deserts) released more of the standing allelic variation available in each generation and thus increased genetic gain. However, whether and how much increase in genetic gain was achieved by shifting recombination hotspots depended on the distribution of QTN in the genome, the number of recombination hotspots and whether QTN were initially inside or outside recombination hotspots. Our findings show future scope for targeted modification of recombination hotspots e.g. through changes in zinc-finger motifs of the PRDM9 protein to increase genetic gain in production species.

  12. Genetic recombination of the hepatitis C virus: clinical implications.

    PubMed

    Morel, V; Fournier, C; François, C; Brochot, E; Helle, F; Duverlie, G; Castelain, S

    2011-02-01

    Genetic recombination is a well-known feature of RNA viruses that plays a significant role in their evolution. Although recombination is well documented for Flaviviridae family viruses, the first natural recombinant strain of hepatitis C virus (HCV) was identified as recently as 2002. Since then, a few other natural inter-genotypic, intra-genotypic and intra-subtype recombinant HCV strains have been described. However, the frequency of recombination may have been underestimated because not all known HCV recombinants are screened for in routine practice. Furthermore, the choice of treatment regimen and its predictive outcome remain problematic as the therapeutic strategy for HCV infection is genotype dependent. HCV recombination also raises many questions concerning its mechanisms and effects on the epidemiological and physiopathological features of the virus. This review provides an update on recombinant HCV strains, the process that gives rise to recombinants and clinical implications of recombination. © 2010 Blackwell Publishing Ltd.

  13. Nonhomologous recombination between defective poliovirus and coxsackievirus genomes suggests a new model of genetic plasticity for picornaviruses.

    PubMed

    Holmblat, Barbara; Jégouic, Sophie; Muslin, Claire; Blondel, Bruno; Joffret, Marie-Line; Delpeyroux, Francis

    2014-08-05

    Most of the circulating vaccine-derived polioviruses (cVDPVs) implicated in poliomyelitis outbreaks in Madagascar have been shown to be recombinants between the type 2 poliovirus (PV) strain of the oral polio vaccine (Sabin 2) and another species C human enterovirus (HEV-C), such as type 17 coxsackie A virus (CA17) in particular. We studied intertypic genetic exchanges between PV and non-PV HEV-C by developing a recombination model, making it possible to rescue defective type 2 PV RNA genomes with a short deletion at the 3' end by the cotransfection of cells with defective or infectious CA17 RNAs. We isolated over 200 different PV/CA17 recombinants, using murine cells expressing the human PV receptor (PVR) and selecting viruses with PV capsids. We found some homologous (H) recombinants and, mostly, nonhomologous (NH) recombinants presenting duplications of parental sequences preferentially located in the regions encoding proteins 2A, 2B, and 3A. Short duplications appeared to be stable, whereas longer duplications were excised during passaging in cultured cells or after multiplication in PVR-transgenic mice, generating H recombinants with diverse sites of recombination. This suggests that NH recombination events may be a transient, intermediate step in the generation and selection of the fittest H recombinants. In addition to the classical copy-choice mechanism of recombination thought to generate mostly H recombinants, there may also be a modular mechanism of recombination, involving NH recombinant precursors, shaping the genomes of recombinant enteroviruses and other picornaviruses. Importance: The multiplication of circulating vaccine-derived polioviruses (cVDPVs) in poorly immunized human populations can render these viruses pathogenic, causing poliomyelitis outbreaks. Most cVDPVs are intertypic recombinants between a poliovirus (PV) strain and another human enterovirus, such as type 17 coxsackie A viruses (CA17). For further studies of the genetic exchanges between PV and CA17, we have developed a model of recombination, making it possible to rescue defective PV RNA genomes with a short deletion by cotransfecting cells with the defective PV genome and CA17 genomic RNA. Numerous recombinants were found, including homologous PV/CA17 recombinants, but mostly nonhomologous recombinants presenting duplications of parental sequences preferentially located in particular regions. Long duplications were excised by passages in cultured cells or in mice, generating diverse homologous recombinants. Recombination leading to nonhomologous recombinants, which evolve into homologous recombinants, may therefore be seen as a model of genetic plasticity in enteroviruses and, possibly, in other RNA viruses. Copyright © 2014 Holmblat et al.

  14. Productive Homologous and Non-homologous Recombination of Hepatitis C Virus in Cell Culture

    PubMed Central

    Li, Yi-Ping; Mikkelsen, Lotte S.; Gottwein, Judith M.; Bukh, Jens

    2013-01-01

    Genetic recombination is an important mechanism for increasing diversity of RNA viruses, and constitutes a viral escape mechanism to host immune responses and to treatment with antiviral compounds. Although rare, epidemiologically important hepatitis C virus (HCV) recombinants have been reported. In addition, recombination is an important regulatory mechanism of cytopathogenicity for the related pestiviruses. Here we describe recombination of HCV RNA in cell culture leading to production of infectious virus. Initially, hepatoma cells were co-transfected with a replicating JFH1ΔE1E2 genome (genotype 2a) lacking functional envelope genes and strain J6 (2a), which has functional envelope genes but does not replicate in culture. After an initial decrease in the number of HCV positive cells, infection spread after 13–36 days. Sequencing of recovered viruses revealed non-homologous recombinants with J6 sequence from the 5′ end to the NS2–NS3 region followed by JFH1 sequence from Core to the 3′ end. These recombinants carried duplicated sequence of up to 2400 nucleotides. HCV replication was not required for recombination, as recombinants were observed in most experiments even when two replication incompetent genomes were co-transfected. Reverse genetic studies verified the viability of representative recombinants. After serial passage, subsequent recombination events reducing or eliminating the duplicated region were observed for some but not all recombinants. Furthermore, we found that inter-genotypic recombination could occur, but at a lower frequency than intra-genotypic recombination. Productive recombination of attenuated HCV genomes depended on expression of all HCV proteins and tolerated duplicated sequence. In general, no strong site specificity was observed. Non-homologous recombination was observed in most cases, while few homologous events were identified. A better understanding of HCV recombination could help identification of natural recombinants and thereby lead to improved therapy. Our findings suggest mechanisms for occurrence of recombinants observed in patients. PMID:23555245

  15. The N-terminal DNA-binding domain of Rad52 promotes RAD51-independent recombination in Saccharomyces cerevisiae.

    PubMed Central

    Tsukamoto, Mariko; Yamashita, Kentaro; Miyazaki, Toshiko; Shinohara, Miki; Shinohara, Akira

    2003-01-01

    In Saccharomyces cerevisiae, the Rad52 protein plays a role in both RAD51-dependent and RAD51-independent recombination pathways. We characterized a rad52 mutant, rad52-329, which lacks the C-terminal Rad51-interacting domain, and studied its role in RAD51-independent recombination. The rad52-329 mutant is completely defective in mating-type switching, but partially proficient in recombination between inverted repeats. We also analyzed the effect of the rad52-329 mutant on telomere recombination. Yeast cells lacking telomerase maintain telomere length by recombination. The rad52-329 mutant is deficient in RAD51-dependent telomere recombination, but is proficient in RAD51-independent telomere recombination. In addition, we examined the roles of other recombination genes in the telomere recombination. The RAD51-independent recombination in the rad52-329 mutant is promoted by a paralogue of Rad52, Rad59. All components of the Rad50-Mre11-Xrs2 complex are also important, but not essential, for RAD51-independent telomere recombination. Interestingly, RAD51 inhibits the RAD51-independent, RAD52-dependent telomere recombination. These findings indicate that Rad52 itself, and more precisely its N-terminal DNA-binding domain, promote an essential reaction in recombination in the absence of RAD51. PMID:14704160

  16. Recombination Modulates How Selection Affects Linked Sites in Drosophila

    PubMed Central

    McGaugh, Suzanne E.; Heil, Caiti S. S.; Manzano-Winkler, Brenda; Loewe, Laurence; Goldstein, Steve; Himmel, Tiffany L.; Noor, Mohamed A. F.

    2012-01-01

    One of the most influential observations in molecular evolution has been a strong association between local recombination rate and nucleotide polymorphisms across the genome. This is interpreted as evidence for ubiquitous natural selection. The alternative explanation, that recombination is mutagenic, has been rejected by the absence of a similar association between local recombination rate and nucleotide divergence between species. However, many recent studies show that recombination rates are often very different even in closely related species, questioning whether an association between recombination rate and divergence between species has been tested satisfactorily. To circumvent this problem, we directly surveyed recombination across approximately 43% of the D. pseudoobscura physical genome in two separate recombination maps and 31% of the D. miranda physical genome, and we identified both global and local differences in recombination rate between these two closely related species. Using only regions with conserved recombination rates between and within species and accounting for multiple covariates, our data support the conclusion that recombination is positively related to diversity because recombination modulates Hill–Robertson effects in the genome and not because recombination is predominately mutagenic. Finally, we find evidence for dips in diversity around nonsynonymous substitutions. We infer that at least some of this reduction in diversity resulted from selective sweeps and examine these dips in the context of recombination rate. PMID:23152720

  17. Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila.

    PubMed

    Smukowski Heil, Caiti S; Ellison, Chris; Dubin, Matthew; Noor, Mohamed A F

    2015-10-01

    Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human-chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila

    PubMed Central

    Smukowski Heil, Caiti S.; Ellison, Chris; Dubin, Matthew; Noor, Mohamed A.F.

    2015-01-01

    Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human–chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms. PMID:26430062

  19. Recombination between bacteriophage lambda and plasmid pBR322 in Escherichia coli.

    PubMed Central

    Pogue-Geile, K L; Dassarma, S; King, S R; Jaskunas, S R

    1980-01-01

    Recombinant lambda phages were isolated that resulted from recombination between the lambda genome and plasmid pBR322 in Escherichia coli, even though these deoxyribonucleic acids (DNAs) did not share extensive regions of homology. The characterization of these recombinant DNAs by heteroduplex analysis and restriction endonucleases is described. All but one of the recombinants appeared to have resulted from reciprocal recombination between a site on lambda DNA and a site on the plasmid. In general, there were two classes of recombinants. One class appeared to have resulted from recombination at the phage attachment site that probably resulted from lambda integration into secondary attachment sites on the plasmid. Seven different secondary attachment sites on pBR322 were found. The other class resulted from plasmid integration at other sites that were widely scattered on the lambda genome. For this second class of recombinants, more than one site on the plasmid could recombine with lambda DNA. Thus, the recombination did not appear to be site specific with respect to lambda or the plasmid. Possible mechanisms for generating these recombinants are discussed. Images PMID:6247334

  20. Genetic Diversity of Infectious Laryngotracheitis Virus during In Vivo Coinfection Parallels Viral Replication and Arises from Recombination Hot Spots within the Genome.

    PubMed

    Loncoman, Carlos A; Hartley, Carol A; Coppo, Mauricio J C; Vaz, Paola K; Diaz-Méndez, Andrés; Browning, Glenn F; García, Maricarmen; Spatz, Stephen; Devlin, Joanne M

    2017-12-01

    Recombination is a feature of many alphaherpesviruses that infect people and animals. Infectious laryngotracheitis virus (ILTV; Gallid alphaherpesvirus 1 ) causes respiratory disease in chickens, resulting in significant production losses in poultry industries worldwide. Natural (field) ILTV recombination is widespread, particularly recombination between attenuated ILTV vaccine strains to create virulent viruses. These virulent recombinants have had a major impact on animal health. Recently, the development of a single nucleotide polymorphism (SNP) genotyping assay for ILTV has helped to understand ILTV recombination in laboratory settings. In this study, we applied this SNP genotyping assay to further examine ILTV recombination in the natural host. Following coinoculation of specific-pathogen-free chickens, we examined the resultant progeny for evidence of viral recombination and characterized the diversity of the recombinants over time. The results showed that ILTV replication and recombination are closely related and that the recombinant viral progeny are most diverse 4 days after coinoculation, which is the peak of viral replication. Further, the locations of recombination breakpoints in a selection of the recombinant progeny, and in field isolates of ILTV from different geographical regions, were examined following full-genome sequencing and used to identify recombination hot spots in the ILTV genome. IMPORTANCE Alphaherpesviruses are common causes of disease in people and animals. Recombination enables genome diversification in many different species of alphaherpesviruses, which can lead to the evolution of higher levels of viral virulence. Using the alphaherpesvirus infectious laryngotracheitis virus (ILTV), we performed coinfections in the natural host (chickens) to demonstrate high levels of virus recombination. Higher levels of diversity in the recombinant progeny coincided with the highest levels of virus replication. In the recombinant progeny, and in field isolates, recombination occurred at greater frequency in recombination hot spot regions of the virus genome. Our results suggest that control measures that aim to limit viral replication could offer the potential to limit virus recombination and thus the evolution of virulence. The development and use of vaccines that are focused on limiting virus replication, rather than vaccines that are focused more on limiting clinical disease, may be indicated in order to better control disease. Copyright © 2017 American Society for Microbiology.

  1. Site-specific genetic recombination: hops, flips, and flops.

    PubMed

    Sadowski, P D

    1993-06-01

    Genetic recombination plays a key role in the life of organisms as diverse as bacteriophages and humans. Contrary to our idea that chromosomes are stable structures, studies of recombination over the past few decades have shown that in fact DNA replicons are remarkably plastic, undergoing frequent recombination-induced rearrangements. This review summarizes our recent knowledge of the biochemistry of the two major classes of site-specific recombination: 1) transpositional recombination, and 2) conservative site-specific recombination.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfleger, Brian F.; Youngquist, Tyler J.

    Recombinant cells and methods for improved yield of fatty alcohols. The recombinant cells harbor a recombinant thioesterase gene, a recombinant acyl-CoA synthetase gene, and a recombinant acyl-CoA reductase gene. In addition, a gene product from one or more of an acyl-CoA dehydrogenase gene, an enoyl-CoA hydratase gene, a 3-hydroxyacyl-CoA dehydrogenase gene, and a 3-ketoacyl-CoA thiolase gene in the recombinant cells is functionally deleted. Culturing the recombinant cells produces fatty alcohols at high yields.

  3. Poliovirus Polymerase Leu420 Facilitates RNA Recombination and Ribavirin Resistance

    PubMed Central

    Kempf, Brian J.; Peersen, Olve B.

    2016-01-01

    ABSTRACT RNA recombination is important in the formation of picornavirus species groups and the ongoing evolution of viruses within species groups. In this study, we examined the structure and function of poliovirus polymerase, 3Dpol, as it relates to RNA recombination. Recombination occurs when nascent RNA products exchange one viral RNA template for another during RNA replication. Because recombination is a natural aspect of picornavirus replication, we hypothesized that some features of 3Dpol may exist, in part, to facilitate RNA recombination. Furthermore, we reasoned that alanine substitution mutations that disrupt 3Dpol-RNA interactions within the polymerase elongation complex might increase and/or decrease the magnitudes of recombination. We found that an L420A mutation in 3Dpol decreased the frequency of RNA recombination, whereas alanine substitutions at other sites in 3Dpol increased the frequency of recombination. The 3Dpol Leu420 side chain interacts with a ribose in the nascent RNA product 3 nucleotides from the active site of the polymerase. Notably, the L420A mutation that reduced recombination also rendered the virus more susceptible to inhibition by ribavirin, coincident with the accumulation of ribavirin-induced G→A and C→U mutations in viral RNA. We conclude that 3Dpol Leu420 is critically important for RNA recombination and that RNA recombination contributes to ribavirin resistance. IMPORTANCE Recombination contributes to the formation of picornavirus species groups and the emergence of circulating vaccine-derived polioviruses (cVDPVs). The recombinant viruses that arise in nature are occasionally more fit than either parental strain, especially when the two partners in recombination are closely related, i.e., members of characteristic species groups, such as enterovirus species groups A to H or rhinovirus species groups A to C. Our study shows that RNA recombination requires conserved features of the viral polymerase. Furthermore, a polymerase mutation that disables recombination renders the virus more susceptible to the antiviral drug ribavirin, suggesting that recombination contributes to ribavirin resistance. Elucidating the molecular mechanisms of RNA replication and recombination may help mankind achieve and maintain poliovirus eradication. PMID:27412593

  4. Impact of Electrodes on Recombination in Bulk Heterojunction Organic Solar Cells

    PubMed Central

    2018-01-01

    In recent years, the efficiency of organic solar cells (OSCs) has increased to more than 13%, although different barriers are on the way for reaching higher efficiencies. One crucial barrier is the recombination of charge carriers, which can either occur as the bulk recombination of photogenerated charges or the recombination of photogenerated charges and electrodic induced charges (EICs). This work studies the impact of EICs on the recombination lifetime in OSCs. To this end, the net recombination lifetime of photogenerated charge carriers in the presence of EICs is measured by means of conventional and newly developed transient photovoltage techniques. Moreover, a new approach has been introduced to exclusively measure the bulk recombination lifetime, i.e., in the absence of EICs; this approach was conducted by depositing transparent insulating layers on both sides of the OSC active layer. An examination of these approaches on OSCs with different active layer materials, thicknesses, and varying light intensities determined that the EICs can only reduce the recombination lifetime of the photogenerated charges in OSCs with very weak recombination strength. This work supports that for OSCs with highly reduced recombination strength, eliminating the recombination of photogenerated charges and EICs is critical for achieving better performance. Therefore, the use of a proper blocking layer suppresses EIC recombination in systems with very weak recombination. PMID:29546982

  5. Selections that isolate recombinant mitochondrial genomes in animals

    PubMed Central

    Ma, Hansong; O'Farrell, Patrick H

    2015-01-01

    Homologous recombination is widespread and catalyzes evolution. Nonetheless, its existence in animal mitochondrial DNA is questioned. We designed selections for recombination between co-resident mitochondrial genomes in various heteroplasmic Drosophila lines. In four experimental settings, recombinant genomes became the sole or dominant genome in the progeny. Thus, selection uncovers occurrence of homologous recombination in Drosophila mtDNA and documents its functional benefit. Double-strand breaks enhanced recombination in the germline and revealed somatic recombination. When the recombination partner was a diverged Drosophila melanogaster genome or a genome from a different species such as Drosophila yakuba, sequencing revealed long continuous stretches of exchange. In addition, the distribution of sequence polymorphisms in recombinants allowed us to map a selected trait to a particular region in the Drosophila mitochondrial genome. Thus, recombination can be harnessed to dissect function and evolution of mitochondrial genome. DOI: http://dx.doi.org/10.7554/eLife.07247.001 PMID:26237110

  6. RNA Recombination In Vivo in the Absence of Viral Replication

    PubMed Central

    Gallei, Andreas; Pankraz, Alexander; Thiel, Heinz-Jürgen; Becher, Paul

    2004-01-01

    To study fundamental aspects of RNA recombination, an in vivo RNA recombination system was established. This system allowed the efficient generation of recombinant cytopathogenic pestiviruses after transfection of synthetic, nonreplicatable, subgenomic transcripts in cells infected with a replicating noncytopathogenic virus. Studies addressing the interplay between RNA recombination and replication revealed that cotransfection of noninfected cells with various pairs of nonreplicatable RNA derivatives also led to the emergence of recombinant viral genomes. Remarkably, homologous and nonhomologous recombination occurred between two overlapping transcripts, each lacking different essential parts of the viral RNA-dependent RNA polymerase (RdRp) gene. Apart from the generally accepted viral replicative copy choice recombination, our results prove the existence of a viral RdRp-independent mechanism of RNA recombination that occurs in vivo. It appears likely that such a mechanism not only contributes to the evolution of RNA viruses but also leads to the generation of recombinant cellular RNAs. PMID:15163720

  7. Evolution of meiotic recombination genes in maize and teosinte.

    PubMed

    Sidhu, Gaganpreet K; Warzecha, Tomasz; Pawlowski, Wojciech P

    2017-01-25

    Meiotic recombination is a major source of genetic variation in eukaryotes. The role of recombination in evolution is recognized but little is known about how evolutionary forces affect the recombination pathway itself. Although the recombination pathway is fundamentally conserved across different species, genetic variation in recombination components and outcomes has been observed. Theoretical predictions and empirical studies suggest that changes in the recombination pathway are likely to provide adaptive abilities to populations experiencing directional or strong selection pressures, such as those occurring during species domestication. We hypothesized that adaptive changes in recombination may be associated with adaptive evolution patterns of genes involved in meiotic recombination. To examine how maize evolution and domestication affected meiotic recombination genes, we studied patterns of sequence polymorphism and divergence in eleven genes controlling key steps in the meiotic recombination pathway in a diverse set of maize inbred lines and several accessions of teosinte, the wild ancestor of maize. We discovered that, even though the recombination genes generally exhibited high sequence conservation expected in a pathway controlling a key cellular process, they showed substantial levels and diverse patterns of sequence polymorphism. Among others, we found differences in sequence polymorphism patterns between tropical and temperate maize germplasms. Several recombination genes displayed patterns of polymorphism indicative of adaptive evolution. Despite their ancient origin and overall sequence conservation, meiotic recombination genes can exhibit extensive and complex patterns of molecular evolution. Changes in these genes could affect the functioning of the recombination pathway, and may have contributed to the successful domestication of maize and its expansion to new cultivation areas.

  8. Nonhomologous Recombination between Defective Poliovirus and Coxsackievirus Genomes Suggests a New Model of Genetic Plasticity for Picornaviruses

    PubMed Central

    Holmblat, Barbara; Jégouic, Sophie; Muslin, Claire; Blondel, Bruno; Joffret, Marie-Line

    2014-01-01

    ABSTRACT Most of the circulating vaccine-derived polioviruses (cVDPVs) implicated in poliomyelitis outbreaks in Madagascar have been shown to be recombinants between the type 2 poliovirus (PV) strain of the oral polio vaccine (Sabin 2) and another species C human enterovirus (HEV-C), such as type 17 coxsackie A virus (CA17) in particular. We studied intertypic genetic exchanges between PV and non-PV HEV-C by developing a recombination model, making it possible to rescue defective type 2 PV RNA genomes with a short deletion at the 3′ end by the cotransfection of cells with defective or infectious CA17 RNAs. We isolated over 200 different PV/CA17 recombinants, using murine cells expressing the human PV receptor (PVR) and selecting viruses with PV capsids. We found some homologous (H) recombinants and, mostly, nonhomologous (NH) recombinants presenting duplications of parental sequences preferentially located in the regions encoding proteins 2A, 2B, and 3A. Short duplications appeared to be stable, whereas longer duplications were excised during passaging in cultured cells or after multiplication in PVR-transgenic mice, generating H recombinants with diverse sites of recombination. This suggests that NH recombination events may be a transient, intermediate step in the generation and selection of the fittest H recombinants. In addition to the classical copy-choice mechanism of recombination thought to generate mostly H recombinants, there may also be a modular mechanism of recombination, involving NH recombinant precursors, shaping the genomes of recombinant enteroviruses and other picornaviruses. PMID:25096874

  9. Heterogeneity in the frequency and characteristics of homologous recombination in pneumococcal evolution.

    PubMed

    Mostowy, Rafal; Croucher, Nicholas J; Hanage, William P; Harris, Simon R; Bentley, Stephen; Fraser, Christophe

    2014-05-01

    The bacterium Streptococcus pneumoniae (pneumococcus) is one of the most important human bacterial pathogens, and a leading cause of morbidity and mortality worldwide. The pneumococcus is also known for undergoing extensive homologous recombination via transformation with exogenous DNA. It has been shown that recombination has a major impact on the evolution of the pathogen, including acquisition of antibiotic resistance and serotype-switching. Nevertheless, the mechanism and the rates of recombination in an epidemiological context remain poorly understood. Here, we proposed several mathematical models to describe the rate and size of recombination in the evolutionary history of two very distinct pneumococcal lineages, PMEN1 and CC180. We found that, in both lineages, the process of homologous recombination was best described by a heterogeneous model of recombination with single, short, frequent replacements, which we call micro-recombinations, and rarer, multi-fragment, saltational replacements, which we call macro-recombinations. Macro-recombination was associated with major phenotypic changes, including serotype-switching events, and thus was a major driver of the diversification of the pathogen. We critically evaluate biological and epidemiological processes that could give rise to the micro-recombination and macro-recombination processes.

  10. Heterogeneity in the Frequency and Characteristics of Homologous Recombination in Pneumococcal Evolution

    PubMed Central

    Hanage, William P.; Harris, Simon R.; Bentley, Stephen; Fraser, Christophe

    2014-01-01

    The bacterium Streptococcus pneumoniae (pneumococcus) is one of the most important human bacterial pathogens, and a leading cause of morbidity and mortality worldwide. The pneumococcus is also known for undergoing extensive homologous recombination via transformation with exogenous DNA. It has been shown that recombination has a major impact on the evolution of the pathogen, including acquisition of antibiotic resistance and serotype-switching. Nevertheless, the mechanism and the rates of recombination in an epidemiological context remain poorly understood. Here, we proposed several mathematical models to describe the rate and size of recombination in the evolutionary history of two very distinct pneumococcal lineages, PMEN1 and CC180. We found that, in both lineages, the process of homologous recombination was best described by a heterogeneous model of recombination with single, short, frequent replacements, which we call micro-recombinations, and rarer, multi-fragment, saltational replacements, which we call macro-recombinations. Macro-recombination was associated with major phenotypic changes, including serotype-switching events, and thus was a major driver of the diversification of the pathogen. We critically evaluate biological and epidemiological processes that could give rise to the micro-recombination and macro-recombination processes. PMID:24786281

  11. Differences between selection on sex versus recombination in red queen models with diploid hosts.

    PubMed

    Agrawal, Aneil F

    2009-08-01

    The Red Queen hypothesis argues that parasites generate selection for genetic mixing (sex and recombination) in their hosts. A number of recent papers have examined this hypothesis using models with haploid hosts. In these haploid models, sex and recombination are selectively equivalent. However, sex and recombination are not equivalent in diploids because selection on sex depends on the consequences of segregation as well as recombination. Here I compare how parasites select on modifiers of sexual reproduction and modifiers of recombination rate. Across a wide set of parameters, parasites tend to select against both sex and recombination, though recombination is favored more often than is sex. There is little correspondence between the conditions favoring sex and those favoring recombination, indicating that the direction of selection on sex is often determined by the effects of segregation, not recombination. Moreover, when sex was favored it is usually due to a long-term advantage whereas short-term effects are often responsible for selection favoring recombination. These results strongly indicate that Red Queen models focusing exclusively on the effects of recombination cannot be used to infer the type of selection on sex that is generated by parasites on diploid hosts.

  12. Photoionization and Recombination

    NASA Technical Reports Server (NTRS)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  13. High-Resolution Patterns of Meiotic Recombination across the Human Major Histocompatibility Complex

    PubMed Central

    Cullen, Michael; Perfetto, Stephen P.; Klitz, William; Nelson, George; Carrington, Mary

    2002-01-01

    Definitive characteristics of meiotic recombination events over large (i.e., >1 Mb) segments of the human genome remain obscure, yet they are essential for establishing the haplotypic structure of the genome and for efficient mapping of complex traits. We present a high-resolution map of recombination at the kilobase level across a 3.3-Mb interval encompassing the major histocompatibility complex (MHC). Genotyping of 20,031 single sperm from 12 individuals resulted in the identification and fine mapping of 325 recombinant chromosomes within genomic intervals as small as 7 kb. Several principal characteristics of recombination in this region were observed: (1) rates of recombination can differ significantly between individuals; (2) intense hot spots of recombination occur at least every 0.8 Mb but are not necessarily evenly spaced; (3) distribution in the location of recombination events can differ significantly among individuals; (4) between hot spots, low levels of recombination occur fairly evenly across 100-kb segments, suggesting the presence of warm spots of recombination; and (5) specific sequence motifs associate significantly with recombination distribution. These data provide a plausible model for recombination patterns of the human genome overall. PMID:12297984

  14. Connecting theory and data to understand recombination rate evolution.

    PubMed

    Dapper, Amy L; Payseur, Bret A

    2017-12-19

    Meiotic recombination is necessary for successful gametogenesis in most sexually reproducing organisms and is a fundamental genomic parameter, influencing the efficacy of selection and the fate of new mutations. The molecular and evolutionary functions of recombination should impose strong selective constraints on the range of recombination rates. Yet, variation in recombination rate is observed on a variety of genomic and evolutionary scales. In the past decade, empirical studies have described variation in recombination rate within genomes, between individuals, between sexes, between populations and between species. At the same time, theoretical work has provided an increasingly detailed picture of the evolutionary advantages to recombination. Perhaps surprisingly, the causes of natural variation in recombination rate remain poorly understood. We argue that empirical and theoretical approaches to understand the evolution of recombination have proceeded largely independently of each other. Most models that address the evolution of recombination rate were created to explain the evolutionary advantage of recombination rather than quantitative differences in rate among individuals. Conversely, most empirical studies aim to describe variation in recombination rate, rather than to test evolutionary hypotheses. In this Perspective, we argue that efforts to integrate the rich bodies of empirical and theoretical work on recombination rate are crucial to moving this field forward. We provide new directions for the development of theory and the production of data that will jointly close this gap.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'. © 2017 The Author(s).

  15. Illegitimate recombination mediated by calf thymus DNA topoisomerase II in vitro.

    PubMed Central

    Bae, Y S; Kawasaki, I; Ikeda, H; Liu, L F

    1988-01-01

    We have found that purified calf thymus DNA topoisomerase II mediates recombination between two phage lambda DNA molecules in an in vitro system. The enzyme mainly produced a linear monomer recombinant DNA that can be packaged in vitro. Novobiocin and anti-calf thymus DNA topoisomerase II antibody inhibit this ATP-dependent recombination. The recombinant molecules contain duplications or deletions, and most crossovers take place between nonhomologous sequences of lambda DNA, as judged by the sequences of recombination junctions. Therefore, the recombination mediated by the calf thymus DNA topoisomerase II is an illegitimate recombination that is similar to recombination mediated by Escherichia coli DNA gyrase or phage T4 DNA topoisomerase. The subunit exchange model, which has been suggested for the DNA gyrase-mediated recombination, is now generalized as follows: DNA topoisomerase II molecules bind to DNAs, associate with each other, and lead to the exchange of DNA strands through the exchange of topoisomerase II subunits. Illegitimate recombination might be carried out by a general mechanism in organisms ranging from prokaryotes to higher eukaryotes. Images PMID:2832845

  16. Experimental evolution across different thermal regimes yields genetic divergence in recombination fraction but no divergence in temperature associated plastic recombination.

    PubMed

    Kohl, Kathryn P; Singh, Nadia D

    2018-04-01

    Phenotypic plasticity is pervasive in nature. One mechanism underlying the evolution and maintenance of such plasticity is environmental heterogeneity. Indeed, theory indicates that both spatial and temporal variation in the environment should favor the evolution of phenotypic plasticity under a variety of conditions. Cyclical environmental conditions have also been shown to yield evolved increases in recombination frequency. Here, we use a panel of replicated experimental evolution populations of D. melanogaster to test whether variable environments favor enhanced plasticity in recombination rate and/or increased recombination rate in response to temperature. In contrast to expectation, we find no evidence for either enhanced plasticity in recombination or increased rates of recombination in the variable environment lines. Our data confirm a role of temperature in mediating recombination fraction in D. melanogaster, and indicate that recombination is genetically and plastically depressed under lower temperatures. Our data further suggest that the genetic architectures underlying plastic recombination and population-level variation in recombination rate are likely to be distinct. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  17. The use of recombinant luteinizing hormone in patients undergoing assisted reproductive techniques with advanced reproductive age: a systematic review and meta-analysis.

    PubMed

    Hill, Micah J; Levens, Eric D; Levy, Gary; Ryan, Mary E; Csokmay, John M; DeCherney, Alan H; Whitcomb, Brian W

    2012-05-01

    To evaluate the effect of recombinant LH in assisted reproduction technology (ART) cycles in patients of advanced reproductive age. A systematic review and meta-analysis. Published randomized controlled clinical trials comparing recombinant LH plus recombinant FSH versus recombinant FSH only in patients of advanced reproductive age. Patients 35 years and older undergoing assisted reproduction. Recombinant LH plus recombinant FSH controlled ovarian hyperstimulation (COH) versus recombinant FSH stimulation only in assisted reproduction cycles. Implantation and clinical pregnancy. Seven trials were identified that met inclusion criteria and comprised 902 assisted reproduction technology cycles. No differences in serum E(2) on the day of hCG administration were reported in any trials. Two trials reported lower oocyte yield and one trial reported lower metaphase II oocyte yield in the recombinant LH-supplemented group. One trial reported higher fertilization rates in the recombinant LH-supplemented group. In a fixed effect model, implantation was higher in the recombinant LH-supplemented group (odds ratio 1.36, 95% confidence interval 1.05-1.78). Similarly, clinical pregnancy was increased in the recombinant LH-supplemented group (odds ratio 1.37, 95% confidence interval 1.03-1.83). The addition of recombinant LH to ART cycles may improve implantation and clinical pregnancy in patients of advanced reproductive age. Copyright © 2012 American Society for Reproductive Medicine. All rights reserved.

  18. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian [East Lansing, MI; Kleff, Susanne [East Lansing, MI; Guettler, Michael V [Holt, MI

    2012-02-21

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  19. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  20. Genomic correlates of recombination rate and its variability across eight recombination maps in the western honey bee (Apis mellifera L.).

    PubMed

    Ross, Caitlin R; DeFelice, Dominick S; Hunt, Greg J; Ihle, Kate E; Amdam, Gro V; Rueppell, Olav

    2015-02-21

    Meiotic recombination has traditionally been explained based on the structural requirement to stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but intraspecific comparisons of genome-wide recombination patterns are rare. The honey bee (Apis mellifera) exhibits the highest rate of genomic recombination among multicellular animals with about five cross-over events per chromatid. Here, we present a comparative analysis of recombination rates across eight genetic linkage maps of the honey bee genome to investigate which genomic sequence features are correlated with recombination rate and with its variation across the eight data sets, ranging in average marker spacing ranging from 1 Mbp to 120 kbp. Overall, we found that GC content explained best the variation in local recombination rate along chromosomes at the analyzed 100 kbp scale. In contrast, variation among the different maps was correlated to the abundance of microsatellites and several specific tri- and tetra-nucleotides. The combined evidence from eight medium-scale recombination maps of the honey bee genome suggests that recombination rate variation in this highly recombining genome might be due to the DNA configuration instead of distinct sequence motifs. However, more fine-scale analyses are needed. The empirical basis of eight differing genetic maps allowed for robust conclusions about the correlates of the local recombination rates and enabled the study of the relation between DNA features and variability in local recombination rates, which is particularly relevant in the honey bee genome with its exceptionally high recombination rate.

  1. ARG-walker: inference of individual specific strengths of meiotic recombination hotspots by population genomics analysis.

    PubMed

    Chen, Hao; Yang, Peng; Guo, Jing; Kwoh, Chee Keong; Przytycka, Teresa M; Zheng, Jie

    2015-01-01

    Meiotic recombination hotspots play important roles in various aspects of genomics, but the underlying mechanisms for regulating the locations and strengths of recombination hotspots are not yet fully revealed. Most existing algorithms for estimating recombination rates from sequence polymorphism data can only output average recombination rates of a population, although there is evidence for the heterogeneity in recombination rates among individuals. For genome-wide association studies (GWAS) of recombination hotspots, an efficient algorithm that estimates the individualized strengths of recombination hotspots is highly desirable. In this work, we propose a novel graph mining algorithm named ARG-walker, based on random walks on ancestral recombination graphs (ARG), to estimate individual-specific recombination hotspot strengths. Extensive simulations demonstrate that ARG-walker is able to distinguish the hot allele of a recombination hotspot from the cold allele. Integrated with output of ARG-walker, we performed GWAS on the phased haplotype data of the 22 autosome chromosomes of the HapMap Asian population samples of Chinese and Japanese (JPT+CHB). Significant cis-regulatory signals have been detected, which is corroborated by the enrichment of the well-known 13-mer motif CCNCCNTNNCCNC of PRDM9 protein. Moreover, two new DNA motifs have been identified in the flanking regions of the significantly associated SNPs (single nucleotide polymorphisms), which are likely to be new cis-regulatory elements of meiotic recombination hotspots of the human genome. Our results on both simulated and real data suggest that ARG-walker is a promising new method for estimating the individual recombination variations. In the future, it could be used to uncover the mechanisms of recombination regulation and human diseases related with recombination hotspots.

  2. Characterization of recombination features and the genetic basis in multiple cattle breeds.

    PubMed

    Shen, Botong; Jiang, Jicai; Seroussi, Eyal; Liu, George E; Ma, Li

    2018-04-27

    Crossover generated by meiotic recombination is a fundamental event that facilitates meiosis and sexual reproduction. Comparative studies have shown wide variation in recombination rate among species, but the characterization of recombination features between cattle breeds has not yet been performed. Cattle populations in North America count millions, and the dairy industry has genotyped millions of individuals with pedigree information that provide a unique opportunity to study breed-level variations in recombination. Based on large pedigrees of Jersey, Ayrshire and Brown Swiss cattle with genotype data, we identified over 3.4 million maternal and paternal crossover events from 161,309 three-generation families. We constructed six breed- and sex-specific genome-wide recombination maps using 58,982 autosomal SNPs for two sexes in the three dairy cattle breeds. A comparative analysis of the six recombination maps revealed similar global recombination patterns between cattle breeds but with significant differences between sexes. We confirmed that male recombination map is 10% longer than the female map in all three cattle breeds, consistent with previously reported results in Holstein cattle. When comparing recombination hotspot regions between cattle breeds, we found that 30% and 10% of the hotspots were shared between breeds in males and females, respectively, with each breed exhibiting some breed-specific hotspots. Finally, our multiple-breed GWAS found that SNPs in eight loci affected recombination rate and that the PRDM9 gene associated with hotspot usage in multiple cattle breeds, indicating a shared genetic basis for recombination across dairy cattle breeds. Collectively, our results generated breed- and sex-specific recombination maps for multiple cattle breeds, provided a comprehensive characterization and comparison of recombination patterns between breeds, and expanded our understanding of the breed-level variations in recombination features within an important livestock species.

  3. Recombination Promoted by DNA Viruses: Phage λ to Herpes Simplex Virus

    PubMed Central

    Weller, Sandra K.; Sawitzke, James A.

    2015-01-01

    The purpose of this review is to explore recombination strategies in DNA viruses. Homologous recombination is a universal genetic process that plays multiple roles in the biology of all organisms, including viruses. Recombination and DNA replication are interconnected, with recombination being essential for repairing DNA damage and supporting replication of the viral genome. Recombination also creates genetic diversity, and viral recombination mechanisms have important implications for understanding viral origins as well as the dynamic nature of viral-host interactions. Both bacteriophage λ and herpes simplex virus (HSV) display high rates of recombination, both utilizing their own proteins and commandeering cellular proteins to promote recombination reactions. We focus primarily on λ and HSV, as they have proven amenable to both genetic and biochemical analysis and have recently been shown to exhibit some surprising similarities that will guide future studies. PMID:25002096

  4. Detecting and Analyzing Genetic Recombination Using RDP4.

    PubMed

    Martin, Darren P; Murrell, Ben; Khoosal, Arjun; Muhire, Brejnev

    2017-01-01

    Recombination between nucleotide sequences is a major process influencing the evolution of most species on Earth. The evolutionary value of recombination has been widely debated and so too has its influence on evolutionary analysis methods that assume nucleotide sequences replicate without recombining. When nucleic acids recombine, the evolution of the daughter or recombinant molecule cannot be accurately described by a single phylogeny. This simple fact can seriously undermine the accuracy of any phylogenetics-based analytical approach which assumes that the evolutionary history of a set of recombining sequences can be adequately described by a single phylogenetic tree. There are presently a large number of available methods and associated computer programs for analyzing and characterizing recombination in various classes of nucleotide sequence datasets. Here we examine the use of some of these methods to derive and test recombination hypotheses using multiple sequence alignments.

  5. Oligonucleotide recombination enabled site-specific mutagenesis in bacteria

    USDA-ARS?s Scientific Manuscript database

    Recombineering refers to a strategy for engineering DNA sequences using a specialized mode of homologous recombination. This technology can be used for rapidly constructing precise changes in bacterial genome sequences in vivo. Oligo recombination is one type of recombineering that uses ssDNA olig...

  6. Recombinant aequorin and recombinant semi-synthetic aequorins. Cellular Ca2+ ion indicators.

    PubMed Central

    Shimomura, O; Inouye, S; Musicki, B; Kishi, Y

    1990-01-01

    Properties of a recombinant aequorin were investigated in comparison with those of natural aequorin. In chromatographic behaviour the recombinant aequorin did not match any of ten isoaequorins tested, although it was very similar to aequorin J. Its sensitivity to Ca2+ was found to be higher than that of any isoaequorin except aequorin D. The recombinant aequorin exhibited no toxicity when tested in various kinds of cells, even where samples of natural aequorin had been found to be toxic. Properties of four recombinant semi-synthetic aequorins (fch-, hcp-, e- and n-types), prepared from the recombinant apo-aequorin and synthetic analogues of coelenterazine, were approximately parallel with those of corresponding semi-synthetic aequorins prepared from natural apo-aequorin. Both recombinant e-aequorin and natural e-aequorin J luminesced with high values of the luminescence intensity ratio I400/I465, although the ratios were not pCa-dependent. The recombinant aequorin and recombinant semi-synthetic aequorins are highly suited for monitoring cellular Ca2+. PMID:2400391

  7. Emergence of recombinant forms in geographic regions with co-circulating HIV subtypes in the dynamic HIV-1 epidemic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ming; Letiner, Thomas K; Korber, Bette T

    2009-01-01

    We have reexamined the subtype designations of {approx}10,000 subtype A, B, C, G, and AG, BC, BF recombinant sequences, and compared the results of the new analysis with their published designations. Intersubtype recombinants dominate HIV epidemics in three different geographical regions. The circulating recombinant from (CRF) CRF02-AG, common in West Central Africa, appears to result from a recombination event that occurred early in the divergence between subtypes A and G, although additional more recent recombination events may have contributed to the breakpoint pattern in this recombinant lineage as well. The Chinese recombinant epidemic strains CRF07 and CRF08, in contrast, resultmore » from recent recombinations between more contemporary strains. Nevertheless, CRF07 and CRF08 contributed to many subsequent recombination events. The BF recombinant epidemics in two HIV-1 epicenters in South America are not independent and BF epidemics in South America have an unusually high fraction of unique recombinant forms (URFs) that have each been found only once and carry distinctive breakpoints. Taken together, these analyses reveal a complex and dynamic picture of the current HIV-1 epidemic, and suggest a means of grouping and tracking relationships between viruses through preservation of shared breakpints.« less

  8. The evolution of recombination rates in finite populations during ecological speciation.

    PubMed

    Reeve, James; Ortiz-Barrientos, Daniel; Engelstädter, Jan

    2016-10-26

    Recombination can impede ecological speciation with gene flow by mixing locally adapted genotypes with maladapted migrant genotypes from a divergent population. In such a scenario, suppression of recombination can be selectively favoured. However, in finite populations evolving under the influence of random genetic drift, recombination can also facilitate adaptation by reducing Hill-Robertson interference between loci under selection. In this case, increased recombination rates can be favoured. Although these two major effects on recombination have been studied individually, their joint effect on ecological speciation with gene flow remains unexplored. Using a mathematical model, we investigated the evolution of recombination rates in two finite populations that exchange migrants while adapting to contrasting environments. Our results indicate a two-step dynamic where increased recombination is first favoured (in response to the Hill-Robertson effect), and then disfavoured, as the cost of recombining locally with maladapted migrant genotypes increases over time (the maladaptive gene flow effect). In larger populations, a stronger initial benefit for recombination was observed, whereas high migration rates intensify the long-term cost of recombination. These dynamics may have important implications for our understanding of the conditions that facilitate incipient speciation with gene flow and the evolution of recombination in finite populations. © 2016 The Author(s).

  9. Nonmutagenic carcinogens induce intrachromosomal recombination in dividing yeast cells.

    PubMed

    Schiestl, R H

    1993-12-01

    A large number of animal and human carcinogens without apparent genotoxic activity exist (nonmutagenic carcinogens) that are difficult or impossible to detect with the currently used short-term tests. Because of the association of carcinogenesis with genome rearrangement, a system selecting for intrachromosomal recombination (DEL recombination) that results in genome rearrangement has been constructed in the yeast Saccharomyces cerevisiae. Because DEL recombination is under different genetic control than interchromosomal recombination and meiotic recombination, it is probably due to a different mechanism. It has been found that DEL recombination is readily inducible by 10 mutagenic carcinogens and 17 nonmutagenic carcinogens that are not detectable (false negatives) with the Ames assay. In addition, three out of four mutagens that do not cause cancer (false positives in the Ames assay) do not induce DEL recombination. DEL recombination is inducible by UV only in dividing cells but not in cells synchronized in the G1 or G2 phase of the cell cycle. Interchromosomal recombination, on the other hand, is inducible in G1 but not in G2. The nonmutagenic carcinogens induce DEL recombination only in actively growing cells, which may give some indication as to their mechanism. Further characterization of the mechanism involved in induction of DEL recombination may contribute to the understanding of the biological activity of nonmutagenic carcinogens.

  10. Variation in Recombination Rate and Its Genetic Determinism in Sheep Populations

    PubMed Central

    Petit, Morgane; Astruc, Jean-Michel; Sarry, Julien; Drouilhet, Laurence; Fabre, Stéphane; Moreno, Carole R.; Servin, Bertrand

    2017-01-01

    Recombination is a complex biological process that results from a cascade of multiple events during meiosis. Understanding the genetic determinism of recombination can help to understand if and how these events are interacting. To tackle this question, we studied the patterns of recombination in sheep, using multiple approaches and data sets. We constructed male recombination maps in a dairy breed from the south of France (the Lacaune breed) at a fine scale by combining meiotic recombination rates from a large pedigree genotyped with a 50K SNP array and historical recombination rates from a sample of unrelated individuals genotyped with a 600K SNP array. This analysis revealed recombination patterns in sheep similar to other mammals but also genome regions that have likely been affected by directional and diversifying selection. We estimated the average recombination rate of Lacaune sheep at 1.5 cM/Mb, identified ∼50,000 crossover hotspots on the genome, and found a high correlation between historical and meiotic recombination rate estimates. A genome-wide association study revealed two major loci affecting interindividual variation in recombination rate in Lacaune, including the RNF212 and HEI10 genes and possibly two other loci of smaller effects including the KCNJ15 and FSHR genes. The comparison of these new results to those obtained previously in a distantly related population of domestic sheep (the Soay) revealed that Soay and Lacaune males have a very similar distribution of recombination along the genome. The two data sets were thus combined to create more precise male meiotic recombination maps in Sheep. However, despite their similar recombination maps, Soay and Lacaune males were found to exhibit different heritabilities and QTL effects for interindividual variation in genome-wide recombination rates. This highlights the robustness of recombination patterns to underlying variation in their genetic determinism. PMID:28978774

  11. Variation in Recombination Rate and Its Genetic Determinism in Sheep Populations.

    PubMed

    Petit, Morgane; Astruc, Jean-Michel; Sarry, Julien; Drouilhet, Laurence; Fabre, Stéphane; Moreno, Carole R; Servin, Bertrand

    2017-10-01

    Recombination is a complex biological process that results from a cascade of multiple events during meiosis. Understanding the genetic determinism of recombination can help to understand if and how these events are interacting. To tackle this question, we studied the patterns of recombination in sheep, using multiple approaches and data sets. We constructed male recombination maps in a dairy breed from the south of France (the Lacaune breed) at a fine scale by combining meiotic recombination rates from a large pedigree genotyped with a 50K SNP array and historical recombination rates from a sample of unrelated individuals genotyped with a 600K SNP array. This analysis revealed recombination patterns in sheep similar to other mammals but also genome regions that have likely been affected by directional and diversifying selection. We estimated the average recombination rate of Lacaune sheep at 1.5 cM/Mb, identified ∼50,000 crossover hotspots on the genome, and found a high correlation between historical and meiotic recombination rate estimates. A genome-wide association study revealed two major loci affecting interindividual variation in recombination rate in Lacaune, including the RNF212 and HEI10 genes and possibly two other loci of smaller effects including the KCNJ15 and FSHR genes. The comparison of these new results to those obtained previously in a distantly related population of domestic sheep (the Soay) revealed that Soay and Lacaune males have a very similar distribution of recombination along the genome. The two data sets were thus combined to create more precise male meiotic recombination maps in Sheep. However, despite their similar recombination maps, Soay and Lacaune males were found to exhibit different heritabilities and QTL effects for interindividual variation in genome-wide recombination rates. This highlights the robustness of recombination patterns to underlying variation in their genetic determinism. Copyright © 2017 by the Genetics Society of America.

  12. Phylogenetic study of recombinant strains of Potato virus Y

    USDA-ARS?s Scientific Manuscript database

    Potato virus Y (PVY) exists as a complex of strains, including a growing number of recombinants. Evolution of PVY proceeds through accumulation of mutations and more rapidly through recombination. Here, the role of recombination in PVY evolution and the origin of common PVY recombinants were studied...

  13. Effect of interface roughness on Auger recombination in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Tan, Chee-Keong; Sun, Wei; Wierer, Jonathan J.; Tansu, Nelson

    2017-03-01

    Auger recombination in a semiconductor is a three-carrier process, wherein the energy from the recombination of an electron and hole pair promotes a third carrier to a higher energy state. In semiconductor quantum wells with increased carrier densities, the Auger recombination becomes an appreciable fraction of the total recombination rate and degrades luminescence efficiency. Gaining insight into the variables that influence Auger recombination in semiconductor quantum wells could lead to further advances in optoelectronic and electronic devices. Here we demonstrate the important role that interface roughness has on Auger recombination within quantum wells. Our computational studies find that as the ratio of interface roughness to quantum well thickness is increased, Auger recombination is significantly enhanced. Specifically, when considering a realistic interface roughness for an InGaN quantum well, the enhancement in Auger recombination rate over a quantum well with perfect heterointerfaces can be approximately four orders of magnitude.

  14. A comparison of bactericidal/permeability-increasing protein variant versus recombinant endotoxin-neutralizing protein for the treatment of Escherichia coli sepsis in rats .

    PubMed

    Stack, A M; Saladino, R A; Siber, G R; Thompson, C; Marra, M N; Novitsky, T J; Fleisher, G R

    1997-01-01

    To compare a recombinant bactericidal/permeability-increasing protein variant and a recombinant endotoxin-neutralizing protein. Randomized, blinded, controlled study, using a rat model of sepsis. Animal research facility. Male Wistar rats. An inoculum of 1.5 x 10(7) to 1.8 x 10(8) Escherichia coli O18ac K1, implanted in the peritoneum, produced bacteremia in 95% of animals after 1 hr. One hour after E. coli challenge, animals received recombinant bactericidal/permeability-increasing protein variant, recombinant endotoxin-neutralizing protein, or saline intravenously, followed by ceftriaxone and gentamicin intramuscularly. Twenty-four (85.7%) of 28 animals receiving recombinant endotoxin-neutralizing protein (p < .001 vs. control) survived 7 days compared with nine (33.3%) of 27 recombinant bactericidal/permeability-increasing protein variant-treated (p < .001 vs. control) and two (6.5%) of 31 control animals. Both recombinant endotoxin-neutralizing protein and recombinant bactericidal/permeability-increasing protein variant improved survival. Recombinant endotoxin-neutralizing protein was superior to recombinant bactericidal/permeability-increasing protein variant in its protective effect at the doses tested. Our results suggest that both proteins may be useful in the treatment of human Gram-negative sepsis.

  15. Bayesian Inference of Shared Recombination Hotspots Between Humans and Chimpanzees

    PubMed Central

    Wang, Ying; Rannala, Bruce

    2014-01-01

    Recombination generates variation and facilitates evolution. Recombination (or lack thereof) also contributes to human genetic disease. Methods for mapping genes influencing complex genetic diseases via association rely on linkage disequilibrium (LD) in human populations, which is influenced by rates of recombination across the genome. Comparative population genomic analyses of recombination using related primate species can identify factors influencing rates of recombination in humans. Such studies can indicate how variable hotspots for recombination may be both among individuals (or populations) and over evolutionary timescales. Previous studies have suggested that locations of recombination hotspots are not conserved between humans and chimpanzees. We made use of the data sets from recent resequencing projects and applied a Bayesian method for identifying hotspots and estimating recombination rates. We also reanalyzed SNP data sets for regions with known hotspots in humans using samples from the human and chimpanzee. The Bayes factors (BF) of shared recombination hotspots between human and chimpanzee across regions were obtained. Based on the analysis of the aligned regions of human chromosome 21, locations where the two species show evidence of shared recombination hotspots (with high BFs) were identified. Interestingly, previous comparative studies of human and chimpanzee that focused on the known human recombination hotspots within the β-globin and HLA regions did not find overlapping of hotspots. Our results show high BFs of shared hotspots at locations within both regions, and the estimated locations of shared hotspots overlap with the locations of human recombination hotspots obtained from sperm-typing studies. PMID:25261696

  16. Fast Dissemination of New HIV-1 CRF02/A1 Recombinants in Pakistan

    PubMed Central

    Chen, Yue; Hora, Bhavna; DeMarco, Todd; Shah, Sharaf Ali; Ahmed, Manzoor; Sanchez, Ana M.; Su, Chang; Carter, Meredith; Stone, Mars; Hasan, Rumina; Hasan, Zahra; Busch, Michael P.; Denny, Thomas N.; Gao, Feng

    2016-01-01

    A number of HIV-1 subtypes are identified in Pakistan by characterization of partial viral gene sequences. Little is known whether new recombinants are generated and how they disseminate since whole genome sequences for these viruses have not been characterized. Near full-length genome (NFLG) sequences were obtained by amplifying two overlapping half genomes or next generation sequencing from 34 HIV-1-infected individuals in Pakistan. Phylogenetic tree analysis showed that the newly characterized sequences were 16 subtype As, one subtype C, and 17 A/G recombinants. Further analysis showed that all 16 subtype A1 sequences (47%), together with the vast majority of sequences from Pakistan from other studies, formed a tight subcluster (A1a) within the subtype A1 clade, suggesting that they were derived from a single introduction. More in-depth analysis of 17 A/G NFLG sequences showed that five shared similar recombination breakpoints as in CRF02 (15%) but were phylogenetically distinct from the prototype CRF02 by forming a tight subcluster (CRF02a) while 12 (38%) were new recombinants between CRF02a and A1a or a divergent A1b viruses. Unique recombination patterns among the majority of the newly characterized recombinants indicated ongoing recombination. Interestingly, recombination breakpoints in these CRF02/A1 recombinants were similar to those in prototype CRF02 viruses, indicating that recombination at these sites more likely generate variable recombinant viruses. The dominance and fast dissemination of new CRF02a/A1 recombinants over prototype CRF02 suggest that these recombinant have more adapted and may become major epidemic strains in Pakistan. PMID:27973597

  17. Specific Modifications of Histone Tails, but Not DNA Methylation, Mirror the Temporal Variation of Mammalian Recombination Hotspots

    PubMed Central

    Zeng, Jia; Yi, Soojin V.

    2014-01-01

    Recombination clusters nonuniformly across mammalian genomes at discrete genomic loci referred to as recombination hotspots. Despite their ubiquitous presence, individual hotspots rapidly lose their activities, and the molecular and evolutionary mechanisms underlying such frequent hotspot turnovers (the so-called “recombination hotspot paradox”) remain unresolved. Even though some sequence motifs are significantly associated with hotspots, multiple lines of evidence indicate that factors other than underlying sequences, such as epigenetic modifications, may affect the evolution of recombination hotspots. Thus, identifying epigenetic factors that covary with recombination at fine-scale is a promising step for this important research area. It was previously reported that recombination rates correlate with indirect measures of DNA methylation in the human genome. Here, we analyze experimentally determined DNA methylation and histone modification of human sperms, and show that the correlation between DNA methylation and recombination in long-range windows does not hold with respect to the spatial and temporal variation of recombination at hotspots. On the other hand, two histone modifications (H3K4me3 and H3K27me3) overlap extensively with recombination hotspots. Similar trends were observed in mice. These results indicate that specific histone modifications rather than DNA methylation are associated with the rapid evolution of recombination hotspots. Furthermore, many human recombination hotspots occupy “bivalent” chromatin regions that harbor both active (H3K4me3) and repressive (H3K27me3) marks. This may explain why human recombination hotspots tend to occur in nongenic regions, in contrast to yeast and Arabidopsis hotspots that are characterized by generally active chromatins. Our results highlight the dynamic epigenetic underpinnings of recombination hotspot evolution. PMID:25326136

  18. Specific modifications of histone tails, but not DNA methylation, mirror the temporal variation of mammalian recombination hotspots.

    PubMed

    Zeng, Jia; Yi, Soojin V

    2014-10-16

    Recombination clusters nonuniformly across mammalian genomes at discrete genomic loci referred to as recombination hotspots. Despite their ubiquitous presence, individual hotspots rapidly lose their activities, and the molecular and evolutionary mechanisms underlying such frequent hotspot turnovers (the so-called "recombination hotspot paradox") remain unresolved. Even though some sequence motifs are significantly associated with hotspots, multiple lines of evidence indicate that factors other than underlying sequences, such as epigenetic modifications, may affect the evolution of recombination hotspots. Thus, identifying epigenetic factors that covary with recombination at fine-scale is a promising step for this important research area. It was previously reported that recombination rates correlate with indirect measures of DNA methylation in the human genome. Here, we analyze experimentally determined DNA methylation and histone modification of human sperms, and show that the correlation between DNA methylation and recombination in long-range windows does not hold with respect to the spatial and temporal variation of recombination at hotspots. On the other hand, two histone modifications (H3K4me3 and H3K27me3) overlap extensively with recombination hotspots. Similar trends were observed in mice. These results indicate that specific histone modifications rather than DNA methylation are associated with the rapid evolution of recombination hotspots. Furthermore, many human recombination hotspots occupy "bivalent" chromatin regions that harbor both active (H3K4me3) and repressive (H3K27me3) marks. This may explain why human recombination hotspots tend to occur in nongenic regions, in contrast to yeast and Arabidopsis hotspots that are characterized by generally active chromatins. Our results highlight the dynamic epigenetic underpinnings of recombination hotspot evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Non-Radiative Carrier Recombination Enhanced by Two-Level Process: A First-Principles Study

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Hui; Shi, Lin; Wang, Lin-Wang; Wei, Su-Huai

    2016-02-01

    Non-radiative recombination plays an important role in the performance of optoelectronic semiconductor devices such as solar cells and light-emitting diodes. Most textbook examples assume that the recombination process occurs through a single defect level, where one electron and one hole are captured and recombined. Based on this simple picture, conventional wisdom is that only defect levels near the center of the bandgap can be effective recombination centers. Here, we present a new two-level recombination mechanism: first, one type of carrier is captured through a defect level forming a metastable state; then the local defect configuration rapidly changes to a stable state, where the other type of carrier is captured and recombined through another defect level. This novel mechanism is applied to the recombination center in CdTe. We show that this two-level process can significantly increase the recombination rate (by three orders of magnitude) in agreement with experiments. We expect that this two-level recombination process can exist in a wide range of semiconductors, so its effect should be carefully examined in characterizing optoelectronic materials.

  20. Widespread recombination in published animal mtDNA sequences.

    PubMed

    Tsaousis, A D; Martin, D P; Ladoukakis, E D; Posada, D; Zouros, E

    2005-04-01

    Mitochondrial DNA (mtDNA) recombination has been observed in several animal species, but there are doubts as to whether it is common or only occurs under special circumstances. Animal mtDNA sequences retrieved from public databases were unambiguously aligned and rigorously tested for evidence of recombination. At least 30 recombination events were detected among 186 alignments examined. Recombinant sequences were found in invertebrates and vertebrates, including primates. It appears that mtDNA recombination may occur regularly in the animal cell but rarely produces new haplotypes because of homoplasmy. Common animal mtDNA recombination would necessitate a reexamination of phylogenetic and biohistorical inference based on the assumption of clonal mtDNA transmission. Recombination may also have an important role in producing and purging mtDNA mutations and thus in mtDNA-based diseases and senescence.

  1. Mechanisms and Factors that Influence High Frequency Retroviral Recombination

    PubMed Central

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga; Mens, Helene; Pathak, Vinay K.; Hu, Wei-Shau

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment, and vaccine development. PMID:21994801

  2. Bayesian inference of shared recombination hotspots between humans and chimpanzees.

    PubMed

    Wang, Ying; Rannala, Bruce

    2014-12-01

    Recombination generates variation and facilitates evolution. Recombination (or lack thereof) also contributes to human genetic disease. Methods for mapping genes influencing complex genetic diseases via association rely on linkage disequilibrium (LD) in human populations, which is influenced by rates of recombination across the genome. Comparative population genomic analyses of recombination using related primate species can identify factors influencing rates of recombination in humans. Such studies can indicate how variable hotspots for recombination may be both among individuals (or populations) and over evolutionary timescales. Previous studies have suggested that locations of recombination hotspots are not conserved between humans and chimpanzees. We made use of the data sets from recent resequencing projects and applied a Bayesian method for identifying hotspots and estimating recombination rates. We also reanalyzed SNP data sets for regions with known hotspots in humans using samples from the human and chimpanzee. The Bayes factors (BF) of shared recombination hotspots between human and chimpanzee across regions were obtained. Based on the analysis of the aligned regions of human chromosome 21, locations where the two species show evidence of shared recombination hotspots (with high BFs) were identified. Interestingly, previous comparative studies of human and chimpanzee that focused on the known human recombination hotspots within the β-globin and HLA regions did not find overlapping of hotspots. Our results show high BFs of shared hotspots at locations within both regions, and the estimated locations of shared hotspots overlap with the locations of human recombination hotspots obtained from sperm-typing studies. Copyright © 2014 by the Genetics Society of America.

  3. The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster.

    PubMed

    Hunter, Chad M; Huang, Wen; Mackay, Trudy F C; Singh, Nadia D

    2016-04-01

    Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait.

  4. The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster

    PubMed Central

    Hunter, Chad M.; Huang, Wen; Mackay, Trudy F. C.; Singh, Nadia D.

    2016-01-01

    Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait. PMID:27035832

  5. Bacteriophage recombination systems and biotechnical applications.

    PubMed

    Nafissi, Nafiseh; Slavcev, Roderick

    2014-04-01

    Bacteriophage recombination systems have been widely used in biotechnology for modifying prokaryotic species, for creating transgenic animals and plants, and more recently, for human cell gene manipulation. In contrast to homologous recombination, which benefits from the endogenous recombination machinery of the cell, site-specific recombination requires an exogenous source of recombinase in mammalian cells. The mechanism of bacteriophage evolution and their coexistence with bacterial cells has become a point of interest ever since bacterial viruses' life cycles were first explored. Phage recombinases have already been exploited as valuable genetic tools and new phage enzymes, and their potential application to genetic engineering and genome manipulation, vectorology, and generation of new transgene delivery vectors, and cell therapy are attractive areas of research that continue to be investigated. The significance and role of phage recombination systems in biotechnology is reviewed in this paper, with specific focus on homologous and site-specific recombination conferred by the coli phages, λ, and N15, the integrase from the Streptomyces phage, ΦC31, the recombination system of phage P1, and the recently characterized recombination functions of Yersinia phage, PY54. Key steps of the molecular mechanisms involving phage recombination functions and their application to molecular engineering, our novel exploitations of the PY54-derived recombination system, and its application to the development of new DNA vectors are discussed.

  6. Sex in a test tube: testing the benefits of in vitro recombination.

    PubMed

    Pesce, Diego; Lehman, Niles; de Visser, J Arjan G M

    2016-10-19

    The origin and evolution of sex, and the associated role of recombination, present a major problem in biology. Sex typically involves recombination of closely related DNA or RNA sequences, which is fundamentally a random process that creates but also breaks up beneficial allele combinations. Directed evolution experiments, which combine in vitro mutation and recombination protocols with in vitro or in vivo selection, have proved to be an effective approach for improving functionality of nucleic acids and enzymes. As this approach allows extreme control over evolutionary conditions and parameters, it also facilitates the detection of small or position-specific recombination benefits and benefits associated with recombination between highly divergent genotypes. Yet, in vitro approaches have been largely exploratory and motivated by obtaining improved end products rather than testing hypotheses of recombination benefits. Here, we review the various experimental systems and approaches used by in vitro studies of recombination, discuss what they say about the evolutionary role of recombination, and sketch their potential for addressing extant questions about the evolutionary role of sex and recombination, in particular on complex fitness landscapes. We also review recent insights into the role of 'extracellular recombination' during the origin of life.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).

  7. Quantifying Impact of Chromosome Copy Number on Recombination in Escherichia coli.

    PubMed

    Reynolds, T Steele; Gill, Ryan T

    2015-07-17

    The ability to precisely and efficiently recombineer synthetic DNA into organisms of interest in a quantitative manner is a key requirement in genome engineering. Even though considerable effort has gone into the characterization of recombination in Escherichia coli, there is still substantial variability in reported recombination efficiencies. We hypothesized that this observed variability could, in part, be explained by the variability in chromosome copy number as well as the location of the replication forks relative to the recombination site. During rapid growth, E. coli cells may contain several pairs of open replication forks. While recombineered forks are resolving and segregating within the population, changes in apparent recombineering efficiency should be observed. In the case of dominant phenotypes, we predicted and then experimentally confirmed that the apparent recombination efficiency declined during recovery until complete segregation of recombineered and wild-type genomes had occurred. We observed the reverse trend for recessive phenotypes. The observed changes in apparent recombination efficiency were found to be in agreement with mathematical calculations based on our proposed mechanism. We also provide a model that can be used to estimate the total segregated recombination efficiency based on an initial efficiency and growth rate. These results emphasize the importance of employing quantitative strategies in the design of genome-scale engineering efforts.

  8. [Construction and expression of a recombinant adenovirus with LZP3].

    PubMed

    Chen, Bang-dang; Zhang, Fu-chun; Sun, Mei-yu; Li, Yi-jie; Ma, Zheng-hai

    2007-08-01

    To explore a new immunocontraceptive vaccine and construct an attenuated recombinant adenoviral vaccine against Lagurus lagurus zona pellucida 3(LZP3). LZP3 gene was subcloned into the shuttle vector pShuttle-CMV, and then a two-step transformation procedure was employed to construct a recombinant adenoviral plasmid with LZP3, which was digested with Pac I and transfected into HEK293 cells to package recombinant adenovirus particles. Finally, HeLa cells were infected by the recombinant adenovirus. LZP3 gene was detected from the recombinant virus by PCR, and its transcription and expression were analyzed by RT-PCR and Western blot. Recombinant adenovirus vector pAd-LZP3 with LZP3 gene was constructed by homologous recombination in E.coli, and a recombinant adenovirus was obtained by transfecting HEK293 cells with pAd-LZP3. PCR test indicated that LZP3 gene was successfully integrated into the adenoviral genome, and the titer of the recombinant adenovirus reached 1.2x10(10) pfu/L. The transcription and expression of LZP3 gene in the infected HeLa cells were confirmed by RT-PCR and Western blot. The recombinant adenovirus RAd-LZP3 can be successfully expressed in the infected HeLa cells, which lays the foundation for further researches into immunizing animals with RAd-LZP3.

  9. Acceleration Techniques for Recombination of Gases in Electrolysis Microactuators with Nafion®-Coated Electrocatalyst

    PubMed Central

    Sheybani, Roya; Meng, Ellis

    2015-01-01

    Recombination of electrolysis gases (oxidation of hydrogen and reduction of oxygen) is an important factor in operation efficiency of devices employing electrolysis such as actuators and also unitized regenerative fuel cells. Several methods of improving recombination speed and repeatability were developed for application to electrolysis microactuators with Nafion®-coated catalytic electrodes. Decreasing the electrolysis chamber volume increased the speed, consistency, and repeatability of the gas recombination rate. To further improve recombination performance, methods to increase the catalyst surface area, hydrophobicity, and availability were developed and evaluated. Of these, including in the electrolyte pyrolyzed-Nafion®-coated Pt segments contained in the actuator chamber accelerated recombination by increasing the catalyst surface area and decreasing the gas transport diffusion path. This approach also reduced variability in recombination encountered under varying actuator orientation (resulting in differing catalyst/gas bubble proximity) and increased the rate of recombination by 2.3 times across all actuator orientations. Repeatability of complete recombination for different generated gas volumes was studied through cycling. PMID:26251561

  10. EXAMINATION OF Zr AND Ti RECOMBINER LOOP SPECIMENS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittenhouse, P.L.

    1958-12-19

    Cold-worked specimens of iodide zirconium, Zircaloy-2, iodide titanium, and A-55 titanium were tested in a high-pressure recombiner loop in an attempt to duplicate anomalous results obtained in a prior recombiner loop. Hydrogen analyses and metallographic examinations were made on all specimens. The titanium materials and Zircaloy-2 picked up major amounts of hydrogen in the cell section. None of the materials tested showed appreciable hydrogen absorption in the recombiner section. Complete recrystallization occurred in all cell specimens while only Zircaloy-2, of the recombiner specimens, showed any degree of recrystallization. No explanation for this behavior can be given. A survnnary of themore » data obtained in previous recombiner loops is compared with the results of this loop. Conclusions were based on the results of three recombiner loops. Primarlly because of the hydrogen absorption data obtained in all three recombiner loops it is recommended that the zirconium and titunium materials tested not be used in environments similar to those encountered in high pressure recombiner loops. (auth)« less

  11. Mitochondrial recombination increases with age in Podospora anserina.

    PubMed

    van Diepeningen, Anne D; Goedbloed, Daniël J; Slakhorst, S Marijke; Koopmanschap, A Bertha; Maas, Marc F P M; Hoekstra, Rolf F; Debets, Alfons J M

    2010-05-01

    With uniparental inheritance of mitochondria, there seems little reason for homologous recombination in mitochondria, but the machinery for mitochondrial recombination is quite well-conserved in many eukaryote species. In fungi and yeasts heteroplasmons may be formed when strains fuse and transfer of organelles takes place, making it possible to study mitochondrial recombination when introduced mitochondria contain different markers. A survey of wild-type isolates from a local population of the filamentous fungus Podospora anserina for the presence of seven optional mitochondrial introns indicated that mitochondrial recombination does take place in nature. Moreover the recombination frequency appeared to be correlated with age: the more rapidly ageing fraction of the population had a significantly lower linkage disequilibrium indicating more recombination. Direct confrontation experiments with heterokaryon incompatible strains with different mitochondrial markers at different (relative) age confirmed that mitochondrial recombination increases with age. We propose that with increasing mitochondrial damage over time, mitochondrial recombination - even within a homoplasmic population of mitochondria - is a mechanism that may restore mitochondrial function. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Can indirect tests detect a known recombination event in human mtDNA?

    PubMed

    White, Daniel James; Gemmell, Neil John

    2009-07-01

    Whether human mitochondrial DNA (mtDNA) recombines sufficiently to influence its evolution, evolutionary analysis, and disease etiology, remains equivocal. Overall, evidence from indirect studies of population genetic data suggests that recombination is not occurring at detectable levels. This may be explained by no, or low, recombination or, alternatively, current indirect tests may be incapable of detecting recombination in human mtDNA. To investigate the latter, we have tested whether six well-established indirect tests of recombination could detect recombination in a human mtDNA data set, in which its occurrence had been empirically confirmed. Three showed statistical evidence for recombination (r(2) vs. distance, the Homoplasy test, Neighborhood Similarity Score), and three did not (D' vs. distance, Max Chi Squared, Pairwise Homoplasy Index). Possible reasons for detection failure are discussed. Further, evidence from earlier studies suggesting a lack of recombination in mtDNA in humans is reconsidered, taking into account the appropriateness of the tests used, based on our new findings.

  13. Genetic recombination of tick-borne flaviviruses among wild-type strains.

    PubMed

    Norberg, Peter; Roth, Anette; Bergström, Tomas

    2013-06-05

    Genetic recombination has been suggested to occur in mosquito-borne flaviviruses. In contrast, tick-borne flaviviruses have been thought to evolve in a clonal manner, although recent studies suggest that recombination occurs also for these viruses. We re-analyzed the data and found that previous conclusions on wild type recombination were probably falsely drawn due to misalignments of nucleotide sequences, ambiguities in GenBank sequences, or different laboratory culture histories suggestive of recombination events in laboratory. To evaluate if reliable predictions of wild type recombination of tick-borne flaviviruses can be made, we analyzed viral strains sequenced exclusively for this study, and other flavivirus sequences retrieved from GenBank. We detected genetic signals supporting recombination between viruses within the three clades of TBEV-Eu, TBEV-Sib and TBEV-Fe, respectively. Our results suggest that the tick-borne encephalitis viruses may undergo recombination under natural conditions, but that geographic barriers restrict most recombination events to involve only closely genetically related viruses. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. RNA Recombination Enhances Adaptability and Is Required for Virus Spread and Virulence.

    PubMed

    Xiao, Yinghong; Rouzine, Igor M; Bianco, Simone; Acevedo, Ashley; Goldstein, Elizabeth Faul; Farkov, Mikhail; Brodsky, Leonid; Andino, Raul

    2016-04-13

    Mutation and recombination are central processes driving microbial evolution. A high mutation rate fuels adaptation but also generates deleterious mutations. Recombination between two different genomes may resolve this paradox, alleviating effects of clonal interference and purging deleterious mutations. Here we demonstrate that recombination significantly accelerates adaptation and evolution during acute virus infection. We identified a poliovirus recombination determinant within the virus polymerase, mutation of which reduces recombination rates without altering replication fidelity. By generating a panel of variants with distinct mutation rates and recombination ability, we demonstrate that recombination is essential to enrich the population in beneficial mutations and purge it from deleterious mutations. The concerted activities of mutation and recombination are key to virus spread and virulence in infected animals. These findings inform a mathematical model to demonstrate that poliovirus adapts most rapidly at an optimal mutation rate determined by the trade-off between selection and accumulation of detrimental mutations. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Examining a DNA Replication Requirement for Bacteriophage λ Red- and Rac Prophage RecET-Promoted Recombination in Escherichia coli.

    PubMed

    Thomason, Lynn C; Costantino, Nina; Court, Donald L

    2016-09-13

    Recombineering, in vivo genetic engineering with bacteriophage homologous recombination systems, is a powerful technique for making genetic modifications in bacteria. Two systems widely used in Escherichia coli are the Red system from phage λ and RecET from the defective Rac prophage. We investigated the in vivo dependence of recombineering on DNA replication of the recombining substrate using plasmid targets. For λ Red recombination, when DNA replication of a circular target plasmid is prevented, recombination with single-stranded DNA oligonucleotides is greatly reduced compared to that under replicating conditions. For RecET recombination, when DNA replication of the targeted plasmid is prevented, the recombination frequency is also reduced, to a level identical to that seen for the Red system in the absence of replication. The very low level of oligonucleotide recombination observed in the absence of any phage recombination functions is the same in the presence or absence of DNA replication. In contrast, both the Red and RecET systems recombine a nonreplicating linear dimer plasmid with high efficiency to yield a circular monomer. Therefore, the DNA replication requirement is substrate dependent. Our data are consistent with recombination by both the Red and RecET systems occurring predominately by single-strand annealing rather than by strand invasion. Bacteriophage homologous recombination systems are widely used for in vivo genetic engineering in bacteria. Single- or double-stranded linear DNA substrates containing short flanking homologies to chromosome targets are used to generate precise and accurate genetic modifications when introduced into bacteria expressing phage recombinases. Understanding the molecular mechanism of these recombination systems will facilitate improvements in the technology. Here, two phage-specific systems are shown to require exposure of complementary single-strand homologous targets for efficient recombination; these single-strand regions may be created during DNA replication or by single-strand exonuclease digestion of linear duplex DNA. Previously, in vitro studies reported that these recombinases promote the single-strand annealing of two complementary DNAs and also strand invasion of a single DNA strand into duplex DNA to create a three-stranded region. Here, in vivo experiments show that recombinase-mediated annealing of complementary single-stranded DNA is the predominant recombination pathway in E. coli. Copyright © 2016 Thomason et al.

  16. The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen

    PubMed Central

    Croll, Daniel; Lendenmann, Mark H.; Stewart, Ethan; McDonald, Bruce A.

    2015-01-01

    Recombination has an impact on genome evolution by maintaining chromosomal integrity, affecting the efficacy of selection, and increasing genetic variability in populations. Recombination rates are a key determinant of the coevolutionary dynamics between hosts and their pathogens. Historic recombination events created devastating new pathogens, but the impact of ongoing recombination in sexual pathogens is poorly understood. Many fungal pathogens of plants undergo regular sexual cycles, and sex is considered to be a major factor contributing to virulence. We generated a recombination map at kilobase-scale resolution for the haploid plant pathogenic fungus Zymoseptoria tritici. To account for intraspecific variation in recombination rates, we constructed genetic maps from two independent crosses. We localized a total of 10,287 crossover events in 441 progeny and found that recombination rates were highly heterogeneous within and among chromosomes. Recombination rates on large chromosomes were inversely correlated with chromosome length. Short accessory chromosomes often lacked evidence for crossovers between parental chromosomes. Recombination was concentrated in narrow hotspots that were preferentially located close to telomeres. Hotspots were only partially conserved between the two crosses, suggesting that hotspots are short-lived and may vary according to genomic background. Genes located in hotspot regions were enriched in genes encoding secreted proteins. Population resequencing showed that chromosomal regions with high recombination rates were strongly correlated with regions of low linkage disequilibrium. Hence, genes in pathogen recombination hotspots are likely to evolve faster in natural populations and may represent a greater threat to the host. PMID:26392286

  17. Non-radiative carrier recombination enhanced by two-level process: A first-principles study

    DOE PAGES

    Yang, Ji -Hui; Shi, Lin; Wang, Lin -Wang; ...

    2016-02-16

    In this study, non-radiative recombination plays an important role in the performance of optoelectronic semiconductor devices such as solar cells and light-emitting diodes. Most textbook examples assume that the recombination process occurs through a single defect level, where one electron and one hole are captured and recombined. Based on this simple picture, conventional wisdom is that only defect levels near the center of the bandgap can be effective recombination centers. Here, we present a new two-level recombination mechanism: first, one type of carrier is captured through a defect level forming a metastable state; then the local defect configuration rapidly changesmore » to a stable state, where the other type of carrier is captured and recombined through another defect level. This novel mechanism is applied to the recombination center Te 2+ cd in CdTe. We show that this two-level process can significantly increase the recombination rate (by three orders of magnitude) in agreement with experiments. We expect that this two-level recombination process can exist in a wide range of semiconductors, so its effect should be carefully examined in characterizing optoelectronic materials.« less

  18. A Simple and Robust Statistical Test for Detecting the Presence of Recombination

    PubMed Central

    Bruen, Trevor C.; Philippe, Hervé; Bryant, David

    2006-01-01

    Recombination is a powerful evolutionary force that merges historically distinct genotypes. But the extent of recombination within many organisms is unknown, and even determining its presence within a set of homologous sequences is a difficult question. Here we develop a new statistic, Φw, that can be used to test for recombination. We show through simulation that our test can discriminate effectively between the presence and absence of recombination, even in diverse situations such as exponential growth (star-like topologies) and patterns of substitution rate correlation. A number of other tests, Max χ2, NSS, a coalescent-based likelihood permutation test (from LDHat), and correlation of linkage disequilibrium (both r2 and |D′|) with distance, all tend to underestimate the presence of recombination under strong population growth. Moreover, both Max χ2 and NSS falsely infer the presence of recombination under a simple model of mutation rate correlation. Results on empirical data show that our test can be used to detect recombination between closely as well as distantly related samples, regardless of the suspected rate of recombination. The results suggest that Φw is one of the best approaches to distinguish recurrent mutation from recombination in a wide variety of circumstances. PMID:16489234

  19. LDSplitDB: a database for studies of meiotic recombination hotspots in MHC using human genomic data.

    PubMed

    Guo, Jing; Chen, Hao; Yang, Peng; Lee, Yew Ti; Wu, Min; Przytycka, Teresa M; Kwoh, Chee Keong; Zheng, Jie

    2018-04-20

    Meiotic recombination happens during the process of meiosis when chromosomes inherited from two parents exchange genetic materials to generate chromosomes in the gamete cells. The recombination events tend to occur in narrow genomic regions called recombination hotspots. Its dysregulation could lead to serious human diseases such as birth defects. Although the regulatory mechanism of recombination events is still unclear, DNA sequence polymorphisms have been found to play crucial roles in the regulation of recombination hotspots. To facilitate the studies of the underlying mechanism, we developed a database named LDSplitDB which provides an integrative and interactive data mining and visualization platform for the genome-wide association studies of recombination hotspots. It contains the pre-computed association maps of the major histocompatibility complex (MHC) region in the 1000 Genomes Project and the HapMap Phase III datasets, and a genome-scale study of the European population from the HapMap Phase II dataset. Besides the recombination profiles, related data of genes, SNPs and different types of epigenetic modifications, which could be associated with meiotic recombination, are provided for comprehensive analysis. To meet the computational requirement of the rapidly increasing population genomics data, we prepared a lookup table of 400 haplotypes for recombination rate estimation using the well-known LDhat algorithm which includes all possible two-locus haplotype configurations. To the best of our knowledge, LDSplitDB is the first large-scale database for the association analysis of human recombination hotspots with DNA sequence polymorphisms. It provides valuable resources for the discovery of the mechanism of meiotic recombination hotspots. The information about MHC in this database could help understand the roles of recombination in human immune system. DATABASE URL: http://histone.scse.ntu.edu.sg/LDSplitDB.

  20. Evidence for human meiotic recombination interference obtained through construction of a short tandem repeat-polymorphism linkage map of chromosome 19

    PubMed Central

    Weber, James L.; Wang, Zhenyuan; Hansen, Kevin; Stephenson, Matt; Kappel, Clarisse; Salzman, Sherry; Wilkie, Patricia J.; Keats, Bronya; Dracopoli, Nicholas C.; Brandriff, Brigitte F.; Olsen, Anne S.

    1993-01-01

    An improved linkage map for human chromosome 19 containing 35 short tandem repeat polymorphisms (STRPs) and one VNTR (D19S20) was constructed. The map included 12 new (GATA)n tetranucleotide STRPs. Although total lengths of the male (114 cM) and female (128 cM) maps were similar, at both ends of the chromosome male recombination exceeded female recombination, while in the interior portion of the map female recombination was in excess. Cosmid clones containing the STRP sequences were identified and were positioned along the chromosome by fluorescent in situ hybridization. Four rounds of careful checking and removal of genotyping errors allowed biologically relevant conclusions to be made concerning the numbers and distributions of recombination events on chromosome 19. The average numbers of recombinations per chromosome matched closely the lengths of the genetic maps computed by using the program CRIMAP. Significant numbers of chromosomes with zero, one, two, or three recombinations were detected as products of both female and male meioses. On the basis of the total number of observed pairs of recombination events in which only a single informative marker was situated between the two recombinations, a maximal estimate for the rate of meiotic STRP “gene” conversion without recombination was calculated as 3 × 10−4/meiosis. For distances up to 30 cM between recombinations, many fewer chromosomes which had undergone exactly two recombinations were observed than were expected on the basis of the assumption of independent recombination locations. This strong new evidence for human meiotic interference will help to improve the accuracy of interpretation of clinical DNA test results involving polymorphisms flanking a genetic abnormality. PMID:8213834

  1. A Genome-Wide Map of Mitochondrial DNA Recombination in Yeast

    PubMed Central

    Fritsch, Emilie S.; Chabbert, Christophe D.; Klaus, Bernd; Steinmetz, Lars M.

    2014-01-01

    In eukaryotic cells, the production of cellular energy requires close interplay between nuclear and mitochondrial genomes. The mitochondrial genome is essential in that it encodes several genes involved in oxidative phosphorylation. Each cell contains several mitochondrial genome copies and mitochondrial DNA recombination is a widespread process occurring in plants, fungi, protists, and invertebrates. Saccharomyces cerevisiae has proved to be an excellent model to dissect mitochondrial biology. Several studies have focused on DNA recombination in this organelle, yet mostly relied on reporter genes or artificial systems. However, no complete mitochondrial recombination map has been released for any eukaryote so far. In the present work, we sequenced pools of diploids originating from a cross between two different S. cerevisiae strains to detect recombination events. This strategy allowed us to generate the first genome-wide map of recombination for yeast mitochondrial DNA. We demonstrated that recombination events are enriched in specific hotspots preferentially localized in non-protein-coding regions. Additionally, comparison of the recombination profiles of two different crosses showed that the genetic background affects hotspot localization and recombination rates. Finally, to gain insights into the mechanisms involved in mitochondrial recombination, we assessed the impact of individual depletion of four genes previously associated with this process. Deletion of NTG1 and MGT1 did not substantially influence the recombination landscape, alluding to the potential presence of additional regulatory factors. Our findings also revealed the loss of large mitochondrial DNA regions in the absence of MHR1, suggesting a pivotal role for Mhr1 in mitochondrial genome maintenance during mating. This study provides a comprehensive overview of mitochondrial DNA recombination in yeast and thus paves the way for future mechanistic studies of mitochondrial recombination and genome maintenance. PMID:25081569

  2. A genome-wide map of mitochondrial DNA recombination in yeast.

    PubMed

    Fritsch, Emilie S; Chabbert, Christophe D; Klaus, Bernd; Steinmetz, Lars M

    2014-10-01

    In eukaryotic cells, the production of cellular energy requires close interplay between nuclear and mitochondrial genomes. The mitochondrial genome is essential in that it encodes several genes involved in oxidative phosphorylation. Each cell contains several mitochondrial genome copies and mitochondrial DNA recombination is a widespread process occurring in plants, fungi, protists, and invertebrates. Saccharomyces cerevisiae has proved to be an excellent model to dissect mitochondrial biology. Several studies have focused on DNA recombination in this organelle, yet mostly relied on reporter genes or artificial systems. However, no complete mitochondrial recombination map has been released for any eukaryote so far. In the present work, we sequenced pools of diploids originating from a cross between two different S. cerevisiae strains to detect recombination events. This strategy allowed us to generate the first genome-wide map of recombination for yeast mitochondrial DNA. We demonstrated that recombination events are enriched in specific hotspots preferentially localized in non-protein-coding regions. Additionally, comparison of the recombination profiles of two different crosses showed that the genetic background affects hotspot localization and recombination rates. Finally, to gain insights into the mechanisms involved in mitochondrial recombination, we assessed the impact of individual depletion of four genes previously associated with this process. Deletion of NTG1 and MGT1 did not substantially influence the recombination landscape, alluding to the potential presence of additional regulatory factors. Our findings also revealed the loss of large mitochondrial DNA regions in the absence of MHR1, suggesting a pivotal role for Mhr1 in mitochondrial genome maintenance during mating. This study provides a comprehensive overview of mitochondrial DNA recombination in yeast and thus paves the way for future mechanistic studies of mitochondrial recombination and genome maintenance. Copyright © 2014 by the Genetics Society of America.

  3. Analysis of the Functions of Recombination-Related Genes in the Generation of Large Chromosomal Deletions by Loop-Out Recombination in Aspergillus oryzae

    PubMed Central

    Ogawa, Masahiro; Koyama, Yasuji

    2012-01-01

    Loop-out-type recombination is a type of intrachromosomal recombination followed by the excision of a chromosomal region. The detailed mechanism underlying this recombination and the genes involved in loop-out recombination remain unknown. In the present study, we investigated the functions of ku70, ligD, rad52, rad54, and rdh54 in the construction of large chromosomal deletions via loop-out recombination and the effect of the position of the targeted chromosomal region on the efficiency of loop-out recombination in Aspergillus oryzae. The efficiency of generation of large chromosomal deletions in the near-telomeric region of chromosome 3, including the aflatoxin gene cluster, was compared with that in the near-centromeric region of chromosome 8, including the tannase gene. In the Δku70 and Δku70-rdh54 strains, only precise loop-out recombination occurred in the near-telomeric region. In contrast, in the ΔligD, Δku70-rad52, and Δku70-rad54 strains, unintended chromosomal deletions by illegitimate loop-out recombination occurred in the near-telomeric region. In addition, large chromosomal deletions via loop-out recombination were efficiently achieved in the near-telomeric region, but barely achieved in the near-centromeric region, in the Δku70 strain. Induction of DNA double-strand breaks by I-SceI endonuclease facilitated large chromosomal deletions in the near-centromeric region. These results indicate that ligD, rad52, and rad54 play a role in the generation of large chromosomal deletions via precise loop-out-type recombination in the near-telomeric region and that loop-out recombination between distant sites is restricted in the near-centromeric region by chromosomal structure. PMID:22286092

  4. Cattle Sex-Specific Recombination and Genetic Control from a Large Pedigree Analysis.

    PubMed

    Ma, Li; O'Connell, Jeffrey R; VanRaden, Paul M; Shen, Botong; Padhi, Abinash; Sun, Chuanyu; Bickhart, Derek M; Cole, John B; Null, Daniel J; Liu, George E; Da, Yang; Wiggans, George R

    2015-11-01

    Meiotic recombination is an essential biological process that generates genetic diversity and ensures proper segregation of chromosomes during meiosis. From a large USDA dairy cattle pedigree with over half a million genotyped animals, we extracted 186,927 three-generation families, identified over 8.5 million maternal and paternal recombination events, and constructed sex-specific recombination maps for 59,309 autosomal SNPs. The recombination map spans for 25.5 Morgans in males and 23.2 Morgans in females, for a total studied region of 2,516 Mb (986 kb/cM in males and 1,085 kb/cM in females). The male map is 10% longer than the female map and the sex difference is most pronounced in the subtelomeric regions. We identified 1,792 male and 1,885 female putative recombination hotspots, with 720 hotspots shared between sexes. These hotspots encompass 3% of the genome but account for 25% of the genome-wide recombination events in both sexes. During the past forty years, males showed a decreasing trend in recombination rate that coincided with the artificial selection for milk production. Sex-specific GWAS analyses identified PRDM9 and CPLX1 to have significant effects on genome-wide recombination rate in both sexes. Two novel loci, NEK9 and REC114, were associated with recombination rate in both sexes, whereas three loci, MSH4, SMC3 and CEP55, affected recombination rate in females only. Among the multiple PRDM9 paralogues on the bovine genome, our GWAS of recombination hotspot usage together with linkage analysis identified the PRDM9 paralogue on chromosome 1 to be associated in the U.S. Holstein data. Given the largest sample size ever reported for such studies, our results reveal new insights into the understanding of cattle and mammalian recombination.

  5. Whole-genome patterns of linkage disequilibrium across flycatcher populations clarify the causes and consequences of fine-scale recombination rate variation in birds.

    PubMed

    Kawakami, Takeshi; Mugal, Carina F; Suh, Alexander; Nater, Alexander; Burri, Reto; Smeds, Linnéa; Ellegren, Hans

    2017-08-01

    Recombination rate is heterogeneous across the genome of various species and so are genetic diversity and differentiation as a consequence of linked selection. However, we still lack a clear picture of the underlying mechanisms for regulating recombination. Here we estimated fine-scale population recombination rate based on the patterns of linkage disequilibrium across the genomes of multiple populations of two closely related flycatcher species (Ficedula albicollis and F. hypoleuca). This revealed an overall conservation of the recombination landscape between these species at the scale of 200 kb, but we also identified differences in the local rate of recombination despite their recent divergence (<1 million years). Genetic diversity and differentiation were associated with recombination rate in a lineage-specific manner, indicating differences in the extent of linked selection between species. We detected 400-3,085 recombination hotspots per population. Location of hotspots was conserved between species, but the intensity of hotspot activity varied between species. Recombination hotspots were primarily associated with CpG islands (CGIs), regardless of whether CGIs were at promoter regions or away from genes. Recombination hotspots were also associated with specific transposable elements (TEs), but this association appears indirect due to shared preferences of the transposition machinery and the recombination machinery for accessible open chromatin regions. Our results suggest that CGIs are a major determinant of the localization of recombination hotspots, and we propose that both the distribution of TEs and fine-scale variation in recombination rate may be associated with the evolution of the epigenetic landscape. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  6. Cattle Sex-Specific Recombination and Genetic Control from a Large Pedigree Analysis

    PubMed Central

    Ma, Li; O'Connell, Jeffrey R.; VanRaden, Paul M.; Shen, Botong; Padhi, Abinash; Sun, Chuanyu; Bickhart, Derek M.; Cole, John B.; Null, Daniel J.; Liu, George E.; Da, Yang; Wiggans, George R.

    2015-01-01

    Meiotic recombination is an essential biological process that generates genetic diversity and ensures proper segregation of chromosomes during meiosis. From a large USDA dairy cattle pedigree with over half a million genotyped animals, we extracted 186,927 three-generation families, identified over 8.5 million maternal and paternal recombination events, and constructed sex-specific recombination maps for 59,309 autosomal SNPs. The recombination map spans for 25.5 Morgans in males and 23.2 Morgans in females, for a total studied region of 2,516 Mb (986 kb/cM in males and 1,085 kb/cM in females). The male map is 10% longer than the female map and the sex difference is most pronounced in the subtelomeric regions. We identified 1,792 male and 1,885 female putative recombination hotspots, with 720 hotspots shared between sexes. These hotspots encompass 3% of the genome but account for 25% of the genome-wide recombination events in both sexes. During the past forty years, males showed a decreasing trend in recombination rate that coincided with the artificial selection for milk production. Sex-specific GWAS analyses identified PRDM9 and CPLX1 to have significant effects on genome-wide recombination rate in both sexes. Two novel loci, NEK9 and REC114, were associated with recombination rate in both sexes, whereas three loci, MSH4, SMC3 and CEP55, affected recombination rate in females only. Among the multiple PRDM9 paralogues on the bovine genome, our GWAS of recombination hotspot usage together with linkage analysis identified the PRDM9 paralogue on chromosome 1 to be associated in the U.S. Holstein data. Given the largest sample size ever reported for such studies, our results reveal new insights into the understanding of cattle and mammalian recombination. PMID:26540184

  7. Dynamics and impact of homologous recombination on the evolution of Legionella pneumophila.

    PubMed

    David, Sophia; Sánchez-Busó, Leonor; Harris, Simon R; Marttinen, Pekka; Rusniok, Christophe; Buchrieser, Carmen; Harrison, Timothy G; Parkhill, Julian

    2017-06-01

    Legionella pneumophila is an environmental bacterium and the causative agent of Legionnaires' disease. Previous genomic studies have shown that recombination accounts for a high proportion (>96%) of diversity within several major disease-associated sequence types (STs) of L. pneumophila. This suggests that recombination represents a potentially important force shaping adaptation and virulence. Despite this, little is known about the biological effects of recombination in L. pneumophila, particularly with regards to homologous recombination (whereby genes are replaced with alternative allelic variants). Using newly available population genomic data, we have disentangled events arising from homologous and non-homologous recombination in six major disease-associated STs of L. pneumophila (subsp. pneumophila), and subsequently performed a detailed characterisation of the dynamics and impact of homologous recombination. We identified genomic "hotspots" of homologous recombination that include regions containing outer membrane proteins, the lipopolysaccharide (LPS) region and Dot/Icm effectors, which provide interesting clues to the selection pressures faced by L. pneumophila. Inference of the origin of the recombined regions showed that isolates have most frequently imported DNA from isolates belonging to their own clade, but also occasionally from other major clades of the same subspecies. This supports the hypothesis that the possibility for horizontal exchange of new adaptations between major clades of the subspecies may have been a critical factor in the recent emergence of several clinically important STs from diverse genomic backgrounds. However, acquisition of recombined regions from another subspecies, L. pneumophila subsp. fraseri, was rarely observed, suggesting the existence of a recombination barrier and/or the possibility of ongoing speciation between the two subspecies. Finally, we suggest that multi-fragment recombination may occur in L. pneumophila, whereby multiple non-contiguous segments that originate from the same molecule of donor DNA are imported into a recipient genome during a single episode of recombination.

  8. Identification of Recombinant Human Rhinovirus A and C in Circulating Strains from Upper and Lower Respiratory Infections

    PubMed Central

    Kim, Hak; Kim, Kisoon; Kim, Dae-Won; Jung, Hee-Dong; Min Cheong, Hyang; Kim, Ki Hwan; Soo Kim, Dong; Kim, You-Jin

    2013-01-01

    Human rhinoviruses (HRVs), in the Enterovirus genus within the family Picornaviridae, are a highly prevalent cause of acute respiratory infection (ARI). Enteroviruses are genetically highly variable, and recombination between serotypes is known to be a major contribution to their diversity. Recently it was reported that recombination events in HRVs cause the diversity of HRV-C. This study analyzed parts of the viral genes spanning the 5′ non- coding region (NCR) through to the viral protein (VP) encoding sequences of 105 HRV field isolates from 51 outpatient cases of Acute Respiratory Infectious Network (ARINET) and 54 inpatient cases of severe lower respiratory infection (SLRI) surveillance, in order to identify recombination in field samples. When analyzing parts of the 5′NCR and VP4/VP2 encoding sequences, we found intra- and interspecies recombinants in field strains of HRV-A and -C. Nineteen cases of recombination events (18.1%) were found among 105 field strains. For HRV-A, there were five cases (4.8%) of intraspecies recombination events and three cases (2.8%) of interspecies recombination events. For HRV-C, there were four cases (3.8%) of intraspecies recombination events and seven cases (6.7%) of interspecies recombination events. Recombination events were significantly more frequently observed in the ARINET samples (18 cases) than in the SLRI samples (1 case; P< 0.0001). The recombination breakpoints were located in nucleotides (nt) 472–554, which comprise stem-loop 5 in the internal ribosomal entry site (IRES), based on the HRV-B 35 sequence (accession no. FJ445187). Our findings regarding genomic recombination in circulating HRV-A and -C strains suggest that recombination might play a role in HRV fitness and could be a possible determinant of disease severity caused by various HRV infections in patients with ARI. PMID:23826363

  9. Lambda Red Mediated Gap Repair Utilizes a Novel Replicative Intermediate in Escherichia coli

    PubMed Central

    Reddy, Thimma R.; Fevat, Léna M. S.; Munson, Sarah E.; Stewart, A. Francis; Cowley, Shaun M.

    2015-01-01

    The lambda phage Red recombination system can mediate efficient homologous recombination in Escherichia coli, which is the basis of the DNA engineering technique termed recombineering. Red mediated insertion of DNA requires DNA replication, involves a single-stranded DNA intermediate and is more efficient on the lagging strand of the replication fork. Lagging strand recombination has also been postulated to explain the Red mediated repair of gapped plasmids by an Okazaki fragment gap filling model. Here, we demonstrate that gap repair involves a different strand independent mechanism. Gap repair assays examining the strand asymmetry of recombination did not show a lagging strand bias. Directly testing an ssDNA plasmid showed lagging strand recombination is possible but dsDNA plasmids did not employ this mechanism. Insertional recombination combined with gap repair also did not demonstrate preferential lagging strand bias, supporting a different gap repair mechanism. The predominant recombination route involved concerted insertion and subcloning though other routes also operated at lower frequencies. Simultaneous insertion of DNA resulted in modification of both strands and was unaffected by mutations to DNA polymerase I, responsible for Okazaki fragment maturation. The lower efficiency of an alternate Red mediated ends-in recombination pathway and the apparent lack of a Holliday junction intermediate suggested that gap repair does not involve a different Red recombination pathway. Our results may be explained by a novel replicative intermediate in gap repair that does not involve a replication fork. We exploited these observations by developing a new recombineering application based on concerted insertion and gap repair, termed SPI (subcloning plus insertion). SPI selected against empty vector background and selected for correct gap repair recombinants. We used SPI to simultaneously insert up to four different gene cassettes in a single recombineering reaction. Consequently, our findings have important implications for the understanding of E. coli replication and Red recombination. PMID:25803509

  10. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    PubMed

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a cost-effective, rapid, and reliable avenue for the purification of recombinant proteins in heterologous hosts. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Modulating Cellular Recombination Potential through Alterations in RecA Structure and Regulation

    PubMed Central

    Bakhlanova, Irina V.; Dudkina, Alexandra V.; Baitin, Dima M.; Knight, Kendall L.; Cox, Michael M.; Lanzov, Vladislav A.

    2010-01-01

    The wild type E. coli RecA protein is a recombinase platform with unrealized recombination potential. We have explored the factors affecting recombination during conjugation with a quantitative assay. Regulatory proteins that affect RecA function have the capacity to increase or decrease recombination frequencies by factors up to 6 fold. Autoinhibition by the RecA C-terminus can affect recombination frequency by factors up to 4 fold. The greatest changes in recombination frequency measured here are brought about by point mutations in the recA gene. RecA variants can increase recombination frequencies by more than 50 fold. The RecA protein thus possesses an inherently broad functional range. The RecA protein of Escherichia coli (EcRecA) is not optimized for recombination function. Instead, much of the recombination potential of EcRecA is structurally suppressed, probably reflecting cellular requirements. One point mutation in EcRecA with a particularly dramatic effect on recombination frequency, D112R, exhibits an enhanced capacity to load onto SSB-coated ssDNA, overcome the effects of regulatory proteins such as PsiB and RecX, and to pair homologous DNAs. Comparisons of key RecA protein mutants reveal two components to RecA recombination function – filament formation and the inherent DNA pairing activity of the formed filaments. PMID:21143322

  12. Revisiting Recombination Signal in the Tick-Borne Encephalitis Virus: A Simulation Approach

    PubMed Central

    Johansson, Magnus; Norberg, Peter

    2016-01-01

    The hypothesis of wide spread reticulate evolution in Tick-Borne Encephalitis virus (TBEV) has recently gained momentum with several publications describing past recombination events involving various TBEV clades. Despite a large body of work, no consensus has yet emerged on TBEV evolutionary dynamics. Understanding the occurrence and frequency of recombination in TBEV bears significant impact on epidemiology, evolution, and vaccination with live vaccines. In this study, we investigated the possibility of detecting recombination events in TBEV by simulating recombinations at several locations on the virus’ phylogenetic tree and for different lengths of recombining fragments. We derived estimations of rates of true and false positive for the detection of past recombination events for seven recombination detection algorithms. Our analytical framework can be applied to any investigation dealing with the difficult task of distinguishing genuine recombination signal from background noise. Our results suggest that the problem of false positives associated with low detection P-values in TBEV, is more insidious than generally acknowledged. We reappraised the recombination signals present in the empirical data, and showed that reliable signals could only be obtained in a few cases when highly genetically divergent strains were involved, whereas false positives were common among genetically similar strains. We thus conclude that recombination among wild-type TBEV strains may occur, which has potential implications for vaccination with live vaccines, but that these events are surprisingly rare. PMID:27760182

  13. Evidence of reduced recombination rate in human regulatory domains.

    PubMed

    Liu, Yaping; Sarkar, Abhishek; Kheradpour, Pouya; Ernst, Jason; Kellis, Manolis

    2017-10-20

    Recombination rate is non-uniformly distributed across the human genome. The variation of recombination rate at both fine and large scales cannot be fully explained by DNA sequences alone. Epigenetic factors, particularly DNA methylation, have recently been proposed to influence the variation in recombination rate. We study the relationship between recombination rate and gene regulatory domains, defined by a gene and its linked control elements. We define these links using expression quantitative trait loci (eQTLs), methylation quantitative trait loci (meQTLs), chromatin conformation from publicly available datasets (Hi-C and ChIA-PET), and correlated activity links that we infer across cell types. Each link type shows a "recombination rate valley" of significantly reduced recombination rate compared to matched control regions. This recombination rate valley is most pronounced for gene regulatory domains of early embryonic development genes, housekeeping genes, and constitutive regulatory elements, which are known to show increased evolutionary constraint across species. Recombination rate valleys show increased DNA methylation, reduced doublestranded break initiation, and increased repair efficiency, specifically in the lineage leading to the germ line. Moreover, by using only the overlap of functional links and DNA methylation in germ cells, we are able to predict the recombination rate with high accuracy. Our results suggest the existence of a recombination rate valley at regulatory domains and provide a potential molecular mechanism to interpret the interplay between genetic and epigenetic variations.

  14. Fine-scale maps of recombination rates and hotspots in the mouse genome.

    PubMed

    Brunschwig, Hadassa; Levi, Liat; Ben-David, Eyal; Williams, Robert W; Yakir, Benjamin; Shifman, Sagiv

    2012-07-01

    Recombination events are not uniformly distributed and often cluster in narrow regions known as recombination hotspots. Several studies using different approaches have dramatically advanced our understanding of recombination hotspot regulation. Population genetic data have been used to map and quantify hotspots in the human genome. Genetic variation in recombination rates and hotspots usage have been explored in human pedigrees, mouse intercrosses, and by sperm typing. These studies pointed to the central role of the PRDM9 gene in hotspot modulation. In this study, we used single nucleotide polymorphisms (SNPs) from whole-genome resequencing and genotyping studies of mouse inbred strains to estimate recombination rates across the mouse genome and identified 47,068 historical hotspots--an average of over 2477 per chromosome. We show by simulation that inbred mouse strains can be used to identify positions of historical hotspots. Recombination hotspots were found to be enriched for the predicted binding sequences for different alleles of the PRDM9 protein. Recombination rates were on average lower near transcription start sites (TSS). Comparing the inferred historical recombination hotspots with the recent genome-wide mapping of double-strand breaks (DSBs) in mouse sperm revealed a significant overlap, especially toward the telomeres. Our results suggest that inbred strains can be used to characterize and study the dynamics of historical recombination hotspots. They also strengthen previous findings on mouse recombination hotspots, and specifically the impact of sequence variants in Prdm9.

  15. The Recombination Landscape in Wild House Mice Inferred Using Population Genomic Data.

    PubMed

    Booker, Tom R; Ness, Rob W; Keightley, Peter D

    2017-09-01

    Characterizing variation in the rate of recombination across the genome is important for understanding several evolutionary processes. Previous analysis of the recombination landscape in laboratory mice has revealed that the different subspecies have different suites of recombination hotspots. It is unknown, however, whether hotspots identified in laboratory strains reflect the hotspot diversity of natural populations or whether broad-scale variation in the rate of recombination is conserved between subspecies. In this study, we constructed fine-scale recombination rate maps for a natural population of the Eastern house mouse, Mus musculus castaneus We performed simulations to assess the accuracy of recombination rate inference in the presence of phase errors, and we used a novel approach to quantify phase error. The spatial distribution of recombination events is strongly positively correlated between our castaneus map, and a map constructed using inbred lines derived predominantly from M. m. domesticus Recombination hotspots in wild castaneus show little overlap, however, with the locations of double-strand breaks in wild-derived house mouse strains. Finally, we also find that genetic diversity in M. m. castaneus is positively correlated with the rate of recombination, consistent with pervasive natural selection operating in the genome. Our study suggests that recombination rate variation is conserved at broad scales between house mouse subspecies, but it is not strongly conserved at fine scales. Copyright © 2017 by the Genetics Society of America.

  16. Homologous Recombination—Experimental Systems, Analysis and Significance

    PubMed Central

    Kuzminov, Andrei

    2014-01-01

    Homologous recombination is the most complex of all recombination events that shape genomes and produce material for evolution. Homologous recombination events are exchanges between DNA molecules in the lengthy regions of shared identity, catalyzed by a group of dedicated enzymes. There is a variety of experimental systems in E. coli and Salmonella to detect homologous recombination events of several different kinds. Genetic analysis of homologous recombination reveals three separate phases of this process: pre-synapsis (the early phase), synapsis (homologous strand exchange) and post-synapsis (the late phase). In E. coli, there are at least two independent pathway of the early phase and at least two independent pathways of the late phase. All this complexity is incongruent with the originally ascribed role of homologous recombination as accelerator of genome evolution: there is simply not enough duplication and repetition in enterobacterial genomes for homologous recombination to have a detectable evolutionary role, and therefore not enough selection to maintain such a complexity. At the same time, the mechanisms of homologous recombination are uniquely suited for repair of complex DNA lesions called chromosomal lesions. In fact, the two major classes of chromosomal lesions are recognized and processed by the two individual pathways at the early phase of homologous recombination. It follows, therefore, that homologous recombination events are occasional reflections of the continual recombinational repair, made possible in cases of natural or artificial genome redundancy. PMID:26442506

  17. Variation in recombination frequency and distribution across eukaryotes: patterns and processes

    PubMed Central

    Feulner, Philine G. D.; Johnston, Susan E.; Santure, Anna W.; Smadja, Carole M.

    2017-01-01

    Recombination, the exchange of DNA between maternal and paternal chromosomes during meiosis, is an essential feature of sexual reproduction in nearly all multicellular organisms. While the role of recombination in the evolution of sex has received theoretical and empirical attention, less is known about how recombination rate itself evolves and what influence this has on evolutionary processes within sexually reproducing organisms. Here, we explore the patterns of, and processes governing recombination in eukaryotes. We summarize patterns of variation, integrating current knowledge with an analysis of linkage map data in 353 organisms. We then discuss proximate and ultimate processes governing recombination rate variation and consider how these influence evolutionary processes. Genome-wide recombination rates (cM/Mb) can vary more than tenfold across eukaryotes, and there is large variation in the distribution of recombination events across closely related taxa, populations and individuals. We discuss how variation in rate and distribution relates to genome architecture, genetic and epigenetic mechanisms, sex, environmental perturbations and variable selective pressures. There has been great progress in determining the molecular mechanisms governing recombination, and with the continued development of new modelling and empirical approaches, there is now also great opportunity to further our understanding of how and why recombination rate varies. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109219

  18. Four Closely Related HIV-1 CRF01_AE/CRF07_BC Recombinant Forms Identified in East China.

    PubMed

    Li, Fan; Li, Yuxueyun; Feng, Yi; Hu, Jing; Ruan, Yuhua; Xing, Hui; Shao, Yiming

    2017-07-01

    Five near full-length genomes of novel second-generation HIV-1 recombinant virus (JS150021, JS150029, JS150129, JS150132, and AH150183) were identified from five HIV-positive people in Jiangsu and Anhui province, east China. Phylogenic analyses showed that these five sequences are all composed of two well-established circulating recombinant forms (CRFs) CRF07_BC and CRF01_AE, grouped into four new discovered recombinant forms, which show several very similar but not identical recombinant breakpoints. The four recombinant forms are also identified to be a sort of family or related viruses, seems to be the results of different recombination events. The emergence of a serious new closely related CRF07_BC/CRF01_AE recombinant strain indicates the increasing complexity of sexual transmission of the HIV-1 epidemic in China.

  19. Recombinant Clone Heterogeneity in ESCHERICHIA COLI Conjunction: Effect of Ph and Partially Replicated Recipient Deoxyribonucleic Acid

    PubMed Central

    Ou, Jonathan T.

    1975-01-01

    At pH 6.8, a substantial fraction of recombinant colonies obtained from conjugation with an HfrH donor contained multiple recombinant classes in a single colony (polygenotypic colony). In contrast, when the conjugation was performed at pH 7.6, the number of polygenotypic colonies was drastically reduced, and the recombinant colonies were predominantly monogenotypic or digenotypic. Genetic analysis revealed that the digenotypic recombinants differ in those donor markers near the origin of DNA replication but share those donor markers near the terminus. This integration pattern suggests that the formation of digenotypic recombinants involves recombination of a single copy of the exogenome with a partially replicated recipient DNA molecule. This suggestion was supported by examination of the genotype of recombinant colonies recovered from crosses with an HfrKL96 donor which was derived from HfrH but transfers its chromosome in the reverse direction. PMID:8360

  20. Recombination Analysis of Herpes Simplex Virus 1 Reveals a Bias toward GC Content and the Inverted Repeat Regions

    PubMed Central

    Lee, Kyubin; Kolb, Aaron W.; Sverchkov, Yuriy; Cuellar, Jacqueline A.; Craven, Mark

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) causes recurrent mucocutaneous ulcers and is the leading cause of infectious blindness and sporadic encephalitis in the United States. HSV-1 has been shown to be highly recombinogenic; however, to date, there has been no genome-wide analysis of recombination. To address this, we generated 40 HSV-1 recombinants derived from two parental strains, OD4 and CJ994. The 40 OD4-CJ994 HSV-1 recombinants were sequenced using the Illumina sequencing system, and recombination breakpoints were determined for each of the recombinants using the Bootscan program. Breakpoints occurring in the terminal inverted repeats were excluded from analysis to prevent double counting, resulting in a total of 272 breakpoints in the data set. By placing windows around the 272 breakpoints followed by Monte Carlo analysis comparing actual data to simulated data, we identified a recombination bias toward both high GC content and intergenic regions. A Monte Carlo analysis also suggested that recombination did not appear to be responsible for the generation of the spontaneous nucleotide mutations detected following sequencing. Additionally, kernel density estimation analysis across the genome found that the large, inverted repeats comprise a recombination hot spot. IMPORTANCE Herpes simplex virus 1 (HSV-1) virus is the leading cause of sporadic encephalitis and blinding keratitis in developed countries. HSV-1 has been shown to be highly recombinogenic, and recombination itself appears to be a significant component of genome replication. To date, there has been no genome-wide analysis of recombination. Here we present the findings of the first genome-wide study of recombination performed by generating and sequencing 40 HSV-1 recombinants derived from the OD4 and CJ994 parental strains, followed by bioinformatics analysis. Recombination breakpoints were determined, yielding 272 breakpoints in the full data set. Kernel density analysis determined that the large inverted repeats constitute a recombination hot spot. Additionally, Monte Carlo analyses found biases toward high GC content and intergenic and repetitive regions. PMID:25926637

  1. Bounds on the minimum number of recombination events in a sample history.

    PubMed Central

    Myers, Simon R; Griffiths, Robert C

    2003-01-01

    Recombination is an important evolutionary factor in many organisms, including humans, and understanding its effects is an important task facing geneticists. Detecting past recombination events is thus important; this article introduces statistics that give a lower bound on the number of recombination events in the history of a sample, on the basis of the patterns of variation in the sample DNA. Such lower bounds are appropriate, since many recombination events in the history are typically undetectable, so the true number of historical recombinations is unobtainable. The statistics can be calculated quickly by computer and improve upon the earlier bound of Hudson and Kaplan 1985. A method is developed to combine bounds on local regions in the data to produce more powerful improved bounds. The method is flexible to different models of recombination occurrence. The approach gives recombination event bounds between all pairs of sites, to help identify regions with more detectable recombinations, and these bounds can be viewed graphically. Under coalescent simulations, there is a substantial improvement over the earlier method (of up to a factor of 2) in the expected number of recombination events detected by one of the new minima, across a wide range of parameter values. The method is applied to data from a region within the lipoprotein lipase gene and the amount of detected recombination is substantially increased. Further, there is strong clustering of detected recombination events in an area near the center of the region. A program implementing these statistics, which was used for this article, is available from http://www.stats.ox.ac.uk/mathgen/programs.html. PMID:12586723

  2. Stability of Yellow Fever Virus under Recombinatory Pressure as Compared with Chikungunya Virus

    PubMed Central

    McGee, Charles E.; Tsetsarkin, Konstantin A.; Guy, Bruno; Lang, Jean; Plante, Kenneth; Vanlandingham, Dana L.; Higgs, Stephen

    2011-01-01

    Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-vaccination or following co-infection with two distinct wild-type viruses. To characterize the conditions and sequences that favor RNA arthropod-borne virus recombination we constructed yellow fever virus (YFV) 17D recombinant crosses containing complementary deletions in the envelope protein coding sequence. These constructs were designed to strongly favor recombination, and the detection conditions were optimized to achieve high sensitivity recovery of putative recombinants. Full length recombinant YFV 17D virus was never detected under any of the experimental conditions examined, despite achieving estimated YFV replicon co-infection levels of ∼2.4×106 in BHK-21 (vertebrate) cells and ∼1.05×105 in C710 (arthropod) cells. Additionally YFV 17D superinfection resistance was observed in vertebrate and arthropod cells harboring a primary infection with wild-type YFV Asibi strain. Furthermore recombination potential was also evaluated using similarly designed chikungunya virus (CHIKV) replicons towards validation of this strategy for recombination detection. Non-homologus recombination was observed for CHIKV within the structural gene coding sequence resulting in an in-frame duplication of capsid and E3 gene. Based on these data, it is concluded that even in the unlikely event of a high level acute co-infection of two distinct YFV genomes in an arthropod or vertebrate host, the generation of viable flavivirus recombinants is extremely unlikely. PMID:21826243

  3. DNA polymorphism in recombining and non-recombing mating-type-specific loci of the smut fungus Microbotryum

    PubMed Central

    Votintseva, A A; Filatov, D A

    2011-01-01

    The population-genetic processes leading to the genetic degeneration of non-recombining regions have mainly been studied in animal and plant sex chromosomes. Here, we report population genetic analysis of the processes in the non-recombining mating-type-specific regions of the smut fungus Microbotryum violaceum. M. violaceum has A1 and A2 mating types, determined by mating-type-specific ‘sex chromosomes' that contain 1–2 Mb long non-recombining regions. If genetic degeneration were occurring, then one would expect reduced DNA polymorphism in the non-recombining regions of this fungus. The analysis of DNA diversity among 19 M. violaceum strains, collected across Europe from Silene latifolia flowers, revealed that (i) DNA polymorphism is relatively low in all 20 studied loci (π∼0.15%), (ii) it is not significantly different between the two mating-type-specific chromosomes nor between the non-recombining and recombining regions, (iii) there is substantial population structure in M. violaceum populations, which resembles that of its host species, S. latifolia, and (iv) there is significant linkage disequilibrium, suggesting that widespread selfing in this species results in a reduction of the effective recombination rate across the genome. We hypothesise that selfing-related reduction of recombination across the M. violaceum genome negates the difference in the level of DNA polymorphism between the recombining and non-recombining regions, and may possibly lead to similar levels of genetic degeneration in the mating-type-specific regions of the non-recombining ‘sex chromosomes' and elsewhere in the genome. PMID:21081967

  4. [Adenovirus-mediated canine interferon-gamma expression and its antiviral activity against canine parvovirus].

    PubMed

    Zhang, Kao; Jin, Huijun; Zhong, Fei; Li, Xiujin; Neng, Changai; Chen, Huihui; Li, Wenyan; Wen, Jiexia

    2012-11-04

    To construct recombinant adenovirus containing canine interferon-gamma (cIFN-gamma) gene and to investigate its antiviral activity against canine parvovirus in Madin-Darby canine kidney cells (MDCK). [Methods] The cIFN-gamma gene was inserted into adenovirus shuttle plasmid to construct pShuttle3-cIFN-gamma expression vector, from which the cIFN-gamma expression cassette was transferred into the adenovirus genomic plasmid pAdeno-X by specific restriction sites to generate recombinant adenovirus genomic plasmid pAd-cIFN-gamma. The pAd-cIFN-gamma plasmid was linearized by digestion and transfected into human embryonic kidney (HEK) 293T cells to generate the replication-defective cIFN-gamma recombinant adenovirus (Ad-cIFN-gamma). To analyze its anti-canine parvovirus activity, the MDCK cells were pre-infected by Ad-cIFN-gamma recombinant adenovirus, and then infected by canine parvovirus. The antiviral activity of the Ad-cIFN-gamma recombinant adenovirus against parvovirus was analyzed. The recombinant adenovirus containing cIFN-gamma gene was constructed by the ligation method. The recombinant adenovirus could mediates recombinant cIFN-gamma secretory expression in MDCK cells. The Ad-cIFN-gamma recombinant adenovirus could significantly inhibit canine parvovirus replication in MDCK cells pre-infected with the recombinant adenovirus. These results indicate that the Ad-cIFN-gamma recombinant adenovirus has the potent antiviral activity against canine parvovirus. The Ad-cIFN-gamma recombinant adenovirus was successfully constructed by the ligation method and possessed a powerful antiviral activity against canine parvovirus.

  5. The impact of recombination on short-term selection gain in plant breeding experiments.

    PubMed

    McClosky, Benjamin; Tanksley, Steven D

    2013-09-01

    Recombination is a requirement for response to selection, but researchers still debate whether increasing recombination beyond normal levels will result in significant gains in short-term selection. We tested this hypothesis, in the context of plant breeding, through a series of simulation experiments comparing short-term selection response (≤20 cycles) between populations with normal levels of recombination and similar populations with unconstrained recombination (i.e., free recombination). We considered additive and epistatic models and examined a wide range of values for key design variables: selection cycles, QTL number, heritability, linkage phase, selection intensity and population size. With few exceptions, going from normal to unconstrained levels of recombination produced only modest gains in response to selection (≈11 % on average). We then asked how breeders might capture some of this theoretical gain by increasing recombination through either (1) extra rounds of mating or (2) selection of highly recombinant individuals via use of molecular markers/maps. All methods tested captured less than half of the potential gain, but our analysis indicates that the most effective method is to select for increased recombination and the trait simultaneously. This recommendation is based on evidence of a favorable interaction between trait selection and the impact of recombination on selection gains. Finally, we examined the relative contributions of the two components of meiotic recombination, chromosome assortment and crossing over, to short-term selection gain. Depending primarily on the presence of trait selection pressure, chromosome assortment alone accounted for 40-75 % of gain in response to short-term selection.

  6. The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen.

    PubMed

    Croll, Daniel; Lendenmann, Mark H; Stewart, Ethan; McDonald, Bruce A

    2015-11-01

    Recombination has an impact on genome evolution by maintaining chromosomal integrity, affecting the efficacy of selection, and increasing genetic variability in populations. Recombination rates are a key determinant of the coevolutionary dynamics between hosts and their pathogens. Historic recombination events created devastating new pathogens, but the impact of ongoing recombination in sexual pathogens is poorly understood. Many fungal pathogens of plants undergo regular sexual cycles, and sex is considered to be a major factor contributing to virulence. We generated a recombination map at kilobase-scale resolution for the haploid plant pathogenic fungus Zymoseptoria tritici. To account for intraspecific variation in recombination rates, we constructed genetic maps from two independent crosses. We localized a total of 10,287 crossover events in 441 progeny and found that recombination rates were highly heterogeneous within and among chromosomes. Recombination rates on large chromosomes were inversely correlated with chromosome length. Short accessory chromosomes often lacked evidence for crossovers between parental chromosomes. Recombination was concentrated in narrow hotspots that were preferentially located close to telomeres. Hotspots were only partially conserved between the two crosses, suggesting that hotspots are short-lived and may vary according to genomic background. Genes located in hotspot regions were enriched in genes encoding secreted proteins. Population resequencing showed that chromosomal regions with high recombination rates were strongly correlated with regions of low linkage disequilibrium. Hence, genes in pathogen recombination hotspots are likely to evolve faster in natural populations and may represent a greater threat to the host. Copyright © 2015 by the Genetics Society of America.

  7. Stability of yellow fever virus under recombinatory pressure as compared with chikungunya virus.

    PubMed

    McGee, Charles E; Tsetsarkin, Konstantin A; Guy, Bruno; Lang, Jean; Plante, Kenneth; Vanlandingham, Dana L; Higgs, Stephen

    2011-01-01

    Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-vaccination or following co-infection with two distinct wild-type viruses. To characterize the conditions and sequences that favor RNA arthropod-borne virus recombination we constructed yellow fever virus (YFV) 17D recombinant crosses containing complementary deletions in the envelope protein coding sequence. These constructs were designed to strongly favor recombination, and the detection conditions were optimized to achieve high sensitivity recovery of putative recombinants. Full length recombinant YFV 17D virus was never detected under any of the experimental conditions examined, despite achieving estimated YFV replicon co-infection levels of ∼2.4 x 10⁶ in BHK-21 (vertebrate) cells and ∼1.05 x 10⁵ in C₇10 (arthropod) cells. Additionally YFV 17D superinfection resistance was observed in vertebrate and arthropod cells harboring a primary infection with wild-type YFV Asibi strain. Furthermore recombination potential was also evaluated using similarly designed chikungunya virus (CHIKV) replicons towards validation of this strategy for recombination detection. Non-homologus recombination was observed for CHIKV within the structural gene coding sequence resulting in an in-frame duplication of capsid and E3 gene. Based on these data, it is concluded that even in the unlikely event of a high level acute co-infection of two distinct YFV genomes in an arthropod or vertebrate host, the generation of viable flavivirus recombinants is extremely unlikely.

  8. Recombineering: A Homologous Recombination-Based Method of Genetic Engineering

    PubMed Central

    Sharan, Shyam K.; Thomason, Lynn C.; Kuznetsov, Sergey G.; Court, Donald L.

    2009-01-01

    Recombineering is an efficient method of in vivo genetic engineering applicable to chromosomal as well as episomal replicons in E. coli. This method circumvents the need for most standard in vitro cloning techniques. Recombineering allows construction of DNA molecules with precise junctions without constraints being imposed by restriction enzyme site location. Bacteriophage homologous recombination proteins catalyze these recombineering reactions using double- and single-strand linear DNA substrates, so-called targeting constructs, introduced by electroporation. Gene knockouts, deletions and point mutations are readily made, gene tags can be inserted, and regions of bacterial artificial chromosomes (BACs) or the E. coli genome can be subcloned by gene retrieval using recombineering. Most of these constructs can be made within about a week's time. PMID:19180090

  9. Feline immunodeficiency virus (FIV) env recombinants are common in natural infections.

    PubMed

    Bęczkowski, Paweł M; Hughes, Joseph; Biek, Roman; Litster, Annette; Willett, Brian J; Hosie, Margaret J

    2014-09-17

    Recombination is a common feature of retroviral biology and one of the most important factors responsible for generating viral diversity at both the intra-host and the population levels. However, relatively little is known about rates and molecular processes of recombination for retroviruses other than HIV, including important model viruses such as feline immunodeficiency virus (FIV). We investigated recombination in complete FIV env gene sequences (n = 355) isolated from 43 naturally infected cats. We demonstrated that recombination is abundant in natural FIV infection, with over 41% of the cats being infected with viruses containing recombinant env genes. In addition, we identified shared recombination breakpoints; the most significant hotspot occurred between the leader/signal fragment and the remainder of env. Our results have identified the leader/signal fragment of env as an important site for recombination and highlight potential limitations of the current phylogenetic classification of FIV based on partial env sequences. Furthermore, the presence of abundant recombinant FIV in the USA poses a significant challenge for commercial diagnostic tests and should inform the development of the next generation of FIV vaccines.

  10. On the conservative nature of intragenic recombination

    PubMed Central

    Drummond, D. Allan; Silberg, Jonathan J.; Meyer, Michelle M.; Wilke, Claus O.; Arnold, Frances H.

    2005-01-01

    Intragenic recombination rapidly creates protein sequence diversity compared with random mutation, but little is known about the relative effects of recombination and mutation on protein function. Here, we compare recombination of the distantly related β-lactamases PSE-4 and TEM-1 to mutation of PSE-4. We show that, among β-lactamase variants containing the same number of amino acid substitutions, variants created by recombination retain function with a significantly higher probability than those generated by random mutagenesis. We present a simple model that accurately captures the differing effects of mutation and recombination in real and simulated proteins with only four parameters: (i) the amino acid sequence distance between parents, (ii) the number of substitutions, (iii) the average probability that random substitutions will preserve function, and (iv) the average probability that substitutions generated by recombination will preserve function. Our results expose a fundamental functional enrichment in regions of protein sequence space accessible by recombination and provide a framework for evaluating whether the relative rates of mutation and recombination observed in nature reflect the underlying imbalance in their effects on protein function. PMID:15809422

  11. On the conservative nature of intragenic recombination.

    PubMed

    Drummond, D Allan; Silberg, Jonathan J; Meyer, Michelle M; Wilke, Claus O; Arnold, Frances H

    2005-04-12

    Intragenic recombination rapidly creates protein sequence diversity compared with random mutation, but little is known about the relative effects of recombination and mutation on protein function. Here, we compare recombination of the distantly related beta-lactamases PSE-4 and TEM-1 to mutation of PSE-4. We show that, among beta-lactamase variants containing the same number of amino acid substitutions, variants created by recombination retain function with a significantly higher probability than those generated by random mutagenesis. We present a simple model that accurately captures the differing effects of mutation and recombination in real and simulated proteins with only four parameters: (i) the amino acid sequence distance between parents, (ii) the number of substitutions, (iii) the average probability that random substitutions will preserve function, and (iv) the average probability that substitutions generated by recombination will preserve function. Our results expose a fundamental functional enrichment in regions of protein sequence space accessible by recombination and provide a framework for evaluating whether the relative rates of mutation and recombination observed in nature reflect the underlying imbalance in their effects on protein function.

  12. Recombinational Repair of DNA Damage in Escherichia coli and Bacteriophage λ

    PubMed Central

    Kuzminov, Andrei

    1999-01-01

    Although homologous recombination and DNA repair phenomena in bacteria were initially extensively studied without regard to any relationship between the two, it is now appreciated that DNA repair and homologous recombination are related through DNA replication. In Escherichia coli, two-strand DNA damage, generated mostly during replication on a template DNA containing one-strand damage, is repaired by recombination with a homologous intact duplex, usually the sister chromosome. The two major types of two-strand DNA lesions are channeled into two distinct pathways of recombinational repair: daughter-strand gaps are closed by the RecF pathway, while disintegrated replication forks are reestablished by the RecBCD pathway. The phage λ recombination system is simpler in that its major reaction is to link two double-stranded DNA ends by using overlapping homologous sequences. The remarkable progress in understanding the mechanisms of recombinational repair in E. coli over the last decade is due to the in vitro characterization of the activities of individual recombination proteins. Putting our knowledge about recombinational repair in the broader context of DNA replication will guide future experimentation. PMID:10585965

  13. Age-Dependent Recombination Rates in Human Pedigrees

    PubMed Central

    Hussin, Julie; Roy-Gagnon, Marie-Hélène; Gendron, Roxanne; Andelfinger, Gregor; Awadalla, Philip

    2011-01-01

    In humans, chromosome-number abnormalities have been associated with altered recombination and increased maternal age. Therefore, age-related effects on recombination are of major importance, especially in relation to the mechanisms involved in human trisomies. Here, we examine the relationship between maternal age and recombination rate in humans. We localized crossovers at high resolution by using over 600,000 markers genotyped in a panel of 69 French-Canadian pedigrees, revealing recombination events in 195 maternal meioses. Overall, we observed the general patterns of variation in fine-scale recombination rates previously reported in humans. However, we make the first observation of a significant decrease in recombination rates with advancing maternal age in humans, likely driven by chromosome-specific effects. The effect appears to be localized in the middle section of chromosomal arms and near subtelomeric regions. We postulate that, for some chromosomes, protection against non-disjunction provided by recombination becomes less efficient with advancing maternal age, which can be partly responsible for the higher rates of aneuploidy in older women. We propose a model that reconciles our findings with reported associations between maternal age and recombination in cases of trisomies. PMID:21912527

  14. Recombination rate variation in mice from an isolated island.

    PubMed

    Wang, Richard J; Gray, Melissa M; Parmenter, Michelle D; Broman, Karl W; Payseur, Bret A

    2017-01-01

    Recombination rate is a heritable trait that varies among individuals. Despite the major impact of recombination rate on patterns of genetic diversity and the efficacy of selection, natural variation in this phenotype remains poorly characterized. We present a comparison of genetic maps, sampling 1212 meioses, from a unique population of wild house mice (Mus musculus domesticus) that recently colonized remote Gough Island. Crosses to a mainland reference strain (WSB/EiJ) reveal pervasive variation in recombination rate among Gough Island mice, including subchromosomal intervals spanning up to 28% of the genome. In spite of this high level of polymorphism, the genomewide recombination rate does not significantly vary. In general, we find that recombination rate varies more when measured in smaller genomic intervals. Using the current standard genetic map of the laboratory mouse to polarize intervals with divergent recombination rates, we infer that the majority of evolutionary change occurred in one of the two tested lines of Gough Island mice. Our results confirm that natural populations harbour a high level of recombination rate polymorphism and highlight the disparities in recombination rate evolution across genomic scales. © 2016 John Wiley & Sons Ltd.

  15. Recombination rate variation in mice from an isolated island

    PubMed Central

    Wang, Richard J.; Gray, Melissa M.; Parmenter, Michelle D.; Broman, Karl W.; Payseur, Bret A.

    2016-01-01

    Recombination rate is a heritable trait that varies among individuals. Despite the major impact of recombination rate on patterns of genetic diversity and the efficacy of selection, natural variation in this phenotype remains poorly characterized. We present a comparison of genetic maps, sampling 1,212 meioses, from a unique population of wild house mice (Mus musculus domesticus) that recently colonized remote Gough Island. Crosses to a mainland reference strain (WSB/EiJ) reveal pervasive variation in recombination rate among Gough Island mice, including sub-chromosomal intervals spanning up to 28% of the genome. In spite of this high level of polymorphism, the genome-wide recombination rate does not significantly vary. In general, we find that recombination rate varies more when measured in smaller genomic intervals. Using the current standard genetic map of the laboratory mouse to polarize intervals with divergent recombination rates, we infer that the majority of evolutionary change occurred in one of the two tested lines of Gough Island mice. Our results confirm that natural populations harbor a high level of recombination rate polymorphism and highlight the disparities in recombination rate evolution across genomic scales. PMID:27864900

  16. [Construction and selection of effective mouse Smad6 recombinant lenti-virus interference vectors].

    PubMed

    Yu, Jing; Qi, Mengchun; Deng, Jiupeng; Liu, Gang; Chen, Huaiqing

    2010-10-01

    This experiment was designed to construct mouse Smad6 recombinant RNA interference vectors and determine their interference effects on bone marrow mesenchymal stem cells (BMSCs). Three recombinant Smad6 RNA interference vectors were constructed by molecular clone techniques with a lenti-virus vector expressing green fluorescent protein (GFP), and the correctness of recombinant vectors was verified by DNA sequencing. Mouse BMSCs were used for transfection experiments and BMP-2 was in use for osteogenic induction of MSCs. The transfection efficiency of recombinant vectors was examined by Laser confocal scanning microscope and the interference effect of recombinant vectors on Smad6 gene expression was determined by real-time RT-PCR and Western blot, respectively. Three Smad6 recombinant RNA interference vectors were successfully constructed and their correctness was proved by DNA sequencing. After transfection, GFPs were effectively expressed in MSCs and all of three recombinant vectors gained high transfection efficiency (> 95%). Both real-time PCR and Western blot examination indicated that among three recombinant vectors, No. 2 Svector had the best interference effect and the interference effect was nearly 91% at protein level. In conclusion, Mouse recombinant Smad6 RNA interference (RNAi) vector was successfully constructed and it provided an effective tool for further studies on BMP signal pathways.

  17. Recombination in Enteroviruses Is a Biphasic Replicative Process Involving the Generation of Greater-than Genome Length ‘Imprecise’ Intermediates

    PubMed Central

    Lowry, Kym; Woodman, Andrew; Cook, Jonathan; Evans, David J.

    2014-01-01

    Recombination in enteroviruses provides an evolutionary mechanism for acquiring extensive regions of novel sequence, is suggested to have a role in genotype diversity and is known to have been key to the emergence of novel neuropathogenic variants of poliovirus. Despite the importance of this evolutionary mechanism, the recombination process remains relatively poorly understood. We investigated heterologous recombination using a novel reverse genetic approach that resulted in the isolation of intermediate chimeric intertypic polioviruses bearing genomes with extensive duplicated sequences at the recombination junction. Serial passage of viruses exhibiting such imprecise junctions yielded progeny with increased fitness which had lost the duplicated sequences. Mutations or inhibitors that changed polymerase fidelity or the coalescence of replication complexes markedly altered the yield of recombinants (but did not influence non-replicative recombination) indicating both that the process is replicative and that it may be possible to enhance or reduce recombination-mediated viral evolution if required. We propose that extant recombinants result from a biphasic process in which an initial recombination event is followed by a process of resolution, deleting extraneous sequences and optimizing viral fitness. This process has implications for our wider understanding of ‘evolution by duplication’ in the positive-strand RNA viruses. PMID:24945141

  18. Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saparbaev, M.; Prakash, L.; Prakash, S.

    1996-03-01

    The RAD1 and RAD10 genes of Saccharomyces cerevisiae are required for nucleotide excision repair and they also act in mitotic recombination. The Rad1-Rad10 complex has a single-stranded DNA endonuclease activity. Here, we show that the mismatch repair genes MSH2 and MSH3 function in mitotic recombination. For both his3 and his4 duplications, and for homologous integration of a linear DNA fragment into the genome, the msh3-A mutation has an effect on recombination similar to that of the rad1{Delta} and rad10{Delta} mutations. The msh2{Delta} mutation also reduces the rate of recombination of the his3 duplication and lowers the incidence of homologous integrationmore » of a linear DNA fragment. Epistasis analyses indicate that MSH2 and MSH3 function in the RAD1-RAD10 recombination pathway, and studies presented here suggest an involvement of the RAM-RAD10 pathway in reciprocal recombination. The possible roles of Msh2, Msh3, Rad1, and Rad10 proteins in genetic recombination are discussed. Coupling of mismatch binding proteins with the recombinational machinery could be important for ensuring genetic fidelity in the recombination process. 59 refs., 2 figs., 7 tabs.« less

  19. Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae.

    PubMed

    Saparbaev, M; Prakash, L; Prakash, S

    1996-03-01

    The RAD1 and RAD10 genes of Saccharomyces cerevisiae are required for nucleotide excision repair and they also act in mitotic recombination. The Rad1-Rad10 complex has a single-stranded DNA endonuclease activity. Here, we show that the mismatch repair genes MSH2 and MSH3 function in mitotic recombination. For both his3 and his4 duplications, and for homologous integration of a linear DNA fragment into the genome, the msh3 delta mutation has an effect on recombination similar to that of the rad1 delta and rad10 delta mutations. The msh2 delta mutation also reduces the rate of recombination of the his3 duplication and lowers the incidence of homologous integration of a linear DNA fragment. Epistasis analyses indicate that MSH2 and MSH3 function in the RAD1-RAD10 recombination pathway, and studies presented here suggest an involvement of the RAD1-RAD10 pathway in reciprocal recombination. The possible roles of Msh2, Msh3, Rad1, and Rad10 proteins in genetic recombination are discussed. Coupling of mismatch binding proteins with the recombinational machinery could be important for ensuring genetic fidelity in the recombination process.

  20. How Hot Are Drosophila Hotspots? Examining Recombination Rate Variation and Associations with Nucleotide Diversity, Divergence, and Maternal Age in Drosophila pseudoobscura

    PubMed Central

    Manzano-Winkler, Brenda; McGaugh, Suzanne E.; Noor, Mohamed A. F.

    2013-01-01

    Fine scale meiotic recombination maps have uncovered a large amount of variation in crossover rate across the genomes of many species, and such variation in mammalian and yeast genomes is concentrated to <5kb regions of highly elevated recombination rates (10–100x the background rate) called “hotspots.” Drosophila exhibit substantial recombination rate heterogeneity across their genome, but evidence for these highly-localized hotspots is lacking. We assayed recombination across a 40Kb region of Drosophila pseudoobscura chromosome 2, with one 20kb interval assayed every 5Kb and the adjacent 20kb interval bisected into 10kb pieces. We found that recombination events across the 40kb stretch were relatively evenly distributed across each of the 5kb and 10kb intervals, rather than concentrated in a single 5kb region. This, in combination with other recent work, indicates that the recombination landscape of Drosophila may differ from the punctate recombination pattern observed in many mammals and yeast. Additionally, we found no correlation of average pairwise nucleotide diversity and divergence with recombination rate across the 20kb intervals, nor any effect of maternal age in weeks on recombination rate in our sample. PMID:23967224

  1. Frequency and genetic characterization of V(DD)J recombinants in the human peripheral blood antibody repertoire.

    PubMed

    Briney, Bryan S; Willis, Jordan R; Hicar, Mark D; Thomas, James W; Crowe, James E

    2012-09-01

    Antibody heavy-chain recombination that results in the incorporation of multiple diversity (D) genes, although uncommon, contributes substantially to the diversity of the human antibody repertoire. Such recombination allows the generation of heavy chain complementarity determining region 3 (HCDR3) regions of extreme length and enables junctional regions that, because of the nucleotide bias of N-addition regions, are difficult to produce through normal V(D)J recombination. Although this non-classical recombination process has been observed infrequently, comprehensive analysis of the frequency and genetic characteristics of such events in the human peripheral blood antibody repertoire has not been possible because of the rarity of such recombinants and the limitations of traditional sequencing technologies. Here, through the use of high-throughput sequencing of the normal human peripheral blood antibody repertoire, we analysed the frequency and genetic characteristics of V(DD)J recombinants. We found that these recombinations were present in approximately 1 in 800 circulating B cells, and that the frequency was severely reduced in memory cell subsets. We also found that V(DD)J recombination can occur across the spectrum of diversity genes, indicating that virtually all recombination signal sequences that flank diversity genes are amenable to V(DD)J recombination. Finally, we observed a repertoire bias in the diversity gene repertoire at the upstream (5') position, and discovered that this bias was primarily attributable to the order of diversity genes in the genomic locus. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.

  2. Strong Artificial Selection in Domestic Mammals Did Not Result in an Increased Recombination Rate

    PubMed Central

    Muñoz-Fuentes, Violeta; Marcet-Ortega, Marina; Alkorta-Aranburu, Gorka; Linde Forsberg, Catharina; Morrell, Jane M.; Manzano-Piedras, Esperanza; Söderberg, Arne; Daniel, Katrin; Villalba, Adrian; Toth, Attila; Di Rienzo, Anna; Roig, Ignasi; Vilà, Carles

    2015-01-01

    Recombination rates vary in intensity and location at the species, individual, sex and chromosome levels. Despite the fundamental biological importance of this process, the selective forces that operate to shape recombination rate and patterns are unclear. Domestication offers a unique opportunity to study the interplay between recombination and selection. In domesticates, intense selection for particular traits is imposed on small populations over many generations, resulting in organisms that differ, sometimes dramatically, in morphology and physiology from their wild ancestor. Although earlier studies suggested increased recombination rate in domesticates, a formal comparison of recombination rates between domestic mammals and their wild congeners was missing. In order to determine broad-scale recombination rate, we used immunolabeling detection of MLH1 foci as crossover markers in spermatocytes in three pairs of closely related wild and domestic species (dog and wolf, goat and ibex, and sheep and mouflon). In the three pairs, and contrary to previous suggestions, our data show that contemporary recombination rate is higher in the wild species. Subsequently, we inferred recombination breakpoints in sequence data for 16 genomic regions in dogs and wolves, each containing a locus associated with a dog phenotype potentially under selection during domestication. No difference in the number and distribution of recombination breakpoints was found between dogs and wolves. We conclude that our data indicate that strong directional selection did not result in changes in recombination in domestic mammals, and that both upper and lower bounds for crossover rates may be tightly regulated. PMID:25414125

  3. A New Metazoan Recombination Rate Record and Consistently High Recombination Rates in the Honey Bee Genus Apis Accompanied by Frequent Inversions but Not Translocations.

    PubMed

    Rueppell, Olav; Kuster, Ryan; Miller, Katelyn; Fouks, Bertrand; Rubio Correa, Sara; Collazo, Juan; Phaincharoen, Mananya; Tingek, Salim; Koeniger, Nikolaus

    2016-12-01

    Western honey bees (Apis mellifera) far exceed the commonly observed 1–2 meiotic recombination events per chromosome and exhibit the highest Metazoan recombination rate (20 cM/Mb) described thus far. However, the reasons for this exceptional rate of recombination are not sufficiently understood. In a comparative study, we report on the newly constructed genomic linkage maps of Apis florea and Apis dorsata that represent the two honey bee lineages without recombination rate estimates so far. Each linkage map was generated de novo, based on SNP genotypes of haploid male offspring of a single female. The A. florea map spans 4,782 cM with 1,279 markers in 16 linkage groups. The A. dorsata map is 5,762 cM long and contains 1,189 markers in 16 linkage groups. Respectively, these map sizes result in average recombination rate estimates of 20.8 and 25.1 cM/Mb. Synteny analyses indicate that frequent intra-chromosomal rearrangements but no translocations among chromosomes accompany the high rates of recombination during the independent evolution of the three major honey bee lineages. Our results imply a common cause for the evolution of very high recombination rates in Apis. Our findings also suggest that frequent homologous recombination during meiosis might increase ectopic recombination and rearrangements within but not between chromosomes. It remains to be investigated whether the resulting inversions may have been important in the evolutionary differentiation between honey bee species.

  4. Unique Safety Issues Associated with Virus Vectored Vaccines: Potential for and Theoretical Consequences of Recombination with Wild Type Virus Strains

    PubMed Central

    Condit, Richard C.; Williamson, Anna-Lise; Sheets, Rebecca; Seligman, Stephen J.; Monath, Thomas P.; Excler, Jean-Louis; Gurwith, Marc; Bok, Karin; Robertson, James S.; Kim, Denny; Hendry, Michael; Singh, Vidisha; Mac, Lisa M.; Chen, Robert T.

    2016-01-01

    In 2003 and 2013, the World Health Organization convened informal consultations on characterization and quality aspects of vaccines based on live virus vectors. In the resulting reports, one of several issues raised for future study was the potential for recombination of virus-vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of this issue formulated by the Brighton Collaboration. To provide an appropriate context for understanding the potential for recombination of virus-vectored vaccines, we review briefly the current status of virus vectored vaccines, mechanisms of recombination between viruses, experience with recombination involving live attenuated vaccines in the field, and concerns raised previously in the literature regarding recombination of virus-vectored vaccines with wild type virus strains. We then present a discussion of the major variables that could influence recombination between a virus-vectored vaccine and circulating wild type virus and the consequences of such recombination, including intrinsic recombination properties of the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, pathogenesis and transmission; replication competency of vector in target host; mechanism of vector attenuation; additional factors potentially affecting virulence; and circulation of multiple recombinant vectors in the same target population. Finally, we present some guiding principles for vector design and testing intended to anticipate and mitigate the potential for and consequences of recombination of virus-vectored vaccines with wild type pathogenic virus strains. PMID:27346303

  5. Characterization of recombination features and the genetic basis in multiple cattle breeds

    USDA-ARS?s Scientific Manuscript database

    Background: Crossover generated by meiotic recombination is a fundamental event which facilitates meiosis and sexual reproduction. Comparative studies have shown wide variation in recombination between species, but the characterization of recombination between bovine breeds remains elusive. Cattle p...

  6. Effect of sex, age, and breed on genetic recombination features in cattle

    USDA-ARS?s Scientific Manuscript database

    Meiotic recombination is a fundamental biological process which generates genetic diversity, affects fertility, and influences evolvability. Here we investigate the roles of sex, age, and breed in cattle recombination features, including recombination rate, location and crossover interference. Usin...

  7. Annealing Vs. Invasion in Phage λ Recombination

    PubMed Central

    Stahl, M. M.; Thomason, L.; Poteete, A. R.; Tarkowski, T.; Kuzminov, A.; Stahl, F. W.

    1997-01-01

    Genetic recombination catalyzed by λ's Red pathway was studied in rec(+) and recA mutant bacteria by examining both intracellular λ DNA and mature progeny particles. Recombination of nonreplicating phage chromosomes was induced by double-strand breaks delivered at unique sites in vivo. In rec(+) cells, cutting only one chromosome gave nearly maximal stimulation of recombination; the recombinants formed contained relatively short hybrid regions, suggesting strand invasion. In contrast, in recA mutant cells, cutting the two parental chromosomes at non-allelic sites was required for maximal stimulation; the recombinants formed tended to be hybrid over the entire region between the two cuts, implying strand annealing. We conclude that, in the absence of RecA and the presence of non-allelic DNA ends, the Red pathway of λ catalyzes recombination primarily by annealing. PMID:9383045

  8. Improved genetic stability of recombinant yellow fever 17D virus expressing a lentiviral Gag gene fragment.

    PubMed

    de Santana, Marlon G Veloso; Neves, Patrícia C C; dos Santos, Juliana Ribeiro; Lima, Noemia S; dos Santos, Alexandre A C; Watkins, David I; Galler, Ricardo; Bonaldo, Myrna C

    2014-03-01

    We have previously designed a method to construct viable recombinant Yellow Fever (YF) 17D viruses expressing heterologous polypeptides including part of the Simian Immunodeficiency Virus (SIV) Gag protein. However, the expressed region, encompassing amino acid residues from 45 to 269, was genetically unstable. In this study, we improved the genetic stability of this recombinant YF 17D virus by introducing mutations in the IRES element localized at the 5' end of the SIV gag gene. The new stable recombinant virus elicited adaptive immune responses similar to those induced by the original recombinant virus. It is, therefore, possible to increase recombinant stability by removing functional motifs from the insert that may have deleterious effects on recombinant YF viral fitness. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. SELECTIVE ADVANTAGE OF RECOMBINATION IN EVOLVING PROTEIN POPULATIONS: A LATTICE MODEL STUDY

    PubMed Central

    WILLIAMS, PAUL D.; POLLOCK, DAVID D.

    2010-01-01

    Recent research has attempted to clarify the contributions of several mutational processes, such as substitutions or homologous recombination. Simplistic, tractable protein models, which determine the compact native structure phenotype from the sequence genotype, are well-suited to such studies. In this paper, we use a lattice-protein model to examine the effects of point mutation and homologous recombination on evolving populations of proteins. We find that while the majority of mutation and recombination events are neutral or deleterious, recombination is far more likely to be beneficial. This results in a faster increase in fitness during evolution, although the final fitness level is not significantly changed. This transient advantage provides an evolutionary advantage to subpopulations that undergo recombination, allowing fixation of recombination to occur in the population. PMID:25473139

  10. Selective Advantage of Recombination in Evolving Protein Populations:. a Lattice Model Study

    NASA Astrophysics Data System (ADS)

    Williams, Paul D.; Pollock, David D.; Goldstein, Richard A.

    Recent research has attempted to clarify the contributions of several mutational processes, such as substitutions or homologous recombination. Simplistic, tractable protein models, which determine the compact native structure phenotype from the sequence genotype, are well-suited to such studies. In this paper, we use a lattice-protein model to examine the effects of point mutation and homologous recombination on evolving populations of proteins. We find that while the majority of mutation and recombination events are neutral or deleterious, recombination is far more likely to be beneficial. This results in a faster increase in fitness during evolution, although the final fitness level is not significantly changed. This transient advantage provides an evolutionary advantage to subpopulations that undergo recombination, allowing fixation of recombination to occur in the population.

  11. Genome-wide recombination rate variation in a recombination map of cotton.

    PubMed

    Shen, Chao; Li, Ximei; Zhang, Ruiting; Lin, Zhongxu

    2017-01-01

    Recombination is crucial for genetic evolution, which not only provides new allele combinations but also influences the biological evolution and efficacy of natural selection. However, recombination variation is not well understood outside of the complex species' genomes, and it is particularly unclear in Gossypium. Cotton is the most important natural fibre crop and the second largest oil-seed crop. Here, we found that the genetic and physical maps distances did not have a simple linear relationship. Recombination rates were unevenly distributed throughout the cotton genome, which showed marked changes along the chromosome lengths and recombination was completely suppressed in the centromeric regions. Recombination rates significantly varied between A-subgenome (At) (range = 1.60 to 3.26 centimorgan/megabase [cM/Mb]) and D-subgenome (Dt) (range = 2.17 to 4.97 cM/Mb), which explained why the genetic maps of At and Dt are similar but the physical map of Dt is only half that of At. The translocation regions between A02 and A03 and between A04 and A05, and the inversion regions on A10, D10, A07 and D07 indicated relatively high recombination rates in the distal regions of the chromosomes. Recombination rates were positively correlated with the densities of genes, markers and the distance from the centromere, and negatively correlated with transposable elements (TEs). The gene ontology (GO) categories showed that genes in high recombination regions may tend to response to environmental stimuli, and genes in low recombination regions are related to mitosis and meiosis, which suggested that they may provide the primary driving force in adaptive evolution and assure the stability of basic cell cycle in a rapidly changing environment. Global knowledge of recombination rates will facilitate genetics and breeding in cotton.

  12. Genome-wide recombination rate variation in a recombination map of cotton

    PubMed Central

    Shen, Chao; Li, Ximei; Zhang, Ruiting

    2017-01-01

    Recombination is crucial for genetic evolution, which not only provides new allele combinations but also influences the biological evolution and efficacy of natural selection. However, recombination variation is not well understood outside of the complex species’ genomes, and it is particularly unclear in Gossypium. Cotton is the most important natural fibre crop and the second largest oil-seed crop. Here, we found that the genetic and physical maps distances did not have a simple linear relationship. Recombination rates were unevenly distributed throughout the cotton genome, which showed marked changes along the chromosome lengths and recombination was completely suppressed in the centromeric regions. Recombination rates significantly varied between A-subgenome (At) (range = 1.60 to 3.26 centimorgan/megabase [cM/Mb]) and D-subgenome (Dt) (range = 2.17 to 4.97 cM/Mb), which explained why the genetic maps of At and Dt are similar but the physical map of Dt is only half that of At. The translocation regions between A02 and A03 and between A04 and A05, and the inversion regions on A10, D10, A07 and D07 indicated relatively high recombination rates in the distal regions of the chromosomes. Recombination rates were positively correlated with the densities of genes, markers and the distance from the centromere, and negatively correlated with transposable elements (TEs). The gene ontology (GO) categories showed that genes in high recombination regions may tend to response to environmental stimuli, and genes in low recombination regions are related to mitosis and meiosis, which suggested that they may provide the primary driving force in adaptive evolution and assure the stability of basic cell cycle in a rapidly changing environment. Global knowledge of recombination rates will facilitate genetics and breeding in cotton. PMID:29176878

  13. Characterization of a novel Aspergillus oryzae tannase expressed in Pichia pastoris.

    PubMed

    Koseki, Takuya; Ichikawa, Kyotaro; Sasaki, Katsuto; Shiono, Yoshihito

    2018-05-31

    We report the characterization of tannase-encoding gene, AotanB, from Aspergillus oryzae and its recombinant enzyme expressed in Pichia pastoris. The gene except for the signal sequence was cloned into a vector pPICZαA and the recombinant protein was secreted into the medium as an active enzyme. Recombinant AoTanB highly expressed in the incubation at 18°C compared to 30°C. Purified recombinant protein exhibited smeared band with molecular mass of approximately 90-120 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The recombinant protein yielded molecular mass of 65 kDa after N-deglycosylation. Purified recombinant enzyme had a pH and a temperature optima of 6.0 and 30-35°C, respectively, and was stable up to 40°C. Recombinant AoTanB was able to release gallic acid from natural substrates, such as (-)-catechin gallate, (-)-epicatechin gallate, (-)-gallochatechin gallate, and (-)-epigallocatechin gallate. The enzyme also hydrolyzed ethyl protocatechuate. Meanwhile, no activity was detected toward ethyl 4-hydroxybenzoate. The activity of recombinant AoTanB was lower toward natural substrates compared to that of AoTanA from A. oryzae. The lower catalytic efficiency (k cat /K m value) toward ethyl protocatechuate was due to a combination of increased K m and considerably decreased k cat . Kinetic analysis of the recombinant AoTanB showed that k cat values toward natural substrates decreased compared to those of recombinant AoTanA. Therefore, recombinant AoTanB showed a decrease in catalytic efficiency (k cat /K m value) compared to recombinant AoTanA was due to considerably lower k cat value. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Genome Sequence Analysis of New Isolates of the Winona Strain of Plum pox virus and the First Definitive Evidence of Intrastrain Recombination Events.

    PubMed

    James, Delano; Sanderson, Dan; Varga, Aniko; Sheveleva, Anna; Chirkov, Sergei

    2016-04-01

    Plum pox virus (PPV) is genetically diverse with nine different strains identified. Mutations, indel events, and interstrain recombination events are known to contribute to the genetic diversity of PPV. This is the first report of intrastrain recombination events that contribute to PPV's genetic diversity. Fourteen isolates of the PPV strain Winona (W) were analyzed including nine new strain W isolates sequenced completely in this study. Isolates of other strains of PPV with more than one isolate with the complete genome sequence available in GenBank were included also in this study for comparison and analysis. Five intrastrain recombination events were detected among the PPV W isolates, one among PPV C strain isolates, and one among PPV M strain isolates. Four (29%) of the PPV W isolates analyzed are recombinants; one of which (P2-1) is a mosaic, with three recombination events identified. A new interstrain recombinant event was identified between a strain M isolate and a strain Rec isolate, a known recombinant. In silico recombination studies and pairwise distance analyses of PPV strain D isolates indicate that a threshold of genetic diversity exists for the detectability of recombination events, in the range of approximately 0.78×10(-2) to 1.33×10(-2) mean pairwise distance. RDP4 analyses indicate that in the case of PPV Rec isolates there may be a recombinant breakpoint distinct from the obvious transition point of strain sequences. Evidence was obtained that indicates that the frequency of PPV recombination is underestimated, which may be true for other RNA viruses where low genetic diversity exists.

  15. Conjugation of gold nanoparticles and recombinant human endostatin modulates vascular normalization via interruption of anterior gradient 2-mediated angiogenesis.

    PubMed

    Pan, Fan; Yang, Wende; Li, Wei; Yang, Xiao-Yan; Liu, Shuhao; Li, Xin; Zhao, Xiaoxu; Ding, Hui; Qin, Li; Pan, Yunlong

    2017-07-01

    Several studies have revealed the potential of normalizing tumor vessels in anti-angiogenic treatment. Recombinant human endostatin is an anti-angiogenic agent which has been applied in clinical tumor treatment. Our previous research indicated that gold nanoparticles could be a nanoparticle carrier for recombinant human endostatin delivery. The recombinant human endostatin-gold nanoparticle conjugates normalized vessels, which improved chemotherapy. However, the mechanism of recombinant human endostatin-gold nanoparticle-induced vascular normalization has not been explored. Anterior gradient 2 has been reported to be over-expressed in many malignant tumors and involved in tumor angiogenesis. To date, the precise efficacy of recombinant human endostatin-gold nanoparticles on anterior gradient 2-mediated angiogenesis or anterior gradient 2-related signaling cohort remained unknown. In this study, we aimed to explore whether recombinant human endostatin-gold nanoparticles could normalize vessels in metastatic colorectal cancer xenografts, and we further elucidated whether recombinant human endostatin-gold nanoparticles could interrupt anterior gradient 2-induced angiogenesis. In vivo, it was indicated that recombinant human endostatin-gold nanoparticles increased pericyte expression while inhibit vascular endothelial growth factor receptor 2 and anterior gradient 2 expression in metastatic colorectal cancer xenografts. In vitro, we uncovered that recombinant human endostatin-gold nanoparticles reduced cell migration and tube formation induced by anterior gradient 2 in human umbilical vein endothelial cells. Treatment with recombinant human endostatin-gold nanoparticles attenuated anterior gradient 2-mediated activation of MMP2, cMyc, VE-cadherin, phosphorylation of p38, and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human umbilical vein endothelial cells. Our findings demonstrated recombinant human endostatin-gold nanoparticles might normalize vessels by interfering anterior gradient 2-mediated angiogenesis in metastatic colorectal cancer.

  16. Replication-Dependent Sister Chromatid Recombination in Rad1 Mutants of Saccharomyces Cerevisiae

    PubMed Central

    Kadyk, L. C.; Hartwell, L. H.

    1993-01-01

    Homolog recombination and unequal sister chromatid recombination were monitored in rad1-1/rad1-1 diploid yeast cells deficient for excision repair, and in control cells, RAD1/rad1-1, after exposure to UV irradiation. In a rad1-1/rad1-1 diploid, UV irradiation stimulated much more sister chromatid recombination relative to homolog recombination when cells were irradiated in the G(1) or the G(2) phases of the cell cycle than was observed in RAD1/rad1-1 cells. Since sister chromatids are not present during G(1), this result suggested that unexcised lesions can stimulate sister chromatid recombination events during or subsequent to DNA replication. The results of mating rescue experiments suggest that unexcised UV dimers do not stimulate sister chromatid recombination during the G(2) phase, but only when they are present during DNA replication. We propose that there are two types of sister chromatid recombination in yeast. In the first type, unexcised UV dimers and other bulky lesions induce sister chromatid recombination during DNA replication as a mechanism to bypass lesions obstructing the passage of DNA polymerase, and this type is analogous to the type of sister chromatid exchange commonly observed cytologically in mammalian cells. In the second type, strand scissions created by X-irradiation or the excision of damaged bases create recombinogenic sites that result in sister chromatid recombination directly in G(2). Further support for the existence of two types of sister chromatid recombination is the fact that events induced in rad1-1/rad1-1 were due almost entirely to gene conversion, whereas those in RAD1/rad1-1 cells were due to a mixture of gene conversion and reciprocal recombination. PMID:8454200

  17. Genomic features of intertypic recombinant sabin poliovirus strains excreted by primary vaccinees.

    PubMed

    Cuervo, N S; Guillot, S; Romanenkova, N; Combiescu, M; Aubert-Combiescu, A; Seghier, M; Caro, V; Crainic, R; Delpeyroux, F

    2001-07-01

    The trivalent oral poliomyelitis vaccine (OPV) contains three different poliovirus serotypes. It use therefore creates particularly favorable conditions for mixed infection of gut cells, and indeed intertypic vaccine-derived recombinants (VdRec) have been frequently found in patients with vaccine-associated paralytic poliomyelitis. Nevertheless, there have not been extensive searches for VdRec in healthy vaccinees following immunization with OPV. To determine the incidence of VdRec and their excretion kinetics in primary vaccinees, and to establish the general genomic features of the corresponding recombinant genomes, we characterized poliovirus isolates excreted by vaccinees following primary immunization with OPV. Isolates were collected from 67 children 2 to 60 days following vaccination. Recombinant strains were identified by multiple restriction fragment length polymorphism assays. The localization of junction sites in recombinant genomes was also determined. VdRec excreted by vaccinees were first detected 2 to 4 days after vaccination. The highest rate of recombinants was on day 14. The frequency of VdRec depends strongly on the serotype of the analyzed isolates (2, 53, and 79% of recombinant strains in the last-excreted type 1, 2, and 3 isolates, respectively). Particular associations of genomic segments were preferred in the recombinant genomes, and recombination junctions were found in the genomic region encoding the nonstructural proteins. Recombination junctions generally clustered in particular subgenomic regions that were dependent on the serotype of the isolate and/or on the associations of genomic segments in recombinants. Thus, VdRec are frequently excreted by vaccinees, and the poliovirus replication machinery requirements or selection factors appear to act in vivo to shape the features of the recombinant genomes.

  18. Within-Host Dynamics of the Emergence of Tomato Yellow Leaf Curl Virus Recombinants

    PubMed Central

    Urbino, Cica; Gutiérrez, Serafin; Antolik, Anna; Bouazza, Nabila; Doumayrou, Juliette; Granier, Martine; Martin, Darren P.; Peterschmitt, Michel

    2013-01-01

    Tomato yellow leaf curl virus (TYLCV) is a highly damaging begomovirus native to the Middle East. TYLCV has recently spread worldwide, recombining with other begomoviruses. Recent analysis of mixed infections between TYLCV and Tomato leaf curl Comoros begomovirus (ToLCKMV) has shown that, although natural selection preserves certain co-evolved intra-genomic interactions, numerous and diverse recombinants are produced at 120 days post-inoculation (dpi), and recombinant populations from different tomato plants are very divergent. Here, we investigate the population dynamics that lead to such patterns in tomato plants co-infected with TYLCV and ToLCKMV either by agro-inoculation or using the natural whitefly vector Bemisia tabaci. We monitored the frequency of parental and recombinant genotypes independently in 35 plants between 18 and 330 dpi and identified 177 recombinants isolated at different times. Recombinants were detected from 18 dpi and their frequency increased over time to reach about 50% at 150 dpi regardless of the inoculation method. The distribution of breakpoints detected on 96 fully sequenced recombinants was consistent with a continuous generation of new recombinants as well as random and deterministic effects in their maintenance. A severe population bottleneck of around 10 genomes was estimated during early systemic infection–a phenomenon that could account partially for the heterogeneity in recombinant patterns observed among plants. The detection of the same recombinant genome in six of the thirteen plants analysed beyond 30 dpi supported the influence of selection on observed recombination patterns. Moreover, a highly virulent recombinant genotype dominating virus populations within one plant has, apparently, the potential to be maintained in the natural population according to its infectivity, within-host accumulation, and transmission efficiency - all of which were similar or intermediate to those of the parent genotypes. Our results anticipate the outcomes of natural encounters between TYLCV and ToLCKMV. PMID:23472190

  19. Recombination in feline immunodeficiency virus from feral and companion domestic cats.

    PubMed

    Hayward, Jessica J; Rodrigo, Allen G

    2008-06-17

    Recombination is a relatively common phenomenon in retroviruses. We investigated recombination in Feline Immunodeficiency Virus from naturally-infected New Zealand domestic cats (Felis catus) by sequencing regions of the gag, pol and env genes. The occurrence of intragenic recombination was highest in env, with evidence of recombination in 6.4% (n = 156) of all cats. A further recombinant was identified in each of the gag (n = 48) and pol (n = 91) genes. Comparisons of phylogenetic trees across genes identified cases of incongruence, indicating intergenic recombination. Three (7.7%, n = 39) of these incongruencies were found to be significantly different using the Shimodaira-Hasegawa test.Surprisingly, our phylogenies from the gag and pol genes showed that no New Zealand sequences group with reference subtype C sequences within intrasubtype pairwise distances. Indeed, we find one and two distinct unknown subtype groups in gag and pol, respectively. These observations cause us to speculate that these New Zealand FIV strains have undergone several recombination events between subtype A parent strains and undefined unknown subtype strains, similar to the evolutionary history hypothesised for HIV-1 "subtype E".Endpoint dilution sequencing was used to confirm the consensus sequences of the putative recombinants and unknown subtype groups, providing evidence for the authenticity of these sequences. Endpoint dilution sequencing also resulted in the identification of a dual infection event in the env gene. In addition, an intrahost recombination event between variants of the same subtype in the pol gene was established. This is the first known example of naturally-occurring recombination in a cat with infection of the parent strains. Evidence of intragenic recombination in the gag, pol and env regions, and complex intergenic recombination, of FIV from naturally-infected domestic cats in New Zealand was found. Strains of unknown subtype were identified in all three gene regions. These results have implications for the use of the current FIV vaccine in New Zealand.

  20. Preparative SDS PAGE as an Alternative to His-Tag Purification of Recombinant Amelogenin

    PubMed Central

    Gabe, Claire M.; Brookes, Steven J.; Kirkham, Jennifer

    2017-01-01

    Recombinant protein technology provides an invaluable source of proteins for use in structure-function studies, as immunogens, and in the development of therapeutics. Recombinant proteins are typically engineered with “tags” that allow the protein to be purified from crude host cell extracts using affinity based chromatography techniques. Amelogenin is the principal component of the developing enamel matrix and a frequent focus for biomineralization researchers. Several groups have reported the successful production of recombinant amelogenins but the production of recombinant amelogenin free of any tags, and at single band purity on silver stained SDS PAGE is technically challenging. This is important, as rigorous structure-function research frequently demands a high degree of protein purity and fidelity of protein sequence. Our aim was to generate His-tagged recombinant amelogenin at single band purity on silver stained SDS PAGE for use in functionality studies after His-tag cleavage. An acetic acid extraction technique (previously reported to produce recombinant amelogenin at 95% purity directly from E. coli) followed by repeated rounds of nickel column affinity chromatography, failed to generate recombinant amelogenin at single band purity. This was because following an initial round of nickel column affinity chromatography, subsequent cleavage of the His-tag was not 100% efficient. A second round of nickel column affinity chromatography, used in attempts to separate the cleaved His-tag free recombinant from uncleaved His-tagged contaminants, was still unsatisfactory as cleaved recombinant amelogenin exhibited significant affinity for the nickel column. To solve this problem, we used preparative SDS PAGE to successfully purify cleaved recombinant amelogenins to single band purity on silver stained SDS PAGE. The resolving power of preparative SDS PAGE was such that His-tag based purification of recombinant amelogenin becomes redundant. We suggest that acetic acid extraction of recombinant amelogenin and subsequent purification using preparative SDS PAGE provides a simple route to highly purified His-tag free amelogenin for use in structure-function experiments and beyond. PMID:28670287

  1. Biochemical characterization of a recombinant Lactobacillus acidophilus strain expressing exogenous FomA protein.

    PubMed

    Ma, Li; Li, Fei; Zhang, Xiangyu; Feng, Xiping

    2018-04-30

    In previous research, to combine the immunogenicity of Fusobacterium nucleatum (F. nucleatum) and the probiotic properties of Lactobacillus acidophilus (L. acidophilus), we constructed a FomA-expressing L. acidophilus strain and assessed its immunogenicity. Our findings indicated that oral administration of the recombinant L. acidophilus strain reduced the risk of periodontal infection by Porphyromonas gingivalis (P. gingivalis) and F. nucleatum. However, because the exogenous FomA is an heterologous protein for the original bacterium, in this study, we assessed whether the biochemical characteristics of the recombinant L. acidophilus strain change due to the expression of the exogenous FomA protein. To test the biochemical characteristics of a recombinant L. acidophilus strain expressing exogenous FomA and assess its antibiotic sensitivity. We assessed the colony morphology, growth, acid production, and carbohydrate fermentation abilities of the recombinant L. acidophilus strain. In addition, we tested the adhesive ability and antimicrobial activity of the recombinant and assessed its antibiotic sensitivity through a drug susceptibility test. The experimental results showed that the colony and microscopic morphology of the recombinant L. acidophilus strain was consistent with the original strain, and the recombinant strain grew well when cultured under aerobic or anaerobic conditions, exhibiting a growth rate that was identical to that of the standard strain. Similarly, the supernatants of the recombinant L. acidophilus can inhibit the growth of E. coli and P. gingivalis at different concentrations, and the recombinant strain displayed essentially the same drug sensitivity profile as the original L. acidophilus. However, to our surprise, the recombinant strains exhibited a greater adhesion ability than the reference strain. Our study demonstrated that, in addition to an increased adhesion ability, the recombinant L. acidophilus strain maintained the basic characteristics of the standard strain ATCC 4356, including antibiotic sensitivity. Thus, the recombinant strains have great potential to be utilized as a safe and effective periodontitis vaccine in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Recombinant Human Acidic Fibroblast Growth Factor (aFGF) Expressed in Nicotiana benthamiana Potentially Inhibits Skin Photoaging.

    PubMed

    Ha, Jang-Ho; Kim, Ha-Neul; Moon, Ki-Beom; Jeon, Jae-Heung; Jung, Dai-Hyun; Kim, Su-Jung; Mason, Hugh S; Shin, Seo-Yeon; Kim, Hyun-Soon; Park, Kyung-Mok

    2017-07-01

    Responding to the need for recombinant acidic fibroblast growth factor in the pharmaceutical and cosmetic industries, we established a scalable expression system for recombinant human aFGF using transient and a DNA replicon vector expression in Nicotiana benthamiana . Recombinant human-acidic fibroblast growth factor was recovered following Agrobacterium infiltration of N. benthamiana . The optimal time point at which to harvest recombinant human acidic fibroblast growth factor expressing leaves was found to be 4 days post-infiltration, before necrosis was evident. Commassie-stained SDS-PAGE gels of His-tag column eluates, concentrated using a 10 000 molecular weight cut-off column, showed an intense band at the expected molecular weight for recombinant human acidic fibroblast growth factor. An immunoblot confirmed that this band was recombinant human acidic fibroblast growth factor. Up to 10 µg recombinant human-acidic fibroblast growth factor/g of fresh leaves were achieved by a simple affinity purification protocol using protein extract from the leaves of agroinfiltrated N. benthamiana . The purified recombinant human acidic fibroblast growth factor improved the survival rate of UVB-irradiated HaCaT and CCD-986sk cells approximately 89 and 81 %, respectively. N. benthamiana -derived recombinant human acidic fibroblast growth factor showed similar effects on skin cell proliferation and UVB protection compared to those of Escherichia coli -derived recombinant human acidic fibroblast growth factor. Additionally, N. benthamiana- derived recombinant human acidic fibroblast growth factor increased type 1 procollagen synthesis up to 30 % as well as reduced UVB-induced intracellular reactive oxygen species generation in fibroblast (CCD-986sk) cells.UVB is a well-known factor that causes various types of skin damage and premature aging. Therefore, the present study demonstrated that N. benthamiana -derived recombinant human acidic fibroblast growth factor effectively protects skin cell from UVB, suggesting its potential use as a cosmetic or therapeutic agent against skin photoaging. Georg Thieme Verlag KG Stuttgart · New York.

  3. Blocking the proliferation of human tumor cell lines by peptidase inhibitors from Bauhinia seeds.

    PubMed

    Nakahata, Adriana Miti; Mayer, Barbara; Neth, Peter; Hansen, Daiane; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2013-03-01

    In cancer tumors, growth, invasion, and formation of metastasis at a secondary site play a pivotal role, participating in diverse processes in the development of the pathology, such as degradation of extracellular matrix. Bauhinia seeds contain relatively large quantities of peptidase inhibitors, and two Bauhinia inhibitors were obtained in a recombinant form from the Bauhinia bauhinioides species, B. bauhinoides cruzipain inhibitor, which is a cysteine and serine peptidase inhibitor, and B. bauhinioides kallikrein inhibitor, which is a serine peptidase inhibitor. While recombinant B. bauhinoides cruzipain inhibitor inhibits human neutrophil elastase cathepsin G and the cysteine proteinase cathepsin L, recombinant B. bauhinioides kallikrein inhibitor inhibits plasma kallikrein and plasmin. The effects of recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor on the viability of tumor cell lines with a distinct potential of growth from the same tissue were compared to those of the clinical cytotoxic drug 5-fluorouracil. At 12.5 µM concentration, recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor were more efficient than 5-fluorouracil in inhibiting MKN-28 and Hs746T (gastric), HCT116 and HT29 (colorectal), SkBr-3 and MCF-7 (breast), and THP-1 and K562 (leukemia) cell lines. Additionally, recombinant B. bauhinoides cruzipain inhibitor inhibited 40 % of the migration of Hs746T, the most invasive gastric cell line, while recombinant B. bauhinioides kallikrein inhibitor did not affect cell migration. Recombinant B. bauhinioides kallikrein inhibitor and recombinant B. bauhinoides cruzipain inhibitor, even at high doses, did not affect hMSC proliferation while 5-fluorouracil greatly reduced the proliferation rates of hMSCs. Therefore, both recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor might be considered for further studies to block peptidase activities in order to target specific peptidase-mediated growth and invasion characteristics of individual tumors, mainly in patients resistant to 5-fluorouracil chemotherapy. Georg Thieme Verlag KG Stuttgart · New York.

  4. Selfish genes, pleiotropy and the origin of recombination.

    PubMed Central

    Hey, J

    1998-01-01

    If multiple linked polymorphisms are under natural selection, then conflicts arise and the efficiency of natural selection is hindered relative to the case of no linkage. This simple interaction between linkage and natural selection creates an opportunity for mutations that raise the level of recombination to increase in frequency and have an enhanced chance of fixation. This important finding by S. Otto and N. Barton means that mutations that raise the recombination rate, but are otherwise neutral, will be selectively favored under fairly general circumstances of multilocus selection and linkage. The effect described by Otto and Barton, which was limited to neutral modifiers, can also be extended to include all modifiers of recombination, both beneficial and deleterious. Computer simulations show that beneficial mutations that also increase recombination have an increased chance of fixation. Similarly, deleterious mutations that also decrease recombination have an increased chance of fixation. The results suggest that a simple model of recombination modifiers, including both neutral and pleiotropic modifiers, is a necessary explanation for the evolutionary origin of recombination. PMID:9691060

  5. Evolution of recombination rates in a multi-locus, haploid-selection, symmetric-viability model.

    PubMed

    Chasnov, J R; Ye, Felix Xiaofeng

    2013-02-01

    A fast algorithm for computing multi-locus recombination is extended to include a recombination-modifier locus. This algorithm and a linear stability analysis is used to investigate the evolution of recombination rates in a multi-locus, haploid-selection, symmetric-viability model for which stable equilibria have recently been determined. When the starting equilibrium is symmetric with two selected loci, we show analytically that modifier alleles that reduce recombination always invade. When the starting equilibrium is monomorphic, and there is a fixed nonzero recombination rate between the modifier locus and the selected loci, we determine analytical conditions for which a modifier allele can invade. In particular, we show that a gap exists between the recombination rates of modifiers that can invade and the recombination rate that specifies the lower stability boundary of the monomorphic equilibrium. A numerical investigation shows that a similar gap exists in a weakened form when the starting equilibrium is fully polymorphic but asymmetric. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. The CAF-1 and Hir Histone Chaperones Associate with Sites of Meiotic Double-Strand Breaks in Budding Yeast

    PubMed Central

    Brachet, Elsa; Béneut, Claire; Serrentino, Maria-Elisabetta; Borde, Valérie

    2015-01-01

    In the meiotic prophase, programmed DNA double-strand breaks (DSB) are introduced along chromosomes to promote homolog pairing and recombination. Although meiotic DSBs usually occur in nucleosome-depleted, accessible regions of chromatin, their repair by homologous recombination takes place in a nucleosomal environment. Nucleosomes may represent an obstacle for the recombination machinery and their timely eviction and reincorporation into chromatin may influence the outcome of recombination, for instance by stabilizing recombination intermediates. Here we show in budding yeast that nucleosomes flanking a meiotic DSB are transiently lost during recombination, and that specific histone H3 chaperones, CAF-1 and Hir, are mobilized at meiotic DSBs. However, the absence of these chaperones has no effect on meiotic recombination, suggesting that timely histone reincorporation following their eviction has no influence on the recombination outcome, or that redundant pathways are activated. This study is the first example of the involvement of histone H3 chaperones at naturally occurring, developmentally programmed DNA double-strand breaks. PMID:25938567

  7. Prisoner's dilemma posed by fitness-associated recombination strategies.

    PubMed

    Wexler, Ydo; Rokhlenko, Oleg

    2007-07-07

    Genetic recombination is a central and repeated topic of study in the evolution of life. However, along with the influence of recombination on evolution, we understand surprisingly little of how selection shapes the nature of recombination. One explanation for recombination is that it allows organisms to escape from perilous situations where they experience very low fitness. As a corollary, it has been suggested that selection should favor recombination at low fitness and not at high fitness (fitness-associated recombination, FAR), and theory suggests that such strategies can indeed be selected. Here we develop models to further investigate the evolution of FAR. Consistent with previous works, we find that FAR can invade and dominate over a strategy of uniform recombination that is independent of fitness. However, our simulation results suggest that extreme FAR strategies, known as group-elitism, are not necessarily superior to other FAR strategies. Moreover, we argue that FAR domination will often occur with a net loss of mean population fitness. Interestingly, this suggests that the strategy of not recombining at high fitness will sometimes be analogous to a defector strategy from the famous "prisoner's dilemma" game: a selfish strategy that is selected but leads to a loss of mean fitness for all players.

  8. Poliovirus RNA recombination: mechanistic studies in the absence of selection.

    PubMed Central

    Jarvis, T C; Kirkegaard, K

    1992-01-01

    Direct and quantitative detection of recombinant RNA molecules by polymerase chain reaction (PCR) provides a novel method for studying recombination in RNA viruses without selection for viable progeny. The parental poliovirus strains used in this study contained polymorphic marker loci approximately 600 bases apart; both exhibited wild-type growth characteristics. We established conditions under which the amount of PCR product was linearly proportional to the amount of input template, and the reproducibility was high. Recombinant progeny were predominantly homologous and arose at frequencies up to 2 x 10(-3). Recombination events increased in frequency throughout replication, indicating that there is no viral RNA sequestration or inhibition of recombination late in infection as proposed in earlier genetic studies. Previous studies have demonstrated that poliovirus recombination occurs by a copy-choice mechanism in which the viral polymerase switches templates during negative-strand synthesis. Varying the relative amount of input parental virus markedly altered reciprocal recombination frequencies. This, in conjunction with the kinetics data, indicated that acceptor template concentration is a determinant of template switching frequency. Since positive strands greatly outnumber negative strands throughout poliovirus infection, this would explain the bias toward recombination during negative-strand synthesis. Images PMID:1379178

  9. Recombinant Allergens in Structural Biology, Diagnosis, and Immunotherapy

    PubMed Central

    Tscheppe, Angelika; Breiteneder, Heimo

    2017-01-01

    The years 1988–1995 witnessed the beginning of allergen cloning and the generation of recombinant allergens, which opened up new avenues for the diagnosis and research of human allergic diseases. Most crystal and solution structures of allergens have been obtained using recombinant allergens. Structural information on allergens allows insights into their evolutionary biology, illustrates clinically observed cross-reactivities, and makes the design of hypoallergenic derivatives for allergy vaccines possible. Recombinant allergens are widely used in molecule-based allergy diagnosis such as protein microarrays or suspension arrays. Recombinant technologies have been used to produce well-characterized, noncontaminated vaccine components with known biological activities including a variety of allergen derivatives with reduced IgE reactivity. Such recombinant hypoallergens as well as wild-type recombinant allergens have been used successfully in several immunotherapy trials for more than a decade to treat birch and grass pollen allergy. As a more recent application, the development of antibody repertoires directed against conformational epitopes during immunotherapy has been monitored by recombinant allergen chimeras. Although much progress has been made, the number and quality of recombinant allergens will undoubtedly increase and keep improving our knowledge in basic scientific investigations, diagnosis, and therapy of human allergic diseases. PMID:28467993

  10. Heterologous mitochondrial DNA recombination in human cells.

    PubMed

    D'Aurelio, Marilena; Gajewski, Carl D; Lin, Michael T; Mauck, William M; Shao, Leon Z; Lenaz, Giorgio; Moraes, Carlos T; Manfredi, Giovanni

    2004-12-15

    Inter-molecular heterologous mitochondrial DNA (mtDNA) recombination is known to occur in yeast and plants. Nevertheless, its occurrence in human cells is still controversial. To address this issue we have fused two human cytoplasmic hybrid cell lines, each containing a distinct pathogenic mtDNA mutation and specific sets of genetic markers. In this hybrid model, we found direct evidence of recombination between these two mtDNA haplotypes. Recombinant mtDNA molecules in the hybrid cells were identified using three independent experimental approaches. First, recombinant molecules containing genetic markers from both parental alleles were demonstrated with restriction fragment length polymorphism of polymerase chain reaction products, by measuring the relative frequencies of each marker. Second, fragments of recombinant mtDNA were cloned and sequenced to identify the regions involved in the recombination events. Finally, recombinant molecules were demonstrated directly by Southern blot using appropriate combinations of polymorphic restriction sites and probes. This combined approach confirmed the existence of heterogeneous species of recombinant mtDNA molecules in the hybrid cells. These findings have important implications for mtDNA-related diseases, the interpretation of human evolution and population genetics and forensic analyses based on mtDNA genotyping.

  11. Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations

    PubMed Central

    Perron, Gabriel G.; Lee, Alexander E. G.; Wang, Yun; Huang, Wei E.; Barraclough, Timothy G.

    2012-01-01

    Bacterial recombination is believed to be a major factor explaining the prevalence of multi-drug-resistance (MDR) among pathogenic bacteria. Despite extensive evidence for exchange of resistance genes from retrospective sequence analyses, experimental evidence for the evolutionary benefits of bacterial recombination is scarce. We compared the evolution of MDR between populations of Acinetobacter baylyi in which we manipulated both the recombination rate and the initial diversity of strains with resistance to single drugs. In populations lacking recombination, the initial presence of multiple strains resistant to different antibiotics inhibits the evolution of MDR. However, in populations with recombination, the inhibitory effect of standing diversity is alleviated and MDR evolves rapidly. Moreover, only the presence of DNA harbouring resistance genes promotes the evolution of resistance, ruling out other proposed benefits for recombination. Together, these results provide direct evidence for the fitness benefits of bacterial recombination and show that this occurs by mitigation of functional interference between genotypes resistant to single antibiotics. Although analogous to previously described mechanisms of clonal interference among alternative beneficial mutations, our results actually highlight a different mechanism by which interactions among co-occurring strains determine the benefits of recombination for bacterial evolution. PMID:22048956

  12. Compartmentalization of the yeast meiotic nucleus revealed by analysis of ectopic recombination.

    PubMed

    Schlecht, Hélène B; Lichten, Michael; Goldman, Alastair S H

    2004-11-01

    As yeast cells enter meiosis, chromosomes move from a centromere-clustered (Rabl) to a telomere-clustered (bouquet) configuration and then to states of progressive homolog pairing where telomeres are more dispersed. It is uncertain at which stage of this process sequences commit to recombine with each other. Previous analyses using recombination between dispersed homologous sequences (ectopic recombination) support the view that, on average, homologs are aligned end to end by the time of commitment to recombination. We have undertaken further analyses incorporating new inserts, chromosome rearrangements, an alternate mode of recombination initiation, and mutants that disrupt nuclear structure or telomere metabolism. Our findings support previous conclusions and reveal that distance from the nearest telomere is an important parameter influencing recombination between dispersed sequences. In general, the farther dispersed sequences are from their nearest telomere, the less likely they are to engage in ectopic recombination. Neither the mode of initiating recombination nor the formation of the bouquet appears to affect this relationship. We suggest that aspects of telomere localization and behavior influence the organization and mobility of chromosomes along their entire length, during a critical period of meiosis I prophase that encompasses the homology search.

  13. RNAi and heterochromatin repress centromeric meiotic recombination

    PubMed Central

    Ellermeier, Chad; Higuchi, Emily C.; Phadnis, Naina; Holm, Laerke; Geelhood, Jennifer L.; Thon, Genevieve; Smith, Gerald R.

    2010-01-01

    During meiosis, the formation of viable haploid gametes from diploid precursors requires that each homologous chromosome pair be properly segregated to produce an exact haploid set of chromosomes. Genetic recombination, which provides a physical connection between homologous chromosomes, is essential in most species for proper homologue segregation. Nevertheless, recombination is repressed specifically in and around the centromeres of chromosomes, apparently because rare centromeric (or pericentromeric) recombination events, when they do occur, can disrupt proper segregation and lead to genetic disabilities, including birth defects. The basis by which centromeric meiotic recombination is repressed has been largely unknown. We report here that, in fission yeast, RNAi functions and Clr4-Rik1 (histone H3 lysine 9 methyltransferase) are required for repression of centromeric recombination. Surprisingly, one mutant derepressed for recombination in the heterochromatic mating-type region during meiosis and several mutants derepressed for centromeric gene expression during mitotic growth are not derepressed for centromeric recombination during meiosis. These results reveal a complex relation between types of repression by heterochromatin. Our results also reveal a previously undemonstrated role for RNAi and heterochromatin in the repression of meiotic centromeric recombination and, potentially, in the prevention of birth defects by maintenance of proper chromosome segregation during meiosis. PMID:20421495

  14. A highly efficient targeted recombination system for engineering linear chromosomes of industrial bacteria Streptomyces.

    PubMed

    Pan, Hung-Yin; Chen, Carton W; Huang, Chih-Hung

    2018-04-17

    Soil bacteria Streptomyces are the most important producers of secondary metabolites, including most known antibiotics. These bacteria and their close relatives are unique in possessing linear chromosomes, which typically harbor 20 to 30 biosynthetic gene clusters of tens to hundreds of kb in length. Many Streptomyces chromosomes are accompanied by linear plasmids with sizes ranging from several to several hundred kb. The large linear plasmids also often contain biosynthetic gene clusters. We have developed a targeted recombination procedure for arm exchanges between a linear plasmid and a linear chromosome. A chromosomal segment inserted in an artificially constructed plasmid allows homologous recombination between the two replicons at the homology. Depending on the design, the recombination may result in two recombinant replicons or a single recombinant chromosome with the loss of the recombinant plasmid that lacks a replication origin. The efficiency of such targeted recombination ranges from 9 to 83% depending on the locations of the homology (and thus the size of the chromosomal arm exchanged), essentially eliminating the necessity of selection. The targeted recombination is useful for the efficient engineering of the Streptomyces genome for large-scale deletion, addition, and shuffling.

  15. Epigenetic functions enriched in transcription factors binding to mouse recombination hotspots.

    PubMed

    Wu, Min; Kwoh, Chee-Keong; Przytycka, Teresa M; Li, Jing; Zheng, Jie

    2012-06-21

    The regulatory mechanism of recombination is a fundamental problem in genomics, with wide applications in genome-wide association studies, birth-defect diseases, molecular evolution, cancer research, etc. In mammalian genomes, recombination events cluster into short genomic regions called "recombination hotspots". Recently, a 13-mer motif enriched in hotspots is identified as a candidate cis-regulatory element of human recombination hotspots; moreover, a zinc finger protein, PRDM9, binds to this motif and is associated with variation of recombination phenotype in human and mouse genomes, thus is a trans-acting regulator of recombination hotspots. However, this pair of cis and trans-regulators covers only a fraction of hotspots, thus other regulators of recombination hotspots remain to be discovered. In this paper, we propose an approach to predicting additional trans-regulators from DNA-binding proteins by comparing their enrichment of binding sites in hotspots. Applying this approach on newly mapped mouse hotspots genome-wide, we confirmed that PRDM9 is a major trans-regulator of hotspots. In addition, a list of top candidate trans-regulators of mouse hotspots is reported. Using GO analysis we observed that the top genes are enriched with function of histone modification, highlighting the epigenetic regulatory mechanisms of recombination hotspots.

  16. Epigenetic functions enriched in transcription factors binding to mouse recombination hotspots

    PubMed Central

    2012-01-01

    The regulatory mechanism of recombination is a fundamental problem in genomics, with wide applications in genome-wide association studies, birth-defect diseases, molecular evolution, cancer research, etc. In mammalian genomes, recombination events cluster into short genomic regions called "recombination hotspots". Recently, a 13-mer motif enriched in hotspots is identified as a candidate cis-regulatory element of human recombination hotspots; moreover, a zinc finger protein, PRDM9, binds to this motif and is associated with variation of recombination phenotype in human and mouse genomes, thus is a trans-acting regulator of recombination hotspots. However, this pair of cis and trans-regulators covers only a fraction of hotspots, thus other regulators of recombination hotspots remain to be discovered. In this paper, we propose an approach to predicting additional trans-regulators from DNA-binding proteins by comparing their enrichment of binding sites in hotspots. Applying this approach on newly mapped mouse hotspots genome-wide, we confirmed that PRDM9 is a major trans-regulator of hotspots. In addition, a list of top candidate trans-regulators of mouse hotspots is reported. Using GO analysis we observed that the top genes are enriched with function of histone modification, highlighting the epigenetic regulatory mechanisms of recombination hotspots. PMID:22759569

  17. Report of recombinant norovirus GII.g/GII.12 in Beijing, China.

    PubMed

    Sang, Shaowei; Zhao, Zhongtang; Suo, Jijiang; Xing, Yubin; Jia, Ning; Gao, Yan; Xie, Lijun; Du, Mingmei; Liu, Bowei; Ren, Shiwang; Liu, Yunxi

    2014-01-01

    Norovirus (NoV) has been recognized as the most important cause of nonbacterial acute gastroenteritis affecting all age group people in the world. Genetic recombination is a common occurance in RNA viruses and many recombinant NoV strains have been described since it was first reported in 1997. However, the knowledge of recombinant NoV in China is extremely limited. A total of 685 stool specimens were tested for NoV infection from the acute gastroenteritis patients who visited one general hospital in Beijing from April 2009 to November 2011. The virus recombination was identified by constructing phylogenetic trees of two genes, further SimPlot and the maximum chi-square analysis. The overall positive rate was 9.6% (66/685). GII.4 New Orleans 2009 and GII.4 2006b variants were the dominant genotype. Four GII.g/GII.12 and one GII.12/GII.3 recombinant strains were confirmed, and all derived from adult outpatients. The predictive recombination point occurred at the open reading frame (ORF)1/ORF2 overlap. The GII.g ORF1/GII.12ORF2 recombinant has been reported in several countries and it was the first report of this recombinant in China.

  18. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.

    PubMed

    Kanemitsu, Yoshihiko

    2013-06-18

    Semiconducting nanomaterials such as single-walled carbon nanotubes (SWCNTs) and nanocrystals (NCs) exhibit unique size-dependent quantum properties. They have therefore attracted considerable attention from the viewpoints of fundamental physics and functional device applications. SWCNTs and NCs also provide an excellent new stage for experimental studies of many-body effects of electrons and excitons on optical processes in nanomaterials. In this Account, we discuss multiple exciton generation and recombination in SWCNTs and NCs for next-generation photovoltaics. Strongly correlated ensembles of conduction-band electrons and valence-band holes in semiconductors are complex quantum systems that exhibit unique optical phenomena. In bulk crystals, the carrier recombination dynamics can be described by a simple model, which includes the nonradiative single-carrier trapping rate, the radiative two-carrier recombination rate, and the nonradiative three-carrier Auger recombination rate. The nonradiative Auger recombination rate determines the carrier recombination dynamics at high carrier density and depends on the spatial localization of carriers in two-dimensional quantum wells. The Auger recombination and multiple exciton generation rates can be advantageously manipulated by nanomaterials with designated energy structures. In addition, SWCNTs and NCs show quantized recombination dynamics of multiple excitons and carriers. In one-dimensional SWCNTs, excitons have large binding energies and are very stable at room temperature. The extremely rapid Auger recombination between excitons determines the photoluminescence (PL) intensity, the PL linewidth, and the PL lifetime. SWCNTs can undergo multiple exciton generation, while strong exciton-exciton interactions and complicated exciton structures affect the quantized Auger rate and the multiple exciton generation efficiency. Interestingly, in zero-dimensional NC quantum dots, quantized Auger recombination causes unique optical phenomena. The breakdown of the k-conversion rule and strong Coulomb interactions between carriers in NCs enhance Auger recombination rate and decrease the energy threshold for multiple exciton generation. We discuss this impact of the k-conservation rule on two-carrier radiative recombination and the three-carrier Auger recombination processes in indirect-gap semiconductor Si NCs. In NCs and SWCNTs, multiple exciton generation competes with Auger recombination, surface trapping of excitons, and cooling of hot electrons or excitons. In addition, we explore heterostructured NCs and impurity-doped NCs in the context of the optimization of charge carrier extraction from excitons in NCs.

  19. Recombinant clostridia that fix CO2 and CO and uses thereof

    DOEpatents

    Papoutsakis, Eleftherios T.; Al-Hinai, Mohab Ali; Jones, Shawn Williams; Indurthi, Dinesh Chanukya; Mitchell, Daniel Knox; Fast, Alan

    2014-06-24

    The present invention relates a recombinant Clostridium expressing one or more heterologous Wood-Ljungdahl (WL) genes. In particular, the recombinant Clostridium produces a metabolite at an increased level. The present invention also relates to a method for producing a metabolite by the recombinant Clostridium.

  20. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  1. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis

    PubMed Central

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  2. Using an electrocautery strategy or recombinant follicle stimulating hormone to induce ovulation in polycystic ovary syndrome: randomised controlled trial

    PubMed Central

    Bayram, Neriman; van Wely, Madelon; Kaaijk, Eugenie M; Bossuyt, Patrick M M; van der Veen, Fulco

    2004-01-01

    Objective To compare the effectiveness of an electrocautery strategy with ovulation induction using recombinant follicle stimulating hormone in patients with polycystic ovary syndrome. Design Randomised controlled trial. Setting Secondary and tertiary hospitals in the Netherlands. Participants 168 patients with clomiphene citrate resistant polycystic ovary syndrome: 83 were allocated electrocautery and 85 were allocated recombinant follicle stimulating hormone. Intervention Laparoscopic electrocautery of the ovaries followed by clomiphene citrate and recombinant follicle stimulating hormone if anovulation persisted, or induction of ovulation with recombinant follicle stimulating hormone. Main outcome measure Ongoing pregnancy within 12 months. Results. The cumulative rate of ongoing pregnancy after recombinant follicle stimulating hormone was 67%. With only electrocautery it was 34%, which increased to 49% after clomiphene citrate was given. Subsequent recombinant follicle stimulating hormone increased the rate to 67% at 12 months (rate ratio 1.01, 95% confidence interval 0.81 to 1.24). No complications occurred from electrocautery with or without clomiphene citrate. Patients allocated to electrocautery had a significantly lower risk of multiple pregnancy (0.11, 0.01 to 0.86). Conclusion The ongoing pregnancy rate from ovulation induction with laparoscopic electrocautery followed by clomiphene citrate and recombinant follicle stimulating hormone if anovulation persisted, or recombinant follicle stimulating hormone, seems equivalent to ovulation induction with recombinant follicle stimulating hormone, but the former procedure carries a lower risk of multiple pregnancy. PMID:14739186

  3. Population-specific recombination sites within the human MHC region.

    PubMed

    Lam, T H; Shen, M; Chia, J-M; Chan, S H; Ren, E C

    2013-08-01

    Genetic rearrangement by recombination is one of the major driving forces for genome evolution, and recombination is known to occur in non-random, discreet recombination sites within the genome. Mapping of recombination sites has proved to be difficult, particularly, in the human MHC region that is complicated by both population variation and highly polymorphic HLA genes. To overcome these problems, HLA-typed individuals from three representative populations: Asian, European and African were used to generate phased HLA haplotypes. Extended haplotype homozygosity (EHH) plots constructed from the phased haplotype data revealed discreet EHH drops corresponding to recombination events and these signatures were observed to be different for each population. Surprisingly, the majority of recombination sites detected are unique to each population, rather than being common. Unique recombination sites account for 56.8% (21/37 of total sites) in the Asian cohort, 50.0% (15/30 sites) in Europeans and 63.2% (24/38 sites) in Africans. Validation carried out at a known sperm typing recombination site of 45 kb (HLA-F-telomeric) showed that EHH was an efficient method to narrow the recombination region to 826 bp, and this was further refined to 660 bp by resequencing. This approach significantly enhanced mapping of the genomic architecture within the human MHC, and will be useful in studies to identify disease risk genes.

  4. The evolution of recombination in a heterogeneous environment.

    PubMed Central

    Lenormand, T; Otto, S P

    2000-01-01

    Most models describing the evolution of recombination have focused on the case of a single population, implicitly assuming that all individuals are equally likely to mate and that spatial heterogeneity in selection is absent. In these models, the evolution of recombination is driven by linkage disequilibria generated either by epistatic selection or drift. Models based on epistatic selection show that recombination can be favored if epistasis is negative and weak compared to directional selection and if the recombination modifier locus is tightly linked to the selected loci. In this article, we examine the joint effects of spatial heterogeneity in selection and epistasis on the evolution of recombination. In a model with two patches, each subject to different selection regimes, we consider the cases of mutation-selection and migration-selection balance as well as the spread of beneficial alleles. We find that including spatial heterogeneity extends the range of epistasis over which recombination can be favored. Indeed, recombination can be favored without epistasis, with negative and even with positive epistasis depending on environmental circumstances. The selection pressure acting on recombination-modifier loci is often much stronger with spatial heterogeneity, and even loosely linked modifiers and free linkage may evolve. In each case, predicting whether recombination is favored requires knowledge of both the type of environmental heterogeneity and epistasis, as none of these factors alone is sufficient to predict the outcome. PMID:10978305

  5. [Immune Response of Recombinant Pseudorabies Virus rPRV-VP2 Expressing VP2 Gene of Porcine Parvovirus in Mice].

    PubMed

    Fu, Pengfei; Pan, Xinlong; Han, Qiao; Yang, Xingwu; Zhu, Qianlei; Guo, Xiaoqing; Zhang, Yu; Chen, Hongying

    2016-03-01

    In order to develop a combined live vaccine that will be used to prevent against porcine parvovirus (PPV) and Pseudorabies virus (PRV) infection, the VP2 gene of PPV was inserted into the transfer vector plasmid pG to produce the recombinant plasmid pGVP2. The plasmid pGVP2 and the genome of PRV HB98 attenuated vaccine were transfected by using lipofectamine into swine testis cells for the homologous recombination. The recombinant virus rPRV-VP2 was purified by selection of green fluorescence plaques for five cycles. 6-week-old female Kunming mice were immunized intramuscularly with attenuated PRV parent HB98 strain, commercial inactivated vaccine against PPV, recombinant virus, DMEM culture solution. The injections were repeated with an equivalent dose after 2 weeks in all of the groups, and then challenged with the virulent PRV NY strain at 7 weeks after the first immunization. The recombinant virus rPRV-VP2 was successfully generated, and the recombinant virus could effectively elicite anti-PPV and PRV antibody and significant cellular immune response as indicated by anti-PPV ELISA and HI, PRV-neutralizing assay and flow cytometry. The challenge assay indicated that recombinant virus could protect the mice against the virulent PRV challenge. These results demonstrated that the recombinant virus can be a candidate recombinant vaccine strain for the prevention of PRV and PPV.

  6. Biochemical and genetic analysis of the role of the viral polymerase in enterovirus recombination.

    PubMed

    Woodman, Andrew; Arnold, Jamie J; Cameron, Craig E; Evans, David J

    2016-08-19

    Genetic recombination in single-strand, positive-sense RNA viruses is a poorly understand mechanism responsible for generating extensive genetic change and novel phenotypes. By moving a critical cis-acting replication element (CRE) from the polyprotein coding region to the 3' non-coding region we have further developed a cell-based assay (the 3'CRE-REP assay) to yield recombinants throughout the non-structural coding region of poliovirus from dually transfected cells. We have additionally developed a defined biochemical assay in which the only protein present is the poliovirus RNA dependent RNA polymerase (RdRp), which recapitulates the strand transfer events of the recombination process. We have used both assays to investigate the role of the polymerase fidelity and nucleotide turnover rates in recombination. Our results, of both poliovirus intertypic and intratypic recombination in the CRE-REP assay and using a range of polymerase variants in the biochemical assay, demonstrate that RdRp fidelity is a fundamental determinant of recombination frequency. High fidelity polymerases exhibit reduced recombination and low fidelity polymerases exhibit increased recombination in both assays. These studies provide the basis for the analysis of poliovirus recombination throughout the non-structural region of the virus genome and provide a defined biochemical assay to further dissect this important evolutionary process. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. [Genetic recombination in vaccine poliovirus: comparative study in strains excreted in course of vaccination by oral poliovirus vaccine and circulating strains].

    PubMed

    Haddad-Boubaker, S; Ould-Mohamed-Abdallah, M V; Ben-Yahia, A; Triki, H

    2010-12-01

    Recombination is one of the major mechanisms of evolution in poliovirus. In this work, recombination was assessed in children during vaccination with OPV and among circulating vaccine strains isolated in Tunisia during the last 15 years in order to identify a possible role of recombination in the response to the vaccine or the acquisition of an increased transmissibility. This study included 250 poliovirus isolates: 137 vaccine isolates, excreted by children during primary vaccination with OPV and 113 isolates obtained from acute flaccid paralytic (AFP) cases and healthy contacts. Recombination was first assessed using a double PCR-RFLP, and sequencing. Nineteen per cent of recombinant strains were identified: 20% of strains excreted by vaccinees among 18% of circulating strains. The proportion of recombinant in isolates of serotype1 was very low in the two groups while the proportions of recombinants in serotypes 2 and 3 were different. In vaccinees, the frequency of recombinants in serotype3 decreased during the course of vaccination: 54% after the first dose, 32% after the second and 14% after the third dose. These results suggest that recombination enhances the ability of serotype3 vaccine strains to induce an immune response. Apart from recent vaccination, it may contribute to a more effective transmissibility of vaccine strains among human population. Copyright © 2009 Elsevier Masson SAS. All rights reserved.

  8. Monitoring Recombination During Meiosis in Budding Yeast.

    PubMed

    Owens, Shannon; Tang, Shangming; Hunter, Neil

    2018-01-01

    Homologous recombination is fundamental to sexual reproduction, facilitating accurate segregation of homologous chromosomes at the first division of meiosis, and creating novel allele combinations that fuel evolution. Following initiation of meiotic recombination by programmed DNA double-strand breaks (DSBs), homologous pairing and DNA strand exchange form joint molecule (JM) intermediates that are ultimately resolved into crossover and noncrossover repair products. Physical monitoring of the DNA steps of meiotic recombination in Saccharomyces cerevisiae (budding yeast) cultures undergoing synchronous meiosis has provided seminal insights into the molecular basis of meiotic recombination and affords a powerful tool for dissecting the molecular roles of recombination factors. This chapter describes a suit of electrophoretic and Southern hybridization techniques used to detect and quantify the DNA intermediates of meiotic recombination at recombination hotspots in budding yeast. DSBs and recombination products (crossovers and noncrossovers) are resolved using one-dimensional electrophoresis and distinguished by restriction site polymorphisms between the parental chromosomes. Psoralen cross-linking is used to stabilize branched JMs, which are resolved from linear species by native/native two-dimensional electrophoresis. Native/denaturing two-dimensional electrophoresis is employed to determine the component DNA strands of JMs and to measure the processing of DSBs. These techniques are generally applicable to any locus where the frequency of recombination is high enough to detect intermediates by Southern hybridization. © 2018 Elsevier Inc. All rights reserved.

  9. Solvation suppression of ion recombination in gas discharge afterglow

    NASA Astrophysics Data System (ADS)

    Amirov, R. Kh.; Lankin, A. V.; Norman, G. E.

    2018-03-01

    An effect which suppresses recombination in ion plasmas is considered both theoretically and experimentally. Experimental results are presented for the ion recombination rate in fluorine plasma, which are obtained from data for the gas discharge afterglow. To interpret them, a suppression factor is considered: ion solvation in weakly ionized plasma. It is shown that the recombination process has a two-stage character with the formation of intermediate metastable ion pairs. The pairs consist of negative and positive ion-molecular clusters. A theoretical explanation is given for the slowing down of the ion recombination with the increase of the Coulomb coupling compared to the ion recombination rate calculated in the ideal plasma approximation. The approximate similarity of the recombination rate of the ion temperature and concentration and reasons for the slight deviation from the similarity are elucidated.

  10. Genetic diversity in the feline leukemia virus gag gene.

    PubMed

    Kawamura, Maki; Watanabe, Shinya; Odahara, Yuka; Nakagawa, So; Endo, Yasuyuki; Tsujimoto, Hajime; Nishigaki, Kazuo

    2015-06-02

    Feline leukemia virus (FeLV) belongs to the Gammaretrovirus genus and is horizontally transmitted among cats. FeLV is known to undergo recombination with endogenous retroviruses already present in the host during FeLV-subgroup A infection. Such recombinant FeLVs, designated FeLV-subgroup B or FeLV-subgroup D, can be generated by transduced endogenous retroviral env sequences encoding the viral envelope. These recombinant viruses have biologically distinct properties and may mediate different disease outcomes. The generation of such recombinant viruses resulted in structural diversity of the FeLV particle and genetic diversity of the virus itself. FeLV env diversity through mutation and recombination has been studied, while gag diversity and its possible effects are less well understood. In this study, we investigated recombination events in the gag genes of FeLVs isolated from naturally infected cats and reference isolates. Recombination and phylogenetic analyses indicated that the gag genes often contain endogenous FeLV sequences and were occasionally replaced by entire endogenous FeLV gag genes. Phylogenetic reconstructions of FeLV gag sequences allowed for classification into three distinct clusters, similar to those previously established for the env gene. Analysis of the recombination junctions in FeLV gag indicated that these variants have similar recombination patterns within the same genotypes, indicating that the recombinant viruses were horizontally transmitted among cats. It remains to be investigated whether the recombinant sequences affect the molecular mechanism of FeLV transmission. These findings extend our understanding of gammaretrovirus evolutionary patterns in the field. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Experimental evolution of recombination and crossover interference in Drosophila caused by directional selection for stress-related traits.

    PubMed

    Aggarwal, Dau Dayal; Rashkovetsky, Eugenia; Michalak, Pawel; Cohen, Irit; Ronin, Yefim; Zhou, Dan; Haddad, Gabriel G; Korol, Abraham B

    2015-11-27

    Population genetics predicts that tight linkage between new and/or pre-existing beneficial and deleterious alleles should decrease the efficiency of natural selection in finite populations. By decoupling beneficial and deleterious alleles and facilitating the combination of beneficial alleles, recombination accelerates the formation of high-fitness genotypes. This may impose indirect selection for increased recombination. Despite the progress in theoretical understanding, interplay between recombination and selection remains a controversial issue in evolutionary biology. Even less satisfactory is the situation with crossover interference, which is a deviation of double-crossover frequency in a pair of adjacent intervals from the product of recombination rates in the two intervals expected on the assumption of crossover independence. Here, we report substantial changes in recombination and interference in three long-term directional selection experiments with Drosophila melanogaster: for desiccation (~50 generations), hypoxia, and hyperoxia tolerance (>200 generations each). For all three experiments, we found a high interval-specific increase of recombination frequencies in selection lines (up to 40-50% per interval) compared to the control lines. We also discovered a profound effect of selection on interference as expressed by an increased frequency of double crossovers in selection lines. Our results show that changes in interference are not necessarily coupled with increased recombination. Our results support the theoretical predictions that adaptation to a new environment can promote evolution toward higher recombination. Moreover, this is the first evidence of selection for different recombination-unrelated traits potentially leading, not only to evolution toward increased crossover rates, but also to changes in crossover interference, one of the fundamental features of recombination.

  12. Nonreplicative RNA Recombination of an Animal Plus-Strand RNA Virus in the Absence of Efficient Translation of Viral Proteins

    PubMed Central

    Kleine Büning, Maximiliane; Meyer, Denise; Austermann-Busch, Sophia; Roman-Sosa, Gleyder; Rümenapf, Tillmann

    2017-01-01

    RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5′ terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins. PMID:28338950

  13. Evolution via recombination: Cell-to-cell contact facilitates larger recombination events in Streptococcus pneumoniae.

    PubMed

    Cowley, Lauren A; Petersen, Fernanda C; Junges, Roger; Jimson D Jimenez, Med; Morrison, Donald A; Hanage, William P

    2018-06-01

    Homologous recombination in the genetic transformation model organism Streptococcus pneumoniae is thought to be important in the adaptation and evolution of this pathogen. While competent pneumococci are able to scavenge DNA added to laboratory cultures, large-scale transfers of multiple kb are rare under these conditions. We used whole genome sequencing (WGS) to map transfers in recombinants arising from contact of competent cells with non-competent 'target' cells, using strains with known genomes, distinguished by a total of ~16,000 SNPs. Experiments designed to explore the effect of environment on large scale recombination events used saturating purified donor DNA, short-term cell assemblages on Millipore filters, and mature biofilm mixed cultures. WGS of 22 recombinants for each environment mapped all SNPs that were identical between the recombinant and the donor but not the recipient. The mean recombination event size was found to be significantly larger in cell-to-cell contact cultures (4051 bp in filter assemblage and 3938 bp in biofilm co-culture versus 1815 bp with saturating DNA). Up to 5.8% of the genome was transferred, through 20 recombination events, to a single recipient, with the largest single event incorporating 29,971 bp. We also found that some recombination events are clustered, that these clusters are more likely to occur in cell-to-cell contact environments, and that they cause significantly increased linkage of genes as far apart as 60,000 bp. We conclude that pneumococcal evolution through homologous recombination is more likely to occur on a larger scale in environments that permit cell-to-cell contact.

  14. Homologous Recombination between Genetically Divergent Campylobacter fetus Lineages Supports Host-Associated Speciation

    PubMed Central

    Duim, Birgitta; van der Graaf-van Bloois, Linda; Wagenaar, Jaap A; Zomer, Aldert L

    2018-01-01

    Abstract Homologous recombination is a major driver of bacterial speciation. Genetic divergence and host association are important factors influencing homologous recombination. Here, we study these factors for Campylobacter fetus, which shows a distinct intraspecific host dichotomy. Campylobacter fetus subspecies fetus (Cff) and venerealis are associated with mammals, whereas C. fetus subsp. testudinum (Cft) is associated with reptiles. Recombination between these genetically divergent C. fetus lineages is extremely rare. Previously it was impossible to show whether this barrier to recombination was determined by the differential host preferences, by the genetic divergence between both lineages or by other factors influencing recombination, such as restriction-modification, CRISPR/Cas, and transformation systems. Fortuitously, a distinct C. fetus lineage (ST69) was found, which was highly related to mammal-associated C. fetus, yet isolated from a chelonian. The whole genome sequences of two C. fetus ST69 isolates were compared with those of mammal- and reptile-associated C. fetus strains for phylogenetic and recombination analysis. In total, 5.1–5.5% of the core genome of both ST69 isolates showed signs of recombination. Of the predicted recombination regions, 80.4% were most closely related to Cft, 14.3% to Cff, and 5.6% to C. iguaniorum. Recombination from C. fetus ST69 to Cft was also detected, but to a lesser extent and only in chelonian-associated Cft strains. This study shows that despite substantial genetic divergence no absolute barrier to homologous recombination exists between two distinct C. fetus lineages when occurring in the same host type, which provides valuable insights in bacterial speciation and evolution. PMID:29608720

  15. Mitochondrial genetics in Bakers' yeast: a molecular mechanism for recombinational polarity and suppressiveness.

    PubMed

    Perlman, P S; Birky, C W

    1974-11-01

    Recombinational polarity and suppressiveness are two well-known but puzzling cytoplasmic genetic phenomena in bakers' yeast, Saccharomyces cerevisiae. Little progress has been made in characterizing the underlying molecular mechanisms of these phenomena. In this paper we describe a molecular model for recombinational polarity that is compatible with the available genetic evidence. The model stresses the role of small deletions and excision/repair processes in otherwise canonical recombinational events. According to the model, both phenomena require recombination and may share mechanistic elements.

  16. Requirements for high-efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1986-01-01

    Minimum recombination and low injection level are essential for high efficiency. Twenty percent AM1 efficiency requires a dark recombination current density of 2 x 10 to the minus 13th power A/sq cm and a recombination center density of less than 10 to the 10th power /cu cm. Recombination mechanisms at thirteen locations in a conventional single crystalline silicon cell design are reviewed. Three additional recombination locations are described at grain boundaries in polycrystalline cells. Material perfection and fabrication process optimization requirements for high efficiency are outlined. Innovative device designs to reduce recombination in the bulk and interfaces of single crystalline cells and in the grain boundary of polycrystalline cells are reviewed.

  17. In vitro V(D)J recombination: signal joint formation.

    PubMed

    Cortes, P; Weis-Garcia, F; Misulovin, Z; Nussenzweig, A; Lai, J S; Li, G; Nussenzweig, M C; Baltimore, D

    1996-11-26

    The first step of V(D)J recombination, specific cleavage at the recombination signal sequence (RSS), can be carried out by the recombination activating proteins RAG1 and RAG2. In vivo, the cleaved coding and signal ends must be rejoined to generate functional antigen receptors and maintain chromosomal integrity. We have investigated signal joint formation using deletion and inversion substrates in a cell free system. RAG1 and RAG2 alone or in combination were unable to generate signal joints. However, RAG1 and RAG2 complemented with nuclear extracts were able to recombine an extrachromosomal substrate and form precise signal joints. The in vitro reaction resembled authentic V(D)J recombination in being Ku-antigen-dependent.

  18. Trap-assisted and Langevin-type recombination in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Wetzelaer, G. A. H.; Kuik, M.; Nicolai, H. T.; Blom, P. W. M.

    2011-04-01

    Trapping of charges is known to play an important role in the charge transport of organic semiconductors, but the role of traps in the recombination process has not been addressed. Here we show that the ideality factor of the current of organic light-emitting diodes (OLEDs) in the diffusion-dominated regime has a temperature-independent value of 2, which reveals that nonradiative trap-assisted recombination dominates the current. In contrast, the ideality factor of the light output approaches unity, demonstrating that luminance is governed by recombination of the bimolecular Langevin type. This apparent contradiction can be resolved by measuring the current and luminance ideality factor for a white-emitting polymer, where both free and trapped charge carriers recombine radiatively. With increasing bias voltage, Langevin recombination becomes dominant over trap-assisted recombination due to its stronger dependence on carrier density, leading to an enhancement in OLED efficiency.

  19. High-throughput measurement of recombination rates and genetic interference in Saccharomyces cerevisiae.

    PubMed

    Raffoux, Xavier; Bourge, Mickael; Dumas, Fabrice; Martin, Olivier C; Falque, Matthieu

    2018-06-01

    Allelic recombination owing to meiotic crossovers is a major driver of genome evolution, as well as a key player for the selection of high-performing genotypes in economically important species. Therefore, we developed a high-throughput and low-cost method to measure recombination rates and crossover patterning (including interference) in large populations of the budding yeast Saccharomyces cerevisiae. Recombination and interference were analysed by flow cytometry, which allows time-consuming steps such as tetrad microdissection or spore growth to be avoided. Moreover, our method can also be used to compare recombination in wild-type vs. mutant individuals or in different environmental conditions, even if the changes in recombination rates are small. Furthermore, meiotic mutants often present recombination and/or pairing defects affecting spore viability but our method does not involve growth steps and thus avoids filtering out non-viable spores. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Metal binding proteins, recombinant host cells and methods

    DOEpatents

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  1. A broad survey of recombination in animal mitochondria.

    PubMed

    Piganeau, Gwenaël; Gardner, Michael; Eyre-Walker, Adam

    2004-12-01

    Recombination in mitochondrial DNA (mtDNA) remains a controversial topic. Here we present a survey of 279 animal mtDNA data sets, of which 12 were from asexual species. Using four separate tests, we show that there is widespread evidence of recombination; for one test as many as 14.2% of the data sets reject a model of clonal inheritance and in several data sets, including primates, the recombinants can be identified visually. We show that none of the tests give significant results for obligate clonal species (apomictic pathogens) and that the sexual species show significantly greater evidence of recombination than asexual species. For some data sets, such as Macaca nemestrina, additional data sets suggest that the recombinants are not artifacts. For others, it cannot be determined whether the recombinants are real or produced by laboratory error. Either way, the results have important implications for how mtDNA is sequenced and used.

  2. The pso4-1 mutation reduces spontaneous mitotic gene conversion and reciprocal recombination in Saccharomyces cerevisiae.

    PubMed

    Meira, L B; Fonseca, M B; Averbeck, D; Schenberg, A C; Henriques, J A

    1992-11-01

    Spontaneous mitotic recombination was examined in the haploid pso4-1 mutant of Saccharomyces cerevisiae and in the corresponding wild-type strain. Using a genetic system involving a duplication of the his4 gene it was shown that the pso4-1 mutation decreases at least fourfold the spontaneous rate of mitotic recombination. The frequency of spontaneous recombination was reduced tenfold in pso4-1 strains, as previously observed in the rad52-1 mutant. However, whereas the rad52-1 mutation specifically reduces gene conversion, the pso4-1 mutation reduces both gene conversion and reciprocal recombination. Induced mitotic recombination was also studied in pso4-1 mutant and wild-type strains after treatment with 8-methoxypsoralen plus UVA and 254 nm UV irradiation. Consistent with previous results, the pso4-1 mutation was found strongly to affect recombination induction.

  3. atlant: Advanced Three Level Approximation for Numerical Treatment of Cosmological Recombination

    NASA Astrophysics Data System (ADS)

    Kholupenko, E. E.; Ivanchik, A. V.; Balashev, S. A.; Varshalovich, D. A.

    2011-10-01

    atlant is a public numerical code for fast calculations of cosmological recombination of primordial hydrogen-helium plasma is presented. This code is based on the three-level approximation (TLA) model of recombination and allows us to take into account some "fine" physical effects of cosmological recombination simultaneously with using fudge factors.

  4. Extracellular accumulation of recombinant protein by Escherichia coli in a defined medium.

    PubMed

    Fu, Xiang-Yang

    2010-09-01

    Extracellular accumulation of recombinant proteins in the culture medium of Escherichia coli is desirable but difficult to obtain. The inner or cytoplasmic membrane and the outer membrane of E. coli are two barriers for releasing recombinant proteins expressed in the cytoplasm into the culture medium. Even if recombinant proteins have been exported into the periplasm, a space between the outer membrane and the inner membrane, the outer membrane remains the last barrier for their extracellular release. However, when E. coli was cultured in a particular defined medium, recombinant proteins exported into the periplasm could diffuse into the culture medium automatically. If a nonionic detergent, Triton X-100, was added in the medium, recombinant proteins expressed in the cytoplasm could also be released into the culture medium. It was then that extracellular accumulation of recombinant proteins could be obtained by exporting them into the periplasm or releasing them from the cytoplasm with Triton X-100 addition. The tactics described herein provided simple and valuable methods for achieving extracellular production of recombinant proteins in E. coli.

  5. A complex of serine protease genes expressed preferentially in cytotoxic T-lymphocytes is closely linked to the T-cell receptor alpha- and delta-chain genes on mouse chromosome 14.

    PubMed

    Crosby, J L; Bleackley, R C; Nadeau, J H

    1990-02-01

    A complex of genes encoding serine proteases that are preferentially expressed in cytotoxic T-cells was shown to be closely linked to the T-cell receptor alpha- and delta-chain genes on mouse chromosome 14. A striking difference in recombination frequencies among linkage crosses was reported. Two genes, Np-1 and Tcra, which fail to recombine in crosses involving conventional strains of mice, were shown to recombine readily in interspecific crosses involving Mus spretus. This difference in recombination frequency suggests chromosomal rearrangements that suppress recombination in conventional crosses, recombination hot spots in interspecific crosses, or selection against recombinant haplotypes during development of recombinant inbred strains. Finally, a mutation called disorganization, which is located near the serine protease complex, is of considerable interest because it causes an extraordinarily wide variety of congenital defects. Because of the involvement of serine protease loci in several homeotic mutations in Drosophila, disorganization must be considered a candidate for a mutation in a serine protease-encoding gene.

  6. Recombination properties of dislocations in GaN

    NASA Astrophysics Data System (ADS)

    Yakimov, Eugene B.; Polyakov, Alexander Y.; Lee, In-Hwan; Pearton, Stephen J.

    2018-04-01

    The recombination activity of threading dislocations in n-GaN with different dislocation densities and different doping levels was studied using electron beam induced current (EBIC). The recombination velocity on a dislocation, also known as the dislocation recombination strength, was calculated. The results suggest that dislocations in n-GaN giving contrast in EBIC are charged and surrounded by a space charge region, as evidenced by the observed dependence of dislocation recombination strength on dopant concentration. For moderate (below ˜108 cm-2) dislocation densities, these defects do not primarily determine the average diffusion length of nonequilibrium charge carriers, although locally, dislocations are efficient recombination sites. In general, it is observed that the effect of the growth method [standard metalorganic chemical vapor deposition (MOCVD), epitaxial lateral overgrowth versions of MOCVD, and hydride vapor phase epitaxy] on the recombination activity of dislocations is not very pronounced, although the average diffusion lengths can widely differ for various samples. The glide of basal plane dislocations at room temperature promoted by low energy electron irradiation does not significantly change the recombination properties of dislocations.

  7. Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: Engineering a recombination-resistant genome

    NASA Astrophysics Data System (ADS)

    Yount, Boyd; Roberts, Rhonda S.; Lindesmith, Lisa; Baric, Ralph S.

    2006-08-01

    Live virus vaccines provide significant protection against many detrimental human and animal diseases, but reversion to virulence by mutation and recombination has reduced appeal. Using severe acute respiratory syndrome coronavirus as a model, we engineered a different transcription regulatory circuit and isolated recombinant viruses. The transcription network allowed for efficient expression of the viral transcripts and proteins, and the recombinant viruses replicated to WT levels. Recombinant genomes were then constructed that contained mixtures of the WT and mutant regulatory circuits, reflecting recombinant viruses that might occur in nature. Although viable viruses could readily be isolated from WT and recombinant genomes containing homogeneous transcription circuits, chimeras that contained mixed regulatory networks were invariantly lethal, because viable chimeric viruses were not isolated. Mechanistically, mixed regulatory circuits promoted inefficient subgenomic transcription from inappropriate start sites, resulting in truncated ORFs and effectively minimize viral structural protein expression. Engineering regulatory transcription circuits of intercommunicating alleles successfully introduces genetic traps into a viral genome that are lethal in RNA recombinant progeny viruses. regulation | systems biology | vaccine design

  8. Damage-induced ectopic recombination in the yeast Saccharomyces cerevisiae.

    PubMed

    Kupiec, M; Steinlauf, R

    1997-06-09

    Mitotic recombination in the yeast Saccharomyces cerevisiae is induced when cells are irradiated with UV or X-rays, reflecting the efficient repair of damage by recombinational repair mechanisms. We have used multiply marked haploid strains that allow the simultaneous detection of several types of ectopic recombination events. We show that inter-chromosomal ectopic conversion of lys2 heteroalleles and, to a lesser extent, direct repeat recombination (DRR) between non-tandem repeats, are increased by DNA-damaging agents; in contrast, ectopic recombination of the naturally occurring Ty element is not induced. We have tested several hypotheses that could explain the preferential lack of induction of Ty recombination by DNA-damaging agents. We have found that the lack of induction cannot be explained by a cell cycle control or by an effect of the mating-type genes. We also found no role for the flanking long terminal repeats (LTRs) of the Ty in preventing the induction. Ectopic conversion, DRR, and forward mutation of artificial repeats show different kinetics of induction at various positions of the cell cycle, reflecting different mechanisms of recombination. We discuss the mechanistic and evolutionary aspects of these results.

  9. Recombination in the evolution of enterovirus C species sub-group that contains types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99.

    PubMed

    Smura, Teemu; Blomqvist, Soile; Vuorinen, Tytti; Ivanova, Olga; Samoilovich, Elena; Al-Hello, Haider; Savolainen-Kopra, Carita; Hovi, Tapani; Roivainen, Merja

    2014-01-01

    Genetic recombination is considered to be a very frequent phenomenon among enteroviruses (Family Picornaviridae, Genus Enterovirus). However, the recombination patterns may differ between enterovirus species and between types within species. Enterovirus C (EV-C) species contains 21 types. In the capsid coding P1 region, the types of EV-C species cluster further into three sub-groups (designated here as A-C). In this study, the recombination pattern of EV-C species sub-group B that contains types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99 was determined using partial 5'UTR and VP1 sequences of enterovirus strains isolated during poliovirus surveillance and previously published complete genome sequences. Several inter-typic recombination events were detected. Furthermore, the analyses suggested that inter-typic recombination events have occurred mainly within the distinct sub-groups of EV-C species. Only sporadic recombination events between EV-C species sub-group B and other EV-C sub-groups were detected. In addition, strict recombination barriers were inferred for CVA-21 genotype C and CVA-24 variant strains. These results suggest that the frequency of inter-typic recombinations, even within species, may depend on the phylogenetic position of the given viruses.

  10. Homeologous Recombination in Solanum lycopersicoides Introgression Lines of Cultivated Tomato

    PubMed Central

    Canady, Michael A.; Ji, Yuanfu; Chetelat, Roger T.

    2006-01-01

    A library of “introgression lines” containing Solanum lycopersicoides chromosome segments in the genetic background of cultivated tomato (Lycopersicon esculentum) was used to study factors affecting homeologous recombination. Recombination rates were estimated in progeny of 43 heterozygous introgressions and whole-chromosome substitution lines, together representing 11 of the 12 tomato chromosomes. Recombination within homeologous segments was reduced to as little as 0–10% of expected frequencies. Relative recombination rates were positively correlated with the length of introgressed segments on the tomato map. The highest recombination (up to 40–50% of normal) was observed in long introgressions or substitution lines. Double-introgression lines containing two homeologous segments on opposite chromosome arms were synthesized to increase their combined length. Recombination was higher in the double than in the single segment lines, despite a preference for crossovers in the region of homology between segments. A greater increase in homeologous recombination was obtained by crossing the S. lycopersicoides introgression lines to L. pennellii—a phylogenetically intermediate species—or to L. esculentum lines containing single L. pennellii segments on the same chromosome. Recombination rates were highest in regions of overlap between S. lycopersicoides and L. pennellii segments. The potential application of these results to breeding with introgression lines is discussed. PMID:17057228

  11. Recombinant activated factor VII in cardiac surgery: single-center experience.

    PubMed

    Singh, Sarvesh Pal; Chauhan, Sandeep; Choudhury, Minati; Malik, Vishwas; Choudhary, Shiv Kumar

    2014-02-01

    The widespread off-label use of recombinant activated factor VII for the control of refractory postoperative hemorrhage continues despite a warning from the Food and Drug Administration. Although effective in reducing the need for transfusion of blood and blood products, safety concerns still prevail. To compare the dosing and efficacy of recombinant activated factor VII between pediatric and adult patients, and in the operating room and intensive care unit. The records of 69 patients (33 children and 36 adults) who underwent cardiovascular surgery and received recombinant activated factor VII were reviewed retrospectively. The dose of recombinant activated factor VII, mediastinal drainage, use of blood and blood products, incidence of thrombosis, and 28-day mortality were studied. the efficacy of recombinant activated factor VII was comparable in adults and children, despite the lower dose in adults. Prophylactic use of recombinant activated factor VII decreased the incidence of mediastinal exploration and the duration of intensive care unit stay. A 4.3% incidence of thrombotic complications was observed in this study. The efficacious dose of recombinant activated factor VII is much less in adults compared to children. Prophylactic use of recombinant activated factor VII decreases the dose required, the incidence of mediastinal exploration, and intensive care unit stay, with no survival benefit.

  12. Construction and characterization of a recombinant invertebrate iridovirus.

    PubMed

    Ozgen, Arzu; Muratoglu, Hacer; Demirbag, Zihni; Vlak, Just M; van Oers, Monique M; Nalcacioglu, Remziye

    2014-08-30

    Chilo iridescent virus (CIV), officially named Insect iridescent virus 6 (IIV6), is the type species of the genus Iridovirus (family Iridoviridae). In this paper we constructed a recombinant CIV, encoding the green fluorescent protein (GFP). This recombinant can be used to investigate viral replication dynamics. We showed that homologous recombination is a valid method to make CIV gene knockouts and to insert foreign genes. The CIV 157L gene, putatively encoding a non-functional inhibitor of apoptosis (IAP), was chosen as target for foreign gene insertion. The gfp open reading frame preceded by the viral mcp promoter was inserted into the 157L locus by homologous recombination in Anthonomus grandis BRL-AG-3A cells. Recombinant virus (rCIV-Δ157L-gfp) was purified by successive rounds of plaque purification. All plaques produced by the purified recombinant virus emitted green fluorescence due to the presence of GFP. One-step growth curves for recombinant and wild-type CIV were similar and the recombinant was fully infectious in vivo. Hence, CIV157L can be inactivated without altering the replication kinetics of the virus. Consequently, the CIV 157L locus can be used as a site for insertion of foreign DNA, e.g. to modify viral properties for insect biocontrol. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Development of the National Institutes of Health Guidelines for Recombinant DNA Research.

    PubMed Central

    Talbot, B

    1983-01-01

    Recombinant DNA is a technique of major importance in basic biomedical research and, increasingly, in industrial applications. Although the risks of this research remain hypothetical, scientists working in the field have spearheaded discussions of safety. The original National Institutes of Health (NIH) Guidelines for Recombinant DNA Research were issued in June 1976. They assigned each type of recombinant DNA experiment a specific level of "physical containment" and of "biological containment." Responsibility for overseeing the application of the guidelines belongs to the NIH Recombinant DNA Advisory Committee (RAC)--composed of scientists and laymen, including non-voting representatives from many Federal agencies--and local institutional biosafety committees at each university where recombinant DNA research is conducted. The NIH guidelines were subsequently adopted by other Federal agencies, but congressional proposals aimed at extending the guidelines to private industry did not result in national legislation. Some States and localities regulate recombinant DNA research, however, and many private companies have voluntarily submitted information on their recombinant DNA work for RAC and NIH approval. The NIH guidelines underwent a major revision in December 1978 and have been revised approximately every 3 months since then. NIH supports experiments to assess recombinant DNA risks and publishes and updates a plan for a risk assessment program. PMID:6611823

  14. Immunocytological analysis of meiotic recombination in two anole lizards (Squamata, Dactyloidae).

    PubMed

    Lisachov, Artem P; Trifonov, Vladimir A; Giovannotti, Massimo; Ferguson-Smith, Malcolm A; Borodin, Pavel M

    2017-01-01

    Although the evolutionary importance of meiotic recombination is not disputed, the significance of interspecies differences in the recombination rates and recombination landscapes remains under-appreciated. Recombination rates and distribution of chiasmata have been examined cytologically in many mammalian species, whereas data on other vertebrates are scarce. Immunolocalization of the protein of the synaptonemal complex (SYCP3), centromere proteins and the mismatch-repair protein MLH1 was used, which is associated with the most common type of recombination nodules, to analyze the pattern of meiotic recombination in the male of two species of iguanian lizards, Anolis carolinensis Voigt, 1832 and Deiroptyx coelestinus (Cope, 1862). These species are separated by a relatively long evolutionary history although they retain the ancestral iguanian karyotype. In both species similar and extremely uneven distributions of MLH1 foci along the macrochromosome bivalents were detected: approximately 90% of crossovers were located at the distal 20% of the chromosome arm length. Almost total suppression of recombination in the intermediate and proximal regions of the chromosome arms contradicts the hypothesis that "homogenous recombination" is responsible for the low variation in GC content across the anole genome. It also leads to strong linkage disequilibrium between the genes located in these regions, which may benefit conservation of co-adaptive gene arrays responsible for the ecological adaptations of the anoles.

  15. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    PubMed Central

    Thor, Sharmi W.; Hilt, Deborah A.; Kissinger, Jessica C.; Paterson, Andrew H.; Jackwood, Mark W.

    2011-01-01

    Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this study, the full-length genomes of eight avian gamma-coronavirus infectious bronchitis virus (IBV) isolates were sequenced and along with other full-length IBV genomes available from GenBank were analyzed for recombination. Evidence of recombination was found in every sequence analyzed and was distributed throughout the entire genome. Areas that have the highest occurrence of recombination are located in regions of the genome that code for nonstructural proteins 2, 3 and 16, and the structural spike glycoprotein. The extent of the recombination observed, suggests that this may be one of the principal mechanisms for generating genetic and antigenic diversity within IBV. These data indicate that reticulate evolutionary change due to recombination in IBV, likely plays a major role in the origin and adaptation of the virus leading to new genetic types and strains of the virus. PMID:21994806

  16. Inference of Ancestral Recombination Graphs through Topological Data Analysis

    PubMed Central

    Cámara, Pablo G.; Levine, Arnold J.; Rabadán, Raúl

    2016-01-01

    The recent explosion of genomic data has underscored the need for interpretable and comprehensive analyses that can capture complex phylogenetic relationships within and across species. Recombination, reassortment and horizontal gene transfer constitute examples of pervasive biological phenomena that cannot be captured by tree-like representations. Starting from hundreds of genomes, we are interested in the reconstruction of potential evolutionary histories leading to the observed data. Ancestral recombination graphs represent potential histories that explicitly accommodate recombination and mutation events across orthologous genomes. However, they are computationally costly to reconstruct, usually being infeasible for more than few tens of genomes. Recently, Topological Data Analysis (TDA) methods have been proposed as robust and scalable methods that can capture the genetic scale and frequency of recombination. We build upon previous TDA developments for detecting and quantifying recombination, and present a novel framework that can be applied to hundreds of genomes and can be interpreted in terms of minimal histories of mutation and recombination events, quantifying the scales and identifying the genomic locations of recombinations. We implement this framework in a software package, called TARGet, and apply it to several examples, including small migration between different populations, human recombination, and horizontal evolution in finches inhabiting the Galápagos Islands. PMID:27532298

  17. Recombinational DSBs-intersected genes converge on specific disease- and adaptability-related pathways.

    PubMed

    Yang, Zhi-Kai; Luo, Hao; Zhang, Yanming; Wang, Baijing; Gao, Feng

    2018-05-03

    The budding yeast Saccharomyces cerevisiae is a model species powerful for studying the recombination of eukaryotes. Although many recombination studies have been performed for this species by experimental methods, the population genomic study based on bioinformatics analyses is urgently needed to greatly increase the range and accuracy of recombination detection. Here, we carry out the population genomic analysis of recombination in S. cerevisiae to reveal the potential rules between recombination and evolution in eukaryotes. By population genomic analysis, we discover significantly more and longer recombination events in clinical strains, which indicates that adverse environmental conditions create an obviously wider range of genetic combination in response to the selective pressure. Based on the analysis of recombinational DSBs-intersected genes (RDIGs), we find that RDIGs significantly converge on specific disease- and adaptability-related pathways, indicating that recombination plays a biologically key role in the repair of DSBs related to diseases and environmental adaptability, especially the human neurological disorders (NDs). By evolutionary analysis of RDIGs, we find that the RDIGs highly prevailing in populations of yeast tend to be more evolutionarily conserved, indicating the accurate repair of DSBs in these RDIGs is critical to ensure the eukaryotic survival or fitness. fgao@tju.edu.cn. Supplementary data are available at Bioinformatics online.

  18. Meiotic recombination, synapsis, meiotic inactivation and sperm aneuploidy in a chromosome 1 inversion carrier.

    PubMed

    Kirkpatrick, Gordon; Chow, Victor; Ma, Sai

    2012-01-01

    Disrupted meiotic behaviour of inversion carriers may be responsible for suboptimal sperm parameters in these carriers. This study investigated meiotic recombination, synapsis, transcriptional silencing and chromosome segregation effects in a pericentric inv(1) carrier. Recombination (MLH1), synapsis (SYCP1, SYCP3) and transcriptional inactivation (γH2AX, BRCA1) were examined by fluorescence immunostaining. Chromosome specific rates of recombination were determined by fluorescence in-situ hybridization. Furthermore, testicular sperm was examined for aneuploidy and segregation of the inv(1). Our findings showed that global recombination rates were similar to controls. Recombination on the inv(1) and the sex chromosomes were reduced. The inv(1) associated with the XY body in 43.4% of cells, in which XY recombination was disproportionately absent, and 94.3% of cells displayed asynapsed regions which displayed meiotic silencing regardless of their association with the XY body. Furthermore, a low frequency of chromosomal imbalance was observed in spermatozoa (3.4%). Our results suggest that certain inversion carriers may display unimpaired global recombination and impaired recombination on the involved and the sex chromosomes during meiosis. Asynapsis or inversion-loop formation in the inverted region may be responsible for impaired spermatogenesis and may prevent sperm-chromosome imbalance. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  19. Testing the effect of paraquat exposure on genomic recombination rates in queens of the western honey bee, Apis mellifera.

    PubMed

    Langberg, Kurt; Phillips, Matthew; Rueppell, Olav

    2018-04-01

    The rate of genomic recombination displays evolutionary plasticity and can even vary in response to environmental factors. The western honey bee (Apis mellifera L.) has an extremely high genomic recombination rate but the mechanistic basis for this genome-wide upregulation is not understood. Based on the hypothesis that meiotic recombination and DNA damage repair share common mechanisms in honey bees as in other organisms, we predicted that oxidative stress leads to an increase in recombination rate in honey bees. To test this prediction, we subjected honey bee queens to oxidative stress by paraquat injection and measured the rates of genomic recombination in select genome intervals of offspring produced before and after injection. The evaluation of 26 genome intervals in a total of over 1750 offspring of 11 queens by microsatellite genotyping revealed several significant effects but no overall evidence for a mechanistic link between oxidative stress and increased recombination was found. The results weaken the notion that DNA repair enzymes have a regulatory function in the high rate of meiotic recombination of honey bees, but they do not provide evidence against functional overlap between meiotic recombination and DNA damage repair in honey bees and more mechanistic studies are needed.

  20. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis.

    PubMed

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-11-27

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Incorporation of a lambda phage recombination system and EGFP detection to simplify mutagenesis of Herpes simplex virus bacterial artificial chromosomes

    PubMed Central

    Schmeisser, Falko; Weir, Jerry P

    2007-01-01

    Background Targeted mutagenesis of the herpesvirus genomes has been facilitated by the use of bacterial artificial chromosome (BAC) technology. Such modified genomes have potential uses in understanding viral pathogenesis, gene identification and characterization, and the development of new viral vectors and vaccines. We have previously described the construction of a herpes simplex virus 2 (HSV-2) BAC and the use of an allele replacement strategy to construct HSV-2 recombinants. While the BAC mutagenesis procedure is a powerful method to generate HSV-2 recombinants, particularly in the absence of selective marker in eukaryotic culture, the mutagenesis procedure is still difficult and cumbersome. Results Here we describe the incorporation of a phage lambda recombination system into an allele replacement vector. This strategy enables any DNA fragment containing the phage attL recombination sites to be efficiently inserted into the attR sites of the allele replacement vector using phage lambda clonase. We also describe how the incorporation of EGFP into the allele replacement vector can facilitate the selection of the desired cross-over recombinant BACs when the allele replacement reaction is a viral gene deletion. Finally, we incorporate the lambda phage recombination sites directly into an HSV-2 BAC vector for direct recombination of gene cassettes using the phage lambda clonase-driven recombination reaction. Conclusion Together, these improvements to the techniques of HSV BAC mutagenesis will facilitate the construction of recombinant herpes simplex viruses and viral vectors. PMID:17501993

  2. Control of the yeast telomeric senescence survival pathways of recombination by the Mec1 and Mec3 DNA damage sensors and RPA

    PubMed Central

    Grandin, Nathalie; Charbonneau, Michel

    2007-01-01

    Saccharomyces cerevisiae telomerase-negative cells undergo homologous recombination on subtelomeric or TG1–3 telomeric sequences, thus allowing Type I or Type II post-senescence survival, respectively. Here, we find that the DNA damage sensors, Mec1, Mec3 and Rad24 control Type II recombination, while the Rad9 adaptor protein and the Rad53 and Chk1 effector kinases have no effect on survivor type selection. Therefore, the Mec1 and Mec3 checkpoint complexes control telomeric recombination independently of their roles in generating and amplifying the Mec1-Rad53-Chk1 kinase cascade. rfa1-t11 mutant cells, bearing a mutation in Replication Protein A (RPA) conferring a defect in recruiting Mec1-Ddc2, were also deficient in both types of telomeric recombination. Importantly, expression of an Rfa1-t11-Ddc2 hybrid fusion protein restored checkpoint-dependent arrest, but did not rescue defective telomeric recombination. Therefore, the Rfa1-t11-associated defect in telomeric recombination is not solely due to its failure to recruit Mec1. We have also isolated novel alleles of RFA1 that were deficient in Type I but not in Type II recombination and proficient in checkpoint control. Therefore, the checkpoint and recombination functions of RPA can be genetically separated, as can the RPA-mediated control of the two types of telomeric recombination. PMID:17202155

  3. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine.

    PubMed

    Chen, Yang; Guo, Wanzhu; Xu, Zhiwen; Yan, Qigui; Luo, Yan; Shi, Qian; Chen, Dishi; Zhu, Ling; Wang, Xiaoyu

    2011-06-16

    Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene. A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA) analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28) following virulent PPV challenge compared with the control (7 of 31). Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection.

  4. Expression and purification of recombinant polyomavirus VP2 protein and its interactions with polyomavirus proteins

    NASA Technical Reports Server (NTRS)

    Cai, X.; Chang, D.; Rottinghaus, S.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.

  5. Genetic recombination is directed away from functional genomic elements in mice.

    PubMed

    Brick, Kevin; Smagulova, Fatima; Khil, Pavel; Camerini-Otero, R Daniel; Petukhova, Galina V

    2012-05-13

    Genetic recombination occurs during meiosis, the key developmental programme of gametogenesis. Recombination in mammals has been recently linked to the activity of a histone H3 methyltransferase, PR domain containing 9 (PRDM9), the product of the only known speciation-associated gene in mammals. PRDM9 is thought to determine the preferred recombination sites--recombination hotspots--through sequence-specific binding of its highly polymorphic multi-Zn-finger domain. Nevertheless, Prdm9 knockout mice are proficient at initiating recombination. Here we map and analyse the genome-wide distribution of recombination initiation sites in Prdm9 knockout mice and in two mouse strains with different Prdm9 alleles and their F(1) hybrid. We show that PRDM9 determines the positions of practically all hotspots in the mouse genome, with the exception of the pseudo-autosomal region (PAR)--the only area of the genome that undergoes recombination in 100% of cells. Surprisingly, hotspots are still observed in Prdm9 knockout mice, and as in wild type, these hotspots are found at H3 lysine 4 (H3K4) trimethylation marks. However, in the absence of PRDM9, most recombination is initiated at promoters and at other sites of PRDM9-independent H3K4 trimethylation. Such sites are rarely targeted in wild-type mice, indicating an unexpected role of the PRDM9 protein in sequestering the recombination machinery away from gene-promoter regions and other functional genomic elements.

  6. Precise identification of endogenous proviruses of NFS/N mice participating in recombination with moloney ecotropic murine leukemia virus (MuLV) to generate polytropic MuLVs.

    PubMed

    Alamgir, A S M; Owens, Nick; Lavignon, Marc; Malik, Frank; Evans, Leonard H

    2005-04-01

    Polytropic murine leukemia viruses (MuLVs) are generated by recombination of ecotropic MuLVs with env genes of a family of endogenous proviruses in mice, resulting in viruses with an expanded host range and greater virulence. Inbred mouse strains contain numerous endogenous proviruses that are potential donors of the env gene sequences of polytropic MuLVs; however, the precise identification of those proviruses that participate in recombination has been elusive. Three different structural groups of proviruses in NFS/N mice have been described and different ecotropic MuLVs preferentially recombine with different groups of proviruses. In contrast to other ecotropic MuLVs such as Friend MuLV or Akv that recombine predominantly with a single group of proviruses, Moloney MuLV (M-MuLV) recombines with at least two distinct groups. In this study, we determined that only three endogenous proviruses, two of one group and one of another group, are major participants in recombination with M-MuLV. Furthermore, the distinction between the polytropic MuLVs generated by M-MuLV and other ecotropic MuLVs is the result of recombination with a single endogenous provirus. This provirus exhibits a frameshift mutation in the 3' region of the surface glycoprotein-encoding sequences that is excluded in recombinants with M-MuLV. The sites of recombination between the env genes of M-MuLV and endogenous proviruses were confined to a short region exhibiting maximum homology between the ecotropic and polytropic env sequences and maximum stability of predicted RNA secondary structure. These observations suggest a possible mechanism for the specificity of recombination observed for different ecotropic MuLVs.

  7. Homologous genetic recombination in the yellow head complex of nidoviruses infecting Penaeus monodon shrimp.

    PubMed

    Wijegoonawardane, Priyanjalie K M; Sittidilokratna, Nusra; Petchampai, Natthida; Cowley, Jeff A; Gudkovs, Nicholas; Walker, Peter J

    2009-07-20

    Yellow head virus (YHV) is a highly virulent pathogen of Penaeus monodon shrimp. It is one of six known genotypes in the yellow head complex of nidoviruses which also includes mildly pathogenic gill-associated virus (GAV, genotype 2) and four other genotypes (genotypes 3-6) that have been detected only in healthy shrimp. In this study, comparative phylogenetic analyses conducted on replicase- (ORF1b) and glycoprotein- (ORF3) gene amplicons identified 10 putative natural recombinants amongst 28 viruses representing all six genotypes from across the Indo-Pacific region. The approximately 4.6 kb genomic region spanning the two amplicons was sequenced for three putative recombinant viruses from Vietnam (genotype 3/5), the Philippines (genotype 5/2) and Indonesia (genotype 3/2). SimPlot analysis using these and representative parental virus sequences confirmed that each was a recombinant genotype and identified a recombination hotspot in a region just upstream of the ORF1b C-terminus. Maximum-likelihood breakpoint analysis predicted identical crossover positions in the Vietnamese and Indonesian recombinants, and a crossover position 12 nt upstream in the Philippine recombinant. Homologous genetic recombination in the same genome region was also demonstrated in recombinants generated experimentally in shrimp co-infected with YHV and GAV. The high frequency with which natural recombinants were identified indicates that genetic exchange amongst genotypes is occurring commonly in Asia and playing a significant role in expanding the genetic diversity in the yellow head complex. This is the first evidence of genetic recombination in viruses infecting crustaceans and has significant implications for the pathogenesis of infection and diagnosis of these newly emerging invertebrate pathogens.

  8. The Sep1 Mutant of Saccharomyces Cerevisiae Arrests in Pachytene and Is Deficient in Meiotic Recombination

    PubMed Central

    Tishkoff, D. X.; Rockmill, B.; Roeder, G. S.; Kolodner, R. D.

    1995-01-01

    Strand exchange protein 1 (Sep1) from Saccharomyces cerevisiae promotes homologous pairing of DNA in vitro and sep1 mutants display pleiotropic phenotypes in both vegetative and meiotic cells. In this study, we examined in detail the ability of the sep1 mutant to progress through meiosis I prophase and to undergo meiotic recombination. In meiotic return-to-growth experiments, commitment to meiotic recombination began at the same time in wild type and mutant; however, recombinants accumulated at decreased rates in the mutant. Gene conversion eventually reached nearly wild-type levels, whereas crossing over reached 15-50% of wild type. In an assay of intrachromosomal pop-out recombination, the sep1, dmc1 and rad51 single mutations had only small effects; however, pop-out recombination was virtually eliminated in the sep1 dmc1 and sep1 rad51 double mutants, providing evidence for multiple recombination pathways. Analysis of meiotic recombination intermediates indicates that the sep1 mutant is deficient in meiotic double-strand break repair. In a physical assay, the formation of mature reciprocal recombinants in the sep1 mutant was delayed relative to wild type and ultimately reached only 50% of the wild-type level. Electron microscopic analysis of meiotic nuclear spreads indicates that the sep1δ mutant arrests in pachytene, with apparently normal synaptonemal complex. This arrest is RAD9-independent. We hypothesize that the Sep1 protein participates directly in meiotic recombination and that other strand exchange enzymes, acting in parallel recombination pathways, are able to substitute partially for the absence of the Sep1 protein. PMID:7713413

  9. Recombination between Poliovirus and Coxsackie A Viruses of Species C: A Model of Viral Genetic Plasticity and Emergence

    PubMed Central

    Combelas, Nicolas; Holmblat, Barbara; Joffret, Marie-Line; Colbère-Garapin, Florence; Delpeyroux, Francis

    2011-01-01

    Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV), an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs), which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C), in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs. PMID:21994791

  10. Nonreplicative RNA Recombination of an Animal Plus-Strand RNA Virus in the Absence of Efficient Translation of Viral Proteins.

    PubMed

    Kleine Büning, Maximiliane; Meyer, Denise; Austermann-Busch, Sophia; Roman-Sosa, Gleyder; Rümenapf, Tillmann; Becher, Paul

    2017-04-01

    RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5' terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Genome-Wide Fine-Scale Recombination Rate Variation in Drosophila melanogaster

    PubMed Central

    Song, Yun S.

    2012-01-01

    Estimating fine-scale recombination maps of Drosophila from population genomic data is a challenging problem, in particular because of the high background recombination rate. In this paper, a new computational method is developed to address this challenge. Through an extensive simulation study, it is demonstrated that the method allows more accurate inference, and exhibits greater robustness to the effects of natural selection and noise, compared to a well-used previous method developed for studying fine-scale recombination rate variation in the human genome. As an application, a genome-wide analysis of genetic variation data is performed for two Drosophila melanogaster populations, one from North America (Raleigh, USA) and the other from Africa (Gikongoro, Rwanda). It is shown that fine-scale recombination rate variation is widespread throughout the D. melanogaster genome, across all chromosomes and in both populations. At the fine-scale, a conservative, systematic search for evidence of recombination hotspots suggests the existence of a handful of putative hotspots each with at least a tenfold increase in intensity over the background rate. A wavelet analysis is carried out to compare the estimated recombination maps in the two populations and to quantify the extent to which recombination rates are conserved. In general, similarity is observed at very broad scales, but substantial differences are seen at fine scales. The average recombination rate of the X chromosome appears to be higher than that of the autosomes in both populations, and this pattern is much more pronounced in the African population than the North American population. The correlation between various genomic features—including recombination rates, diversity, divergence, GC content, gene content, and sequence quality—is examined using the wavelet analysis, and it is shown that the most notable difference between D. melanogaster and humans is in the correlation between recombination and diversity. PMID:23284288

  12. The remarkable frequency of human immunodeficiency virus type 1 genetic recombination.

    PubMed

    Onafuwa-Nuga, Adewunmi; Telesnitsky, Alice

    2009-09-01

    The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.

  13. Recombination between poliovirus and coxsackie A viruses of species C: a model of viral genetic plasticity and emergence.

    PubMed

    Combelas, Nicolas; Holmblat, Barbara; Joffret, Marie-Line; Colbère-Garapin, Florence; Delpeyroux, Francis

    2011-08-01

    Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV), an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs), which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C), in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.

  14. Genetic recombination in plant-infecting messenger-sense RNA viruses: overview and research perspectives

    PubMed Central

    Bujarski, Jozef J.

    2013-01-01

    RNA recombination is one of the driving forces of genetic variability in (+)-strand RNA viruses. Various types of RNA–RNA crossovers were described including crosses between the same or different viral RNAs or between viral and cellular RNAs. Likewise, a variety of molecular mechanisms are known to support RNA recombination, such as replicative events (based on internal or end-to-end replicase switchings) along with non-replicative joining among RNA fragments of viral and/or cellular origin. Such mechanisms as RNA decay or RNA interference are responsible for RNA fragmentation and trans-esterification reactions which are likely accountable for ligation of RNA fragments. Numerous host factors were found to affect the profiles of viral RNA recombinants and significant differences in recombination frequency were observed among various RNA viruses. Comparative analyses of viral sequences allowed for the development of evolutionary models in order to explain adaptive phenotypic changes and co-evolving sites. Many questions remain to be answered by forthcoming RNA recombination research. (1) How various factors modulate the ability of viral replicase to switch templates, (2) What is the intracellular location of RNA–RNA template switchings, (3) Mechanisms and factors responsible for non-replicative RNA recombination, (4) Mechanisms of integration of RNA viral sequences with cellular genomic DNA, and (5) What is the role of RNA splicing and ribozyme activity. From an evolutionary stand point, it is not known how RNA viruses parasitize new host species via recombination, nor is it obvious what the contribution of RNA recombination is among other RNA modification pathways. We do not understand why the frequency of RNA recombination varies so much among RNA viruses and the status of RNA recombination as a form of sex is not well documented. PMID:23533000

  15. Genetic recombination in plant-infecting messenger-sense RNA viruses: overview and research perspectives.

    PubMed

    Bujarski, Jozef J

    2013-01-01

    RNA recombination is one of the driving forces of genetic variability in (+)-strand RNA viruses. Various types of RNA-RNA crossovers were described including crosses between the same or different viral RNAs or between viral and cellular RNAs. Likewise, a variety of molecular mechanisms are known to support RNA recombination, such as replicative events (based on internal or end-to-end replicase switchings) along with non-replicative joining among RNA fragments of viral and/or cellular origin. Such mechanisms as RNA decay or RNA interference are responsible for RNA fragmentation and trans-esterification reactions which are likely accountable for ligation of RNA fragments. Numerous host factors were found to affect the profiles of viral RNA recombinants and significant differences in recombination frequency were observed among various RNA viruses. Comparative analyses of viral sequences allowed for the development of evolutionary models in order to explain adaptive phenotypic changes and co-evolving sites. Many questions remain to be answered by forthcoming RNA recombination research. (1) How various factors modulate the ability of viral replicase to switch templates, (2) What is the intracellular location of RNA-RNA template switchings, (3) Mechanisms and factors responsible for non-replicative RNA recombination, (4) Mechanisms of integration of RNA viral sequences with cellular genomic DNA, and (5) What is the role of RNA splicing and ribozyme activity. From an evolutionary stand point, it is not known how RNA viruses parasitize new host species via recombination, nor is it obvious what the contribution of RNA recombination is among other RNA modification pathways. We do not understand why the frequency of RNA recombination varies so much among RNA viruses and the status of RNA recombination as a form of sex is not well documented.

  16. Effects of Inversions on Within- and Between-Species Recombination and Divergence

    PubMed Central

    Stevison, Laurie S.; Hoehn, Kenneth B.; Noor, Mohamed A. F.

    2011-01-01

    Chromosomal inversions disrupt recombination in heterozygotes by both reducing crossing-over within inverted regions and increasing it elsewhere in the genome. The reduction of recombination in inverted regions facilitates the maintenance of hybridizing species, as outlined by various models of chromosomal speciation. We present a comprehensive comparison of the effects of inversions on recombination rates and on nucleotide divergence. Within an inversion differentiating Drosophila pseudoobscura and Drosophila persimilis, we detected one double recombinant among 9,739 progeny from F1 hybrids screened, consistent with published double-crossover frequencies observed within species. Despite similar rates of exchange within and between species, we found no sequence-based evidence of ongoing gene exchange between species within this inversion, but significant exchange was inferred within species. We also observed greater differentiation at regions near inversion breakpoints between species versus within species. Moreover, we observed strong “interchromosomal effect” (higher recombination in inversion heterozygotes between species) with up to 9-fold higher recombination rates along collinear segments of chromosome two in hybrids. Further, we observed that regions most susceptible to changes in recombination rates corresponded to regions with lower recombination rates in homokaryotypes. Finally, we showed that interspecies nucleotide divergence is lower in regions with greater increases in recombination rate, potentially resulting from greater interspecies exchange. Overall, we have identified several similarities and differences between inversions segregating within versus between species in their effects on recombination and divergence. We conclude that these differences are most likely due to lower frequency of heterokaryotypes and to fitness consequences from the accumulation of various incompatibilities between species. Additionally, we have identified possible effects of inversions on interspecies gene exchange that had not been considered previously. PMID:21828374

  17. Recombination of Globally Circulating Varicella-Zoster Virus

    PubMed Central

    Depledge, Daniel P.; Kundu, Samit; Atkinson, Claire; Brown, Julianne; Haque, Tanzina; Hussaini, Yusuf; MacMahon, Eithne; Molyneaux, Pamela; Papaevangelou, Vassiliki; Sengupta, Nitu; Koay, Evelyn S. C.; Tang, Julian W.; Underhill, Gillian S.; Grahn, Anna; Studahl, Marie; Breuer, Judith; Bergström, Tomas

    2015-01-01

    ABSTRACT Varicella-zoster virus (VZV) is a human herpesvirus, which during primary infection typically causes varicella (chicken pox) and establishes lifelong latency in sensory and autonomic ganglia. Later in life, the virus may reactivate to cause herpes zoster (HZ; also known as shingles). To prevent these diseases, a live-attenuated heterogeneous vaccine preparation, vOka, is used routinely in many countries worldwide. Recent studies of another alphaherpesvirus, infectious laryngotracheitis virus, demonstrate that live-attenuated vaccine strains can recombine in vivo, creating virulent progeny. These findings raised concerns about using attenuated herpesvirus vaccines under conditions that favor recombination. To investigate whether VZV may undergo recombination, which is a prerequisite for VZV vaccination to create such conditions, we here analyzed 115 complete VZV genomes. Our results demonstrate that recombination occurs frequently for VZV. It thus seems that VZV is fully capable of recombination if given the opportunity, which may have important implications for continued VZV vaccination. Although no interclade vaccine-wild-type recombinant strains were found, intraclade recombinants were frequently detected in clade 2, which harbors the vaccine strains, suggesting that the vaccine strains have already been involved in recombination events, either in vivo or in vitro during passages in cell culture. Finally, previous partial and complete genomic studies have described strains that do not cluster phylogenetically to any of the five established clades. The additional VZV strains sequenced here, in combination with those previously published, have enabled us to formally define a novel sixth VZV clade. IMPORTANCE Although genetic recombination has been demonstrated to frequently occur for other human alphaherpesviruses, herpes simplex viruses 1 and 2, only a few ancient and isolated recent recombination events have hitherto been demonstrated for VZV. In the present study, we demonstrate that VZV also frequently undergoes genetic recombination, including strains belonging to the clade containing the vOKA strain. PMID:25926648

  18. Local Chromatin Features Including PU.1 and IKAROS Binding and H3K4 Methylation Shape the Repertoire of Immunoglobulin Kappa Genes Chosen for V(D)J Recombination.

    PubMed

    Matheson, Louise S; Bolland, Daniel J; Chovanec, Peter; Krueger, Felix; Andrews, Simon; Koohy, Hashem; Corcoran, Anne E

    2017-01-01

    V(D)J recombination is essential for the generation of diverse antigen receptor (AgR) repertoires. In B cells, immunoglobulin kappa ( Igκ ) light chain recombination follows immunoglobulin heavy chain ( Igh ) recombination. We recently developed the DNA-based VDJ-seq assay for the unbiased quantitation of Igh VH and DH repertoires. Integration of VDJ-seq data with genome-wide datasets revealed that two chromatin states at the recombination signal sequence (RSS) of VH genes are highly predictive of recombination in mouse pro-B cells. It is unknown whether local chromatin states contribute to Vκ gene choice during Igκ recombination. Here we adapt VDJ-seq to profile the Igκ VκJκ repertoire and present a comprehensive readout in mouse pre-B cells, revealing highly variable Vκ gene usage. Integration with genome-wide datasets for histone modifications, DNase hypersensitivity, transcription factor binding and germline transcription identified PU.1 binding at the RSS, which was unimportant for Igh , as highly predictive of whether a Vκ gene will recombine or not, suggesting that it plays a binary, all-or-nothing role, priming genes for recombination. Thereafter, the frequency with which these genes recombine was shaped both by the presence and level of enrichment of several other chromatin features, including H3K4 methylation and IKAROS binding. Moreover, in contrast to the Igh locus, the chromatin landscape of the promoter, as well as of the RSS, contributes to Vκ gene recombination. Thus, multiple facets of local chromatin features explain much of the variation in Vκ gene usage. Together, these findings reveal shared and divergent roles for epigenetic features and transcription factors in AgR V(D)J recombination and provide avenues for further investigation of chromatin signatures that may underpin V(D)J-mediated chromosomal translocations.

  19. Local Chromatin Features Including PU.1 and IKAROS Binding and H3K4 Methylation Shape the Repertoire of Immunoglobulin Kappa Genes Chosen for V(D)J Recombination

    PubMed Central

    Matheson, Louise S.; Bolland, Daniel J.; Chovanec, Peter; Krueger, Felix; Andrews, Simon; Koohy, Hashem; Corcoran, Anne E.

    2017-01-01

    V(D)J recombination is essential for the generation of diverse antigen receptor (AgR) repertoires. In B cells, immunoglobulin kappa (Igκ) light chain recombination follows immunoglobulin heavy chain (Igh) recombination. We recently developed the DNA-based VDJ-seq assay for the unbiased quantitation of Igh VH and DH repertoires. Integration of VDJ-seq data with genome-wide datasets revealed that two chromatin states at the recombination signal sequence (RSS) of VH genes are highly predictive of recombination in mouse pro-B cells. It is unknown whether local chromatin states contribute to Vκ gene choice during Igκ recombination. Here we adapt VDJ-seq to profile the Igκ VκJκ repertoire and present a comprehensive readout in mouse pre-B cells, revealing highly variable Vκ gene usage. Integration with genome-wide datasets for histone modifications, DNase hypersensitivity, transcription factor binding and germline transcription identified PU.1 binding at the RSS, which was unimportant for Igh, as highly predictive of whether a Vκ gene will recombine or not, suggesting that it plays a binary, all-or-nothing role, priming genes for recombination. Thereafter, the frequency with which these genes recombine was shaped both by the presence and level of enrichment of several other chromatin features, including H3K4 methylation and IKAROS binding. Moreover, in contrast to the Igh locus, the chromatin landscape of the promoter, as well as of the RSS, contributes to Vκ gene recombination. Thus, multiple facets of local chromatin features explain much of the variation in Vκ gene usage. Together, these findings reveal shared and divergent roles for epigenetic features and transcription factors in AgR V(D)J recombination and provide avenues for further investigation of chromatin signatures that may underpin V(D)J-mediated chromosomal translocations. PMID:29204143

  20. Analysis of HIV Type 1 BF Recombinant Sequences from South America Dates the Origin of CRF12_BF to a Recombination Event in the 1970s

    PubMed Central

    Dilernia, Dario A.; Jones, Leandro R.; Pando, Maria A.; Rabinovich, Roberto D.; Damilano, Gabriel D.; Turk, Gabriela; Rubio, Andrea E.; Pampuro, Sandra; Gomez-Carrillo, Manuel

    2011-01-01

    Abstract HIV-1 epidemics in South America are believed to have originated in part from the subtype B epidemic initiated in the Caribbean/North America region. However, circulation of BF recombinants in similar proportions was extensively reported. Information currently shows that many BF recombinants share a recombination structure similar to that found in the CRF12_BF. In the present study, analyzing a set of 405 HIV sequences, we identified the most likely origin of the BF epidemic in an early event of recombination. We found that the subtype B epidemics in South America analyzed in the present study were initiated by a founder event that occurred in the early 1970s, a few years after the introduction of these strains in the Americas. Regarding the F/BF recombinant epidemics, by analyzing a subtype F genomic segment within the viral gene gag present in the majority of the BF recombinants, we found evidence of a geographic divergence very soon after the introduction of subtype F strains in South America. Moreover, through analysis of a subtype B segment present in all the CRF12_BF-like recombination structure, we estimated the circulation of the subtype B strain that gave rise to that recombinant structure around the same time period estimated for the introduction of subtype F strains. The HIV epidemics in South America were initiated in part through a founder event driven by subtype B strains coming from the previously established epidemic in the north of the continent. A second introduction driven by subtype F strains is likely to have encountered the incipient subtype B epidemic that soon after their arrival recombined with them, originating the BF epidemic in the region. These results may explain why in South America the majority of F sequences are found as BF recombinants. PMID:20919926

  1. Effect of manipulating recombination rates on response to selection in livestock breeding programs.

    PubMed

    Battagin, Mara; Gorjanc, Gregor; Faux, Anne-Michelle; Johnston, Susan E; Hickey, John M

    2016-06-22

    In this work, we performed simulations to explore the potential of manipulating recombination rates to increase response to selection in livestock breeding programs. We carried out ten replicates of several scenarios that followed a common overall structure but differed in the average rate of recombination along the genome (expressed as the length of a chromosome in Morgan), the genetic architecture of the trait under selection, and the selection intensity under truncation selection (expressed as the proportion of males selected). Recombination rates were defined by simulating nine different chromosome lengths: 0.10, 0.25, 0.50, 1, 2, 5, 10, 15 and 20 Morgan, respectively. One Morgan was considered to be the typical chromosome length for current livestock species. The genetic architecture was defined by the number of quantitative trait variants (QTV) that affected the trait under selection. Either a large (10,000) or a small (1000 or 500) number of QTV was simulated. Finally, the proportions of males selected under truncation selection as sires for the next generation were equal to 1.2, 2.4, 5, or 10 %. Increasing recombination rate increased the overall response to selection and decreased the loss of genetic variance. The difference in cumulative response between low and high recombination rates increased over generations. At low recombination rates, cumulative response to selection tended to asymptote sooner and the genetic variance was completely eroded. If the trait under selection was affected by few QTV, differences between low and high recombination rates still existed, but the selection limit was reached at all rates of recombination. Higher recombination rates can enhance the efficiency of breeding programs to turn genetic variation into response to selection. However, to increase response to selection significantly, the recombination rate would need to be increased 10- or 20-fold. The biological feasibility and consequences of such large increases in recombination rates are unknown.

  2. In vivo production of recombinant proteins using occluded recombinant AcMNPV-derived baculovirus vectors.

    PubMed

    Guijarro-Pardo, Eva; Gómez-Sebastián, Silvia; Escribano, José M

    2017-12-01

    Trichoplusia ni insect larvae infected with vectors derived from the Autographa californica multiple nucleopolyhedrovirus (AcMNPV), are an excellent alternative to insect cells cultured in conventional bioreactors to produce recombinant proteins because productivity and cost-efficiency reasons. However, there is still a lot of work to do to reduce the manual procedures commonly required in this production platform that limit its scalability. To increase the scalability of this platform technology, a current bottleneck to be circumvented in the future is the need of injection for the inoculation of larvae with polyhedrin negative baculovirus vectors (Polh-) because of the lack of oral infectivity of these viruses, which are commonly used for production in insect cell cultures. In this work we have developed a straightforward alternative to obtain orally infective vectors derived from AcMNPV and expressing recombinant proteins that can be administered to the insect larvae (Trichoplusia ni) by feeding, formulated in the insect diet. The approach developed was based on the use of a recombinant polyhedrin protein expressed by a recombinant vector (Polh+), able to co-occlude any recombinant Polh- baculovirus vector expressing a recombinant protein. A second alternative was developed by the generation of a dual vector co-expressing the recombinant polyhedrin protein and the foreign gene of interest to obtain the occluded viruses. Additionally, by the incorporation of a reporter gene into the helper Polh+ vector, it was possible the follow-up visualization of the co-occluded viruses infection in insect larvae and will help to homogenize infection conditions. By using these methodologies, the production of recombinant proteins in per os infected larvae, without manual infection procedures, was very similar in yield to that obtained by manual injection of recombinant Polh- AcMNPV-based vectors expressing the same proteins. However, further analyses will be required for a detailed comparison of production yields reached by injection vs oral infections for different recombinant proteins. In conclusion, these results open the possibility of future industrial scaling-up production of recombinant proteins in insect larvae by reducing manual operations. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. LDsplit: screening for cis-regulatory motifs stimulating meiotic recombination hotspots by analysis of DNA sequence polymorphisms.

    PubMed

    Yang, Peng; Wu, Min; Guo, Jing; Kwoh, Chee Keong; Przytycka, Teresa M; Zheng, Jie

    2014-02-17

    As a fundamental genomic element, meiotic recombination hotspot plays important roles in life sciences. Thus uncovering its regulatory mechanisms has broad impact on biomedical research. Despite the recent identification of the zinc finger protein PRDM9 and its 13-mer binding motif as major regulators for meiotic recombination hotspots, other regulators remain to be discovered. Existing methods for finding DNA sequence motifs of recombination hotspots often rely on the enrichment of co-localizations between hotspots and short DNA patterns, which ignore the cross-individual variation of recombination rates and sequence polymorphisms in the population. Our objective in this paper is to capture signals encoded in genetic variations for the discovery of recombination-associated DNA motifs. Recently, an algorithm called "LDsplit" has been designed to detect the association between single nucleotide polymorphisms (SNPs) and proximal meiotic recombination hotspots. The association is measured by the difference of population recombination rates at a hotspot between two alleles of a candidate SNP. Here we present an open source software tool of LDsplit, with integrative data visualization for recombination hotspots and their proximal SNPs. Applying LDsplit on SNPs inside an established 7-mer motif bound by PRDM9 we observed that SNP alleles preserving the original motif tend to have higher recombination rates than the opposite alleles that disrupt the motif. Running on SNP windows around hotspots each containing an occurrence of the 7-mer motif, LDsplit is able to guide the established motif finding algorithm of MEME to recover the 7-mer motif. In contrast, without LDsplit the 7-mer motif could not be identified. LDsplit is a software tool for the discovery of cis-regulatory DNA sequence motifs stimulating meiotic recombination hotspots by screening and narrowing down to hotspot associated SNPs. It is the first computational method that utilizes the genetic variation of recombination hotspots among individuals, opening a new avenue for motif finding. Tested on an established motif and simulated datasets, LDsplit shows promise to discover novel DNA motifs for meiotic recombination hotspots.

  4. LDsplit: screening for cis-regulatory motifs stimulating meiotic recombination hotspots by analysis of DNA sequence polymorphisms

    PubMed Central

    2014-01-01

    Background As a fundamental genomic element, meiotic recombination hotspot plays important roles in life sciences. Thus uncovering its regulatory mechanisms has broad impact on biomedical research. Despite the recent identification of the zinc finger protein PRDM9 and its 13-mer binding motif as major regulators for meiotic recombination hotspots, other regulators remain to be discovered. Existing methods for finding DNA sequence motifs of recombination hotspots often rely on the enrichment of co-localizations between hotspots and short DNA patterns, which ignore the cross-individual variation of recombination rates and sequence polymorphisms in the population. Our objective in this paper is to capture signals encoded in genetic variations for the discovery of recombination-associated DNA motifs. Results Recently, an algorithm called “LDsplit” has been designed to detect the association between single nucleotide polymorphisms (SNPs) and proximal meiotic recombination hotspots. The association is measured by the difference of population recombination rates at a hotspot between two alleles of a candidate SNP. Here we present an open source software tool of LDsplit, with integrative data visualization for recombination hotspots and their proximal SNPs. Applying LDsplit on SNPs inside an established 7-mer motif bound by PRDM9 we observed that SNP alleles preserving the original motif tend to have higher recombination rates than the opposite alleles that disrupt the motif. Running on SNP windows around hotspots each containing an occurrence of the 7-mer motif, LDsplit is able to guide the established motif finding algorithm of MEME to recover the 7-mer motif. In contrast, without LDsplit the 7-mer motif could not be identified. Conclusions LDsplit is a software tool for the discovery of cis-regulatory DNA sequence motifs stimulating meiotic recombination hotspots by screening and narrowing down to hotspot associated SNPs. It is the first computational method that utilizes the genetic variation of recombination hotspots among individuals, opening a new avenue for motif finding. Tested on an established motif and simulated datasets, LDsplit shows promise to discover novel DNA motifs for meiotic recombination hotspots. PMID:24533858

  5. Finding trans-regulatory genes and protein complexes modulating meiotic recombination hotspots of human, mouse and yeast.

    PubMed

    Wu, Min; Kwoh, Chee-Keong; Li, Xiaoli; Zheng, Jie

    2014-09-11

    The regulatory mechanism of recombination is one of the most fundamental problems in genomics, with wide applications in genome wide association studies (GWAS), birth-defect diseases, molecular evolution, cancer research, etc. Recombination events cluster into short genomic regions called "recombination hotspots". Recently, a zinc finger protein PRDM9 was reported to regulate recombination hotspots in human and mouse genomes. In addition, a 13-mer motif contained in the binding sites of PRDM9 is found to be enriched in human hotspots. However, this 13-mer motif only covers a fraction of hotspots, indicating that PRDM9 is not the only regulator of recombination hotspots. Therefore, the challenge of discovering other regulators of recombination hotspots becomes significant. Furthermore, recombination is a complex process. Hence, multiple proteins acting as machinery, rather than individual proteins, are more likely to carry out this process in a precise and stable manner. Therefore, the extension of the prediction of individual trans-regulators to protein complexes is also highly desired. In this paper, we introduce a pipeline to identify genes and protein complexes associated with recombination hotspots. First, we prioritize proteins associated with hotspots based on their preference of binding to hotspots and coldspots. Second, using the above identified genes as seeds, we apply the Random Walk with Restart algorithm (RWR) to propagate their influences to other proteins in protein-protein interaction (PPI) networks. Hence, many proteins without DNA-binding information will also be assigned a score to implicate their roles in recombination hotspots. Third, we construct sub-PPI networks induced by top genes ranked by RWR for various species (e.g., yeast, human and mouse) and detect protein complexes in those sub-PPI networks. The GO term analysis show that our prioritizing methods and the RWR algorithm are capable of identifying novel genes associated with recombination hotspots. The trans-regulators predicted by our pipeline are enriched with epigenetic functions (e.g., histone modifications), demonstrating the epigenetic regulatory mechanisms of recombination hotspots. The identified protein complexes also provide us with candidates to further investigate the molecular machineries for recombination hotspots. Moreover, the experimental data and results are available on our web site http://www.ntu.edu.sg/home/zhengjie/data/RecombinationHotspot/NetPipe/.

  6. [A comparative study on characterizations of genetic recombination hotspots in PPARG gene between Kirgiz and Uyghur ethnic groups in Xinjiang].

    PubMed

    Zohra, Rozi; Song, M S; Iliham, Nizam; Dolikun, Mamatyusupu

    2016-08-16

    To investigate the characterizations of genetic recombination hotspots and linkage disequilibrium (LD) patterns in peroxisome proliferative activated receptor gamma (PPARG) gene in Kirgiz and Uyghur ethnic groups. Blood samples were collected from 100 Kirgiz (50 healthy controls and 50 patients with type 2 diabetes mellitus) residents in Halajun County, Artux City, Kizilsu Kirgiz Autonomous Prefecture, Xinjiang in August 2013, and 50 healthy Uyghur residents in Hotan Prefecture of Xinjiang Uygur Autonomous Region in May 2012.Thirty-one tagSNPs in PPARG gene were genotyped using Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) method.The recombination hotspots and LD patterns within the PPARG gene were estimated by analyzing the SNP genotying data using the Hotspot Fisher program and Haploview software, respectively. Eighteen tagSNPs (rs1151999, rs1175540, rs1875796, rs1899951, rs2292101, rs2921190, rs2938397, rs2959272, rs2959273, rs2972162, rs3856806, rs4135247, rs4135275, rs709151, rs4135354, rs6805419, rs17036700 and rs4135304) were same with relatively higher recombination rates between the patients with type 2 diabetes mellitus (T2DM) and healthy controls of Kirgiz ethnic group, and healthy controls of Uyghur ethnic group.Five haplotype blocks with LD coefficient D' value of 1, indicating no genetic recombination occurred within the region, were observed in the healthy controls of Kirgiz ethnic groups, whereas five haplotype blocks with LD coefficient D' value less than 1 were observed in the Kirgiz patients with T2DM, indicating historical recombination events occurred within the region.Four haplotype blocks with LD coefficient D' value of 1 were observed in the Uyghur healthy controls, indicating no genetic recombination occurred within the region.There were significantly different recombination hotspot profiles between the Kirgiz, Uyghur, Utah residents with Northern and Western European ancestry (CEU), Yoruban in Ibadan, Nigeria (YRI) and Han Chinese in Beijing (CHB) and Japanese in Tokyo (JPT) samples.There are six recombination hotspots in the HapMap profile of genetic recombination.The last 5 SNPs within the PPARG gene were shown with lower recombination rates in the Kirgiz, whereas no recombination hotspot was found in the Uyghur. Variable recombination rates may be present in certain chromosome region between patients and healthy controls within the same or between the different ethnic groups.There may be presence of recombination hotspots of ethnic specificity and with variable recombination rates.

  7. Recombination walking: genetic selection of clones from pooled libraries of yeast artificial chromosomes by homologous recombination.

    PubMed Central

    Miller, A M; Savinelli, E A; Couture, S M; Hannigan, G M; Han, Z; Selden, R F; Treco, D A

    1993-01-01

    Recombination walking is based on the genetic selection of specific human clones from a yeast artificial chromosome (YAC) library by homologous recombination. The desired clone is selected from a pooled (unordered) YAC library, eliminating labor-intensive steps typically used in organizing and maintaining ordered YAC libraries. Recombination walking represents an efficient approach to library screening and is well suited for chromosome-walking approaches to the isolation of genes associated with common diseases. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8367472

  8. Expression and purification of recombinant nattokinase in Spodoptera frugiperda cells.

    PubMed

    Li, Xiaoxiang; Wang, Xiaoli; Xiong, Shaoling; Zhang, Jing; Cai, Litao; Yang, Yanyan

    2007-10-01

    A recombinant baculovirus, rv-egfp-NK, containing a reporter gene encoding the enhanced green fluorescent protein (EGFP), was used to express nattokinase (NK), a fibrinolytic enzyme, in Spodoptera frugiperda (SF-9) cells. The recombinant protein also included a histidine tag for purification using Ni(2+) resins. The recombinant NK, approximately 30 kDa, retained fibrinolytic activity (60 U/ml). The integration of the EGFP expression cassette in the Bac-to-Bac system is thus an effective method for the expression and purification of recombinant NK protein in Spodoptera frugiperda insect cells.

  9. Protection of Mice from Fatal Measles Encephalitis by Vaccination with Vaccinia Virus Recombinants Encoding Either the Hemagglutinin or the Fusion Protein

    NASA Astrophysics Data System (ADS)

    Drillien, Robert; Spehner, Daniele; Kirn, Andre; Giraudon, Pascale; Buckland, Robin; Wild, Fabian; Lecocq, Jean-Pierre

    1988-02-01

    Vaccinia virus recombinants encoding the hemagglutinin or fusion protein of measles virus have been constructed. Infection of cell cultures with the recombinants led to the synthesis of authentic measles proteins as judged by their electrophoretic mobility, recognition by antibodies, glycosylation, proteolytic cleavage, and presentation on the cell surface. Mice vaccinated with a single dose of the recombinant encoding the hemagglutinin protein developed antibodies capable of both inhibiting hemagglutination activity and neutralizing measles virus, whereas animals vaccinated with the recombinant encoding the fusion protein developed measles neutralizing antibodies. Mice vaccinated with either of the recombinants resisted a normally lethal intracerebral inoculation of a cell-associated measles virus subacute sclerosing panencephalitis strain.

  10. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  11. Optimal recombination in genetic algorithms for flowshop scheduling problems

    NASA Astrophysics Data System (ADS)

    Kovalenko, Julia

    2016-10-01

    The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.

  12. A novel variant of the infectious bronchitis virus resulting from recombination events in Italy and Spain.

    PubMed

    Moreno, Ana; Franzo, G; Massi, P; Tosi, G; Blanco, A; Antilles, N; Biarnes, M; Majó, N; Nofrarías, M; Dolz, R; Lelli, D; Sozzi, E; Lavazza, A; Cecchinato, M

    2017-02-01

    Infectious bronchitis is considered to be one of the most devastating diseases in poultry. Control of its spread is typically attempted through biosecurity measures and extensive vaccination. However, the remarkable genetic and antigenic variability of the virus, which originate from both mutations and recombination events, represents an unsolved challenge for this disease. The present study reports on the emergence and spread of recombinant clusters detected in Italy and Spain between 2012 and 2014. A total of 36 Spanish and Italian infectious bronchitis virus (IBV) field strains were investigated and genetically characterized using phylogenetic, molecular, recombination and selection pressure analyses of the complete S1 gene. Based on the partial S1 sequencing, 27 IBV strains originating from Spain and nine from Italy were initially classified as being closely related to the Guandong/Xindadi (XDN) genotype. Phylogenetic analysis of the complete S1 gene revealed that the XDN strains formed a homogeneous clade with the Spanish IBV isolates within the QX genotype, whereas there was higher variability within the Italian strains. Recombination analysis determined that these strains belonged to four groups, which originated from independent recombination events between the QX and 793B IBV genotypes. Our data support the hypothesis of two different scenarios: firstly, in Spain, the large and homogeneous clade probably originated from a single offspring of the recombinant founder, which became dominant and spread throughout the country. Secondly, the nine Italian recombinants, which are characterized by three different recombination patterns, probably represent less fitted strains, because they were less viable with respect to their recombinant parents.

  13. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine

    PubMed Central

    2011-01-01

    Background Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene. Methods A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA) analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Results Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28) following virulent PPV challenge compared with the control (7 of 31). Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. Conclusions In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection. PMID:21679423

  14. Pangenome Analysis of Burkholderia pseudomallei: Genome Evolution Preserves Gene Order despite High Recombination Rates.

    PubMed

    Spring-Pearson, Senanu M; Stone, Joshua K; Doyle, Adina; Allender, Christopher J; Okinaka, Richard T; Mayo, Mark; Broomall, Stacey M; Hill, Jessica M; Karavis, Mark A; Hubbard, Kyle S; Insalaco, Joseph M; McNew, Lauren A; Rosenzweig, C Nicole; Gibbons, Henry S; Currie, Bart J; Wagner, David M; Keim, Paul; Tuanyok, Apichai

    2015-01-01

    The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is 'open', with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order.

  15. Investigation of Exciton Recombination Zone in Quantum Dot Light-Emitting Diodes Using a Fluorescent Probe.

    PubMed

    Huang, Xiaoyu; Zhang, Heng; Xu, Dingxin; Wen, Feng; Chen, Shuming

    2017-08-23

    Exciton recombination zone, where the photons are generated, can greatly affect the performance, such as the efficiency and color purity, of the quantum dot (QD) light-emitting diodes (QLEDs). To probe the exciton recombination zone, 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) is doped into the charge transport layer as a fluorescent sensor; by monitoring the Förster resonant energy transfer (FRET) between QD and DCJTB, the location of the recombination zone can be determined. It is found that the electron transport layer (ETL) has a great impact on the recombination zone. For example, in QLEDs with ZnMgO ETL, the recombination zone is near the interface of the QD/hole transport layer (HTL) and is shifted to the interface of the QD/ETL as the driving voltage is increased, whereas in devices with 1,3,5-tris(2-N-phenylbenzimidazolyl) benzene (TPBi) ETL, the recombination zone is close to the interface of the QD/ETL and moved to the interface of the QD/HTL with the increase in the driving voltage. Our results can also clarify the light emission mechanism in QLEDs. In devices with ZnMgO ETL, the emission is dominated by the direct charge recombination, whereas in devices with TPBi ETL, the emission is contributed by both FRET and direct charge recombination. Our studies suggest that fluorescent probe can be a powerful tool for investigating the exciton recombination zone, light emission mechanism, and other fundamental processes in QLEDs.

  16. Estimation of fine-scale recombination intensity variation in the white-echinus interval of D. melanogaster

    PubMed Central

    Singh, Nadia D.; Aquadro, Charles F.; Clark, Andrew G.

    2009-01-01

    Accurate assessment of local recombination rate variation is crucial for understanding the recombination process and for determining the impact of natural selection on linked sites. In Drosophila, local recombination intensity has been estimated primarily by statistical approaches, estimating the local slope of the relationship between the physical and genetic maps. However, these estimates are limited in resolution, and as a result, the physical scale at which recombination intensity varies in Drosophila is largely unknown. While there is some evidence suggesting as much as a 40-fold variation in crossover rate at a local scale in D. pseudoobscura, little is known about the fine-scale structure of recombination rate variation in D. melanogaster. Here, we experimentally examine the fine-scale distribution of crossover events in a 1.2 Mb region on the D. melanogaster X chromosome using a classic genetic mapping approach. Our results show that crossover frequency is significantly heterogeneous within this region, varying ~ 3.5 fold. Simulations suggest that this degree of heterogeneity is sufficient to affect levels of standing nucleotide diversity, although the magnitude of this effect is small. We recover no statistical association between empirical estimates of nucleotide diversity and recombination intensity, which is likely due to the limited number of loci sampled in our population genetic dataset. However, codon bias is significantly negatively correlated with fine-scale recombination intensity estimates, as expected. Our results shed light on the relevant physical scale to consider in evolutionary analyses relating to recombination rate, and highlight the motivations to increase the resolution of the recombination map in Drosophila. PMID:19504037

  17. Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages

    PubMed Central

    Datta, Simanti; Costantino, Nina; Zhou, Xiaomei; Court, Donald L.

    2008-01-01

    We report the identification and functional analysis of nine genes from Gram-positive and Gram-negative bacteria and their phages that are similar to lambda (λ) bet or Escherichia coli recT. Beta and RecT are single-strand DNA annealing proteins, referred to here as recombinases. Each of the nine other genes when expressed in E. coli carries out oligonucleotide-mediated recombination. To our knowledge, this is the first study showing single-strand recombinase activity from diverse bacteria. Similar to bet and recT, most of these other recombinases were found to be associated with putative exonuclease genes. Beta and RecT in conjunction with their cognate exonucleases carry out recombination of linear double-strand DNA. Among four of these foreign recombinase/exonuclease pairs tested for recombination with double-strand DNA, three had activity, albeit barely detectable. Thus, although these recombinases can function in E. coli to catalyze oligonucleotide recombination, the double-strand DNA recombination activities with their exonuclease partners were inefficient. This study also demonstrated that Gam, by inhibiting host RecBCD nuclease activity, helps to improve the efficiency of λ Red-mediated recombination with linear double-strand DNA, but Gam is not absolutely essential. Thus, in other bacterial species where Gam analogs have not been identified, double-strand DNA recombination may still work in the absence of a Gam-like function. We anticipate that at least some of the recombineering systems studied here will potentiate oligonucleotide and double-strand DNA-mediated recombineering in their native or related bacteria. PMID:18230724

  18. Recombination in the Evolution of Enterovirus C Species Sub-Group that Contains Types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99

    PubMed Central

    Smura, Teemu; Blomqvist, Soile; Vuorinen, Tytti; Ivanova, Olga; Samoilovich, Elena; Al-Hello, Haider; Savolainen-Kopra, Carita; Hovi, Tapani; Roivainen, Merja

    2014-01-01

    Genetic recombination is considered to be a very frequent phenomenon among enteroviruses (Family Picornaviridae, Genus Enterovirus). However, the recombination patterns may differ between enterovirus species and between types within species. Enterovirus C (EV-C) species contains 21 types. In the capsid coding P1 region, the types of EV-C species cluster further into three sub-groups (designated here as A–C). In this study, the recombination pattern of EV-C species sub-group B that contains types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99 was determined using partial 5′UTR and VP1 sequences of enterovirus strains isolated during poliovirus surveillance and previously published complete genome sequences. Several inter-typic recombination events were detected. Furthermore, the analyses suggested that inter-typic recombination events have occurred mainly within the distinct sub-groups of EV-C species. Only sporadic recombination events between EV-C species sub-group B and other EV-C sub-groups were detected. In addition, strict recombination barriers were inferred for CVA-21 genotype C and CVA-24 variant strains. These results suggest that the frequency of inter-typic recombinations, even within species, may depend on the phylogenetic position of the given viruses. PMID:24722726

  19. Peripheral subnuclear positioning suppresses Tcrb recombination and segregates Tcrb alleles from RAG2

    PubMed Central

    Chan, Elizabeth A. W.; Teng, Grace; Corbett, Elizabeth; Choudhury, Kingshuk Roy; Bassing, Craig H.; Schatz, David G.; Krangel, Michael S.

    2013-01-01

    Allelic exclusion requires that the two alleles at antigen-receptor loci attempt to recombine variable (V), diversity (D), and joining (J) gene segments [V(D)J recombination] asynchronously in nuclei of developing lymphocytes. It previously was shown that T-cell receptor β (Tcrb) alleles frequently and stochastically associate with the nuclear lamina and pericentromeric heterochromatin in CD4−CD8− thymocytes. Moreover, rearranged alleles were underrepresented at these locations. Here we used 3D immunofluorescence in situ hybridization to identify recently rearranged Tcrb alleles based on the accumulation of the DNA-repair protein 53BP1. We found that Tcrb alleles recombine asynchronously in double-negative thymocytes and that V(D)J recombination is suppressed on peripheral as compared with central Tcrb alleles. Moreover, the recombination events that did take place at the nuclear periphery preferentially occurred on Tcrb alleles that were partially dissociated from the nuclear lamina. To understand better the mechanism by which V(D)J recombination is suppressed at the nuclear periphery, we evaluated the subnuclear distribution of recombination-activating gene 2 (RAG2) protein. We found that RAG2 abundance was reduced at the nuclear periphery. Moreover, RAG2 was distributed differently from RNA polymerase II and histone H3K4 trimethylation. Our data suggest that the nuclear periphery suppresses V(D)J recombination, at least in part, by segregating Tcrb alleles from RAG proteins. PMID:24218622

  20. Diffusion controlled initial recombination

    NASA Astrophysics Data System (ADS)

    Christen, T.; Büttiker, M.

    1998-08-01

    This work addresses nucleation rates in systems with strong initial recombination. Initial (or ``geminate'') recombination is a process where a dissociated structure (anion, vortex, kink, etc.) recombines with its twin brother (cation, antivortex, antikink) generated in the same nucleation event. Initial recombination is important if there is an asymptotically vanishing interaction force instead of a generic saddle-type activation barrier. At low temperatures, initial recombination strongly dominates homogeneous recombination. In a first part, we discuss the effect in one-, two-, and three-dimensional diffusion controlled systems with spherical symmetry. Since there is no well-defined saddle, we introduce a threshold which is to some extent arbitrary but which is restricted by physically reasonable conditions. We show that the dependence of the nucleation rate on the specific choice of this threshold is strongest for one-dimensional systems and decreases in higher dimensions. We also discuss the influence of a weak driving force, and show that the transport current is directly determined by the imbalance of the activation rate in the direction of the field and the rate against this direction. In a second part, we apply the results to the overdamped sine-Gordon system at equilibrium. It turns out that diffusive initial recombination is the essential mechanism which governs the equilibrium kink nucleation rate. We emphasize analogies between the single particle problem with initial recombination and the multidimensional kink-antikink nucleation problem.

  1. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe

    NASA Astrophysics Data System (ADS)

    Nakashima, Kenichi; Stoller, Roger E.; Xu, Haixuan

    2015-08-01

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in irradiated materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1.0a0 to 3.3a0 have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomic level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a0 by taking the average of the recombination distances from 80 simulation cases. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster.

  2. Peripheral subnuclear positioning suppresses Tcrb recombination and segregates Tcrb alleles from RAG2.

    PubMed

    Chan, Elizabeth A W; Teng, Grace; Corbett, Elizabeth; Choudhury, Kingshuk Roy; Bassing, Craig H; Schatz, David G; Krangel, Michael S

    2013-11-26

    Allelic exclusion requires that the two alleles at antigen-receptor loci attempt to recombine variable (V), diversity (D), and joining (J) gene segments [V(D)J recombination] asynchronously in nuclei of developing lymphocytes. It previously was shown that T-cell receptor β (Tcrb) alleles frequently and stochastically associate with the nuclear lamina and pericentromeric heterochromatin in CD4(-)CD8(-) thymocytes. Moreover, rearranged alleles were underrepresented at these locations. Here we used 3D immunofluorescence in situ hybridization to identify recently rearranged Tcrb alleles based on the accumulation of the DNA-repair protein 53BP1. We found that Tcrb alleles recombine asynchronously in double-negative thymocytes and that V(D)J recombination is suppressed on peripheral as compared with central Tcrb alleles. Moreover, the recombination events that did take place at the nuclear periphery preferentially occurred on Tcrb alleles that were partially dissociated from the nuclear lamina. To understand better the mechanism by which V(D)J recombination is suppressed at the nuclear periphery, we evaluated the subnuclear distribution of recombination-activating gene 2 (RAG2) protein. We found that RAG2 abundance was reduced at the nuclear periphery. Moreover, RAG2 was distributed differently from RNA polymerase II and histone H3K4 trimethylation. Our data suggest that the nuclear periphery suppresses V(D)J recombination, at least in part, by segregating Tcrb alleles from RAG proteins.

  3. Recombination in diverse maize is stable, predictable, and associated with genetic load.

    PubMed

    Rodgers-Melnick, Eli; Bradbury, Peter J; Elshire, Robert J; Glaubitz, Jeffrey C; Acharya, Charlotte B; Mitchell, Sharon E; Li, Chunhui; Li, Yongxiang; Buckler, Edward S

    2015-03-24

    Among the fundamental evolutionary forces, recombination arguably has the largest impact on the practical work of plant breeders. Varying over 1,000-fold across the maize genome, the local meiotic recombination rate limits the resolving power of quantitative trait mapping and the precision of favorable allele introgression. The consequences of low recombination also theoretically extend to the species-wide scale by decreasing the power of selection relative to genetic drift, and thereby hindering the purging of deleterious mutations. In this study, we used genotyping-by-sequencing (GBS) to identify 136,000 recombination breakpoints at high resolution within US and Chinese maize nested association mapping populations. We find that the pattern of cross-overs is highly predictable on the broad scale, following the distribution of gene density and CpG methylation. Several large inversions also suppress recombination in distinct regions of several families. We also identify recombination hotspots ranging in size from 1 kb to 30 kb. We find these hotspots to be historically stable and, compared with similar regions with low recombination, to have strongly differentiated patterns of DNA methylation and GC content. We also provide evidence for the historical action of GC-biased gene conversion in recombination hotspots. Finally, using genomic evolutionary rate profiling (GERP) to identify putative deleterious polymorphisms, we find evidence for reduced genetic load in hotspot regions, a phenomenon that may have considerable practical importance for breeding programs worldwide.

  4. An att site-based recombination reporter system for genome engineering and synthetic DNA assembly.

    PubMed

    Bland, Michael J; Ducos-Galand, Magaly; Val, Marie-Eve; Mazel, Didier

    2017-07-14

    Direct manipulation of the genome is a widespread technique for genetic studies and synthetic biology applications. The tyrosine and serine site-specific recombination systems of bacteriophages HK022 and ΦC31 are widely used for stable directional exchange and relocation of DNA sequences, making them valuable tools in these contexts. We have developed site-specific recombination tools that allow the direct selection of recombination events by embedding the attB site from each system within the β-lactamase resistance coding sequence (bla). The HK and ΦC31 tools were developed by placing the attB sites from each system into the signal peptide cleavage site coding sequence of bla. All possible open reading frames (ORFs) were inserted and tested for recombination efficiency and bla activity. Efficient recombination was observed for all tested ORFs (3 for HK, 6 for ΦC31) as shown through a cointegrate formation assay. The bla gene with the embedded attB site was functional for eight of the nine constructs tested. The HK/ΦC31 att-bla system offers a simple way to directly select recombination events, thus enhancing the use of site-specific recombination systems for carrying out precise, large-scale DNA manipulation, and adding useful tools to the genetics toolbox. We further show the power and flexibility of bla to be used as a reporter for recombination.

  5. Recombination-Driven Genome Evolution and Stability of Bacterial Species.

    PubMed

    Dixit, Purushottam D; Pang, Tin Yau; Maslov, Sergei

    2017-09-01

    While bacteria divide clonally, horizontal gene transfer followed by homologous recombination is now recognized as an important contributor to their evolution. However, the details of how the competition between clonality and recombination shapes genome diversity remains poorly understood. Using a computational model, we find two principal regimes in bacterial evolution and identify two composite parameters that dictate the evolutionary fate of bacterial species. In the divergent regime, characterized by either a low recombination frequency or strict barriers to recombination, cohesion due to recombination is not sufficient to overcome the mutational drift. As a consequence, the divergence between pairs of genomes in the population steadily increases in the course of their evolution. The species lacks genetic coherence with sexually isolated clonal subpopulations continuously formed and dissolved. In contrast, in the metastable regime, characterized by a high recombination frequency combined with low barriers to recombination, genomes continuously recombine with the rest of the population. The population remains genetically cohesive and temporally stable. Notably, the transition between these two regimes can be affected by relatively small changes in evolutionary parameters. Using the Multi Locus Sequence Typing (MLST) data, we classify a number of bacterial species to be either the divergent or the metastable type. Generalizations of our framework to include selection, ecologically structured populations, and horizontal gene transfer of nonhomologous regions are discussed as well. Copyright © 2017 by the Genetics Society of America.

  6. Characterization of a naturally occurring recombinant isolate of Grapevine fanleaf virus.

    PubMed

    Vigne, E; Demangeat, G; Komar, V; Fuchs, M

    2005-11-01

    The naturally occurring Grapevine fanleaf virus (GFLV) recombinant isolate A17b was recovered from its grapevine host by sap inoculation and serial passages onto Gomphrena globosa, a pseudo local lesion herbaceous host, and Chenopodium quinoa, a systemic herbaceous host, to characterize some of its biological properties. Sequence analysis of the CP gene, in which a recombinational event was previously detected, demonstrated the genetic stability of recombinant isolate A17b over a 5-year period in its natural host as well as in C. quinoa. Also, recombinant isolate A17b was graft transmissible, as shown by an in vitro heterologous approach, and transmitted by the nematode Xiphinema index as readily as nonrecombinant GFLV isolates. Furthermore, despite a lower pathogenicity on Chenopodium amaranticolor, recombinant isolate A17b had a similar host range and induced similar symptoms in type and severity to nonrecombinant GFLV isolates. Interestingly, the use of infectious chimeric RNA2 transcripts in combination to RNA1 transcripts of GFLV strain F13 suggested no implication of the recombination event in the CP gene of isolate A17b in the reduced pathogenicity on C. amaranticolor. Altogether, recombinant isolate A17b had similar biological properties to GFLV nonrecombinant isolates.

  7. Recombination in Glomus intraradices, a supposed ancient asexual arbuscular mycorrhizal fungus.

    PubMed

    Croll, Daniel; Sanders, Ian R

    2009-01-15

    Arbuscular mycorrhizal fungi (AMF) are important symbionts of most plant species, promoting plant diversity and productivity. This symbiosis is thought to have contributed to the early colonisation of land by plants. Morphological stasis over 400 million years and the lack of an observed sexual stage in any member of the phylum Glomeromycota led to the controversial suggestion of AMF being ancients asexuals. Evidence for recombination in AMF is contradictory. We addressed the question of recombination in the AMF Glomus intraradices by sequencing 11 polymorphic nuclear loci in 40 morphologically identical isolates from one field. Phylogenetic relationships among genotypes showed a reticulate network pattern providing a rationale to test for recombination. Five statistical tests predicted multiple recombinant regions in the genome of a core set of isolates. In contrast, five clonal lineages had fixed a large number of differences. Our data show that AMF from one field have undergone recombination but that clonal lineages coexist. This finding has important consequences for understanding AMF evolution, co-evolution of AMF and plants and highlights the potential for commercially introduced AMF inoculum recombining with existing local populations. Finally, our results reconcile seemingly contradictory studies on whether AMF are clonal or form recombining populations.

  8. The Development of Novel Recombinant Human Gelatins as Replacements for Animal-Derived Gelatin in Pharmaceutical Applications

    NASA Astrophysics Data System (ADS)

    Olsen, David; Chang, Robert; Williams, Kim E.; Polarek, James W.

    We have developed a recombinant expression system to produce a series of novel recombinant human gelatins that can substitute for animal sourced gelatin preparations currently used in pharmaceutical and nutraceutical applications. This system allows the production of human sequence gelatins, or, if desired, gelatins from any other species depending on the availability of the cloned gene. The gelatins produced with this recombinant system are of defined molecular weight, unlike the animal-sourced gelatins, which consist of numerous polypeptides of varying size. The fermentation and purification process used to prepare these recombinant gelatins does not use any human- or animal-derived components and thus this recombinant material should be free from viruses and agents that cause transmissible spongiform encephalopathies. The recombinant gelatins exhibit lot-to-lot reproducibility and we have performed extensive analytical testing on them. We have demonstrated the utility of these novel gelatins as biological stabilizers and plasma expanders, and we have shown they possess qualities that are important in applications where gel formation is critical. Finally, we provide examples of how our system allows the engineering of these recombinant gelatins to optimize the production process.

  9. Recombinants of influenza virus type B as potential live vaccine candidates: RNA characterization and evaluation in man.

    PubMed Central

    Lobmann, M.; Delem, A.; Jovanovic, D.; Peetermans, J.

    1981-01-01

    Two recombinants (R22 and R75) of the attenuated B/USSR/69 strain Bright and the virulent B/Hong Kong/5/72 and one recombinant (R5) of Bright and the virulent B/Hong Kong /8/73 were selected for genotypic and phenotypic caracterization. All three recombinants had the growth property of the attenuated parent Brigit. Analysis of their RNA's by polyacrylamide gel electrophoresis revealed that, the strains R22 and R75 had derived all their genes from Brigit, those coding for haemagglutinin excepted. These recombinants were clinically evaluated and found to be attenuated and immunogenic. The recombinant R5 which derived, besides the bene coding for the haemagglutinin, several other genes from B/Hong Kong/8/73 was only partly attenuated since it induced influenza-like symptoms in one out of three volunteers. It is concluded that the strain Brigit can be used as a donor of genes for the attenuation of the B/Hong Kong/5/72 virus and that recombinants of influenza type B can be identified, like influenza type A recombinants, by their RNA pattern. Images Plate 1 PMID:7019320

  10. Preparation and characterization of human recombinant protein 1/Clara cell M(r) 10,000 protein.

    PubMed

    Okutani, R; Itoh, Y; Yamada, T; Yamaguchi, T; Singh, G; Yagisawa, H; Kawai, T

    1996-09-01

    Protein 1, which is identical to human Clara cell M(r) 10(4) protein, is a homodimeric, low molecular mass protein (M(r) 14,000) and an effective inhibitor of phospholipase A2 activity. We have expressed this protein in E. coli and characterized its physiochemical and biological properties. Using a pET expression system, about 1.7 mg of purified recombinant protein 1 was obtained from 250 ml of E. coli culture. The amino-terminal sequence of recombinant protein 1 up to the 20th residue was identical to that of native protein 1 except for an extra methionine at the amino-terminus. On reversed-phase HPLC, recombinant protein 1 eluted at the same retention time as native protein 1. The dose-response curves of recombinant protein 1 and native protein 1 in an enzyme-linked immunosorbent assay for protein 1 were identical. Recombinant protein 1 inhibited both porcine pancreas and cobra venom phospholipase A2 activities. These results indicated that recombinant protein 1 is structurally and biologically identical to native protein 1. We found that recombinant protein 1 also inhibits phosphatidylinositol-specific phospholipase C activity.

  11. Whole-genome analysis of genetic recombination of hepatitis delta virus: molecular domain in delta antigen determining trans-activating efficiency.

    PubMed

    Chao, Mei; Lin, Chia-Chi; Lin, Feng-Ming; Li, Hsin-Pai; Iang, Shan-Bei

    2015-12-01

    Hepatitis delta virus (HDV) is the only animal RNA virus that has an unbranched rod-like genome with ribozyme activity and is replicated by host RNA polymerase. HDV RNA recombination was previously demonstrated in patients and in cultured cells by analysis of a region corresponding to the C terminus of the delta antigen (HDAg), the only viral-encoded protein. Here, a whole-genome recombination map of HDV was constructed using an experimental system in which two HDV-1 sequences were co-transfected into cultured cells and the recombinants were analysed by sequencing of cloned reverse transcription-PCR products. Fifty homologous recombinants with 60 crossovers mapping to 22 junctions were identified from 200 analysed clones. Small HDAg chimeras harbouring a junction newly detected in the recombination map were then constructed. The results further indicated that the genome-replication level of HDV was sensitive to the sixth amino acid within the N-terminal 22 aa of HDAg. Therefore, the recombination map established in this study provided a tool for not only understanding HDV RNA recombination, but also elucidating the related mechanisms, such as molecular elements responsible for the trans-activation levels of the small HDAg.

  12. Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome.

    PubMed

    Rizzon, Carène; Marais, Gabriel; Gouy, Manolo; Biémont, Christian

    2002-03-01

    We analyzed the distribution of 54 families of transposable elements (TEs; transposons, LTR retrotransposons, and non-LTR retrotransposons) in the chromosomes of Drosophila melanogaster, using data from the sequenced genome. The density of LTR and non-LTR retrotransposons (RNA-based elements) was high in regions with low recombination rates, but there was no clear tendency to parallel the recombination rate. However, the density of transposons (DNA-based elements) was significantly negatively correlated with recombination rate. The accumulation of TEs in regions of reduced recombination rate is compatible with selection acting against TEs, as selection is expected to be weaker in regions with lower recombination. The differences in the relationship between recombination rate and TE density that exist between chromosome arms suggest that TE distribution depends on specific characteristics of the chromosomes (chromatin structure, distribution of other sequences), the TEs themselves (transposition mechanism), and the species (reproductive system, effective population size, etc.), that have differing influences on the effect of natural selection acting against the TE insertions.

  13. Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes

    NASA Astrophysics Data System (ADS)

    Feng, Shih-Wei; Liao, Po-Hsun; Leung, Benjamin; Han, Jung; Yang, Fann-Wei; Wang, Hsiang-Chen

    2015-07-01

    Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantages of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED.

  14. Efficient carrier relaxation and fast carrier recombination of N-polar InGaN/GaN light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Shih-Wei, E-mail: swfeng@nuk.edu.tw; Liao, Po-Hsun; Leung, Benjamin

    2015-07-28

    Based on quantum efficiency and time-resolved electroluminescence measurements, the effects of carrier localization and quantum-confined Stark effect (QCSE) on carrier transport and recombination dynamics of Ga- and N-polar InGaN/GaN light-emitting diodes (LEDs) are reported. The N-polar LED exhibits shorter ns-scale response, rising, delay, and recombination times than the Ga-polar one does. Stronger carrier localization and the combined effects of suppressed QCSE and electric field and lower potential barrier acting upon the forward bias in an N-polar LED provide the advantages of more efficient carrier relaxation and faster carrier recombination. By optimizing growth conditions to enhance the radiative recombination, the advantagesmore » of more efficient carrier relaxation and faster carrier recombination in a competitive performance N-polar LED can be realized for applications of high-speed flash LEDs. The research results provide important information for carrier transport and recombination dynamics of an N-polar InGaN/GaN LED.« less

  15. First report of an HIV-1 triple recombinant of subtypes B, C and F in Buenos Aires, Argentina.

    PubMed

    Pando, María A; Eyzaguirre, Lindsay M; Segura, Marcela; Bautista, Christian T; Marone, Rubén; Ceballos, Ana; Montano, Silvia M; Sánchez, José L; Weissenbacher, Mercedes; Avila, María M; Carr, Jean K

    2006-09-07

    We describe the genetic diversity of currently transmitted strains of HIV-1 in men who have sex with men (MSM) in Buenos Aires, Argentina between 2000 and 2004. Nearly full-length sequence analysis of 10 samples showed that 6 were subtype B, 3 were BF recombinant and 1 was a triple recombinant of subtypes B, C and F. The 3 BF recombinants were 3 different unique recombinant forms. Full genome analysis of one strain that was subtype F when sequenced in pol was found to be a triple recombinant. Gag and pol were predominantly subtype F, while gp120 was subtype B; there were regions of subtype C interspersed throughout. The young man infected with this strain reported multiple sexual partners and sero-converted between May and November of 2004. This study reported for the first time the full genome analysis of a triple recombinant between subtypes B, C and F, that combines in one virus the three most common subtypes in South America.

  16. Recombination within the nonstructural genes of the parvovirus minute virus of mice (MVM) generates functional levels of wild-type NS1, which can be detected in the absence of selective pressure following transfection of nonreplicating plasmids.

    PubMed

    Pearson, J L; Pintel, D J

    2000-03-30

    Recombination within the coding region of the nonstructural genes of minute virus of mice (MVM), which generates functional levels of wild-type NS1, was observed in the absence of selective pressure following cotransfection of nonreplicating plasmids. P38 activity was used as a measure of recombinant NS1 production, which, together with direct detection of recombinant-generated products by RT-PCR, allowed an estimation of recombination efficiency. In addition, we show that very low levels of wild-type NS1 were able to significantly transactivate P38. Given that recombination following cotransfection can generate NS1 at these levels, our observations have implications for the study of parvoviral genetics, the construction of recombinant parvoviral vectors for gene therapy applications, and perhaps other systems using cotransfection of plasmids that share homologous sequences. Copyright 2000 Academic Press.

  17. Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films

    DOE PAGES

    Yang, Ye; Yang, Mengjin; Moore, David T.; ...

    2017-01-23

    Carrier recombination at defects is detrimental to the performance of solar energy conversion systems, including solar cells and photoelectrochemical devices. Point defects are localized within the bulk crystal while extended defects occur at surfaces and grain boundaries. If not properly managed, surfaces can be a large source of carrier recombination. Separating surface carrier dynamics from bulk and/or grain-boundary recombination in thin films is challenging. Here, we employ transient reflection spectroscopy to measure the surface carrier dynamics in methylammonium lead iodide perovskite polycrystalline films. We find that surface recombination limits the total carrier lifetime in perovskite polycrystalline thin films, meaning thatmore » recombination inside grains and/or at grain boundaries is less important than top and bottom surface recombination. As a result, the surface recombination velocity in polycrystalline films is nearly an order of magnitude smaller than that in single crystals, possibly due to unintended surface passivation of the films during synthesis.« less

  18. Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellsten, Uffe; Wright, Kevin M.; Jenkins, Jerry

    2013-11-13

    Meiotic recombination rates can vary widely across genomes, with hotspots of intense activity interspersed among cold regions. In yeast, hotspots tend to occur in promoter regions of genes, whereas in humans and mice hotspots are largely defined by binding sites of the PRDM9 protein. To investigate the detailed recombination pattern in a flowering plant we use shotgun resequencing of a wild population of the monkeyflower Mimulus guttatus to precisely locate over 400,000 boundaries of historic crossovers or gene conversion tracts. Their distribution defines some 13,000 hotspots of varying strengths, interspersed with cold regions of undetectably low recombination. Average recombination ratesmore » peak near starts of genes and fall off sharply, exhibiting polarity. Within genes, recombination tracts are more likely to terminate in exons than in introns. The general pattern is similar to that observed in yeast, as well as in PRDM9-knockout mice, suggesting that recombination initiation described here in Mimulus may reflect ancient and conserved eukaryotic mechanisms« less

  19. Recombination of mitochondrial DNA in skeletal muscle of individuals with multiple mitochondrial DNA heteroplasmy.

    PubMed

    Zsurka, Gábor; Kraytsberg, Yevgenia; Kudina, Tatiana; Kornblum, Cornelia; Elger, Christian E; Khrapko, Konstantin; Kunz, Wolfram S

    2005-08-01

    Experimental evidence for human mitochondrial DNA (mtDNA) recombination was recently obtained in an individual with paternal inheritance of mtDNA and in an in vitro cell culture system. Whether mtDNA recombination is a common event in humans remained to be determined. To detect mtDNA recombination in human skeletal muscle, we analyzed the distribution of alleles in individuals with multiple mtDNA heteroplasmy using single-cell PCR and allele-specific PCR. In all ten individuals who carried a heteroplasmic D-loop mutation and a distantly located tRNA point mutation or a large deletion, we observed a mixture of four allelic combinations (tetraplasmy), a hallmark of recombination. Twelve of 14 individuals with closely located heteroplasmic D-loop mutation pairs contained a mixture of only three types of mitochondrial genomes (triplasmy), consistent with the absence of recombination between adjacent markers. These findings indicate that mtDNA recombination is common in human skeletal muscle.

  20. Linkage disequilibrium in HLA cannot be explained by selective recombination.

    PubMed

    Termijtelen, A; D'Amaro, J; van Rood, J J; Schreuder, G M

    1995-11-01

    Some combinations of HLA-A, -B and -DR antigens occur more frequently than would be expected from their gene frequencies in the population. This phenomenon, referred to as Linkage Disequilibrium (LD) has been the origin of many speculations. One hypothesis to explain LD is that some haplotypes are protected from recombination. A second hypothesis is that these HLA antigens preferentially recombine after cross-over to create an LD haplotype. We tested these 2 hypotheses: from a pool of over 10,000 families typed in our department, we analyzed 126 families in which HLA-A:B or B:DR recombinant offspring was documented. To overcome a possible bias in our material, we used the non-recombined haplotypes from the same 126 families as a control group. Our results show that the number of cross-overs through LD haplotypes is not significantly lower then would be expected if recombination occurred randomly. Also the number of LD haplotypes created upon recombination was not significantly increased.

  1. Analysis of Recombinant Proteins in Transgenic Rice Seeds: Identity, Localization, Tolerance to Digestion, and Plant Stress Response.

    PubMed

    Wakasa, Yuhya; Takaiwa, Fumio

    2016-01-01

    Rice seeds are an ideal production platform for high-value recombinant proteins in terms of economy, scalability, safety, and stability. Strategies for the expression of large amounts of recombinant proteins in rice seeds have been established in the past decade and transgenic rice seeds that accumulate recombinant products such as bioactive peptides and proteins, which promote the health and quality of life of humans, have been generated in many laboratories worldwide. One of the most important advantages is the potential for direct oral delivery of transgenic rice seeds without the need for recombinant protein purification (downstream processing), which has been attributed to the high expression levels of recombinant products. Transgenic rice will be beneficial as a delivery system for pharmaceuticals and nutraceuticals in the future. This chapter introduces the strategy for producing recombinant protein in the edible part (endosperm) of the rice grain and describes methods for the analysis of transgenic rice seeds in detail.

  2. Recombination and Transfection Mapping of Cistron 5 of Bacteriophage Sp82g

    PubMed Central

    Green, D. MacDonald; Urban, Margeret I.

    1972-01-01

    Recombination between transfecting SP82G DNA molecules has been studied in Bacillus subtilis. Recombinant progeny issuing from transfected cells show many of the features that characterize progeny production in multiplicity reactivated bacteriophage, such as: majority recombinant clones, non-reciprocity of recombinant clones and the frequent absence of input alleles. While transfection substantially lowers the linkage observed between markers in normal phage crosses, linkage is observed at small map distances in transfection either by plating transfected bacteria or the progeny phage. Maps constructed from transfection crosses are identical to those of normal phage crosses, except in magnitude.—Examination of the concentration response of two marker biparental crosses, and three marker triparental crosses using transfecting DNA leads to the conclusion that at all concentrations, transfective centers are saturated with respect to the number of molecules that can be taken up. Thus, the frequency of recombinant infective centers, or recombinant progeny is independent of concentration effects. PMID:17248556

  3. Ligand-receptor assay for evaluation of functional activity of human recombinant VEGF and VEGFR-1 extracellular fragment.

    PubMed

    Leopol'd, A V; Baklaushev, V P; Korchagina, A A; Shein, S A; Grinenko, N F; Pavlov, K A; Ryabukhin, I A; Chekhonin, V P

    2012-04-01

    cDNA encoding VEGF and Ig-like extracellular domains 2-4 of VEGFR-1 (sFlt-1(2-4)) were cloned into prokaryotic expression vectors pET32a and pQE60. Recombinant proteins were purified (metal affinity chromatography) and renatured. Chemiluminescent study for the interaction of recombinant VEGF and sFlt-1(2-4) showed that biotinylated VEGF specifically binds to the polystyrene-immobilized receptor extracellular fragment. Biotinylated recombinant sFlt-1 interacts with immobilized VEGF. Analysis of the interaction of immobilized recombinant VEGFR-1 and VEGF with C6 glioma cells labeled with CFDA-SE (vital fluorescent dye) showed that recombinant VEGFR-1 also binds to native membrane-associated VEGF. Recombinant VEGF was shown to bind to specific receptors expressed on the surface of C6 glioma cells. Functional activity of these proteins was confirmed by ligand-receptor assay for VEGF and VEGFR-1 (sFlt-1) and quantitative chemiluminescent detection.

  4. Ethanol production by recombinant hosts

    DOEpatents

    Fowler, David E.; Horton, Philip G.; Ben-Bassat, Arie

    1996-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  5. Ethanol production by recombinant hosts

    DOEpatents

    Ingram, Lonnie O.; Beall, David S.; Burchhardt, Gerhard F. H.; Guimaraes, Walter V.; Ohta, Kazuyoshi; Wood, Brent E.; Shanmugam, Keelnatham T.

    1995-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  6. Self-regulation of recombinant DNA technology in Japan in the 1970s.

    PubMed

    Nagai, Hiroyuki; Nukaga, Yoshio; Saeki, Koji; Akabayashi, Akira

    2009-07-01

    Recombinant DNA technology was developed in the United States in the early 1970s. Leading scientists held an international Asilomar Conference in 1975 to examine the self regulation of recombinant DNA technology, followed by the U.S. National Institutes of Health drafting the Recombinant DNA Research Guidelines in 1976. The result of this conference significantly affected many nations, including Japan. However, there have been few historical studies on the self-regulation of recombinant technologies conducted by scientists and government officials in Japan. The purpose of this paper is to analyze how the Science Council of Japan, the Ministry of Education, Science adn Culture, and the Science and Technology Agency developed self-regulation policies for recombinant DNA technology in Japan in the 1970s. Groups of molecular biologist and geneticists played a key role in establishing guidelines in cooperation with government officials. Our findings suggest that self-regulation policies on recombinant DNA technology have influenced safety management for the life sciences and establishment of institutions for review in Japan.

  7. Mitochondrial DNA recombination in a free-ranging Australian lizard.

    PubMed

    Ujvari, Beata; Dowton, Mark; Madsen, Thomas

    2007-04-22

    Mitochondrial DNA (mtDNA) is the traditional workhorse for reconstructing evolutionary events. The frequent use of mtDNA in such analyses derives from the apparent simplicity of its inheritance: maternal and lacking bi-parental recombination. However, in hybrid zones, the reproductive barriers are often not completely developed, resulting in the breakdown of male mitochondrial elimination mechanisms, leading to leakage of paternal mitochondria and transient heteroplasmy, resulting in an increased possibility of recombination. Despite the widespread occurrence of heteroplasmy and the presence of the molecular machinery necessary for recombination, we know of no documented example of recombination of mtDNA in any terrestrial wild vertebrate population. By sequencing the entire mitochondrial genome (16761bp), we present evidence for mitochondrial recombination in the hybrid zone of two mitochondrial haplotypes in the Australian frillneck lizard (Chlamydosaurus kingii).

  8. Auger recombination in sodium iodide

    NASA Astrophysics Data System (ADS)

    McAllister, Andrew; Kioupakis, Emmanouil; Åberg, Daniel; Schleife, André

    2014-03-01

    Scintillators are an important tool used to detect high energy radiation - both in the interest of national security and in medicine. However, scintillator detectors currently suffer from lower energy resolutions than expected from basic counting statistics. This has been attributed to non-proportional light yield compared to incoming radiation, but the specific mechanism for this non-proportionality has not been identified. Auger recombination is a non-radiative process that could be contributing to the non-proportionality of scintillating materials. Auger recombination comes in two types - direct and phonon-assisted. We have used first-principles calculations to study Auger recombination in sodium iodide, a well characterized scintillating material. Our findings indicate that phonon-assisted Auger recombination is stronger in sodium iodide than direct Auger recombination. Computational resources provided by LLNL and NERSC. Funding provided by NA-22.

  9. A Generic Protocol for Intracellular Expression of Recombinant Proteins in Bacillus subtilis.

    PubMed

    Phan, Trang; Huynh, Phuong; Truong, Tuom; Nguyen, Hoang

    2017-01-01

    Bacillus subtilis (B. subtilis) is a potential and attractive host for the production of recombinant proteins. Different expression systems for B. subtilis have been developed recently, and various target proteins have been recombinantly synthesized and purified using this host. In this chapter, we introduce a generic protocol to express a recombinant protein in B. subtilis. It includes protocols for (1) using our typical expression vector (plasmid pHT254) to introduce a target gene, (2) transformation of the target vector into B. subtilis, and (3) evaluation of the actual expression of a recombinant protein.

  10. Analysis of Recombination in CdTe Heterostructures With Time-Resolved Two-Photon Excitation Microscopy

    DOE PAGES

    Kuciauskas, Darius; Wernsing, Keith; Jensen, Soren Alkaersig; ...

    2016-11-01

    Here, we used time-resolved photoluminescence microscopy to analyze charge carrier transport and recombination in CdTe double heterostructures fabricated by molecular beam epitaxy (MBE). This allowed us to determine the charge carrier mobility in this system, which was found to be 500-625 cm 2/(V s). Charge carrier lifetimes in the 15-100 ns range are limited by the interface recombination, and the data indicate higher interface recombination velocity near extended defects. This study describes a new method to analyze the spatial distribution of the interface recombination velocity and the interface defects in semiconductor heterostructures.

  11. Chromosome rearrangements, recombination suppression, and limited segregation distortion in hybrids between Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) and rainbow trout (O. mykiss)

    USGS Publications Warehouse

    Ostberg, Carl O.; Hauser, Lorenz; Pritchard, Victoria L.; Garza, John C.; Naish, Kerry A.

    2013-01-01

    Chromosome rearrangements suppressed recombination in the hybrids. This result supports several previous findings demonstrating that recombination suppression restricts gene flow between chromosomes that differ by arrangement. Conservation of synteny and map order between the hybrid and rainbow trout maps and minimal segregation distortion in the hybrids suggest rainbow and Yellowstone cutthroat trout genomes freely introgress across chromosomes with similar arrangement. Taken together, these results suggest that rearrangements impede introgression. Recombination suppression across rearrangements could enable large portions of non-recombined chromosomes to persist within admixed populations.

  12. Ectopic recombination between Ty elements in Saccharomyces cerevisiae is not induced by DNA damage.

    PubMed

    Parket, A; Kupiec, M

    1992-10-01

    Mitotic recombination is increased when cells are treated with a variety of physical and chemical agents that cause damage to their DNA. We show here, using Saccharomyces cerevisiae strains that carry marked Ty elements, that recombination between members of this family of retrotransposons is not increased by UV irradiation or by treatment with the radiomimetic drug methyl methanesulfonate. Both ectopic recombination and mutation events were elevated by these agents for non-Ty sequences in the same strain. We discuss possible mechanisms that can prevent the induction of recombination between Ty elements.

  13. Analysis of Recombination in CdTe Heterostructures With Time-Resolved Two-Photon Excitation Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuciauskas, Darius; Wernsing, Keith; Jensen, Soren Alkaersig

    Here, we used time-resolved photoluminescence microscopy to analyze charge carrier transport and recombination in CdTe double heterostructures fabricated by molecular beam epitaxy (MBE). This allowed us to determine the charge carrier mobility in this system, which was found to be 500-625 cm 2/(V s). Charge carrier lifetimes in the 15-100 ns range are limited by the interface recombination, and the data indicate higher interface recombination velocity near extended defects. This study describes a new method to analyze the spatial distribution of the interface recombination velocity and the interface defects in semiconductor heterostructures.

  14. The Proteasomal Rpn11 Metalloprotease Suppresses Tombusvirus RNA Recombination and Promotes Viral Replication via Facilitating Assembly of the Viral Replicase Complex

    PubMed Central

    Prasanth, K. Reddisiva; Barajas, Daniel

    2014-01-01

    ABSTRACT RNA viruses co-opt a large number of cellular proteins that affect virus replication and, in some cases, viral genetic recombination. RNA recombination helps viruses in an evolutionary arms race with the host's antiviral responses and adaptation of viruses to new hosts. Tombusviruses and a yeast model host are used to identify cellular factors affecting RNA virus replication and RNA recombination. In this study, we have examined the role of the conserved Rpn11p metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates, in tombusvirus replication and recombination in Saccharomyces cerevisiae and plants. Depletion or mutations of Rpn11p lead to the rapid formation of viral RNA recombinants in combination with reduced levels of viral RNA replication in yeast or in vitro based on cell extracts. Rpn11p interacts with the viral replication proteins and is recruited to the viral replicase complex (VRC). Analysis of the multifunctional Rpn11p has revealed that the primary role of Rpn11p is to act as a “matchmaker” that brings the viral p92pol replication protein and the DDX3-like Ded1p/RH20 DEAD box helicases into VRCs. Overexpression of Ded1p can complement the defect observed in rpn11 mutant yeast by reducing TBSV recombination. This suggests that Rpn11p can suppress tombusvirus recombination via facilitating the recruitment of the cellular Ded1p helicase, which is a strong suppressor of viral recombination, into VRCs. Overall, this work demonstrates that the co-opted Rpn11p, which is involved in the assembly of the functional proteasome, also functions in the proper assembly of the tombusvirus VRCs. IMPORTANCE RNA viruses evolve rapidly due to genetic changes based on mutations and RNA recombination. Viral genetic recombination helps viruses in an evolutionary arms race with the host's antiviral responses and facilitates adaptation of viruses to new hosts. Cellular factors affect viral RNA recombination, although the role of the host in virus evolution is still understudied. In this study, we used a plant RNA virus, tombusvirus, to examine the role of a cellular proteasomal protein, called Rpn11, in tombusvirus recombination in a yeast model host, in plants, and in vitro. We found that the cellular Rpn11 is subverted for tombusvirus replication and Rpn11 has a proteasome-independent function in facilitating viral replication. When the Rpn11 level is knocked down or a mutated Rpn11 is expressed, then tombusvirus RNA goes through rapid viral recombination and evolution. Taken together, the results show that the co-opted cellular Rpn11 is a critical host factor for tombusviruses by regulating viral replication and genetic recombination. PMID:25540361

  15. Natural Competence of Xylella fastidiosa Occurs at a High Frequency Inside Microfluidic Chambers Mimicking the Bacterium's Natural Habitats

    PubMed Central

    Kandel, Prem P.; Lopez, Samantha M.; Almeida, Rodrigo P. P.

    2016-01-01

    ABSTRACT Xylella fastidiosa is a xylem-limited bacterium that is the causal agent of emerging diseases in a number of economically important crops. Genetic diversity studies have demonstrated homologous recombination occurring among X. fastidiosa strains, which has been proposed to contribute to host plant shifts. Moreover, experimental evidence confirmed that X. fastidiosa is naturally competent for recombination in vitro. Here, as an approximation of natural habitats (plant xylem vessels and insect mouthparts), recombination was studied in microfluidic chambers (MCs) filled with media amended with grapevine xylem sap. First, different media were screened for recombination in solid agar plates using a pair of X. fastidiosa strains that were previously reported to recombine in coculture. The highest frequency of recombination was obtained with PD3 medium, compared to those with the other two media (X. fastidiosa medium [XFM] and periwinkle wilt [PW] medium) used in previous studies. Dissection of the media components led to the identification of bovine serum albumin as an inhibitor of recombination that was correlated to its previously known effect on inhibition of twitching motility. When recombination was performed in liquid culture, the frequencies were significantly higher under flow conditions (MCs) than under batch conditions (test tubes). The recombination frequencies in MCs and agar plates were not significantly different from each other. Grapevine xylem sap from both susceptible and tolerant varieties allowed high recombination frequency in MCs when mixed with PD3. These results suggest that X. fastidiosa has the ability to be naturally competent in the natural growth environment of liquid flow, and this phenomenon could have implications in X. fastidiosa environmental adaptation. IMPORTANCE Xylella fastidiosa is a plant pathogen that lives inside xylem vessels (where water and nutrients are transported inside the plant) and the mouthparts of insect vectors. This bacterium causes emerging diseases in various crops worldwide, including recent outbreaks in Europe. The mechanisms by which this bacterium adapts to new hosts is not understood, but it was previously shown that it is naturally competent, meaning that it can take up DNA from the environment and incorporate it into its genome (recombination). In this study, we show that the frequency of recombination is highest when the bacterium is grown under flow conditions in microfluidic chambers modeled after its natural habitats, and recombination was still high when the medium was amended with grapevine sap. Our results suggest that this bacterium is able to recombine when growing inside plants or insects, and this can be a mechanism of adaptation of this pathogen that causes incurable diseases. PMID:27316962

  16. The physics of background discrimination in liquid xenon, and first results from Xenon10 in the hunt for WIMP dark matter

    NASA Astrophysics Data System (ADS)

    Dahl, Carl Eric

    2009-06-01

    The WIMP limit set by the Xenon10 experiment in 2007 signals a new era in direct detection of dark matter, with several large-scale liquid target detectors now under construction. A major challenge in these detectors will be to understand backgrounds at the level necessary to claim a positive WIMP signal. In liquid xenon, these backgrounds are dominated by electron recoils, which may be distinguished from the WIMP signal (nuclear recoils) by their higher charge-to-light ratio. During the construction and operation of Xenon10, the prototype detector Xed probed the physics of this discrimination. Particle interactions in liquid xenon both ionize and excite xenon atoms, giving charge and scintillation signals, respectively. Some fraction of ions recombine, reducing the charge signal and creating additional scintillation. The charge-to-light ratio, determined by the initial exciton-ion ratio and the ion recombination fraction, provides the basis for discrimination between electron and nuclear recoils. Intrinsic fluctuations in the recombination fraction limit discrimination. Changes in recombination induce an exact anti-correlation between charge and light, and when calibrated this anti-correlation distinguishes recombination fluctuations from uncorrelated fluctuations in the measured signals. We determine the mean recombination and recombination fluctuations as a function of energy and applied field for electron and nuclear recoils, finding that recombination fluctuations are already the limiting factor for discrimination above ~12 keVr (nuclear recoil energy). Below 12 keVr statistical fluctuations in the number of scintillation photons counted dominate, and we project a x6 improvement in background rejection with a x2 increase in light collection efficiency. We also build a simple recombination model that successfully reproduces the mean recombination in electron and nuclear recoils, including the surprising reversal of the expected trend for recombination with ionization density in low energy electron recoils. The model also reproduces the measured recombination fluctuations to within a factor of two at high energies. Surprisingly, the model suggests that recombination at low energies is independent of ionization density, and our observed discrimination is due not to the different stopping powers of electrons and nuclei as was thought, but rather to a different initial exciton-ion ratio. We suggest two possible physical models for this new result.

  17. Re-engineering bacteria for ethanol production

    DOEpatents

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  18. Recombination of cluster ions

    NASA Technical Reports Server (NTRS)

    Johnsen, Rainer

    1993-01-01

    Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.

  19. Genome-wide variation in recombination rate in Eucalyptus.

    PubMed

    Gion, Jean-Marc; Hudson, Corey J; Lesur, Isabelle; Vaillancourt, René E; Potts, Brad M; Freeman, Jules S

    2016-08-09

    Meiotic recombination is a fundamental evolutionary process. It not only generates diversity, but influences the efficacy of natural selection and genome evolution. There can be significant heterogeneity in recombination rates within and between species, however this variation is not well understood outside of a few model taxa, particularly in forest trees. Eucalypts are forest trees of global economic importance, and dominate many Australian ecosystems. We studied recombination rate in Eucalyptus globulus using genetic linkage maps constructed in 10 unrelated individuals, and markers anchored to the Eucalyptus reference genome. This experimental design provided the replication to study whether recombination rate varied between individuals and chromosomes, and allowed us to study the genomic attributes and population genetic parameters correlated with this variation. Recombination rate varied significantly between individuals (range = 2.71 to 3.51 centimorgans/megabase [cM/Mb]), but was not significantly influenced by sex or cross type (F1 vs. F2). Significant differences in recombination rate between chromosomes were also evident (range = 1.98 to 3.81 cM/Mb), beyond those which were due to variation in chromosome size. Variation in chromosomal recombination rate was significantly correlated with gene density (r = 0.94), GC content (r = 0.90), and the number of tandem duplicated genes (r = -0.72) per chromosome. Notably, chromosome level recombination rate was also negatively correlated with the average genetic diversity across six species from an independent set of samples (r = -0.75). The correlations with genomic attributes are consistent with findings in other taxa, however, the direction of the correlation between diversity and recombination rate is opposite to that commonly observed. We argue this is likely to reflect the interaction of selection and specific genome architecture of Eucalyptus. Interestingly, the differences amongst chromosomes in recombination rates appear stable across Eucalyptus species. Together with the strong correlations between recombination rate and features of the Eucalyptus reference genome, we maintain these findings provide further evidence for a broad conservation of genome architecture across the globally significant lineages of Eucalyptus.

  20. Anomalous Abundances in Gaseous Nebulae From Recombination and Collisional Lines: Improved Photoionization and Recombination Studies

    NASA Astrophysics Data System (ADS)

    Pradhan, Anil Kumar; Nahar, S. N.; Eissner, W. B.; Montenegro, M.

    2011-01-01

    A perplexing anomaly arises in the determination of abundances of common elements in gaseous nebulae, as derived from collisionally excited lines (CEL) as opposed to those from Recombination Lines (RCL). The "abundance discrepancy factors" can range from a factor of 2 to an order of magnitude or more. That has led to quite different interpretation of the physical structure and processes in gaseous nebulae, such as temperature fluctuations across the object, or metal-rich concentrations leading to a dual-abundnace scenario. We show that the problem may lie in inaccuracies in photoionization and recombination models neglecting low-energy resonance phenomena due to fine structure. Whereas the atomic physics of electron impact excitation of forbidden lines is well understood, and accurate collision strengths have long been available, that is not generally the case for electron-ion recombination cross sections. A major problem is the inclusion of relativisitic effects as it pertains to the existence of very low-energy fine structure resonances in photoionization cross sections. We carry out new relativistic calculations for photoionization and recombination cross sections using a recently extended version of the Breit-Pauli R-matrix codes, and the unified electron-ion recombination method that subsumes both the radiative and the dielectronic recombination (RR and DR) processes in an ab initio and self-consistent manner. We find that near-thresold resonances manifest themselves within fine structure levels of the ground state of ions, enhancing low-temperature recombination rate coefficients at 1000-10,000 K. The resulting enahncement in level-specific and total recombination rate coefficients should therefore lead to reduced abundances derived from RCL, and in accordance with those from CEL. We present results for photoionization of O II into, and recombination from, O III. Theoretical cross sections are benchmarked against high-resolution measurements from synchrotron based light sources. Work on other atomic species is in progress.

  1. Cytokinetic study of MCF-7 cells treated with commercial and recombinant bromelain.

    PubMed

    Fouz, Nour; Amid, Azura; Hashim, Yumi Zuhanis Has-Yun

    2014-01-01

    Breast cancer is a leading cause of death in women. The available chemotherapy drugs have been associated with many side effects. Bromelain has novel medicinal qualities including anti-inflammatory, anti-thrombotic, fibrinolytic and anti-cancer functions. Commercially available bromelain is obtained through tedious methods; therefore, recombinant bromelain may provide a cheaper and simpler choice with similar quality. This study aimed to assess the effects of commercial and recombinant bromelain on the cytokinetic behavior of MCF-7 breast cancer cells and their potential as therapeutic alternatives in cancer treatment. Cytotoxic activities of commercial and recombinant bromelain were determined using (sulforhodamine) SRB assay. Next, cell viability assays were conducted to determine effects of commercial and recombinant bromelain on MCF-7 cell cytokinetic behavior. Finally, the established growth kinetic data were used to modify a model that predicts the effects of commercial and recombinant bromelain on MCF-7 cells. Commercial and recombinant bromelain exerted strong effects towards decreasing the cell viability of MCF-7 cells with IC50 values of 5.13 μg/mL and 6.25 μg/mL, respectively, compared to taxol with an IC50 value of 0.063 μg/mL. The present results indicate that commercial and recombinant bromelain both have anti-proliferative activity, reduced the number of cell generations from 3.92 to 2.81 for commercial bromelain and to 2.86 for recombinant bromelain, while with taxol reduction was to 3.12. Microscopic observation of bromelain-treated MCF-7 cells demonstrated detachment. Inhibition activity was verified with growth rates decreased dynamically from 0.009 h-1 to 0.0059 h-1 for commercial bromelain and to 0.0063 h-1 for recombinant bromelain. Commercial and recombinant bromelain both affect cytokinetics of MCF-7 cells by decreasing cell viability, demonstrating similar strength to taxol.

  2. Identification of Novel Recombinant Forms of Hepatitis B Virus Generated from Genotypes Ae and G in HIV-1-Positive Japanese Men Who Have Sex with Men.

    PubMed

    Kojima, Yoko; Kawahata, Takuya; Mori, Haruyo; Furubayashi, Keiichi; Taniguchi, Yasushi; Itoda, Ichiro; Komano, Jun

    2015-07-01

    The rare hepatitis B virus (HBV) genotype G (HBV/G) coinfects HIV-1-positive individuals along with HBV/A and generates recombinants. However, the circulation of HBV A/G recombinants remains poorly understood. This molecular epidemiologic study examined HBV A/G recombinants in Japanese HIV-1-positive men who have sex with men (MSM). Initially, blood specimens submitted for confirmatory tests of HIV infection in Osaka and Tokyo, Japan, from 2006 to 2013 were examined for HIV-1, and HIV-1-positive specimens were screened for HBV. Among 817 specimens from HIV-1-positive individuals, HBsAg was detected in 59 specimens; of these, HBV/Ae (alternatively A2), a subgenotype of HBV/A prevalent in Europe and North America, was identified in 70.2%, HBV/C in 17.5%, and HBV/G in 10.5%, and HBV/E in 1.8% according to the core gene sequence. The full-length genome analysis of HBV was performed on HBV/G-positive specimens because some HBV A/G recombinants were historically overlooked by genotyping based on a partial genome analysis. It revealed that five of the specimens contained novel Ae/G recombinants, the core gene of which had a high sequence similarity to HBV/G. Detailed analyses showed that novel recombinants were coinfected with HBV/Ae in a recombinant-dominant fashion. No major drug-resistant mutations were found in the newly identified HBV Ae/G recombinants. Some of the individuals asymptomatically coinfected with HIV/HBV suffered mild liver injury. This study demonstrated that novel Ae/G HBV recombinants were identified in Japanese HIV-1-positive MSM. The pathogenicity of novel HBV Ae/G recombinants should be examined in a future longitudinal study. Surveillance of such viruses in HIV-1-positive individuals should be emphasized.

  3. How good are indirect tests at detecting recombination in human mtDNA?

    PubMed

    White, Daniel James; Bryant, David; Gemmell, Neil John

    2013-07-08

    Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D' and r(2), Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ(2)) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7-70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed.

  4. 25th anniversary article: charge transport and recombination in polymer light-emitting diodes.

    PubMed

    Kuik, Martijn; Wetzelaer, Gert-Jan A H; Nicolai, Herman T; Craciun, N Irina; De Leeuw, Dago M; Blom, Paul W M

    2014-01-01

    This article reviews the basic physical processes of charge transport and recombination in organic semiconductors. As a workhorse, LEDs based on a single layer of poly(p-phenylene vinylene) (PPV) derivatives are used. The hole transport in these PPV derivatives is governed by trap-free space-charge-limited conduction, with the mobility depending on the electric field and charge-carrier density. These dependencies are generally described in the framework of hopping transport in a Gaussian density of states distribution. The electron transport on the other hand is orders of magnitude lower than the hole transport. The reason is that electron transport is hindered by the presence of a universal electron trap, located at 3.6 eV below vacuum with a typical density of ca. 3 × 10¹⁷ cm⁻³. The trapped electrons recombine with free holes via a non-radiative trap-assisted recombination process, which is a competing loss process with respect to the emissive bimolecular Langevin recombination. The trap-assisted recombination in disordered organic semiconductors is governed by the diffusion of the free carrier (hole) towards the trapped carrier (electron), similar to the Langevin recombination of free carriers where both carriers are mobile. As a result, with the charge-carrier mobilities and amount of trapping centers known from charge-transport measurements, the radiative recombination as well as loss processes in disordered organic semiconductors can be fully predicted. Evidently, future work should focus on the identification and removing of electron traps. This will not only eliminate the non-radiative trap-assisted recombination, but, in addition, will shift the recombination zone towards the center of the device, leading to an efficiency improvement of more than a factor of two in single-layer polymer LEDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Superoxide dismutase recombinant Lactobacillus fermentum ameliorates intestinal oxidative stress through inhibiting NF-κB activation in a trinitrobenzene sulphonic acid-induced colitis mouse model.

    PubMed

    Hou, C L; Zhang, J; Liu, X T; Liu, H; Zeng, X F; Qiao, S Y

    2014-06-01

    Superoxide dismutase (SOD) can prevent and cure inflammatory bowel diseases by decreasing the amount of reactive oxygen species. Unfortunately, short half-life of SOD in the gastrointestinal tract limited its application in the intestinal tract. This study aimed to investigate the treatment effects of recombinant SOD Lactobacillus fermentum in a colitis mouse model. In this study, we expressed the sodA gene in Lact. fermentum I5007 to obtain the SOD recombinant strain. Then, we determined the therapeutic effects of this SOD recombinant strain in a trinitrobenzene sulphonic acid (TNBS)-induced colitis mouse model. We found that SOD activity in the recombinant Lact. fermentum was increased by almost eightfold compared with that in the wild type. Additionally, both the wild type and the recombinant Lact. fermentum increased the numbers of lactobacilli in the colon of mice (P < 0·05). Colitis mice treated with recombinant Lact. fermentum showed a higher survival rate and lower disease activity index (P < 0·05). Recombinant Lact. fermentum significantly decreased colonic mucosa histological scoring for infiltration of inflammatory cells, lipid peroxidation, the expression of pro-inflammatory cytokines and myeloperoxidase (P < 0·05) and inhibited NF-κB activity in colitis mice (P < 0·05). SOD recombinant Lact. fermentum significantly reduced oxidative stress and inflammation through inhibiting NF-κB activation in the TNBS-induced colitis model. This study provides insights into the anti-inflammatory effects of SOD recombinant Lact. fermentum, indicating the potential therapeutic effects in preventing and curing intestinal bowel diseases. © 2014 The Society for Applied Microbiology.

  6. Recombination Does Not Hinder Formation or Detection of Ecological Species of Synechococcus Inhabiting a Hot Spring Cyanobacterial Mat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melendrez, Melanie C.; Becraft, Eric D.; Wood, Jason M.

    Recent studies of bacterial speciation have claimed to support the biological species concept—that reduced recombination is required for bacterial populations to diverge into species. This conclusion has been reached from the discovery that ecologically distinct clades show lower rates of recombination than that which occurs among closest relatives. However, these previous studies did not attempt to determine whether the more-rapidly recombining close relatives within the clades studied may also have diversified ecologically, without benefit of sexual isolation. Here we have measured the impact of recombination on ecological diversification within and between two ecologically distinct clades (A and B’) of Synechococcusmore » in a hot spring microbial mat in Yellowstone National Park, using a cultivation-free, multi-locus approach. Bacterial artificial chromosome (BAC) libraries were constructed from mat samples collected at 60°C and 65°C. Analysis of multiple linked loci near Synechococcus 16S rRNA genes showed little evidence of recombination between the A and B’ lineages, but a record of recombination was apparent within each lineage. Recombination and mutation rates within each lineage were of similar magnitude, but recombination had a somewhat greater impact on sequence diversity than mutation, as also seen in many other bacteria and archaea. Despite recombination within the A and B’ lineages, there was evidence of ecological diversification within each lineage. The algorithm Ecotype Simulation identified sequence clusters consistent with ecologically distinct populations (ecotypes), and several hypothesized ecotypes were distinct in their habitat associations and in their adaptations to different microenvironments. We conclude that sexual isolation is more likely to follow ecological divergence than to precede it. Thus, an ecology-based model of speciation appears more appropriate than the biological species concept for bacterial and archaeal diversification.« less

  7. Analysis of the Origin and Evolutionary History of HIV-1 CRF28_BF and CRF29_BF Reveals a Decreasing Prevalence in the AIDS Epidemic of Brazil

    PubMed Central

    Ristic, Natalia; Zukurov, Jean; Alkmim, Wagner; Diaz, Ricardo Sobhie; Janini, Luiz Mario; Chin, Mario P. S.

    2011-01-01

    Background HIV-1 subtype B and subtype F are prevalent in the AIDS epidemic of Brazil. Recombinations between these subtypes have generated at least four BF circulating recombinant forms (CRFs). CRF28_BF and CRF29_BF are among the first two BF recombinants being identified in Brazil and they contributed significantly to the epidemic. However, the evolution and demographic histories of the CRFs are unclear. Methodology/Principal Findings A collection of gag and pol sequences sampled within Brazil was screened for CRF28_BF-like and CRF29_BF-like recombination patterns. A Bayesian coalescent framework was employed to delineate the phylogenetic, divergence time and population dynamics of the virus having CRF28_BF-like and CRF29_BF-like genotype. These recombinants were phylogenetically related to each other and formed a well-supported monophyletic clade dated to 1988–1989. The effective number of infections by these recombinants grew exponentially over a five-year period after their emergence, but then decreased toward the present following a logistic model of population growth. The demographic pattern of both recombinants closely resembles those previously reported for CRF31_BC. Conclusions We revealed that HIV-1 recombinants of the CRF28_BF/CRF29_BF clade are still circulating in the Brazilian population. These recombinants did not exhibit a strong founder effect and showed a decreasing prevalence in the AIDS epidemic of Brazil. Our data suggested that multiple URFs may also play a role in shaping the epidemic of recombinant BF HIV-1 in the region. PMID:21390250

  8. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse

    PubMed Central

    Balcova, Maria; Faltusova, Barbora; Gergelits, Vaclav; Bhattacharyya, Tanmoy; Mihola, Ondrej; Trachtulec, Zdenek; Knopf, Corinna; Fotopulosova, Vladana; Chvatalova, Irena; Gregorova, Sona; Forejt, Jiri

    2016-01-01

    Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies. PMID:27104744

  9. How Good Are Indirect Tests at Detecting Recombination in Human mtDNA?

    PubMed Central

    White, Daniel James; Bryant, David; Gemmell, Neil John

    2013-01-01

    Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D′ and r2, Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ2) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7−70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed. PMID:23665874

  10. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse.

    PubMed

    Balcova, Maria; Faltusova, Barbora; Gergelits, Vaclav; Bhattacharyya, Tanmoy; Mihola, Ondrej; Trachtulec, Zdenek; Knopf, Corinna; Fotopulosova, Vladana; Chvatalova, Irena; Gregorova, Sona; Forejt, Jiri

    2016-04-01

    Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies.

  11. Functional bottlenecks for generation of HIV-1 intersubtype Env recombinants.

    PubMed

    Bagaya, Bernard S; Vega, José F; Tian, Meijuan; Nickel, Gabrielle C; Li, Yuejin; Krebs, Kendall C; Arts, Eric J; Gao, Yong

    2015-05-23

    Intersubtype recombination is a powerful driving force for HIV evolution, impacting both HIV-1 diversity within an infected individual and within the global epidemic. This study examines if viral protein function/fitness is the major constraint shaping selection of recombination hotspots in replication-competent HIV-1 progeny. A better understanding of the interplay between viral protein structure-function and recombination may provide insights into both vaccine design and drug development. In vitro HIV-1 dual infections were used to recombine subtypes A and D isolates and examine breakpoints in the Env glycoproteins. The entire env genes of 21 A/D recombinants with breakpoints in gp120 were non-functional when cloned into the laboratory strain, NL4-3. Likewise, cloning of A/D gp120 coding regions also produced dead viruses with non-functional Envs. 4/9 replication-competent viruses with functional Env's were obtained when just the V1-V5 regions of these same A/D recombinants (i.e. same A/D breakpoints as above) were cloned into NL4-3. These findings on functional A/D Env recombinants combined with structural models of Env suggest a conserved interplay between the C1 domain with C5 domain of gp120 and extracellular domain of gp41. Models also reveal a co-evolution within C1, C5, and ecto-gp41 domains which might explain the paucity of intersubtype recombination in the gp120 V1-V5 regions, despite their hypervariability. At least HIV-1 A/D intersubtype recombination in gp120 may result in a C1 from one subtype incompatible with a C5/gp41 from another subtype.

  12. Experimental evidence that RNA recombination occurs in the Japanese encephalitis virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, C.-K.; Chen, W.-J., E-mail: wjchen@mail.cgu.edu.t; Department of Public Health and Parasitology, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan

    2009-11-25

    Due to the lack of a proofreading function and error-repairing ability of genomic RNA, accumulated mutations are known to be a force driving viral evolution in the genus Flavivirus, including the Japanese encephalitis (JE) virus. Based on sequencing data, RNA recombination was recently postulated to be another factor associated with genomic variations in these viruses. We herein provide experimental evidence to demonstrate the occurrence of RNA recombination in the JE virus using two local pure clones (T1P1-S1 and CJN-S1) respectively derived from the local strains, T1P1 and CJN. Based on results from a restriction fragment length polymorphism (RFLP) assay onmore » the C/preM junction comprising a fragment of 868 nucleotides (nt 10-877), the recombinant progeny virus was primarily formed in BHK-21 cells that had been co-infected with the two clones used in this study. Nine of 20 recombinant forms of the JE virus had a crossover in the nt 123-323 region. Sequencing data derived from these recombinants revealed that no nucleotide deletion or insertion occurred in this region favoring crossovers, indicating that precisely, not aberrantly, homologous recombination was involved. With site-directed mutagenesis, three stem-loop secondary structures were destabilized and re-stabilized in sequence, leading to changes in the frequency of recombination. This suggests that the conformation, not the free energy, of the secondary structure is important in modulating RNA recombination of the virus. It was concluded that because RNA recombination generates genetic diversity in the JE virus, this must be considered particularly in studies of viral evolution, epidemiology, and possible vaccine safety.« less

  13. The 3'-to-5' exonuclease activity of vaccinia virus DNA polymerase is essential and plays a role in promoting virus genetic recombination.

    PubMed

    Gammon, Don B; Evans, David H

    2009-05-01

    Poxviruses are subjected to extraordinarily high levels of genetic recombination during infection, although the enzymes catalyzing these reactions have never been identified. However, it is clear that virus-encoded DNA polymerases play some unknown yet critical role in virus recombination. Using a novel, antiviral-drug-based strategy to dissect recombination and replication reactions, we now show that the 3'-to-5' proofreading exonuclease activity of the viral DNA polymerase plays a key role in promoting recombination reactions. Linear DNA substrates were prepared containing the dCMP analog cidofovir (CDV) incorporated into the 3' ends of the molecules. The drug blocked the formation of concatemeric recombinant molecules in vitro in a process that was catalyzed by the proofreading activity of vaccinia virus DNA polymerase. Recombinant formation was also blocked when CDV-containing recombination substrates were transfected into cells infected with wild-type vaccinia virus. These inhibitory effects could be overcome if CDV-containing substrates were transfected into cells infected with CDV-resistant (CDV(r)) viruses, but only when resistance was linked to an A314T substitution mutation mapping within the 3'-to-5' exonuclease domain of the viral polymerase. Viruses encoding a CDV(r) mutation in the polymerase domain still exhibited a CDV-induced recombination deficiency. The A314T substitution also enhanced the enzyme's capacity to excise CDV molecules from the 3' ends of duplex DNA and to recombine these DNAs in vitro, as judged from experiments using purified mutant DNA polymerase. The 3'-to-5' exonuclease activity appears to be an essential virus function, and our results suggest that this might be because poxviruses use it to promote genetic exchange.

  14. Recombination Does Not Hinder Formation or Detection of Ecological Species of Synechococcus Inhabiting a Hot Spring Cyanobacterial Mat

    DOE PAGES

    Melendrez, Melanie C.; Becraft, Eric D.; Wood, Jason M.; ...

    2016-01-14

    Recent studies of bacterial speciation have claimed to support the biological species concept—that reduced recombination is required for bacterial populations to diverge into species. This conclusion has been reached from the discovery that ecologically distinct clades show lower rates of recombination than that which occurs among closest relatives. However, these previous studies did not attempt to determine whether the more-rapidly recombining close relatives within the clades studied may also have diversified ecologically, without benefit of sexual isolation. Here we have measured the impact of recombination on ecological diversification within and between two ecologically distinct clades (A and B’) of Synechococcusmore » in a hot spring microbial mat in Yellowstone National Park, using a cultivation-free, multi-locus approach. Bacterial artificial chromosome (BAC) libraries were constructed from mat samples collected at 60°C and 65°C. Analysis of multiple linked loci near Synechococcus 16S rRNA genes showed little evidence of recombination between the A and B’ lineages, but a record of recombination was apparent within each lineage. Recombination and mutation rates within each lineage were of similar magnitude, but recombination had a somewhat greater impact on sequence diversity than mutation, as also seen in many other bacteria and archaea. Despite recombination within the A and B’ lineages, there was evidence of ecological diversification within each lineage. The algorithm Ecotype Simulation identified sequence clusters consistent with ecologically distinct populations (ecotypes), and several hypothesized ecotypes were distinct in their habitat associations and in their adaptations to different microenvironments. We conclude that sexual isolation is more likely to follow ecological divergence than to precede it. Thus, an ecology-based model of speciation appears more appropriate than the biological species concept for bacterial and archaeal diversification.« less

  15. Supplementation with a recombinant human chorionic gonadotropin microdose leads to similar outcomes in ovarian stimulation with recombinant follicle-stimulating hormone using either a gonadotropin-releasing hormone agonist or antagonist for pituitary suppression.

    PubMed

    Cavagna, Mario; Maldonado, Luiz Guilherme Louzada; de Souza Bonetti, Tatiana Carvalho; de Almeida Ferreira Braga, Daniela Paes; Iaconelli, Assumpto; Borges, Edson

    2010-06-01

    To compare the outcomes of protocols for ovarian stimulation with recombinant hCG microdose, with GnRH agonists and antagonists for pituitary suppression. Prospective nonrandomized clinical trial. A private assisted reproduction center. We studied 182 patients undergoing intracytoplasmic sperm injection (ICSI) cycles, allocated into two groups: GnRH agonist group, in which patients received a GnRH agonist (n = 73), and a GnRH antagonist group, in which patients were administered a GnRH antagonist for pituitary suppression (n = 109). Pituitary suppression with GnRH agonist or GnRH antagonist. Ovarian stimulation carried out with recombinant FSH and supplemented with recombinant hCG microdose. Total dose of recombinant FSH and recombinant hCG administered; E(2) concentrations and endometrial width on the day of hCG trigger; number of follicles aspirated, oocytes and mature oocytes retrieved; fertilization, pregnancy (PR), implantation, and miscarriage rates. The total dose of recombinant FSH and recombinant hCG administered were similar between groups, as were the E(2) concentrations and endometrial width. The number of follicles aspirated, oocytes, and metaphase II oocytes collected were also comparable. There were no statistically significant differences in fertilization, PR, implantation, and miscarriage rates in the GnRH agonist and GnRH antagonist groups. When using recombinant hCG microdose supplementation for controlled ovarian stimulation (COS), there are no differences in laboratory or clinical outcomes with the use of either GnRH antagonist or agonist for pituitary suppression. Copyright (c) 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress.

    PubMed

    Wilhelm, Therese; Ragu, Sandrine; Magdalou, Indiana; Machon, Christelle; Dardillac, Elodie; Técher, Hervé; Guitton, Jérôme; Debatisse, Michelle; Lopez, Bernard S

    2016-05-01

    Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation, and emphasize the importance of homologous recombination as a barrier against spontaneous genetic instability triggered by the endogenous oxidative/replication stress axis.

  17. Interfacial recombination at /AlGa/As/GaAs heterojunction structures

    NASA Technical Reports Server (NTRS)

    Ettenberg, M.; Kressel, H.

    1976-01-01

    Experiments were conducted to determine the interfacial recombination velocity at Al0.25Ga0.75As/GaAs and Al0.5Ga0.5As/GaAs heterojunctions. The recombination velocity was derived from a study of the injected minority-carrier lifetime as a function of the junction spacing. It is found that for heterojunction spacings in excess of about 1 micron, the interfacial recombination can be characterized by a surface recombination velocity of 4,000 and 8,000 cm/sec for the two types of heterojunctions, respectively. For double-heterojunction spacings below 1 micron, the constancy of the minority-carrier lifetime suggests that the interfacial recombination velocity decreases effectively. This effect is technologically very important since it makes it possible to construct very low-threshold injection lasers. No such effect is observed in single-heterojunction diodes.

  18. MosaicSolver: a tool for determining recombinants of viral genomes from pileup data

    PubMed Central

    Wood, Graham R.; Ryabov, Eugene V.; Fannon, Jessica M.; Moore, Jonathan D.; Evans, David J.; Burroughs, Nigel

    2014-01-01

    Viral recombination is a key evolutionary mechanism, aiding escape from host immunity, contributing to changes in tropism and possibly assisting transmission across species barriers. The ability to determine whether recombination has occurred and to locate associated specific recombination junctions is thus of major importance in understanding emerging diseases and pathogenesis. This paper describes a method for determining recombinant mosaics (and their proportions) originating from two parent genomes, using high-throughput sequence data. The method involves setting the problem geometrically and the use of appropriately constrained quadratic programming. Recombinants of the honeybee deformed wing virus and the Varroa destructor virus-1 are inferred to illustrate the method from both siRNAs and reads sampling the viral genome population (cDNA library); our results are confirmed experimentally. Matlab software (MosaicSolver) is available. PMID:25120266

  19. I-V-T analysis of radiation damage in high efficiency Si solar cells

    NASA Technical Reports Server (NTRS)

    Banerjee, S.; Anderson, W. A.; Rao, B. B.

    1985-01-01

    A detailed analysis of current-voltage characteristics of N(+)-P/P solar cells indicate that there is a combination of different mechanisms which results in an enhancement in the dark current and in turn deteriorates the photovoltaic performance of the solar cells after 1 MeV e(-) irradiation. The increase in the dark current is due to three effects, i.e., bulk recombination, space charge recombination by deep traps and space charge recombination through shallow traps. It is shown that the increase in bulk recombination current is about 2 to 3 orders of magnitude whereas space charge recombination current due to shallow traps increases only by an order or so and no space charge recombination through deep traps was observed after irradiation. Thus, in order to improve the radiation hardness of these devices, bulk properties should be preserved.

  20. Recombination elevates the effective evolutionary rate and facilitates the establishment of HIV-1 infection in infants after mother-to-child transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanborn, Keri B.; Somasundaran, Mohan; Luzuriaga, Katherine

    Some previous studies have demonstrated that single HIV-1 genotypes are commonly transmitted from mother to child, but such analyses primarily used single samples from mother and child. It is possible that in a single sample, obtained early after infection, only the most replication competent virus is detected even when other forms may have been transmitted. Such forms may have advantages later in infection, and may thus be detected in follow-up samples. Furthermore, because HIV-1 frequently recombines, phylogenetic analyses that ignore recombination may miss transmission of multiple forms if they recombine after transmission. Moreover, recombination may facilitate adaptation, thus providing anmore » advantage in establishing infection. The effect of recombination on viral evolution in HIV-1 infected children has not been well defined.« less

  1. Recombination elevates the effective evolutionary rate and facilitates the establishment of HIV-1 infection in infants after mother-to-child transmission

    DOE PAGES

    Sanborn, Keri B.; Somasundaran, Mohan; Luzuriaga, Katherine; ...

    2015-11-16

    Some previous studies have demonstrated that single HIV-1 genotypes are commonly transmitted from mother to child, but such analyses primarily used single samples from mother and child. It is possible that in a single sample, obtained early after infection, only the most replication competent virus is detected even when other forms may have been transmitted. Such forms may have advantages later in infection, and may thus be detected in follow-up samples. Furthermore, because HIV-1 frequently recombines, phylogenetic analyses that ignore recombination may miss transmission of multiple forms if they recombine after transmission. Moreover, recombination may facilitate adaptation, thus providing anmore » advantage in establishing infection. The effect of recombination on viral evolution in HIV-1 infected children has not been well defined.« less

  2. Evolution of recombination in a constant environment

    PubMed Central

    Feldman, Marcus W.; Christiansen, Freddy B.; Brooks, Lisa D.

    1980-01-01

    The theory of evolution at a selectively neutral locus that controls the recombination between two major loci that are under selection is studied. If the major loci are at a stable equilibrium in linkage disequilibrium under selection and recombination, then a mutation at the modifier locus will increase in frequency when rare if and only if it decreases the recombination fraction. If the major loci are in disequilibrium at a balance between selection against deleterious alleles and mutation towards them, then two new phenomena are observed. First, a recombination increasing mutation will succeed if the disequilibrium is negative and the modifier is sufficiently tightly linked to the major loci. Second, depending on the strength of selection, even if the disequilibrium is negative, recombination reduction may occur for looser linkage between the major and modifier loci. PMID:16592864

  3. Assessment of Recombination in the S-segment Genome of Crimean-Congo Hemorrhagic Fever Virus in Iran.

    PubMed

    Chinikar, Sadegh; Shah-Hosseini, Nariman; Bouzari, Saeid; Shokrgozar, Mohammad Ali; Mostafavi, Ehsan; Jalali, Tahmineh; Khakifirouz, Sahar; Groschup, Martin H; Niedrig, Matthias

    2016-03-01

    Crimean-Congo Hemorrhagic Fever Virus (CCHFV) belongs to genus Nairovirus and family Bunyaviridae. The main aim of this study was to investigate the extent of recombination in S-segment genome of CCHFV in Iran. Samples were isolated from Iranian patients and those available in GenBank, and analyzed by phylogenetic and bootscan methods. Through comparison of the phylogenetic trees based on full length sequences and partial fragments in the S-segment genome of CCHFV, genetic switch was evident, due to recombination event. Moreover, evidence of multiple recombination events was detected in query isolates when bootscan analysis was used by SimPlot software. Switch of different genomic regions between different strains by recombination could contribute to CCHFV diversification and evolution. The occurrence of recombination in CCHFV has a critical impact on epidemiological investigations and vaccine design.

  4. CRISPR-directed mitotic recombination enables genetic mapping without crosses.

    PubMed

    Sadhu, Meru J; Bloom, Joshua S; Day, Laura; Kruglyak, Leonid

    2016-05-27

    Linkage and association studies have mapped thousands of genomic regions that contribute to phenotypic variation, but narrowing these regions to the underlying causal genes and variants has proven much more challenging. Resolution of genetic mapping is limited by the recombination rate. We developed a method that uses CRISPR (clustered, regularly interspaced, short palindromic repeats) to build mapping panels with targeted recombination events. We tested the method by generating a panel with recombination events spaced along a yeast chromosome arm, mapping trait variation, and then targeting a high density of recombination events to the region of interest. Using this approach, we fine-mapped manganese sensitivity to a single polymorphism in the transporter Pmr1. Targeting recombination events to regions of interest allows us to rapidly and systematically identify causal variants underlying trait differences. Copyright © 2016, American Association for the Advancement of Science.

  5. Charge carrier recombination dynamics in perovskite and polymer solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulke, Andreas; Kniepert, Juliane; Kurpiers, Jona

    2016-03-14

    Time-delayed collection field experiments are applied to planar organometal halide perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) based solar cells to investigate charge carrier recombination in a fully working solar cell at the nanosecond to microsecond time scale. Recombination of mobile (extractable) charges is shown to follow second-order recombination dynamics for all fluences and time scales tested. Most importantly, the bimolecular recombination coefficient is found to be time-dependent, with an initial value of ca. 10{sup −9} cm{sup 3}/s and a progressive reduction within the first tens of nanoseconds. Comparison to the prototypical organic bulk heterojunction device PTB7:PC{sub 71}BM yields important differences with regardmore » to the mechanism and time scale of free carrier recombination.« less

  6. Novel canine circovirus strains from Thailand: Evidence for genetic recombination.

    PubMed

    Piewbang, Chutchai; Jo, Wendy K; Puff, Christina; van der Vries, Erhard; Kesdangsakonwut, Sawang; Rungsipipat, Anudep; Kruppa, Jochen; Jung, Klaus; Baumgärtner, Wolfgang; Techangamsuwan, Somporn; Ludlow, Martin; Osterhaus, Albert D M E

    2018-05-14

    Canine circoviruses (CanineCV's), belonging to the genus Circovirus of the Circoviridae family, were detected by next generation sequencing in samples from Thai dogs with respiratory symptoms. Genetic characterization and phylogenetic analysis of nearly complete CanineCV genomes suggested that natural recombination had occurred among different lineages of CanineCV's. Similarity plot and bootscaning analyses indicated that American and Chinese viruses had served as major and minor parental viruses, respectively. Positions of recombination breakpoints were estimated using maximum-likelihood frameworks with statistical significant testing. The putative recombination event was located in the Replicase gene, intersecting with open reading frame-3. Analysis of nucleotide changes confirmed the origin of the recombination event. This is the first description of naturally occurring recombinant CanineCV's that have resulted in the circulation of newly emerging CanineCV lineages.

  7. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Kenichi; Stoller, Roger E.; Xu, Haixuan

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in neutron irradiated nuclear materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1:0a₀ to 3:3a₀ have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomicmore » level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a₀ by taking the average of the recombination distances from 80 simulation cases. This value agrees well with the experimental estimate. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster.« less

  8. The effect of solvent relaxation time constants on free energy gap law for ultrafast charge recombination following photoinduced charge separation.

    PubMed

    Mikhailova, Valentina A; Malykhin, Roman E; Ivanov, Anatoly I

    2018-05-16

    To elucidate the regularities inherent in the kinetics of ultrafast charge recombination following photoinduced charge separation in donor-acceptor dyads in solutions, the simulations of the kinetics have been performed within the stochastic multichannel point-transition model. Increasing the solvent relaxation time scales has been shown to strongly vary the dependence of the charge recombination rate constant on the free energy gap. In slow relaxing solvents the non-equilibrium charge recombination occurring in parallel with solvent relaxation is very effective so that the charge recombination terminates at the non-equilibrium stage. This results in a crucial difference between the free energy gap laws for the ultrafast charge recombination and the thermal charge transfer. For the thermal reactions the well-known Marcus bell-shaped dependence of the rate constant on the free energy gap is realized while for the ultrafast charge recombination only a descending branch is predicted in the whole area of the free energy gap exceeding 0.2 eV. From the available experimental data on the population kinetics of the second and first excited states for a series of Zn-porphyrin-imide dyads in toluene and tetrahydrofuran solutions, an effective rate constant of the charge recombination into the first excited state has been calculated. The obtained rate constant being very high is nearly invariable in the area of the charge recombination free energy gap from 0.2 to 0.6 eV that supports the theoretical prediction.

  9. Analyses of a whole-genome inter-clade recombination map of hepatitis delta virus suggest a host polymerase-driven and viral RNA structure-promoted template-switching mechanism for viral RNA recombination

    PubMed Central

    Chao, Mei; Wang, Tzu-Chi; Lin, Chia-Chi; Yung-Liang Wang, Robert; Lin, Wen-Bin; Lee, Shang-En; Cheng, Ying-Yu; Yeh, Chau-Ting; Iang, Shan-Bei

    2017-01-01

    The genome of hepatitis delta virus (HDV) is a 1.7-kb single-stranded circular RNA that folds into an unbranched rod-like structure and has ribozyme activity. HDV redirects host RNA polymerase(s) (RNAP) to perform viral RNA-directed RNA transcription. RNA recombination is known to contribute to the genetic heterogeneity of HDV, but its molecular mechanism is poorly understood. Here, we established a whole-genome HDV-1/HDV-4 recombination map using two cloned sequences coexisting in cultured cells. Our functional analyses of the resulting chimeric delta antigens (the only viral-encoded protein) and recombinant genomes provide insights into how recombination promotes the genotypic and phenotypic diversity of HDV. Our examination of crossover distribution and subsequent mutagenesis analyses demonstrated that ribozyme activity on HDV genome, which is required for viral replication, also contributes to the generation of an inter-clade junction. These data provide circumstantial evidence supporting our contention that HDV RNA recombination occurs via a replication-dependent mechanism. Furthermore, we identify an intrinsic asymmetric bulge on the HDV genome, which appears to promote recombination events in the vicinity. We therefore propose a mammalian RNAP-driven and viral-RNA-structure-promoted template-switching mechanism for HDV genetic recombination. The present findings improve our understanding of the capacities of the host RNAP beyond typical DNA-directed transcription. PMID:28977829

  10. Plasticity of Meiotic Recombination Rates in Response to Temperature in Arabidopsis

    PubMed Central

    Lloyd, Andrew; Morgan, Chris; H. Franklin, F. Chris

    2018-01-01

    Meiotic recombination shuffles genetic information from sexual species into gametes to create novel combinations in offspring. Thus, recombination is an important factor in inheritance, adaptation, and responses to selection. However, recombination is not a static parameter; meiotic recombination rate is sensitive to variation in the environment, especially temperature. That recombination rates change in response to both increases and decreases in temperature was reported in Drosophila a century ago, and since then in several other species. But it is still unclear what the underlying mechanism is, and whether low- and high-temperature effects are mechanistically equivalent. Here, we show that, as in Drosophila, both high and low temperatures increase meiotic crossovers in Arabidopsis thaliana. We show that, from a nadir at 18°, both lower and higher temperatures increase recombination through additional class I (interfering) crossovers. However, the increase in crossovers at high and low temperatures appears to be mechanistically at least somewhat distinct, as they differ in their association with the DNA repair protein MLH1. We also find that, in contrast to what has been reported in barley, synaptonemal complex length is negatively correlated with temperature; thus, an increase in chromosome axis length may account for increased crossovers at low temperature in A. thaliana, but cannot explain the increased crossovers observed at high temperature. The plasticity of recombination has important implications for evolution and breeding, and also for the interpretation of observations of recombination rate variation among natural populations. PMID:29496746

  11. [Eukaryotic Expression and Immunogenic Research of Recombination Ebola Virus Membrane Protein Gp-Fc].

    PubMed

    Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi

    2016-01-01

    We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.

  12. [Construction and identification of recombinant human platelet-derived growth factor-B adenoviral vector and transfection into periodontal ligament stem cells].

    PubMed

    Shang, Shu-huan; Zhang, Yu-feng; Shi, Bin; Cheng, Xiang-rong

    2008-10-01

    To construct a recombinant human platelet-derived growth factor-B (PDGF-B) adenoviral vector and to transfect it into human periodontal ligament stem cells (PDLSC). The recombinant plasmid pAd-PDGF-B was constructed by homologous recombination and confirmed by restriction endonucleases digestion. Recombinant adenovirus was packaged in HEK293 cells. PDLSC were transfected with recombinant adenovirus and PDGF-B expression was confirmed. Expression of collagen type I gene was determined by quantitative analysis of the products of RT-PCR. The cell proliferation was determined with MTT colorimetric assay. The recombinant plasmid pAd-PDGF-B was confirmed by restriction endonucleases digestion. EGFP expression was observed on the third day after transfecting, and the expression of PDGF-B was detected. Immunohistochemical methods revealed that PDGF-B was expressed in PDLSC. Levels of expression of collagen type I gene were increased significantly by transfer of the exogenous PDGF-B gene to PDLSC. At the same time, findings indicated that Ad-PDGF-B stimulated PDLSC proliferation. MTT assay indicated the absorbance of PDLSC by stimulating with Ad-PDGF-B was (0.68 +/- 0.02), P < 0.01. Using the AdEasy system, the human PDGF-B recombinant adenovirus can be rapidly obtained. These results indicate that recombinant adenoviruses encoding PDGF-B transgenes could modulate proliferative activity of PDLSC, enhance the high expression of collagen type I and lay the foundation for periodontal tissue regeneration and dental implant gene therapy.

  13. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe

    DOE PAGES

    Nakashima, Kenichi; Stoller, Roger E.; Xu, Haixuan

    2015-08-04

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in neutron irradiated nuclear materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1:0a₀ to 3:3a₀ have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomicmore » level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a₀ by taking the average of the recombination distances from 80 simulation cases. This value agrees well with the experimental estimate. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster.« less

  14. The Effects of the Recombinant CCR5 T4 Lysozyme Fusion Protein on HIV-1 Infection.

    PubMed

    Jin, Qingwen; Chen, Hong; Wang, Xingxia; Zhao, Liandong; Xu, Qingchen; Wang, Huijuan; Li, Guanyu; Yang, Xiaofan; Ma, Hongming; Wu, Haoquan; Ji, Xiaohui

    2015-01-01

    Insertion of T4 lysozyme (T4L) into the GPCR successfully enhanced GPCR protein stability and solubilization. However, the biological functions of the recombinant GPCR protein have not been analyzed. We engineered the CCR5-T4L mutant and expressed and purified the soluble recombinant protein using an E.coli expression system. The antiviral effects of this recombinant protein in THP-1 cell lines, primary human macrophages, and PBMCs from different donors were investigated. We also explored the possible mechanisms underlying the observed antiviral effects. Our data showed the biphasic inhibitory and promotion effects of different concentrations of soluble recombinant CCR5-T4L protein on R5 tropic human immunodeficiency virus-1 (HIV-1) infection in THP-1 cell lines, human macrophages, and PBMCs from clinical isolates. We demonstrated that soluble recombinant CCR5-T4L acts as a HIV-1 co-receptor, interacts with wild type CCR5, down-regulates the surface CCR5 expression in human macrophages, and interacts with CCL5 to inhibit macrophage migration. Using binding assays, we further determined that recombinant CCR5-T4L and [125I]-CCL5 compete for the same binding site on wild type CCR5. Our results suggest that recombinant CCR5-T4L protein marginally promotes HIV-1 infection at low concentrations and markedly inhibits infection at higher concentrations. This recombinant protein may be helpful in the future development of anti-HIV-1 therapeutic agents.

  15. Homologous and Homeologous Intermolecular Gene Conversion Are Not Differentially Affected by Mutations in the DNA Damage or the Mismatch Repair Genes Rad1, Rad50, Rad51, Rad52, Rad54, Pms1 and Msh2

    PubMed Central

    Porter, G.; Westmoreland, J.; Priebe, S.; Resnick, M. A.

    1996-01-01

    Mismatch repair (MMR) genes or genes involved in both DNA damage repair and homologous recombination might affect homeologous vs. homologous recombination differentially. Spontaneous mitotic gene conversion between a chromosome and a homologous or homeologous donor sequence (14% diverged) on a single copy plasmid was examined in wild-type Saccharomyces cerevisiae strains and in MMR or DNA damage repair mutants. Homologous recombination in rad51, rad52 and rad54 mutants was considerably reduced, while there was little effect of rad1, rad50, pms1 and msh2 null mutations. DNA divergence resulted in no differential effect on recombination rates in the wild type or the mutants; there was only a five- to 10-fold reduction in homeologous relative to homologous recombination regardless of background. Since DNA divergence is known to affect recombination in some systems, we propose that differences in the role of MMR depends on the mode of recombination and/or the level of divergence. Based on analysis of the recombination breakpoints, there is a minimum of three homologous bases required at a recombination junction. A comparison of Rad(+) vs. rad52 strains revealed that while all conversion tracts are continuous, elimination of RAD52 leads to the appearance of a novel class of very short conversion tracts. PMID:8725224

  16. Molecular Electronic Coupling Controls Charge Recombination Kinetics in Organic Solar Cells of Low Bandgap Diketopyrrolopyrrole, Carbazole, and Thiophene Polymers

    PubMed Central

    2013-01-01

    Low-bandgap diketopyrrolopyrrole- and carbazole-based polymer bulk-heterojunction solar cells exhibit much faster charge carrier recombination kinetics than that encountered for less-recombining poly(3-hexylthiophene). Solar cells comprising these polymers exhibit energy losses caused by carrier recombination of approximately 100 mV, expressed as reduction in open-circuit voltage, and consequently photovoltaic conversion efficiency lowers in more than 20%. The analysis presented here unravels the origin of that energy loss by connecting the limiting mechanism governing recombination dynamics to the electronic coupling occurring at the donor polymer and acceptor fullerene interfaces. Previous approaches correlate carrier transport properties and recombination kinetics by means of Langevin-like mechanisms. However, neither carrier mobility nor polymer ionization energy helps understanding the variation of the recombination coefficient among the studied polymers. In the framework of the charge transfer Marcus theory, it is proposed that recombination time scale is linked with charge transfer molecular mechanisms at the polymer/fullerene interfaces. As expected for efficient organic solar cells, small electronic coupling existing between donor polymers and acceptor fullerene (Vif < 1 meV) and large reorganization energy (λ ≈ 0.7 eV) are encountered. Differences in the electronic coupling among polymer/fullerene blends suffice to explain the slowest recombination exhibited by poly(3-hexylthiophene)-based solar cells. Our approach reveals how to directly connect photovoltaic parameters as open-circuit voltage to molecular properties of blended materials. PMID:23662167

  17. Effects of chemical and physical agents on recombination events in cells of the germ line of male and female Drosophila melanogaster.

    PubMed

    Würgler, F E

    1991-01-01

    Genotoxic agents can induce mutations as well as recombination in the genetic material. The fruit fly Drosophila melanogaster was one of the first assay systems to test physical and chemical agents for recombinogenic effects. Such effects can be observed in cells of the germ line as well as in somatic cells. At present information is available on 54 agents, among them 48 chemicals that have been tested in cells of the germ line of males and/or females. Effects on meiotic recombination in female germ cells cannot simply be classified as positive or negative since for a number of agents, depending on the chromosome region studied, recombination frequencies may be increased, unaffected or decreased. The male germ line of D. melanogaster represents a unique situation because meiotic recombination does not occur. Among 25 agents tested in male germ cells 24 did induce male recombination, among them alkylating, intercalating and cross-linking agents, direct-acting ones as well as compounds needing metabolic activation. With several compounds the frequency of induced recombination is highest in the heterochromatic regions near the centromeres. In brood pattern analyses, e.g., after exposure of adult males to ionizing radiation, the first appearance of crossover progeny is indicative of the sampling of exposed spermatocytes. In premeiotic cells of the male and the female germ line mitotic recombination can occur. Upon clonal expansion of the recombinant cells, clusters of identical crossovers can be observed.

  18. Recombination rate plasticity: revealing mechanisms by design

    PubMed Central

    Sefick, Stephen; Rushton, Chase

    2017-01-01

    For over a century, scientists have known that meiotic recombination rates can vary considerably among individuals, and that environmental conditions can modify recombination rates relative to the background. A variety of external and intrinsic factors such as temperature, age, sex and starvation can elicit ‘plastic’ responses in recombination rate. The influence of recombination rate plasticity on genetic diversity of the next generation has interesting and important implications for how populations evolve. Further, many questions remain regarding the mechanisms and molecular processes that contribute to recombination rate plasticity. Here, we review 100 years of experimental work on recombination rate plasticity conducted in Drosophila melanogaster. We categorize this work into four major classes of experimental designs, which we describe via classic studies in D. melanogaster. Based on these studies, we highlight molecular mechanisms that are supported by experimental results and relate these findings to studies in other systems. We synthesize lessons learned from this model system into experimental guidelines for using recent advances in genotyping technologies, to study recombination rate plasticity in non-model organisms. Specifically, we recommend (1) using fine-scale genome-wide markers, (2) collecting time-course data, (3) including crossover distribution measurements, and (4) using mixed effects models to analyse results. To illustrate this approach, we present an application adhering to these guidelines from empirical work we conducted in Drosophila pseudoobscura. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109222

  19. First identification of a recombinant form of hepatitis C virus in Austrian patients by full-genome next generation sequencing.

    PubMed

    Stelzl, Evelyn; Haas, Bernhard; Bauer, Bernd; Zhang, Sherry; Fiss, Ellen H; Hillman, Grantland; Hamilton, Aaron T; Mehta, Rochak; Heil, Marintha L; Marins, Ed G; Santner, Brigitte I; Kessler, Harald H

    2017-01-01

    Hepatitis C virus (HCV) intergenotypic recombinant forms have been reported for various HCV genotypes/subtypes in several countries worldwide. In a recent study, four patients living in Austria had been identified to be possibly infected with a recombinant HCV strain. To clarify results and determine the point of recombination, full-genome next-generation sequencing using the Illumina MiSeq v2 300 cycle kit (Illumina, San Diego, CA, USA) was performed in the present study. Samples of all of the patients contained the recombinant HCV strain 2k/1b. The point of recombination was found to be within the HCV NS2 gene between nucleotide positions 3189-3200 based on H77 numbering. While three of four patients were male and had migration background from Chechnya (n = 2) and Azerbaijan (n = 1), the forth patient was a female born in Austria. Three of the four patients including the female had intravenous drug abuse as a risk factor for HCV transmission. While sequencing techniques are limited to a few specialized laboratories, a genotyping assay that uses both ends of the HCV genome should be employed to identify patients infected with a recombinant HCV strain. The correct identification of recombinant strains also has an impact considering the tailored choice of anti-HCV treatment.

  20. Collisional-radiative model including recombination processes for W27+ ion★

    NASA Astrophysics Data System (ADS)

    Murakami, Izumi; Sasaki, Akira; Kato, Daiji; Koike, Fumihiro

    2017-10-01

    We have constructed a collisional-radiative (CR) model for W27+ ions including 226 configurations with n ≤ 9 and ł ≤ 5 for spectroscopic diagnostics. We newly include recombination processes in the model and this is the first result of extreme ultraviolet spectrum calculated for recombining plasma component. Calculated spectra in 40-70 Å range in ionizing and recombining plasma components show similar 3 strong lines and 1 line weak in recombining plasma component at 45-50 Å and many weak lines at 50-65 Å for both components. Recombination processes do not contribute much to the spectrum at around 60 Å for W27+ ion. Dielectronic satellite lines are also minor contribution to the spectrum of recombining plasma component. Dielectronic recombination (DR) rate coefficient from W28+ to W27+ ions is also calculated with the same atomic data in the CR model. We found that larger set of energy levels including many autoionizing states gave larger DR rate coefficients but our rate agree within factor 6 with other works at electron temperature around 1 keV in which W27+ and W28+ ions are usually observed in plasmas. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, and Grzegorz Karwasz.

  1. Genetics of Genome-Wide Recombination Rate Evolution in Mice from an Isolated Island.

    PubMed

    Wang, Richard J; Payseur, Bret A

    2017-08-01

    Recombination rate is a heritable quantitative trait that evolves despite the fundamentally conserved role that recombination plays in meiosis. Differences in recombination rate can alter the landscape of the genome and the genetic diversity of populations. Yet our understanding of the genetic basis of recombination rate evolution in nature remains limited. We used wild house mice ( Mus musculus domesticus ) from Gough Island (GI), which diverged recently from their mainland counterparts, to characterize the genetics of recombination rate evolution. We quantified genome-wide autosomal recombination rates by immunofluorescence cytology in spermatocytes from 240 F 2 males generated from intercrosses between GI-derived mice and the wild-derived inbred strain WSB/EiJ. We identified four quantitative trait loci (QTL) responsible for inter-F 2 variation in this trait, the strongest of which had effects that opposed the direction of the parental trait differences. Candidate genes and mutations for these QTL were identified by overlapping the detected intervals with whole-genome sequencing data and publicly available transcriptomic profiles from spermatocytes. Combined with existing studies, our findings suggest that genome-wide recombination rate divergence is not directional and its evolution within and between subspecies proceeds from distinct genetic loci. Copyright © 2017 by the Genetics Society of America.

  2. Homologous recombination occurs in a distinct retroviral subpopulation and exhibits high negative interference.

    PubMed Central

    Hu, W S; Bowman, E H; Delviks, K A; Pathak, V K

    1997-01-01

    Homologous recombination and deletions occur during retroviral replication when reverse transcriptase switches templates. While recombination occurs solely by intermolecular template switching (between copackaged RNAs), deletions can occur by an intermolecular or an intramolecular template switch (within the same RNA). To directly compare the rates of intramolecular and intermolecular template switching, two spleen necrosis virus-based vectors were constructed. Each vector contained a 110-bp direct repeat that was previously shown to delete at a high rate. The 110-bp direct repeat was flanked by two different sets of restriction site markers. These vectors were used to form heterozygotic virions containing RNAs of each parental vector, from which recombinant viruses were generated. By analyses of the markers flanking the direct repeats in recombinant and nonrecombinant proviruses, the rates of intramolecular and intermolecular template switching were determined. The results of these analyses indicate that intramolecular template switching is much more efficient than intermolecular template switching and that direct repeat deletions occur primarily through intramolecular template switching events. These studies also indicate that retroviral recombination occurs within a distinct viral subpopulation and exhibits high negative interference, whereby the selection of one recombination event increases the probability that a second recombination event will be observed. PMID:9223494

  3. Local and sex-specific biases in crossover vs. noncrossover outcomes at meiotic recombination hot spots in mice

    PubMed Central

    de Boer, Esther; Jasin, Maria; Keeney, Scott

    2015-01-01

    Meiotic recombination initiated by programmed double-strand breaks (DSBs) yields two types of interhomolog recombination products, crossovers and noncrossovers, but what determines whether a DSB will yield a crossover or noncrossover is not understood. In this study, we analyzed the influence of sex and chromosomal location on mammalian recombination outcomes by constructing fine-scale recombination maps in both males and females at two mouse hot spots located in different regions of the same chromosome. These include the most comprehensive maps of recombination hot spots in oocytes to date. One hot spot, located centrally on chromosome 1, behaved similarly in male and female meiosis: Crossovers and noncrossovers formed at comparable levels and ratios in both sexes. In contrast, at a distal hot spot, crossovers were recovered only in males even though noncrossovers were obtained at similar frequencies in both sexes. These findings reveal an example of extreme sex-specific bias in recombination outcome. We further found that estimates of relative DSB levels are surprisingly poor predictors of relative crossover frequencies between hot spots in males. Our results demonstrate that the outcome of mammalian meiotic recombination can be biased, that this bias can vary depending on location and cellular context, and that DSB frequency is not the only determinant of crossover frequency. PMID:26251527

  4. Insect Larvae: A New Platform to Produce Commercial Recombinant Proteins.

    PubMed

    Targovnik, Alexandra M; Arregui, Mariana B; Bracco, Lautaro F; Urtasun, Nicolas; Baieli, Maria F; Segura, Maria M; Simonella, Maria A; Fogar, Mariela; Wolman, Federico J; Cascone, Osvaldo; Miranda, Maria V

    2016-01-01

    In Biotechnology, the expression of recombinant proteins is a constantly growing field and different hosts are used for this purpose. Some valuable proteins cannot be produced using traditional systems. Insects from the order Lepidoptera infected with recombinant baculovirus have appeared as a good choice to express high levels of proteins, especially those with post-translational modifications. Lepidopteran insects, which are extensively distributed in the world, can be used as small protein factories, the new biofactories. Species like Bombyx mori (silkworm) have been analyzed in Asian countries to produce a great number of recombinant proteins for use in basic and applied science and industry. Many proteins expressed in this larva have been commercialized. Several recombinant proteins produced in silkworms have already been commercialized. On the other hand, species like Spodoptera frugiperda, Heliothis virescens, Rachiplusia nu, Helicoverpa zea and Trichoplusia ni are widely distributed in both the occidental world and Europe. The expression of recombinant proteins in larvae has the advantage of its low cost in comparison with insect cell cultures. A wide variety of recombinant proteins, including enzymes, hormones and vaccines, have been efficiently expressed with intact biological activity. The expression of pharmaceutically proteins, using insect larvae or cocoons, has become very attractive. This review describes the use of insect larvae as an alternative to produce commercial recombinant proteins.

  5. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese.

    PubMed

    Zhou, Haizhu; Gao, Yunhang; Gao, Guang; Lou, Yujie

    2015-12-01

    Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese.

  6. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    PubMed Central

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas S.; Lisby, Michael; Salanti, Ali; Fordyce, Sarah L.; Jespersen, Jakob S.; Carter, Richard; Deitsch, Kirk W.; Theander, Thor G.; Pedersen, Anders Gorm; Arnot, David E.

    2014-01-01

    Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens. PMID:24253306

  7. MareyMap Online: A User-Friendly Web Application and Database Service for Estimating Recombination Rates Using Physical and Genetic Maps.

    PubMed

    Siberchicot, Aurélie; Bessy, Adrien; Guéguen, Laurent; Marais, Gabriel A B

    2017-10-01

    Given the importance of meiotic recombination in biology, there is a need to develop robust methods to estimate meiotic recombination rates. A popular approach, called the Marey map approach, relies on comparing genetic and physical maps of a chromosome to estimate local recombination rates. In the past, we have implemented this approach in an R package called MareyMap, which includes many functionalities useful to get reliable recombination rate estimates in a semi-automated way. MareyMap has been used repeatedly in studies looking at the effect of recombination on genome evolution. Here, we propose a simpler user-friendly web service version of MareyMap, called MareyMap Online, which allows a user to get recombination rates from her/his own data or from a publicly available database that we offer in a few clicks. When the analysis is done, the user is asked whether her/his curated data can be placed in the database and shared with other users, which we hope will make meta-analysis on recombination rates including many species easy in the future. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Reduced genetic distance and high replication levels increase the RNA recombination rate of hepatitis delta virus.

    PubMed

    Lin, Chia-Chi; Yang, Zhi-Wei; Iang, Shan-Bei; Chao, Mei

    2015-01-02

    Hepatitis delta virus (HDV) replication is carried out by host RNA polymerases. Since homologous inter-genotypic RNA recombination is known to occur in HDV, possibly via a replication-dependent process, we hypothesized that the degree of sequence homology and the replication level should be related to the recombination frequency in cells co-expressing two HDV sequences. To confirm this, we separately co-transfected cells with three different pairs of HDV genomic RNAs and analyzed the obtained recombinants by RT-PCR followed by restriction fragment length polymorphism and sequencing analyses. The sequence divergence between the clones ranged from 24% to less than 0.1%, and the difference in replication levels was as high as 100-fold. As expected, significant differences were observed in the recombination frequencies, which ranged from 0.5% to 47.5%. Furthermore, varying the relative amounts of parental RNA altered the dominant recombinant species produced, suggesting that template switching occurs frequently during the synthesis of genomic HDV RNA. Taken together, these data suggest that during the host RNA polymerase-driven RNA recombination of HDV, both inter- and intra-genotypic recombination events are important in shaping the genetic diversity of HDV. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Recent advances in the production of recombinant subunit vaccines in Pichia pastoris

    PubMed Central

    Wang, Man; Jiang, Shuai; Wang, Yefu

    2016-01-01

    ABSTRACT Recombinant protein subunit vaccines are formulated using defined protein antigens that can be produced in heterologous expression systems. The methylotrophic yeast Pichia pastoris has become an important host system for the production of recombinant subunit vaccines. Although many basic elements of P. pastoris expression system are now well developed, there is still room for further optimization of protein production. Codon bias, gene dosage, endoplasmic reticulum protein folding and culture condition are important considerations for improved production of recombinant vaccine antigens. Here we comment on current advances in the application of P. pastoris for the synthesis of recombinant subunit vaccines. PMID:27246656

  10. Rogue athletes and recombinant DNA technology: challenges for doping control.

    PubMed

    Azzazy, Hassan M E; Mansour, Mai M H

    2007-10-01

    The quest for athletic excellence holds no limit for some athletes, and the advances in recombinant DNA technology have handed these athletes the ultimate doping weapons: recombinant proteins and gene doping. Some detection methods are now available for several recombinant proteins that are commercially available as pharmaceuticals and being abused by dopers. However, researchers are struggling to come up with efficient detection methods in preparation for the imminent threat of gene doping, expected in the 2008 Olympics. This Forum article presents the main detection strategies for recombinant proteins and the forthcoming detection strategies for gene doping as well as the prime analytical challenges facing them.

  11. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein.

    PubMed

    Bertagnoli, S; Gelfi, J; Le Gall, G; Boilletot, E; Vautherot, J F; Rasschaert, D; Laurent, S; Petit, F; Boucraut-Baralon, C; Milon, A

    1996-08-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma virus-specific antibodies in rabbits after immunization. Inoculations by the intradermal route protected animals against virulent RHDV and myxoma virus challenges.

  12. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein.

    PubMed Central

    Bertagnoli, S; Gelfi, J; Le Gall, G; Boilletot, E; Vautherot, J F; Rasschaert, D; Laurent, S; Petit, F; Boucraut-Baralon, C; Milon, A

    1996-01-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma virus-specific antibodies in rabbits after immunization. Inoculations by the intradermal route protected animals against virulent RHDV and myxoma virus challenges. PMID:8764013

  13. Genetic Recombination

    ERIC Educational Resources Information Center

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  14. Antigenic Variation in the Lyme Spirochete: Insights into Recombinational Switching with a Suggested Role for Error-Prone Repair.

    PubMed

    Verhey, Theodore B; Castellanos, Mildred; Chaconas, George

    2018-05-29

    The Lyme disease spirochete, Borrelia burgdorferi, uses antigenic variation as a strategy to evade the host's acquired immune response. New variants of surface-localized VlsE are generated efficiently by unidirectional recombination from 15 unexpressed vls cassettes into the vlsE locus. Using algorithms to analyze switching from vlsE sequencing data, we characterize a population of over 45,000 inferred recombination events generated during mouse infection. We present evidence for clustering of these recombination events within the population and along the vlsE gene, a role for the direct repeats flanking the variable region in vlsE, and the importance of sequence homology in determining the location of recombination, despite RecA's dispensability. Finally, we report that non-templated sequence variation is strongly associated with recombinational switching and occurs predominantly at the 5' end of conversion tracts. This likely results from an error-prone repair mechanism operational during recombinational switching that elevates the mutation rate > 5,000-fold in switched regions. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Targeting vector construction through recombineering.

    PubMed

    Malureanu, Liviu A

    2011-01-01

    Gene targeting in mouse embryonic stem cells is an essential, yet still very expensive and highly time-consuming, tool and method to study gene function at the organismal level or to create mouse models of human diseases. Conventional cloning-based methods have been largely used for generating targeting vectors, but are hampered by a number of limiting factors, including the variety and location of restriction enzymes in the gene locus of interest, the specific PCR amplification of repetitive DNA sequences, and cloning of large DNA fragments. Recombineering is a technique that exploits the highly efficient homologous recombination function encoded by λ phage in Escherichia coli. Bacteriophage-based recombination can recombine homologous sequences as short as 30-50 bases, allowing manipulations such as insertion, deletion, or mutation of virtually any genomic region. The large availability of mouse genomic bacterial artificial chromosome (BAC) libraries covering most of the genome facilitates the retrieval of genomic DNA sequences from the bacterial chromosomes through recombineering. This chapter describes a successfully applied protocol and aims to be a detailed guide through the steps of generation of targeting vectors through recombineering.

  16. Recombinant levels of Escherichia coli K-12 mutants deficient in various replication, recombination, or repair genes.

    PubMed Central

    Zieg, J; Maples, V F; Kushner, S R

    1978-01-01

    Escherichia coli strains containing mutations in lexA, rep, uvrA, uvrD, uvrE, lig, polA, dam, or xthA were constructed and tested for conjugation and transduction proficiencies and ability to form Lac+ recombinants in an assay system utilizing a nontandem duplication of two partially deleted lactose operons (lacMS286phi80dIIlacBK1). lexA and rep mutants were as deficient (20% of wild type) as recB and recC strains in their ability to produce Lac+ progeny. All the other strains exhibited increased frequencies of Lac+ recombinant formation, compared with wild type, ranging from 2- to 13-fold. Some strains showed markedly increased conjugation proficiency (dam uvrD) compared to wild type, while others appeared deficient (polA107). Some differences in transduction proficiency were also observed. Analysis of the Lac+ recombinants formed by the various mutants indicated that they were identical to the recombinants formed by a wild-type strain. The results indicate that genetic recombination in E. coli is a highly regulated process involving multiple gene products. PMID:350859

  17. Repair and recombination of X-irradiated plasmids in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweigert, S.E.; Carroll, D.

    1990-11-01

    Plasmid DNA substrates were X-irradiated and injected into the nuclei of Xenopus laevis oocytes. After incubation for 20 h, DNA was recovered from the oocytes and analyzed simultaneously for repair and for intermolecular homologous recombination by electrophoresis and bacterial transformation. Oocyte-mediated repair of DNA strand breaks was observed with both methods. Using a repair-deficient mutant Escherichia coli strain and its repair-proficient parent as hosts for the transformation assay, we also demonstrated that oocytes repaired oxidative-type DNA base damage induced by X-rays. X-irradiation of a circular DNA stimulated its potential to recombine with a homologous linear partner. Recombination products were detectedmore » directly by Southern blot hybridization and as bacterial transformant clones expressing two antibiotic resistance markers originally carried separately on the two substrates. The increase in recombination was dependent on X-ray dose. There is some suggestion that lesions other than double-strand breaks contribute to the stimulation of oocyte-mediated homologous recombination. In summary, oocytes have considerable capacity to repair X-ray-induced damage, and some X-ray lesions stimulate homologous recombination in these cells.« less

  18. mtDNA recombination in a natural population.

    PubMed

    Saville, B J; Kohli, Y; Anderson, J B

    1998-02-03

    Variation in mtDNA has been used extensively to draw inferences in phylogenetics and population biology. In the majority of eukaryotes investigated, transmission of mtDNA is uniparental and clonal, with genotypic diversity arising from mutation alone. In other eukaryotes, the transmission of mtDNA is biparental or primarily uniparental with the possibility of "leakage" from the minority parent. In these cases, heteroplasmy carries the potential for recombination between mtDNAs of different descent. In fungi, such mtDNA recombination has long been documented but only in laboratory experiments and only under conditions in which heteroplasmy is ensured. Despite this experimental evidence, mtDNA recombination has not been to our knowledge documented in a natural population. Because evidence from natural populations is prerequisite to understanding the evolutionary impact of mtDNA recombination, we investigated the possibility of mtDNA recombination in an organism with the demonstrated potential for heteroplasmy in laboratory matings. Using nucleotide sequence data, we report here that the genotypic structure of mtDNA in a natural population of the basidiomycete fungus Armillaria gallica is inconsistent with purely clonal mtDNA evolution and is fully consistent with mtDNA recombination.

  19. Direct evidence for homologous recombination in mussel (Mytilus galloprovincialis) mitochondrial DNA.

    PubMed

    Ladoukakis, E D; Zouros, E

    2001-07-01

    The assumption that animal mitochondrial DNA (mtDNA) does not undergo homologous recombination is based on indirect evidence, yet it has had an important influence on our understanding of mtDNA repair and mutation accumulation (and thus mitochondrial disease and aging) and on biohistorical inferences made from population data. Recently, several studies have suggested recombination in primate mtDNA on the basis of patterns of frequency distribution and linkage associations of mtDNA mutations in human populations, but others have failed to produce similar evidence. Here, we provide direct evidence for homologous mtDNA recombination in mussels, where heteroplasmy is the rule in males. Our results indicate a high rate of mtDNA recombination. Coupled with the observation that mammalian mitochondria contain the enzymes needed for the catalysis of homologous recombination, these findings suggest that animal mtDNA molecules may recombine regularly and that the extent to which this generates new haplotypes may depend only on the frequency of biparental inheritance of the mitochondrial genome. This generalization must, however, await evidence from animal species with typical maternal mtDNA inheritance.

  20. An inducible expression system for high-level expression of recombinant proteins in slow growing mycobacteria.

    PubMed

    Leotta, Lisa; Spratt, Joanne M; Kong, Carlyn U; Triccas, James A

    2015-09-01

    A novel protein expression vector utilising the inducible hspX promoter of Mycobacterium tuberculosis was constructed and evaluated in this study. High-level induction of three mycobacterial antigens, comprising up to 9% of bacterial sonicate, was demonstrated in recombinant Mycobacterium bovis BCG when grown under low-oxygen tension, which serves to enhance hspX promoter activity. Recombinant proteins were efficiently purified from bacterial lysates in a soluble form by virtue of a C-terminal 6-histidine tag. Purification of the immunodominant M. tuberculosis Ag85B antigen using this system resulted in a recombinant protein that stimulated significant IFN-γ release from Ag85B-reactive T cells generated after vaccination of mice with an Ag85B-expressing vaccine. Further, the M. tuberculosis L-alanine dehydrogenase (Ald) protein purified from recombinant BCG displayed strong enzymatic activity in recombinant form. This study demonstrated that high levels of native-like recombinant mycobacterial proteins can be produced in mycobacterial hosts, and this may aid the analysis of mycobacterial protein function and the development of new treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Marker-Dependent Recombination in T4 Bacteriophage. IV. Recombinational Effects of Antimutator T4 DNA Polymerase

    PubMed Central

    Shcherbakov, V. P.; Plugina, L. A.; Kudryashova, E. A.

    1995-01-01

    Recombinational effects of the antimutator allele tsL42 of gene 43 of phage T4, encoding DNA polymerase, were studied in crosses between rIIB mutants. Recombination under tsL42-restricted conditions differed from the normal one in several respects: (1) basic recombination was enhanced, especially within very short distances; (2) mismatch repair tracts were shortened, while the contribution of mismatch repair to recombination was not changed; (3) marker interference at very short distances was augmented. We infer that the T4 DNA polymerase is directly involved in mismatch repair, performing both excision of a nonmatched single strand (by its 3' -> 5' exonuclease) and filling the resulting gap. A pathway for the mismatch repair was substantiated; it includes sequential action of endo VII (gp49) -> 3'->5' exonuclease (gp43) -> DNA polymerase (gp43) -> DNA ligase (gp30). It is argued that the marker interference at very short distances may result from the same sequence of events during the final processing of recombinational intermediates. PMID:7635281

  2. Construction, expression, purification and biotin labeling of a single recombinant multi-epitope antigen for double-antigen sandwich ELISA to detect hepatitis C virus antibody.

    PubMed

    He, Jing; Xiu, Bingshui; Wang, Guohua; Chen, Kun; Feng, Xiaoyan; Song, Xiaoguo; Zhu, Cuixia; Yang, Xiqin; Bai, Guanzhong; Ling, Shigan; Zhang, Heqiu

    2011-08-01

    Based on B cell epitope predictions, a recombinant antigen with multiple epitopes from four Hepatitis C Virus fragments (C, NS3, NS4 and NS5) were engineered. The recombinant gene was then highly expressed in E. coli. The non-modified and C-terminal-modified recombinant proteins were used for coating and biotin labeling, respectively, to establish the double-antigen sandwich ELISA. Ten positive reference samples confirmed by the CHIRON RIBA HCV 3.0 SIA kit were detected positive, Forty one plasma samples were positive among samples from 441 volunteers, which indicated that the recombinant antigen could readily react well with plasma HCV antibody. As critical reagents of double-antigen sandwich ELISA, the recombinant multi-epitope antigen and the C-terminal-modified and biotin-conjugated antigen show good antigenicity. In this study, we provide a simple approach to produce multiple epitopes within one recombinant protein in order to avoid the costly expression of less-effective pools of multiple proteins, which is the conventional strategy of diagnostic antigen production for HCV antibody detection.

  3. Genetic recombination is targeted towards gene promoter regions in dogs.

    PubMed

    Auton, Adam; Rui Li, Ying; Kidd, Jeffrey; Oliveira, Kyle; Nadel, Julie; Holloway, J Kim; Hayward, Jessica J; Cohen, Paula E; Greally, John M; Wang, Jun; Bustamante, Carlos D; Boyko, Adam R

    2013-01-01

    The identification of the H3K4 trimethylase, PRDM9, as the gene responsible for recombination hotspot localization has provided considerable insight into the mechanisms by which recombination is initiated in mammals. However, uniquely amongst mammals, canids appear to lack a functional version of PRDM9 and may therefore provide a model for understanding recombination that occurs in the absence of PRDM9, and thus how PRDM9 functions to shape the recombination landscape. We have constructed a fine-scale genetic map from patterns of linkage disequilibrium assessed using high-throughput sequence data from 51 free-ranging dogs, Canis lupus familiaris. While broad-scale properties of recombination appear similar to other mammalian species, our fine-scale estimates indicate that canine highly elevated recombination rates are observed in the vicinity of CpG rich regions including gene promoter regions, but show little association with H3K4 trimethylation marks identified in spermatocytes. By comparison to genomic data from the Andean fox, Lycalopex culpaeus, we show that biased gene conversion is a plausible mechanism by which the high CpG content of the dog genome could have occurred.

  4. Generation of a non-leaky heat shock-inducible Cre line for conditional Cre/lox strategies in zebrafish.

    PubMed

    Hans, Stefan; Freudenreich, Dorian; Geffarth, Michaela; Kaslin, Jan; Machate, Anja; Brand, Michael

    2011-01-01

    Cre-mediated site-specific recombination has emerged as an indispensable tool for the precise manipulation of the mammalian genome. Recently, we showed that Cre is also highly efficient in zebrafish and temporal control of recombination can be achieved by using the ligand-inducible CreER(T2). Previous attempts have been made to control recombination by using the temperature inducible hsp70l promoter to conditionally drive the expression of Cre or EGFP-Cre, respectively. However, in this study we demonstrate that the hsp70l promoter possesses a basal leakiness resulting in Cre-mediated recombination even at permissive temperatures. In order to prevent non-conditional recombination, we combined the hsp70l promoter with a mCherry-tagged ligand-inducible CreER(T2). At permissive temperatures and in the absence of the ligand tamoxifen (TAM), no non-conditional recombination is observed indicating tight regulation of CreER(T2). Instead, comprehensive site-specific recombination is mediated following heat induction and administration of TAM. © 2010 Wiley-Liss, Inc.

  5. An overview on the strategies to exploit rice endosperm as production platform for biopharmaceuticals.

    PubMed

    Takaiwa, Fumio; Wakasa, Yuhya; Hayashi, Shimpei; Kawakatsu, Taiji

    2017-10-01

    Cereal seed has been utilized as production platform for high-value biopharmaceutical proteins. Especially, protein bodies (PBs) in seeds are not only natural specialized storage organs of seed storage proteins (SSPs), but also suitable intracellular deposition compartment for recombinant proteins. When various recombinant proteins were produced as secretory proteins by attaching N terminal ER signal peptide and C terminal KDEL endoplasmic reticulum (ER) retention signal or as fusion proteins with SSPs, high amounts of recombinant proteins can be predominantly accumulated in the PBs. Recombinant proteins bioencapsulated in PBs exhibit high resistance to digestive enzymes in gastrointestinal tract than other intracellular compartments and are highly stable at ambient temperature, thus allowing oral administration of PBs containing recombinant proteins as oral drugs or functional nutrients in cost-effective minimum processed formulation. In this review, we would like to address key factors determining accumulation levels of recombinant proteins in PBs. Understanding of bottle neck parts and improvement of specific deposition to PBs result in much higher levels of production of high quality recombinant proteins. Copyright © 2017. Published by Elsevier B.V.

  6. Budding yeast mms4 is epistatic with rad52 and the function of Mms4 can be replaced by a bacterial Holliday junction resolvase.

    PubMed

    Odagiri, Nao; Seki, Masayuki; Onoda, Fumitoshi; Yoshimura, Akari; Watanabe, Sei; Enomoto, Takemi

    2003-03-01

    MMS4 of Saccharomyces cerevisiae was originally identified as the gene responsible for one of the collection of methyl methanesulfonate (MMS)-sensitive mutants, mms4. Recently it was identified as a synthetic lethal gene with an SGS1 mutation. Epistatic analyses revealed that MMS4 is involved in a pathway leading to homologous recombination requiring Rad52 or in the recombination itself, in which SGS1 is also involved. MMS sensitivity of mms4 but not sgs1, was suppressed by introducing a bacterial Holliday junction (HJ) resolvase, RusA. The frequencies of spontaneously occurring unequal sister chromatid recombination (SCR) and loss of marker in the rDNA in haploid mms4 cells and interchromosomal recombination between heteroalleles in diploid mms4 cells were essentially the same as those of wild-type cells. Although UV- and MMS-induced interchromosomal recombination was defective in sgs1 diploid cells, hyper-induction of interchromosomal recombination was observed in diploid mms4 cells, indicating that the function of Mms4 is dispensable for this type of recombination.

  7. The proteasomal Rpn11 metalloprotease suppresses tombusvirus RNA recombination and promotes viral replication via facilitating assembly of the viral replicase complex.

    PubMed

    Prasanth, K Reddisiva; Barajas, Daniel; Nagy, Peter D

    2015-03-01

    RNA viruses co-opt a large number of cellular proteins that affect virus replication and, in some cases, viral genetic recombination. RNA recombination helps viruses in an evolutionary arms race with the host's antiviral responses and adaptation of viruses to new hosts. Tombusviruses and a yeast model host are used to identify cellular factors affecting RNA virus replication and RNA recombination. In this study, we have examined the role of the conserved Rpn11p metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates, in tombusvirus replication and recombination in Saccharomyces cerevisiae and plants. Depletion or mutations of Rpn11p lead to the rapid formation of viral RNA recombinants in combination with reduced levels of viral RNA replication in yeast or in vitro based on cell extracts. Rpn11p interacts with the viral replication proteins and is recruited to the viral replicase complex (VRC). Analysis of the multifunctional Rpn11p has revealed that the primary role of Rpn11p is to act as a "matchmaker" that brings the viral p92(pol) replication protein and the DDX3-like Ded1p/RH20 DEAD box helicases into VRCs. Overexpression of Ded1p can complement the defect observed in rpn11 mutant yeast by reducing TBSV recombination. This suggests that Rpn11p can suppress tombusvirus recombination via facilitating the recruitment of the cellular Ded1p helicase, which is a strong suppressor of viral recombination, into VRCs. Overall, this work demonstrates that the co-opted Rpn11p, which is involved in the assembly of the functional proteasome, also functions in the proper assembly of the tombusvirus VRCs. RNA viruses evolve rapidly due to genetic changes based on mutations and RNA recombination. Viral genetic recombination helps viruses in an evolutionary arms race with the host's antiviral responses and facilitates adaptation of viruses to new hosts. Cellular factors affect viral RNA recombination, although the role of the host in virus evolution is still understudied. In this study, we used a plant RNA virus, tombusvirus, to examine the role of a cellular proteasomal protein, called Rpn11, in tombusvirus recombination in a yeast model host, in plants, and in vitro. We found that the cellular Rpn11 is subverted for tombusvirus replication and Rpn11 has a proteasome-independent function in facilitating viral replication. When the Rpn11 level is knocked down or a mutated Rpn11 is expressed, then tombusvirus RNA goes through rapid viral recombination and evolution. Taken together, the results show that the co-opted cellular Rpn11 is a critical host factor for tombusviruses by regulating viral replication and genetic recombination. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Recombinant zoster (shingles) vaccine, RZV - what you need to know

    MedlinePlus

    ... gov/ency/article/007736.htm Recombinant zoster (shingles) vaccine, RZV - what you need to know To use ... in its entirety from the CDC Recombinant Shingles Vaccine Information Statement (VIS): www.cdc.gov/vaccines/hcp/ ...

  9. Recombinant DNA production of spider silk proteins

    PubMed Central

    Tokareva, Olena; Michalczechen-Lacerda, Valquíria A; Rech, Elíbio L; Kaplan, David L

    2013-01-01

    Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks. PMID:24119078

  10. Catalytic recombination of nitrogen and oxygen on high-temperature reusable surface insulation

    NASA Technical Reports Server (NTRS)

    Scott, C. D.

    1980-01-01

    The energy transfer catalytic recombination coefficient for nitrogen and oxygen recombination on the surface coating of high-temperature reusable surface insulation (HRSI) is inferred from stagnation point heat flux measurements in a high-temperature dissociated arc jet flow. The resulting catalytic recombination coefficients are correlated with an Arrhenius model for convenience, and these expressions may be used to account for catalytic recombination effects in predictions of the heat flux on the HRSI thermal protection system of the Space Shuttle Orbiter during reentry flight. Analysis of stagnation point pressure and total heat balance enthalpy measurements indicates that the arc heater reservoir conditions are not in chemical equilibrium. This is contrary to what is usually assumed for arc jet analysis and indicates the need for suitable diagnostics and analyses, especially when dealing with chemical reaction phenomena such as catalytic recombination heat transfer effects.

  11. Temporally-Controlled Site-Specific Recombination in Zebrafish

    PubMed Central

    Hans, Stefan; Kaslin, Jan; Freudenreich, Dorian; Brand, Michael

    2009-01-01

    Conventional use of the site-specific recombinase Cre is a powerful technology in mouse, but almost absent in other vertebrate model organisms. In zebrafish, Cre-mediated recombination efficiency was previously very low. Here we show that using transposon-mediated transgenesis, Cre is in fact highly efficient in this organism. Furthermore, temporal control of recombination can be achieved by using the ligand-inducible CreERT2. Site-specific recombination only occurs upon administration of the drug tamoxifen (TAM) or its active metabolite, 4-hydroxy-tamoxifen (4-OHT). Cre-mediated recombination is detectable already 4 or 2 hours after administration of TAM or 4-OHT, demonstrating fast recombination kinetics. In addition, low doses of TAM allow mosaic labeling of single cells. Combined, our results show that conditional Cre/lox will be a valuable tool for both, embryonic and adult zebrafish studies. Furthermore, single copy insertion transgenesis of Cre/lox constructs suggest a strategy suitable also for other organisms. PMID:19247481

  12. Theoretical prediction of the impact of Auger recombination on charge collection from an ion track

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1991-01-01

    A recombination mechanism that significantly reduces charge collection from very dense ion tracks in silicon devices was postulated by Zoutendyk et al. The theoretical analysis presented here concludes that Auger recombination is such a mechanism and is of marginal importance for higher density tracks produced by 270-MeV krypton, but of major importance for higher density tracks. The analysis shows that recombination loss is profoundly affected by track diffusion. As the track diffuses, the density and recombination rate decrease so fast that the linear density (number of electron-hole pairs per unit length) approaches a non-zero limiting value as t yields infinity. Furthermore, the linear density is very nearly equal to this limiting value in a few picoseconds or less. When Auger recombination accompanies charge transport processes that have much longer time scales, it can be simulated by assigning a reduced linear energy transfer to the ion.

  13. Variation in recombination rate may bias human genetic disease mapping studies.

    PubMed

    Boyle, A Susannah; Noor, Mohamed A F

    2004-11-01

    The availability of the human genome sequence and variability information (as from the International HapMap project) will enhance our ability to map genetic disorders and choose targets for therapeutic intervention. However, several factors, such as regional variation in recombination rate, can bias conclusions from genetic mapping studies. Here, we examine the impact of regional variation in recombination rate across the human genome. Through computer simulations and literature surveys, we conclude that genetic disorders have been mapped to regions of low recombination more often than expected if such diseases were randomly distributed across the genome. This concentration in low recombination regions may be an artifact, and disorders appearing to be caused by a few genes of large effect may be polygenic. Future genetic mapping studies should be conscious of this potential complication by noting the regional recombination rate of regions implicated in diseases.

  14. Natural Competence and Recombination in the Plant Pathogen Xylella fastidiosa ▿

    PubMed Central

    Kung, Stephanie H.; Almeida, Rodrigo P. P.

    2011-01-01

    Homologous recombination is one of many forces contributing to the diversity, adaptation, and emergence of pathogens. For naturally competent bacteria, transformation is one possible route for the acquisition of novel genetic material. This study demonstrates that Xylella fastidiosa, a generalist bacterial plant pathogen responsible for many emerging plant diseases, is naturally competent and able to homologously recombine exogenous DNA into its genome. Several factors that affect transformation and recombination efficiencies, such as nutrient availability, growth stage, and methylation of transforming DNA, were identified. Recombination was observed in at least one out of every 106 cells when exogenous plasmid DNA was supplied and one out of every 107 cells when different strains were grown together in vitro. Based on previous genomic studies and experimental data presented here, there is mounting evidence that recombination can occur at relatively high rates and could play a large role in shaping the genetic diversity of X. fastidiosa. PMID:21666009

  15. Looking for the optimal rate of recombination for evolutionary dynamics

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2018-01-01

    We consider many-site mutation-recombination models of evolution with selection. We are looking for situations where the recombination increases the mean fitness of the population, and there is an optimal recombination rate. We found two fitness landscapes supporting such nonmonotonic behavior of the mean fitness versus the recombination rate. The first case is related to the evolution near the error threshold on a neutral-network-like fitness landscape, for moderate genome lengths and large population. The more realistic case is the second one, in which we consider the evolutionary dynamics of a finite population on a rugged fitness landscape (the smooth fitness landscape plus some random contributions to the fitness). We also give the solution to the horizontal gene transfer model in the case of asymmetric mutations. To obtain nonmonotonic behavior for both mutation and recombination, we need a specially designed (ideal) fitness landscape.

  16. Recombination, Pairing, and Synapsis of Homologs during Meiosis

    PubMed Central

    Zickler, Denise; Kleckner, Nancy

    2015-01-01

    Recombination is a prominent feature of meiosis in which it plays an important role in increasing genetic diversity during inheritance. Additionally, in most organisms, recombination also plays mechanical roles in chromosomal processes, most notably to mediate pairing of homologous chromosomes during prophase and, ultimately, to ensure regular segregation of homologous chromosomes when they separate at the first meiotic division. Recombinational interactions are also subject to important spatial patterning at both early and late stages. Recombination-mediated processes occur in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex (SC), a highly conserved meiosis-specific structure that links homolog axes along their lengths. These diverse processes also are integrated with recombination-independent interactions between homologous chromosomes, nonhomology-based chromosome couplings/clusterings, and diverse types of chromosome movement. This review provides an overview of these diverse processes and their interrelationships. PMID:25986558

  17. Recombination in polymer-fullerene bulk heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Cowan, Sarah R.; Roy, Anshuman; Heeger, Alan J.

    2010-12-01

    Recombination of photogenerated charge carriers in polymer bulk heterojunction (BHJ) solar cells reduces the short circuit current (Jsc) and the fill factor (FF). Identifying the mechanism of recombination is, therefore, fundamentally important for increasing the power conversion efficiency. Light intensity and temperature-dependent current-voltage measurements on polymer BHJ cells made from a variety of different semiconducting polymers and fullerenes show that the recombination kinetics are voltage dependent and evolve from first-order recombination at short circuit to bimolecular recombination at open circuit as a result of increasing the voltage-dependent charge carrier density in the cell. The “missing 0.3 V” inferred from comparison of the band gaps of the bulk heterojunction materials and the measured open-circuit voltage at room-temperature results from the temperature dependence of the quasi-Fermi levels in the polymer and fullerene domains—a conclusion based on the fundamental statistics of fermions.

  18. Assessment of Recombination in the S-segment Genome of Crimean-Congo Hemorrhagic Fever Virus in Iran

    PubMed Central

    Chinikar, Sadegh; Shah-Hosseini, Nariman; Bouzari, Saeid; Shokrgozar, Mohammad Ali; Mostafavi, Ehsan; Jalali, Tahmineh; Khakifirouz, Sahar; Groschup, Martin H; Niedrig, Matthias

    2016-01-01

    Background: Crimean-Congo Hemorrhagic Fever Virus (CCHFV) belongs to genus Nairovirus and family Bunyaviridae. The main aim of this study was to investigate the extent of recombination in S-segment genome of CCHFV in Iran. Methods: Samples were isolated from Iranian patients and those available in GenBank, and analyzed by phylogenetic and bootscan methods. Results: Through comparison of the phylogenetic trees based on full length sequences and partial fragments in the S-segment genome of CCHFV, genetic switch was evident, due to recombination event. Moreover, evidence of multiple recombination events was detected in query isolates when bootscan analysis was used by SimPlot software. Conclusion: Switch of different genomic regions between different strains by recombination could contribute to CCHFV diversification and evolution. The occurrence of recombination in CCHFV has a critical impact on epidemiological investigations and vaccine design. PMID:27047968

  19. Putative recombination events and evolutionary history of five economically important viruses of fruit trees based on coat protein-encoding gene sequence analysis.

    PubMed

    Boulila, Moncef

    2010-06-01

    To enhance the knowledge of recombination as an evolutionary process, 267 accessions retrieved from GenBank were investigated, all belonging to five economically important viruses infecting fruit crops (Plum pox, Apple chlorotic leaf spot, Apple mosaic, Prune dwarf, and Prunus necrotic ringspot viruses). Putative recombinational events were detected in the coat protein (CP)-encoding gene using RECCO and RDP version 3.31beta algorithms. Based on RECCO results, all five viruses were shown to contain potential recombination signals in the CP gene. Reconstructed trees with modified topologies were proposed. Furthermore, RECCO performed better than the RDP package in detecting recombination events and exhibiting their evolution rate along the sequences of the five viruses. RDP, however, provided the possible major and minor parents of the recombinants. Thus, the two methods should be considered complementary.

  20. Natural Competence of Xylella fastidiosa Occurs at a High Frequency Inside Microfluidic Chambers Mimicking the Bacterium's Natural Habitats.

    PubMed

    Kandel, Prem P; Lopez, Samantha M; Almeida, Rodrigo P P; De La Fuente, Leonardo

    2016-09-01

    Xylella fastidiosa is a xylem-limited bacterium that is the causal agent of emerging diseases in a number of economically important crops. Genetic diversity studies have demonstrated homologous recombination occurring among X. fastidiosa strains, which has been proposed to contribute to host plant shifts. Moreover, experimental evidence confirmed that X. fastidiosa is naturally competent for recombination in vitro Here, as an approximation of natural habitats (plant xylem vessels and insect mouthparts), recombination was studied in microfluidic chambers (MCs) filled with media amended with grapevine xylem sap. First, different media were screened for recombination in solid agar plates using a pair of X. fastidiosa strains that were previously reported to recombine in coculture. The highest frequency of recombination was obtained with PD3 medium, compared to those with the other two media (X. fastidiosa medium [XFM] and periwinkle wilt [PW] medium) used in previous studies. Dissection of the media components led to the identification of bovine serum albumin as an inhibitor of recombination that was correlated to its previously known effect on inhibition of twitching motility. When recombination was performed in liquid culture, the frequencies were significantly higher under flow conditions (MCs) than under batch conditions (test tubes). The recombination frequencies in MCs and agar plates were not significantly different from each other. Grapevine xylem sap from both susceptible and tolerant varieties allowed high recombination frequency in MCs when mixed with PD3. These results suggest that X. fastidiosa has the ability to be naturally competent in the natural growth environment of liquid flow, and this phenomenon could have implications in X. fastidiosa environmental adaptation. Xylella fastidiosa is a plant pathogen that lives inside xylem vessels (where water and nutrients are transported inside the plant) and the mouthparts of insect vectors. This bacterium causes emerging diseases in various crops worldwide, including recent outbreaks in Europe. The mechanisms by which this bacterium adapts to new hosts is not understood, but it was previously shown that it is naturally competent, meaning that it can take up DNA from the environment and incorporate it into its genome (recombination). In this study, we show that the frequency of recombination is highest when the bacterium is grown under flow conditions in microfluidic chambers modeled after its natural habitats, and recombination was still high when the medium was amended with grapevine sap. Our results suggest that this bacterium is able to recombine when growing inside plants or insects, and this can be a mechanism of adaptation of this pathogen that causes incurable diseases. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Double-strand break repair and genetic recombination in topoisomerase and primase mutants of bacteriophage T4.

    PubMed

    Shcherbakov, Victor P; Kudryashova, Elena

    2014-09-01

    The effects of primase and topoisomerase II deficiency on the double-strand break (DSB) repair and genetic recombination in bacteriophage T4 were studied in vivo using focused recombination. Site-specific DSBs were induced by SegC endonuclease in the rIIB gene of one of the parents. The frequency/distance relationship was determined in crosses of the wild-type phage, topoisomerase II mutant amN116 (gene 39), and primase mutant E219 (gene 61). Ordinary two-factor (i×j) and three-factor (i k×j) crosses between point rII mutations were also performed. These data provide information about the frequency and distance distribution of the single-exchange (splice) and double-exchange (patch) events. In two-factor crosses ets1×i, the topoisomerase and primase mutants had similar recombinant frequencies in crosses at ets1-i distances longer than 1000 bp, comprising about 80% of the corresponding wild-type values. They, however, differ remarkably in crosses at shorter distances. In the primase mutant, the recombinant frequencies are similar to those in the wild-type crosses at distances less than 100 bp, being a bit diminished at longer distances. In two-factor crosses ets1×i of the topoisomerase mutant, the recombinant frequencies were reduced ten-fold at the shortest distances. In three-factor crosses a6 ets1×i, where we measure patch-related recombination, the primase mutant was quite proficient across the entire range of distances. The topoisomerase mutant crosses demonstrated virtually complete absence of rII(+) recombinants at distances up to 33 bp, with the frequencies increasing steadily at longer distances. The data were interpreted as follows. The primase mutant is fully recombination-proficient. An obvious difference from the wild-type state is some shortage of EndoVII function leading to prolonged existence of HJs and thus stretched out ds-branch migration. This is also true for the topoisomerase mutant. However, the latter is deficient in the ss-branch migration step of the DSB repair pathway and partially deficient in HJ initiation. In apparent contradiction to their effects on the DSB-induced site-specific recombination, the topoisomerase and primase mutants demonstrated about 3-8-fold increase in the recombinant frequencies in the ordinary crosses, with the recombination running exclusively via patches. This implies that most of the spontaneous recombination events are not initiated by dsDNA ends in these mutants. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Recovery of deficient homologous recombination in Brca2-depleted mouse cells by wild-type Rad51 expression.

    PubMed

    Lee, Shauna A; Roques, Céline; Magwood, Alissa C; Masson, Jean-Yves; Baker, Mark D

    2009-02-01

    The BRCA2 tumor suppressor is important in maintaining genomic stability. BRCA2 is proposed to control the availability, cellular localization and DNA binding activity of the central homologous recombination protein, RAD51, with loss of BRCA2 resulting in defective homologous recombination. Nevertheless, the roles of BRCA2 in regulating RAD51 and how other proteins implicated in RAD51 regulation, such as RAD52 and RAD54 function relative to BRCA2 is not known. In this study, we tested whether defective homologous recombination in Brca2-depleted mouse hybridoma cells could be rectified by expression of mouse Rad51 or the Rad51-interacting mouse proteins, Rad52 and Rad54. In the Brca2-depleted cells, defective homologous recombination can be restored by over-expression of wild-type mouse Rad51, but not mouse Rad52 or Rad54. Correction of the homologous recombination defect requires Rad51 ATPase activity. A sizeable fraction ( approximately 50%) of over-expressed wild-type Rad51 is nuclear localized. The restoration of homologous recombination in the presence of a low (i.e., non-functional) level of Brca2 by wild-type Rad51 over-expression is unexpected. We suggest that Rad51 may access the nuclear compartment in a Brca2-independent manner and when Rad51 is over-expressed, the normal requirement for Brca2 control over Rad51 function in homologous recombination is dispensable. Our studies support loss of Rad51 function as a critical underlying factor in the homologous recombination defect in the Brca2-depleted cells.

  3. Major psychological factors affecting acceptance of gene-recombination technology.

    PubMed

    Tanaka, Yutaka

    2004-12-01

    The purpose of this study was to verify the validity of a causal model that was made to predict the acceptance of gene-recombination technology. A structural equation model was used as a causal model. First of all, based on preceding studies, the factors of perceived risk, perceived benefit, and trust were set up as important psychological factors determining acceptance of gene-recombination technology in the structural equation model. An additional factor, "sense of bioethics," which I consider to be important for acceptance of biotechnology, was added to the model. Based on previous studies, trust was set up to have an indirect influence on the acceptance of gene-recombination technology through perceived risk and perceived benefit in the model. Participants were 231 undergraduate students in Japan who answered a questionnaire with a 5-point bipolar scale. The results indicated that the proposed model fits the data well, and showed that acceptance of gene-recombination technology is explained largely by four factors, that is, perceived risk, perceived benefit, trust, and sense of bioethics, whether the technology is applied to plants, animals, or human beings. However, the relative importance of the four factors was found to vary depending on whether the gene-recombination technology was applied to plants, animals, or human beings. Specifically, the factor of sense of bioethics is the most important factor in acceptance of plant gene-recombination technology and animal gene-recombination technology, and the factors of trust and perceived risk are the most important factors in acceptance of human being gene-recombination technology.

  4. Recombinational Cloning Using Gateway and In-Fusion Cloning Schemes

    PubMed Central

    Throop, Andrea L.; LaBaer, Joshua

    2015-01-01

    The comprehensive study of protein structure and function, or proteomics, depends on the obtainability of full-length cDNAs in species-specific expression vectors and subsequent functional analysis of the expressed protein. Recombinational cloning is a universal cloning technique based on site-specific recombination that is independent of the insert DNA sequence of interest, which differentiates this method from the classical restriction enzyme-based cloning methods. Recombinational cloning enables rapid and efficient parallel transfer of DNA inserts into multiple expression systems. This unit summarizes strategies for generating expression-ready clones using the most popular recombinational cloning technologies, including the commercially available Gateway® (Life Technologies) and In-Fusion® (Clontech) cloning technologies. PMID:25827088

  5. Bimolecular recombination quenching in Langmuir Blodgett multilayers

    NASA Astrophysics Data System (ADS)

    Elliott, J. E.; Jeong, I. S.; Scott, K.; Donovan, K. J.; Wilson, E. G.

    2000-11-01

    A model is developed that describes bimolecular recombination of photogenerated carriers in two dimensional systems. Carriers are free to diffuse in two dimensions and undergo bimolecular recombination, while drifting under the influence of an electric field in the third dimension. The model describes a competition between carrier loss due to transiting and loss due to bimolecular recombination. This model of recombination quenching is then used to obtain information on microscopic parameters associated with photogeneration efficiency and charge transport in organic quantum wells formed from Langmuir Blodgett films of conjugated molecules. The ratio of the intralayer to interlayer tunneling rates is found along with the quantum efficiency for photocarrier generation for two bis-phthalocyanine amphiphilic molecules.

  6. Immunization of dogs with a canine herpesvirus vector expressing Neospora caninum surface protein, NcSRS2.

    PubMed

    Nishikawa, Y; Ikeda, H; Fukumoto, S; Xuan, X; Nagasawa, H; Otsuka, H; Mikami, T

    2000-10-01

    In order to develop a vaccine against Neospora caninum in dogs, we constructed recombinant canine herpesvirus (CHV) expressing N. caninum surface protein, NcSRS2. Indirect immunofluorescence indicated that the antigenic structure of the recombinant NcSRS2 was similar to the authentic parasite protein. The dogs immunised with recombinant virus produced IgG antibody to N. caninum, and their sera recognised the parasite protein on Western blot. The dogs inoculated with recombinant virus showed no clinical symptoms and infectious CHV was not recovered from the dogs, suggesting that recombinant CHV expressing N. caninum proteins may lead to a vaccine against neosporosis in dogs.

  7. Recombination of electrons with NH4/+/-/NH3/n-series ions

    NASA Technical Reports Server (NTRS)

    Huang, C.-M.; Biondi, M. A.; Johnsen, R.

    1976-01-01

    The paper examines the recombination of electrons with ammonium-series cluster ions, NH4(+)-(NH3)n, for two reasons: (1) NH4(+) may be a significant ion in the lower atmospheres of the earth and the outer planets, and (2) to investigate the weak temperature dependence of the cluster ion's recombination coefficient. A microwave afterglow mass spectrometer was used to determine the recombination coefficients for the first five members of the ammonium series, (18+) through (86+), at temperatures between 200 and 410 K. The electron temperature dependence of the recombination coefficient was determined for (35+) and (52+), the n = 1 and 2 cluster ions, over the temperature range 300-3000 K.

  8. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  9. First identification of a recombinant form of hepatitis C virus in Austrian patients by full-genome next generation sequencing

    PubMed Central

    Haas, Bernhard; Bauer, Bernd; Zhang, Sherry; Fiss, Ellen H.; Hillman, Grantland; Hamilton, Aaron T.; Mehta, Rochak; Heil, Marintha L.; Marins, Ed G.; Santner, Brigitte I.; Kessler, Harald H.

    2017-01-01

    Hepatitis C virus (HCV) intergenotypic recombinant forms have been reported for various HCV genotypes/subtypes in several countries worldwide. In a recent study, four patients living in Austria had been identified to be possibly infected with a recombinant HCV strain. To clarify results and determine the point of recombination, full-genome next-generation sequencing using the Illumina MiSeq v2 300 cycle kit (Illumina, San Diego, CA, USA) was performed in the present study. Samples of all of the patients contained the recombinant HCV strain 2k/1b. The point of recombination was found to be within the HCV NS2 gene between nucleotide positions 3189–3200 based on H77 numbering. While three of four patients were male and had migration background from Chechnya (n = 2) and Azerbaijan (n = 1), the forth patient was a female born in Austria. Three of the four patients including the female had intravenous drug abuse as a risk factor for HCV transmission. While sequencing techniques are limited to a few specialized laboratories, a genotyping assay that uses both ends of the HCV genome should be employed to identify patients infected with a recombinant HCV strain. The correct identification of recombinant strains also has an impact considering the tailored choice of anti-HCV treatment. PMID:28742818

  10. Bio-equivalent doses of recombinant HCG and recombinant LH during ovarian stimulation result in similar oestradiol output: a randomized controlled study.

    PubMed

    Alsbjerg, Birgit; Elbaek, Helle Olesen; Laursen, Rita Jakubcionyte; Povlsen, Betina Boel; Haahr, Thor; Yding Andersen, Claus; Humaidan, Peter

    2017-08-01

    In nature, HCG is secreted by the implanting embryo from peri-implantation and onwards. In contrast, LH is mandatory for steroidogenesis and follicular development during the follicular phase, working in synergy with FSH. Moreover, LH is mandatory for the function of the corpus luteum. Although LH and HCG bind to the same receptor, significant molecular, structural and functional differences exist, inducing differences in bioactivity. This randomized controlled study compared the effect of recombinant FSH stimulation combined with daily either micro-dose recombinant HCG or recombinant LH supplementation in a 1:1 bioactivity ratio from day 1 of stimulation in a long gonadotrophin releasing hormone agonist down regulation protocol. A total of 100 patients from a public clinic completed the study. The primary end-point was the oestradiol level on the day of ovulation trigger and the median oestradiol level in the HCG supplemented group was 8662 pmol/l versus 9203 pmol/l in the recombinant LH supplemented group; therefore, no significant difference was found. Moreover, no differences were observed in the number of oocytes retrieved or in the live birth rate. We conclude that recombinant HCG and recombinant LH are equally effective in boosting oestradiol synthesis during ovarian stimulation when used in a 1:1 bioactivity ratio. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  11. [Prokaryotic expression and histological localization of the Taenia solium CDC37 gene].

    PubMed

    Huang, Jiang; Li, Bo; Dai, Jia-Lin; Zhang, Ai-Hua

    2013-02-01

    To express Taenia solium gene encoding cell division cycle 37 protein (TsCDC37) and investigate its antigenicity and localization in adults of Taenia solium. The complete coding sequence of TsCDC37 was amplified by PCR based on the recombinant plasmid clone from the cDNA library of adult Taenia solium. The PCR product was cloned into a prokaryotic expression vector pET-28a (+). The recombinant expression plasmid was identified by PCR, double endonuclease digestion and sequencing. The recombinant plasmid was transformed into E. coli BL21/DE3 and followed by expression of the protein induced by IPTG. The mice were immunized subcutaneously with purified recombinant TsCDC37 formulated in Freund's adjuvant. The antigenicity of the recombinant protein was examined by Western blotting. The localization of TsCDC37 in adult worms was demonstrated by immunofluorescent technique. The recombinant expression vector was constructed successfully. The recombinant protein was about M(r) 52 000, it was then purified and specifically recognized by immuno sera of SD rats and sera from patients infected with Taenia solium, Taenia saginata or Taenia asiatica. The immunofluorescence assay revealed that TsCDC37 located at the tegument of T. solium adult and the eggs. TsCDC37 gene has been expressed with immunoreactivity. The recombinant protein is mainly expressed in tegument and egg, and is a common antigen of the three human taenia cestodes.

  12. The high mobility group protein Abf2p influences the level of yeast mitochondrial DNA recombination intermediates in vivo.

    PubMed

    MacAlpine, D M; Perlman, P S; Butow, R A

    1998-06-09

    Abf2p is a high mobility group (HMG) protein found in yeast mitochondria that is required for the maintenance of wild-type (rho+) mtDNA in cells grown on fermentable carbon sources, and for efficient recombination of mtDNA markers in crosses. Here, we show by two-dimensional gel electrophoresis that Abf2p promotes or stabilizes Holliday recombination junction intermediates in rho+ mtDNA in vivo but does not influence the high levels of recombination intermediates readily detected in the mtDNA of petite mutants (rho-). mtDNA recombination junctions are not observed in rho+ mtDNA of wild-type cells but are elevated to detectable levels in cells with a null allele of the MGT1 gene (Deltamgt1), which codes for a mitochondrial cruciform-cutting endonuclease. The level of recombination intermediates in rho+ mtDNA of Deltamgt1 cells is decreased about 10-fold if those cells contain a null allele of the ABF2 gene. Overproduction of Abf2p by >/= 10-fold in wild-type rho+ cells, which leads to mtDNA instability, results in a dramatic increase in mtDNA recombination intermediates. Specific mutations in the two Abf2p HMG boxes required for DNA binding diminishes these responses. We conclude that Abf2p functions in the recombination of rho+ mtDNA.

  13. Recombination of mitochondrial DNA without selection pressure among compatible strains of the Aspergillus niger species aggregate.

    PubMed

    Tóth, B; Hamari, Z; Ferenczy, L; Varga, J; Kevei, F

    1998-03-01

    Previous mitochondrial transmission experiments between oligomycin-resistant and oligomycin-sensitive incompatible strains of the A. niger aggregate bearing various mtDNA RFLP profiles resulted in a great variety of mitochondrial recombinants under selection pressure. Apart from the recombinant mtDNAs, resistant clones harbouring unchanged RFLP profiles of resistant donor mtDNAs with the recipient nuclear backgrounds were rarely isolated. These strains were anastomosed with nuclearly isogenic oligomycin-sensitive recipient partners and the mitochondria of the resulting progeny were examined under non-selective conditions. These experiments provide insights into events which are possibly similar to those occurring in nature. The heterokaryons obtained formed both oligomycin-resistant and -sensitive sectors, most of which were found to be homoplasmons. Progenies harbouring oligomycin-resistant and -sensitive mtDNAs may originate either from individual recombination events or be due to parental segregation. MtDNA recombination might take place in the heterokaryons without selection by oligomycin. The most frequent recombinant types of mtDNA RFLP profiles were indistinguishable from those recombinant mtDNAs which were frequently obtained under selection pressure from directed transfer experiments between incompatible strains. We present evidence that mixed mitochondrial populations may influence the compatibility reactions in the presence of an isogenic nuclear background, that recombination may take place without selection pressure, and that the process does not require specific nuclear sequences of both parental strains.

  14. Local and sex-specific biases in crossover vs. noncrossover outcomes at meiotic recombination hot spots in mice.

    PubMed

    de Boer, Esther; Jasin, Maria; Keeney, Scott

    2015-08-15

    Meiotic recombination initiated by programmed double-strand breaks (DSBs) yields two types of interhomolog recombination products, crossovers and noncrossovers, but what determines whether a DSB will yield a crossover or noncrossover is not understood. In this study, we analyzed the influence of sex and chromosomal location on mammalian recombination outcomes by constructing fine-scale recombination maps in both males and females at two mouse hot spots located in different regions of the same chromosome. These include the most comprehensive maps of recombination hot spots in oocytes to date. One hot spot, located centrally on chromosome 1, behaved similarly in male and female meiosis: Crossovers and noncrossovers formed at comparable levels and ratios in both sexes. In contrast, at a distal hot spot, crossovers were recovered only in males even though noncrossovers were obtained at similar frequencies in both sexes. These findings reveal an example of extreme sex-specific bias in recombination outcome. We further found that estimates of relative DSB levels are surprisingly poor predictors of relative crossover frequencies between hot spots in males. Our results demonstrate that the outcome of mammalian meiotic recombination can be biased, that this bias can vary depending on location and cellular context, and that DSB frequency is not the only determinant of crossover frequency. © 2015 de Boer et al.; Published by Cold Spring Harbor Laboratory Press.

  15. [Experimental study of human umbilical cord blood derived stromal cells transfected with recombinant adenoviral vector co-expressing VCAM-1 and GFP].

    PubMed

    Zhang, Xi; Si, Ying-Jian; Chen, Xing-Hua; Liu, Yao; Gao, Li; Gao, Lei; Peng, Xian-Gui; Wang, Qing-Yu

    2008-06-01

    This study was aimed to investigate the effect of vcam-1 gene-modified human umbilical cord blood derived stromal cells (CBDSCs) on hematopoietic regulation so as to establish the experimental foundation for further study. The target gene vcam-1 was cloned into the shuttle plasmid with the report gene GFP. The recombinant shuttle plasmid was transformed into BJ5183 bacteria to recombine with backbone vector pAdeasy-l, and the recombinant adenoviral vector ad-vcam-1-gfp was confirmed after transfection with CBDSCs. The results indicated that two fragments of about 9 kb and 2 kb were obtained after digestion of recombinant plasmid pAdTrack-vcam-1 with NotIand XhoI, and single fragment of 600 bp was obtained after amplification with PCR; two fragments of about 31 kb and 4 kb were obtained after digestion of recombinant plasmid pad-vcam-1-gfp with PacI, which suggested a successful homologous recombination. The expression of vcam-1 gene in ad-vcam-1-gfp transfected CBDSCs could be detected by immunocytochemistry, RT-PCR and fluorescent microscopy. It is concluded that the recombinant adenoviral vector ad-vcam-1-gfp has been constructed successfully, and the expression of vcam-1 is up-regulated in CBDSCs transfected by gene ad-vcam-1-gfp.

  16. Recombinant Vaccinia Viruses Coding Transgenes of Apoptosis-Inducing Proteins Enhance Apoptosis But Not Immunogenicity of Infected Tumor Cells

    PubMed Central

    Tkachenko, Anastasiya; Richter, Vladimir

    2017-01-01

    Genetic modifications of the oncolytic vaccinia virus (VV) improve selective tumor cell infection and death, as well as activation of antitumor immunity. We have engineered a double recombinant VV, coding human GM-CSF, and apoptosis-inducing protein apoptin (VV-GMCSF-Apo) for comparing with the earlier constructed double recombinant VV-GMCSF-Lact, coding another apoptosis-inducing protein, lactaptin, which activated different cell death pathways than apoptin. We showed that both these recombinant VVs more considerably activated a set of critical apoptosis markers in infected cells than the recombinant VV coding GM-CSF alone (VV-GMCSF-dGF): these were phosphatidylserine externalization, caspase-3 and caspase-7 activation, DNA fragmentation, and upregulation of proapoptotic protein BAX. However, only VV-GMCSF-Lact efficiently decreased the mitochondrial membrane potential of infected cancer cells. Investigating immunogenic cell death markers in cancer cells infected with recombinant VVs, we demonstrated that all tested recombinant VVs were efficient in calreticulin and HSP70 externalization, decrease of cellular HMGB1, and ATP secretion. The comparison of antitumor activity against advanced MDA-MB-231 tumor revealed that both recombinants VV-GMCSF-Lact and VV-GMCSF-Apo efficiently delay tumor growth. Our results demonstrate that the composition of GM-CSF and apoptosis-inducing proteins in the VV genome is very efficient tool for specific killing of cancer cells and for activation of antitumor immunity. PMID:28951871

  17. The consequences of sequence erosion in the evolution of recombination hotspots.

    PubMed

    Tiemann-Boege, Irene; Schwarz, Theresa; Striedner, Yasmin; Heissl, Angelika

    2017-12-19

    Meiosis is initiated by a double-strand break (DSB) introduced in the DNA by a highly controlled process that is repaired by recombination. In many organisms, recombination occurs at specific and narrow regions of the genome, known as recombination hotspots, which overlap with regions enriched for DSBs. In recent years, it has been demonstrated that conversions and mutations resulting from the repair of DSBs lead to a rapid sequence evolution at recombination hotspots eroding target sites for DSBs. We still do not fully understand the effect of this erosion in the recombination activity, but evidence has shown that the binding of trans -acting factors like PRDM9 is affected. PRDM9 is a meiosis-specific, multi-domain protein that recognizes DNA target motifs by its zinc finger domain and directs DSBs to these target sites. Here we discuss the changes in affinity of PRDM9 to eroded recognition sequences, and explain how these changes in affinity of PRDM9 can affect recombination, leading sometimes to sterility in the context of hybrid crosses. We also present experimental data showing that DNA methylation reduces PRDM9 binding in vitro Finally, we discuss PRDM9-independent hotspots, posing the question how these hotspots evolve and change with sequence erosion.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'. © 2017 The Authors.

  18. The consequences of sequence erosion in the evolution of recombination hotspots

    PubMed Central

    Schwarz, Theresa; Heissl, Angelika

    2017-01-01

    Meiosis is initiated by a double-strand break (DSB) introduced in the DNA by a highly controlled process that is repaired by recombination. In many organisms, recombination occurs at specific and narrow regions of the genome, known as recombination hotspots, which overlap with regions enriched for DSBs. In recent years, it has been demonstrated that conversions and mutations resulting from the repair of DSBs lead to a rapid sequence evolution at recombination hotspots eroding target sites for DSBs. We still do not fully understand the effect of this erosion in the recombination activity, but evidence has shown that the binding of trans-acting factors like PRDM9 is affected. PRDM9 is a meiosis-specific, multi-domain protein that recognizes DNA target motifs by its zinc finger domain and directs DSBs to these target sites. Here we discuss the changes in affinity of PRDM9 to eroded recognition sequences, and explain how these changes in affinity of PRDM9 can affect recombination, leading sometimes to sterility in the context of hybrid crosses. We also present experimental data showing that DNA methylation reduces PRDM9 binding in vitro. Finally, we discuss PRDM9-independent hotspots, posing the question how these hotspots evolve and change with sequence erosion. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109225

  19. Sex-chromosome differentiation parallels postglacial range expansion in European tree frogs (Hyla arborea).

    PubMed

    Dufresnes, Christophe; Bertholet, Youna; Wassef, Jérôme; Ghali, Karim; Savary, Romain; Pasteur, Baptiste; Brelsford, Alan; Rozenblut-Kościsty, Beata; Ogielska, Maria; Stöck, Matthias; Perrin, Nicolas

    2014-12-01

    Occasional XY recombination is a proposed explanation for the sex-chromosome homomorphy in European tree frogs. Numerous laboratory crosses, however, failed to detect any event of male recombination, and a detailed survey of NW-European Hyla arborea populations identified male-specific alleles at sex-linked loci, pointing to the absence of XY recombination in their recent history. Here, we address this paradox in a phylogeographic framework by genotyping sex-linked microsatellite markers in populations and sibships from the entire species range. Contrasting with postglacial populations of NW Europe, which display complete absence of XY recombination and strong sex-chromosome differentiation, refugial populations of the southern Balkans and Adriatic coast show limited XY recombination and large overlaps in allele frequencies. Geographically and historically intermediate populations of the Pannonian Basin show intermediate patterns of XY differentiation. Even in populations where X and Y occasionally recombine, the genetic diversity of Y haplotypes is reduced below the levels expected from the fourfold drop in copy numbers. This study is the first in which X and Y haplotypes could be phased over the distribution range in a species with homomorphic sex chromosomes; it shows that XY-recombination patterns may differ strikingly between conspecific populations, and that recombination arrest may evolve rapidly (<5000 generations). © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  20. Better understanding of homologous recombination through a 12-week laboratory course for undergraduates majoring in biotechnology.

    PubMed

    Li, Ming; Shen, Xiaodong; Zhao, Yan; Hu, Xiaomei; Hu, Fuquan; Rao, Xiancai

    2017-07-08

    Homologous recombination, a central concept in biology, is defined as the exchange of DNA strands between two similar or identical nucleotide sequences. Unfortunately, undergraduate students majoring in biotechnology often experience difficulties in understanding the molecular basis of homologous recombination. In this study, we developed and implemented a 12-week laboratory course for biotechnology undergraduates in which gene targeting in Streptococcus suis was used to facilitate their understanding of the basic concept and process of homologous recombination. Students worked in teams of two to select a gene of interest to create a knockout mutant using methods that relied on homologous recombination. By integrating abstract knowledge and practice in the process of scientific research, students gained hands-on experience in molecular biology techniques while learning about the principle and process of homologous recombination. The learning outcomes and survey-based assessment demonstrated that students substantially enhanced their understanding of how homologous recombination could be used to study gene function. Overall, the course was very effective for helping biotechnology undergraduates learn the theory and application of homologous recombination, while also yielding positive effects in developing confidence and scientific skills for future work in research. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):329-335, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  1. Excitation correlation photoluminescence in the presence of Shockley-Read-Hall recombination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borgwardt, M., E-mail: mario.borgwardt@helmholtz-berlin.de; Sippel, P.; Eichberger, R.

    Excitation correlation photoluminescence (ECPL) measurements are often analyzed in the approximation of a cross correlation of charge carrier populations generated by the two delayed pulses. In semiconductors, this approach is valid for a linear non-radiative recombination path, but not for a non-linear recombination rate as in the general Shockley-Read-Hall recombination scenario. Here, the evolution of the ECPL signal was studied for deep trap recombination following Shockley-Read-Hall statistics. Analytic solutions can be obtained for a fast minority trapping regime and steady state recombination. For the steady state case, our results show that the quadratic radiative term plays only a minor role,more » and that the shape of the measured signal is mostly determined by the non-linearity of the recombination itself. We find that measurements with unbalanced intense pump and probe pulses can directly provide information about the dominant non-radiative recombination mechanism. The signal traces follow the charge carrier concentrations, despite the complex origins of the signal, thus showing that ECPL can be applied to study charge carrier dynamics in semiconductors without requiring elaborate calculations. The model is compared with measurements on a reference sample with alternating layers of InGaAs/InAlAs that were additionally cross-checked with time resolved optical pump terahertz probe measurements and found to be in excellent agreement.« less

  2. Different segregation patterns in five carriers due to a pericentric inversion of chromosome 1.

    PubMed

    Luo, Yuqin; Xu, Chenming; Sun, Yixi; Wang, Liya; Chen, Songchang; Jin, Fan

    2014-12-01

    Pericentric inversion can produce recombinant gametes; however, meiotic segregation studies on the relationship between the frequency of recombinants and the inverted segment size are rare. Triple-color fluorescence in situ hybridization (FISH) was performed to analyze the meiotic behavior in five inv(1) carriers with different breakpoints. Recombination gametes were absent in Patient 1, whereas the percentages of the recombinants in Patients 2, 3, 4, and 5 were of 9.2%, 15.3%, 17.3%, and 40.9%, respectively. A significant difference was present for the frequencies of the recombinant spermatozoa among the five patients (p < 0.001). For each patient, the frequency of the two types of recombinant gametes (dup(1p)/del(1q) or del(1p)/dup(1q)) did not exhibit a significant difference in comparison with the expected 1:1 ratio (p > 0.05). The meiotic segregation of nine inv(1) carriers (including those presented in this paper) is now available. A significant correlation was discovered between the rate of recombination and the proportion of the chromosome implicated in the inversion (R = 0.9435, p < 0.001). The frequency of the recombinant gametes was directly related to the proportion of the chromosome that was inverted. Sperm-FISH allowed an additional comprehension of the patterns of meiotic segregation and provided accurate genetic counseling.

  3. Induction of homologous recombination in Saccharomyces cerevisiae.

    PubMed

    Simon, J R; Moore, P D

    1988-09-01

    We have investigated the effects of UV irradiation of Saccharomyces cerevisiae in order to distinguish whether UV-induced recombination results from the induction of enzymes required for homologous recombination, or the production of substrate sites for recombination containing regions of DNA damage. We utilized split-dose experiments to investigate the induction of proteins required for survival, gene conversion, and mutation in a diploid strain of S. cerevisiae. We demonstrate that inducing doses of UV irradiation followed by a 6 h period of incubation render the cells resistant to challenge doses of UV irradiation. The effects of inducing and challenge doses of UV irradiation upon interchromosomal gene conversion and mutation are strictly additive. Using the yeast URA3 gene cloned in non-replicating single- and double-stranded plasmid vectors that integrate into chromosomal genes upon transformation, we show that UV irradiation of haploid yeast cells and homologous plasmid DNA sequences each stimulate homologous recombination approximately two-fold, and that these effects are additive. Non-specific DNA damage has little effect on the stimulation of homologous recombination, as shown by studies in which UV-irradiated heterologous DNA was included in transformation/recombination experiments. We further demonstrate that the effect of competing single- and double-stranded heterologous DNA sequences differs in UV-irradiated and unirradiated cells, suggesting an induction of recombinational machinery in UV-irradiated S. cerevisiae cells.

  4. Mortality Benefit of Recombinant Human Interleukin-1 Receptor Antagonist for Sepsis Varies by Initial Interleukin-1 Receptor Antagonist Plasma Concentration.

    PubMed

    Meyer, Nuala J; Reilly, John P; Anderson, Brian J; Palakshappa, Jessica A; Jones, Tiffanie K; Dunn, Thomas G; Shashaty, Michael G S; Feng, Rui; Christie, Jason D; Opal, Steven M

    2018-01-01

    Plasma interleukin-1 beta may influence sepsis mortality, yet recombinant human interleukin-1 receptor antagonist did not reduce mortality in randomized trials. We tested for heterogeneity in the treatment effect of recombinant human interleukin-1 receptor antagonist by baseline plasma interleukin-1 beta or interleukin-1 receptor antagonist concentration. Retrospective subgroup analysis of randomized controlled trial. Multicenter North American and European clinical trial. Five hundred twenty-nine subjects with sepsis and hypotension or hypoperfusion, representing 59% of the original trial population. Random assignment of placebo or recombinant human interleukin-1 receptor antagonist × 72 hours. We measured prerandomization plasma interleukin-1 beta and interleukin-1 receptor antagonist and tested for statistical interaction between recombinant human interleukin-1 receptor antagonist treatment and baseline plasma interleukin-1 receptor antagonist or interleukin-1 beta concentration on 28-day mortality. There was significant heterogeneity in the effect of recombinant human interleukin-1 receptor antagonist treatment by plasma interleukin-1 receptor antagonist concentration whether plasma interleukin-1 receptor antagonist was divided into deciles (interaction p = 0.046) or dichotomized (interaction p = 0.028). Interaction remained present across different predicted mortality levels. Among subjects with baseline plasma interleukin-1 receptor antagonist above 2,071 pg/mL (n = 283), recombinant human interleukin-1 receptor antagonist therapy reduced adjusted mortality from 45.4% to 34.3% (adjusted risk difference, -0.12; 95% CI, -0.23 to -0.01), p = 0.044. Mortality in subjects with plasma interleukin-1 receptor antagonist below 2,071 pg/mL was not reduced by recombinant human interleukin-1 receptor antagonist (adjusted risk difference, +0.07; 95% CI, -0.04 to +0.17), p = 0.230. Interaction between plasma interleukin-1 beta concentration and recombinant human interleukin-1 receptor antagonist treatment was not statistically significant. We report a heterogeneous effect of recombinant human interleukin-1 receptor antagonist on 28-day sepsis mortality that is potentially predictable by plasma interleukin-1 receptor antagonist in one trial. A precision clinical trial of recombinant human interleukin-1 receptor antagonist targeted to septic patients with high plasma interleukin-1 receptor antagonist may be worthy of consideration.

  5. 9 CFR 121.13 - Restricted experiments. 10

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... publication, “NIH Guidelines for Research Involving Recombinant DNA Molecules.” This document is available on.... (b) Restricted experiments: (1) Experiments utilizing recombinant DNA that involve the deliberate... medicine, or agriculture. (2) Experiments involving the deliberate formation of recombinant DNA containing...

  6. 9 CFR 121.13 - Restricted experiments. 10

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... publication, “NIH Guidelines for Research Involving Recombinant DNA Molecules.” This document is available on.... (b) Restricted experiments: (1) Experiments utilizing recombinant DNA that involve the deliberate... medicine, or agriculture. (2) Experiments involving the deliberate formation of recombinant DNA containing...

  7. 9 CFR 121.13 - Restricted experiments. 10

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... publication, “NIH Guidelines for Research Involving Recombinant DNA Molecules.” This document is available on.... (b) Restricted experiments: (1) Experiments utilizing recombinant DNA that involve the deliberate... medicine, or agriculture. (2) Experiments involving the deliberate formation of recombinant DNA containing...

  8. New rifamycins produced by a recombinant strain of Nocardia mediterranei.

    PubMed

    Schupp, T; Traxler, P; Auden, J A

    1981-08-01

    A recombinant strain of Nocardia mediterranei was found to produce a number of new rifamycins which are structurally related to rifamycin S, rifamycin W and rifamycin G. This strain was derived from two Nocardia mediterranei mutants by intraspecific recombination.

  9. Cancer, viruses, and mass migration: Paul Berg's venture into eukaryotic biology and the advent of recombinant DNA research and technology, 1967-1980.

    PubMed

    Yi, Doogab

    2008-01-01

    The existing literature on the development of recombinant DNA technology and genetic engineering tends to focus on Stanley Cohen and Herbert Boyer's recombinant DNA cloning technology and its commercialization starting in the mid-1970s. Historians of science, however, have pointedly noted that experimental procedures for making recombinant DNA molecules were initially developed by Stanford biochemist Paul Berg and his colleagues, Peter Lobban and A. Dale Kaiser in the early 1970s. This paper, recognizing the uneasy disjuncture between scientific authorship and legal invention in the history of recombinant DNA technology, investigates the development of recombinant DNA technology in its full scientific context. I do so by focusing on Stanford biochemist Berg's research on the genetic regulation of higher organisms. As I hope to demonstrate, Berg's new venture reflected a mass migration of biomedical researchers as they shifted from studying prokaryotic organisms like bacteria to studying eukaryotic organisms like mammalian and human cells. It was out of this boundary crossing from prokaryotic to eukaryotic systems through virus model systems that recombinant DNA technology and other significant new research techniques and agendas emerged. Indeed, in their attempt to reconstitute 'life' as a research technology, Stanford biochemists' recombinant DNA research recast genes as a sequence that could be rewritten thorough biochemical operations. The last part of this paper shifts focus from recombinant DNA technology's academic origins to its transformation into a genetic engineering technology by examining the wide range of experimental hybridizations which occurred as techniques and knowledge circulated between Stanford biochemists and the Bay Area's experimentalists. Situating their interchange in a dense research network based at Stanford's biochemistry department, this paper helps to revise the canonized history of genetic engineering's origins that emerged during the patenting of Cohen-Boyer's recombinant DNA cloning procedures.

  10. A high-density genetic map reveals variation in recombination rate across the genome of Daphnia magna.

    PubMed

    Dukić, Marinela; Berner, Daniel; Roesti, Marius; Haag, Christoph R; Ebert, Dieter

    2016-10-13

    Recombination rate is an essential parameter for many genetic analyses. Recombination rates are highly variable across species, populations, individuals and different genomic regions. Due to the profound influence that recombination can have on intraspecific diversity and interspecific divergence, characterization of recombination rate variation emerges as a key resource for population genomic studies and emphasises the importance of high-density genetic maps as tools for studying genome biology. Here we present such a high-density genetic map for Daphnia magna, and analyse patterns of recombination rate across the genome. A F2 intercross panel was genotyped by Restriction-site Associated DNA sequencing to construct the third-generation linkage map of D. magna. The resulting high-density map included 4037 markers covering 813 scaffolds and contigs that sum up to 77 % of the currently available genome draft sequence (v2.4) and 55 % of the estimated genome size (238 Mb). Total genetic length of the map presented here is 1614.5 cM and the genome-wide recombination rate is estimated to 6.78 cM/Mb. Merging genetic and physical information we consistently found that recombination rate estimates are high towards the peripheral parts of the chromosomes, while chromosome centres, harbouring centromeres in D. magna, show very low recombination rate estimates. Due to its high-density, the third-generation linkage map for D. magna can be coupled with the draft genome assembly, providing an essential tool for genome investigation in this model organism. Thus, our linkage map can be used for the on-going improvements of the genome assembly, but more importantly, it has enabled us to characterize variation in recombination rate across the genome of D. magna for the first time. These new insights can provide a valuable assistance in future studies of the genome evolution, mapping of quantitative traits and population genetic studies.

  11. Increased volume of distribution for recombinant activated factor VII and longer plasma-derived factor VII half-life may explain their long lasting prophylactic effect.

    PubMed

    Mathijssen, Natascha C J; Masereeuw, Rosalinde; Holme, Pal Andre; van Kraaij, Marian G J; Laros-van Gorkom, Britta A P; Peyvandi, Flora; van Heerde, Waander L

    2013-08-01

    Prophylaxis with plasma-derived or recombinant activated factor VII is beneficial in severe factor VII deficiency. To understand why prophylactic treatment with both products is efficacious, we conducted a pharmacokinetic study. Ten factor VII deficient patients were treated with either recombinant activated (20 μg/kg) or plasma-derived (25 IU/kg) factor VII in a cross-over design. Pharmacokinetic parameters were analyzed through activated factor VII activity, factor VII clotting activity, and factor VII antigen levels on depicted time points. Factor VII activity half-lifes, determined by non-compartmental and one-compartmental analysis (results in brackets), were shorter for recombinant activated (1.4h; 0.7h) than for plasma-derived factor VII (6.8h; 3.2h); both recombinant activated (5.1h; 2.1h and plasma-derived factor VII (5.8h; 3.2h) resulted in longer half-lives of factor VII antigen. Activated factor VII half-lives (based on activated factor VII activity levels) were significantly higher compared to factor VII clotting activity (1.6h; 0.9h). Volumes of distribution were significantly higher for activated factor VII (236 ml/kg; 175 ml/kg, measured by activated factor VII) as compared to plasma-derived factor VII (206 ml/kg; 64 ml/kg, measured by factor FVII activity), suggesting a plasma- and extracellular fluid distribution for recombinant activated factor VII. Recombinant activated factor VII showed significantly shorter half-lifes than plasma-derived factor VII. Volumes of distribution were significantly higher for treatment with recombinant activated factor VII. The longer half-life for plasma-derived factor VII, compared to recombinant activated factor VII, and the increased volume of distribution for recombinant activated factor VII, compared to plasma-derived factor VII may further elucidate the beneficial effect of prophylactic treatment of both products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The contribution of alu elements to mutagenic DNA double-strand break repair.

    PubMed

    Morales, Maria E; White, Travis B; Streva, Vincent A; DeFreece, Cecily B; Hedges, Dale J; Deininger, Prescott L

    2015-03-01

    Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic structural variation. To begin understanding the molecular mechanisms leading to these rearrangements in mammalian cells, we constructed Alu/Alu recombination reporter cell lines containing Alu elements ranging in sequence divergence from 0%-30% that allow detection of both Alu/Alu recombination and large non-homologous end joining (NHEJ) deletions that range from 1.0 to 1.9 kb in size. Introduction of as little as 0.7% sequence divergence between Alu elements resulted in a significant reduction in recombination, which indicates even small degrees of sequence divergence reduce the efficiency of homology-directed DNA double-strand break (DSB) repair. Further reduction in recombination was observed in a sequence divergence-dependent manner for diverged Alu/Alu recombination constructs with up to 10% sequence divergence. With greater levels of sequence divergence (15%-30%), we observed a significant increase in DSB repair due to a shift from Alu/Alu recombination to variable-length NHEJ which removes sequence between the two Alu elements. This increase in NHEJ deletions depends on the presence of Alu sequence homeology (similar but not identical sequences). Analysis of recombination products revealed that Alu/Alu recombination junctions occur more frequently in the first 100 bp of the Alu element within our reporter assay, just as they do in genomic Alu/Alu recombination events. This is the first extensive study characterizing the influence of Alu element sequence divergence on DNA repair, which will inform predictions regarding the effect of Alu element sequence divergence on both the rate and nature of DNA repair events.

  13. Conditions for diffusion-limited and reaction-limited recombination in nanostructured solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansari-Rad, Mehdi, E-mail: ansari.rad@ut.ac.ir; Department of Physics, University of Shahrood, Shahrood; Anta, Juan A., E-mail: anta@upo.es

    2014-04-07

    The performance of Dye-sensitized solar cells (DSC) and related devices made of nanostructured semiconductors relies on a good charge separation, which in turn is achieved by favoring charge transport against recombination. Although both processes occur at very different time scales, hence ensuring good charge separation, in certain cases the kinetics of transport and recombination can be connected, either in a direct or an indirect way. In this work, the connection between electron transport and recombination in nanostructured solar cells is studied both theoretically and by Monte Carlo simulation. Calculations using the Multiple-Trapping model and a realistic trap distribution for nanostructuredmore » TiO{sub 2} show that for attempt-to-jump frequencies higher than 10{sup 11}–10{sup 13} Hz, the system adopts a reaction limited (RL) regime, with a lifetime which is effectively independent from the speed of the electrons in the transport level. For frequencies lower than those, and depending on the concentration of recombination centers in the material, the system enters a diffusion-limited regime (DL), where the lifetime increases if the speed of free electrons decreases. In general, the conditions for RL or DL recombination depend critically on the time scale difference between recombination kinetics and free-electron transport. Hence, if the former is too rapid with respect to the latter, the system is in the DL regime and total thermalization of carriers is not possible. In the opposite situation, a RL regime arises. Numerical data available in the literature, and the behavior of the lifetime with respect to (1) density of recombination centers and (2) probability of recombination at a given center, suggest that a typical DSC in operation stays in the RL regime with complete thermalization, although a transition to the DL regime may occur for electrolytes or hole conductors where recombination is especially rapid or where there is a larger dispersion of energies of electron acceptors.« less

  14. Evolutionary advantage via common action of recombination and neutrality

    NASA Astrophysics Data System (ADS)

    Saakian, David B.; Hu, Chin-Kun

    2013-11-01

    We investigate evolution models with recombination and neutrality. We consider the Crow-Kimura (parallel) mutation-selection model with the neutral fitness landscape, in which there is a central peak with high fitness A, and some of 1-point mutants have the same high fitness A, while the fitness of other sequences is 0. We find that the effect of recombination and neutrality depends on the concrete version of both neutrality and recombination. We consider three versions of neutrality: (a) all the nearest neighbor sequences of the peak sequence have the same high fitness A; (b) all the l-point mutations in a piece of genome of length l≥1 are neutral; (c) the neutral sequences are randomly distributed among the nearest neighbors of the peak sequences. We also consider three versions of recombination: (I) the simple horizontal gene transfer (HGT) of one nucleotide; (II) the exchange of a piece of genome of length l, HGT-l; (III) two-point crossover recombination (2CR). For the case of (a), the 2CR gives a rather strong contribution to the mean fitness, much stronger than that of HGT for a large genome length L. For the random distribution of neutral sequences there is a critical degree of neutrality νc, and for μ<μc and (μc-μ) is not large, the 2CR suppresses the mean fitness while HGT increases it; for ν much larger than νc, the 2CR and HGT-l increase the mean fitness larger than that of the HGT. We also consider the recombination in the case of smooth fitness landscapes. The recombination gives some advantage in the evolutionary dynamics, where recombination distinguishes clearly the mean-field-like evolutionary factors from the fluctuation-like ones. By contrast, mutations affect the mean-field-like and fluctuation-like factors similarly. Consequently, recombination can accelerate the non-mean-field (fluctuation) type dynamics without considerably affecting the mean-field-like factors.

  15. The Contribution of Genetic Recombination to CRISPR Array Evolution

    PubMed Central

    Kupczok, Anne; Landan, Giddy; Dagan, Tal

    2015-01-01

    CRISPR (clustered regularly interspaced short palindromic repeats) is a microbial immune system against foreign DNA. Recognition sequences (spacers) encoded within the CRISPR array mediate the immune reaction in a sequence-specific manner. The known mechanisms for the evolution of CRISPR arrays include spacer acquisition from foreign DNA elements at the time of invasion and array erosion through spacer deletion. Here, we consider the contribution of genetic recombination between homologous CRISPR arrays to the evolution of spacer repertoire. Acquisition of spacers from exogenic arrays via recombination may confer the recipient with immunity against unencountered antagonists. For this purpose, we develop a novel method for the detection of recombination in CRISPR arrays by modeling the spacer order in arrays from multiple strains from the same species. Because the evolutionary signal of spacer recombination may be similar to that of pervasive spacer deletions or independent spacer acquisition, our method entails a robustness analysis of the recombination inference by a statistical comparison to resampled and perturbed data sets. We analyze CRISPR data sets from four bacterial species: two Gammaproteobacteria species harboring CRISPR type I and two Streptococcus species harboring CRISPR type II loci. We find that CRISPR array evolution in Escherichia coli and Streptococcus agalactiae can be explained solely by vertical inheritance and differential spacer deletion. In Pseudomonas aeruginosa, we find an excess of single spacers potentially incorporated into the CRISPR locus during independent acquisition events. In Streptococcus thermophilus, evidence for spacer acquisition by recombination is present in 5 out of 70 strains. Genetic recombination has been proposed to accelerate adaptation by combining beneficial mutations that arose in independent lineages. However, for most species under study, we find that CRISPR evolution is shaped mainly by spacer acquisition and loss rather than recombination. Since the evolution of spacer content is characterized by a rapid turnover, it is likely that recombination is not beneficial for improving phage resistance in the strains under study, or that it cannot be detected in the resolution of intraspecies comparisons. PMID:26085541

  16. Evidence that meiotic pairing starts at the telomeres: Molecular analysis of recombination in a family with a pericentric X chromosome inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shashi, V.; Allinson, P.S.; Golden, W.L.

    1994-09-01

    Recent studies in yeast have shown that telomeres rather than centromeres lead in chromosome movement just prior to meiosis and may have a role in recombination. Cytological studies of meiosis in Drosophila and mice have shown that in pericentric inversion heterozygotes there is lack of loop formation, with recobmination seen only outside the inversion. In a family with Duchenne muscular dystrophy (DMD) we recognized that only affected males and carrier females had a pericentric X chromosome inversion (inv X(p11.4;q26)). Since the short arm inversion breakpoint was proximal to the DMD locus, it could not be implicated in the mutational eventmore » causing DMD. There was no history of infertility, recurrent miscarriages or liveborn unbalanced females to suggest there was recombination within the inversion. We studied 22 members over three generations to understand the pattern of meiotic recombination between the normal and the inverted X chromosome. In total, 17 meioses involving the inverted X chromosome in females were studied by cytogenetic analysis and 16 CA repeat polymorphisms along the length of the X chromosome. Results: (a) There was complete concordance between the segregation of the DMD mutation and the inverted X chromosome. (b) On DNA analysis, there was complete absence of recombination within the inverted segment. We also found no recombination at the DMD locus. Recombination was seen only at Xp22 and Xq27-28. (c) Recombination was seen in the same individual at both Xp22 and Xq27-28 without recombination otherwise. Conclusions: (1) Pericentric X inversions reduce the genetic map length of the chromosome, with the physical map length being normal. (2) Meiotic X chromosome pairing in this family is initiated at the telomeres. (3) Following telomeric pairing in pericentric X chromosome inversions, there is inhibition of recombination within the inversion and adjacent regions.« less

  17. Recombination between Polioviruses and Co-Circulating Coxsackie A Viruses: Role in the Emergence of Pathogenic Vaccine-Derived Polioviruses

    PubMed Central

    Jegouic, Sophie; Joffret, Marie-Line; Blanchard, Claire; Riquet, Franck B.; Perret, Céline; Pelletier, Isabelle; Colbere-Garapin, Florence; Rakoto-Andrianarivelo, Mala; Delpeyroux, Francis

    2009-01-01

    Ten outbreaks of poliomyelitis caused by pathogenic circulating vaccine-derived polioviruses (cVDPVs) have recently been reported in different regions of the world. Two of these outbreaks occurred in Madagascar. Most cVDPVs were recombinants of mutated poliovaccine strains and other unidentified enteroviruses of species C. We previously reported that a type 2 cVDPV isolated during an outbreak in Madagascar was co-circulating with coxsackieviruses A17 (CA17) and that sequences in the 3′ half of the cVDPV and CA17 genomes were related. The goal of this study was to investigate whether these CA17 isolates can act as recombination partners of poliovirus and subsequently to evaluate the major effects of recombination events on the phenotype of the recombinants. We first cloned the infectious cDNA of a Madagascar CA17 isolate. We then generated recombinant constructs combining the genetic material of this CA17 isolate with that of the type 2 vaccine strain and that of the type 2 cVDPV. Our results showed that poliovirus/CA17 recombinants are viable. The recombinant in which the 3′ half of the vaccine strain genome had been replaced by that of the CA17 genome yielded larger plaques and was less temperature sensitive than its parental strains. The virus in which the 3′ portion of the cVDPV genome was replaced by the 3′ half of the CA17 genome was almost as neurovirulent as the cVDPV in transgenic mice expressing the poliovirus cellular receptor gene. The co-circulation in children and genetic recombination of viruses, differing in their pathogenicity for humans and in certain other biological properties such as receptor usage, can lead to the generation of pathogenic recombinants, thus constituting an interesting model of viral evolution and emergence. PMID:19412342

  18. Genomic Landscape of Long Terminal Repeat Retrotransposons (LTR-RTs) and Solo LTRs as Shaped by Ectopic Recombination in Chicken and Zebra Finch.

    PubMed

    Ji, Yanzhu; DeWoody, J Andrew

    2016-06-01

    Transposable elements (TEs) are nearly ubiquitous among eukaryotic genomes, but TE contents vary dramatically among phylogenetic lineages. Several mechanisms have been proposed as drivers of TE dynamics in genomes, including the fixation/loss of a particular TE insertion by selection or drift as well as structural changes in the genome due to mutation (e.g., recombination). In particular, recombination can have a significant and directional effect on the genomic TE landscape. For example, ectopic recombination removes internal regions of long terminal repeat retrotransposons (LTR-RTs) as well as one long terminal repeat (LTR), resulting in a solo LTR. In this study, we focus on the intra-species dynamics of LTR-RTs and solo LTRs in bird genomes. The distribution of LTR-RTs and solo LTRs in birds is intriguing because avian recombination rates vary widely within a given genome. We used published linkage maps and whole genome assemblies to study the relationship between recombination rates and LTR-removal events in the chicken and zebra finch. We hypothesized that regions with low recombination rates would harbor more full-length LTR-RTs (and fewer solo LTRs) than regions with high recombination rates. We tested this hypothesis by comparing the ratio of full-length LTR-RTs and solo LTRs across chromosomes, across non-overlapping megabase windows, and across physical features (i.e., centromeres and telomeres). The chicken data statistically supported the hypothesis that recombination rates are inversely correlated with the ratio of full-length to solo LTRs at both the chromosome level and in 1-Mb non-overlapping windows. We also found that the ratio of full-length to solo LTRs near chicken telomeres was significantly lower than those ratios near centromeres. Our results suggest a potential role of ectopic recombination in shaping the chicken LTR-RT genomic landscape.

  19. Atomistic Design of CdSe/CdS Core-Shell Quantum Dots with Suppressed Auger Recombination.

    PubMed

    Jain, Ankit; Voznyy, Oleksandr; Hoogland, Sjoerd; Korkusinski, Marek; Hawrylak, Pawel; Sargent, Edward H

    2016-10-12

    We design quasi-type-II CdSe/CdS core-shell colloidal quantum dots (CQDs) exhibiting a suppressed Auger recombination rate. We do so using fully atomistic tight-binding wave functions and microscopic Coulomb interactions. The recombination rate as a function of the core and shell size and shape is tested against experiments. Because of a higher density of deep hole states and stronger hole confinement, Auger recombination is found to be up to six times faster for positive trions compared to negative ones in 4 nm core/10 nm shell CQDs. Soft-confinement at the interface results in weak suppression of Auger recombination compared to same-bandgap sharp-interface CQDs. We find that the suppression is due to increased volume of the core resulting in delocalization of the wave functions, rather than due to soft-confinement itself. We show that our results are consistent with previous effective mass models with the same system parameters. Increasing the dot volume remains the most efficient way to suppress Auger recombination. We predict that a 4-fold suppression of Auger recombination can be achieved in 10 nm CQDs by increasing the core volume by using rodlike cores embedded in thick shells.

  20. Sero-detection of Toxocara canis infection in human with T.canis recombinant arginine kinase, cathepsin L-1 and TES-26 antigens.

    PubMed

    Varghese, Anju; Raina, Opinder K; Chandra, Dinesh; Mirdha, Bijay R; Kelawala, Naresh H; Solanki, Jayesh B; Kumar, Niranjan; Ravindran, Reghu; Arun, Anandanarayanan; Rialch, Ajayta; Lalrinkima, Hniang; Kelawala, Rohan N; Samanta, Subhamoy

    2017-12-20

    Three recombinant antigens viz. arginine kinase, cathepsin L-1 and TES-26 of Toxocara canis were expressed in Escherichia coli and evaluated for their potential in the detection of T. canis larval infection in human in immunoglobulin G-enzyme linked immunosorbent assay (IgG-ELISA). Results of the IgG-ELISA with the above recombinant antigens were confirmed with commercially available IgG detection kit for T. canis infection used as a standard test. All three recombinant antigens were 100% sensitive in the detection of positive cases (n = 6) of T. canis infection in human and were screened for their cross-reactivity in human patients with history of Toxoplasma gondii, Plasmodium vivax, Entamoeba histolytica, hydatid and hookworm infections. The recombinant TES-26 antigen showed higher specificity and cross-reacted with T. gondii infection sera only. However, arginine kinase and cathepsin L-1 recombinant antigens showed cross-reactions with sera of patients infected with T. gondii, P. vivax and E. histolytica but not with the patient sera infected with hydatid and hookworm. These results show that recombinant TES-26 is a potential diagnostic candidate antigen for human toxocarosis caused by migrating T. canis larvae.

  1. A Novel Hybrid Clonal Selection Algorithm with Combinatorial Recombination and Modified Hypermutation Operators for Global Optimization

    PubMed Central

    Lin, Jingjing; Jing, Honglei

    2016-01-01

    Artificial immune system is one of the most recently introduced intelligence methods which was inspired by biological immune system. Most immune system inspired algorithms are based on the clonal selection principle, known as clonal selection algorithms (CSAs). When coping with complex optimization problems with the characteristics of multimodality, high dimension, rotation, and composition, the traditional CSAs often suffer from the premature convergence and unsatisfied accuracy. To address these concerning issues, a recombination operator inspired by the biological combinatorial recombination is proposed at first. The recombination operator could generate the promising candidate solution to enhance search ability of the CSA by fusing the information from random chosen parents. Furthermore, a modified hypermutation operator is introduced to construct more promising and efficient candidate solutions. A set of 16 common used benchmark functions are adopted to test the effectiveness and efficiency of the recombination and hypermutation operators. The comparisons with classic CSA, CSA with recombination operator (RCSA), and CSA with recombination and modified hypermutation operator (RHCSA) demonstrate that the proposed algorithm significantly improves the performance of classic CSA. Moreover, comparison with the state-of-the-art algorithms shows that the proposed algorithm is quite competitive. PMID:27698662

  2. Costs and benefits of natural transformation in Acinetobacter baylyi.

    PubMed

    Hülter, Nils; Sørum, Vidar; Borch-Pedersen, Kristina; Liljegren, Mikkel M; Utnes, Ane L G; Primicerio, Raul; Harms, Klaus; Johnsen, Pål J

    2017-02-15

    Natural transformation enables acquisition of adaptive traits and drives genome evolution in prokaryotes. Yet, the selective forces responsible for the evolution and maintenance of natural transformation remain elusive since taken-up DNA has also been hypothesized to provide benefits such as nutrients or templates for DNA repair to individual cells. We investigated the immediate effects of DNA uptake and recombination on the naturally competent bacterium Acinetobacter baylyi in both benign and genotoxic conditions. In head-to-head competition experiments between DNA uptake-proficient and -deficient strains, we observed a fitness benefit of DNA uptake independent of UV stress. This benefit was found with both homologous and heterologous DNA and was independent of recombination. Recombination with taken-up DNA reduced survival of transformed cells with increasing levels of UV-stress through interference with nucleotide excision repair, suggesting that DNA strand breaks occur during recombination attempts with taken-up DNA. Consistent with this, we show that absence of RecBCD and RecFOR recombinational DNA repair pathways strongly decrease natural transformation. Our data show a physiological benefit of DNA uptake unrelated to recombination. In contrast, recombination during transformation is a strand break inducing process that represents a previously unrecognized cost of natural transformation.

  3. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells.

    PubMed

    Fabrick, Jeffrey A; Hull, J Joe

    2017-04-20

    Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.

  4. Sequencing of Single Pollen Nuclei Reveals Meiotic Recombination Events at Megabase Resolution and Circumvents Segregation Distortion Caused by Postmeiotic Processes

    PubMed Central

    Dreissig, Steven; Fuchs, Jörg; Himmelbach, Axel; Mascher, Martin; Houben, Andreas

    2017-01-01

    Meiotic recombination is a fundamental mechanism to generate novel allelic combinations which can be harnessed by breeders to achieve crop improvement. The recombination landscape of many crop species, including the major crop barley, is characterized by a dearth of recombination in 65% of the genome. In addition, segregation distortion caused by selection on genetically linked loci is a frequent and undesirable phenomenon in double haploid populations which hampers genetic mapping and breeding. Here, we present an approach to directly investigate recombination at the DNA sequence level by combining flow-sorting of haploid pollen nuclei of barley with single-cell genome sequencing. We confirm the skewed distribution of recombination events toward distal chromosomal regions at megabase resolution and show that segregation distortion is almost absent if directly measured in pollen. Furthermore, we show a bimodal distribution of inter-crossover distances, which supports the existence of two classes of crossovers which are sensitive or less sensitive to physical interference. We conclude that single pollen nuclei sequencing is an approach capable of revealing recombination patterns in the absence of segregation distortion. PMID:29018459

  5. High level expression, purification and physico- and immunochemical characterisation of recombinant Pen a 1: a major allergen of shrimp.

    PubMed

    Albrecht, Melanie; Alessandri, Stefano; Conti, Amedeo; Reuter, Andreas; Lauer, Iris; Vieths, Stefan; Reese, Gerald

    2008-11-01

    Well-characterised and immunologically active recombinant allergens are of eminent importance for improvement of diagnostic tools and immunotherapy of allergic diseases. The use of recombinant allergens has several advantages such as the more precise quantification of the active substance compared to allergen extracts and the reduced risk of contamination with other allergenic proteins compared to purified natural allergens. Optimised standard protocols for expression and purification and a detailed physico-chemical characterisation of such recombinant allergens are necessary to ensure consistent quality and comparability of results obtained with recombinant material. In this study the major allergen Pen a 1 of brown shrimp (Penaeus aztecus) was expressed in E. coli and purified in two steps by immobilised metal chelate-affinity chromatography (IMAC) and size-exclusion chromatography. Identity and purity were verified with N-terminal sequencing and peptide mass fingerprinting. Circular dichroism and NMR-spectroscopy indicated an alpha-helical flexible structure of rPen a 1 which is in accordance with the known structure of tropomyosins. Finally, the recombinant allergen proved to be immunologically reactive in IgE Western blot analysis and ELISA. This study provides a protocol for the preparation of recombinant shrimp tropomyosin in standardised quality.

  6. Mgm101 is a Rad52-related protein required for mitochondrial DNA recombination.

    PubMed

    Mbantenkhu, MacMillan; Wang, Xiaowen; Nardozzi, Jonathan D; Wilkens, Stephan; Hoffman, Elizabeth; Patel, Anamika; Cosgrove, Michael S; Chen, Xin Jie

    2011-12-09

    Homologous recombination is a conserved molecular process that has primarily evolved for the repair of double-stranded DNA breaks and stalled replication forks. However, the recombination machinery in mitochondria is poorly understood. Here, we show that the yeast mitochondrial nucleoid protein, Mgm101, is related to the Rad52-type recombination proteins that are widespread in organisms from bacteriophage to humans. Mgm101 is required for repeat-mediated recombination and suppression of mtDNA fragmentation in vivo. It preferentially binds to single-stranded DNA and catalyzes the annealing of ssDNA precomplexed with the mitochondrial ssDNA-binding protein, Rim1. Transmission electron microscopy showed that Mgm101 forms large oligomeric rings of ∼14-fold symmetry and highly compressed helical filaments. Specific mutations affecting ring formation reduce protein stability in vitro. The data suggest that the ring structure may provide a scaffold for stabilization of Mgm101 by preventing the aggregation of the otherwise unstable monomeric conformation. Upon binding to ssDNA, Mgm101 is remobilized from the rings to form distinct nucleoprotein filaments. These studies reveal a recombination protein of likely bacteriophage origin in mitochondria and support the notion that recombination is indispensable for mtDNA integrity.

  7. Qualitative and Quantitative Assays of Transposition and Homologous Recombination of the Retrotransposon Tf1 in Schizosaccharomyces pombe.

    PubMed

    Sangesland, Maya; Atwood-Moore, Angela; Rai, Sudhir K; Levin, Henry L

    2016-01-01

    Transposition and homologous recombination assays are valuable genetic tools to measure the production and integration of cDNA from the long terminal repeat (LTR) retrotransposon Tf1 in the fission yeast (Schizosaccharomyces pombe). Here we describe two genetic assays, one that measures the transposition activity of Tf1 by monitoring the mobility of a drug resistance marked Tf1 element expressed from a multi-copy plasmid and another assay that measures homologous recombination between Tf1 cDNA and the expression plasmid. While the transposition assay measures insertion of full-length Tf1 cDNA mediated by the transposon integrase, the homologous recombination assay measures levels of cDNA present in the nucleus and is independent of integrase activity. Combined, these assays can be used to systematically screen large collections of strains to identify mutations that specifically inhibit the integration step in the retroelement life cycle. Such mutations can be identified because they reduce transposition activity but nevertheless have wild-type frequencies of homologous recombination. Qualitative assays of yeast patches on agar plates detect large defects in integration and recombination, while the quantitative approach provides a precise method of determining integration and recombination frequencies.

  8. Phenylbutyrate inhibits homologous recombination induced by camptothecin and methyl methanesulfonate.

    PubMed

    Kaiser, Gitte S; Germann, Susanne M; Westergaard, Tine; Lisby, Michael

    2011-08-01

    Homologous recombination is accompanied by extensive changes to chromatin organization at the site of DNA damage. Some of these changes are mediated through acetylation/deacetylation of histones. Here, we show that recombinational repair of DNA damage induced by the anti-cancer drug camptothecin (CPT) and the alkylating agent methyl methanesulfonate (MMS) is blocked by sodium phenylbutyrate (PBA) in the budding yeast Saccharomyces cerevisiae. In particular, PBA suppresses CPT- and MMS-induced genetic recombination as well as DNA double-strand break repair during mating-type interconversion. Treatment with PBA is accompanied by a dramatic reduction in histone H4 lysine 8 acetylation. Live cell imaging of homologous recombination proteins indicates that repair of CPT-induced DNA damage is redirected to a non-recombinogenic pathway in the presence of PBA without loss in cell viability. In contrast, the suppression of MMS-induced recombination by PBA is accompanied by a dramatic loss in cell viability. Taken together, our results demonstrate that PBA inhibits DNA damage-induced homologous recombination likely by mediating changes in chromatin acetylation. Moreover, the combination of PBA with genotoxic agents can lead to different cell fates depending on the type of DNA damage inflicted. 2011 Elsevier B.V. All rights reserved.

  9. Sordaria, a model system to uncover links between meiotic pairing and recombination

    PubMed Central

    Zickler, Denise; Espagne, Eric

    2017-01-01

    The mycelial fungus Sordaria macrospora was first used as experimental system for meiotic recombination. This review shows that it provides also a powerful cytological system for dissecting chromosome dynamics in wild-type and mutant meioses. Fundamental cytogenetic findings include: (1) The identification of presynaptic alignment as a key step in pairing of homologous chromosomes. (2) The discovery that biochemical complexes that mediate recombination at the DNA level concomitantly mediate pairing of homologs. (3) This pairing process involves not only resolution but also avoidance of chromosomal entanglements and the resolution system includes dissolution of constraining DNA recombination interactions, achieved by a unique role of Mlh1. (4) Discovery that the central components of the synaptonemal complex directly mediate the re-localization of the recombination proteins from on-axis to in-between homologue axis positions. (5) Identification of putative STUbL protein Hei10 as a structure-based signal transduction molecule that coordinates progression and differentiation of recombinational interactions at multiple stages. (6) Discovery that a single interference process mediates both nucleation of the SC and designation of crossover sites, thereby ensuring even spacing of both features. (7) Discovery of local modulation of sister-chromatid cohesion at sites of crossover recombination. PMID:26877138

  10. Radiative recombination data for tungsten ions: II. W{sup 47+}–W{sup 71+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trzhaskovskaya, M.B., E-mail: Trzhask@MT5605.spb.edu; Nikulin, V.K.

    2014-07-15

    New radiative recombination and photoionization cross sections, radiative recombination rate coefficients, and radiated power loss rate coefficients are presented for 23 tungsten impurity ions in plasmas. We consider ions from W{sup 47+} to W{sup 71+} that are of importance to fusion studies for ITER and for experiments using electron beam ion traps. The calculations are fully relativistic and all significant multipoles of the radiative field are taken into account. The Dirac–Fock method is used to compute the electron wavefunctions. Radiative recombination rates and radiated power loss rates are found using the relativistic Maxwell–Jüttner distribution of the continuum electron velocity. Themore » total radiative recombination cross sections are given in the electron energy range from 1 eV to ∼80keV. Partial cross sections for ground and excited states are approximated by an analytical expression involving five fit parameters. Radiative recombination rates and radiated power loss rates are calculated in the temperature range from 10{sup 4}K to 10{sup 9}K. The total radiative recombination rates are approximated by another analytical expression with four fit parameters.« less

  11. Recombinant drugs-on-a-chip: The usage of capillary electrophoresis and trends in miniaturized systems - A review.

    PubMed

    Morbioli, Giorgio Gianini; Mazzu-Nascimento, Thiago; Aquino, Adriano; Cervantes, Cesar; Carrilho, Emanuel

    2016-09-07

    We present here a critical review covering conventional analytical tools of recombinant drug analysis and discuss their evolution towards miniaturized systems foreseeing a possible unique recombinant drug-on-a-chip device. Recombinant protein drugs and/or pro-drug analysis require sensitive and reproducible analytical techniques for quality control to ensure safety and efficacy of drugs according to regulatory agencies. The versatility of miniaturized systems combined with their low-cost could become a major trend in recombinant drugs and bioprocess analysis. Miniaturized systems are capable of performing conventional analytical and proteomic tasks, allowing for interfaces with other powerful techniques, such as mass spectrometry. Microdevices can be applied during the different stages of recombinant drug processing, such as gene isolation, DNA amplification, cell culture, protein expression, protein separation, and analysis. In addition, organs-on-chips have appeared as a viable alternative to testing biodrug pharmacokinetics and pharmacodynamics, demonstrating the capabilities of the miniaturized systems. The integration of individual established microfluidic operations and analytical tools in a single device is a challenge to be overcome to achieve a unique recombinant drug-on-a-chip device. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Guidelines to reach high-quality purified recombinant proteins.

    PubMed

    Oliveira, Carla; Domingues, Lucília

    2018-01-01

    The final goal in recombinant protein production is to obtain high-quality pure protein samples. Indeed, the successful downstream application of a recombinant protein depends on its quality. Besides production, which is conditioned by the host, the quality of a recombinant protein product relies mainly on the purification procedure. Thus, the purification strategy must be carefully designed from the molecular level. On the other hand, the quality control of a protein sample must be performed to ensure its purity, homogeneity and structural conformity, in order to validate the recombinant production and purification process. Therefore, this review aims at providing succinct information on the rational purification design of recombinant proteins produced in Escherichia coli, specifically the tagging purification, as well as on accessible tools for evaluating and optimizing protein quality. The classical techniques for structural protein characterization-denaturing protein gel electrophoresis (SDS-PAGE), size exclusion chromatography (SEC), dynamic light scattering (DLS) and circular dichroism (CD)-are revisited with focus on the protein and their main advantages and disadvantages. Furthermore, methods for determining protein concentration and protein storage are also presented. The guidelines compiled herein will aid preparing pure, soluble and homogeneous functional recombinant proteins from the very beginning of the molecular cloning design.

  13. Genetic Recombination Is Targeted towards Gene Promoter Regions in Dogs

    PubMed Central

    Auton, Adam; Rui Li, Ying; Kidd, Jeffrey; Oliveira, Kyle; Nadel, Julie; Holloway, J. Kim; Hayward, Jessica J.; Cohen, Paula E.; Greally, John M.; Wang, Jun; Bustamante, Carlos D.; Boyko, Adam R.

    2013-01-01

    The identification of the H3K4 trimethylase, PRDM9, as the gene responsible for recombination hotspot localization has provided considerable insight into the mechanisms by which recombination is initiated in mammals. However, uniquely amongst mammals, canids appear to lack a functional version of PRDM9 and may therefore provide a model for understanding recombination that occurs in the absence of PRDM9, and thus how PRDM9 functions to shape the recombination landscape. We have constructed a fine-scale genetic map from patterns of linkage disequilibrium assessed using high-throughput sequence data from 51 free-ranging dogs, Canis lupus familiaris. While broad-scale properties of recombination appear similar to other mammalian species, our fine-scale estimates indicate that canine highly elevated recombination rates are observed in the vicinity of CpG rich regions including gene promoter regions, but show little association with H3K4 trimethylation marks identified in spermatocytes. By comparison to genomic data from the Andean fox, Lycalopex culpaeus, we show that biased gene conversion is a plausible mechanism by which the high CpG content of the dog genome could have occurred. PMID:24348265

  14. Mitigating Mitochondrial Genome Erosion Without Recombination.

    PubMed

    Radzvilavicius, Arunas L; Kokko, Hanna; Christie, Joshua R

    2017-11-01

    Mitochondria are ATP-producing organelles of bacterial ancestry that played a key role in the origin and early evolution of complex eukaryotic cells. Most modern eukaryotes transmit mitochondrial genes uniparentally, often without recombination among genetically divergent organelles. While this asymmetric inheritance maintains the efficacy of purifying selection at the level of the cell, the absence of recombination could also make the genome susceptible to Muller's ratchet. How mitochondria escape this irreversible defect accumulation is a fundamental unsolved question. Occasional paternal leakage could in principle promote recombination, but it would also compromise the purifying selection benefits of uniparental inheritance. We assess this tradeoff using a stochastic population-genetic model. In the absence of recombination, uniparental inheritance of freely-segregating genomes mitigates mutational erosion, while paternal leakage exacerbates the ratchet effect. Mitochondrial fusion-fission cycles ensure independent genome segregation, improving purifying selection. Paternal leakage provides opportunity for recombination to slow down the mutation accumulation, but always at a cost of increased steady-state mutation load. Our findings indicate that random segregation of mitochondrial genomes under uniparental inheritance can effectively combat the mutational meltdown, and that homologous recombination under paternal leakage might not be needed. Copyright © 2017 by the Genetics Society of America.

  15. Common and diverse features of cocirculating type 2 and 3 recombinant vaccine-derived polioviruses isolated from patients with poliomyelitis and healthy children.

    PubMed

    Joffret, Marie-Line; Jégouic, Sophie; Bessaud, Maël; Balanant, Jean; Tran, Coralie; Caro, Valerie; Holmblat, Barbara; Razafindratsimandresy, Richter; Reynes, Jean-Marc; Rakoto-Andrianarivelo, Mala; Delpeyroux, Francis

    2012-05-01

    Five cases of poliomyelitis due to type 2 or 3 recombinant vaccine-derived polioviruses (VDPVs) were reported in the Toliara province of Madagascar in 2005. We sequenced the genome of the VDPVs isolated from the patients and from 12 healthy children and characterized phenotypic aspects, including pathogenicity, in mice transgenic for the poliovirus receptor. We identified 6 highly complex mosaic recombinant lineages composed of sequences derived from different vaccine polioviruses and other species C human enteroviruses (HEV-Cs). Most had some recombinant genome features in common and contained nucleotide sequences closely related to certain cocirculating coxsackie A virus isolates. However, they differed in terms of their recombinant characteristics or nucleotide substitutions and phenotypic features. All VDPVs were neurovirulent in mice. This study confirms the genetic relationship between type 2 and 3 VDPVs, indicating that both types can be involved in a single outbreak of disease. Our results highlight the various ways in which a vaccine-derived poliovirus may become pathogenic in complex viral ecosystems, through frequent recombination events and mutations. Intertypic recombination between cocirculating HEV-Cs (including polioviruses) appears to be a common mechanism of genetic plasticity underlying transverse genetic variability.

  16. Signals from the epoch of cosmological recombination (Karl Schwarzschild Award Lecture 2008)

    NASA Astrophysics Data System (ADS)

    Sunyaev, R. A.; Chluba, J.

    2009-07-01

    The physical ingredients to describe the epoch of cosmological recombination are amazingly simple and well-understood. This fact allows us to take into account a very large variety of physical processes, still finding potentially measurable consequences for the energy spectrum and temperature anisotropies of the Cosmic Microwave Background (CMB). In this contribution we provide a short historical overview in connection with the cosmological recombination epoch and its connection to the CMB. Also we highlight some of the detailed physics that were studied over the past few years in the context of the cosmological recombination of hydrogen and helium. The impact of these considerations is two-fold: The associated release of photons during this epoch leads to interesting and unique deviations of the Cosmic Microwave Background (CMB) energy spectrum from a perfect blackbody, which, in particular at decimeter wavelength and the Wien part of the CMB spectrum, may become observable in the near future. Despite the fact that the abundance of helium is rather small, it still contributes a sizeable amount of photons to the full recombination spectrum, leading to additional distinct spectral features. Observing the spectral distortions from the epochs of hydrogen and helium recombination, in principle would provide an additional way to determine some of the key parameters of the Universe (e.g. the specific entropy, the CMB monopole temperature and the pre-stellar abundance of helium). Also it permits us to confront our detailed understanding of the recombination process with direct observational evidence. In this contribution we illustrate how the theoretical spectral template of the cosmological recombination spectrum may be utilized for this purpose. We also show that because hydrogen and helium recombine at very different epochs it is possible to address questions related to the thermal history of our Universe. In particular the cosmological recombination radiation may allow us to distinguish between Compton y-distortions that were created by energy release before or after the recombination of the Universe finished. With the advent of high precision CMB data, e.g. as will be available using the PLANCK Surveyor or CMBPOL, a very accurate theoretical understanding of the ionization history of the Universe becomes necessary for the interpretation of the CMB temperature and polarization anisotropies. Here we show that the uncertainty in the ionization history due to several processes, which until now were not taken in to account in the standard recombination code RECFAST, reaches the percent level. In particular He II->He I recombination occurs significantly faster because of the presence of a tiny fraction of neutral hydrogen at {z⪉ 2400}. Also recently it was demonstrated that in the case of H I Lyman α photons the time-dependence of the emission process and the asymmetry between the emission and absorption profile cannot be ignored. However, it is indeed surprising how inert the cosmological recombination history is even at percent-level accuracy. Observing the cosmological recombination spectrum should in principle allow us to directly check this conclusion, which until now is purely theoretical. Also it may allow to reconstruct the ionization history using observational data.

  17. 7 CFR 550.18 - Assurances/certifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... (f) Recombinant DNA research requirements. The Cooperator assures that it will assume primary responsibility for implementing proper conduct on recombinant DNA research and it will comply with the National Institute of Health Guidelines for Recombinant DNA Research, as revised. (1) If the Cooperator wishes to...

  18. 7 CFR 550.18 - Assurances/certifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... (f) Recombinant DNA research requirements. The Cooperator assures that it will assume primary responsibility for implementing proper conduct on recombinant DNA research and it will comply with the National Institute of Health Guidelines for Recombinant DNA Research, as revised. (1) If the Cooperator wishes to...

  19. 7 CFR 550.18 - Assurances/certifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... (f) Recombinant DNA research requirements. The Cooperator assures that it will assume primary responsibility for implementing proper conduct on recombinant DNA research and it will comply with the National Institute of Health Guidelines for Recombinant DNA Research, as revised. (1) If the Cooperator wishes to...

  20. 7 CFR 550.18 - Assurances/certifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... (f) Recombinant DNA research requirements. The Cooperator assures that it will assume primary responsibility for implementing proper conduct on recombinant DNA research and it will comply with the National Institute of Health Guidelines for Recombinant DNA Research, as revised. (1) If the Cooperator wishes to...

  1. Radiofrequency recombination lines from the interstellar medium

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.

    1971-01-01

    Observations of recombination lines form normal H II regions, extended H II regions, nonthermal sources, and the H I medium are discussed. Detection of recombination lines from elements other than hydrogen may provide a means of identifying fossil Stromgren spheres at high temperature.

  2. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  3. rhEGF-containing thermosensitive and mucoadhesive polymeric sol-gel for endoscopic treatment of gastric ulcer and bleeding.

    PubMed

    Maeng, Jin Hee; So, Jung Won; Kim, Jungju; Kim, In Ae; Jung, Ji Hoon; Min, Kyunghyun; Lee, Don Haeng; Yang, Su-Geun

    2014-03-01

    Gastrointestinal endoscopy is a standard diagnostic tool for gastrointestinal ulcers and cancer. In this study, we have developed recombinant human epidermal growth factor-containing ulcer-coating polymeric sol-gel for endoscopic application. Chitosan and pluronic F127 were employed for their thermoresponsive and bioadhesive properties. At temperatures below 21, polymeric sol-gel remains liquid during endoscopic application and transforms to gel at body temperature after application on ulcers. In an in vitro cellular wounding assay, recombinant human epidermal growth factor sol-gel significantly enhanced the cell migration and decreased the wounding area (68%) compared to nontreated, recombinant human epidermal growth factor solution, and sol-gel without recombinant human epidermal growth factor (42, 49, and 32 % decreased at day 1). The in vivo ulcer-healing study was performed in an acetic acid-induced gastric ulcer rat model and proved that our recombinant human epidermal growth factor endoscopic sol-gel facilitated the ulcer-healing process more efficiently than the other treatments. Ulcer sizes in the recombinant human epidermal growth factor sol-gel group were decreased 2.9- and 2.1-fold compared with those in the nontreated group on days 1 and 3 after ulceration, respectively. The mucosal thickness in the recombinant human epidermal growth factor sol-gel group was significantly increased compared to that in the nontreated group (3.2- and 6.9-fold on days 1 and 3 after ulceration, respectively). In a gastric retention study, recombinant human epidermal growth factor sol-gel stayed on the gastric mucosa more than 2 h after application. The present study suggests that recombinant human epidermal growth factor sol-gel is a prospective candidate for treating gastric ulcers via endoscopic application.

  4. Recombination and Population Mosaic of a Multifunctional Viral Gene, Adeno-Associated Virus cap

    PubMed Central

    Takeuchi, Yasuhiro; Myers, Richard; Danos, Olivier

    2008-01-01

    Homologous recombination is a dominant force in evolution and results in genetic mosaics. To detect evidence of recombination events and assess the biological significance of genetic mosaics, genome sequences for various viral populations of reasonably large size are now available in the GenBank. We studied a multi-functional viral gene, the adeno-associated virus (AAV) cap gene, which codes for three capsid proteins, VP1, VP2 and VP3. VP1-3 share a common C-terminal domain corresponding to VP3, which forms the viral core structure, while the VP1 unique N-terminal part contains an enzymatic domain with phospholipase A2 activity. Our recombinant detection program (RecI) revealed five novel recombination events, four of which have their cross-over points in the N-terminal, VP1 and VP2 unique region. Comparison of phylogenetic trees for different cap gene regions confirmed discordant phylogenies for the recombinant sequences. Furthermore, differences in the phylogenetic tree structures for the VP1 unique (VP1u) region and the rest of cap highlighted the mosaic nature of cap gene in the AAV population: two dominant forms of VP1u sequences were identified and these forms are linked to diverse sequences in the rest of cap gene. This observation together with the finding of frequent recombination in the VP1 and 2 unique regions suggests that this region is a recombination hot spot. Recombination events in this region preserve protein blocks of distinctive functions and contribute to convergence in VP1u and divergence of the rest of cap. Additionally the possible biological significance of two dominant VP1u forms is inferred. PMID:18286191

  5. Allergen extracts and recombinant proteins: comparison of efficiency of in vitro allergy diagnostics using multiplex assay on a biological microchip.

    PubMed

    Smoldovskaya, Olga; Feyzkhanova, Guzel; Arefieva, Alla; Voloshin, Sergei; Ivashkina, Olga; Reznikov, Yuriy; Rubina, Alla

    2016-01-01

    Immunological test systems for diagnostics of type I hypersensitivity involve the following types of antigens: whole allergen extracts, individual highly purified proteins and their recombinant analogues. The goal of this study was to compare the results obtained with whole allergen extracts (birch pollen, cat dander, and timothy grass pollen) and their respective recombinant proteins in biochip-based immunoassay. Multiplex fluorescent immunoassay of 139 patients' blood serum samples was carried out using biological microchips (biochips). sIgE concentrations for the chosen allergens and their recombinant components were measured. ROC analysis was used for comparison of the results and determination of diagnostic accuracy. The results for the birch pollen extract and its recombinant allergens have shown that the diagnostic accuracy of the methods utilizing the whole allergen extract, its major component Bet v 1 and the combination of major and minor components (Bet v 1 and Bet v 2) was the same. Values for diagnostic accuracy for the cat dander extract and its major recombinant component Fel d 1 were equal. In contrast with birch pollen and cat dander allergens, using of recombinant components of timothy grass pollen (Phl p 1, Phl p 5, Phl p 7 and Phl p 12) did not allow reaching the diagnostic accuracy of using natural extract. Multiplex analysis of samples obtained from patients with allergy to birch pollen and cat dander using biological microchips has shown that comparable accuracy was observed for the assay with natural extracts and recombinant allergens. In the case of timothy grass allergen, using the recombinant components may be insufficient.

  6. Noncytopathogenic Pestivirus Strains Generated by Nonhomologous RNA Recombination: Alterations in the NS4A/NS4B Coding Region

    PubMed Central

    Gallei, Andreas; Orlich, Michaela; Thiel, Heinz-Juergen; Becher, Paul

    2005-01-01

    Several studies have demonstrated that cytopathogenic (cp) pestivirus strains evolve from noncytopathogenic (noncp) viruses by nonhomologous RNA recombination. In addition, two recent reports showed the rapid emergence of noncp Bovine viral diarrhea virus (BVDV) after a few cell culture passages of cp BVDV strains by homologous recombination between identical duplicated viral sequences. To allow the identification of recombination sites from noncp BVDV strains that evolve from cp viruses, we constructed the cp BVDV strains CP442 and CP552. Both harbor duplicated viral sequences of different origin flanking the cellular insertion Nedd8*; the latter is a prerequisite for their cytopathogenicity. In contrast to the previous studies, isolation of noncp strains was possible only after extensive cell culture passages of CP442 and CP552. Sequence analysis of 15 isolated noncp BVDVs confirmed that all recombinant strains lack at least most of Nedd8*. Interestingly, only one strain resulted from homologous recombination while the other 14 strains were generated by nonhomologous recombination. Accordingly, our data suggest that the extent of sequence identity between participating sequences influences both frequency and mode (homologous versus nonhomologous) of RNA recombination in pestiviruses. Further analyses of the noncp recombinant strains revealed that a duplication of 14 codons in the BVDV nonstructural protein 4B (NS4B) gene does not interfere with efficient viral replication. Moreover, an insertion of viral sequences between the NS4A and NS4B genes was well tolerated. These findings thus led to the identification of two genomic loci which appear to be suited for the insertion of heterologous sequences into the genomes of pestiviruses and related viruses. PMID:16254361

  7. Evolution and Emergence of Enteroviruses through Intra- and Inter-species Recombination: Plasticity and Phenotypic Impact of Modular Genetic Exchanges in the 5' Untranslated Region.

    PubMed

    Muslin, Claire; Joffret, Marie-Line; Pelletier, Isabelle; Blondel, Bruno; Delpeyroux, Francis

    2015-01-01

    Genetic recombination shapes the diversity of RNA viruses, including enteroviruses (EVs), which frequently have mosaic genomes. Pathogenic circulating vaccine-derived poliovirus (cVDPV) genomes consist of mutated vaccine poliovirus (PV) sequences encoding capsid proteins, and sequences encoding nonstructural proteins derived from other species' C EVs, including certain coxsackieviruses A (CV-A) in particular. Many cVDPV genomes also have an exogenous 5' untranslated region (5' UTR). This region is involved in virulence and includes the cloverleaf (CL) and the internal ribosomal entry site, which play major roles in replication and the initiation of translation, respectively. We investigated the plasticity of the PV genome in terms of recombination in the 5' UTR, by developing an experimental model involving the rescue of a bipartite PV/CV-A cVDPV genome rendered defective by mutations in the CL, following the co-transfection of cells with 5' UTR RNAs from each of the four human EV species (EV-A to -D). The defective cVDPV was rescued by recombination with 5' UTR sequences from the four EV species. Homologous and nonhomologous recombinants with large deletions or insertions in three hotspots were isolated, revealing a striking plasticity of the 5' UTR. By contrast to the recombination of the cVDPV with the 5' UTR of group II (EV-A and -B), which can decrease viral replication and virulence, recombination with the 5' UTRs of group I (EV-C and -D) appeared to be evolutionarily neutral or associated with a gain in fitness. This study illustrates how the genomes of positive-strand RNA viruses can evolve into mosaic recombinant genomes through intra- or inter-species modular genetic exchanges, favoring the emergence of new recombinant lineages.

  8. The Time Scale of Recombination Rate Evolution in Great Apes

    PubMed Central

    Stevison, Laurie S.; Woerner, August E.; Kidd, Jeffrey M.; Kelley, Joanna L.; Veeramah, Krishna R.; McManus, Kimberly F.; Bustamante, Carlos D.; Hammer, Michael F.; Wall, Jeffrey D.

    2016-01-01

    Abstract We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project (Prado-Martinez J, et al. 2013. Great ape genetic diversity and population history. Nature 499:471–475). We also identified species-specific recombination hotspots in each group using a modified LDhot framework, which greatly improves statistical power to detect hotspots at varying strengths. We show that fewer hotspots are shared among chimpanzee subspecies than within human populations, further narrowing the time scale of complete hotspot turnover. Further, using species-specific PRDM9 sequences to predict potential binding sites (PBS), we show higher predicted PRDM9 binding in recombination hotspots as compared to matched cold spot regions in multiple great ape species, including at least one chimpanzee subspecies. We found that correlations between broad-scale recombination rates decline more rapidly than nucleotide divergence between species. We also compared the skew of recombination rates at centromeres and telomeres between species and show a skew from chromosome means extending as far as 10–15 Mb from chromosome ends. Further, we examined broad-scale recombination rate changes near a translocation in gorillas and found minimal differences as compared to other great ape species perhaps because the coordinates relative to the chromosome ends were unaffected. Finally, on the basis of multiple linear regression analysis, we found that various correlates of recombination rate persist throughout the African great apes including repeats, diversity, and divergence. Our study is the first to analyze within- and between-species genome-wide recombination rate variation in several close relatives. PMID:26671457

  9. Conserved Genetic Architecture Underlying Individual Recombination Rate Variation in a Wild Population of Soay Sheep (Ovis aries)

    PubMed Central

    Johnston, Susan E.; Bérénos, Camillo; Slate, Jon; Pemberton, Josephine M.

    2016-01-01

    Meiotic recombination breaks down linkage disequilibrium (LD) and forms new haplotypes, meaning that it is an important driver of diversity in eukaryotic genomes. Understanding the causes of variation in recombination rate is important in interpreting and predicting evolutionary phenomena and in understanding the potential of a population to respond to selection. However, despite attention in model systems, there remains little data on how recombination rate varies at the individual level in natural populations. Here we used extensive pedigree and high-density SNP information in a wild population of Soay sheep (Ovis aries) to investigate the genetic architecture of individual autosomal recombination rates. Individual rates were high relative to other mammal systems and were higher in males than in females (autosomal map lengths of 3748 and 2860 cM, respectively). The heritability of autosomal recombination rate was low but significant in both sexes (h2 = 0.16 and 0.12 in females and males, respectively). In females, 46.7% of the heritable variation was explained by a subtelomeric region on chromosome 6; a genome-wide association study showed the strongest associations at locus RNF212, with further associations observed at a nearby ∼374-kb region of complete LD containing three additional candidate loci, CPLX1, GAK, and PCGF3. A second region on chromosome 7 containing REC8 and RNF212B explained 26.2% of the heritable variation in recombination rate in both sexes. Comparative analyses with 40 other sheep breeds showed that haplotypes associated with recombination rates are both old and globally distributed. Both regions have been implicated in rate variation in mice, cattle, and humans, suggesting a common genetic architecture of recombination rate variation in mammals. PMID:27029733

  10. Conserved Genetic Architecture Underlying Individual Recombination Rate Variation in a Wild Population of Soay Sheep (Ovis aries).

    PubMed

    Johnston, Susan E; Bérénos, Camillo; Slate, Jon; Pemberton, Josephine M

    2016-05-01

    Meiotic recombination breaks down linkage disequilibrium (LD) and forms new haplotypes, meaning that it is an important driver of diversity in eukaryotic genomes. Understanding the causes of variation in recombination rate is important in interpreting and predicting evolutionary phenomena and in understanding the potential of a population to respond to selection. However, despite attention in model systems, there remains little data on how recombination rate varies at the individual level in natural populations. Here we used extensive pedigree and high-density SNP information in a wild population of Soay sheep (Ovis aries) to investigate the genetic architecture of individual autosomal recombination rates. Individual rates were high relative to other mammal systems and were higher in males than in females (autosomal map lengths of 3748 and 2860 cM, respectively). The heritability of autosomal recombination rate was low but significant in both sexes (h(2) = 0.16 and 0.12 in females and males, respectively). In females, 46.7% of the heritable variation was explained by a subtelomeric region on chromosome 6; a genome-wide association study showed the strongest associations at locus RNF212, with further associations observed at a nearby ∼374-kb region of complete LD containing three additional candidate loci, CPLX1, GAK, and PCGF3 A second region on chromosome 7 containing REC8 and RNF212B explained 26.2% of the heritable variation in recombination rate in both sexes. Comparative analyses with 40 other sheep breeds showed that haplotypes associated with recombination rates are both old and globally distributed. Both regions have been implicated in rate variation in mice, cattle, and humans, suggesting a common genetic architecture of recombination rate variation in mammals. Copyright © 2016 by the Genetics Society of America.

  11. Genetic Diversity of the Ordinary Strain of Potato virus Y (PVY) and Origin of Recombinant PVY Strains

    PubMed Central

    Karasev, Alexander V.; Hu, Xiaojun; Brown, Celeste J.; Kerlan, Camille; Nikolaeva, Olga V.; Crosslin, James M.; Gray, Stewart M.

    2011-01-01

    The ordinary strain of Potato virus Y (PVY), PVYO, causes mild mosaic in tobacco and induces necrosis and severe stunting in potato cultivars carrying the Ny gene. A novel substrain of PVYO was recently reported, PVYO-O5, which is spreading in the United States and is distinguished from other PVYO isolates serologically (i.e., reacting to the otherwise PVYN-specific monoclonal antibody 1F5). To characterize this new PVYO-O5 subgroup and address possible reasons for its continued spread, we conducted a molecular study of PVYO and PVYO-O5 isolates from a North American collection of PVY through whole-genome sequencing and phylogenetic analysis. In all, 44 PVYO isolates were sequenced, including 31 from the previously defined PVYO-O5 group, and subjected to whole-genome analysis. PVYO-O5 isolates formed a separate lineage within the PVYO genome cluster in the whole-genome phylogenetic tree and represented a novel evolutionary lineage of PVY from potato. On the other hand, the PVYO sequences separated into at least two distinct lineages on the whole-genome phylogenetic tree. To shed light on the origin of the three most common PVY recombinants, a more detailed phylogenetic analysis of a sequence fragment, nucleotides 2,406 to 5,821, that is present in all recombinant and nonrecombinant PVYO genomes was conducted. The analysis revealed that PVYN:O and PVYN-Wi recombinants acquired their PVYO segments from two separate PVYO lineages, whereas the PVYNTN recombinant acquired its PVYO segment from the same lineage as PVYN:O. These data suggest that PVYN:O and PVYN-Wi recombinants originated from two separate recombination events involving two different PVYO parental genomes, whereas the PVYNTN recombinants likely originated from the PVYN:O genome via additional recombination events. PMID:21675922

  12. Long G2 accumulates recombination intermediates and disturbs chromosome segregation at dysfunction telomere in Schizosaccharomyces pombe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, Ahmed G.K.; Masuda, Kenta; Yukawa, Masashi

    Protection of telomere (Pot1) is a single-stranded telomere binding protein which is essential for chromosome ends protection. Fission yeast Rqh1 is a member of RecQ helicases family which has essential roles in the maintenance of genomic stability and regulation of homologous recombination. Double mutant between fission yeast pot1Δ and rqh1 helicase dead (rqh1-hd) maintains telomere by homologous recombination. In pot1Δ rqh1-hd double mutant, recombination intermediates accumulate near telomere which disturb chromosome segregation and make cells sensitive to microtubule inhibitors thiabendazole (TBZ). Deletion of chk1{sup +} or mutation of its kinase domain shortens the G2 of pot1Δ rqh1-hd double mutant andmore » suppresses both the accumulation of recombination intermediates and the TBZ sensitivity of that double mutant. In this study, we asked whether the long G2 is the reason for the TBZ sensitivity of pot1Δ rqh1-hd double mutant. We found that shortening the G2 of pot1Δ rqh1-hd double mutant by additional mutations of wee1 and mik1 or gain of function mutation of Cdc2 suppresses both the accumulation of recombination intermediates and the TBZ sensitivity of pot1Δ rqh1-hd double mutant. Our results suggest that long G2 of pot1Δ rqh1-hd double mutant may allow time for the accumulation of recombination intermediates which disturb chromosome segregation and make cells sensitive to TBZ. - Ηighlights: • We show link between long G2 and accumulation of toxic recombination intermediates. • Accumulation of recombination intermediates at telomere results in TBZ sensitivity. • Activation of DNA damage checkpoint worsens cells' viability in presence of TBZ.« less

  13. Chaperokine function of recombinant Hsp72 produced in insect cells using a baculovirus expression system is retained.

    PubMed

    Zheng, Hongying; Nagaraja, Ganachari M; Kaur, Punit; Asea, Edwina E; Asea, Alexzander

    2010-01-01

    Extracellular heat shock protein 72 (Hsp72; inducible form of the 70-kDa heat shock protein) plays a critical role in innate and adaptive immune responses and has shown promise as an ideal adjuvant for the optimization of antigen-specific anti-tumor vaccines. Recent studies suggest that to correctly elucidate the mechanisms by which Hsp72 exerts its beneficial effects in vitro, great care must be taken to ensure that endotoxin by-products do not invalidate the findings. In this study, we have taken advantage of the baculovirus expression vector system for production of endotoxin-free recombinant Hsp72. The coding sequence of human hsp72 was recombined into the baculovirus immediately downstream of the strong polyhedron gene promoter. Ninety-six h post-infection of Sf9 insect cells with recombinant baculovirus, maximal levels of Hsp72 protein were detected. The recombinant human Hsp72 was purified by affinity chromatography from insect cells, and purity was confirmed by SDS-PAGE and mass spectrometry. The purified human recombinant Hsp72(bv) (Hsp72 produced using the BEVS) was demonstrated to have no endotoxin contamination and was shown to have stimulated potent calcium flux in the human monocytic cell line. Furthermore, recombinant Hsp72(bv) enhanced the tolerance of neuroblastoma cells to heat stress-induced cell death and displayed classical chaperokine functions including augmentation of inflammatory cytokine productions in mouse splenocytes. The production of functional, endotoxin-free recombinant human Hsp72(bv) in insect cells is inexpensive and convenient and eliminates the need of special procedures for endotoxin depletion. Endotoxin-free recombinant human Hsp72(bv) can now be used to unlock the important role Hsp72 plays in modulating immune function.

  14. Chaperokine Function of Recombinant Hsp72 Produced in Insect Cells Using a Baculovirus Expression System Is Retained*

    PubMed Central

    Zheng, Hongying; Nagaraja, Ganachari M.; Kaur, Punit; Asea, Edwina E.; Asea, Alexzander

    2010-01-01

    Extracellular heat shock protein 72 (Hsp72; inducible form of the 70-kDa heat shock protein) plays a critical role in innate and adaptive immune responses and has shown promise as an ideal adjuvant for the optimization of antigen-specific anti-tumor vaccines. Recent studies suggest that to correctly elucidate the mechanisms by which Hsp72 exerts its beneficial effects in vitro, great care must be taken to ensure that endotoxin by-products do not invalidate the findings. In this study, we have taken advantage of the baculovirus expression vector system for production of endotoxin-free recombinant Hsp72. The coding sequence of human hsp72 was recombined into the baculovirus immediately downstream of the strong polyhedron gene promoter. Ninety-six h post-infection of Sf9 insect cells with recombinant baculovirus, maximal levels of Hsp72 protein were detected. The recombinant human Hsp72 was purified by affinity chromatography from insect cells, and purity was confirmed by SDS-PAGE and mass spectrometry. The purified human recombinant Hsp72bv (Hsp72 produced using the BEVS) was demonstrated to have no endotoxin contamination and was shown to have stimulated potent calcium flux in the human monocytic cell line. Furthermore, recombinant Hsp72bv enhanced the tolerance of neuroblastoma cells to heat stress-induced cell death and displayed classical chaperokine functions including augmentation of inflammatory cytokine productions in mouse splenocytes. The production of functional, endotoxin-free recombinant human Hsp72bv in insect cells is inexpensive and convenient and eliminates the need of special procedures for endotoxin depletion. Endotoxin-free recombinant human Hsp72bv can now be used to unlock the important role Hsp72 plays in modulating immune function. PMID:19861412

  15. Recombinant factor VIIa (eptacog alfa): a pharmacoeconomic review of its use in haemophilia in patients with inhibitors to clotting factors VIII or IX.

    PubMed

    Lyseng-Williamson, Katherine A; Plosker, Greg L

    2007-01-01

    Recombinant factor VIIa (NovoSeven; also known as recombinant activated factor VII or eptacog alfa) is indicated as an intravenous haemostatic agent in haemophilia patients with inhibitors to clotting factors VIII or IX. In noncomparative trials in haemophilia patients with inhibitors, on-demand home treatment with recombinant factor VIIa was effective in controlling episodes of mild to moderate bleeding and well tolerated, with early treatment being associated with a greater rate of success and the need for fewer doses than delayed treatment. Prophylactic treatment with recombinant factor VIIa was also effective in maintaining haemostasis in patients with this indication undergoing surgery. Relative to prior treatment with plasma-derived agents, treatment with recombinant factor VIIa was associated with improvements in health-related quality of life in a cost-utility study in haemophilia patients with inhibitors in Australia. In well designed decision-model cost analyses conducted from a healthcare payer perspective in several countries, on-demand treatment with recombinant factor VIIa to control mild to moderate bleeding episodes in this patient population was predicted to be cost saving or cost neutral relative to on-demand treatment with intravenous activated prothrombin complex concentrate (aPCC). Although the acquisition cost of recombinant factor VIIa was greater than that of aPCC in some studies, the greater initial efficacy of recombinant factor VIIa than aPCC resulted in lower predicted total medical costs. Results were generally robust to plausible changes in key parameters. Orthopaedic surgery with recombinant factor VIIa to maintain haemostasis in haemophilia patients with inhibitors was generally predicted to be cost saving, relative to not having surgery, over the medium to long term in modelled cost analyses from a healthcare payer perspective in the UK and US. The initial cost of surgery was high, but the difference in costs between patients undergoing or not undergoing surgery was predicted to decline over time, as savings were realised from the decrease in the number of bleeding episodes requiring treatment in patients who underwent surgery. In haemophilia patients with inhibitors, recombinant factor VIIa is clinically effective in controlling mild to moderate bleeds, and in maintaining haemostasis in patients undergoing orthopaedic surgery. Available pharmacoeconomic data from several countries, despite inherent limitations, support the use of recombinant factor VIIa as a treatment option that is at least cost neutral relative to aPCC in treating mild to moderate bleeds in this patient population. In addition, orthopaedic surgery with recombinant factor VIIa to maintain haemostasis in haemophilia patients with inhibitors is generally cost saving relative to not having surgery over the medium to long term, as the acquisition costs of recombinant factor VIIa are offset by cost savings resulting from the decrease in the number of joint-related bleeds.

  16. Regulation of Meiotic Recombination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory p. Copenhaver

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diversemore » as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system for assaying recombination using tetrad analysis in a higher eukaryotic system (6). This system enabled the measurement of the frequency and distribution of recombination events at a genome wide level in wild type Arabidopsis (7), construction of genetic linkage maps which include positions for each centromere (8), and modeling of the strength and pattern of interference (9). This proposal extends the use of tetrad analysis in Arabidopsis by using it as the basis for assessing the phenotypes of mutants in genes important for recombination and the regulation of crossover interference and performing a novel genetic screen. In addition to broadening our knowledge of a classic genetic problem - the regulation of recombination by crossover interference - this proposal also provides broader impact by: generating pedagogical tools for use in hands-on classroom experience with genetics, building interdisciplinary collegial partnerships, and creating a platform for participation by junior scientists from underrepresented groups. There are three specific aims: (1) Isolate mutants in Arabidopsis MUS81 homologs using T-DNA and TILLING (2) Characterize recombination levels and interference in mus81 mutants (3) Execute a novel genetic screen, based on tetrad analysis, for genes that regulate meiotic recombination« less

  17. [Study on lysosomes degradation of ricin A chain].

    PubMed

    Chen, Chun; Zhan, Jin-biao; Shen, Fen-ping; Shen, Jian-gen

    2005-05-01

    To study lysosomes involvement in the degradation of ricin A chain. A lysosome-targeted singal KFERQ was added to the C terminus of rRTA by DNA recombinant technology. A pKK223.3 expression system in E. coli was used to produce recombinant ricine A chain (rRTA) and rRTA-KFERQ. Recombinant proteins were purified by affinity chromatography using Blue-Sepharose 6B. The cytotoxicity of recombinant proteins was measured by the MTT method. Recombinant RTA-KFERQ was 49.87%, 54.18% and 88.68% less cytotoxic than RTA itself on the three cell lines HEPG2, Hela and A549, respectively. Lysosomes can degrade, but not completely inactivate RTA in different cells, suggesting cells may have other degradation pathways for RTA.

  18. Recombinant lactic acid bacteria as delivery vectors of heterologous antigens: the future of vaccination?

    PubMed

    Trombert, A

    2015-01-01

    Lactic acid bacteria (LABs) are good candidates for the development of new oral vaccines and are attractive alternatives to attenuated pathogens. This review focuses on the use of wild-type and recombinant lactococci and lactobacilli with emphasis on their molecular design, immunomodulation and treatment of bacterial infections. The majority of studies related to recombinant LABs have focused on Lactococcus lactis, however, molecular tools have been successfully used for Lactobacillus spp. Recombinant lactobacilli and lactococci have several health benefits, such as immunomodulation, restoration of the microbiota, synthesis of antimicrobial substances and inhibition of virulence factors. In addition, protective immune responses that are well tolerated are induced by the expression of heterologous antigens from recombinant probiotics.

  19. Horizontal transmissible protection against myxomatosis and rabbit hemorrhagic disease by using a recombinant myxoma virus.

    PubMed

    Bárcena, J; Morales, M; Vázquez, B; Boga, J A; Parra, F; Lucientes, J; Pagès-Manté, A; Sánchez-Vizcaíno, J M; Blasco, R; Torres, J M

    2000-02-01

    We have developed a new strategy for immunization of wild rabbit populations against myxomatosis and rabbit hemorrhagic disease (RHD) that uses recombinant viruses based on a naturally attenuated field strain of myxoma virus (MV). The recombinant viruses expressed the RHDV major capsid protein (VP60) including a linear epitope tag from the transmissible gastroenteritis virus (TGEV) nucleoprotein. Following inoculation, the recombinant viruses induced specific antibody responses against MV, RHDV, and the TGEV tag. Immunization of wild rabbits by the subcutaneous and oral routes conferred protection against virulent RHDV and MV challenges. The recombinant viruses showed a limited horizontal transmission capacity, either by direct contact or in a flea-mediated process, promoting immunization of contact uninoculated animals.

  20. Horizontal Transmissible Protection against Myxomatosis and Rabbit Hemorrhagic Disease by Using a Recombinant Myxoma Virus

    PubMed Central

    Bárcena, Juan; Morales, Mónica; Vázquez, Belén; Boga, José A.; Parra, Francisco; Lucientes, Javier; Pagès-Manté, Albert; Sánchez-Vizcaíno, José M.; Blasco, Rafael; Torres, Juan M.

    2000-01-01

    We have developed a new strategy for immunization of wild rabbit populations against myxomatosis and rabbit hemorrhagic disease (RHD) that uses recombinant viruses based on a naturally attenuated field strain of myxoma virus (MV). The recombinant viruses expressed the RHDV major capsid protein (VP60) including a linear epitope tag from the transmissible gastroenteritis virus (TGEV) nucleoprotein. Following inoculation, the recombinant viruses induced specific antibody responses against MV, RHDV, and the TGEV tag. Immunization of wild rabbits by the subcutaneous and oral routes conferred protection against virulent RHDV and MV challenges. The recombinant viruses showed a limited horizontal transmission capacity, either by direct contact or in a flea-mediated process, promoting immunization of contact uninoculated animals. PMID:10627521

  1. Recombination at DNA replication fork barriers is not universal and is differentially regulated by Swi1.

    PubMed

    Pryce, David W; Ramayah, Soshila; Jaendling, Alessa; McFarlane, Ramsay J

    2009-03-24

    DNA replication stress has been implicated in the etiology of genetic diseases, including cancers. It has been proposed that genomic sites that inhibit or slow DNA replication fork progression possess recombination hotspot activity and can form potential fragile sites. Here we used the fission yeast, Schizosaccharomyces pombe, to demonstrate that hotspot activity is not a universal feature of replication fork barriers (RFBs), and we propose that most sites within the genome that form RFBs do not have recombination hotspot activity under nonstressed conditions. We further demonstrate that Swi1, the TIMELESS homologue, differentially controls the recombination potential of RFBs, switching between being a suppressor and an activator of recombination in a site-specific fashion.

  2. Recombination at DNA replication fork barriers is not universal and is differentially regulated by Swi1

    PubMed Central

    Pryce, David W.; Ramayah, Soshila; Jaendling, Alessa; McFarlane, Ramsay J.

    2009-01-01

    DNA replication stress has been implicated in the etiology of genetic diseases, including cancers. It has been proposed that genomic sites that inhibit or slow DNA replication fork progression possess recombination hotspot activity and can form potential fragile sites. Here we used the fission yeast, Schizosaccharomyces pombe, to demonstrate that hotspot activity is not a universal feature of replication fork barriers (RFBs), and we propose that most sites within the genome that form RFBs do not have recombination hotspot activity under nonstressed conditions. We further demonstrate that Swi1, the TIMELESS homologue, differentially controls the recombination potential of RFBs, switching between being a suppressor and an activator of recombination in a site-specific fashion. PMID:19273851

  3. [Recombinant OspC identification and antigenicity detection from Borrelia burgdorferi PD91 in China].

    PubMed

    Chen, Jian; Wan, Kang-Lin

    2003-10-01

    To recombine OspC gene from Borrelia burgdorferi PD91 of China and expressed it in E. coli for early diagnosis of Lyme disease. The OspC gene was amplified from the genome of Borrelia burgdorferi PD91 strain by polymerase chain reaction and recombined with plasmid PET-11D. The recombinant plasmid PET-11D-OspC was identified with PCR, restriction endonuclease analysis and sequencing. The antigenicity was verified with Western Blot. OspC gene was cloned correctly into vector PET-11D. The resultant sequence was definitely different from the published sequence. The recombinant OspC seemed to have had strong antigenicity. The findings laid basis for the studies on early diagnosis of Lyme disease.

  4. Recombination monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S. Y.; Blaskiewicz, M.

    This is a brief report on LEReC recombination monitor design considerations. The recombination produced Au 78+ ion rate is reviewed. Based on this two designs are discussed. One is to use the large dispersion lattice. It is shown that even with the large separation of the Au 78+ beam from the Au 79+ beam, the continued monitoring of the recombination is not possible. Accumulation of Au 78+ ions is needed, plus collimation of the Au79+ beam. In another design, it is shown that the recombination monitor can be built based on the proposed scheme with the nominal lattice. From machinemore » operation point of view, this design is preferable. Finally, possible studies and the alternative strategies with the basic goal of the monitor are discussed.« less

  5. Recombinant yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 gag induces SIV-specific CD8+ T-cell responses in rhesus macaques.

    PubMed

    Bonaldo, Myrna C; Martins, Mauricio A; Rudersdorf, Richard; Mudd, Philip A; Sacha, Jonah B; Piaskowski, Shari M; Costa Neves, Patrícia C; Veloso de Santana, Marlon G; Vojnov, Lara; Capuano, Saverio; Rakasz, Eva G; Wilson, Nancy A; Fulkerson, John; Sadoff, Jerald C; Watkins, David I; Galler, Ricardo

    2010-04-01

    Here we describe a novel vaccine vector for expressing human immunodeficiency virus (HIV) antigens. We show that recombinant attenuated yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 Gag sequences can be used as a vector to generate SIV-specific CD8(+) T-cell responses in the rhesus macaque. Priming with recombinant BCG expressing SIV antigens increased the frequency of these SIV-specific CD8(+) T-cell responses after recombinant YF17D boosting. These recombinant YF17D-induced SIV-specific CD8(+) T cells secreted several cytokines, were largely effector memory T cells, and suppressed viral replication in CD4(+) T cells.

  6. Surface recombination velocity and diffusion length of minority carriers in heavily doped silicon layers

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Watanabe, M.; Actor, G.

    1977-01-01

    Quantitative analysis of the electron beam-induced current and the dependence of the effective diffusion length of the minority carriers on the penetration depth of the electron beam were employed for the analysis of the carrier recombination characteristics in heavily doped silicon layers. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two dimensional mapping of the surface recombination velocity of P-diffused Si layers will be presented together with a three dimensional mapping of minority carrier lifetime in ion implanted Si. Layers heavily doped with As exhibit improved recombination characteristics as compared to those of the layers doped with P.

  7. The induction of mutation and recombination following UV irradiation during meiosis in Saccharomyces cerevisiae.

    PubMed

    Kelly, S L; Parry, J M

    1983-03-01

    Irradiation of yeast cultures with ultraviolet light at discrete stages during meiosis produces cyclic variations in sensitivity, i.e. cells are more sensitive to the lethal effects of UV light prior to entry into the meiotic DNA synthesis, and this corresponds to a peak of induction of point mutation. Cells become more resistant to both induced point mutation and lethality as they enter meiotic DNA synthesis, but become more sensitive again during spore formation. The induced level of intragenic recombination rises during the period of commitment to recombination to a level indistinguishable from the full meiotic level of spontaneous intragenic recombination. Induced reciprocal recombination remains above the spontaneous level up to the point of commitment to sporulation.

  8. 10 CFR 602.10 - Additional requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... conditions of an award. (b) A recipient performing research involving recombinant DNA molecules and/or organisms and viruses containing recombinant DNA molecules shall comply with the National Institutes of Health “Guidelines for Research Involving Recombinant DNA Molecules” (51 FR 16958, May 7, 1986), or such...

  9. 10 CFR 605.11 - Additional requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Conditions of an award. (b) A recipient performing research involving recombinant DNA molecules and/or organisms and viruses containing recombinant DNA molecules shall comply with the National Institutes of Health “Guidelines for Research Involving Recombinant DNA Molecules” (51 FR 16958, May 7, 1986), or such...

  10. 10 CFR 605.11 - Additional requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Conditions of an award. (b) A recipient performing research involving recombinant DNA molecules and/or organisms and viruses containing recombinant DNA molecules shall comply with the National Institutes of Health “Guidelines for Research Involving Recombinant DNA Molecules” (51 FR 16958, May 7, 1986), or such...

  11. 10 CFR 602.10 - Additional requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... conditions of an award. (b) A recipient performing research involving recombinant DNA molecules and/or organisms and viruses containing recombinant DNA molecules shall comply with the National Institutes of Health “Guidelines for Research Involving Recombinant DNA Molecules” (51 FR 16958, May 7, 1986), or such...

  12. 10 CFR 602.10 - Additional requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... conditions of an award. (b) A recipient performing research involving recombinant DNA molecules and/or organisms and viruses containing recombinant DNA molecules shall comply with the National Institutes of Health “Guidelines for Research Involving Recombinant DNA Molecules” (51 FR 16958, May 7, 1986), or such...

  13. 10 CFR 602.10 - Additional requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... conditions of an award. (b) A recipient performing research involving recombinant DNA molecules and/or organisms and viruses containing recombinant DNA molecules shall comply with the National Institutes of Health “Guidelines for Research Involving Recombinant DNA Molecules” (51 FR 16958, May 7, 1986), or such...

  14. 10 CFR 605.11 - Additional requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Conditions of an award. (b) A recipient performing research involving recombinant DNA molecules and/or organisms and viruses containing recombinant DNA molecules shall comply with the National Institutes of Health “Guidelines for Research Involving Recombinant DNA Molecules” (51 FR 16958, May 7, 1986), or such...

  15. 10 CFR 602.10 - Additional requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... conditions of an award. (b) A recipient performing research involving recombinant DNA molecules and/or organisms and viruses containing recombinant DNA molecules shall comply with the National Institutes of Health “Guidelines for Research Involving Recombinant DNA Molecules” (51 FR 16958, May 7, 1986), or such...

  16. 10 CFR 605.11 - Additional requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Conditions of an award. (b) A recipient performing research involving recombinant DNA molecules and/or organisms and viruses containing recombinant DNA molecules shall comply with the National Institutes of Health “Guidelines for Research Involving Recombinant DNA Molecules” (51 FR 16958, May 7, 1986), or such...

  17. 10 CFR 605.11 - Additional requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Conditions of an award. (b) A recipient performing research involving recombinant DNA molecules and/or organisms and viruses containing recombinant DNA molecules shall comply with the National Institutes of Health “Guidelines for Research Involving Recombinant DNA Molecules” (51 FR 16958, May 7, 1986), or such...

  18. Sex recombination, and reproductive fitness: an experimental study using Paramecium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyberg, D.

    1982-08-01

    The effect of sex and recombination on reproductive fitness are measured using five wild stocks of Paramecium primaurelia. Among the wild stocks there were highly significant differences in growth rates. No hybrid had as low a fitness as the least fit parental stock. Recombination produced genotypes of higher fitness than those of either parent only in the cross between the two stocks of lowest fitness. The increase in variance of fitness as a result of recombination was almost exclusively attributable to the generation lines with low fitness. The fitness consequences of sexuality and mate choice were stock specific; some individualsmore » leaving the most descendants by inbreeding, others by outcrossing. For most crosses the short-term advantage of sex, if any, accrue from the fusion of different gametes (hybrid vigor) and not from recombination. Since the homozygous genotype with the highest fitnes left the most progeny by inbreeding (no recombination), the persistence of conjugation in P. primaurelia is paradoxical. (JMT)« less

  19. Genetic Confirmation of Mungbean (Vigna radiata) and Mashbean (Vigna mungo) Interspecific Recombinants using Molecular Markers.

    PubMed

    Abbas, Ghulam; Hameed, Amjad; Rizwan, Muhammad; Ahsan, Muhammad; Asghar, Muhammad J; Iqbal, Nayyer

    2015-01-01

    Molecular confirmation of interspecific recombinants is essential to overcome the issues like self-pollination, environmental influence, and inadequacy of morphological characteristics during interspecific hybridization. The present study was conducted for genetic confirmation of mungbean (female) and mashbean (male) interspecific crosses using molecular markers. Initially, polymorphic random amplified polymorphic DNA (RAPD), universal rice primers (URP), and simple sequence repeats (SSR) markers differentiating parent genotypes were identified. Recombination in hybrids was confirmed using these polymorphic DNA markers. The NM 2006 × Mash 88 was most successful interspecific cross. Most of true recombinants confirmed by molecular markers were from this cross combination. SSR markers were efficient in detecting genetic variability and recombination with reference to specific chromosomes and particular loci. SSR (RIS) and RAPD identified variability dispersed throughout the genome. In conclusion, DNA based marker assisted selection (MAS) efficiently confirmed the interspecific recombinants. The results provided evidence that MAS can enhance the authenticity of selection in mungbean improvement program.

  20. Oral administration of myostatin-specific recombinant Saccharomyces cerevisiae vaccine in rabbit.

    PubMed

    Liu, Zhongtian; Zhou, Gang; Ren, Chonghua; Xu, Kun; Yan, Qiang; Li, Xinyi; Zhang, Tingting; Zhang, Zhiying

    2016-04-29

    Yeast is considered as a simple and cost-effective host for protein expression, and our previous studies have proved that Saccharomyces cerevisiae can deliver recombinant protein and DNA into mouse dendritic cells and can further induce immune responses as novel vaccines. In order to know whether similar immune responses can be induced in rabbit by oral administration of such recombinant S. cerevisiae vaccine, we orally fed the rabbits with heat-inactivated myostatin-recombinant S. cerevisiae for 5 weeks, and then myostatin-specific antibody in serum was detected successfully by western blotting and ELISA assay. The rabbits treated with myostatin-recombinant S. cerevisiae vaccine grew faster and their muscles were much heavier than that of the control group. As a common experimental animal and a meat livestock with great economic value, rabbit was proved to be the second animal species that have been successfully orally immunized by recombinant S. cerevisiae vaccine after mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Structural snapshots of Xer recombination reveal activation by synaptic complex remodeling and DNA bending

    PubMed Central

    Bebel, Aleksandra; Karaca, Ezgi; Kumar, Banushree; Stark, W Marshall; Barabas, Orsolya

    2016-01-01

    Bacterial Xer site-specific recombinases play an essential genome maintenance role by unlinking chromosome multimers, but their mechanism of action has remained structurally uncharacterized. Here, we present two high-resolution structures of Helicobacter pylori XerH with its recombination site DNA difH, representing pre-cleavage and post-cleavage synaptic intermediates in the recombination pathway. The structures reveal that activation of DNA strand cleavage and rejoining involves large conformational changes and DNA bending, suggesting how interaction with the cell division protein FtsK may license recombination at the septum. Together with biochemical and in vivo analysis, our structures also reveal how a small sequence asymmetry in difH defines protein conformation in the synaptic complex and orchestrates the order of DNA strand exchanges. Our results provide insights into the catalytic mechanism of Xer recombination and a model for regulation of recombination activity during cell division. DOI: http://dx.doi.org/10.7554/eLife.19706.001 PMID:28009253

  2. Induction of potential protective immunity against enterotoxemia in calves by single or multiple recombinant Clostridium perfringens toxoids.

    PubMed

    Jiang, Zhigang; De, Yanyan; Chang, Jitao; Wang, Fang; Yu, Li

    2014-11-01

    Cattle enterotoxemia caused by Clostridium perfringens toxins is a noncontagious, sporadic, and fatal disease characterized by sudden death. Strategies for controlling and preventing cattle enterotoxemia are based on systematic vaccination of herds with toxoids. Because the process of producing conventional clostridial vaccines is dangerous, expensive, and time-consuming, the prospect of recombinant toxoid vaccines against diseases caused by C. perfringens toxins is promising. In this study, nontoxic recombinant toxoids derived from α-, β- and ε-toxins of C. perfringens, namely, rCPA247-370 , rCPB and rEtxHP, respectively, were expressed in Escherichia coli. High levels of specific IgG antibodies and neutralizing antibodies against the toxins were detected in sera from calves vaccinated with either a single recombinant toxoid or a mixed cocktail of all three recombinant toxoids, indicating the potential of these recombinant toxoids to provide calves with protective immunity against enterotoxemia caused by C. perfringens. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  3. CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever viruses.

    PubMed

    Borca, Manuel V; Holinka, Lauren G; Berggren, Keith A; Gladue, Douglas P

    2018-02-16

    African swine fever virus (ASFV) causes a highly contagious disease called African swine fever. This disease is often lethal for domestic pigs, causing extensive losses for the swine industry. ASFV is a large and complex double stranded DNA virus. Currently there is no commercially available treatment or vaccine to prevent this devastating disease. Development of recombinant ASFV for producing live-attenuated vaccines or studying the involvement of specific genes in virus virulence has relied on the relatively rare event of homologous recombination in primary swine macrophages, causing difficulty to purify the recombinant virus from the wild-type parental ASFV. Here we present the use of the CRISPR-Cas9 gene editing system as a more robust and efficient system to produce recombinant ASFVs. Using CRISPR-Cas9 a recombinant virus was efficiently developed by deleting the non-essential gene 8-DR from the genome of the highly virulent field strain Georgia07 using swine macrophages as cell substrate.

  4. Recombination and phenotype evolution dynamics of Helicobacter pylori in colonized hosts.

    PubMed

    Shafiee, Ahmad; Amini, Massoud; Emamirad, Hassan; Abadi, Amin Talebi Bezmin

    2016-07-01

    The ample genetic diversity and variability of Helicobater pylori, and therefore its phenotypic evolution, relate not only to frequent mutation and selection but also to intra-specific recombination. Webb and Blaser applied a mathematical model to distinguish the role of selection and mutation for Lewis antigen phenotype evolution during long-term gastric colonization in infected animal hosts (mice and gerbils). To investigate the role of recombination in Lewis antigen phenotype evolution, we have developed a prior population dynamic by adding recombination term to the model. We simulate and interpret the new model simulation's results with a comparative analysis of biological aspects. The main conclusions are as follows: (i) the models and consequently the hosts with higher recombination rate require a longer time for stabilization; and (ii) recombination and mutation have opposite effects on the size of H. pylori populations with phenotypes in the range of the most-fit ones (i.e. those that have a selective advantage) due to natural selection, although both can increase phenotypic diversity.

  5. Safety evaluation of a recombinant myxoma-RHDV virus inducing horizontal transmissible protection against myxomatosis and rabbit haemorrhagic disease.

    PubMed

    Torres, J M; Ramírez, M A; Morales, M; Bárcena, J; Vázquez, B; Espuña, E; Pagès-Manté, A; Sánchez-Vizcaíno, J M

    2000-09-15

    We have recently developed a transmissible vaccine to immunize rabbits against myxomatosis and rabbit haemorrhagic disease based on a recombinant myxoma virus (MV) expressing the rabbit haemorrhagic disease virus (RHDV) capsid protein [Bárcena et al. Horizontal transmissible protection against myxomatosis and rabbit haemorragic disease using a recombinant myxoma virus. J. Virol. 2000;74:1114-23]. Administration of the recombinant virus protects rabbits against lethal RHDV and MV challenges. Furthermore, the recombinant virus is capable of horizontal spreading promoting protection of contact animals, thus providing the opportunity to immunize wild rabbit populations. However, potential risks must be extensively evaluated before considering its field use. In this study several safety issues concerning the proposed vaccine have been evaluated under laboratory conditions. Results indicated that vaccine administration is safe even at a 100-fold overdose. No undesirable effects were detected upon administration to immunosuppressed or pregnant rabbits. The recombinant virus maintained its attenuated phenotype after 10 passages in vivo.

  6. The BCL11A Transcription Factor Directly Activates RAG Gene Expression and V(D)J Recombination

    PubMed Central

    Lee, Baeck-seung; Dekker, Joseph D.; Lee, Bum-kyu; Iyer, Vishwanath R.; Sleckman, Barry P.; Shaffer, Arthur L.; Ippolito, Gregory C.

    2013-01-01

    Recombination-activating gene 1 protein (RAG1) and RAG2 are critical enzymes for initiating variable-diversity-joining (VDJ) segment recombination, an essential process for antigen receptor expression and lymphocyte development. The transcription factor BCL11A is required for B cell development, but its molecular function(s) in B cell fate specification and commitment is unknown. We show here that the major B cell isoform, BCL11A-XL, binds the RAG1 promoter and Erag enhancer to activate RAG1 and RAG2 transcription in pre-B cells. We employed BCL11A overexpression with recombination substrates in a cultured pre-B cell line as well as Cre recombinase-mediated Bcl11alox/lox deletion in explanted murine pre-B cells to demonstrate direct consequences of BCL11A/RAG modulation on V(D)J recombination. We conclude that BCL11A is a critical component of a transcriptional network that regulates B cell fate by controlling V(D)J recombination. PMID:23438597

  7. [Degradation of urea and ethyl carbamate in Chinese Rice wine by recombinant acid urease].

    PubMed

    Zhou, Jianli; Kang, Zhen; Liu, Qingtao; Du, Guocheng; Chen, Jian

    2016-01-01

    Ethyl carbamate (EC) as a potential carcinogen commonly exists in traditional fermented foods. It is important eliminate urea that is the precursors of EC in many fermented foods, including Chinese Rice wine. On the basis of achieving high-level overexpression of food-grade ethanol-resistant acid urease, we studied the hydrolysis of urea and EC with the recombinant acid urease. Recombinant acid urease showed degraded urea in both the simulated system with ethanol and Chinese Rice wine (60 mg/L of urea was completely degraded within 25 h), indicating that the recombinant enzyme is suitable for the elimination of urea in Chinese Rice wine. Although recombinant acid urease also has degradation catalytic activity on EC, no obvious degradation of EC was observed. Further investigation results showed that the Km value for urea and EC of the recombinant acid urease was 0.7147 mmol/L and 41.32 mmol/L, respectively. The results provided theoretical foundation for realizing simultaneous degradation of urea and EC.

  8. Effect of Recombination in the Evolutionary Dynamics of HIV under the Surveillance of Immune System

    NASA Astrophysics Data System (ADS)

    Peng, Weiqun; Yang, Wenjing; Wang, Guanyu

    2009-03-01

    Human immunodeficiency virus (HIV) is a retrovirus that causes acquired immunodeficiency syndrome (AIDS), which has become one of the most destructive pandemics in history. The fact that HIV virus evolves very fast plays a central role in AIDS immunopathogenesis and the difficulty we face in finding a cure or a vaccine for AIDS. A distinguishing feature of HIV is its high frequency of recombination. The effect of recombination in the HIV evolution is not clear. We establish a mathematical model of the evolutionary dynamics. This model incorporates both point mutation and recombination for genetic diversity, and employs a fitness function developed by Wang and Deem (PRL 97, 188106, 2006) that accounts for the effect of immune system. Using this model, we explore the role of recombination in the battle between the virus population and the immune system, with a special focus on the condition under which recombination helps the virus population to escape from the immune system.

  9. A new potential secretion pathway for recombinant proteins in Bacillus subtilis.

    PubMed

    Wang, Guangqiang; Xia, Yongjun; Gu, Zhennan; Zhang, Hao; Chen, Yong Q; Chen, Haiqin; Ai, Lianzhong; Chen, Wei

    2015-11-10

    Secretion of cytoplasmic expressed proteins into growth media has significant advantages. Due to the lack of an outer membrane, Bacillus subtilis is considered as a desirable 'cell factory' for the secretion of recombinant proteins. However, bottlenecks in the classical pathway for the secretion of recombinant proteins limit its use on a wide scale. In this study, we attempted to use four typical non-classically secreted proteins as signals to export three recombinant model proteins to the culture medium. All four non-classically secreted proteins can direct the export of the intrinsically disordered nucleoskeletal-like protein (Nsp). Two of them can guide the secretion of alkaline phosphatase (PhoA). One can lead the secretion of the thermostable β-galactosidase BgaB, which cannot be secreted with the aid of typical Sec-dependent signal peptides. Our results show that the non-classically secreted proteins lead the recombinant proteins to the culture medium, and thus non-classical protein secretion pathways can be exploited as a novel secretion pathway for recombinant proteins.

  10. Exploiting translational coupling for the selection of cells producing toxic recombinant proteins from expression vectors.

    PubMed

    Tagliavia, Marcello; Cuttitta, Angela

    2016-01-01

    High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.

  11. Fcγ1 fragment of IgG1 as a powerful affinity tag in recombinant Fc-fusion proteins: immunological, biochemical and therapeutic properties.

    PubMed

    Soleimanpour, Saman; Hassannia, Tahereh; Motiee, Mahdieh; Amini, Abbas Ali; Rezaee, S A R

    2017-05-01

    Affinity tags are vital tools for the production of high-throughput recombinant proteins. Several affinity tags, such as the hexahistidine tag, maltose-binding protein, streptavidin-binding peptide tag, calmodulin-binding peptide, c-Myc tag, glutathione S-transferase and FLAG tag, have been introduced for recombinant protein production. The fragment crystallizable (Fc) domain of the IgG1 antibody is one of the useful affinity tags that can facilitate detection, purification and localization of proteins and can improve the immunogenicity, modulatory effects, physicochemical and pharmaceutical properties of proteins. Fcγ recombinant forms a group of recombinant proteins called Fc-fusion proteins (FFPs). FFPs are widely used in drug discovery, drug delivery, vaccine design and experimental research on receptor-ligand interactions. These fusion proteins have become successful alternatives to monoclonal antibodies for drug developments. In this review, the physicochemical, biochemical, immunological, pharmaceutical and therapeutic properties of recombinant FFPs were discussed as a new generation of bioengineering strategies.

  12. Recombinant fowlpox viruses coexpressing chicken type I IFN and Newcastle disease virus HN and F genes: influence of IFN on protective efficacy and humoral responses of chickens following in ovo or post-hatch administration of recombinant viruses.

    PubMed

    Karaca, K; Sharma, J M; Winslow, B J; Junker, D E; Reddy, S; Cochran, M; McMillen, J

    1998-10-01

    We have constructed recombinant (r) fowl pox viruses (FPVs) coexpressing chicken type I interferon (IFN) and/or hemagglutinin-neuraminidase (HN) and fusion (F) proteins of Newcastle disease virus (NDV). We administered rFPVs and FPV into embryonated chicken eggs at 17 days of embryonation or in chickens after hatch. Administration of FPV or rFPVs did not influence hatchability and survival of hatched chicks. In ovo or after hatch vaccination of chickens with the recombinant viruses resulted in protection against challenge with virulent FPV and NDV. Chickens vaccinated with FPV or FPV-NDV recombinant had significantly lower body weight 2 weeks following vaccination. This loss in body weight was not detected in chickens receiving FPV-IFN and FPV-NDV-IFN recombinants. Chickens vaccinated with FPV coexpressing IFN and NDV genes produced less antibodies against NDV in comparison with chickens vaccinated with FPV expressing NDV genes.

  13. A recombinant pseudorabies virus co-expressing capsid proteins precursor P1-2A of FMDV and VP2 protein of porcine parvovirus: a trivalent vaccine candidate.

    PubMed

    Hong, Qi; Qian, Ping; Li, Xiang-Min; Yu, Xiao-Lan; Chen, Huan-Chun

    2007-11-01

    Pseudorabies (PR), foot-and-mouth disease (FMD), and porcine parvovirus disease are three important infectious diseases in swine worldwide. The gene-deleted pseudorabies virus (PRV) has been used as a live-viral vector to develop multivalent genetic engineering vaccine. In this study, a recombinant PRV, which could co-express protein precursor P1-2A of FMDV and VP2 protein of PPV, was constructed using PRV TK(-)/gE(-)/LacZ(+) mutant as the vector. After homologous recombination and plaque purification, recombinant virus PRV TK(-)/gE(-)/P1-2A-VP2 was acquired and identified. Immunogenicity, safety of the recombinant PRV and its protection against PRV were confirmed in a mouse model by indirect ELISA and serum neutralization test. The results show that the recombinant PRV is a candidate vaccine strain to develop a novel trivalent vaccine against PRV, FMDV and PPV in swine.

  14. Recombinant blood group proteins for use in antibody screening and identification tests.

    PubMed

    Seltsam, Axel; Blasczyk, Rainer

    2009-11-01

    The present review elucidates the potentials of recombinant blood group proteins (BGPs) for red blood cell (RBC) antibody detection and identification in pretransfusion testing and the achievements in this field so far. Many BGPs have been eukaryotically and prokaryotically expressed in sufficient quantity and quality for RBC antibody testing. Recombinant BGPs can be incorporated in soluble protein reagents or solid-phase assays such as ELISA, color-coded microsphere and protein microarray chip-based techniques. Because novel recombinant protein-based assays use single antigens, a positive reaction of a serum with the recombinant protein directly indicates the presence and specificity of the target antibody. Inversely, conventional RBC-based assays use panels of human RBCs carrying a huge number of blood group antigens at the same time and require negative reactions of samples with antigen-negative cells for indirect determination of antibody specificity. Because of their capacity for single-step, direct RBC antibody determination, recombinant protein-based assays may greatly facilitate and accelerate the identification of common and rare RBC antibodies.

  15. Recombination gives a new insight in the effective population size and the history of the old world human populations.

    PubMed

    Melé, Marta; Javed, Asif; Pybus, Marc; Zalloua, Pierre; Haber, Marc; Comas, David; Netea, Mihai G; Balanovsky, Oleg; Balanovska, Elena; Jin, Li; Yang, Yajun; Pitchappan, R M; Arunkumar, G; Parida, Laxmi; Calafell, Francesc; Bertranpetit, Jaume

    2012-01-01

    The information left by recombination in our genomes can be used to make inferences on our recent evolutionary history. Specifically, the number of past recombination events in a population sample is a function of its effective population size (Ne). We have applied a method, Identifying Recombination in Sequences (IRiS), to detect specific past recombination events in 30 Old World populations to infer their Ne. We have found that sub-Saharan African populations have an Ne that is approximately four times greater than those of non-African populations and that outside of Africa, South Asian populations had the largest Ne. We also observe that the patterns of recombinational diversity of these populations correlate with distance out of Africa if that distance is measured along a path crossing South Arabia. No such correlation is found through a Sinai route, suggesting that anatomically modern humans first left Africa through the Bab-el-Mandeb strait rather than through present Egypt.

  16. VizieR Online Data Catalog: Radiative recombination electron energy loss data (Mao+, 2017)

    NASA Astrophysics Data System (ADS)

    Mao, J.; Kaastra, J.; Badnell, N. R.

    2016-11-01

    The weighted electron energy loss factors (dimensionless) are defined by weighting the electron energy loss rate coefficients (per ion) with respect to the total radiative recombination rates. Both the unparameterized and parameterized weighted electron energy-loss factors for H-like to Ne-like ions from H (z=1) up to and including Zn (z=30), in a wide temperature range, are available here. For the unparameterized data set, the temperatures are set to the conventional ADAS temperature grid, i.e. c2*(10,20,50,100,200,...,2*106,5*106,107)K, where c is the ionic charge of the recombined ion. For the fitting parameters, the temperature should be in units of eV. We refer to the recombined ion when we speak of the radiative recombination of a certain ion, for example, for a bare oxygen ion capturing a free electron via radiative recombination to form H-like oxygen (O VIII, s=1, z=8). The fitting accuracies are better than 4%. (2 data files).

  17. Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation

    NASA Technical Reports Server (NTRS)

    Willey, Ronald J.

    1993-01-01

    Five kinetic models are compared for their ability to predict recombination coefficients for oxygen and nitrogen atoms over high-temperature reusable surface insulation (HRSI). Four of the models are derived using Rideal-Eley or Langmuir-Hinshelwood catalytic mechanisms to describe the reaction sequence. The fifth model is an empirical expression that offers certain features unattainable through mechanistic description. The results showed that a four-parameter model, with temperature as the only variable, works best with data currently available. The model describes recombination coefficients for oxygen and nitrogen atoms for temperatures from 300 to 1800 K. Kinetic models, with atom concentrations, demonstrate the influence of atom concentration on recombination coefficients. These models can be used for the prediction of heating rates due to catalytic recombination during re-entry or aerobraking maneuvers. The work further demonstrates a requirement for more recombination experiments in the temperature ranges of 300-1000 K, and 1500-1850 K, with deliberate concentration variation to verify model requirements.

  18. The Accuracy of Molecular Processes

    NASA Astrophysics Data System (ADS)

    Stavans, Joel

    Recombination is arguably one of the most fundamental mechanisms driving genetic diversity during evolution. Recombination takes place in one way or another from viruses such as HIV and polio, to bacteria, and finally to man. In both prokaryotes and eukaryotes, homologous recombination is assisted by enzymes, recombinases, that promote the exchange of strands between two segments of DNA, thereby creating new genetic combinations. In bacteria, homologous recombination takes place as a pathway for the repair of DNA lesions and also during horizontal or lateral gene transfer processes, in which cells take in exogenous pieces of DNA. This allows bacteria to evolve rapidly by acquiring large sequences of DNA, a process which would take too long by gene duplications and single mutations. I will survey recent results on the fidelity of homologous recombination as catalyzed by the bacterial recombinase RecA. These results show discrimination up to the level of single base mismatches, during the initial stages of the recombination process. A cascaded kinetic proofreading process is proposed to explain this high discrimination. Kinetic proofreading ideas are also reviewed.

  19. Why the apparent order of bimolecular recombination in blend organic solar cells can be larger than two: A topological consideration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nenashev, A. V.; Dvurechenskii, A. V.; Novosibirsk State University, 630090 Novosibirsk

    2016-07-18

    The apparent order δ of non-geminate recombination higher than δ = 2 has been evidenced in numerous experiments on organic bulk heterojunction (BHJ) structures intensively studied for photovoltaic applications. This feature is claimed puzzling, since the rate of the bimolecular recombination in organic BHJ systems is proportional to the product of the concentrations of recombining electrons and holes and therefore the reaction order δ = 2 is expected. In organic BHJ structures, electrons and holes are confined to two different material phases: electrons to the acceptor material (usually a fullerene derivative) while holes to the donor phase (usually a polymer). The non-geminatemore » recombination of charge carriers can therefore happen only at the interfaces between the two phases. Considering a simple geometrical model of the BHJ system, we show that the apparent order of recombination can deviate from δ = 2 due solely to the topological structure of the system.« less

  20. Epstein-Barr virus recombinants from overlapping cosmid fragments.

    PubMed

    Tomkinson, B; Robertson, E; Yalamanchili, R; Longnecker, R; Kieff, E

    1993-12-01

    Five overlapping type 1 Epstein-Barr virus (EBV) DNA fragments constituting a complete replication- and transformation-competent genome were cloned into cosmids and transfected together into P3HR-1 cells, along with a plasmid encoding the Z immediate-early activator of EBV replication. P3HR-1 cells harbor a type 2 EBV which is unable to transform primary B lymphocytes because of a deletion of DNA encoding EBNA LP and EBNA 2, but the P3HR-1 EBV can provide replication functions in trans and can recombine with the transfected cosmids. EBV recombinants which have the type 1 EBNA LP and 2 genes from the transfected EcoRI-A cosmid DNA were selectively and clonally recovered by exploiting the unique ability of the recombinants to transform primary B lymphocytes into lymphoblastoid cell lines. PCR and immunoblot analyses for seven distinguishing markers of the type 1 transfected DNAs identified cell lines infected with EBV recombinants which had incorporated EBV DNA fragments beyond the transformation marker-rescuing EcoRI-A fragment. Approximately 10% of the transforming virus recombinants had markers mapping at 7, 46 to 52, 93 to 100, 108 to 110, 122, and 152 kbp from the 172-kbp transfected genome. These recombinants probably result from recombination among the transfected cosmid-cloned EBV DNA fragments. The one recombinant virus examined in detail by Southern blot analysis has all the polymorphisms characteristic of the transfected type 1 cosmid DNA and none characteristic of the type 2 P3HR-1 EBV DNA. This recombinant was wild type in primary B-lymphocyte infection, growth transformation, and lytic replication. Overall, the type 1 EBNA 3A gene was incorporated into 26% of the transformation marker-rescued recombinants, a frequency which was considerably higher than that observed in previous experiments with two-cosmid EBV DNA cotransfections into P3HR-1 cells (B. Tomkinson and E. Kieff, J. Virol. 66:780-789, 1992). Of the recombinants which had incorporated the marker-rescuing cosmid DNA fragment and the fragment encoding the type 1 EBNA 3A gene, most had incorporated markers from at least two other transfected cosmid DNA fragments, indicating a propensity for multiple homologous recombinations. The frequency of incorporation of the nonselected transfected type 1 EBNA 3C gene, which is near the end of two of the transfected cosmids, was 26% overall, versus 3% in previous experiments using transfections with two EBV DNA cosmids. In contrast, the frequency of incorporation of a 12-kb EBV DNA deletion which was near the end of two of the transfected cosmids was only 13%.(ABSTRACT TRUNCATED AT 400 WORDS)

  1. Development of a Recombination System for the Generation of Occlusion Positive Genetically Modified Anticarsia Gemmatalis Multiple Nucleopolyhedrovirus

    PubMed Central

    Haase, Santiago; McCarthy, Christina B.; Ferrelli, M. Leticia; Pidre, Matias L.; Sciocco-Cap, Alicia; Romanowski, Victor

    2015-01-01

    Anticarsia gemmatalis is an important pest in legume crops in South America and it has been successfully controlled using Anticarsia gemmatalis Multiple Nucleopolyhedrovirus (AgMNPV) in subtropical climate zones. Nevertheless, in temperate climates its speed of kill is too slow. Taking this into account, genetic modification of AgMNPV could lead to improvements of its biopesticidal properties. Here we report the generation of a two-component system that allows the production of recombinant AgMNPV. This system is based on a parental AgMNPV in which the polyhedrin gene (polh) was replaced by a bacterial β-galactosidase (lacZ) gene flanked by two target sites for the homing endonuclease I-PpoI. Co-transfection of insect cells with linearized (I-PpoI-digested) parental genome and a transfer vector allowed the restitution of polh and the expression of a heterologous gene upon homologous recombination, with a low background of non-recombinant AgMNPV. The system was validated by constructing a recombinant occlusion-positive (polh+) AgMNPV expressing the green fluorescent protein gene (gfp). This recombinant virus infected larvae normally per os and led to the expression of GFP in cell culture as well as in A. gemmatalis larvae. These results demonstrate that the system is an efficient method for the generation of recombinant AgMNPV expressing heterologous genes, which can be used for manifold purposes, including biotechnological and pharmaceutical applications and the production of orally infectious recombinants with improved biopesticidal properties. PMID:25835531

  2. Evaluation of the effectiveness and safety of the thermo-treatment process to dispose of recombinant DNA waste from biological research laboratories.

    PubMed

    Li, Meng-Nan; Zheng, Guang-Hong; Wang, Lei; Xiao, Wei; Fu, Xiao-Hua; Le, Yi-Quan; Ren, Da-Ming

    2009-01-01

    The discharge of recombinant DNA waste from biological laboratories into the eco-system may be one of the pathways resulting in horizontal gene transfer or "gene pollution". Heating at 100 degrees C for 5-10 min is a common method for treating recombinant DNA waste in biological research laboratories in China. In this study, we evaluated the effectiveness and the safety of the thermo-treatment method in the disposal of recombinant DNA waste. Quantitative PCR, plasmid transformation and electrophoresis technology were used to evaluate the decay/denaturation efficiency during the thermo-treatment process of recombinant plasmid, pET-28b. Results showed that prolonging thermo-treatment time could improve decay efficiency of the plasmid, and its decay half-life was 2.7-4.0 min during the thermo-treatment at 100 degrees C. However, after 30 min of thermo-treatment some transforming activity remained. Higher ionic strength could protect recombinant plasmid from decay during the treatment process. These results indicate that thermo-treatment at 100 degrees C cannot decay and inactivate pET-28b completely. In addition, preliminary results showed that thermo-treated recombinant plasmids were not degraded completely in a short period when they were discharged into an aquatic environment. This implies that when thermo-treated recombinant DNAs are discharged into the eco-system, they may have enough time to re-nature and transform, thus resulting in gene diffusion.

  3. Evidence for recombination of mtDNA in the marine mussel Mytilus trossulus from the Baltic.

    PubMed

    Burzyński, Artur; Zbawicka, Małgorzata; Skibinski, David O F; Wenne, Roman

    2003-03-01

    A number of studies have claimed that recombination occurs in animal mtDNA, although this evidence is controversial. Ladoukakis and Zouros (2001) provided strong evidence for mtDNA recombination in the COIII gene in gonadal tissue in the marine mussel Mytilus galloprovincialis from the Black Sea. The recombinant molecules they reported had not however become established in the population from which experimental animals were sampled. In the present study, we provide further evidence of the generality of mtDNA recombination in Mytilus by reporting recombinant mtDNA molecules in a related mussel species, Mytilus trossulus, from the Baltic. The mtDNA region studied begins in the 16S rRNA gene and terminates in the cytochrome b gene and includes a major noncoding region that may be analogous to the D-loop region observed in other animals. Many bivalve species, including some Mytilus species, are unusual in that they have two mtDNA genomes, one of which is inherited maternally (F genome) the other inherited paternally (M genome). Two recombinant variants reported in the present study have population frequencies of 5% and 36% and appear to be mosaic for F-like and M-like sequences. However, both variants have the noncoding region from the M genome, and both are transmitted to sperm like the M genome. We speculate that acquisition of the noncoding region by the recombinant molecules has conferred a paternal role on mtDNA genomes that otherwise resemble the F genome in sequence.

  4. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice.

    PubMed

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-07-29

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes.

  5. Immune responses in macaques to a prototype recombinant adenovirus live oral human papillomavirus 16 vaccine.

    PubMed

    Berg, Michael G; Adams, Robert J; Gambhira, Ratish; Siracusa, Mark C; Scott, Alan L; Roden, Richard B S; Ketner, Gary

    2014-09-01

    Immunization with human papillomavirus (HPV) L1 virus-like particles (VLPs) prevents infection with HPV. However, the expense and logistical demands of current VLP vaccines will limit their widespread use in resource-limited settings, where most HPV-induced cervical cancer occurs. Live oral adenovirus vaccines have properties that are well-suited for use in such settings. We have described a live recombinant adenovirus vaccine prototype that produces abundant HPV16 L1 protein from the adenovirus major late transcriptional unit and directs the assembly of HPV16 VLPs in tissue culture. Recombinant-derived VLPs potently elicit neutralizing antibodies in mice. Here, we characterize the immune response to the recombinant after dual oral and intranasal immunization of pigtail macaques, in which the virus replicates as it would in immunized humans. The immunization of macaques induced vigorous humoral responses to adenovirus capsid and nonstructural proteins, although, surprisingly, not against HPV L1. In contrast, immunization elicited strong T-cell responses to HPV VLPs as well as adenovirus virions. T-cell responses arose immediately after the primary immunization and were boosted by a second immunization with recombinant virus. T-cell immunity contributes to protection against a wide variety of pathogens, including many viruses. The induction of a strong cellular response by the recombinant indicates that live adenovirus recombinants have potential as vaccines for those agents. These studies encourage and will inform the continued development of viable recombinant adenovirus vaccines. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. [The preparation of recombinant adenovirus Ad-Rad50-GFP and detection of the optimal multiplicity of infection in CNE1 transfected hv Ad-Rad50-GFP].

    PubMed

    Yan, Ruicheng; Huang, Jiancong; Zhu, Ling; Chang, Lihong; Li, Jingjia; Wu, Xifu; Ye, Jin; Zhang, Gehua

    2015-12-01

    The optimal multiplicity of infection (MOI) of the recombinant adenovirus Ad-Rad50-GFP carrying a mutant Rad50 gene expression region on the cell growth of nasopharyngeal carcinoma and the viral amplification efficiency of CNE1 cell infected by this adenovirus were studied. The biological titer of Ad-Rad50-GFP was measured by end point dilution method. The impact of recombinant adenoviral vector transfection on the growth of CNE1 cells was observed by cell growth curve. Transfection efficacy of recombinant adenoviral vector was observed and calculated through fluorescence microscope. The expression f mutant Rad50 in the Ad-Rad50-GFP transfected CNE1 cells with optimal MOI was detected by Western Blot after transfection. The biological titer of Ad-Rad50-GFP was 1.26 x 10¹¹ pfu/ml. CNE1 cell growth was not influenced significantly as they were transfected by recombinant adenoviral vector with MOI less than 50. Transfection efficacy of recombinant adenoviral vector was most salient at 24 hours after transfection, with the high expression of mutant Rad50, and the efficiency still remained about 70% after 72 hours. Recombinant adenoviral vector Ad-Rad50-GFP could transfect CNE1 cells as well as result in the expression of mutant Rad50 in CNE1 cells effectively. MOI = 50 was the optimal multiplicity of infection of CNE1 cells transfected by recombinant adenoviral vector Ad-Rad50-GFP.

  7. Molecular analysis of recombination in a family with Duchenne muscular dystrophy and a large pericentric X chromosome inversion.

    PubMed Central

    Shashi, V.; Golden, W. L.; Allinson, P. S.; Blanton, S. H.; von Kap-Herr, C.; Kelly, T. E.

    1996-01-01

    It has been demonstrated in animal studies that, in animals heterozygous for pericentric chromosomal inversions, loop formation is greatly reduced during meiosis. This results in absence of recombination within the inverted segment, with recombination seen only outside the inversion. A recent study in yeast has shown that telomeres, rather than centromeres, lead in chromosome movement just prior to meiosis and may be involved in promoting recombination. We studied by cytogenetic analysis and DNA polymorphisms the nature of meiotic recombination in a three-generation family with a large pericentric X chromosome inversion, inv(X)(p21.1q26), in which Duchenne muscular dystrophy (DMD) was cosegregating with the inversion. On DNA analysis there was no evidence of meiotic recombination between the inverted and normal X chromosomes in the inverted segment. Recombination was seen at the telomeric regions, Xp22 and Xq27-28. No deletion or point mutation was found on analysis of the DMD gene. On the basis of the FISH results, we believe that the X inversion is the mutation responsible for DMD in this family. Our results indicate that (1) pericentric X chromosome inversions result in reduction of recombination between the normal and inverted X chromosomes; (2) meiotic X chromosome pairing in these individuals is likely initiated at the telomeres; and (3) in this family DMD is caused by the pericentric inversion. Images Figure 2 Figure 5 Figure 6 Figure 7 PMID:8651300

  8. Recombination in Streptococcus pneumoniae Lineages Increase with Carriage Duration and Size of the Polysaccharide Capsule

    PubMed Central

    Andam, Cheryl P.; Harris, Simon R.; Cornick, Jennifer E.; Yang, Marie; Bricio-Moreno, Laura; Kamng’ona, Arox W.; French, Neil; Heyderman, Robert S.; Kadioglu, Aras; Everett, Dean B.; Bentley, Stephen D.

    2016-01-01

    ABSTRACT Streptococcus pneumoniae causes a high burden of invasive pneumococcal disease (IPD) globally, especially in children from resource-poor settings. Like many bacteria, the pneumococcus can import DNA from other strains or even species by transformation and homologous recombination, which has allowed the pneumococcus to evade clinical interventions such as antibiotics and pneumococcal conjugate vaccines (PCVs). Pneumococci are enclosed in a complex polysaccharide capsule that determines the serotype; the capsule varies in size and is associated with properties including carriage prevalence and virulence. We determined and quantified the association between capsule and recombination events using genomic data from a diverse collection of serotypes sampled in Malawi. We determined both the amount of variation introduced by recombination relative to mutation (the relative rate) and how many individual recombination events occur per isolate (the frequency). Using univariate analyses, we found an association between both recombination measures and multiple factors associated with the capsule, including duration and prevalence of carriage. Because many capsular factors are correlated, we used multivariate analysis to correct for collinearity. Capsule size and carriage duration remained positively associated with recombination, although with a reduced P value, and this effect may be mediated through some unassayed additional property associated with larger capsules. This work describes an important impact of serotype on recombination that has been previously overlooked. While the details of how this effect is achieved remain to be determined, it may have important consequences for the serotype-specific response to vaccines and other interventions. PMID:27677790

  9. phiC31 Integrase-Mediated Site-Specific Recombination in Barley

    PubMed Central

    Rubtsova, Myroslava; Kumlehn, Jochen; Gils, Mario

    2012-01-01

    The Streptomyces phage phiC31 integrase was tested for its feasibility in excising transgenes from the barley genome through site-specific recombination. We produced transgenic barley plants expressing an active phiC31 integrase and crossed them with transgenic barley plants carrying a target locus for recombination. The target sequence involves a reporter gene encoding green fluorescent protein (GFP), which is flanked by the attB and attP recognition sites for the phiC31 integrase. This sequence disruptively separates a gusA coding sequence from an upstream rice actin promoter. We succeeded in producing site-specific recombination events in the hybrid progeny of 11 independent barley plants carrying the above target sequence after crossing with plants carrying a phiC31 expression cassette. Some of the hybrids displayed fully executed recombination. Excision of the GFP gene fostered activation of the gusA gene, as visualized in tissue of hybrid plants by histochemical staining. The recombinant loci were detected in progeny of selfed F1, even in individuals lacking the phiC31 transgene, which provides evidence of stability and generative transmission of the recombination events. In several plants that displayed incomplete recombination, extrachromosomal excision circles were identified. Besides the technical advance achieved in this study, the generated phiC31 integrase-expressing barley plants provide foundational stock material for use in future approaches to barley genetic improvement, such as the production of marker-free transgenic plants or switching transgene activity. PMID:23024817

  10. 7 CFR 331.13 - Restricted experiments. 5

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Recombinant DNA Molecules.” This document is available on the Internet at http://www.aphis.usda.gov/programs...) Experiments utilizing recombinant DNA that involve the deliberate transfer of a drug resistance trait to...) Experiments involving the deliberate formation of recombinant DNA containing genes for the biosynthesis of...

  11. 77 FR 22333 - Prospective Grant of Exclusive License: Development of Oncolytic Viral Cancer Therapies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ..., ``Recombinant Vaccinia Virus Containing a Chimeric Gene Having Foreign DNA Flanked by Vaccinia Regulatory DNA..., ``Compositions Containing Recombinant Poxviruses Having Foreign DNA Expressed under the Control of Poxvirus... entitled, ``Methods of Immunization Using Recombinant Poxviruses Having Foreign DNA Expressed under the...

  12. 7 CFR 331.13 - Restricted experiments. 5

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Recombinant DNA Molecules.” This document is available on the Internet at http://www.aphis.usda.gov/programs...) Experiments utilizing recombinant DNA that involve the deliberate transfer of a drug resistance trait to...) Experiments involving the deliberate formation of recombinant DNA containing genes for the biosynthesis of...

  13. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, John; Piddington, Chris S.; Kovacevich, Brian R.; Young, Kevin D.; Denome, Sylvia A.

    1994-01-01

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous.

  14. 7 CFR 331.13 - Restricted experiments. 5

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Recombinant DNA Molecules.” This document is available on the Internet at http://www.aphis.usda.gov/programs...) Experiments utilizing recombinant DNA that involve the deliberate transfer of a drug resistance trait to...) Experiments involving the deliberate formation of recombinant DNA containing genes for the biosynthesis of...

  15. Gene evolutionary trajectories and GC patterns driven by recombination in Zea mays

    USDA-ARS?s Scientific Manuscript database

    Recombination occurring during meiosis is critical for creating genetic variation and plays an essential role in plant evolution. In addition to creating novel gene combinations, recombination can affect genome structure through altering GC patterns. In maize (Zea mays) and other grasses, another in...

  16. Meiotic recombination breakpoints are associated with open chromatin and enriched with repetitive DNA elements in potato

    USDA-ARS?s Scientific Manuscript database

    Meiotic recombination provides the framework for the genetic variation in natural and artificial populations of eukaryotes through the creation of novel haplotypes. Thus, determining the molecular characteristics of meiotic recombination remains essential for future plant breeding efforts, which hea...

  17. Improved Simulations of Astrophysical Plasmas: Computation of New Dielectronic Recombination Data

    NASA Technical Reports Server (NTRS)

    Gorczyca, T. W.; Korista, K. T.; Zatsarinny, O.; Badnell, N. R.; Savin, D. W.

    2002-01-01

    Here we recap the works of two posters presented at the 2002 NASA Laboratory Astrophysics Workshop. The first was Shortcomings of the R-Matrix Method for Treating Dielectronic Recombination. The second was Computation of Dielectronic Recombination Data for the Oxygen-Like Isoelectronic Sequence.

  18. Virulence and molecular characterization of experimental isolates of the stripe rust pathogen (Puccinia striiformis) indicate somatic recombination

    USDA-ARS?s Scientific Manuscript database

    Puccinia striiformis causes stripe rust on wheat, barley, and grasses. Natural population studies have indicated that somatic recombination plays a possible role in the pathogen variation. To determine if somatic recombination can occur, susceptible wheat or barley plants were inoculated with mixe...

  19. 75 FR 21008 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... Activities; Recombinant DNA Research: Proposed Actions Under the NIH Guidelines for Research Involving... Biotechnology Activities (OBA) published a proposal to revise the NIH Guidelines for Research with Recombinant DNA Molecules (NIH Guidelines) to address biosafety for research with synthetic nucleic acids (74 FR...

  20. 21 CFR 878.4494 - Absorbable poly(hydroxybutyrate) surgical suture produced by recombinant DNA technology.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... produced by recombinant DNA technology. 878.4494 Section 878.4494 Food and Drugs FOOD AND DRUG... recombinant DNA technology. (a) Identification. An absorbable poly(hydroxybutyrate) surgical suture is an... deoxyribonucleic acid (DNA) technology. The device is intended for use in general soft tissue approximation and...

Top