Evaluation of Advanced Computing Techniques and Technologies: Reconfigurable Computing
NASA Technical Reports Server (NTRS)
Wells, B. Earl
2003-01-01
The focus of this project was to survey the technology of reconfigurable computing determine its level of maturity and suitability for NASA applications. To better understand and assess the effectiveness of the reconfigurable design paradigm that is utilized within the HAL-15 reconfigurable computer system. This system was made available to NASA MSFC for this purpose, from Star Bridge Systems, Inc. To implement on at least one application that would benefit from the performance levels that are possible with reconfigurable hardware. It was originally proposed that experiments in fault tolerance and dynamically reconfigurability would be perform but time constraints mandated that these be pursued as future research.
Accelerating artificial intelligence with reconfigurable computing
NASA Astrophysics Data System (ADS)
Cieszewski, Radoslaw
Reconfigurable computing is emerging as an important area of research in computer architectures and software systems. Many algorithms can be greatly accelerated by placing the computationally intense portions of an algorithm into reconfigurable hardware. Reconfigurable computing combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be changed over the lifetime of the system. Similar to an ASIC, reconfigurable systems provide a method to map circuits into hardware. Reconfigurable systems therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Such a field, where there is many different algorithms which can be accelerated, is an artificial intelligence. This paper presents example hardware implementations of Artificial Neural Networks, Genetic Algorithms and Expert Systems.
Optimal reconfiguration strategy for a degradable multimodule computing system
NASA Technical Reports Server (NTRS)
Lee, Yann-Hang; Shin, Kang G.
1987-01-01
The present quantitative approach to the problem of reconfiguring a degradable multimode system assigns some modules to computation and arranges others for reliability. By using expected total reward as the optimal criterion, there emerges an active reconfiguration strategy based not only on the occurrence of failure but the progression of the given mission. This reconfiguration strategy requires specification of the times at which the system should undergo reconfiguration, and the configurations to which the system should change. The optimal reconfiguration problem is converted to integer nonlinear knapsack and fractional programming problems.
Computer image generation: Reconfigurability as a strategy in high fidelity space applications
NASA Technical Reports Server (NTRS)
Bartholomew, Michael J.
1989-01-01
The demand for realistic, high fidelity, computer image generation systems to support space simulation is well established. However, as the number and diversity of space applications increase, the complexity and cost of computer image generation systems also increase. One strategy used to harmonize cost with varied requirements is establishment of a reconfigurable image generation system that can be adapted rapidly and easily to meet new and changing requirements. The reconfigurability strategy through the life cycle of system conception, specification, design, implementation, operation, and support for high fidelity computer image generation systems are discussed. The discussion is limited to those issues directly associated with reconfigurability and adaptability of a specialized scene generation system in a multi-faceted space applications environment. Examples and insights gained through the recent development and installation of the Improved Multi-function Scene Generation System at Johnson Space Center, Systems Engineering Simulator are reviewed and compared with current simulator industry practices. The results are clear; the strategy of reconfigurability applied to space simulation requirements provides a viable path to supporting diverse applications with an adaptable computer image generation system.
Methods and systems for providing reconfigurable and recoverable computing resources
NASA Technical Reports Server (NTRS)
Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)
2010-01-01
A method for optimizing the use of digital computing resources to achieve reliability and availability of the computing resources is disclosed. The method comprises providing one or more processors with a recovery mechanism, the one or more processors executing one or more applications. A determination is made whether the one or more processors needs to be reconfigured. A rapid recovery is employed to reconfigure the one or more processors when needed. A computing system that provides reconfigurable and recoverable computing resources is also disclosed. The system comprises one or more processors with a recovery mechanism, with the one or more processors configured to execute a first application, and an additional processor configured to execute a second application different than the first application. The additional processor is reconfigurable with rapid recovery such that the additional processor can execute the first application when one of the one more processors fails.
A Course on Reconfigurable Processors
ERIC Educational Resources Information Center
Shoufan, Abdulhadi; Huss, Sorin A.
2010-01-01
Reconfigurable computing is an established field in computer science. Teaching this field to computer science students demands special attention due to limited student experience in electronics and digital system design. This article presents a compact course on reconfigurable processors, which was offered at the Technische Universitat Darmstadt,…
Reconfigurable vision system for real-time applications
NASA Astrophysics Data System (ADS)
Torres-Huitzil, Cesar; Arias-Estrada, Miguel
2002-03-01
Recently, a growing community of researchers has used reconfigurable systems to solve computationally intensive problems. Reconfigurability provides optimized processors for systems on chip designs, and makes easy to import technology to a new system through reusable modules. The main objective of this work is the investigation of a reconfigurable computer system targeted for computer vision and real-time applications. The system is intended to circumvent the inherent computational load of most window-based computer vision algorithms. It aims to build a system for such tasks by providing an FPGA-based hardware architecture for task specific vision applications with enough processing power, using the minimum amount of hardware resources as possible, and a mechanism for building systems using this architecture. Regarding the software part of the system, a library of pre-designed and general-purpose modules that implement common window-based computer vision operations is being investigated. A common generic interface is established for these modules in order to define hardware/software components. These components can be interconnected to develop more complex applications, providing an efficient mechanism for transferring image and result data among modules. Some preliminary results are presented and discussed.
Lunar Applications in Reconfigurable Computing
NASA Technical Reports Server (NTRS)
Somervill, Kevin
2008-01-01
NASA s Constellation Program is developing a lunar surface outpost in which reconfigurable computing will play a significant role. Reconfigurable systems provide a number of benefits over conventional software-based implementations including performance and power efficiency, while the use of standardized reconfigurable hardware provides opportunities to reduce logistical overhead. The current vision for the lunar surface architecture includes habitation, mobility, and communications systems, each of which greatly benefit from reconfigurable hardware in applications including video processing, natural feature recognition, data formatting, IP offload processing, and embedded control systems. In deploying reprogrammable hardware, considerations similar to those of software systems must be managed. There needs to be a mechanism for discovery enabling applications to locate and utilize the available resources. Also, application interfaces are needed to provide for both configuring the resources as well as transferring data between the application and the reconfigurable hardware. Each of these topics are explored in the context of deploying reconfigurable resources as an integral aspect of the lunar exploration architecture.
Upper and lower bounds for semi-Markov reliability models of reconfigurable systems
NASA Technical Reports Server (NTRS)
White, A. L.
1984-01-01
This paper determines the information required about system recovery to compute the reliability of a class of reconfigurable systems. Upper and lower bounds are derived for these systems. The class consists of those systems that satisfy five assumptions: the components fail independently at a low constant rate, fault occurrence and system reconfiguration are independent processes, the reliability model is semi-Markov, the recovery functions which describe system configuration have small means and variances, and the system is well designed. The bounds are easy to compute, and examples are included.
Airborne Advanced Reconfigurable Computer System (ARCS)
NASA Technical Reports Server (NTRS)
Bjurman, B. E.; Jenkins, G. M.; Masreliez, C. J.; Mcclellan, K. L.; Templeman, J. E.
1976-01-01
A digital computer subsystem fault-tolerant concept was defined, and the potential benefits and costs of such a subsystem were assessed when used as the central element of a new transport's flight control system. The derived advanced reconfigurable computer system (ARCS) is a triple-redundant computer subsystem that automatically reconfigures, under multiple fault conditions, from triplex to duplex to simplex operation, with redundancy recovery if the fault condition is transient. The study included criteria development covering factors at the aircraft's operation level that would influence the design of a fault-tolerant system for commercial airline use. A new reliability analysis tool was developed for evaluating redundant, fault-tolerant system availability and survivability; and a stringent digital system software design methodology was used to achieve design/implementation visibility.
Definition and trade-off study of reconfigurable airborne digital computer system organizations
NASA Technical Reports Server (NTRS)
Conn, R. B.
1974-01-01
A highly-reliable, fault-tolerant reconfigurable computer system for aircraft applications was developed. The development and application reliability and fault-tolerance assessment techniques are described. Particular emphasis is placed on the needs of an all-digital, fly-by-wire control system appropriate for a passenger-carrying airplane.
Redundancy management for efficient fault recovery in NASA's distributed computing system
NASA Technical Reports Server (NTRS)
Malek, Miroslaw; Pandya, Mihir; Yau, Kitty
1991-01-01
The management of redundancy in computer systems was studied and guidelines were provided for the development of NASA's fault-tolerant distributed systems. Fault recovery and reconfiguration mechanisms were examined. A theoretical foundation was laid for redundancy management by efficient reconfiguration methods and algorithmic diversity. Algorithms were developed to optimize the resources for embedding of computational graphs of tasks in the system architecture and reconfiguration of these tasks after a failure has occurred. The computational structure represented by a path and the complete binary tree was considered and the mesh and hypercube architectures were targeted for their embeddings. The innovative concept of Hybrid Algorithm Technique was introduced. This new technique provides a mechanism for obtaining fault tolerance while exhibiting improved performance.
Reconfigurable Hardware Adapts to Changing Mission Demands
NASA Technical Reports Server (NTRS)
2003-01-01
A new class of computing architectures and processing systems, which use reconfigurable hardware, is creating a revolutionary approach to implementing future spacecraft systems. With the increasing complexity of electronic components, engineers must design next-generation spacecraft systems with new technologies in both hardware and software. Derivation Systems, Inc., of Carlsbad, California, has been working through NASA s Small Business Innovation Research (SBIR) program to develop key technologies in reconfigurable computing and Intellectual Property (IP) soft cores. Founded in 1993, Derivation Systems has received several SBIR contracts from NASA s Langley Research Center and the U.S. Department of Defense Air Force Research Laboratories in support of its mission to develop hardware and software for high-assurance systems. Through these contracts, Derivation Systems began developing leading-edge technology in formal verification, embedded Java, and reconfigurable computing for its PF3100, Derivational Reasoning System (DRS ), FormalCORE IP, FormalCORE PCI/32, FormalCORE DES, and LavaCORE Configurable Java Processor, which are designed for greater flexibility and security on all space missions.
Colt: an experiment in wormhole run-time reconfiguration
NASA Astrophysics Data System (ADS)
Bittner, Ray; Athanas, Peter M.; Musgrove, Mark
1996-10-01
Wormhole run-time reconfiguration (RTR) is an attempt to create a refined computing paradigm for high performance computational tasks. By combining concepts from field programmable gate array (FPGA) technologies with data flow computing, the Colt/Stallion architecture achieves high utilization of hardware resources, and facilitates rapid run-time reconfiguration. Targeted mainly at DSP-type operations, the Colt integrated circuit -- a prototype wormhole RTR device -- compares favorably to contemporary DSP alternatives in terms of silicon area consumed per unit computation and in computing performance. Although emphasis has been placed on signal processing applications, general purpose computation has not been overlooked. Colt is a prototype that defines an architecture not only at the chip level but also in terms of an overall system design. As this system is realized, the concept of wormhole RTR will be applied to numerical computation and DSP applications including those common to image processing, communications systems, digital filters, acoustic processing, real-time control systems and simulation acceleration.
NASA Technical Reports Server (NTRS)
Olariu, S.; Schwing, J.; Zhang, J.
1991-01-01
A bus system that can change dynamically to suit computational needs is referred to as reconfigurable. We present a fast adaptive convex hull algorithm on a two-dimensional processor array with a reconfigurable bus system (2-D PARBS, for short). Specifically, we show that computing the convex hull of a planar set of n points taken O(log n/log m) time on a 2-D PARBS of size mn x n with 3 less than or equal to m less than or equal to n. Our result implies that the convex hull of n points in the plane can be computed in O(1) time in a 2-D PARBS of size n(exp 1.5) x n.
Method and system for environmentally adaptive fault tolerant computing
NASA Technical Reports Server (NTRS)
Copenhaver, Jason L. (Inventor); Jeremy, Ramos (Inventor); Wolfe, Jeffrey M. (Inventor); Brenner, Dean (Inventor)
2010-01-01
A method and system for adapting fault tolerant computing. The method includes the steps of measuring an environmental condition representative of an environment. An on-board processing system's sensitivity to the measured environmental condition is measured. It is determined whether to reconfigure a fault tolerance of the on-board processing system based in part on the measured environmental condition. The fault tolerance of the on-board processing system may be reconfigured based in part on the measured environmental condition.
PCI-based WILDFIRE reconfigurable computing engines
NASA Astrophysics Data System (ADS)
Fross, Bradley K.; Donaldson, Robert L.; Palmer, Douglas J.
1996-10-01
WILDFORCE is the first PCI-based custom reconfigurable computer that is based on the Splash 2 technology transferred from the National Security Agency and the Institute for Defense Analyses, Supercomputing Research Center (SRC). The WILDFORCE architecture has many of the features of the WILDFIRE computer, such as field- programmable gate array (FPGA) based processing elements, linear array and crossbar interconnection, and high- performance memory and I/O subsystems. New features introduced in the PCI-based WILDFIRE systems include memory/processor options that can be added to any processing element. These options include static and dynamic memory, digital signal processors (DSPs), FPGAs, and microprocessors. In addition to memory/processor options, many different application specific connectors can be used to extend the I/O capabilities of the system, including systolic I/O, camera input and video display output. This paper also discusses how this new PCI-based reconfigurable computing engine is used for rapid-prototyping, real-time video processing and other DSP applications.
Toward a Dynamically Reconfigurable Computing and Communication System for Small Spacecraft
NASA Technical Reports Server (NTRS)
Kifle, Muli; Andro, Monty; Tran, Quang K.; Fujikawa, Gene; Chu, Pong P.
2003-01-01
Future science missions will require the use of multiple spacecraft with multiple sensor nodes autonomously responding and adapting to a dynamically changing space environment. The acquisition of random scientific events will require rapidly changing network topologies, distributed processing power, and a dynamic resource management strategy. Optimum utilization and configuration of spacecraft communications and navigation resources will be critical in meeting the demand of these stringent mission requirements. There are two important trends to follow with respect to NASA's (National Aeronautics and Space Administration) future scientific missions: the use of multiple satellite systems and the development of an integrated space communications network. Reconfigurable computing and communication systems may enable versatile adaptation of a spacecraft system's resources by dynamic allocation of the processor hardware to perform new operations or to maintain functionality due to malfunctions or hardware faults. Advancements in FPGA (Field Programmable Gate Array) technology make it possible to incorporate major communication and network functionalities in FPGA chips and provide the basis for a dynamically reconfigurable communication system. Advantages of higher computation speeds and accuracy are envisioned with tremendous hardware flexibility to ensure maximum survivability of future science mission spacecraft. This paper discusses the requirements, enabling technologies, and challenges associated with dynamically reconfigurable space communications systems.
An Agent Inspired Reconfigurable Computing Implementation of a Genetic Algorithm
NASA Technical Reports Server (NTRS)
Weir, John M.; Wells, B. Earl
2003-01-01
Many software systems have been successfully implemented using an agent paradigm which employs a number of independent entities that communicate with one another to achieve a common goal. The distributed nature of such a paradigm makes it an excellent candidate for use in high speed reconfigurable computing hardware environments such as those present in modem FPGA's. In this paper, a distributed genetic algorithm that can be applied to the agent based reconfigurable hardware model is introduced. The effectiveness of this new algorithm is evaluated by comparing the quality of the solutions found by the new algorithm with those found by traditional genetic algorithms. The performance of a reconfigurable hardware implementation of the new algorithm on an FPGA is compared to traditional single processor implementations.
More About Software for No-Loss Computing
NASA Technical Reports Server (NTRS)
Edmonds, Iarina
2007-01-01
A document presents some additional information on the subject matter of "Integrated Hardware and Software for No- Loss Computing" (NPO-42554), which appears elsewhere in this issue of NASA Tech Briefs. To recapitulate: The hardware and software designs of a developmental parallel computing system are integrated to effectuate a concept of no-loss computing (NLC). The system is designed to reconfigure an application program such that it can be monitored in real time and further reconfigured to continue a computation in the event of failure of one of the computers. The design provides for (1) a distributed class of NLC computation agents, denoted introspection agents, that effects hierarchical detection of anomalies; (2) enhancement of the compiler of the parallel computing system to cause generation of state vectors that can be used to continue a computation in the event of a failure; and (3) activation of a recovery component when an anomaly is detected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard
In this paper, a short-term load forecasting approach based network reconfiguration is proposed in a parallel manner. Specifically, a support vector regression (SVR) based short-term load forecasting approach is designed to provide an accurate load prediction and benefit the network reconfiguration. Because of the nonconvexity of the three-phase balanced optimal power flow, a second-order cone program (SOCP) based approach is used to relax the optimal power flow problem. Then, the alternating direction method of multipliers (ADMM) is used to compute the optimal power flow in distributed manner. Considering the limited number of the switches and the increasing computation capability, themore » proposed network reconfiguration is solved in a parallel way. The numerical results demonstrate the feasible and effectiveness of the proposed approach.« less
Exploiting the chaotic behaviour of atmospheric models with reconfigurable architectures
NASA Astrophysics Data System (ADS)
Russell, Francis P.; Düben, Peter D.; Niu, Xinyu; Luk, Wayne; Palmer, T. N.
2017-12-01
Reconfigurable architectures are becoming mainstream: Amazon, Microsoft and IBM are supporting such architectures in their data centres. The computationally intensive nature of atmospheric modelling is an attractive target for hardware acceleration using reconfigurable computing. Performance of hardware designs can be improved through the use of reduced-precision arithmetic, but maintaining appropriate accuracy is essential. We explore reduced-precision optimisation for simulating chaotic systems, targeting atmospheric modelling, in which even minor changes in arithmetic behaviour will cause simulations to diverge quickly. The possibility of equally valid simulations having differing outcomes means that standard techniques for comparing numerical accuracy are inappropriate. We use the Hellinger distance to compare statistical behaviour between reduced-precision CPU implementations to guide reconfigurable designs of a chaotic system, then analyse accuracy, performance and power efficiency of the resulting implementations. Our results show that with only a limited loss in accuracy corresponding to less than 10% uncertainty in input parameters, the throughput and energy efficiency of a single-precision chaotic system implemented on a Xilinx Virtex-6 SX475T Field Programmable Gate Array (FPGA) can be more than doubled.
Adaptive Instrument Module: Space Instrument Controller "Brain" through Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Darrin, Ann Garrison; Conde, Richard; Chern, Bobbie; Luers, Phil; Jurczyk, Steve; Mills, Carl; Day, John H. (Technical Monitor)
2001-01-01
The Adaptive Instrument Module (AIM) will be the first true demonstration of reconfigurable computing with field-programmable gate arrays (FPGAs) in space, enabling the 'brain' of the system to evolve or adapt to changing requirements. In partnership with NASA Goddard Space Flight Center and the Australian Cooperative Research Centre for Satellite Systems (CRC-SS), APL has built the flight version to be flown on the Australian university-class satellite FEDSAT. The AIM provides satellites the flexibility to adapt to changing mission requirements by reconfiguring standardized processing hardware rather than incurring the large costs associated with new builds. This ability to reconfigure the processing in response to changing mission needs leads to true evolveable computing, wherein the instrument 'brain' can learn from new science data in order to perform state-of-the-art data processing. The development of the AIM is significant in its enormous potential to reduce total life-cycle costs for future space exploration missions. The advent of RAM-based FPGAs whose configuration can be changed at any time has enabled the development of the AIM for processing tasks that could not be performed in software. The use of the AIM enables reconfiguration of the FPGA circuitry while the spacecraft is in flight, with many accompanying advantages. The AIM demonstrates the practicalities of using reconfigurable computing hardware devices by conducting a series of designed experiments. These include the demonstration of implementing data compression, data filtering, and communication message processing and inter-experiment data computation. The second generation is the Adaptive Processing Template (ADAPT) which is further described in this paper. The next step forward is to make the hardware itself adaptable and the ADAPT pursues this challenge by developing a reconfigurable module that will be capable of functioning efficiently in various applications. ADAPT will take advantage of radiation tolerant RAM-based field programmable gate array (FPGA) technology to develop a reconfigurable processor that combines the flexibility of a general purpose processor running software with the performance of application specific processing hardware for a variety of high performance computing applications.
NASA Technical Reports Server (NTRS)
1972-01-01
The design is reported of an advanced modular computer system designated the Automatically Reconfigurable Modular Multiprocessor System, which anticipates requirements for higher computing capacity and reliability for future spaceborne computers. Subjects discussed include: an overview of the architecture, mission analysis, synchronous and nonsynchronous scheduling control, reliability, and data transmission.
Nonvolatile reconfigurable sequential logic in a HfO2 resistive random access memory array.
Zhou, Ya-Xiong; Li, Yi; Su, Yu-Ting; Wang, Zhuo-Rui; Shih, Ling-Yi; Chang, Ting-Chang; Chang, Kuan-Chang; Long, Shi-Bing; Sze, Simon M; Miao, Xiang-Shui
2017-05-25
Resistive random access memory (RRAM) based reconfigurable logic provides a temporal programmable dimension to realize Boolean logic functions and is regarded as a promising route to build non-von Neumann computing architecture. In this work, a reconfigurable operation method is proposed to perform nonvolatile sequential logic in a HfO 2 -based RRAM array. Eight kinds of Boolean logic functions can be implemented within the same hardware fabrics. During the logic computing processes, the RRAM devices in an array are flexibly configured in a bipolar or complementary structure. The validity was demonstrated by experimentally implemented NAND and XOR logic functions and a theoretically designed 1-bit full adder. With the trade-off between temporal and spatial computing complexity, our method makes better use of limited computing resources, thus provides an attractive scheme for the construction of logic-in-memory systems.
Diagnosis and Reconfiguration using Bayesian Networks: An Electrical Power System Case Study
NASA Technical Reports Server (NTRS)
Knox, W. Bradley; Mengshoel, Ole
2009-01-01
Automated diagnosis and reconfiguration are important computational techniques that aim to minimize human intervention in autonomous systems. In this paper, we develop novel techniques and models in the context of diagnosis and reconfiguration reasoning using causal Bayesian networks (BNs). We take as starting point a successful diagnostic approach, using a static BN developed for a real-world electrical power system. We discuss in this paper the extension of this diagnostic approach along two dimensions, namely: (i) from a static BN to a dynamic BN; and (ii) from a diagnostic task to a reconfiguration task. More specifically, we discuss the auto-generation of a dynamic Bayesian network from a static Bayesian network. In addition, we discuss subtle, but important, differences between Bayesian networks when used for diagnosis versus reconfiguration. We discuss a novel reconfiguration agent, which models a system causally, including effects of actions through time, using a dynamic Bayesian network. Though the techniques we discuss are general, we demonstrate them in the context of electrical power systems (EPSs) for aircraft and spacecraft. EPSs are vital subsystems on-board aircraft and spacecraft, and many incidents and accidents of these vehicles have been attributed to EPS failures. We discuss a case study that provides initial but promising results for our approach in the setting of electrical power systems.
Reconfigurable environmentally adaptive computing
NASA Technical Reports Server (NTRS)
Coxe, Robin L. (Inventor); Galica, Gary E. (Inventor)
2008-01-01
Described are methods and apparatus, including computer program products, for reconfigurable environmentally adaptive computing technology. An environmental signal representative of an external environmental condition is received. A processing configuration is automatically selected, based on the environmental signal, from a plurality of processing configurations. A reconfigurable processing element is reconfigured to operate according to the selected processing configuration. In some examples, the environmental condition is detected and the environmental signal is generated based on the detected condition.
NASA Astrophysics Data System (ADS)
Shatravin, V.; Shashev, D. V.
2018-05-01
Currently, robots are increasingly being used in every industry. One of the most high-tech areas is creation of completely autonomous robotic devices including vehicles. The results of various global research prove the efficiency of vision systems in autonomous robotic devices. However, the use of these systems is limited because of the computational and energy resources available in the robot device. The paper describes the results of applying the original approach for image processing on reconfigurable computing environments by the example of morphological operations over grayscale images. This approach is prospective for realizing complex image processing algorithms and real-time image analysis in autonomous robotic devices.
NASA Technical Reports Server (NTRS)
Rutishauser, David
2006-01-01
The motivation for this work comes from an observation that amidst the push for Massively Parallel (MP) solutions to high-end computing problems such as numerical physical simulations, large amounts of legacy code exist that are highly optimized for vector supercomputers. Because re-hosting legacy code often requires a complete re-write of the original code, which can be a very long and expensive effort, this work examines the potential to exploit reconfigurable computing machines in place of a vector supercomputer to implement an essentially unmodified legacy source code. Custom and reconfigurable computing resources could be used to emulate an original application's target platform to the extent required to achieve high performance. To arrive at an architecture that delivers the desired performance subject to limited resources involves solving a multi-variable optimization problem with constraints. Prior research in the area of reconfigurable computing has demonstrated that designing an optimum hardware implementation of a given application under hardware resource constraints is an NP-complete problem. The premise of the approach is that the general issue of applying reconfigurable computing resources to the implementation of an application, maximizing the performance of the computation subject to physical resource constraints, can be made a tractable problem by assuming a computational paradigm, such as vector processing. This research contributes a formulation of the problem and a methodology to design a reconfigurable vector processing implementation of a given application that satisfies a performance metric. A generic, parametric, architectural framework for vector processing implemented in reconfigurable logic is developed as a target for a scheduling/mapping algorithm that maps an input computation to a given instance of the architecture. This algorithm is integrated with an optimization framework to arrive at a specification of the architecture parameters that attempts to minimize execution time, while staying within resource constraints. The flexibility of using a custom reconfigurable implementation is exploited in a unique manner to leverage the lessons learned in vector supercomputer development. The vector processing framework is tailored to the application, with variable parameters that are fixed in traditional vector processing. Benchmark data that demonstrates the functionality and utility of the approach is presented. The benchmark data includes an identified bottleneck in a real case study example vector code, the NASA Langley Terminal Area Simulation System (TASS) application.
García, Gabriel J.; Jara, Carlos A.; Pomares, Jorge; Alabdo, Aiman; Poggi, Lucas M.; Torres, Fernando
2014-01-01
The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field. PMID:24691100
García, Gabriel J; Jara, Carlos A; Pomares, Jorge; Alabdo, Aiman; Poggi, Lucas M; Torres, Fernando
2014-03-31
The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.
Evolution of a designless nanoparticle network into reconfigurable Boolean logic
NASA Astrophysics Data System (ADS)
Bose, S. K.; Lawrence, C. P.; Liu, Z.; Makarenko, K. S.; van Damme, R. M. J.; Broersma, H. J.; van der Wiel, W. G.
2015-12-01
Natural computers exploit the emergent properties and massive parallelism of interconnected networks of locally active components. Evolution has resulted in systems that compute quickly and that use energy efficiently, utilizing whatever physical properties are exploitable. Man-made computers, on the other hand, are based on circuits of functional units that follow given design rules. Hence, potentially exploitable physical processes, such as capacitive crosstalk, to solve a problem are left out. Until now, designless nanoscale networks of inanimate matter that exhibit robust computational functionality had not been realized. Here we artificially evolve the electrical properties of a disordered nanomaterials system (by optimizing the values of control voltages using a genetic algorithm) to perform computational tasks reconfigurably. We exploit the rich behaviour that emerges from interconnected metal nanoparticles, which act as strongly nonlinear single-electron transistors, and find that this nanoscale architecture can be configured in situ into any Boolean logic gate. This universal, reconfigurable gate would require about ten transistors in a conventional circuit. Our system meets the criteria for the physical realization of (cellular) neural networks: universality (arbitrary Boolean functions), compactness, robustness and evolvability, which implies scalability to perform more advanced tasks. Our evolutionary approach works around device-to-device variations and the accompanying uncertainties in performance. Moreover, it bears a great potential for more energy-efficient computation, and for solving problems that are very hard to tackle in conventional architectures.
Programmable hardware for reconfigurable computing systems
NASA Astrophysics Data System (ADS)
Smith, Stephen
1996-10-01
In 1945 the work of J. von Neumann and H. Goldstein created the principal architecture for electronic computation that has now lasted fifty years. Nevertheless alternative architectures have been created that have computational capability, for special tasks, far beyond that feasible with von Neumann machines. The emergence of high capacity programmable logic devices has made the realization of these architectures practical. The original ENIAC and EDVAC machines were conceived to solve special mathematical problems that were far from today's concept of 'killer applications.' In a similar vein programmable hardware computation is being used today to solve unique mathematical problems. Our programmable hardware activity is focused on the research and development of novel computational systems based upon the reconfigurability of our programmable logic devices. We explore our programmable logic architectures and their implications for programmable hardware. One programmable hardware board implementation is detailed.
Reconfigurable Mobile System - Ground, sea and air applications
NASA Astrophysics Data System (ADS)
Lamonica, Gary L.; Sturges, James W.
1990-11-01
The Reconfigurable Mobile System (RMS) is a highly mobile data-processing unit for military users requiring real-time access to data gathered by airborne (and other) reconnaissance data. RMS combines high-performance computation and image processing workstations with resources for command/control/communications in a single, lightweight shelter. RMS is composed of off-the-shelf components, and is easily reconfigurable to land-vehicle or shipboard versions. Mission planning, which involves an airborne sensor platform's sensor coverage, considered aircraft/sensor capabilities in conjunction with weather, terrain, and threat scenarios. RMS's man-machine interface concept facilitates user familiarization and features iron-based function selection and windowing.
Design of a modular digital computer system
NASA Technical Reports Server (NTRS)
1980-01-01
A Central Control Element (CCE) module which controls the Automatically Reconfigurable Modular System (ARMS) and allows both redundant processing and multi-computing in the same computer with real time mode switching, is discussed. The same hardware is used for either reliability enhancement, speed enhancement, or for a combination of both.
Dynamic partial reconfiguration of logic controllers implemented in FPGAs
NASA Astrophysics Data System (ADS)
Bazydło, Grzegorz; Wiśniewski, Remigiusz
2016-09-01
Technological progress in recent years benefits in digital circuits containing millions of logic gates with the capability for reprogramming and reconfiguring. On the one hand it provides the unprecedented computational power, but on the other hand the modelled systems are becoming increasingly complex, hierarchical and concurrent. Therefore, abstract modelling supported by the Computer Aided Design tools becomes a very important task. Even the higher consumption of the basic electronic components seems to be acceptable because chip manufacturing costs tend to fall over the time. The paper presents a modelling approach for logic controllers with the use of Unified Modelling Language (UML). Thanks to the Model Driven Development approach, starting with a UML state machine model, through the construction of an intermediate Hierarchical Concurrent Finite State Machine model, a collection of Verilog files is created. The system description generated in hardware description language can be synthesized and implemented in reconfigurable devices, such as FPGAs. Modular specification of the prototyped controller permits for further dynamic partial reconfiguration of the prototyped system. The idea bases on the exchanging of the functionality of the already implemented controller without stopping of the FPGA device. It means, that a part (for example a single module) of the logic controller is replaced by other version (called context), while the rest of the system is still running. The method is illustrated by a practical example by an exemplary Home Area Network system.
Reconfigurable Software for Controlling Formation Flying
NASA Technical Reports Server (NTRS)
Mueller, Joseph B.
2006-01-01
Software for a system to control the trajectories of multiple spacecraft flying in formation is being developed to reflect underlying concepts of (1) a decentralized approach to guidance and control and (2) reconfigurability of the control system, including reconfigurability of the software and of control laws. The software is organized as a modular network of software tasks. The computational load for both determining relative trajectories and planning maneuvers is shared equally among all spacecraft in a cluster. The flexibility and robustness of the software are apparent in the fact that tasks can be added, removed, or replaced during flight. In a computational simulation of a representative formation-flying scenario, it was demonstrated that the following are among the services performed by the software: Uploading of commands from a ground station and distribution of the commands among the spacecraft, Autonomous initiation and reconfiguration of formations, Autonomous formation of teams through negotiations among the spacecraft, Working out details of high-level commands (e.g., shapes and sizes of geometrically complex formations), Implementation of a distributed guidance law providing autonomous optimization and assignment of target states, and Implementation of a decentralized, fuel-optimal, impulsive control law for planning maneuvers.
A reconfigurable computing platform for plume tracking with mobile sensor networks
NASA Astrophysics Data System (ADS)
Kim, Byung Hwa; D'Souza, Colin; Voyles, Richard M.; Hesch, Joel; Roumeliotis, Stergios I.
2006-05-01
Much work has been undertaken recently toward the development of low-power, high-performance sensor networks. There are many static remote sensing applications for which this is appropriate. The focus of this development effort is applications that require higher performance computation, but still involve severe constraints on power and other resources. Toward that end, we are developing a reconfigurable computing platform for miniature robotic and human-deployed sensor systems composed of several mobile nodes. The system provides static and dynamic reconfigurability for both software and hardware by the combination of CPU (central processing unit) and FPGA (field-programmable gate array) allowing on-the-fly reprogrammability. Static reconfigurability of the hardware manifests itself in the form of a "morphing bus" architecture that permits the modular connection of various sensors with no bus interface logic. Dynamic hardware reconfigurability provides for the reallocation of hardware resources at run-time as the mobile, resource-constrained nodes encounter unknown environmental conditions that render various sensors ineffective. This computing platform will be described in the context of work on chemical/biological/radiological plume tracking using a distributed team of mobile sensors. The objective for a dispersed team of ground and/or aerial autonomous vehicles (or hand-carried sensors) is to acquire measurements of the concentration of the chemical agent from optimal locations and estimate its source and spread. This requires appropriate distribution, coordination and communication within the team members across a potentially unknown environment. The key problem is to determine the parameters of the distribution of the harmful agent so as to use these values for determining its source and predicting its spread. The accuracy and convergence rate of this estimation process depend not only on the number and accuracy of the sensor measurements but also on their spatial distribution over time (the sampling strategy). For the safety of a human-deployed distribution of sensors, optimized trajectories to minimize human exposure are also of importance. The systems described in this paper are currently being developed. Parts of the system are already in existence and some results from these are described.
How to Extend the Capabilities of Space Systems for Long Duration Space Exploration Systems
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Waterman, Robert D.; KrishnaKumar, Kalmanje; Waterman, Susan J.
2005-01-01
For sustainable Exploration Missions the need exists to assemble systems-of-systems in space, on the Moon or on other planetary surfaces. To fulfill this need new and innovative system architecture is needed that can be satisfied with the present lift capability of existing rocket technology without the added cost of developing a new heavy lift vehicle. To enable ultra-long life missions with minimum redundancy and lighter mass the need exists to develop system soft,i,are and hardware reconfigurability, which enables increasing functionality and multiple use of launched assets while at the same time overcoming any components failures. Also the need exists to develop the ability to dynamically demate and reassemble individual system elements during a mission in order to work around failed hardware or changed mission requirements. Therefore to meet the goals of Space Exploration Missions in hiteroperability and Reconfigurability, many challenges must be addressed to transform the traditional static avionics architecture into architecture with dynamic capabilities. The objective of this paper is to introduce concepts associated with reconfigurable computer systems; review the various needs and challenges associated with reconfigurable avionics space systems; provide an operational example that illustrates the needs applicable to either the Crew Exploration Vehicle or a collection of "Habot like" mobile surface elements; summarize the approaches that address key challenges to acceptance of a Flexible, Intelligent, Modular and Affordable reconfigurable avionics space system.
An approximation formula for a class of fault-tolerant computers
NASA Technical Reports Server (NTRS)
White, A. L.
1986-01-01
An approximation formula is derived for the probability of failure for fault-tolerant process-control computers. These computers use redundancy and reconfiguration to achieve high reliability. Finite-state Markov models capture the dynamic behavior of component failure and system recovery, and the approximation formula permits an estimation of system reliability by an easy examination of the model.
2017-02-01
enable high scalability and reconfigurability for inter-CPU/Memory communications with an increased number of communication channels in frequency ...interconnect technology (MRFI) to enable high scalability and re-configurability for inter-CPU/Memory communications with an increased number of communication ...testing in the University of California, Los Angeles (UCLA) Center for High Frequency Electronics, and Dr. Afshin Momtaz at Broadcom Corporation for
Intelligent Control for Future Autonomous Distributed Sensor Systems
2007-03-26
recognized, the use of a pre-computed reconfiguration solution that fits the recognized scenario could allow reconfiguration to take place without...This data was loaded into the program developed to visualize the seabed and then the simulation was performed using frames to denote the target...to generate separate images for each eye. Users wear lightweight, inexpensive polarized eyeglasses and see a stereoscopic image. 35 Fig. 10
A polymorphic reconfigurable emulator for parallel simulation
NASA Technical Reports Server (NTRS)
Parrish, E. A., Jr.; Mcvey, E. S.; Cook, G.
1980-01-01
Microprocessor and arithmetic support chip technology was applied to the design of a reconfigurable emulator for real time flight simulation. The system developed consists of master control system to perform all man machine interactions and to configure the hardware to emulate a given aircraft, and numerous slave compute modules (SCM) which comprise the parallel computational units. It is shown that all parts of the state equations can be worked on simultaneously but that the algebraic equations cannot (unless they are slowly varying). Attempts to obtain algorithms that will allow parellel updates are reported. The word length and step size to be used in the SCM's is determined and the architecture of the hardware and software is described.
Personal pervasive environments: practice and experience.
Ballesteros, Francisco J; Guardiola, Gorka; Soriano, Enrique
2012-01-01
In this paper we present our experience designing and developing two different systems to enable personal pervasive computing environments, Plan B and the Octopus. These systems were fully implemented and have been used on a daily basis for years. Both are based on synthetic (virtual) file system interfaces and provide mechanisms to adapt to changes in the context and reconfigure the system to support pervasive applications. We also present the main differences between them, focusing on architectural and reconfiguration aspects. Finally, we analyze the pitfalls and successes of both systems and review the lessons we learned while designing, developing, and using them.
Personal Pervasive Environments: Practice and Experience
Ballesteros, Francisco J.; Guardiola, Gorka; Soriano, Enrique
2012-01-01
In this paper we present our experience designing and developing two different systems to enable personal pervasive computing environments, Plan B and the Octopus. These systems were fully implemented and have been used on a daily basis for years. Both are based on synthetic (virtual) file system interfaces and provide mechanisms to adapt to changes in the context and reconfigure the system to support pervasive applications. We also present the main differences between them, focusing on architectural and reconfiguration aspects. Finally, we analyze the pitfalls and successes of both systems and review the lessons we learned while designing, developing, and using them. PMID:22969340
Reconfigurability of behavioural specifications for manufacturing systems
NASA Astrophysics Data System (ADS)
Schmidt, Klaus Werner
2017-12-01
Reconfigurable manufacturing systems (RMS) support flexibility in the product variety and the configuration of the manufacturing system itself in order to enable quick adjustments to new products and production requirements. As a consequence, an essential feature of RMS is their ability to rapidly modify the control strategy during run-time. In this paper, the particular problem of changing the specified operation of a RMS, whose logical behaviour is modelled as a finite state automaton, is addressed. The notion of reconfigurability of specifications (RoS) is introduced and it is shown that the stated reconfiguration problem can be formulated as a controlled language convergence problem. In addition, algorithms for the verification of RoS and the construction of a reconfiguration supervisor are proposed. The supervisor is realised in a modular way which facilitates the extension by new configurations. Finally, it is shown that a supremal nonblocking and controllable strict subautomaton of the plant automaton that fulfils RoS exists in case RoS is violated for the plant automaton itself and an algorithm for the computation of this strict subautomaton is presented. The developed concepts and results are illustrated by a manufacturing cell example.
Materials challenges for repeatable RF wireless device reconfiguration with microfluidic channels
NASA Astrophysics Data System (ADS)
Griffin, Anthony S.; Sottos, Nancy R.; White, Scott R.
2018-03-01
Recently, adaptive wireless devices have utilized displacement of EGaIn within microchannels as an electrical switching mechanism to enable reconfigurable electronics. Device reconfiguration using EGaIn in microchannels overcomes many challenges encountered by more traditional reconfiguration mechanisms such as diodes and microelectromechanical systems (MEMS). Reconfiguration using EGaIn is severely limited by undesired permanent shorting due to retention of the liquid in microchannels caused by wetting and rapid oxide skin formation. Here, we investigate the conditions which prevent repeatable electrical switching using EGaIn in microchannels. Initial contact angle tests of EGaIn on epoxy surfaces demonstrate the wettability of EGaIn on flat surfaces. SEM cross-sections of microchannels reveal adhesion of EGaIn residue to channel walls. Micro-computed tomography (microCT) scans of provide volumetric measurements of EGaIn remaining inside channels after flow cycling. Non-wetting coatings are proposed as materials based strategy to overcome these issues in future work.
A Discussion of Using a Reconfigurable Processor to Implement the Discrete Fourier Transform
NASA Technical Reports Server (NTRS)
White, Michael J.
2004-01-01
This paper presents the design and implementation of the Discrete Fourier Transform (DFT) algorithm on a reconfigurable processor system. While highly applicable to many engineering problems, the DFT is an extremely computationally intensive algorithm. Consequently, the eventual goal of this work is to enhance the execution of a floating-point precision DFT algorithm by off loading the algorithm from the computing system. This computing system, within the context of this research, is a typical high performance desktop computer with an may of field programmable gate arrays (FPGAs). FPGAs are hardware devices that are configured by software to execute an algorithm. If it is desired to change the algorithm, the software is changed to reflect the modification, then download to the FPGA, which is then itself modified. This paper will discuss methodology for developing the DFT algorithm to be implemented on the FPGA. We will discuss the algorithm, the FPGA code effort, and the results to date.
Reconfigurable Processing Module
NASA Technical Reports Server (NTRS)
Somervill, Kevin; Hodson, Robert; Jones, Robert; Williams, John
2005-01-01
To accommodate a wide spectrum of applications and technologies, NASA s Exploration System's Missions Directorate has called for reconfigurable and modular technologies to support future missions to the moon and Mars. In response, Langley Research Center is leading a program entitled Reconfigurable Scaleable Computing (RSC) that is centered on the development of FPGA-based computing resources in a stackable form factor. This paper details the architecture and implementation of the Reconfigurable Processing Module (RPM), which is the key element of the RSC system. The RPM is an FPGA-based, space-qualified printed circuit assembly leveraging terrestrial/commercial design standards into the space applications domain. The form factor is similar to, and backwards compatible with, the PCI-104 standard utilizing only the PCI interface. The size is expanded to accommodate the required functionality while still better than 30% smaller than a 3U CompactPCI(TradeMark)card and without the overhead of the backplane. The architecture is built around two FPGA devices, one hosting PCI and memory interfaces, and another hosting mission application resources; both of which are connected with a high-speed data bus. The PCI interface FPGA provides access via the PCI bus to onboard SDRAM, flash PROM, and the application resources; both configuration management as well as runtime interaction. The reconfigurable FPGA, referred to as the Application FPGA - or simply "the application" - is a radiation-tolerant Xilinx Virtex-4 FX60 hosting custom application specific logic or soft microprocessor IP. The RPM implements various SEE mitigation techniques including TMR, EDAC, and configuration scrubbing of the reconfigurable FPGA. Prototype hardware and formal modeling techniques are used to explore the performability trade space. These models provide a novel way to calculate quality-of-service performance measures while simultaneously considering fault-related behavior due to SEE soft errors.
The Gain of Resource Delegation in Distributed Computing Environments
NASA Astrophysics Data System (ADS)
Fölling, Alexander; Grimme, Christian; Lepping, Joachim; Papaspyrou, Alexander
In this paper, we address job scheduling in Distributed Computing Infrastructures, that is a loosely coupled network of autonomous acting High Performance Computing systems. In contrast to the common approach of mutual workload exchange, we consider the more intuitive operator's viewpoint of load-dependent resource reconfiguration. In case of a site's over-utilization, the scheduling system is able to lease resources from other sites to keep up service quality for its local user community. Contrary, the granting of idle resources can increase utilization in times of low local workload and thus ensure higher efficiency. The evaluation considers real workload data and is done with respect to common service quality indicators. For two simple resource exchange policies and three basic setups we show the possible gain of this approach and analyze the dynamics in workload-adaptive reconfiguration behavior.
NASA Technical Reports Server (NTRS)
Powell, Wesley; Dabney, Philip; Hicks, Edward; Pinchinat, Maxime; Day, John H. (Technical Monitor)
2002-01-01
The Multi-KiloHertz Micro-Laser Altimeter (MMLA) is an aircraft based instrument developed by NASA Goddard Space Flight Center with several potential spaceflight applications. This presentation describes how reconfigurable computing technology was employed to perform MMLA signal extraction in real-time under realistic operating constraints. The MMLA is a "single-photon-counting" airborne laser altimeter that is used to measure land surface features such as topography and vegetation canopy height. This instrument has to date flown a number of times aboard the NASA P3 aircraft acquiring data at a number of sites in the Mid-Atlantic region. This instrument pulses a relatively low-powered laser at a very high rate (10 kHz) and then measures the time-of-flight of discrete returns from the target surface. The instrument then bins these measurements into a two-dimensional array (vertical height vs. horizontal ground track) and selects the most likely signal path through the array. Return data that does not correspond to the selected signal path are classified as noise returns and are then discarded. The MMLA signal extraction algorithm is very compute intensive in that a score must be computed for every possible path through the two dimensional array in order to select the most likely signal path. Given a typical array size with 50 x 6, up to 33 arrays must be processed per second. And for each of these arrays, roughly 12,000 individual paths must be scored. Furthermore, the number of paths increases exponentially with the horizontal size of the array, and linearly with the vertical size. Yet, increasing the horizontal and vertical sizes of the array offer science advantages such as improved range, resolution, and noise rejection. Due to the volume of return data and the compute intensive signal extraction algorithm, the existing PC-based MMLA data system has been unable to perform signal extraction in real-time unless the array is limited in size to one column, This limits the ability of the MMLA to operate in environments with sparse signal returns and a high number of noise return. However, under an IR&D project, an FPGA-based, reconfigurable computing data system has been developed that has been demonstrated to perform real-time signal extraction under realistic operating constraints. This reconfigurable data system is based on the commercially available Firebird Board from Annapolis Microsystems. This PCI board consists of a Xilinx Virtex 2000E FPGA along with 36 MB of SRAM arranged in five separately addressable banks. This board is housed in a rackmount PC with dual 850MHz Pentium processors running the Windows 2000 operating system. This data system performs all signal extraction in hardware on the Firebird, but also runs the existing "software based" signal extraction in tandem for comparison purposes. Using a relatively small amount of the Virtex XCV2000E resources, the reconfigurable data system has demonstrated to improve performance improvement over the existing software based data system by an order of magnitude. Performance could be further improved by employing parallelism. Ground testing and a preliminary engineering test flight aboard the NASA P3 has been performed, during which the reconfigurable data system has been demonstrated to match the results of the existing data system.
Optimum spaceborne computer system design by simulation
NASA Technical Reports Server (NTRS)
Williams, T.; Kerner, H.; Weatherbee, J. E.; Taylor, D. S.; Hodges, B.
1973-01-01
A deterministic simulator is described which models the Automatically Reconfigurable Modular Multiprocessor System (ARMMS), a candidate computer system for future manned and unmanned space missions. Its use as a tool to study and determine the minimum computer system configuration necessary to satisfy the on-board computational requirements of a typical mission is presented. The paper describes how the computer system configuration is determined in order to satisfy the data processing demand of the various shuttle booster subsytems. The configuration which is developed as a result of studies with the simulator is optimal with respect to the efficient use of computer system resources.
An Embedded Reconfigurable Logic Module
NASA Technical Reports Server (NTRS)
Tucker, Jerry H.; Klenke, Robert H.; Shams, Qamar A. (Technical Monitor)
2002-01-01
A Miniature Embedded Reconfigurable Computer and Logic (MERCAL) module has been developed and verified. MERCAL was designed to be a general-purpose, universal module that that can provide significant hardware and software resources to meet the requirements of many of today's complex embedded applications. This is accomplished in the MERCAL module by combining a sub credit card size PC in a DIMM form factor with a XILINX Spartan I1 FPGA. The PC has the ability to download program files to the FPGA to configure it for different hardware functions and to transfer data to and from the FPGA via the PC's ISA bus during run time. The MERCAL module combines, in a compact package, the computational power of a 133 MHz PC with up to 150,000 gate equivalents of digital logic that can be reconfigured by software. The general architecture and functionality of the MERCAL hardware and system software are described.
Advanced processing for high-bandwidth sensor systems
NASA Astrophysics Data System (ADS)
Szymanski, John J.; Blain, Phil C.; Bloch, Jeffrey J.; Brislawn, Christopher M.; Brumby, Steven P.; Cafferty, Maureen M.; Dunham, Mark E.; Frigo, Janette R.; Gokhale, Maya; Harvey, Neal R.; Kenyon, Garrett; Kim, Won-Ha; Layne, J.; Lavenier, Dominique D.; McCabe, Kevin P.; Mitchell, Melanie; Moore, Kurt R.; Perkins, Simon J.; Porter, Reid B.; Robinson, S.; Salazar, Alfonso; Theiler, James P.; Young, Aaron C.
2000-11-01
Compute performance and algorithm design are key problems of image processing and scientific computing in general. For example, imaging spectrometers are capable of producing data in hundreds of spectral bands with millions of pixels. These data sets show great promise for remote sensing applications, but require new and computationally intensive processing. The goal of the Deployable Adaptive Processing Systems (DAPS) project at Los Alamos National Laboratory is to develop advanced processing hardware and algorithms for high-bandwidth sensor applications. The project has produced electronics for processing multi- and hyper-spectral sensor data, as well as LIDAR data, while employing processing elements using a variety of technologies. The project team is currently working on reconfigurable computing technology and advanced feature extraction techniques, with an emphasis on their application to image and RF signal processing. This paper presents reconfigurable computing technology and advanced feature extraction algorithm work and their application to multi- and hyperspectral image processing. Related projects on genetic algorithms as applied to image processing will be introduced, as will the collaboration between the DAPS project and the DARPA Adaptive Computing Systems program. Further details are presented in other talks during this conference and in other conferences taking place during this symposium.
Multi-mode sensor processing on a dynamically reconfigurable massively parallel processor array
NASA Astrophysics Data System (ADS)
Chen, Paul; Butts, Mike; Budlong, Brad; Wasson, Paul
2008-04-01
This paper introduces a novel computing architecture that can be reconfigured in real time to adapt on demand to multi-mode sensor platforms' dynamic computational and functional requirements. This 1 teraOPS reconfigurable Massively Parallel Processor Array (MPPA) has 336 32-bit processors. The programmable 32-bit communication fabric provides streamlined inter-processor connections with deterministically high performance. Software programmability, scalability, ease of use, and fast reconfiguration time (ranging from microseconds to milliseconds) are the most significant advantages over FPGAs and DSPs. This paper introduces the MPPA architecture, its programming model, and methods of reconfigurability. An MPPA platform for reconfigurable computing is based on a structural object programming model. Objects are software programs running concurrently on hundreds of 32-bit RISC processors and memories. They exchange data and control through a network of self-synchronizing channels. A common application design pattern on this platform, called a work farm, is a parallel set of worker objects, with one input and one output stream. Statically configured work farms with homogeneous and heterogeneous sets of workers have been used in video compression and decompression, network processing, and graphics applications.
Reconfigurable optical interconnections via dynamic computer-generated holograms
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor); Zhou, Shaomin (Inventor)
1994-01-01
A system is proposed for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for largescale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.
Rodríguez, Alfonso; Valverde, Juan; Portilla, Jorge; Otero, Andrés; Riesgo, Teresa; de la Torre, Eduardo
2018-06-08
Cyber-Physical Systems are experiencing a paradigm shift in which processing has been relocated to the distributed sensing layer and is no longer performed in a centralized manner. This approach, usually referred to as Edge Computing, demands the use of hardware platforms that are able to manage the steadily increasing requirements in computing performance, while keeping energy efficiency and the adaptability imposed by the interaction with the physical world. In this context, SRAM-based FPGAs and their inherent run-time reconfigurability, when coupled with smart power management strategies, are a suitable solution. However, they usually fail in user accessibility and ease of development. In this paper, an integrated framework to develop FPGA-based high-performance embedded systems for Edge Computing in Cyber-Physical Systems is presented. This framework provides a hardware-based processing architecture, an automated toolchain, and a runtime to transparently generate and manage reconfigurable systems from high-level system descriptions without additional user intervention. Moreover, it provides users with support for dynamically adapting the available computing resources to switch the working point of the architecture in a solution space defined by computing performance, energy consumption and fault tolerance. Results show that it is indeed possible to explore this solution space at run time and prove that the proposed framework is a competitive alternative to software-based edge computing platforms, being able to provide not only faster solutions, but also higher energy efficiency for computing-intensive algorithms with significant levels of data-level parallelism.
A novel optogenetically tunable frequency modulating oscillator
2018-01-01
Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour. PMID:29389936
A novel optogenetically tunable frequency modulating oscillator.
Mahajan, Tarun; Rai, Kshitij
2018-01-01
Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.
Reconfigurable Computing As an Enabling Technology for Single-Photon-Counting Laser Altimetry
NASA Technical Reports Server (NTRS)
Powell, Wesley; Hicks, Edward; Pinchinat, Maxime; Dabney, Philip; McGarry, Jan; Murray, Paul
2003-01-01
Single-photon-counting laser altimetry is a new measurement technique offering significant advantages in vertical resolution, reducing instrument size, mass, and power, and reducing laser complexity as compared to analog or threshold detection laser altimetry techniques. However, these improvements come at the cost of a dramatically increased requirement for onboard real-time data processing. Reconfigurable computing has been shown to offer considerable performance advantages in performing this processing. These advantages have been demonstrated on the Multi-KiloHertz Micro-Laser Altimeter (MMLA), an aircraft based single-photon-counting laser altimeter developed by NASA Goddard Space Flight Center with several potential spaceflight applications. This paper describes how reconfigurable computing technology was employed to perform MMLA data processing in real-time under realistic operating constraints, along with the results observed. This paper also expands on these prior results to identify concepts for using reconfigurable computing to enable spaceflight single-photon-counting laser altimeter instruments.
Reconfigurable Computing for Computational Science: A New Focus in High Performance Computing
2006-11-01
in the past decade. Researchers are regularly employing the power of large computing systems and parallel processing to tackle larger and more...complex problems in all of the physical sciences. For the past decade or so, most of this growth in computing power has been “free” with increased...the scientific computing community as a means to continued growth in computing capability. This paper offers a glimpse of the hardware and
Survey of reconfigurable architectures for multimedia applications
NASA Astrophysics Data System (ADS)
Cervero, T.; López, S.; Callicó, G. M.; Tobajas, F.; de Armas, V.; López, J.; Sarmiento, R.
2009-05-01
In a short period of time, the multimedia sector has quickly progressed trying to overcome the exigencies of the customers in terms of transfer speeds, storage memory, image quality, and functionalities. In order to cope with this stringent situation, different hardware devices have been developed as possible choices. Despite of the fact that not every device is apt for implementing the high computational demands associated to multimedia applications; reconfigurable architectures appear as ideal candidates to achieve these necessities. As a direct consequence, worldwide universities and industries have incremented their research activity into this area, generating an important know-how base. In order to sort all the information generated about this issue, this paper reviews the most recent reconfigurable architectures for multimedia applications. As a result, this paper establishes the benefits and drawbacks of the different dynamically reconfigurable architectures for multimedia applications according to their system-level design.
Reconfigurable intelligent sensors for health monitoring: a case study of pulse oximeter sensor.
Jovanov, E; Milenkovic, A; Basham, S; Clark, D; Kelley, D
2004-01-01
Design of low-cost, miniature, lightweight, ultra low-power, intelligent sensors capable of customization and seamless integration into a body area network for health monitoring applications presents one of the most challenging tasks for system designers. To answer this challenge we propose a reconfigurable intelligent sensor platform featuring a low-power microcontroller, a low-power programmable logic device, a communication interface, and a signal conditioning circuit. The proposed solution promises a cost-effective, flexible platform that allows easy customization, run-time reconfiguration, and energy-efficient computation and communication. The development of a common platform for multiple physical sensors and a repository of both software procedures and soft intellectual property cores for hardware acceleration will increase reuse and alleviate costs of transition to a new generation of sensors. As a case study, we present an implementation of a reconfigurable pulse oximeter sensor.
Closed-form solution of decomposable stochastic models
NASA Technical Reports Server (NTRS)
Sjogren, Jon A.
1990-01-01
Markov and semi-Markov processes are increasingly being used in the modeling of complex reconfigurable systems (fault tolerant computers). The estimation of the reliability (or some measure of performance) of the system reduces to solving the process for its state probabilities. Such a model may exhibit numerous states and complicated transition distributions, contributing to an expensive and numerically delicate solution procedure. Thus, when a system exhibits a decomposition property, either structurally (autonomous subsystems), or behaviorally (component failure versus reconfiguration), it is desirable to exploit this decomposition in the reliability calculation. In interesting cases there can be failure states which arise from non-failure states of the subsystems. Equations are presented which allow the computation of failure probabilities of the total (combined) model without requiring a complete solution of the combined model. This material is presented within the context of closed-form functional representation of probabilities as utilized in the Symbolic Hierarchical Automated Reliability and Performance Evaluator (SHARPE) tool. The techniques adopted enable one to compute such probability functions for a much wider class of systems at a reduced computational cost. Several examples show how the method is used, especially in enhancing the versatility of the SHARPE tool.
A wideband software reconfigurable modem
NASA Astrophysics Data System (ADS)
Turner, J. H., Jr.; Vickers, H.
A wideband modem is described which provides signal processing capability for four Lx-band signals employing QPSK, MSK and PPM waveforms and employs a software reconfigurable architecture for maximum system flexibility and graceful degradation. The current processor uses a 2901 and two 8086 microprocessors per channel and performs acquisition, tracking, and data demodulation for JITDS, GPS, IFF and TACAN systems. The next generation processor will be implemented using a VHSIC chip set employing a programmable complex array vector processor module, a GP computer module, customized gate array modules, and a digital array correlator. This integrated processor has application to a wide number of diverse system waveforms, and will bring the benefits of VHSIC technology insertion into avionic antijam communications systems.
Spacecube V2.0 Micro Single Board Computer
NASA Technical Reports Server (NTRS)
Petrick, David J. (Inventor); Geist, Alessandro (Inventor); Lin, Michael R. (Inventor); Crum, Gary R. (Inventor)
2017-01-01
A single board computer system radiation hardened for space flight includes a printed circuit board having a top side and bottom side; a reconfigurable field programmable gate array (FPGA) processor device disposed on the top side; a connector disposed on the top side; a plurality of peripheral components mounted on the bottom side; and wherein a size of the single board computer system is not greater than approximately 7 cm.times.7 cm.
Reconfigurable Optical Interconnections Via Dynamic Computer-Generated Holograms
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor); Zhou, Shao-Min (Inventor)
1996-01-01
A system is presented for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for large-scale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.
Radiation Tolerant, FPGA-Based SmallSat Computer System
NASA Technical Reports Server (NTRS)
LaMeres, Brock J.; Crum, Gary A.; Martinez, Andres; Petro, Andrew
2015-01-01
The Radiation Tolerant, FPGA-based SmallSat Computer System (RadSat) computing platform exploits a commercial off-the-shelf (COTS) Field Programmable Gate Array (FPGA) with real-time partial reconfiguration to provide increased performance, power efficiency and radiation tolerance at a fraction of the cost of existing radiation hardened computing solutions. This technology is ideal for small spacecraft that require state-of-the-art on-board processing in harsh radiation environments but where using radiation hardened processors is cost prohibitive.
Framework for architecture-independent run-time reconfigurable applications
NASA Astrophysics Data System (ADS)
Lehn, David I.; Hudson, Rhett D.; Athanas, Peter M.
2000-10-01
Configurable Computing Machines (CCMs) have emerged as a technology with the computational benefits of custom ASICs as well as the flexibility and reconfigurability of general-purpose microprocessors. Significant effort from the research community has focused on techniques to move this reconfigurability from a rapid application development tool to a run-time tool. This requires the ability to change the hardware design while the application is executing and is known as Run-Time Reconfiguration (RTR). Widespread acceptance of run-time reconfigurable custom computing depends upon the existence of high-level automated design tools. Such tools must reduce the designers effort to port applications between different platforms as the architecture, hardware, and software evolves. A Java implementation of a high-level application framework, called Janus, is presented here. In this environment, developers create Java classes that describe the structural behavior of an application. The framework allows hardware and software modules to be freely mixed and interchanged. A compilation phase of the development process analyzes the structure of the application and adapts it to the target platform. Janus is capable of structuring the run-time behavior of an application to take advantage of the memory and computational resources available.
FPGA platform for prototyping and evaluation of neural network automotive applications
NASA Technical Reports Server (NTRS)
Aranki, N.; Tawel, R.
2002-01-01
In this paper we present an FPGA based reconfigurable computing platform for prototyping and evaluation of advanced neural network based applications for control and diagnostics in an automotive sub-systems.
De La Flor, Grace; Ojaghi, Mobin; Martínez, Ignacio Lamata; Jirotka, Marina; Williams, Martin S; Blakeborough, Anthony
2010-09-13
When transitioning local laboratory practices into distributed environments, the interdependent relationship between experimental procedure and the technologies used to execute experiments becomes highly visible and a focal point for system requirements. We present an analysis of ways in which this reciprocal relationship is reconfiguring laboratory practices in earthquake engineering as a new computing infrastructure is embedded within three laboratories in order to facilitate the execution of shared experiments across geographically distributed sites. The system has been developed as part of the UK Network for Earthquake Engineering Simulation e-Research project, which links together three earthquake engineering laboratories at the universities of Bristol, Cambridge and Oxford. We consider the ways in which researchers have successfully adapted their local laboratory practices through the modification of experimental procedure so that they may meet the challenges of coordinating distributed earthquake experiments.
Designing Secure Systems on Reconfigurable Hardware
2008-07-01
Jeff White Department of Electrical and Computer Engineering University of California, Santa Barbara Santa Barbara, CA 93106 {nick callegari,valamehr...ece.ucsb.edu, jdwhite08@engineering.ucsb.edu Ryan Kastner Department of Computer Science and Engineering University of California, San Diego La Jolla...Transactions on Design Automation of Electronic Systems (TODAES), Vol. 13, No. 3, July 2008, 1-24 14. ABSTRACT see report 15. SUBJECT TERMS 16
Optimum spaceborne computer system design by simulation
NASA Technical Reports Server (NTRS)
Williams, T.; Weatherbee, J. E.; Taylor, D. S.
1972-01-01
A deterministic digital simulation model is described which models the Automatically Reconfigurable Modular Multiprocessor System (ARMMS), a candidate computer system for future manned and unmanned space missions. Use of the model as a tool in configuring a minimum computer system for a typical mission is demonstrated. The configuration which is developed as a result of studies with the simulator is optimal with respect to the efficient use of computer system resources, i.e., the configuration derived is a minimal one. Other considerations such as increased reliability through the use of standby spares would be taken into account in the definition of a practical system for a given mission.
Advanced Avionics and Processor Systems for a Flexible Space Exploration Architecture
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Adams, James H.; Smith, Leigh M.; Johnson, Michael A.; Cressler, John D.
2010-01-01
The Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to develop advanced avionic and processor technologies anticipated to be used by NASA s currently evolving space exploration architectures. The AAPS project is a part of the Exploration Technology Development Program, which funds an entire suite of technologies that are aimed at enabling NASA s ability to explore beyond low earth orbit. NASA s Marshall Space Flight Center (MSFC) manages the AAPS project. AAPS uses a broad-scoped approach to developing avionic and processor systems. Investment areas include advanced electronic designs and technologies capable of providing environmental hardness, reconfigurable computing techniques, software tools for radiation effects assessment, and radiation environment modeling tools. Near-term emphasis within the multiple AAPS tasks focuses on developing prototype components using semiconductor processes and materials (such as Silicon-Germanium (SiGe)) to enhance a device s tolerance to radiation events and low temperature environments. As the SiGe technology will culminate in a delivered prototype this fiscal year, the project emphasis shifts its focus to developing low-power, high efficiency total processor hardening techniques. In addition to processor development, the project endeavors to demonstrate techniques applicable to reconfigurable computing and partially reconfigurable Field Programmable Gate Arrays (FPGAs). This capability enables avionic architectures the ability to develop FPGA-based, radiation tolerant processor boards that can serve in multiple physical locations throughout the spacecraft and perform multiple functions during the course of the mission. The individual tasks that comprise AAPS are diverse, yet united in the common endeavor to develop electronics capable of operating within the harsh environment of space. Specifically, the AAPS tasks for the Federal fiscal year of 2010 are: Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments, Modeling of Radiation Effects on Electronics, Radiation Hardened High Performance Processors (HPP), and and Reconfigurable Computing.
NASA Astrophysics Data System (ADS)
Liu, Lintao; Gao, Yuhan; Deng, Jun
2017-11-01
This work presents a reconfigurable mixed-signal system-on-chip (SoC), which integrates switched-capacitor-based field programmable analog arrays (FPAA), analog-to-digital converter (ADC), digital-to-analog converter, digital down converter , digital up converter, 32-bit reduced instruction-set computer central processing unit (CPU) and other digital IPs on a single chip with 0.18 μm CMOS technology. The FPAA intellectual property could be reconfigured as different function circuits, such as gain amplifier, divider, sine generator, and so on. This single-chip integrated mixed-signal system is a complete modern signal processing system, occupying a die area of 7 × 8 mm 2 and consuming 719 mW with a clock frequency of 150 MHz for CPU and 200 MHz for ADC/DAC. This SoC chip can help customers to shorten design cycles, save board area, reduce the system power consumption and depress the system integration risk, which would afford a big prospect of application for wireless communication. Project supported by the National High Technology and Development Program of China (No. 2012AA012303).
Multinode reconfigurable pipeline computer
NASA Technical Reports Server (NTRS)
Nosenchuck, Daniel M. (Inventor); Littman, Michael G. (Inventor)
1989-01-01
A multinode parallel-processing computer is made up of a plurality of innerconnected, large capacity nodes each including a reconfigurable pipeline of functional units such as Integer Arithmetic Logic Processors, Floating Point Arithmetic Processors, Special Purpose Processors, etc. The reconfigurable pipeline of each node is connected to a multiplane memory by a Memory-ALU switch NETwork (MASNET). The reconfigurable pipeline includes three (3) basic substructures formed from functional units which have been found to be sufficient to perform the bulk of all calculations. The MASNET controls the flow of signals from the memory planes to the reconfigurable pipeline and vice versa. the nodes are connectable together by an internode data router (hyperspace router) so as to form a hypercube configuration. The capability of the nodes to conditionally configure the pipeline at each tick of the clock, without requiring a pipeline flush, permits many powerful algorithms to be implemented directly.
Proteus: a reconfigurable computational network for computer vision
NASA Astrophysics Data System (ADS)
Haralick, Robert M.; Somani, Arun K.; Wittenbrink, Craig M.; Johnson, Robert; Cooper, Kenneth; Shapiro, Linda G.; Phillips, Ihsin T.; Hwang, Jenq N.; Cheung, William; Yao, Yung H.; Chen, Chung-Ho; Yang, Larry; Daugherty, Brian; Lorbeski, Bob; Loving, Kent; Miller, Tom; Parkins, Larye; Soos, Steven L.
1992-04-01
The Proteus architecture is a highly parallel MIMD, multiple instruction, multiple-data machine, optimized for large granularity tasks such as machine vision and image processing The system can achieve 20 Giga-flops (80 Giga-flops peak). It accepts data via multiple serial links at a rate of up to 640 megabytes/second. The system employs a hierarchical reconfigurable interconnection network with the highest level being a circuit switched Enhanced Hypercube serial interconnection network for internal data transfers. The system is designed to use 256 to 1,024 RISC processors. The processors use one megabyte external Read/Write Allocating Caches for reduced multiprocessor contention. The system detects, locates, and replaces faulty subsystems using redundant hardware to facilitate fault tolerance. The parallelism is directly controllable through an advanced software system for partitioning, scheduling, and development. System software includes a translator for the INSIGHT language, a parallel debugger, low and high level simulators, and a message passing system for all control needs. Image processing application software includes a variety of point operators neighborhood, operators, convolution, and the mathematical morphology operations of binary and gray scale dilation, erosion, opening, and closing.
Impact of coverage on the reliability of a fault tolerant computer
NASA Technical Reports Server (NTRS)
Bavuso, S. J.
1975-01-01
A mathematical reliability model is established for a reconfigurable fault tolerant avionic computer system utilizing state-of-the-art computers. System reliability is studied in light of the coverage probabilities associated with the first and second independent hardware failures. Coverage models are presented as a function of detection, isolation, and recovery probabilities. Upper and lower bonds are established for the coverage probabilities and the method for computing values for the coverage probabilities is investigated. Further, an architectural variation is proposed which is shown to enhance coverage.
Characterization of robotics parallel algorithms and mapping onto a reconfigurable SIMD machine
NASA Technical Reports Server (NTRS)
Lee, C. S. G.; Lin, C. T.
1989-01-01
The kinematics, dynamics, Jacobian, and their corresponding inverse computations are six essential problems in the control of robot manipulators. Efficient parallel algorithms for these computations are discussed and analyzed. Their characteristics are identified and a scheme on the mapping of these algorithms to a reconfigurable parallel architecture is presented. Based on the characteristics including type of parallelism, degree of parallelism, uniformity of the operations, fundamental operations, data dependencies, and communication requirement, it is shown that most of the algorithms for robotic computations possess highly regular properties and some common structures, especially the linear recursive structure. Moreover, they are well-suited to be implemented on a single-instruction-stream multiple-data-stream (SIMD) computer with reconfigurable interconnection network. The model of a reconfigurable dual network SIMD machine with internal direct feedback is introduced. A systematic procedure internal direct feedback is introduced. A systematic procedure to map these computations to the proposed machine is presented. A new scheduling problem for SIMD machines is investigated and a heuristic algorithm, called neighborhood scheduling, that reorders the processing sequence of subtasks to reduce the communication time is described. Mapping results of a benchmark algorithm are illustrated and discussed.
Spacecube: A Family of Reconfigurable Hybrid On-Board Science Data Processors
NASA Technical Reports Server (NTRS)
Flatley, Thomas P.
2015-01-01
SpaceCube is a family of Field Programmable Gate Array (FPGA) based on-board science data processing systems developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. SpaceCube is based on the Xilinx Virtex family of FPGAs, which include processor, FPGA logic and digital signal processing (DSP) resources. These processing elements are leveraged to produce a hybrid science data processing platform that accelerates the execution of algorithms by distributing computational functions to the most suitable elements. This approach enables the implementation of complex on-board functions that were previously limited to ground based systems, such as on-board product generation, data reduction, calibration, classification, eventfeature detection, data mining and real-time autonomous operations. The system is fully reconfigurable in flight, including data parameters, software and FPGA logic, through either ground commanding or autonomously in response to detected eventsfeatures in the instrument data stream.
Parallelized reliability estimation of reconfigurable computer networks
NASA Technical Reports Server (NTRS)
Nicol, David M.; Das, Subhendu; Palumbo, Dan
1990-01-01
A parallelized system, ASSURE, for computing the reliability of embedded avionics flight control systems which are able to reconfigure themselves in the event of failure is described. ASSURE accepts a grammar that describes a reliability semi-Markov state-space. From this it creates a parallel program that simultaneously generates and analyzes the state-space, placing upper and lower bounds on the probability of system failure. ASSURE is implemented on a 32-node Intel iPSC/860, and has achieved high processor efficiencies on real problems. Through a combination of improved algorithms, exploitation of parallelism, and use of an advanced microprocessor architecture, ASSURE has reduced the execution time on substantial problems by a factor of one thousand over previous workstation implementations. Furthermore, ASSURE's parallel execution rate on the iPSC/860 is an order of magnitude faster than its serial execution rate on a Cray-2 supercomputer. While dynamic load balancing is necessary for ASSURE's good performance, it is needed only infrequently; the particular method of load balancing used does not substantially affect performance.
NASA Astrophysics Data System (ADS)
Nasaruddin; Tsujioka, Tetsuo
An optical CDMA (OCDMA) system is a flexible technology for future broadband multiple access networks. A secure OCDMA network in broadband optical access technologies is also becoming an issue of great importance. In this paper, we propose novel reconfigurable wavelength-time (W-T) optical codes that lead to secure transmission in OCDMA networks. The proposed W-T optical codes are constructed by using quasigroups (QGs) for wavelength hopping and one-dimensional optical orthogonal codes (OOCs) for time spreading; we call them QGs/OOCs. Both QGs and OOCs are randomly generated by a computer search to ensure that an eavesdropper could not improve its interception performance by making use of the coding structure. Then, the proposed reconfigurable QGs/OOCs can provide more codewords, and many different code set patterns, which differ in both wavelength and time positions for given code parameters. Moreover, the bit error probability of the proposed codes is analyzed numerically. To realize the proposed codes, a secure system is proposed by employing reconfigurable encoders/decoders based on array waveguide gratings (AWGs), which allow the users to change their codeword patterns to protect against eavesdropping. Finally, the probability of breaking a certain codeword in the proposed system is evaluated analytically. The results show that the proposed codes and system can provide a large codeword pattern, and decrease the probability of breaking a certain codeword, to enhance OCDMA network security.
Shaping Crystal-Crystal Phase Transitions
NASA Astrophysics Data System (ADS)
Du, Xiyu; van Anders, Greg; Dshemuchadse, Julia; Glotzer, Sharon
Previous computational and experimental studies have shown self-assembled structure depends strongly on building block shape. New synthesis techniques have led to building blocks with reconfigurable shape and it has been demonstrated that building block reconfiguration can induce bulk structural reconfiguration. However, we do not understand systematically how this transition happens as a function of building block shape. Using a recently developed ``digital alchemy'' framework, we study the thermodynamics of shape-driven crystal-crystal transitions. We find examples of shape-driven bulk reconfiguration that are accompanied by first-order phase transitions, and bulk reconfiguration that occurs without any thermodynamic phase transition. Our results suggest that for well-chosen shapes and structures, there exist facile means of bulk reconfiguration, and that shape-driven bulk reconfiguration provides a viable mechanism for developing functional materials.
Facilitating preemptive hardware system design using partial reconfiguration techniques.
Dondo Gazzano, Julio; Rincon, Fernando; Vaderrama, Carlos; Villanueva, Felix; Caba, Julian; Lopez, Juan Carlos
2014-01-01
In FPGA-based control system design, partial reconfiguration is especially well suited to implement preemptive systems. In real-time systems, the deadline for critical task can compel the preemption of noncritical one. Besides, an asynchronous event can demand immediate attention and, then, force launching a reconfiguration process for high-priority task implementation. If the asynchronous event is previously scheduled, an explicit activation of the reconfiguration process is performed. If the event cannot be previously programmed, such as in dynamically scheduled systems, an implicit activation to the reconfiguration process is demanded. This paper provides a hardware-based approach to explicit and implicit activation of the partial reconfiguration process in dynamically reconfigurable SoCs and includes all the necessary tasks to cope with this issue. Furthermore, the reconfiguration service introduced in this work allows remote invocation of the reconfiguration process and then the remote integration of off-chip components. A model that offers component location transparency is also presented to enhance and facilitate system integration.
Facilitating Preemptive Hardware System Design Using Partial Reconfiguration Techniques
Rincon, Fernando; Vaderrama, Carlos; Villanueva, Felix; Caba, Julian; Lopez, Juan Carlos
2014-01-01
In FPGA-based control system design, partial reconfiguration is especially well suited to implement preemptive systems. In real-time systems, the deadline for critical task can compel the preemption of noncritical one. Besides, an asynchronous event can demand immediate attention and, then, force launching a reconfiguration process for high-priority task implementation. If the asynchronous event is previously scheduled, an explicit activation of the reconfiguration process is performed. If the event cannot be previously programmed, such as in dynamically scheduled systems, an implicit activation to the reconfiguration process is demanded. This paper provides a hardware-based approach to explicit and implicit activation of the partial reconfiguration process in dynamically reconfigurable SoCs and includes all the necessary tasks to cope with this issue. Furthermore, the reconfiguration service introduced in this work allows remote invocation of the reconfiguration process and then the remote integration of off-chip components. A model that offers component location transparency is also presented to enhance and facilitate system integration. PMID:24672292
Flight elements: Fault detection and fault management
NASA Technical Reports Server (NTRS)
Lum, H.; Patterson-Hine, A.; Edge, J. T.; Lawler, D.
1990-01-01
Fault management for an intelligent computational system must be developed using a top down integrated engineering approach. An approach proposed includes integrating the overall environment involving sensors and their associated data; design knowledge capture; operations; fault detection, identification, and reconfiguration; testability; causal models including digraph matrix analysis; and overall performance impacts on the hardware and software architecture. Implementation of the concept to achieve a real time intelligent fault detection and management system will be accomplished via the implementation of several objectives, which are: Development of fault tolerant/FDIR requirement and specification from a systems level which will carry through from conceptual design through implementation and mission operations; Implementation of monitoring, diagnosis, and reconfiguration at all system levels providing fault isolation and system integration; Optimize system operations to manage degraded system performance through system integration; and Lower development and operations costs through the implementation of an intelligent real time fault detection and fault management system and an information management system.
Buttles, John W
2013-04-23
Wireless communication devices include a software-defined radio coupled to processing circuitry. The system controller is configured to execute computer programming code. Storage media is coupled to the system controller and includes computer programming code configured to cause the system controller to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.
Robust Distribution Network Reconfiguration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Changhyeok; Liu, Cong; Mehrotra, Sanjay
2015-03-01
We propose a two-stage robust optimization model for the distribution network reconfiguration problem with load uncertainty. The first-stage decision is to configure the radial distribution network and the second-stage decision is to find the optimal a/c power flow of the reconfigured network for given demand realization. We solve the two-stage robust model by using a column-and-constraint generation algorithm, where the master problem and subproblem are formulated as mixed-integer second-order cone programs. Computational results for 16, 33, 70, and 94-bus test cases are reported. We find that the configuration from the robust model does not compromise much the power loss undermore » the nominal load scenario compared to the configuration from the deterministic model, yet it provides the reliability of the distribution system for all scenarios in the uncertainty set.« less
Using partial reconfiguration for SoC design and implementation
NASA Astrophysics Data System (ADS)
Krasteva, Yana E.; Portilla, Jorge; Tobajas Guerrero, Félix; de la Torre, Eduardo
2009-05-01
Most reconfigurable systems rely on FPGA technology. Among these ones, those which permit dynamic and partial reconfiguration, offer added benefits in flexibility, in-field device upgrade, improved design and manufacturing time, and even, in some cases, power consumption reductions. However, dynamic reconfiguration is a complex task, and the real benefits of its use in real applications have been often questioned. This paper presents an overview of the partial reconfiguration technique application, along with four original applications. The main goal of these applications is to test several architectures with different flexibility and, to search for the partial reconfiguration "killing application", that is, the application that better demonstrates the benefits of today reconfigurable systems based on commercial FPGAs. Therefore, the presented applications are rather a proof of concept, than fully operative and closed systems. First, a brief introduction to the partial reconfigurable systems application topic has been included. After that, the descriptions of the created reconfigurable systems are presented: first, an on-chip communications emulation framework, second, an on chip debugging system, third, a wireless sensor network reconfigurable node and finally, a remote reconfigurable client-server device. Each application is described in a separate section of the paper along with some test and results. General conclusions are included at the end of the paper.
Electrically reconfigurable logic array
NASA Technical Reports Server (NTRS)
Agarwal, R. K.
1982-01-01
To compose the complicated systems using algorithmically specialized logic circuits or processors, one solution is to perform relational computations such as union, division and intersection directly on hardware. These relations can be pipelined efficiently on a network of processors having an array configuration. These processors can be designed and implemented with a few simple cells. In order to determine the state-of-the-art in Electrically Reconfigurable Logic Array (ERLA), a survey of the available programmable logic array (PLA) and the logic circuit elements used in such arrays was conducted. Based on this survey some recommendations are made for ERLA devices.
Application-specific coarse-grained reconfigurable array: architecture and design methodology
NASA Astrophysics Data System (ADS)
Zhou, Li; Liu, Dongpei; Zhang, Jianfeng; Liu, Hengzhu
2015-06-01
Coarse-grained reconfigurable arrays (CGRAs) have shown potential for application in embedded systems in recent years. Numerous reconfigurable processing elements (PEs) in CGRAs provide flexibility while maintaining high performance by exploring different levels of parallelism. However, a difference remains between the CGRA and the application-specific integrated circuit (ASIC). Some application domains, such as software-defined radios (SDRs), require flexibility with performance demand increases. More effective CGRA architectures are expected to be developed. Customisation of a CGRA according to its application can improve performance and efficiency. This study proposes an application-specific CGRA architecture template composed of generic PEs (GPEs) and special PEs (SPEs). The hardware of the SPE can be customised to accelerate specific computational patterns. An automatic design methodology that includes pattern identification and application-specific function unit generation is also presented. A mapping algorithm based on ant colony optimisation is provided. Experimental results on the SDR target domain show that compared with other ordinary and application-specific reconfigurable architectures, the CGRA generated by the proposed method performs more efficiently for given applications.
Scalable hybrid computation with spikes.
Sarpeshkar, Rahul; O'Halloran, Micah
2002-09-01
We outline a hybrid analog-digital scheme for computing with three important features that enable it to scale to systems of large complexity: First, like digital computation, which uses several one-bit precise logical units to collectively compute a precise answer to a computation, the hybrid scheme uses several moderate-precision analog units to collectively compute a precise answer to a computation. Second, frequent discrete signal restoration of the analog information prevents analog noise and offset from degrading the computation. And, third, a state machine enables complex computations to be created using a sequence of elementary computations. A natural choice for implementing this hybrid scheme is one based on spikes because spike-count codes are digital, while spike-time codes are analog. We illustrate how spikes afford easy ways to implement all three components of scalable hybrid computation. First, as an important example of distributed analog computation, we show how spikes can create a distributed modular representation of an analog number by implementing digital carry interactions between spiking analog neurons. Second, we show how signal restoration may be performed by recursive spike-count quantization of spike-time codes. And, third, we use spikes from an analog dynamical system to trigger state transitions in a digital dynamical system, which reconfigures the analog dynamical system using a binary control vector; such feedback interactions between analog and digital dynamical systems create a hybrid state machine (HSM). The HSM extends and expands the concept of a digital finite-state-machine to the hybrid domain. We present experimental data from a two-neuron HSM on a chip that implements error-correcting analog-to-digital conversion with the concurrent use of spike-time and spike-count codes. We also present experimental data from silicon circuits that implement HSM-based pattern recognition using spike-time synchrony. We outline how HSMs may be used to perform learning, vector quantization, spike pattern recognition and generation, and how they may be reconfigured.
Aslam, Muhammad; Hu, Xiaopeng; Wang, Fan
2017-12-13
Smart reconfiguration of a dynamic networking environment is offered by the central control of Software-Defined Networking (SDN). Centralized SDN-based management architectures are capable of retrieving global topology intelligence and decoupling the forwarding plane from the control plane. Routing protocols developed for conventional Wireless Sensor Networks (WSNs) utilize limited iterative reconfiguration methods to optimize environmental reporting. However, the challenging networking scenarios of WSNs involve a performance overhead due to constant periodic iterative reconfigurations. In this paper, we propose the SDN-based Application-aware Centralized adaptive Flow Iterative Reconfiguring (SACFIR) routing protocol with the centralized SDN iterative solver controller to maintain the load-balancing between flow reconfigurations and flow allocation cost. The proposed SACFIR's routing protocol offers a unique iterative path-selection algorithm, which initially computes suitable clustering based on residual resources at the control layer and then implements application-aware threshold-based multi-hop report transmissions on the forwarding plane. The operation of the SACFIR algorithm is centrally supervised by the SDN controller residing at the Base Station (BS). This paper extends SACFIR to SDN-based Application-aware Main-value Centralized adaptive Flow Iterative Reconfiguring (SAMCFIR) to establish both proactive and reactive reporting. The SAMCFIR transmission phase enables sensor nodes to trigger direct transmissions for main-value reports, while in the case of SACFIR, all reports follow computed routes. Our SDN-enabled proposed models adjust the reconfiguration period according to the traffic burden on sensor nodes, which results in heterogeneity awareness, load-balancing and application-specific reconfigurations of WSNs. Extensive experimental simulation-based results show that SACFIR and SAMCFIR yield the maximum scalability, network lifetime and stability period when compared to existing routing protocols.
Hu, Xiaopeng; Wang, Fan
2017-01-01
Smart reconfiguration of a dynamic networking environment is offered by the central control of Software-Defined Networking (SDN). Centralized SDN-based management architectures are capable of retrieving global topology intelligence and decoupling the forwarding plane from the control plane. Routing protocols developed for conventional Wireless Sensor Networks (WSNs) utilize limited iterative reconfiguration methods to optimize environmental reporting. However, the challenging networking scenarios of WSNs involve a performance overhead due to constant periodic iterative reconfigurations. In this paper, we propose the SDN-based Application-aware Centralized adaptive Flow Iterative Reconfiguring (SACFIR) routing protocol with the centralized SDN iterative solver controller to maintain the load-balancing between flow reconfigurations and flow allocation cost. The proposed SACFIR’s routing protocol offers a unique iterative path-selection algorithm, which initially computes suitable clustering based on residual resources at the control layer and then implements application-aware threshold-based multi-hop report transmissions on the forwarding plane. The operation of the SACFIR algorithm is centrally supervised by the SDN controller residing at the Base Station (BS). This paper extends SACFIR to SDN-based Application-aware Main-value Centralized adaptive Flow Iterative Reconfiguring (SAMCFIR) to establish both proactive and reactive reporting. The SAMCFIR transmission phase enables sensor nodes to trigger direct transmissions for main-value reports, while in the case of SACFIR, all reports follow computed routes. Our SDN-enabled proposed models adjust the reconfiguration period according to the traffic burden on sensor nodes, which results in heterogeneity awareness, load-balancing and application-specific reconfigurations of WSNs. Extensive experimental simulation-based results show that SACFIR and SAMCFIR yield the maximum scalability, network lifetime and stability period when compared to existing routing protocols. PMID:29236031
Design of a modular digital computer system, CDRL no. D001, final design plan
NASA Technical Reports Server (NTRS)
Easton, R. A.
1975-01-01
The engineering breadboard implementation for the CDRL no. D001 modular digital computer system developed during design of the logic system was documented. This effort followed the architecture study completed and documented previously, and was intended to verify the concepts of a fault tolerant, automatically reconfigurable, modular version of the computer system conceived during the architecture study. The system has a microprogrammed 32 bit word length, general register architecture and an instruction set consisting of a subset of the IBM System 360 instruction set plus additional fault tolerance firmware. The following areas were covered: breadboard packaging, central control element, central processing element, memory, input/output processor, and maintenance/status panel and electronics.
Interconnection requirements in avionic systems
NASA Astrophysics Data System (ADS)
Vergnolle, Claude; Houssay, Bruno
1991-04-01
The future aircraft generation will have thousand smart electromagnetic sensors distributed allover. Each sensor is connected with fibers links to the main-frame computer in charge of the real time signal''s correlation. Such a computer must be compactly built and massively parallel: it needs the use of 3 D optical free-space interconnect between neighbouring boards and reconfigurable interconnects via holographic backplane. The optical interconnect facilities will be also used to build fault-tolerant computer through large redundancy.
Reconfigurable engineered motile semiconductor microparticles.
Ohiri, Ugonna; Shields, C Wyatt; Han, Koohee; Tyler, Talmage; Velev, Orlin D; Jokerst, Nan
2018-05-03
Locally energized particles form the basis for emerging classes of active matter. The design of active particles has led to their controlled locomotion and assembly. The next generation of particles should demonstrate robust control over their active assembly, disassembly, and reconfiguration. Here we introduce a class of semiconductor microparticles that can be comprehensively designed (in size, shape, electric polarizability, and patterned coatings) using standard microfabrication tools. These custom silicon particles draw energy from external electric fields to actively propel, while interacting hydrodynamically, and sequentially assemble and disassemble on demand. We show that a number of electrokinetic effects, such as dielectrophoresis, induced charge electrophoresis, and diode propulsion, can selectively power the microparticle motions and interactions. The ability to achieve on-demand locomotion, tractable fluid flows, synchronized motility, and reversible assembly using engineered silicon microparticles may enable advanced applications that include remotely powered microsensors, artificial muscles, reconfigurable neural networks and computational systems.
OCCAM: a flexible, multi-purpose and extendable HPC cluster
NASA Astrophysics Data System (ADS)
Aldinucci, M.; Bagnasco, S.; Lusso, S.; Pasteris, P.; Rabellino, S.; Vallero, S.
2017-10-01
The Open Computing Cluster for Advanced data Manipulation (OCCAM) is a multipurpose flexible HPC cluster designed and operated by a collaboration between the University of Torino and the Sezione di Torino of the Istituto Nazionale di Fisica Nucleare. It is aimed at providing a flexible, reconfigurable and extendable infrastructure to cater to a wide range of different scientific computing use cases, including ones from solid-state chemistry, high-energy physics, computer science, big data analytics, computational biology, genomics and many others. Furthermore, it will serve as a platform for R&D activities on computational technologies themselves, with topics ranging from GPU acceleration to Cloud Computing technologies. A heterogeneous and reconfigurable system like this poses a number of challenges related to the frequency at which heterogeneous hardware resources might change their availability and shareability status, which in turn affect methods and means to allocate, manage, optimize, bill, monitor VMs, containers, virtual farms, jobs, interactive bare-metal sessions, etc. This work describes some of the use cases that prompted the design and construction of the HPC cluster, its architecture and resource provisioning model, along with a first characterization of its performance by some synthetic benchmark tools and a few realistic use-case tests.
Integrating Software Modules For Robot Control
NASA Technical Reports Server (NTRS)
Volpe, Richard A.; Khosla, Pradeep; Stewart, David B.
1993-01-01
Reconfigurable, sensor-based control system uses state variables in systematic integration of reusable control modules. Designed for open-architecture hardware including many general-purpose microprocessors, each having own local memory plus access to global shared memory. Implemented in software as extension of Chimera II real-time operating system. Provides transparent computing mechanism for intertask communication between control modules and generic process-module architecture for multiprocessor realtime computation. Used to control robot arm. Proves useful in variety of other control and robotic applications.
2010-12-01
computers in 1953. HIL motion simulators were also built for the dynamic testing of vehicle com- ponents (e.g. suspensions, bodies ) with hydraulic or...complex, comprehensive mechanical systems can be simulated in real-time by parallel computers; examples include multi- body sys- tems, brake systems...hard constraints in a multivariable control framework. And the third aspect is the ability to perform online optimization. These aspects results in
Applying differential dynamic logic to reconfigurable biological networks.
Figueiredo, Daniel; Martins, Manuel A; Chaves, Madalena
2017-09-01
Qualitative and quantitative modeling frameworks are widely used for analysis of biological regulatory networks, the former giving a preliminary overview of the system's global dynamics and the latter providing more detailed solutions. Another approach is to model biological regulatory networks as hybrid systems, i.e., systems which can display both continuous and discrete dynamic behaviors. Actually, the development of synthetic biology has shown that this is a suitable way to think about biological systems, which can often be constructed as networks with discrete controllers, and present hybrid behaviors. In this paper we discuss this approach as a special case of the reconfigurability paradigm, well studied in Computer Science (CS). In CS there are well developed computational tools to reason about hybrid systems. We argue that it is worth applying such tools in a biological context. One interesting tool is differential dynamic logic (dL), which has recently been developed by Platzer and applied to many case-studies. In this paper we discuss some simple examples of biological regulatory networks to illustrate how dL can be used as an alternative, or also as a complement to methods already used. Copyright © 2017 Elsevier Inc. All rights reserved.
Neural dynamics in reconfigurable silicon.
Basu, A; Ramakrishnan, S; Petre, C; Koziol, S; Brink, S; Hasler, P E
2010-10-01
A neuromorphic analog chip is presented that is capable of implementing massively parallel neural computations while retaining the programmability of digital systems. We show measurements from neurons with Hopf bifurcations and integrate and fire neurons, excitatory and inhibitory synapses, passive dendrite cables, coupled spiking neurons, and central pattern generators implemented on the chip. This chip provides a platform for not only simulating detailed neuron dynamics but also uses the same to interface with actual cells in applications such as a dynamic clamp. There are 28 computational analog blocks (CAB), each consisting of ion channels with tunable parameters, synapses, winner-take-all elements, current sources, transconductance amplifiers, and capacitors. There are four other CABs which have programmable bias generators. The programmability is achieved using floating gate transistors with on-chip programming control. The switch matrix for interconnecting the components in CABs also consists of floating-gate transistors. Emphasis is placed on replicating the detailed dynamics of computational neural models. Massive computational area efficiency is obtained by using the reconfigurable interconnect as synaptic weights, resulting in more than 50 000 possible 9-b accurate synapses in 9 mm(2).
High-speed multiple sequence alignment on a reconfigurable platform.
Oliver, Tim; Schmidt, Bertil; Maskell, Douglas; Nathan, Darran; Clemens, Ralf
2006-01-01
Progressive alignment is a widely used approach to compute multiple sequence alignments (MSAs). However, aligning several hundred sequences by popular progressive alignment tools requires hours on sequential computers. Due to the rapid growth of sequence databases biologists have to compute MSAs in a far shorter time. In this paper we present a new approach to MSA on reconfigurable hardware platforms to gain high performance at low cost. We have constructed a linear systolic array to perform pairwise sequence distance computations using dynamic programming. This results in an implementation with significant runtime savings on a standard FPGA.
A visual programming environment for the Navier-Stokes computer
NASA Technical Reports Server (NTRS)
Tomboulian, Sherryl; Crockett, Thomas W.; Middleton, David
1988-01-01
The Navier-Stokes computer is a high-performance, reconfigurable, pipelined machine designed to solve large computational fluid dynamics problems. Due to the complexity of the architecture, development of effective, high-level language compilers for the system appears to be a very difficult task. Consequently, a visual programming methodology has been developed which allows users to program the system at an architectural level by constructing diagrams of the pipeline configuration. These schematic program representations can then be checked for validity and automatically translated into machine code. The visual environment is illustrated by using a prototype graphical editor to program an example problem.
The trigger system for the external target experiment in the HIRFL cooling storage ring
NASA Astrophysics Data System (ADS)
Li, Min; Zhao, Lei; Liu, Jin-Xin; Lu, Yi-Ming; Liu, Shu-Bin; An, Qi
2016-08-01
A trigger system was designed for the external target experiment in the Cooling Storage Ring (CSR) of the Heavy Ion Research Facility in Lanzhou (HIRFL). Considering that different detectors are scattered over a large area, the trigger system is designed based on a master-slave structure and fiber-based serial data transmission technique. The trigger logic is organized in hierarchies, and flexible reconfiguration of the trigger function is achieved based on command register access or overall field-programmable gate array (FPGA) logic on-line reconfiguration controlled by remote computers. We also conducted tests to confirm the function of the trigger electronics, and the results indicate that this trigger system works well. Supported by the National Natural Science Foundation of China (11079003), the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N27), and the CAS Center for Excellence in Particle Physics (CCEPP).
Integrating Reconfigurable Hardware-Based Grid for High Performance Computing
Dondo Gazzano, Julio; Sanchez Molina, Francisco; Rincon, Fernando; López, Juan Carlos
2015-01-01
FPGAs have shown several characteristics that make them very attractive for high performance computing (HPC). The impressive speed-up factors that they are able to achieve, the reduced power consumption, and the easiness and flexibility of the design process with fast iterations between consecutive versions are examples of benefits obtained with their use. However, there are still some difficulties when using reconfigurable platforms as accelerator that need to be addressed: the need of an in-depth application study to identify potential acceleration, the lack of tools for the deployment of computational problems in distributed hardware platforms, and the low portability of components, among others. This work proposes a complete grid infrastructure for distributed high performance computing based on dynamically reconfigurable FPGAs. Besides, a set of services designed to facilitate the application deployment is described. An example application and a comparison with other hardware and software implementations are shown. Experimental results show that the proposed architecture offers encouraging advantages for deployment of high performance distributed applications simplifying development process. PMID:25874241
Remote hardware-reconfigurable robotic camera
NASA Astrophysics Data System (ADS)
Arias-Estrada, Miguel; Torres-Huitzil, Cesar; Maya-Rueda, Selene E.
2001-10-01
In this work, a camera with integrated image processing capabilities is discussed. The camera is based on an imager coupled to an FPGA device (Field Programmable Gate Array) which contains an architecture for real-time computer vision low-level processing. The architecture can be reprogrammed remotely for application specific purposes. The system is intended for rapid modification and adaptation for inspection and recognition applications, with the flexibility of hardware and software reprogrammability. FPGA reconfiguration allows the same ease of upgrade in hardware as a software upgrade process. The camera is composed of a digital imager coupled to an FPGA device, two memory banks, and a microcontroller. The microcontroller is used for communication tasks and FPGA programming. The system implements a software architecture to handle multiple FPGA architectures in the device, and the possibility to download a software/hardware object from the host computer into its internal context memory. System advantages are: small size, low power consumption, and a library of hardware/software functionalities that can be exchanged during run time. The system has been validated with an edge detection and a motion processing architecture, which will be presented in the paper. Applications targeted are in robotics, mobile robotics, and vision based quality control.
Intelligent redundant actuation system requirements and preliminary system design
NASA Technical Reports Server (NTRS)
Defeo, P.; Geiger, L. J.; Harris, J.
1985-01-01
Several redundant actuation system configurations were designed and demonstrated to satisfy the stringent operational requirements of advanced flight control systems. However, this has been accomplished largely through brute force hardware redundancy, resulting in significantly increased computational requirements on the flight control computers which perform the failure analysis and reconfiguration management. Modern technology now provides powerful, low-cost microprocessors which are effective in performing failure isolation and configuration management at the local actuator level. One such concept, called an Intelligent Redundant Actuation System (IRAS), significantly reduces the flight control computer requirements and performs the local tasks more comprehensively than previously feasible. The requirements and preliminary design of an experimental laboratory system capable of demonstrating the concept and sufficiently flexible to explore a variety of configurations are discussed.
Design Tools for Reconfigurable Hardware in Orbit (RHinO)
NASA Technical Reports Server (NTRS)
French, Mathew; Graham, Paul; Wirthlin, Michael; Larchev, Gregory; Bellows, Peter; Schott, Brian
2004-01-01
The Reconfigurable Hardware in Orbit (RHinO) project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. These tools leverage an established FPGA design environment and focus primarily on space effects mitigation and power optimization. The project is creating software to automatically test and evaluate the single-event-upsets (SEUs) sensitivities of an FPGA design and insert mitigation techniques. Extensions into the tool suite will also allow evolvable algorithm techniques to reconfigure around single-event-latchup (SEL) events. In the power domain, tools are being created for dynamic power visualiization and optimization. Thus, this technology seeks to enable the use of Reconfigurable Hardware in Orbit, via an integrated design tool-suite aiming to reduce risk, cost, and design time of multimission reconfigurable space processors using SRAM-based FPGAs.
NASA Astrophysics Data System (ADS)
Capo-Lugo, Pedro A.
Formation flying consists of multiple spacecraft orbiting in a required configuration about a planet or through Space. The National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation is one of the proposed constellations to be launched in the year 2009 and provides the motivation for this investigation. The problem that will be researched here consists of three stages. The first stage contains the deployment of the satellites; the second stage is the reconfiguration process to transfer the satellites through different specific sizes of the NASA benchmark problem; and, the third stage is the station-keeping procedure for the tetrahedron constellation. Every stage contains different control schemes and transfer procedures to obtain/maintain the proposed tetrahedron constellation. In the first stage, the deployment procedure will depend on a combination of two techniques in which impulsive maneuvers and a digital controller are used to deploy the satellites and to maintain the tetrahedron constellation at the following apogee point. The second stage that corresponds to the reconfiguration procedure shows a different control scheme in which the intelligent control systems are implemented to perform this procedure. In this research work, intelligent systems will eliminate the use of complex mathematical models and will reduce the computational time to perform different maneuvers. Finally, the station-keeping process, which is the third stage of this research problem, will be implemented with a two-level hierarchical control scheme to maintain the separation distance constraints of the NASA Benchmark Tetrahedron Constellation. For this station-keeping procedure, the system of equations defining the dynamics of a pair of satellites is transformed to take in account the perturbation due to the oblateness of the Earth and the disturbances due to solar pressure. The control procedures used in this research will be transformed from a continuous control system to a digital control system which will simplify the implementation into the computer onboard the satellite. In addition, this research will show an introductory chapter on attitude dynamics that can be used to maintain the orientation of the satellites, and an adaptive intelligent control scheme will be proposed to maintain the desired orientation of the spacecraft. In conclusion, a solution for the dynamics of the NASA Benchmark Tetrahedron Constellation will be presented in this research work. The main contribution of this work is the use of discrete control schemes, impulsive maneuvers, and intelligent control schemes that can be used to reduce the computational time in which these control schemes can be easily implemented in the computer onboard the satellite. These contributions are explained through the deployment, reconfiguration, and station-keeping process of the proposed NASA Benchmark Tetrahedron Constellation.
HALO: a reconfigurable image enhancement and multisensor fusion system
NASA Astrophysics Data System (ADS)
Wu, F.; Hickman, D. L.; Parker, Steve J.
2014-06-01
Contemporary high definition (HD) cameras and affordable infrared (IR) imagers are set to dramatically improve the effectiveness of security, surveillance and military vision systems. However, the quality of imagery is often compromised by camera shake, or poor scene visibility due to inadequate illumination or bad atmospheric conditions. A versatile vision processing system called HALO™ is presented that can address these issues, by providing flexible image processing functionality on a low size, weight and power (SWaP) platform. Example processing functions include video distortion correction, stabilisation, multi-sensor fusion and image contrast enhancement (ICE). The system is based around an all-programmable system-on-a-chip (SoC), which combines the computational power of a field-programmable gate array (FPGA) with the flexibility of a CPU. The FPGA accelerates computationally intensive real-time processes, whereas the CPU provides management and decision making functions that can automatically reconfigure the platform based on user input and scene content. These capabilities enable a HALO™ equipped reconnaissance or surveillance system to operate in poor visibility, providing potentially critical operational advantages in visually complex and challenging usage scenarios. The choice of an FPGA based SoC is discussed, and the HALO™ architecture and its implementation are described. The capabilities of image distortion correction, stabilisation, fusion and ICE are illustrated using laboratory and trials data.
Active Nodal Task Seeking for High-Performance, Ultra-Dependable Computing
1994-07-01
implementation. Figure 1 shows a hardware organization of ANTS: stand-alone computing nodes inter - connected by buses. 2.1 Run Time Partitioning The...nodes in 14 respond to changing loads [27] or system reconfiguration [26]. Existing techniques are all source-initiated or server-initiated [27]. 5.1...short-running task segments. The task segments must be short-running in order that processors will become avalable often enough to satisfy changing
Merlin - Massively parallel heterogeneous computing
NASA Technical Reports Server (NTRS)
Wittie, Larry; Maples, Creve
1989-01-01
Hardware and software for Merlin, a new kind of massively parallel computing system, are described. Eight computers are linked as a 300-MIPS prototype to develop system software for a larger Merlin network with 16 to 64 nodes, totaling 600 to 3000 MIPS. These working prototypes help refine a mapped reflective memory technique that offers a new, very general way of linking many types of computer to form supercomputers. Processors share data selectively and rapidly on a word-by-word basis. Fast firmware virtual circuits are reconfigured to match topological needs of individual application programs. Merlin's low-latency memory-sharing interfaces solve many problems in the design of high-performance computing systems. The Merlin prototypes are intended to run parallel programs for scientific applications and to determine hardware and software needs for a future Teraflops Merlin network.
Customization of user interfaces to reduce errors and enhance user acceptance.
Burkolter, Dina; Weyers, Benjamin; Kluge, Annette; Luther, Wolfram
2014-03-01
Customization is assumed to reduce error and increase user acceptance in the human-machine relation. Reconfiguration gives the operator the option to customize a user interface according to his or her own preferences. An experimental study with 72 computer science students using a simulated process control task was conducted. The reconfiguration group (RG) interactively reconfigured their user interfaces and used the reconfigured user interface in the subsequent test whereas the control group (CG) used a default user interface. Results showed significantly lower error rates and higher acceptance of the RG compared to the CG while there were no significant differences between the groups regarding situation awareness and mental workload. Reconfiguration seems to be promising and therefore warrants further exploration. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
SARA - SURE/ASSIST RELIABILITY ANALYSIS WORKSTATION (VAX VMS VERSION)
NASA Technical Reports Server (NTRS)
Butler, R. W.
1994-01-01
SARA, the SURE/ASSIST Reliability Analysis Workstation, is a bundle of programs used to solve reliability problems. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. The Systems Validation Methods group at NASA Langley Research Center has created a set of four software packages that form the basis for a reliability analysis workstation, including three for use in analyzing reconfigurable, fault-tolerant systems and one for analyzing non-reconfigurable systems. The SARA bundle includes the three for reconfigurable, fault-tolerant systems: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), and PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920). As indicated by the program numbers in parentheses, each of these three packages is also available separately in two machine versions. The fourth package, which is only available separately, is FTC, the Fault Tree Compiler (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree which describes a non-reconfigurable system. PAWS/STEM and SURE are analysis programs which utilize different solution methods, but have a common input language, the SURE language. ASSIST is a preprocessor that generates SURE language from a more abstract definition. ASSIST, SURE, and PAWS/STEM are described briefly in the following paragraphs. For additional details about the individual packages, including pricing, please refer to their respective abstracts. ASSIST, the Abstract Semi-Markov Specification Interface to the SURE Tool program, allows a reliability engineer to describe the failure behavior of a fault-tolerant computer system in an abstract, high-level language. The ASSIST program then automatically generates a corresponding semi-Markov model. A one-page ASSIST-language description may result in a semi-Markov model with thousands of states and transitions. The ASSIST program also includes model-reduction techniques to facilitate efficient modeling of large systems. The semi-Markov model generated by ASSIST is in the format needed for input to SURE and PAWS/STEM. The Semi-Markov Unreliability Range Evaluator, SURE, is an analysis tool for reconfigurable, fault-tolerant systems. SURE provides an efficient means for calculating accurate upper and lower bounds for the death state probabilities for a large class of semi-Markov models, not just those which can be reduced to critical-pair architectures. The calculated bounds are close enough (usually within 5 percent of each other) for use in reliability studies of ultra-reliable computer systems. The SURE bounding theorems have algebraic solutions and are consequently computationally efficient even for large and complex systems. SURE can optionally regard a specified parameter as a variable over a range of values, enabling an automatic sensitivity analysis. SURE output is tabular. The PAWS/STEM package includes two programs for the creation and evaluation of pure Markov models describing the behavior of fault-tolerant reconfigurable computer systems: the Pade Approximation with Scaling (PAWS) and Scaled Taylor Exponential Matrix (STEM) programs. PAWS and STEM produce exact solutions for the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. Markov models of fault-tolerant architectures inevitably lead to numerically stiff differential equations. Both PAWS and STEM have the capability to solve numerically stiff models. These complementary programs use separate methods to determine the matrix exponential in the solution of the model's system of differential equations. In general, PAWS is better suited to evaluate small and dense models. STEM operates at lower precision, but works faster than PAWS for larger models. The programs that comprise the SARA package were originally developed for use on DEC VAX series computers running VMS and were later ported for use on Sun series computers running SunOS. They are written in C-language, Pascal, and FORTRAN 77. An ANSI compliant C compiler is required in order to compile the C portion of the Sun version source code. The Pascal and FORTRAN code can be compiled on Sun computers using Sun Pascal and Sun Fortran. For the VMS version, VAX C, VAX PASCAL, and VAX FORTRAN can be used to recompile the source code. The standard distribution medium for the VMS version of SARA (COS-10041) is a 9-track 1600 BPI magnetic tape in VMSINSTAL format. It is also available on a TK50 tape cartridge in VMSINSTAL format. Executables are included. The standard distribution medium for the Sun version of SARA (COS-10039) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. Both Sun3 and Sun4 executables are included. Electronic copies of the ASSIST user's manual in TeX and PostScript formats are provided on the distribution medium. DEC, VAX, VMS, and TK50 are registered trademarks of Digital Equipment Corporation. Sun, Sun3, Sun4, and SunOS are trademarks of Sun Microsystems, Inc. TeX is a trademark of the American Mathematical Society. PostScript is a registered trademark of Adobe Systems Incorporated.
SARA - SURE/ASSIST RELIABILITY ANALYSIS WORKSTATION (UNIX VERSION)
NASA Technical Reports Server (NTRS)
Butler, R. W.
1994-01-01
SARA, the SURE/ASSIST Reliability Analysis Workstation, is a bundle of programs used to solve reliability problems. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. The Systems Validation Methods group at NASA Langley Research Center has created a set of four software packages that form the basis for a reliability analysis workstation, including three for use in analyzing reconfigurable, fault-tolerant systems and one for analyzing non-reconfigurable systems. The SARA bundle includes the three for reconfigurable, fault-tolerant systems: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), and PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920). As indicated by the program numbers in parentheses, each of these three packages is also available separately in two machine versions. The fourth package, which is only available separately, is FTC, the Fault Tree Compiler (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree which describes a non-reconfigurable system. PAWS/STEM and SURE are analysis programs which utilize different solution methods, but have a common input language, the SURE language. ASSIST is a preprocessor that generates SURE language from a more abstract definition. ASSIST, SURE, and PAWS/STEM are described briefly in the following paragraphs. For additional details about the individual packages, including pricing, please refer to their respective abstracts. ASSIST, the Abstract Semi-Markov Specification Interface to the SURE Tool program, allows a reliability engineer to describe the failure behavior of a fault-tolerant computer system in an abstract, high-level language. The ASSIST program then automatically generates a corresponding semi-Markov model. A one-page ASSIST-language description may result in a semi-Markov model with thousands of states and transitions. The ASSIST program also includes model-reduction techniques to facilitate efficient modeling of large systems. The semi-Markov model generated by ASSIST is in the format needed for input to SURE and PAWS/STEM. The Semi-Markov Unreliability Range Evaluator, SURE, is an analysis tool for reconfigurable, fault-tolerant systems. SURE provides an efficient means for calculating accurate upper and lower bounds for the death state probabilities for a large class of semi-Markov models, not just those which can be reduced to critical-pair architectures. The calculated bounds are close enough (usually within 5 percent of each other) for use in reliability studies of ultra-reliable computer systems. The SURE bounding theorems have algebraic solutions and are consequently computationally efficient even for large and complex systems. SURE can optionally regard a specified parameter as a variable over a range of values, enabling an automatic sensitivity analysis. SURE output is tabular. The PAWS/STEM package includes two programs for the creation and evaluation of pure Markov models describing the behavior of fault-tolerant reconfigurable computer systems: the Pade Approximation with Scaling (PAWS) and Scaled Taylor Exponential Matrix (STEM) programs. PAWS and STEM produce exact solutions for the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. Markov models of fault-tolerant architectures inevitably lead to numerically stiff differential equations. Both PAWS and STEM have the capability to solve numerically stiff models. These complementary programs use separate methods to determine the matrix exponential in the solution of the model's system of differential equations. In general, PAWS is better suited to evaluate small and dense models. STEM operates at lower precision, but works faster than PAWS for larger models. The programs that comprise the SARA package were originally developed for use on DEC VAX series computers running VMS and were later ported for use on Sun series computers running SunOS. They are written in C-language, Pascal, and FORTRAN 77. An ANSI compliant C compiler is required in order to compile the C portion of the Sun version source code. The Pascal and FORTRAN code can be compiled on Sun computers using Sun Pascal and Sun Fortran. For the VMS version, VAX C, VAX PASCAL, and VAX FORTRAN can be used to recompile the source code. The standard distribution medium for the VMS version of SARA (COS-10041) is a 9-track 1600 BPI magnetic tape in VMSINSTAL format. It is also available on a TK50 tape cartridge in VMSINSTAL format. Executables are included. The standard distribution medium for the Sun version of SARA (COS-10039) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. Both Sun3 and Sun4 executables are included. Electronic copies of the ASSIST user's manual in TeX and PostScript formats are provided on the distribution medium. DEC, VAX, VMS, and TK50 are registered trademarks of Digital Equipment Corporation. Sun, Sun3, Sun4, and SunOS are trademarks of Sun Microsystems, Inc. TeX is a trademark of the American Mathematical Society. PostScript is a registered trademark of Adobe Systems Incorporated.
NASA Astrophysics Data System (ADS)
Ogiwara, Akifumi; Maekawa, Hikaru; Watanabe, Minoru; Moriwaki, Retsu
2014-02-01
A holographic polymer-dispersed liquid crystal (HPDLC) memory to record multi-context information for an optically reconfigurable gate array is formed by the angle-multiplexing recording using a successive laser exposure in liquid crystal (LC) composites. The laser illumination system is constructed using the half mirror and photomask written by the different configuration contexts placed on the motorized stages under the control of a personal computer. The fabricated holographic memory implements a precise reconstruction of configuration contexts corresponding to the various logical circuits such as OR circuit and NOR circuit by the laser illumination at different incident angle in the HPDLC memory.
NASA Technical Reports Server (NTRS)
Siwakosit, W.; Hess, R. A.; Bacon, Bart (Technical Monitor); Burken, John (Technical Monitor)
2000-01-01
A multi-input, multi-output reconfigurable flight control system design utilizing a robust controller and an adaptive filter is presented. The robust control design consists of a reduced-order, linear dynamic inversion controller with an outer-loop compensation matrix derived from Quantitative Feedback Theory (QFT). A principle feature of the scheme is placement of the adaptive filter in series with the QFT compensator thus exploiting the inherent robustness of the nominal flight control system in the presence of plant uncertainties. An example of the scheme is presented in a pilot-in-the-loop computer simulation using a simplified model of the lateral-directional dynamics of the NASA F18 High Angle of Attack Research Vehicle (HARV) that included nonlinear anti-wind up logic and actuator limitations. Prediction of handling qualities and pilot-induced oscillation tendencies in the presence of these nonlinearities is included in the example.
A preliminary study of molecular dynamics on reconfigurable computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolinski, C.; Trouw, F. R.; Gokhale, M.
2003-01-01
In this paper we investigate the performance of platform FPGAs on a compute-intensive, floating-point-intensive supercomputing application, Molecular Dynamics (MD). MD is a popular simulation technique to track interacting particles through time by integrating their equations of motion. One part of the MD algorithm was implemented using the Fabric Generator (FG)[l I ] and mapped onto several reconfigurable logic arrays. FG is a Java-based toolset that greatly accelerates construction of the fabrics from an abstract technology independent representation. Our experiments used technology-independent IEEE 32-bit floating point operators so that the design could be easily re-targeted. Experiments were performed using both non-pipelinedmore » and pipelined floating point modules. We present results for the Altera Excalibur ARM System on a Programmable Chip (SoPC), the Altera Strath EPlS80, and the Xilinx Virtex-N Pro 2VP.50. The best results obtained were 5.69 GFlops at 8OMHz(Altera Strath EPlS80), and 4.47 GFlops at 82 MHz (Xilinx Virtex-II Pro 2VF50). Assuming a lOWpower budget, these results compare very favorably to a 4Gjlop/40Wprocessing/power rate for a modern Pentium, suggesting that reconfigurable logic can achieve high performance at low power on jloating-point-intensivea pplications.« less
A Reconfigurable Simulation-Based Test System for Automatically Assessing Software Operating Skills
ERIC Educational Resources Information Center
Su, Jun-Ming; Lin, Huan-Yu
2015-01-01
In recent years, software operating skills, the ability in computer literacy to solve problems using specific software, has become much more important. A great deal of research has also proven that students' software operating skills can be efficiently improved by practicing customized virtual and simulated examinations. However, constructing…
NASA Astrophysics Data System (ADS)
Tang, Li; Liu, Jing-Ning; Feng, Dan; Tong, Wei
2008-12-01
Existing security solutions in network storage environment perform poorly because cryptographic operations (encryption and decryption) implemented in software can dramatically reduce system performance. In this paper we propose a cryptographic hardware accelerator on dynamically reconfigurable platform for the security of high performance network storage system. We employ a dynamic reconfigurable platform based on a FPGA to implement a PowerPCbased embedded system, which executes cryptographic algorithms. To reduce the reconfiguration latency, we apply prefetch scheduling. Moreover, the processing elements could be dynamically configured to support different cryptographic algorithms according to the request received by the accelerator. In the experiment, we have implemented AES (Rijndael) and 3DES cryptographic algorithms in the reconfigurable accelerator. Our proposed reconfigurable cryptographic accelerator could dramatically increase the performance comparing with the traditional software-based network storage systems.
Reconfigurable Computing Concepts for Space Missions: Universal Modular Spares
NASA Technical Reports Server (NTRS)
Patrick, M. Clinton
2007-01-01
Computing hardware for control, data collection, and other purposes will prove many times over crucial resources in NASA's upcoming space missions. Ability to provide these resources within mission payload requirements, with the hardiness to operate for extended periods under potentially harsh conditions in off-World environments, is daunting enough without considering the possibility of doing so with conventional electronics. This paper examines some ideas and options, and proposes some initial approaches, for logical design of reconfigurable computing resources offering true modularity, universal compatibility, and unprecedented flexibility to service all forms and needs of mission infrastructure.
Time Varying Compensator Design for Reconfigurable Structures Using Non-Collocated Feedback
NASA Technical Reports Server (NTRS)
Scott, Michael A.
1996-01-01
Analysis and synthesis tools are developed to improved the dynamic performance of reconfigurable nonminimum phase, nonstrictly positive real-time variant systems. A novel Spline Varying Optimal (SVO) controller is developed for the kinematic nonlinear system. There are several advantages to using the SVO controller, in which the spline function approximates the system model, observer, and controller gain. They are: The spline function approximation is simply connected, thus the SVO controller is more continuous than traditional gain scheduled controllers when implemented on a time varying plant; ft is easier for real-time implementations in storage and computational effort; where system identification is required, the spline function requires fewer experiments, namely four experiments; and initial startup estimator transients are eliminated. The SVO compensator was evaluated on a high fidelity simulation of the Shuttle Remote Manipulator System. The SVO controller demonstrated significant improvement over the present arm performance: (1) Damping level was improved by a factor of 3; and (2) Peak joint torque was reduced by a factor of 2 following Shuttle thruster firings.
Reconfigurable Autonomy for Future Planetary Rovers
NASA Astrophysics Data System (ADS)
Burroughes, Guy
Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.
Processor tradeoffs in distributed real-time systems
NASA Technical Reports Server (NTRS)
Krishna, C. M.; Shin, Kang G.; Bhandari, Inderpal S.
1987-01-01
The problem of the optimization of the design of real-time distributed systems is examined with reference to a class of computer architectures similar to the continuously reconfigurable multiprocessor flight control system structure, CM2FCS. Particular attention is given to the impact of processor replacement and the burn-in time on the probability of dynamic failure and mean cost. The solution is obtained numerically and interpreted in the context of real-time applications.
Active model-based balancing strategy for self-reconfigurable batteries
NASA Astrophysics Data System (ADS)
Bouchhima, Nejmeddine; Schnierle, Marc; Schulte, Sascha; Birke, Kai Peter
2016-08-01
This paper describes a novel balancing strategy for self-reconfigurable batteries where the discharge and charge rates of each cell can be controlled. While much effort has been focused on improving the hardware architecture of self-reconfigurable batteries, energy equalization algorithms have not been systematically optimized in terms of maximizing the efficiency of the balancing system. Our approach includes aspects of such optimization theory. We develop a balancing strategy for optimal control of the discharge rate of battery cells. We first formulate the cell balancing as a nonlinear optimal control problem, which is modeled afterward as a network program. Using dynamic programming techniques and MATLAB's vectorization feature, we solve the optimal control problem by generating the optimal battery operation policy for a given drive cycle. The simulation results show that the proposed strategy efficiently balances the cells over the life of the battery, an obvious advantage that is absent in the other conventional approaches. Our algorithm is shown to be robust when tested against different influencing parameters varying over wide spectrum on different drive cycles. Furthermore, due to the little computation time and the proved low sensitivity to the inaccurate power predictions, our strategy can be integrated in a real-time system.
Quantitative evaluation of 3D images produced from computer-generated holograms
NASA Astrophysics Data System (ADS)
Sheerin, David T.; Mason, Ian R.; Cameron, Colin D.; Payne, Douglas A.; Slinger, Christopher W.
1999-08-01
Advances in computing and optical modulation techniques now make it possible to anticipate the generation of near real- time, reconfigurable, high quality, three-dimensional images using holographic methods. Computer generated holography (CGH) is the only technique which holds promise of producing synthetic images having the full range of visual depth cues. These realistic images will be viewable by several users simultaneously, without the need for headtracking or special glasses. Such a data visualization tool will be key to speeding up the manufacture of new commercial and military equipment by negating the need for the production of physical 3D models in the design phase. DERA Malvern has been involved in designing and testing fixed CGH in order to understand the connection between the complexity of the CGH, the algorithms used to design them, the processes employed in their implementation and the quality of the images produced. This poster describes results from CGH containing up to 108 pixels. The methods used to evaluate the reconstructed images are discussed and quantitative measures of image fidelity made. An understanding of the effect of the various system parameters upon final image quality enables a study of the possible system trade-offs to be carried out. Such an understanding of CGH production and resulting image quality is key to effective implementation of a reconfigurable CGH system currently under development at DERA.
Reconfigurable Model Execution in the OpenMDAO Framework
NASA Technical Reports Server (NTRS)
Hwang, John T.
2017-01-01
NASA's OpenMDAO framework facilitates constructing complex models and computing their derivatives for multidisciplinary design optimization. Decomposing a model into components that follow a prescribed interface enables OpenMDAO to assemble multidisciplinary derivatives from the component derivatives using what amounts to the adjoint method, direct method, chain rule, global sensitivity equations, or any combination thereof, using the MAUD architecture. OpenMDAO also handles the distribution of processors among the disciplines by hierarchically grouping the components, and it automates the data transfer between components that are on different processors. These features have made OpenMDAO useful for applications in aircraft design, satellite design, wind turbine design, and aircraft engine design, among others. This paper presents new algorithms for OpenMDAO that enable reconfigurable model execution. This concept refers to dynamically changing, during execution, one or more of: the variable sizes, solution algorithm, parallel load balancing, or set of variables-i.e., adding and removing components, perhaps to switch to a higher-fidelity sub-model. Any component can reconfigure at any point, even when running in parallel with other components, and the reconfiguration algorithm presented here performs the synchronized updates to all other components that are affected. A reconfigurable software framework for multidisciplinary design optimization enables new adaptive solvers, adaptive parallelization, and new applications such as gradient-based optimization with overset flow solvers and adaptive mesh refinement. Benchmarking results demonstrate the time savings for reconfiguration compared to setting up the model again from scratch, which can be significant in large-scale problems. Additionally, the new reconfigurability feature is applied to a mission profile optimization problem for commercial aircraft where both the parametrization of the mission profile and the time discretization are adaptively refined, resulting in computational savings of roughly 10% and the elimination of oscillations in the optimized altitude profile.
Reconfigurable HIL Testing of Earth Satellites
NASA Technical Reports Server (NTRS)
2008-01-01
In recent years, hardware-in-the-loop (HIL) testing has carved a strong niche in several industries, such as automotive, aerospace, telecomm, and consumer electronics. As desktop computers have realized gains in speed, memory size, and data storage capacity, hardware/software platforms have evolved into high performance, deterministic HIL platforms, capable of hosting the most demanding applications for testing components and subsystems. Using simulation software to emulate the digital and analog I/O signals of system components, engineers of all disciplines can now test new systems in realistic environments to evaluate their function and performance prior to field deployment. Within the Aerospace industry, space-borne satellite systems are arguably some of the most demanding in terms of their requirement for custom engineering and testing. Typically, spacecraft are built one or few at a time to fulfill a space science or defense mission. In contrast to other industries that can amortize the cost of HIL systems over thousands, even millions of units, spacecraft HIL systems have been built as one-of-a-kind solutions, expensive in terms of schedule, cost, and risk, to assure satellite and spacecraft systems reliability. The focus of this paper is to present a new approach to HIL testing for spacecraft systems that takes advantage of a highly flexible hardware/software architecture based on National Instruments PXI reconfigurable hardware and virtual instruments developed using LabVIEW. This new approach to HIL is based on a multistage/multimode spacecraft bus emulation development model called Reconfigurable Hardware In-the-Loop or RHIL.
Robust Feedback Control of Reconfigurable Multi-Agent Systems in Uncertain Adversarial Environments
2015-07-09
R. G., Optimal Lunar Landing and Retargeting using a Hybrid Control Strategy. Proceedings of the 2013 AAS/AIAA Space Flight Mechanics Meeting (AAS...Furfaro, R. & Sanfelice, R. G., Switching System Model for Pinpoint Lunar Landing Guidance Using a Hybrid Control Strategy. Proceedings of the AIAA...methods in distributed settings and the design of numerical methods to properly compute their trajectories . We have generate results showing that
ELIPS: Toward a Sensor Fusion Processor on a Chip
NASA Technical Reports Server (NTRS)
Daud, Taher; Stoica, Adrian; Tyson, Thomas; Li, Wei-te; Fabunmi, James
1998-01-01
The paper presents the concept and initial tests from the hardware implementation of a low-power, high-speed reconfigurable sensor fusion processor. The Extended Logic Intelligent Processing System (ELIPS) processor is developed to seamlessly combine rule-based systems, fuzzy logic, and neural networks to achieve parallel fusion of sensor in compact low power VLSI. The first demonstration of the ELIPS concept targets interceptor functionality; other applications, mainly in robotics and autonomous systems are considered for the future. The main assumption behind ELIPS is that fuzzy, rule-based and neural forms of computation can serve as the main primitives of an "intelligent" processor. Thus, in the same way classic processors are designed to optimize the hardware implementation of a set of fundamental operations, ELIPS is developed as an efficient implementation of computational intelligence primitives, and relies on a set of fuzzy set, fuzzy inference and neural modules, built in programmable analog hardware. The hardware programmability allows the processor to reconfigure into different machines, taking the most efficient hardware implementation during each phase of information processing. Following software demonstrations on several interceptor data, three important ELIPS building blocks (a fuzzy set preprocessor, a rule-based fuzzy system and a neural network) have been fabricated in analog VLSI hardware and demonstrated microsecond-processing times.
Deterministic Reconfigurable Control Design for the X-33 Vehicle
NASA Technical Reports Server (NTRS)
Wagner, Elaine A.; Burken, John J.; Hanson, Curtis E.; Wohletz, Jerry M.
1998-01-01
In the event of a control surface failure, the purpose of a reconfigurable control system is to redistribute the control effort among the remaining working surfaces such that satisfactory stability and performance are retained. Four reconfigurable control design methods were investigated for the X-33 vehicle: Redistributed Pseudo-Inverse, General Constrained Optimization, Automated Failure Dependent Gain Schedule, and an Off-line Nonlinear General Constrained Optimization. The Off-line Nonlinear General Constrained Optimization approach was chosen for implementation on the X-33. Two example failures are shown, a right outboard elevon jam at 25 deg. at a Mach 3 entry condition, and a left rudder jam at 30 degrees. Note however, that reconfigurable control laws have been designed for the entire flight envelope. Comparisons between responses with the nominal controller and reconfigurable controllers show the benefits of reconfiguration. Single jam aerosurface failures were considered, and failure detection and identification is considered accomplished in the actuator controller. The X-33 flight control system will incorporate reconfigurable flight control in the baseline system.
NASA Astrophysics Data System (ADS)
Schubert, Oliver J.; Tolle, Charles R.
2004-09-01
Over the last decade the world has seen numerous autonomous vehicle programs. Wheels and track designs are the basis for many of these vehicles. This is primarily due to four main reasons: a vast preexisting knowledge base for these designs, energy efficiency of power sources, scalability of actuators, and the lack of control systems technologies for handling alternate highly complex distributed systems. Though large efforts seek to improve the mobility of these vehicles, many limitations still exist for these systems within unstructured environments, e.g. limited mobility within industrial and nuclear accident sites where existing plant configurations have been extensively changed. These unstructured operational environments include missions for exploration, reconnaissance, and emergency recovery of objects within reconfigured or collapsed structures, e.g. bombed buildings. More importantly, these environments present a clear and present danger for direct human interactions during the initial phases of recovery operations. Clearly, the current classes of autonomous vehicles are incapable of performing in these environments. Thus the next generation of designs must include highly reconfigurable and flexible autonomous robotic platforms. This new breed of autonomous vehicles will be both highly flexible and environmentally adaptable. Presented in this paper is one of the most successful designs from nature, the snake-eel-worm (SEW). This design implements shape memory alloy (SMA) actuators which allow for scaling of the robotic SEW designs from sub-micron scale to heavy industrial implementations without major conceptual redesigns as required in traditional hydraulic, pneumatic, or motor driven systems. Autonomous vehicles based on the SEW design posses the ability to easily move between air based environments and fluid based environments with limited or no reconfiguration. Under a SEW designed vehicle, one not only achieves vastly improved maneuverability within a highly unstructured environment, but also gains robotic manipulation abilities, normally relegated as secondary add-ons within existing vehicles, all within one small condensed package. The prototype design presented includes a Beowulf style computing system for advanced guidance calculations and visualization computations. All of the design and implementation pertaining to the SEW robot discussed in this paper is the product of a student team under the summer fellowship program at the DOEs INEEL.
Circularly split-ring-resonator-based frequency-reconfigurable antenna
NASA Astrophysics Data System (ADS)
Rahman, M. A.; Faruque, M. R. I.; Islam, M. T.
2017-01-01
In this paper, an antenna with frequency configurability in light of a circularly split-ring resonator (CSRR) is introduced. The proposed reconfigurable monopole antenna consists of a microstrip-fed hook-shaped structure and a CSRR having single reconfigurable split only. A new band of radiation unlike the band radiated from monopole only is observed due to magnetic coupling between the CSRR and the monopole antenna. The resonance frequency of the CSRR can be arbitrarily chosen by varying the dimension and relative position of its gap with the monopole, which leads the antenna to become reconfigurable one. By using a single switch with perfect electric conductor at the gap of CSRR cell, the effect of CSRR can be deactivated and, hence, it is possible to suppress the corresponding resonance, resulting in a frequency-reconfigurable antenna. Commercially available Computer Simulation Technology microwave studio based on finite integration technique was adopted throughout the study.
Memory interface simulator: A computer design aid
NASA Technical Reports Server (NTRS)
Taylor, D. S.; Williams, T.; Weatherbee, J. E.
1972-01-01
Results are presented of a study conducted with a digital simulation model being used in the design of the Automatically Reconfigurable Modular Multiprocessor System (ARMMS), a candidate computer system for future manned and unmanned space missions. The model simulates the activity involved as instructions are fetched from random access memory for execution in one of the system central processing units. A series of model runs measured instruction execution time under various assumptions pertaining to the CPU's and the interface between the CPU's and RAM. Design tradeoffs are presented in the following areas: Bus widths, CPU microprogram read only memory cycle time, multiple instruction fetch, and instruction mix.
The flight robotics laboratory
NASA Technical Reports Server (NTRS)
Tobbe, Patrick A.; Williamson, Marlin J.; Glaese, John R.
1988-01-01
The Flight Robotics Laboratory of the Marshall Space Flight Center is described in detail. This facility, containing an eight degree of freedom manipulator, precision air bearing floor, teleoperated motion base, reconfigurable operator's console, and VAX 11/750 computer system, provides simulation capability to study human/system interactions of remote systems. The facility hardware, software and subsequent integration of these components into a real time man-in-the-loop simulation for the evaluation of spacecraft contact proximity and dynamics are described.
NASA Technical Reports Server (NTRS)
Hegarty, D. M.
1974-01-01
A guidance, navigation, and control system, the Simulated Shuttle Flight Test System (SS-FTS), when interfaced with existing aircraft systems, provides a research facility for studying concepts for landing the space shuttle orbiter and conventional jet aircraft. The SS-FTS, which includes a general-purpose computer, performs all computations for precisely following a prescribed approach trajectory while properly managing the vehicle energy to allow safe arrival at the runway and landing within prescribed dispersions. The system contains hardware and software provisions for navigation with several combinations of possible navigation aids that have been suggested for the shuttle. The SS-FTS can be reconfigured to study different guidance and navigation concepts by changing only the computer software, and adapted to receive different radio navigation information through minimum hardware changes. All control laws, logic, and mode interlocks reside solely in the computer software.
Space Debris Detection on the HPDP, a Coarse-Grained Reconfigurable Array Architecture for Space
NASA Astrophysics Data System (ADS)
Suarez, Diego Andres; Bretz, Daniel; Helfers, Tim; Weidendorfer, Josef; Utzmann, Jens
2016-08-01
Stream processing, widely used in communications and digital signal processing applications, requires high- throughput data processing that is achieved in most cases using Application-Specific Integrated Circuit (ASIC) designs. Lack of programmability is an issue especially in space applications, which use on-board components with long life-cycles requiring applications updates. To this end, the High Performance Data Processor (HPDP) architecture integrates an array of coarse-grained reconfigurable elements to provide both flexible and efficient computational power suitable for stream-based data processing applications in space. In this work the capabilities of the HPDP architecture are demonstrated with the implementation of a real-time image processing algorithm for space debris detection in a space-based space surveillance system. The implementation challenges and alternatives are described making trade-offs to improve performance at the expense of negligible degradation of detection accuracy. The proposed implementation uses over 99% of the available computational resources. Performance estimations based on simulations show that the HPDP can amply match the application requirements.
Full Envelope Reconfigurable Control Design for the X-33 Vehicle
NASA Technical Reports Server (NTRS)
Cotting, M. Christopher; Burken, John J.; Lee, Seung-Hee (Technical Monitor)
2001-01-01
In the event of a control surface failure, the purpose of a reconfigurable control system is to redistribute the control effort among the remaining working surfaces such that satisfactory stability and performance are retained. An Off-line Nonlinear General Constrained Optimization (ONCO) approach was used for the reconfigurable X-33 control design method. Three example failures are shown using a high fidelity 6 DOF simulation (case I ascent with a left body flap jammed at 25 deg.; case 2 entry with a right inboard elevon jam at 25 deg.; and case 3, landing (TAEM) with a left rudder jam at -30 deg.) Failure comparisons between responses with the nominal controller and reconfigurable controllers show the benefits of reconfiguration. Single jam aerosurface failures were considered, and failure detection and identification is considered accomplished in the actuator controller. The X-33 flight control system will incorporate reconfigurable flight control in the baseline system.
Multifunctional microcontrollable interface module
NASA Astrophysics Data System (ADS)
Spitzer, Mark B.; Zavracky, Paul M.; Rensing, Noa M.; Crawford, J.; Hockman, Angela H.; Aquilino, P. D.; Girolamo, Henry J.
2001-08-01
This paper reports the development of a complete eyeglass- mounted computer interface system including display, camera and audio subsystems. The display system provides an SVGA image with a 20 degree horizontal field of view. The camera system has been optimized for face recognition and provides a 19 degree horizontal field of view. A microphone and built-in pre-amp optimized for voice recognition and a speaker on an articulated arm are included for audio. An important feature of the system is a high degree of adjustability and reconfigurability. The system has been developed for testing by the Military Police, in a complete system comprising the eyeglass-mounted interface, a wearable computer, and an RF link. Details of the design, construction, and performance of the eyeglass-based system are discussed.
Cloud computing method for dynamically scaling a process across physical machine boundaries
Gillen, Robert E.; Patton, Robert M.; Potok, Thomas E.; Rojas, Carlos C.
2014-09-02
A cloud computing platform includes first device having a graph or tree structure with a node which receives data. The data is processed by the node or communicated to a child node for processing. A first node in the graph or tree structure determines the reconfiguration of a portion of the graph or tree structure on a second device. The reconfiguration may include moving a second node and some or all of its descendant nodes. The second and descendant nodes may be copied to the second device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Supinski, B.; Caliga, D.
2017-09-28
The primary objective of this project was to develop memory optimization technology to efficiently deliver data to, and distribute data within, the SRC-6's Field Programmable Gate Array- ("FPGA") based Multi-Adaptive Processors (MAPs). The hardware/software approach was to explore efficient MAP configurations and generate the compiler technology to exploit those configurations. This memory accessing technology represents an important step towards making reconfigurable symmetric multi-processor (SMP) architectures that will be a costeffective solution for large-scale scientific computing.
NASA Astrophysics Data System (ADS)
Rajalakshmi, N.; Padma Subramanian, D.; Thamizhavel, K.
2015-03-01
The extent of real power loss and voltage deviation associated with overloaded feeders in radial distribution system can be reduced by reconfiguration. Reconfiguration is normally achieved by changing the open/closed state of tie/sectionalizing switches. Finding optimal switch combination is a complicated problem as there are many switching combinations possible in a distribution system. Hence optimization techniques are finding greater importance in reducing the complexity of reconfiguration problem. This paper presents the application of firefly algorithm (FA) for optimal reconfiguration of radial distribution system with distributed generators (DG). The algorithm is tested on IEEE 33 bus system installed with DGs and the results are compared with binary genetic algorithm. It is found that binary FA is more effective than binary genetic algorithm in achieving real power loss reduction and improving voltage profile and hence enhancing the performance of radial distribution system. Results are found to be optimum when DGs are added to the test system, which proved the impact of DGs on distribution system.
Fault tolerant architectures for integrated aircraft electronics systems, task 2
NASA Technical Reports Server (NTRS)
Levitt, K. N.; Melliar-Smith, P. M.; Schwartz, R. L.
1984-01-01
The architectural basis for an advanced fault tolerant on-board computer to succeed the current generation of fault tolerant computers is examined. The network error tolerant system architecture is studied with particular attention to intercluster configurations and communication protocols, and to refined reliability estimates. The diagnosis of faults, so that appropriate choices for reconfiguration can be made is discussed. The analysis relates particularly to the recognition of transient faults in a system with tasks at many levels of priority. The demand driven data-flow architecture, which appears to have possible application in fault tolerant systems is described and work investigating the feasibility of automatic generation of aircraft flight control programs from abstract specifications is reported.
Dynamic reconfiguration of frontal brain networks during executive cognition in humans
Braun, Urs; Schäfer, Axel; Walter, Henrik; Erk, Susanne; Romanczuk-Seiferth, Nina; Haddad, Leila; Schweiger, Janina I.; Grimm, Oliver; Heinz, Andreas; Tost, Heike; Meyer-Lindenberg, Andreas; Bassett, Danielle S.
2015-01-01
The brain is an inherently dynamic system, and executive cognition requires dynamically reconfiguring, highly evolving networks of brain regions that interact in complex and transient communication patterns. However, a precise characterization of these reconfiguration processes during cognitive function in humans remains elusive. Here, we use a series of techniques developed in the field of “dynamic network neuroscience” to investigate the dynamics of functional brain networks in 344 healthy subjects during a working-memory challenge (the “n-back” task). In contrast to a control condition, in which dynamic changes in cortical networks were spread evenly across systems, the effortful working-memory condition was characterized by a reconfiguration of frontoparietal and frontotemporal networks. This reconfiguration, which characterizes “network flexibility,” employs transient and heterogeneous connectivity between frontal systems, which we refer to as “integration.” Frontal integration predicted neuropsychological measures requiring working memory and executive cognition, suggesting that dynamic network reconfiguration between frontal systems supports those functions. Our results characterize dynamic reconfiguration of large-scale distributed neural circuits during executive cognition in humans and have implications for understanding impaired cognitive function in disorders affecting connectivity, such as schizophrenia or dementia. PMID:26324898
1976-11-01
system. b. Read different program configurations to reconfigure the software during flight. c. Write Digital Integrated Test System (DITS) results...associated witn > inor C):l.e Event must be Unlatched. The sole difference between a Latched ana an lnratcrec Condition is that upon the Scheduling...Table. Furthermore, the block of pointers for one Minor Cycle may be wholly contained witnir the Diock of ocinters for a different Minor Cycle. For
An electrically reconfigurable logic gate intrinsically enabled by spin-orbit materials.
Kazemi, Mohammad
2017-11-10
The spin degree of freedom in magnetic devices has been discussed widely for computing, since it could significantly reduce energy dissipation, might enable beyond Von Neumann computing, and could have applications in quantum computing. For spin-based computing to become widespread, however, energy efficient logic gates comprising as few devices as possible are required. Considerable recent progress has been reported in this area. However, proposals for spin-based logic either require ancillary charge-based devices and circuits in each individual gate or adopt principals underlying charge-based computing by employing ancillary spin-based devices, which largely negates possible advantages. Here, we show that spin-orbit materials possess an intrinsic basis for the execution of logic operations. We present a spin-orbit logic gate that performs a universal logic operation utilizing the minimum possible number of devices, that is, the essential devices required for representing the logic operands. Also, whereas the previous proposals for spin-based logic require extra devices in each individual gate to provide reconfigurability, the proposed gate is 'electrically' reconfigurable at run-time simply by setting the amplitude of the clock pulse applied to the gate. We demonstrate, analytically and numerically with experimentally benchmarked models, that the gate performs logic operations and simultaneously stores the result, realizing the 'stateful' spin-based logic scalable to ultralow energy dissipation.
Canbay, Ferhat; Levent, Vecdi Emre; Serbes, Gorkem; Ugurdag, H. Fatih; Goren, Sezer
2016-01-01
The authors aimed to develop an application for producing different architectures to implement dual tree complex wavelet transform (DTCWT) having near shift-invariance property. To obtain a low-cost and portable solution for implementing the DTCWT in multi-channel real-time applications, various embedded-system approaches are realised. For comparison, the DTCWT was implemented in C language on a personal computer and on a PIC microcontroller. However, in the former approach portability and in the latter desired speed performance properties cannot be achieved. Hence, implementation of the DTCWT on a reconfigurable platform such as field programmable gate array, which provides portable, low-cost, low-power, and high-performance computing, is considered as the most feasible solution. At first, they used the system generator DSP design tool of Xilinx for algorithm design. However, the design implemented by using such tools is not optimised in terms of area and power. To overcome all these drawbacks mentioned above, they implemented the DTCWT algorithm by using Verilog Hardware Description Language, which has its own difficulties. To overcome these difficulties, simplify the usage of proposed algorithms and the adaptation procedures, a code generator program that can produce different architectures is proposed. PMID:27733925
Canbay, Ferhat; Levent, Vecdi Emre; Serbes, Gorkem; Ugurdag, H Fatih; Goren, Sezer; Aydin, Nizamettin
2016-09-01
The authors aimed to develop an application for producing different architectures to implement dual tree complex wavelet transform (DTCWT) having near shift-invariance property. To obtain a low-cost and portable solution for implementing the DTCWT in multi-channel real-time applications, various embedded-system approaches are realised. For comparison, the DTCWT was implemented in C language on a personal computer and on a PIC microcontroller. However, in the former approach portability and in the latter desired speed performance properties cannot be achieved. Hence, implementation of the DTCWT on a reconfigurable platform such as field programmable gate array, which provides portable, low-cost, low-power, and high-performance computing, is considered as the most feasible solution. At first, they used the system generator DSP design tool of Xilinx for algorithm design. However, the design implemented by using such tools is not optimised in terms of area and power. To overcome all these drawbacks mentioned above, they implemented the DTCWT algorithm by using Verilog Hardware Description Language, which has its own difficulties. To overcome these difficulties, simplify the usage of proposed algorithms and the adaptation procedures, a code generator program that can produce different architectures is proposed.
Reconfigurable Multiparameter Biosignal Acquisition SoC for Low Power Wearable Platform
Kim, Jongpal; Ko, Hyoungho
2016-01-01
A low power and low noise reconfigurable analog front-end (AFE) system on a chip (SoC) for biosignal acquisition is presented. The presented AFE can be reconfigured for use in electropotential, bioimpedance, electrochemical, and photoelectrical modes. The advanced healthcare services based on multiparameter physiological biosignals can be easily implemented with these multimodal and highly reconfigurable features of the proposed system. The reconfigurable gain and input referred noise of the core instrumentation amplifier block are 25 dB to 52 dB, and 1 μVRMS, respectively. The power consumption of the analog blocks in one readout channel is less than 52 μW. The reconfigurable capability among various modes of applications including electrocardiogram, blood glucose concentration, respiration, and photoplethysmography are shown experimentally. PMID:27898004
Model compilation for real-time planning and diagnosis with feedback
NASA Technical Reports Server (NTRS)
Barrett, Anthony
2005-01-01
This paper describes MEXEC, an implemented micro executive that compiles a device model that can have feedback into a structure for subsequent evaluation. This system computes both the most likely current device mode from n sets of sensor measurements and the n-1 step reconfiguration plan that is most likely to result in reaching a target mode - if such a plan exists. A user tunes the system by increasing n to improve system capability at the cost of real-time performance.
Strain Multiplexed Metasurface Holograms on a Stretchable Substrate.
Malek, Stephanie C; Ee, Ho-Seok; Agarwal, Ritesh
2017-06-14
We demonstrate reconfigurable phase-only computer-generated metasurface holograms with up to three image planes operating in the visible regime fabricated with gold nanorods on a stretchable polydimethylsiloxane substrate. Stretching the substrate enlarges the hologram image and changes the location of the image plane. Upon stretching, these devices can switch the displayed holographic image between multiple distinct images. This work opens up the possibilities for stretchable metasurface holograms as flat devices for dynamically reconfigurable optical communication and display. It also confirms that metasurfaces on stretchable substrates can serve as platform for a variety of reconfigurable optical devices.
Yang, Chunrong; Zou, Dan; Chen, Jianchi; Zhang, Linyan; Miao, Jiarong; Huang, Dan; Du, Yuanyuan; Yang, Shu; Yang, Qianfan; Tang, Yalin
2018-03-15
Plenty of molecular circuits with specific functions have been developed; however, logic units with reconfigurability, which could simplify the circuits and speed up the information process, are rarely reported. In this work, we designed a novel reconfigurable logic unit based on a DNA-templated, potassium-concentration-dependent, supramolecular assembly, which could respond to the input stimuli of H + and K + . By inputting different concentrations of K + , the logic unit could implement three significant functions, including a half adder, a half subtractor, and a 2-to-4 decoder. Considering its reconfigurable ability and good performance, the novel prototypes developed here may serve as a promising proof of principle in molecular computers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A variable-gain output feedback control design methodology
NASA Technical Reports Server (NTRS)
Halyo, Nesim; Moerder, Daniel D.; Broussard, John R.; Taylor, Deborah B.
1989-01-01
A digital control system design technique is developed in which the control system gain matrix varies with the plant operating point parameters. The design technique is obtained by formulating the problem as an optimal stochastic output feedback control law with variable gains. This approach provides a control theory framework within which the operating range of a control law can be significantly extended. Furthermore, the approach avoids the major shortcomings of the conventional gain-scheduling techniques. The optimal variable gain output feedback control problem is solved by embedding the Multi-Configuration Control (MCC) problem, previously solved at ICS. An algorithm to compute the optimal variable gain output feedback control gain matrices is developed. The algorithm is a modified version of the MCC algorithm improved so as to handle the large dimensionality which arises particularly in variable-gain control problems. The design methodology developed is applied to a reconfigurable aircraft control problem. A variable-gain output feedback control problem was formulated to design a flight control law for an AFTI F-16 aircraft which can automatically reconfigure its control strategy to accommodate failures in the horizontal tail control surface. Simulations of the closed-loop reconfigurable system show that the approach produces a control design which can accommodate such failures with relative ease. The technique can be applied to many other problems including sensor failure accommodation, mode switching control laws and super agility.
High-Performance, Radiation-Hardened Electronics for Space Environments
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.
2007-01-01
The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog Arrays (FPAA)s for use in reconfigurable architectures. As these component/chip level technologies mature, the RHESE project emphasis shifts to focus on efforts encompassing total processor hardening techniques and board-level electronic reconfiguration techniques featuring spare and interface modularity. This phased approach to distributing emphasis between technology developments provides hardened FPGA/FPAAs for early mission infusion, then migrates to hardened, board-level, high speed processors with associated memory elements and high density storage for the longer duration missions encountered for Lunar Outpost and Mars Exploration occurring later in the Constellation schedule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Jiang, Huaiguang; Tan, Jin
This paper proposes an event-driven approach for reconfiguring distribution systems automatically. Specifically, an optimal synchrophasor sensor placement (OSSP) is used to reduce the number of synchrophasor sensors while keeping the whole system observable. Then, a wavelet-based event detection and location approach is used to detect and locate the event, which performs as a trigger for network reconfiguration. With the detected information, the system is then reconfigured using the hierarchical decentralized approach to seek for the new optimal topology. In this manner, whenever an event happens the distribution network can be reconfigured automatically based on the real-time information that is observablemore » and detectable.« less
Analysis of a hardware and software fault tolerant processor for critical applications
NASA Technical Reports Server (NTRS)
Dugan, Joanne B.
1993-01-01
Computer systems for critical applications must be designed to tolerate software faults as well as hardware faults. A unified approach to tolerating hardware and software faults is characterized by classifying faults in terms of duration (transient or permanent) rather than source (hardware or software). Errors arising from transient faults can be handled through masking or voting, but errors arising from permanent faults require system reconfiguration to bypass the failed component. Most errors which are caused by software faults can be considered transient, in that they are input-dependent. Software faults are triggered by a particular set of inputs. Quantitative dependability analysis of systems which exhibit a unified approach to fault tolerance can be performed by a hierarchical combination of fault tree and Markov models. A methodology for analyzing hardware and software fault tolerant systems is applied to the analysis of a hypothetical system, loosely based on the Fault Tolerant Parallel Processor. The models consider both transient and permanent faults, hardware and software faults, independent and related software faults, automatic recovery, and reconfiguration.
NASA Astrophysics Data System (ADS)
Mellal, Idir; Laghrouche, Mourad; Bui, Hung Tien
2017-04-01
This paper describes a non-invasive system for respiratory monitoring using a Micro Electro Mechanical Systems (MEMS) flow sensor and an IMU (Inertial Measurement Unit) accelerometer. The designed system is intended to be wearable and used in a hospital or at home to assist people with respiratory disorders. To ensure the accuracy of our system, we proposed a calibration method based on ANN (Artificial Neural Network) to compensate the temperature drift of the silicon flow sensor. The sigmoid activation functions used in the ANN model were computed with the CORDIC (COordinate Rotation DIgital Computer) algorithm. This algorithm was also used to estimate the tilt angle in body position. The design was implemented on reconfigurable platform FPGA.
Microelectromechanical Systems (MEMS) Actuators for Antenna Reconfigurability
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.
2001-01-01
A novel microelectromechanical systems (MEMS) actuator for patch antenna reconfiguration, is presented for the first time. A key feature is the capability of multi-band operation without greatly increasing the antenna element dimensions. Experimental results demonstrate that the center frequency can be reconfigured from few hundred MHz to few GHz away from the nominal operating frequency.
Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW.
Oliver, Tim; Schmidt, Bertil; Nathan, Darran; Clemens, Ralf; Maskell, Douglas
2005-08-15
Aligning hundreds of sequences using progressive alignment tools such as ClustalW requires several hours on state-of-the-art workstations. We present a new approach to compute multiple sequence alignments in far shorter time using reconfigurable hardware. This results in an implementation of ClustalW with significant runtime savings on a standard off-the-shelf FPGA.
Self-reconfigurable ship fluid-network modeling for simulation-based design
NASA Astrophysics Data System (ADS)
Moon, Kyungjin
Our world is filled with large-scale engineering systems, which provide various services and conveniences in our daily life. A distinctive trend in the development of today's large-scale engineering systems is the extensive and aggressive adoption of automation and autonomy that enable the significant improvement of systems' robustness, efficiency, and performance, with considerably reduced manning and maintenance costs, and the U.S. Navy's DD(X), the next-generation destroyer program, is considered as an extreme example of such a trend. This thesis pursues a modeling solution for performing simulation-based analysis in the conceptual or preliminary design stage of an intelligent, self-reconfigurable ship fluid system, which is one of the concepts of DD(X) engineering plant development. Through the investigations on the Navy's approach for designing a more survivable ship system, it is found that the current naval simulation-based analysis environment is limited by the capability gaps in damage modeling, dynamic model reconfiguration, and simulation speed of the domain specific models, especially fluid network models. As enablers of filling these gaps, two essential elements were identified in the formulation of the modeling method. The first one is the graph-based topological modeling method, which will be employed for rapid model reconstruction and damage modeling, and the second one is the recurrent neural network-based, component-level surrogate modeling method, which will be used to improve the affordability and efficiency of the modeling and simulation (M&S) computations. The integration of the two methods can deliver computationally efficient, flexible, and automation-friendly M&S which will create an environment for more rigorous damage analysis and exploration of design alternatives. As a demonstration for evaluating the developed method, a simulation model of a notional ship fluid system was created, and a damage analysis was performed. Next, the models representing different design configurations of the fluid system were created, and damage analyses were performed with them in order to find an optimal design configuration for system survivability. Finally, the benefits and drawbacks of the developed method were discussed based on the result of the demonstration.
Trainable hardware for dynamical computing using error backpropagation through physical media.
Hermans, Michiel; Burm, Michaël; Van Vaerenbergh, Thomas; Dambre, Joni; Bienstman, Peter
2015-03-24
Neural networks are currently implemented on digital Von Neumann machines, which do not fully leverage their intrinsic parallelism. We demonstrate how to use a novel class of reconfigurable dynamical systems for analogue information processing, mitigating this problem. Our generic hardware platform for dynamic, analogue computing consists of a reciprocal linear dynamical system with nonlinear feedback. Thanks to reciprocity, a ubiquitous property of many physical phenomena like the propagation of light and sound, the error backpropagation-a crucial step for tuning such systems towards a specific task-can happen in hardware. This can potentially speed up the optimization process significantly, offering important benefits for the scalability of neuro-inspired hardware. In this paper, we show, using one experimentally validated and one conceptual example, that such systems may provide a straightforward mechanism for constructing highly scalable, fully dynamical analogue computers.
Trainable hardware for dynamical computing using error backpropagation through physical media
NASA Astrophysics Data System (ADS)
Hermans, Michiel; Burm, Michaël; van Vaerenbergh, Thomas; Dambre, Joni; Bienstman, Peter
2015-03-01
Neural networks are currently implemented on digital Von Neumann machines, which do not fully leverage their intrinsic parallelism. We demonstrate how to use a novel class of reconfigurable dynamical systems for analogue information processing, mitigating this problem. Our generic hardware platform for dynamic, analogue computing consists of a reciprocal linear dynamical system with nonlinear feedback. Thanks to reciprocity, a ubiquitous property of many physical phenomena like the propagation of light and sound, the error backpropagation—a crucial step for tuning such systems towards a specific task—can happen in hardware. This can potentially speed up the optimization process significantly, offering important benefits for the scalability of neuro-inspired hardware. In this paper, we show, using one experimentally validated and one conceptual example, that such systems may provide a straightforward mechanism for constructing highly scalable, fully dynamical analogue computers.
Integrated Reconfigurable Intelligent Systems (IRIS) for Complex Naval Systems
2010-02-21
RKF45] and Adams Variable Step- Size Predictor - Corrector methods). While such algorithms naturally are usually used to numerically solve differential...verified by yet another function call. Due to their nature, such methods are referred to as predictor - corrector methods. While computationally expensive...CONTRACT NUMBER N00014-09- C -0394 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. Author(s) Dr. Dimitri N. Mavris Dr. Yongchang Li 5d
Reconfigurable Control Design for the Full X-33 Flight Envelope
NASA Technical Reports Server (NTRS)
Cotting, M. Christopher; Burken, John J.
2001-01-01
A reconfigurable control law for the full X-33 flight envelope has been designed to accommodate a failed control surface and redistribute the control effort among the remaining working surfaces to retain satisfactory stability and performance. An offline nonlinear constrained optimization approach has been used for the X-33 reconfigurable control design method. Using a nonlinear, six-degree-of-freedom simulation, three example failures are evaluated: ascent with a left body flap jammed at maximum deflection; entry with a right inboard elevon jammed at maximum deflection; and landing with a left rudder jammed at maximum deflection. Failure detection and identification are accomplished in the actuator controller. Failure response comparisons between the nominal control mixer and the reconfigurable control subsystem (mixer) show the benefits of reconfiguration. Single aerosurface jamming failures are considered. The cases evaluated are representative of the study conducted to prove the adequate and safe performance of the reconfigurable control mixer throughout the full flight envelope. The X-33 flight control system incorporates reconfigurable flight control in the existing baseline system.
A Medical Image Backup Architecture Based on a NoSQL Database and Cloud Computing Services.
Santos Simões de Almeida, Luan Henrique; Costa Oliveira, Marcelo
2015-01-01
The use of digital systems for storing medical images generates a huge volume of data. Digital images are commonly stored and managed on a Picture Archiving and Communication System (PACS), under the DICOM standard. However, PACS is limited because it is strongly dependent on the server's physical space. Alternatively, Cloud Computing arises as an extensive, low cost, and reconfigurable resource. However, medical images contain patient information that can not be made available in a public cloud. Therefore, a mechanism to anonymize these images is needed. This poster presents a solution for this issue by taking digital images from PACS, converting the information contained in each image file to a NoSQL database, and using cloud computing to store digital images.
Reconfigurable all-dielectric metasurface based on tunable chemical systems in aqueous solution.
Yang, Xiaoqing; Zhang, Di; Wu, Shiyue; Yin, Yang; Li, Lanshuo; Cao, Kaiyuan; Huang, Kama
2017-06-09
Dynamic control transmission and polarization properties of electromagnetic (EM) wave propagation is investigated using chemical reconfigurable all-dielectric metasurface. The metasurface is composed of cross-shaped periodical teflon tubes and inner filled chemical systems (i.e., mixtures and chemical reaction) in aqueous solution. By tuning the complex permittivity of chemical systems, the reconfigurable metasurface can be easily achieved. The transmission properties of different incident polarized waves (i.e., linear and circular polarization) were simulated and experimentally measured for static ethanol solution as volume ratio changed. Both results indicated this metasurface can serve as either tunable FSS (Frequency Selective Surface) or tunable linear-to-circular/cross Polarization Converter at required frequency range. Based on the reconfigurable laws obtained from static solutions, we developed a dynamic dielectric system and researched a typical chemical reaction with time-varying permittivity filled in the tubes experimentally. It provides new ways for realizing automatic reconfiguration of metasurface by chemical reaction system with given variation laws of permittivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, C.
Almost every computer architect dreams of achieving high system performance with low implementation costs. A multigauge machine can reconfigure its data-path width, provide parallelism, achieve better resource utilization, and sometimes can trade computational precision for increased speed. A simple experimental method is used here to capture the main characteristics of multigauging. The measurements indicate evidence of near-optimal speedups. Adapting these ideas in designing parallel processors incurs low costs and provides flexibility. Several operational aspects of designing a multigauge machine are discussed as well. Thus, this research reports the technical, economical, and operational feasibility studies of multigauging.
Robust Software Architecture for Robots
NASA Technical Reports Server (NTRS)
Aghazanian, Hrand; Baumgartner, Eric; Garrett, Michael
2009-01-01
Robust Real-Time Reconfigurable Robotics Software Architecture (R4SA) is the name of both a software architecture and software that embodies the architecture. The architecture was conceived in the spirit of current practice in designing modular, hard, realtime aerospace systems. The architecture facilitates the integration of new sensory, motor, and control software modules into the software of a given robotic system. R4SA was developed for initial application aboard exploratory mobile robots on Mars, but is adaptable to terrestrial robotic systems, real-time embedded computing systems in general, and robotic toys.
Reconfigurable Array Antenna Using Microelectromechanical Systems (MEMS) Actuators
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.
2001-01-01
The paper demonstrates a patch antenna integrated with a novel microelectromechanical systems (MEMS) actuator for reconfiguring the operating frequency. Experimental results demonstrate that the center frequency can be reconfigured by as much as 1.6 percent of the nominal operating frequency at K-Band In addition, a novel on-wafer antenna pattern measurement technique is demonstrated.
Optimization of metallic microheaters for high-speed reconfigurable silicon photonics.
Atabaki, A H; Shah Hosseini, E; Eftekhar, A A; Yegnanarayanan, S; Adibi, A
2010-08-16
The strong thermooptic effect in silicon enables low-power and low-loss reconfiguration of large-scale silicon photonics. Thermal reconfiguration through the integration of metallic microheaters has been one of the more widely used reconfiguration techniques in silicon photonics. In this paper, structural and material optimizations are carried out through heat transport modeling to improve the reconfiguration speed of such devices, and the results are experimentally verified. Around 4 micros reconfiguration time are shown for the optimized structures. Moreover, sub-microsecond reconfiguration time is experimentally demonstrated through the pulsed excitation of the microheaters. The limitation of this pulsed excitation scheme is also discussed through an accurate system-level model developed for the microheater response.
10th Annual Systems Engineering Conference: Volume 2 Wednesday
2007-10-25
intelligently optimize resource performance. Self - Healing Detect hardware/software failures and reconfigure to permit continued operations. Self ...Types Wake Ice WEAPON/PLATFORM ACOUSTICS Self -Noise Radiated Noise Beam Forming Pulse Types Submarines, surface ships, and platform sensors P r o p P r o...Computing Self -Protecting Detect internal/external attacks and protect it’s resources from exploitation. Self -Optimizing Detect sub-optimal behaviors and
NASA Astrophysics Data System (ADS)
Kazakov, Alexander; Simion, George; Kolkovsky, Valery; Adamus, Zbigniew; Karczewski, Grzegorz; Wojtowicz, Tomasz; Lyanda-Geller, Yuli; Rokhinson, Leonid
Development of a two-dimensional systems with reconfigurable one-dimensional topological superconductor channels became primary direction in experimental branch of Majorana physics. Such system would allow to probe non-Abelian properties of Majorana quasiparticles and realize the ultimate goal of Majorana research - topological qubit for topologically protected quantum computations. In order to create and exchange Majorana quasiparticles desired system may be spin-full, but fermion doubling should be lifted. These requirements may be fulfilled in domain walls (DW) which are formed during quantum Hall ferromagnet (QHF) transition when two Landau levels with opposite spin polarization become degenerate. We developed a system based on CdMnTe quantum well with engineered placement of Mn ions where exchange interaction and, consequently, QHF transition can be controlled by electrostatic gating. Using electrostatic control of exchange we create conductive channels of DWs which, unlike conventional edge channels, are not chiral and should contain both spin polarizations. We will present results on the formation of isolated DWs of various widths and discuss their transport properties. Department of Defence Office of Naval research Award N000141410339.
Reconfigurable Integrated Optoelectronics
2011-01-01
state -changing could be done also using thermo-optical, mechano-optical, magneto-optical or opto-optical inputs. The speed of reconfiguration can be fast... quantum computers, is a futuristic activity; however, Jeremy O’Brien believes that the time horizon for OQC suc- cess can be brought closer in by using ...2011 Richard Soref. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use
Reconfigurability in MDO Problem Synthesis. Part 1
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia M.; Lewis, Robert Michael
2004-01-01
Integrating autonomous disciplines into a problem amenable to solution presents a major challenge in realistic multidisciplinary design optimization (MDO). We propose a linguistic approach to MDO problem description, formulation, and solution we call reconfigurable multidisciplinary synthesis (REMS). With assistance from computer science techniques, REMS comprises an abstract language and a collection of processes that provide a means for dynamic reasoning about MDO problems in a range of contexts. The approach may be summarized as follows. Description of disciplinary data according to the rules of a grammar, followed by lexical analysis and compilation, yields basic computational components that can be assembled into various MDO problem formulations and solution algorithms, including hybrid strategies, with relative ease. The ability to re-use the computational components is due to the special structure of the MDO problem. The range of contexts for reasoning about MDO spans tasks from error checking and derivative computation to formulation and reformulation of optimization problem statements. In highly structured contexts, reconfigurability can mean a straightforward transformation among problem formulations with a single operation. We hope that REMS will enable experimentation with a variety of problem formulations in research environments, assist in the assembly of MDO test problems, and serve as a pre-processor in computational frameworks in production environments. This paper, Part 1 of two companion papers, discusses the fundamentals of REMS. Part 2 illustrates the methodology in more detail.
Reconfigurability in MDO Problem Synthesis. Part 2
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia M.; Lewis, Robert Michael
2004-01-01
Integrating autonomous disciplines into a problem amenable to solution presents a major challenge in realistic multidisciplinary design optimization (MDO). We propose a linguistic approach to MDO problem description, formulation, and solution we call reconfigurable multidisciplinary synthesis (REMS). With assistance from computer science techniques, REMS comprises an abstract language and a collection of processes that provide a means for dynamic reasoning about MDO problems in a range of contexts. The approach may be summarized as follows. Description of disciplinary data according to the rules of a grammar, followed by lexical analysis and compilation, yields basic computational components that can be assembled into various MDO problem formulations and solution algorithms, including hybrid strategies, with relative ease. The ability to re-use the computational components is due to the special structure of the MDO problem. The range of contexts for reasoning about MDO spans tasks from error checking and derivative computation to formulation and reformulation of optimization problem statements. In highly structured contexts, reconfigurability can mean a straightforward transformation among problem formulations with a single operation. We hope that REMS will enable experimentation with a variety of problem formulations in research environments, assist in the assembly of MDO test problems, and serve as a pre-processor in computational frameworks in production environments. Part 1 of two companion papers, discusses the fundamentals of REMS. This paper, Part 2 illustrates the methodology in more detail.
NASA Astrophysics Data System (ADS)
Cervero, T.; Gómez, A.; López, S.; Sarmiento, R.; Dondo, J.; Rincón, F.; López, J. C.
2013-05-01
One of the limiting factors that have prevented a widely dissemination of the reconfigurable technology is the absence of an appropriate model for certain target applications capable of offering a reliable control. Moreover, the lack of flexible and easy-to-use scheduling and management systems are also relevant drawbacks to be considered. Under static scenarios, it is relatively easy to schedule and manage the reconfiguration process since all the variations corresponding to predetermined and well-known tasks. However, the difficulty increases when the adaptation needs of the overall system change semi-randomly according to the environmental fluctuations. In this context, this work proposes a change in the paradigm of dynamically reconfigurable systems, by attending to the dynamically reconfigurable control problematic as a whole, in which the scheduling and the placement issues are packed together as a hierarchical management structure, interacting together as one entity from the system point of view, but performing their tasks with certain degree of independence each other. In this sense, the top hierarchical level corresponds with a dynamic scheduler in charge of planning and adjusting all the reconfigurable modules according to the variations of the external stimulus. The lower level interacts with the physical layer of the device by means of instantiating, relocating, removing a reconfigurable module following the scheduler's instructions. In regards to how fast is the proposed solution, the total partial reconfiguration time achieved with this proposal has been measured and compared with other two approaches: 1) using traditional Xilinx's tools; 2) using an optimized version of the Xilinx's drivers. The collected numbers demonstrate that our solution reaches a gain up to 10 times faster than the other approaches.
NASA Astrophysics Data System (ADS)
Teodor, F.; Marinescu, V.; Epureanu, A.
2016-11-01
Modeling of reconfigurable manufacturing systems would have done using existing Petri net types, but the complexity and dynamics of the new manufacturing system, mainly data reconfiguration feature, required looking for a more compact representation with many variables that to model as accurately not only the normal operation of the production system but can capture and model and reconfiguration process. Thus, it was necessary to create a new class of Petri nets, called RPD3D (Developed Petri nets with three dimensional) showing the name of both lineage (new class derived from Petri nets developed, created in 2000 by Prof. Dr. Ing Vasile Marinescu in his doctoral thesis) [1], but the most important of the new features defining (transformation from one 2D model into a 3D model).The idea was to introduce the classical model of a Petri third dimension to be able to overlay multiple levels (layers) formed in 2D or 3D Petri nets that interact with each other (receiving or giving commands to enable or disable the various modules together simulating the operation of reconfigurable manufacturing systems). The aim is to present a new type of Petri nets called RPD3D - Developed Petri three-dimensional model used for optimal control and simulation of reconfigurable manufacturing systems manufacture of products such systems.
Research in the design of high-performance reconfigurable systems
NASA Technical Reports Server (NTRS)
Mcewan, S. D.; Spry, A. J.
1985-01-01
Computer aided design and computer aided manufacturing have the potential for greatly reducing the cost and lead time in the development of VLSI components. This potential paves the way for the design and fabrication of a wide variety of economically feasible high level functional units. It was observed that current computer systems have only a limited capacity to absorb new VLSI component types other than memory, microprocessors, and a relatively small number of other parts. The first purpose is to explore a system design which is capable of effectively incorporating a considerable number of VLSI part types and will both increase the speed of computation and reduce the attendant programming effort. A second purpose is to explore design techniques for VLSI parts which when incorporated by such a system will result in speeds and costs which are optimal. The proposed work may lay the groundwork for future efforts in the extensive simulation and measurements of the system's cost effectiveness and lead to prototype development.
Optimal Redundancy Management in Reconfigurable Control Systems Based on Normalized Nonspecificity
NASA Technical Reports Server (NTRS)
Wu, N.Eva; Klir, George J.
1998-01-01
In this paper the notion of normalized nonspecificity is introduced. The nonspecifity measures the uncertainty of the estimated parameters that reflect impairment in a controlled system. Based on this notion, a quantity called a reconfiguration coverage is calculated. It represents the likelihood of success of a control reconfiguration action. This coverage links the overall system reliability to the achievable and required control, as well as diagnostic performance. The coverage, when calculated on-line, is used for managing the redundancy in the system.
Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less
Short-Term Load Forecasting-Based Automatic Distribution Network Reconfiguration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In a traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of the load forecasting technique can provide an accurate prediction of the load power that will happen in a future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during a longer time period instead of using a snapshot of the load at the time when the reconfiguration happens; thus, the distribution system operatormore » can use this information to better operate the system reconfiguration and achieve optimal solutions. This paper proposes a short-term load forecasting approach to automatically reconfigure distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with a forecaster based on support vector regression and parallel parameters optimization. The network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum amount of loss at the future time. The simulation results validate and evaluate the proposed approach.« less
DNA-programmed dynamic assembly of quantum dots for molecular computation.
He, Xuewen; Li, Zhi; Chen, Muzi; Ma, Nan
2014-12-22
Despite the widespread use of quantum dots (QDs) for biosensing and bioimaging, QD-based bio-interfaceable and reconfigurable molecular computing systems have not yet been realized. DNA-programmed dynamic assembly of multi-color QDs is presented for the construction of a new class of fluorescence resonance energy transfer (FRET)-based QD computing systems. A complete set of seven elementary logic gates (OR, AND, NOR, NAND, INH, XOR, XNOR) are realized using a series of binary and ternary QD complexes operated by strand displacement reactions. The integration of different logic gates into a half-adder circuit for molecular computation is also demonstrated. This strategy is quite versatile and straightforward for logical operations and would pave the way for QD-biocomputing-based intelligent molecular diagnostics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Meyyappan, Meyya; Yan, Jerry (Technical Monitor)
2000-01-01
Advanced miniaturization, a key thrust area to enable new science and exploration missions, provides ultrasmall sensors, power sources, communication, navigation, and propulsion systems with very low mass, volume, and power consumption. Revolutions in electronics and computing will allow reconfigurable, autonomous, 'thinking' spacecraft. Nanotechnology presents a whole new spectrum of opportunities to build device components and systems for entirely new space architectures: (1) networks of ultrasmall probes on planetary surfaces; (2) micro-rovers that drive, hop, fly, and burrow; and (3) collections of microspacecraft making a variety of measurements.
A High-Performance Reconfigurable Fabric for Cognitive Information Processing
2010-12-01
receives a data token from its control input (shown as a horizontal arrow above). The value of this data token is used to select an input port. The...dual of a merge. It receives a data token from its control input (shown as a horizontal arrow above). The value of this data token is used to select...Computer-Aided Design of Intergrated Circuits and Systems, Vol. 26, No. 2, February 2007. [12] Cadence Design Systems. Clock Domain Crossing: Closing the
Architecture Specification for PAVE PILLAR Avionics
1987-01-01
PAVE PILLAR system is 99% fault detection. The percent fault detection is determined by the following computation. The number of verified failures de ...reconfiguration or reparameterization requi’red to support manual operations rests w’ith the Mission Supervi’sor. 3.3.8 corm~utr _ De in 3.3.8.1 Hither...1Order Ti.rie Su ’, .S.yStem The Operational Flight Program (OFP) will be de - veloped in accordance with the requirements of the Ada (ANSI/ MIL-STD
Productivity increase through implementation of CAD/CAE workstation
NASA Technical Reports Server (NTRS)
Bromley, L. K.
1985-01-01
The tracking and communication division computer aided design/computer aided engineering system is now operational. The system is utilized in an effort to automate certain tasks that were previously performed manually. These tasks include detailed test configuration diagrams of systems under certification test in the ESTL, floorplan layouts of future planned laboratory reconfigurations, and other graphical documentation of division activities. The significant time savings achieved with this CAD/CAE system are examined: (1) input of drawings and diagrams; (2) editing of initial drawings; (3) accessibility of the data; and (4) added versatility. It is shown that the Applicon CAD/CAE system, with its ease of input and editing, the accessibility of data, and its added versatility, has made more efficient many of the necessary but often time-consuming tasks associated with engineering design and testing.
An intelligent control system for failure detection and controller reconfiguration
NASA Technical Reports Server (NTRS)
Biswas, Saroj K.
1994-01-01
We present an architecture of an intelligent restructurable control system to automatically detect failure of system components, assess its impact on system performance and safety, and reconfigure the controller for performance recovery. Fault detection is based on neural network associative memories and pattern classifiers, and is implemented using a multilayer feedforward network. Details of the fault detection network along with simulation results on health monitoring of a dc motor have been presented. Conceptual developments for fault assessment using an expert system and controller reconfiguration using a neural network are outlined.
Research on NC motion controller based on SOPC technology
NASA Astrophysics Data System (ADS)
Jiang, Tingbiao; Meng, Biao
2006-11-01
With the rapid development of the digitization and informationization, the application of numerical control technology in the manufacturing industry becomes more and more important. However, the conventional numerical control system usually has some shortcomings such as the poor in system openness, character of real-time, cutability and reconfiguration. In order to solve these problems, this paper investigates the development prospect and advantage of the application in numerical control area with system-on-a-Programmable-Chip (SOPC) technology, and puts forward to a research program approach to the NC controller based on SOPC technology. Utilizing the characteristic of SOPC technology, we integrate high density logic device FPGA, memory SRAM, and embedded processor ARM into a single programmable logic device. We also combine the 32-bit RISC processor with high computing capability of the complicated algorithm with the FPGA device with strong motivable reconfiguration logic control ability. With these steps, we can greatly resolve the defect described in above existing numerical control systems. For the concrete implementation method, we use FPGA chip embedded with ARM hard nuclear processor to construct the control core of the motion controller. We also design the peripheral circuit of the controller according to the requirements of actual control functions, transplant real-time operating system into ARM, design the driver of the peripheral assisted chip, develop the application program to control and configuration of FPGA, design IP core of logic algorithm for various NC motion control to configured it into FPGA. The whole control system uses the concept of modular and structured design to develop hardware and software system. Thus the NC motion controller with the advantage of easily tailoring, highly opening, reconfigurable, and expandable can be implemented.
The WorkPlace distributed processing environment
NASA Technical Reports Server (NTRS)
Ames, Troy; Henderson, Scott
1993-01-01
Real time control problems require robust, high performance solutions. Distributed computing can offer high performance through parallelism and robustness through redundancy. Unfortunately, implementing distributed systems with these characteristics places a significant burden on the applications programmers. Goddard Code 522 has developed WorkPlace to alleviate this burden. WorkPlace is a small, portable, embeddable network interface which automates message routing, failure detection, and re-configuration in response to failures in distributed systems. This paper describes the design and use of WorkPlace, and its application in the construction of a distributed blackboard system.
Dynamically Reconfigurable Approach to Multidisciplinary Problems
NASA Technical Reports Server (NTRS)
Alexandrov, Natalie M.; Lewis, Robert Michael
2003-01-01
The complexity and autonomy of the constituent disciplines and the diversity of the disciplinary data formats make the task of integrating simulations into a multidisciplinary design optimization problem extremely time-consuming and difficult. We propose a dynamically reconfigurable approach to MDO problem formulation wherein an appropriate implementation of the disciplinary information results in basic computational components that can be combined into different MDO problem formulations and solution algorithms, including hybrid strategies, with relative ease. The ability to re-use the computational components is due to the special structure of the MDO problem. We believe that this structure can and should be used to formulate and solve optimization problems in the multidisciplinary context. The present work identifies the basic computational components in several MDO problem formulations and examines the dynamically reconfigurable approach in the context of a popular class of optimization methods. We show that if the disciplinary sensitivity information is implemented in a modular fashion, the transfer of sensitivity information among the formulations under study is straightforward. This enables not only experimentation with a variety of problem formations in a research environment, but also the flexible use of formulations in a production design environment.
Security Primitives for Reconfigurable Hardware-Based Systems
2010-05-01
work, we propose security primitives using ideas centered around the notion of “moats and drawbridges .” The primitives encompass four design properties...Santa Bar- bara, CA 93106; email: sherwood@cs.ucsb.edu; R. Kastner, Department of Computer Science and Engineering , University of California, San...fingerprint reader), the other to control the ethernet IP core—and an AES encryption engine used by both of the processor cores. These cores are all implemented
CARE 3 user-friendly interface user's guide
NASA Technical Reports Server (NTRS)
Martensen, A. L.
1987-01-01
CARE 3 predicts the unreliability of highly reliable reconfigurable fault-tolerant systems that include redundant computers or computer systems. CARE3MENU is a user-friendly interface used to create an input for the CARE 3 program. The CARE3MENU interface has been designed to minimize user input errors. Although a CARE3MENU session may be successfully completed and all parameters may be within specified limits or ranges, the CARE 3 program is not guaranteed to produce meaningful results if the user incorrectly interprets the CARE 3 stochastic model. The CARE3MENU User Guide provides complete information on how to create a CARE 3 model with the interface. The CARE3MENU interface runs under the VAX/VMS operating system.
Development and implementation of a PACS network and resource manager
NASA Astrophysics Data System (ADS)
Stewart, Brent K.; Taira, Ricky K.; Dwyer, Samuel J., III; Huang, H. K.
1992-07-01
Clinical acceptance of PACS is predicated upon maximum uptime. Upon component failure, detection, diagnosis, reconfiguration and repair must occur immediately. Our current PACS network is large, heterogeneous, complex and wide-spread geographically. The overwhelming number of network devices, computers and software processes involved in a departmental or inter-institutional PACS makes development of tools for network and resource management critical. The authors have developed and implemented a comprehensive solution (PACS Network-Resource Manager) using the OSI Network Management Framework with network element agents that respond to queries and commands for network management stations. Managed resources include: communication protocol layers for Ethernet, FDDI and UltraNet; network devices; computer and operating system resources; and application, database and network services. The Network-Resource Manager is currently being used for warning, fault, security violation and configuration modification event notification. Analysis, automation and control applications have been added so that PACS resources can be dynamically reconfigured and so that users are notified when active involvement is required. Custom data and error logging have been implemented that allow statistics for each PACS subsystem to be charted for performance data. The Network-Resource Manager allows our departmental PACS system to be monitored continuously and thoroughly, with a minimal amount of personal involvement and time.
GPC-Based Stable Reconfigurable Control
NASA Technical Reports Server (NTRS)
Soloway, Don; Shi, Jian-Jun; Kelkar, Atul
2004-01-01
This paper presents development of multi-input multi-output (MIMO) Generalized Pre-dictive Control (GPC) law and its application to reconfigurable control design in the event of actuator saturation. A Controlled Auto-Regressive Integrating Moving Average (CARIMA) model is used to describe the plant dynamics. The control law is derived using input-output description of the system and is also related to the state-space form of the model. The stability of the GPC control law without reconfiguration is first established using Riccati-based approach and state-space formulation. A novel reconfiguration strategy is developed for the systems which have actuator redundancy and are faced with actuator saturation type failure. An elegant reconfigurable control design is presented with stability proof. Several numerical examples are presented to demonstrate the application of various results.
NASA Technical Reports Server (NTRS)
Shen, Wei-Min (Inventor); Kovac, Robert M. (Inventor)
2012-01-01
Designs of single-end-operative reconfigurable genderless connectors that include a base, a plurality of movable jaws that are formed on the base and can engage to the jaws of another connector, and an actuator that is mounted on the base and can engage and move the jaws of the reconfigurable connector to connect the reconfigurable connector with another connector.
Flight Model of the `Flying Laptop' OBC and Reconfiguration Unit
NASA Astrophysics Data System (ADS)
Eickhoff, Jens; Stratton, Sam; Butz, Pius; Cook, Barry; Walker, Paul; Uryu, Alexander; Lengowski, Michael; Roser, Hans-Peter
2012-08-01
As already published in papers at the DASIA conferences 2010 in Budapest [1] and 2011 in Malta [2], the University of Stuttgart, Germany, is developing an advanced 3-axis stabilized small satellite applying industry standards for command/control techniques, onboard software design and onboard computer components. The satellite has a launch mass of approx. 120kg. One of the main challenges was the development of an ultra compact and performing onboard computer (OBC), which was intended to support an RTEMS operating system, a PUS standard based onboard software (OBSW) and CCSDS standard based ground/space communication. The developed architecture is based on 4 main elements (see [1, 2] and Figure 3) which are developed in cooperation with industrial partners:• the OBC core board based on the LEON3 FT architecture,• an I/O Board for all OBC digital interfaces to S/C equipment,• a CCSDS TC/TM decoder/encoder board,• reconfiguration unit being embedded in the satellite power control and distribution unit PCDU.In the meantime the EM / Breadboard units of the computer have been tested intensively including first HW/SW integration tests in a Satellite Testbench (see Figure 2). The FM HW elements from the co-authoring suppliers are under assembly in Stuttgart.
A Reconfigurable Communications System for Small Spacecraft
NASA Technical Reports Server (NTRS)
Chu, Pong P.; Kifle, Muli
2004-01-01
Two trends of NASA missions are the use of multiple small spacecraft and the development of an integrated space network. To achieve these goals, a robust and agile communications system is needed. Advancements in field programmable gate array (FPGA) technology have made it possible to incorporate major communication and network functionalities in FPGA chips; thus this technology has great potential as the basis for a reconfigurable communications system. This report discusses the requirements of future space communications, reviews relevant issues, and proposes a methodology to design and construct a reconfigurable communications system for small scientific spacecraft.
Operator procedure verification with a rapidly reconfigurable simulator
NASA Technical Reports Server (NTRS)
Iwasaki, Yumi; Engelmore, Robert; Fehr, Gary; Fikes, Richard
1994-01-01
Generating and testing procedures for controlling spacecraft subsystems composed of electro-mechanical and computationally realized elements has become a very difficult task. Before a spacecraft can be flown, mission controllers must envision a great variety of situations the flight crew may encounter during a mission and carefully construct procedures for operating the spacecraft in each possible situation. If, despite extensive pre-compilation of control procedures, an unforeseen situation arises during a mission, the mission controller must generate a new procedure for the flight crew in a limited amount of time. In such situations, the mission controller cannot systematically consider and test alternative procedures against models of the system being controlled, because the available simulator is too large and complex to reconfigure, run, and analyze quickly. A rapidly reconfigurable simulation environment that can execute a control procedure and show its effects on system behavior would greatly facilitate generation and testing of control procedures both before and during a mission. The How Things Work project at Stanford University has developed a system called DME (Device Modeling Environment) for modeling and simulating the behavior of electromechanical devices. DME was designed to facilitate model formulation and behavior simulation of device behavior including both continuous and discrete phenomena. We are currently extending DME for use in testing operator procedures, and we have built a knowledge base for modeling the Reaction Control System (RCS) of the space shuttle as a testbed. We believe that DME can facilitate design of operator procedures by providing mission controllers with a simulation environment that meets all these requirements.
Milestones on the way to a reconfigurable automotive instrument cluster
NASA Astrophysics Data System (ADS)
Knoll, Peter M.; Kosmowski, Bogdan B.
2002-06-01
Nowadays, the car driver are faced with a rapidly increasing flood of information. In addition to established information systems (car radio, vehicle monitoring, mobile phones), high class vehicles feature navigation systems almost as standard. In the current decade, driver assistance and collision avoidance systems will appear in vehicles. Hence, there is an increasing demand for supplying the driver with more information that help him to drive safer and more economical. The price decline in the computer market and the availability of powerful graphic hard- and software concepts make it possible to enhance the classical functions of the instrument board to an interactive multifunctional information panel - an interface between information systems of the car and the driver. Therefore, the question of additional visual and cognitive stress, and a possible distraction of the driver by the large amount of information, and its complexity becomes predominant. Reconfigurable instruments, based on a microprocessor controlled active matrix color display, provide a powerful alternative to the usual mechanical/electromechanical instrument clusters in vehicles. They will help to strengthen passive safety, they adapt to user and situation requirements, and they are easy to install, to configure, and to maintain. Reconfigurable instruments in future cars will have a high impact on traffic since they can provide the driver with much more information, presenting it in a way that is flexibly matched to the importance of particular data and to the ergonomic properties of the driver. The functions are manifold and span from classical driver information like speed to navigation prompts and ultimately to video and multimedia access.
On Convergence of Development Costs and Cost Models for Complex Spaceflight Instrument Electronics
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Patel, Umeshkumar D.; Kasa, Robert L.; Hestnes, Phyllis; Brown, Tammy; Vootukuru, Madhavi
2008-01-01
Development costs of a few recent spaceflight instrument electrical and electronics subsystems have diverged from respective heritage cost model predictions. The cost models used are Grass Roots, Price-H and Parametric Model. These cost models originated in the military and industry around 1970 and were successfully adopted and patched by NASA on a mission-by-mission basis for years. However, the complexity of new instruments recently changed rapidly by orders of magnitude. This is most obvious in the complexity of representative spaceflight instrument electronics' data system. It is now required to perform intermediate processing of digitized data apart from conventional processing of science phenomenon signals from multiple detectors. This involves on-board instrument formatting of computational operands from row data for example, images), multi-million operations per second on large volumes of data in reconfigurable hardware (in addition to processing on a general purpose imbedded or standalone instrument flight computer), as well as making decisions for on-board system adaptation and resource reconfiguration. The instrument data system is now tasked to perform more functions, such as forming packets and instrument-level data compression of more than one data stream, which are traditionally performed by the spacecraft command and data handling system. It is furthermore required that the electronics box for new complex instruments is developed for one-digit watt power consumption, small size and that it is light-weight, and delivers super-computing capabilities. The conflict between the actual development cost of newer complex instruments and its electronics components' heritage cost model predictions seems to be irreconcilable. This conflict and an approach to its resolution are addressed in this paper by determining the complexity parameters, complexity index, and their use in enhanced cost model.
Data flow language and interpreter for a reconfigurable distributed data processor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurt, A.D.; Heath, J.R.
1982-01-01
An analytic language and an interpreter whereby an applications data flow graph may serve as an input to a reconfigurable distributed data processor is proposed. The architecture considered consists of a number of loosely coupled computing elements (CES) which may be linked to data and file memories through fully nonblocking interconnect networks. The real-time performance of such an architecture depends upon its ability to alter its topology in response to changes in application, asynchronous data rates and faults. Such a data flow language enhances the versatility of a reconfigurable architecture by allowing the user to specify the machine's topology atmore » a very high level. 11 references.« less
Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios; Alameh, Kamal
2013-07-01
In this paper, we propose and experimentally demonstrate a free-space based high-speed reconfigurable card-to-card optical interconnect architecture with broadcast capability, which is required for control functionalities and efficient parallel computing applications. Experimental results show that 10 Gb/s data can be broadcast to all receiving channels for up to 30 cm with a worst-case receiver sensitivity better than -12.20 dBm. In addition, arbitrary multicasting with the same architecture is also investigated. 10 Gb/s reconfigurable point-to-point link and multicast channels are simultaneously demonstrated with a measured receiver sensitivity power penalty of ~1.3 dB due to crosstalk.
Reconfigurable fault tolerant avionics system
NASA Astrophysics Data System (ADS)
Ibrahim, M. M.; Asami, K.; Cho, Mengu
This paper presents the design of a reconfigurable avionics system based on modern Static Random Access Memory (SRAM)-based Field Programmable Gate Array (FPGA) to be used in future generations of nano satellites. A major concern in satellite systems and especially nano satellites is to build robust systems with low-power consumption profiles. The system is designed to be flexible by providing the capability of reconfiguring itself based on its orbital position. As Single Event Upsets (SEU) do not have the same severity and intensity in all orbital locations, having the maximum at the South Atlantic Anomaly (SAA) and the polar cusps, the system does not have to be fully protected all the time in its orbit. An acceptable level of protection against high-energy cosmic rays and charged particles roaming in space is provided within the majority of the orbit through software fault tolerance. Check pointing and roll back, besides control flow assertions, is used for that level of protection. In the minority part of the orbit where severe SEUs are expected to exist, a reconfiguration for the system FPGA is initiated where the processor systems are triplicated and protection through Triple Modular Redundancy (TMR) with feedback is provided. This technique of reconfiguring the system as per the level of the threat expected from SEU-induced faults helps in reducing the average dynamic power consumption of the system to one-third of its maximum. This technique can be viewed as a smart protection through system reconfiguration. The system is built on the commercial version of the (XC5VLX50) Xilinx Virtex5 FPGA on bulk silicon with 324 IO. Simulations of orbit SEU rates were carried out using the SPENVIS web-based software package.
Cloud computing in medical imaging.
Kagadis, George C; Kloukinas, Christos; Moore, Kevin; Philbin, Jim; Papadimitroulas, Panagiotis; Alexakos, Christos; Nagy, Paul G; Visvikis, Dimitris; Hendee, William R
2013-07-01
Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing.
Implementation of Multispectral Image Classification on a Remote Adaptive Computer
NASA Technical Reports Server (NTRS)
Figueiredo, Marco A.; Gloster, Clay S.; Stephens, Mark; Graves, Corey A.; Nakkar, Mouna
1999-01-01
As the demand for higher performance computers for the processing of remote sensing science algorithms increases, the need to investigate new computing paradigms its justified. Field Programmable Gate Arrays enable the implementation of algorithms at the hardware gate level, leading to orders of m a,gnitude performance increase over microprocessor based systems. The automatic classification of spaceborne multispectral images is an example of a computation intensive application, that, can benefit from implementation on an FPGA - based custom computing machine (adaptive or reconfigurable computer). A probabilistic neural network is used here to classify pixels of of a multispectral LANDSAT-2 image. The implementation described utilizes Java client/server application programs to access the adaptive computer from a remote site. Results verify that a remote hardware version of the algorithm (implemented on an adaptive computer) is significantly faster than a local software version of the same algorithm implemented on a typical general - purpose computer).
Short-Term Load Forecasting Based Automatic Distribution Network Reconfiguration: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Ding, Fei; Zhang, Yingchen
In the traditional dynamic network reconfiguration study, the optimal topology is determined at every scheduled time point by using the real load data measured at that time. The development of load forecasting technique can provide accurate prediction of load power that will happen in future time and provide more information about load changes. With the inclusion of load forecasting, the optimal topology can be determined based on the predicted load conditions during the longer time period instead of using the snapshot of load at the time when the reconfiguration happens, and thus it can provide information to the distribution systemmore » operator (DSO) to better operate the system reconfiguration to achieve optimal solutions. Thus, this paper proposes a short-term load forecasting based approach for automatically reconfiguring distribution systems in a dynamic and pre-event manner. Specifically, a short-term and high-resolution distribution system load forecasting approach is proposed with support vector regression (SVR) based forecaster and parallel parameters optimization. And the network reconfiguration problem is solved by using the forecasted load continuously to determine the optimal network topology with the minimum loss at the future time. The simulation results validate and evaluate the proposed approach.« less
NASA Technical Reports Server (NTRS)
Mata, Carlos T.
2003-01-01
Anadigm(registered trademark) today announced that ASRC Aerospace Corporation has designed Anadigm's dynamically reconfigurable Field Programmable Analog Array (FPAA) technology into an advanced data acquisition system developed under contract for NASA. ASRC Aerospace designed in the Anadigm(registered trademark) FPAA to provide complex analog signal conditioning in its intelligent, self-calibrating, and self-healing advanced data acquisition system (ADAS). The ADAS has potential applications in industrial, manufacturing, and aerospace markets. This system offers highly reliable operation while reducing the need for user interaction. Anadigm(registered trademark)'s dynamically reconfigurable FPAAs can be reconfigured in-system by the designer or on the fly by a microprocessor. A single device can thus be programmed to implement multiple analog functions and/or to adapt on-the-fly to maintain precision operation despite system degradation and aging. In the case of the ASRC advanced data acquisition system, the FPAA helps ensure that the system will continue to operating at 100% functionality despite changes in the environment, component degradation, and/or component failures.
Reconfigurable Sensor Monitoring System
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)
2017-01-01
A reconfigurable sensor monitoring system includes software tunable filters, each of which is programmable to condition one type of analog signal. A processor coupled to the software tunable filters receives each type of analog signal so-conditioned.
Reliability Assessment of Reconfigurable Flight Control Systems Using Sure and Assist
NASA Technical Reports Server (NTRS)
Wu, N. Eva
1992-01-01
This paper presents a reliability assessment of Reconfigurable Flight Control Systems using Semi-Markov Unreliability Range Evaluator (SURE) and Abstract Semi-Markov Specification Interface to the SURE Tool (ASSIST).
An FPGA-based reconfigurable DDC algorithm
NASA Astrophysics Data System (ADS)
Juszczyk, B.; Kasprowicz, G.
2016-09-01
This paper describes implementation of reconfigurable digital down converter in an FPGA structure. System is designed to work with quadrature signals. One of the main criteria of the project was to provied wide range of reconfiguration in order to fulfill various application rage. Potential applications include: software defined radio receiver, passive noise radars and measurement data compression. This document contains general system overview, short description of hardware used in the project and gateware implementation.
Synchronized Pair Configuration in Virtualization-Based Lab for Learning Computer Networks
ERIC Educational Resources Information Center
Kongcharoen, Chaknarin; Hwang, Wu-Yuin; Ghinea, Gheorghita
2017-01-01
More studies are concentrating on using virtualization-based labs to facilitate computer or network learning concepts. Some benefits are lower hardware costs and greater flexibility in reconfiguring computer and network environments. However, few studies have investigated effective mechanisms for using virtualization fully for collaboration.…
The SMS4 cryptographic system design based on dynamic partial self-reconfiguration technology
NASA Astrophysics Data System (ADS)
Wang, Jianxin; Gao, Xianwei; Li, Xiuying; Sui, Meili
2013-03-01
This paper describes SMS4 algorithm by using dynamic partial self-reconfiguration. The design is implemented on Xilinx VirtexII-Pro XC2VP30 FPGA devices. The partial self-reconfiguration encryption/decryption module data throughput is up to 50Mb/s, key expansion and encryption/decryption modules use 1606 and 1570 slices respectively, and the resource utilization ratio of the key expansion by using partial self-reconfiguration technology is less 32.03% and slices are less 757 than the non-reconfiguration technology. SMS4 implementation gets a good balance between high performance and low complexity in area. The theoretical and practical research of dynamic partial self-reconfiguration has a broad space for development and application prospect.
Communication in neuronal networks.
Laughlin, Simon B; Sejnowski, Terrence J
2003-09-26
Brains perform with remarkable efficiency, are capable of prodigious computation, and are marvels of communication. We are beginning to understand some of the geometric, biophysical, and energy constraints that have governed the evolution of cortical networks. To operate efficiently within these constraints, nature has optimized the structure and function of cortical networks with design principles similar to those used in electronic networks. The brain also exploits the adaptability of biological systems to reconfigure in response to changing needs.
Low-Cost Space Hardware and Software
NASA Technical Reports Server (NTRS)
Shea, Bradley Franklin
2013-01-01
The goal of this project is to demonstrate and support the overall vision of NASA's Rocket University (RocketU) through the design of an electrical power system (EPS) monitor for implementation on RUBICS (Rocket University Broad Initiatives CubeSat), through the support for the CHREC (Center for High-Performance Reconfigurable Computing) Space Processor, and through FPGA (Field Programmable Gate Array) design. RocketU will continue to provide low-cost innovations even with continuous cuts to the budget.
Architectural evaluation of dynamic and partial reconfigurable systems designed with DREAMS tool
NASA Astrophysics Data System (ADS)
Otero, Andrés.; Gallego, Ángel; de la Torre, Eduardo; Riesgo, Teresa
2013-05-01
Benefits of dynamic and partial reconfigurable systems are increasingly being more accepted by the industry. For this reason, SRAM-based FPGA manufacturers have improved, or even included for the first time, the support they offer for the design of this kind of systems. However, commercial tools still offer a poor flexibility, which leads to a limited efficiency. This is witnessed by the overhead introduced by the communication primitives, as well as by the inability to relocate reconfigurable modules, among others. For this reason, authors have proposed an academic design tool called DREAMS, which targets the design of dynamically reconfigurable systems. In this paper, main features offered by DREAMS are described, comparing them with existing commercial and academic tools. Moreover, a graphic user interface (GUI) is originally described in this work, with the aim of simplifying the design process, as well as to hide the low level device dependent details to the system designer. The overall goal is to increase the designer productivity. Using the graphic interface, different reconfigurable architectures are provided as design examples. Among them, both conventional slot-based architectures and mesh type designs have been included.
Reconfigurable nanoscale spin-wave directional coupler
Wang, Qi; Pirro, Philipp; Verba, Roman; Slavin, Andrei; Hillebrands, Burkard; Chumak, Andrii V.
2018-01-01
Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices. PMID:29376117
Radiation Tolerant Intelligent Memory Stack (RTIMS)
NASA Technical Reports Server (NTRS)
Ng, Tak-kwong; Herath, Jeffrey A.
2006-01-01
The Radiation Tolerant Intelligent Memory Stack (RTIMS), suitable for both geostationary and low earth orbit missions, has been developed. The memory module is fully functional and undergoing environmental and radiation characterization. A self-contained flight-like module is expected to be completed in 2006. RTIMS provides reconfigurable circuitry and 2 gigabits of error corrected or 1 gigabit of triple redundant digital memory in a small package. RTIMS utilizes circuit stacking of heterogeneous components and radiation shielding technologies. A reprogrammable field programmable gate array (FPGA), six synchronous dynamic random access memories, linear regulator, and the radiation mitigation circuitries are stacked into a module of 42.7mm x 42.7mm x 13.00mm. Triple module redundancy, current limiting, configuration scrubbing, and single event function interrupt detection are employed to mitigate radiation effects. The mitigation techniques significantly simplify system design. RTIMS is well suited for deployment in real-time data processing, reconfigurable computing, and memory intensive applications.
Reconfigurable nanoscale spin-wave directional coupler.
Wang, Qi; Pirro, Philipp; Verba, Roman; Slavin, Andrei; Hillebrands, Burkard; Chumak, Andrii V
2018-01-01
Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices.
Reconfigurable microfluidic pump enabled by opto-electrical-thermal transduction
NASA Astrophysics Data System (ADS)
Takeuchi, Masaru; Hagiwara, Masaya; Haulot, Gauvain; Ho, Chih-Ming
2013-10-01
Flexible integration of a microfluidic system comprising pumps, valves, and microchannels was realized by an optoelectronic reconfigurable microchannels (OERM) technique. Projecting a low light fluidic device pattern—e.g., pumps, valves, and channels—onto an OERM platform generates Joule heating and melts the substrate in the bright area on the platform; thus, the fluidic system can be reconfigured by changing the projected light pattern. Hexadecane was used as the substrate of the microfluidic system. The volume change of hexadecane during the liquid-solid phase transition was utilized to generate pumping pressure. The system can pump nanoliters of water within several seconds.
Compact Method for Modeling and Simulation of Memristor Devices
2011-08-01
single-valued equations. 15. SUBJECT TERMS Memristor, Neuromorphic , Cognitive, Computing, Memory, Emerging Technology, Computational Intelligence 16...resistance state depends on its previous state and present electrical biasing conditions, and when combined with transistors in a hybrid chip ...computers, reconfigurable electronics and neuromorphic computing [3,4]. According to Chua [4], the memristor behaves like a linear resistor with
NASA Astrophysics Data System (ADS)
Crutcher, Richard I.; Jones, R. W.; Moore, Michael R.; Smith, S. F.; Tolley, Alan L.; Rochelle, Robert W.
1997-02-01
A prototype 'smart' repeater that provides interoperability capabilities for radio communication systems in multi-agency and multi-user scenarios is being developed by the Oak Ridge National Laboratory. The smart repeater functions as a deployable communications platform that can be dynamically reconfigured to cross-link the radios of participating federal, state, and local government agencies. This interconnection capability improves the coordination and execution of multi-agency operations, including coordinated law enforcement activities and general emergency or disaster response scenarios. The repeater provides multiple channels of operation in the 30-50, 118-136, 138-174, and 403-512 MHz land mobile communications and aircraft bands while providing the ability to cross-connect among multiple frequencies, bands, modulation types, and encryption formats. Additionally, two telephone interconnects provide links to the fixed and cellular telephone networks. The 800- and 900-MHz bands are not supported by the prototype, but the modular design of the system accommodates future retrofits to extend frequency capabilities with minimal impact to the system. Configuration of the repeater is through a portable personal computer with a Windows-based graphical interface control screen that provides dynamic reconfiguration of network interconnections and formats.
Solving Equations of Multibody Dynamics
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Lim, Christopher
2007-01-01
Darts++ is a computer program for solving the equations of motion of a multibody system or of a multibody model of a dynamic system. It is intended especially for use in dynamical simulations performed in designing and analyzing, and developing software for the control of, complex mechanical systems. Darts++ is based on the Spatial-Operator- Algebra formulation for multibody dynamics. This software reads a description of a multibody system from a model data file, then constructs and implements an efficient algorithm that solves the dynamical equations of the system. The efficiency and, hence, the computational speed is sufficient to make Darts++ suitable for use in realtime closed-loop simulations. Darts++ features an object-oriented software architecture that enables reconfiguration of system topology at run time; in contrast, in related prior software, system topology is fixed during initialization. Darts++ provides an interface to scripting languages, including Tcl and Python, that enable the user to configure and interact with simulation objects at run time.
The use of automatic programming techniques for fault tolerant computing systems
NASA Technical Reports Server (NTRS)
Wild, C.
1985-01-01
It is conjectured that the production of software for ultra-reliable computing systems such as required by Space Station, aircraft, nuclear power plants and the like will require a high degree of automation as well as fault tolerance. In this paper, the relationship between automatic programming techniques and fault tolerant computing systems is explored. Initial efforts in the automatic synthesis of code from assertions to be used for error detection as well as the automatic generation of assertions and test cases from abstract data type specifications is outlined. Speculation on the ability to generate truly diverse designs capable of recovery from errors by exploring alternate paths in the program synthesis tree is discussed. Some initial thoughts on the use of knowledge based systems for the global detection of abnormal behavior using expectations and the goal-directed reconfiguration of resources to meet critical mission objectives are given. One of the sources of information for these systems would be the knowledge captured during the automatic programming process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HENSINGER, DAVID M.; JOHNSTON, GABRIEL A.; HINMAN-SWEENEY, ELAINE M.
2002-10-01
A distributed reconfigurable micro-robotic system is a collection of unlimited numbers of distributed small, homogeneous robots designed to autonomously organize and reorganize in order to achieve mission-specified geometric shapes and functions. This project investigated the design, control, and planning issues for self-configuring and self-organizing robots. In the 2D space a system consisting of two robots was prototyped and successfully displayed automatic docking/undocking to operate dependently or independently. Additional modules were constructed to display the usefulness of a self-configuring system in various situations. In 3D a self-reconfiguring robot system of 4 identical modules was built. Each module connects to its neighborsmore » using rotating actuators. An individual component can move in three dimensions on its neighbors. We have also built a self-reconfiguring robot system consisting of 9-module Crystalline Robot. Each module in this robot is actuated by expansion/contraction. The system is fully distributed, has local communication (to neighbors) capabilities and it has global sensing capabilities.« less
Spaceborne Hybrid-FPGA System for Processing FTIR Data
NASA Technical Reports Server (NTRS)
Bekker, Dmitriy; Blavier, Jean-Francois L.; Pingree, Paula J.; Lukowiak, Marcin; Shaaban, Muhammad
2008-01-01
Progress has been made in a continuing effort to develop a spaceborne computer system for processing readout data from a Fourier-transform infrared (FTIR) spectrometer to reduce the volume of data transmitted to Earth. The approach followed in this effort, oriented toward reducing design time and reducing the size and weight of the spectrometer electronics, has been to exploit the versatility of recently developed hybrid field-programmable gate arrays (FPGAs) to run diverse software on embedded processors while also taking advantage of the reconfigurable hardware resources of the FPGAs.
NASA/FAA North Texas Research Station Overview
NASA Technical Reports Server (NTRS)
Borchers, Paul F.
2012-01-01
NTX Research Staion: NASA research assets embedded in an interesting operational air transport environment. Seven personnel (2 civil servants, 5 contractors). ARTCC, TRACON, Towers, 3 air carrier AOCs(American, Eagle and Southwest), and 2 major airports all within 12 miles. Supports NASA Airspace Systems Program with research products at all levels (fundamental to system level). NTX Laboratory: 5000 sq ft purpose-built, dedicated, air traffic management research facility. Established data links to ARTCC, TRACON, Towers, air carriers, airport and NASA facilities. Re-configurable computer labs, dedicated radio tower, state-of-the-art equipment.
Applications of an architecture design and assessment system (ADAS)
NASA Technical Reports Server (NTRS)
Gray, F. Gail; Debrunner, Linda S.; White, Tennis S.
1988-01-01
A new Architecture Design and Assessment System (ADAS) tool package is introduced, and a range of possible applications is illustrated. ADAS was used to evaluate the performance of an advanced fault-tolerant computer architecture in a modern flight control application. Bottlenecks were identified and possible solutions suggested. The tool was also used to inject faults into the architecture and evaluate the synchronization algorithm, and improvements are suggested. Finally, ADAS was used as a front end research tool to aid in the design of reconfiguration algorithms in a distributed array architecture.
Artificial intelligence and expert systems in-flight software testing
NASA Technical Reports Server (NTRS)
Demasie, M. P.; Muratore, J. F.
1991-01-01
The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.
Filipovic, Nenad D.
2017-01-01
Image segmentation is one of the most common procedures in medical imaging applications. It is also a very important task in breast cancer detection. Breast cancer detection procedure based on mammography can be divided into several stages. The first stage is the extraction of the region of interest from a breast image, followed by the identification of suspicious mass regions, their classification, and comparison with the existing image database. It is often the case that already existing image databases have large sets of data whose processing requires a lot of time, and thus the acceleration of each of the processing stages in breast cancer detection is a very important issue. In this paper, the implementation of the already existing algorithm for region-of-interest based image segmentation for mammogram images on High-Performance Reconfigurable Dataflow Computers (HPRDCs) is proposed. As a dataflow engine (DFE) of such HPRDC, Maxeler's acceleration card is used. The experiments for examining the acceleration of that algorithm on the Reconfigurable Dataflow Computers (RDCs) are performed with two types of mammogram images with different resolutions. There were, also, several DFE configurations and each of them gave a different acceleration value of algorithm execution. Those acceleration values are presented and experimental results showed good acceleration. PMID:28611851
Milankovic, Ivan L; Mijailovic, Nikola V; Filipovic, Nenad D; Peulic, Aleksandar S
2017-01-01
Image segmentation is one of the most common procedures in medical imaging applications. It is also a very important task in breast cancer detection. Breast cancer detection procedure based on mammography can be divided into several stages. The first stage is the extraction of the region of interest from a breast image, followed by the identification of suspicious mass regions, their classification, and comparison with the existing image database. It is often the case that already existing image databases have large sets of data whose processing requires a lot of time, and thus the acceleration of each of the processing stages in breast cancer detection is a very important issue. In this paper, the implementation of the already existing algorithm for region-of-interest based image segmentation for mammogram images on High-Performance Reconfigurable Dataflow Computers (HPRDCs) is proposed. As a dataflow engine (DFE) of such HPRDC, Maxeler's acceleration card is used. The experiments for examining the acceleration of that algorithm on the Reconfigurable Dataflow Computers (RDCs) are performed with two types of mammogram images with different resolutions. There were, also, several DFE configurations and each of them gave a different acceleration value of algorithm execution. Those acceleration values are presented and experimental results showed good acceleration.
Fault tolerant hypercube computer system architecture
NASA Technical Reports Server (NTRS)
Madan, Herb S. (Inventor); Chow, Edward (Inventor)
1989-01-01
A fault-tolerant multiprocessor computer system of the hypercube type comprising a hierarchy of computers of like kind which can be functionally substituted for one another as necessary is disclosed. Communication between the working nodes is via one communications network while communications between the working nodes and watch dog nodes and load balancing nodes higher in the structure is via another communications network separate from the first. A typical branch of the hierarchy reporting to a master node or host computer comprises, a plurality of first computing nodes; a first network of message conducting paths for interconnecting the first computing nodes as a hypercube. The first network provides a path for message transfer between the first computing nodes; a first watch dog node; and a second network of message connecting paths for connecting the first computing nodes to the first watch dog node independent from the first network, the second network provides an independent path for test message and reconfiguration affecting transfers between the first computing nodes and the first switch watch dog node. There is additionally, a plurality of second computing nodes; a third network of message conducting paths for interconnecting the second computing nodes as a hypercube. The third network provides a path for message transfer between the second computing nodes; a fourth network of message conducting paths for connecting the second computing nodes to the first watch dog node independent from the third network. The fourth network provides an independent path for test message and reconfiguration affecting transfers between the second computing nodes and the first watch dog node; and a first multiplexer disposed between the first watch dog node and the second and fourth networks for allowing the first watch dog node to selectively communicate with individual ones of the computing nodes through the second and fourth networks; as well as, a second watch dog node operably connected to the first multiplexer whereby the second watch dog node can selectively communicate with individual ones of the computing nodes through the second and fourth networks. The branch is completed by a first load balancing node; and a second multiplexer connected between the first load balancing node and the first and second watch dog nodes, allowing the first load balancing node to selectively communicate with the first and second watch dog nodes.
Integration of High-Performance Computing into Cloud Computing Services
NASA Astrophysics Data System (ADS)
Vouk, Mladen A.; Sills, Eric; Dreher, Patrick
High-Performance Computing (HPC) projects span a spectrum of computer hardware implementations ranging from peta-flop supercomputers, high-end tera-flop facilities running a variety of operating systems and applications, to mid-range and smaller computational clusters used for HPC application development, pilot runs and prototype staging clusters. What they all have in common is that they operate as a stand-alone system rather than a scalable and shared user re-configurable resource. The advent of cloud computing has changed the traditional HPC implementation. In this article, we will discuss a very successful production-level architecture and policy framework for supporting HPC services within a more general cloud computing infrastructure. This integrated environment, called Virtual Computing Lab (VCL), has been operating at NC State since fall 2004. Nearly 8,500,000 HPC CPU-Hrs were delivered by this environment to NC State faculty and students during 2009. In addition, we present and discuss operational data that show that integration of HPC and non-HPC (or general VCL) services in a cloud can substantially reduce the cost of delivering cloud services (down to cents per CPU hour).
Software-Reconfigurable Processors for Spacecraft
NASA Technical Reports Server (NTRS)
Farrington, Allen; Gray, Andrew; Bell, Bryan; Stanton, Valerie; Chong, Yong; Peters, Kenneth; Lee, Clement; Srinivasan, Jeffrey
2005-01-01
A report presents an overview of an architecture for a software-reconfigurable network data processor for a spacecraft engaged in scientific exploration. When executed on suitable electronic hardware, the software performs the functions of a physical layer (in effect, acts as a software radio in that it performs modulation, demodulation, pulse-shaping, error correction, coding, and decoding), a data-link layer, a network layer, a transport layer, and application-layer processing of scientific data. The software-reconfigurable network processor is undergoing development to enable rapid prototyping and rapid implementation of communication, navigation, and scientific signal-processing functions; to provide a long-lived communication infrastructure; and to provide greatly improved scientific-instrumentation and scientific-data-processing functions by enabling science-driven in-flight reconfiguration of computing resources devoted to these functions. This development is an extension of terrestrial radio and network developments (e.g., in the cellular-telephone industry) implemented in software running on such hardware as field-programmable gate arrays, digital signal processors, traditional digital circuits, and mixed-signal application-specific integrated circuits (ASICs).
The Design of Modular Web-Based Collaboration
NASA Astrophysics Data System (ADS)
Intapong, Ploypailin; Settapat, Sittapong; Kaewkamnerdpong, Boonserm; Achalakul, Tiranee
Online collaborative systems are popular communication channels as the systems allow people from various disciplines to interact and collaborate with ease. The systems provide communication tools and services that can be integrated on the web; consequently, the systems are more convenient to use and easier to install. Nevertheless, most of the currently available systems are designed according to some specific requirements and cannot be straightforwardly integrated into various applications. This paper provides the design of a new collaborative platform, which is component-based and re-configurable. The platform is called the Modular Web-based Collaboration (MWC). MWC shares the same concept as computer supported collaborative work (CSCW) and computer-supported collaborative learning (CSCL), but it provides configurable tools for online collaboration. Each tool module can be integrated into users' web applications freely and easily. This makes collaborative system flexible, adaptable and suitable for online collaboration.
Ant Colony Optimization for Mapping, Scheduling and Placing in Reconfigurable Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrandi, Fabrizio; Lanzi, Pier Luca; Pilato, Christian
Modern heterogeneous embedded platforms, com- posed of several digital signal, application specific and general purpose processors, also include reconfigurable devices support- ing partial dynamic reconfiguration. These devices can change the behavior of some of their parts during execution, allowing hardware acceleration of more sections of the applications. Never- theless, partial dynamic reconfiguration imposes severe overheads in terms of latency. For such systems, a critical part of the design phase is deciding on which processing elements (mapping) and when (scheduling) executing a task, but also how to place them on the reconfigurable device to guarantee the most efficient reuse of themore » programmable logic. In this paper we propose an algorithm based on Ant Colony Optimization (ACO) that simultaneously executes the scheduling, the mapping and the linear placing of tasks, hiding reconfiguration overheads through prefetching. Our heuristic gradually constructs solutions and then searches around the best ones, cutting out non-promising areas of the design space. We show how to consider the partial dynamic reconfiguration constraints in the scheduling, placing and mapping problems and compare our formulation to other heuristics that address the same problems. We demonstrate that our proposal is more general and robust, and finds better solutions (16.5% in average) with respect to competing solutions.« less
The embedded operating system project
NASA Technical Reports Server (NTRS)
Campbell, R. H.
1985-01-01
The design and construction of embedded operating systems for real-time advanced aerospace applications was investigated. The applications require reliable operating system support that must accommodate computer networks. Problems that arise in the construction of such operating systems, reconfiguration, consistency and recovery in a distributed system, and the issues of real-time processing are reported. A thesis that provides theoretical foundations for the use of atomic actions to support fault tolerance and data consistency in real-time object-based system is included. The following items are addressed: (1) atomic actions and fault-tolerance issues; (2) operating system structure; (3) program development; (4) a reliable compiler for path Pascal; and (5) mediators, a mechanism for scheduling distributed system processes.
I(CES)-cubes: a modular self-reconfigurable bipartite robotic system
NASA Astrophysics Data System (ADS)
Unsal, Cem; Kiliccote, Han; Khosla, Pradeep K.
1999-08-01
In this manuscript, we introduce I(CES)-Cubes, a class of 3D modular robotic system that is capable of reconfiguring itself in order to adapt to its environment. This is a bipartite system, i.e. a collection of (i) active elements capable of actuation, and (ii) passive elements acting as connectors between actuated elements. Active elements, called links, are 3-DOF manipulators that are capable of attaching/detaching themselves to/from the passive elements. The cubes can then be positioned and oriented using links, which are independent mechatronic elements. Self- reconfiguration property enables the system to performed locomotion tasks over difficult terrain. For example, the system would be capable of moving over obstacles and climbing stairs. These task are performed by positing and orienting cubes and links to form a 3D network with required shape and position. This paper describes the design of the passive and active elements, the attachment mechanics, and several reconfiguration scenarios. Specifics of the hardware implementation and result of experiments with current prototypes are also given.
Floating-Point Modules Targeted for Use with RC Compilation Tools
NASA Technical Reports Server (NTRS)
Sahin, Ibrahin; Gloster, Clay S.
2000-01-01
Reconfigurable Computing (RC) has emerged as a viable computing solution for computationally intensive applications. Several applications have been mapped to RC system and in most cases, they provided the smallest published execution time. Although RC systems offer significant performance advantages over general-purpose processors, they require more application development time than general-purpose processors. This increased development time of RC systems provides the motivation to develop an optimized module library with an assembly language instruction format interface for use with future RC system that will reduce development time significantly. In this paper, we present area/performance metrics for several different types of floating point (FP) modules that can be utilized to develop complex FP applications. These modules are highly pipelined and optimized for both speed and area. Using these modules, and example application, FP matrix multiplication, is also presented. Our results and experiences show, that with these modules, 8-10X speedup over general-purpose processors can be achieved.
Morales, Rafael; Rincón, Fernando; Gazzano, Julio Dondo; López, Juan Carlos
2014-01-01
Time derivative estimation of signals plays a very important role in several fields, such as signal processing and control engineering, just to name a few of them. For that purpose, a non-asymptotic algebraic procedure for the approximate estimation of the system states is used in this work. The method is based on results from differential algebra and furnishes some general formulae for the time derivatives of a measurable signal in which two algebraic derivative estimators run simultaneously, but in an overlapping fashion. The algebraic derivative algorithm presented in this paper is computed online and in real-time, offering high robustness properties with regard to corrupting noises, versatility and ease of implementation. Besides, in this work, we introduce a novel architecture to accelerate this algebraic derivative estimator using reconfigurable logic. The core of the algorithm is implemented in an FPGA, improving the speed of the system and achieving real-time performance. Finally, this work proposes a low-cost platform for the integration of hardware in the loop in MATLAB. PMID:24859033
Application of the actor model to large scale NDE data analysis
NASA Astrophysics Data System (ADS)
Coughlin, Chris
2018-03-01
The Actor model of concurrent computation discretizes a problem into a series of independent units or actors that interact only through the exchange of messages. Without direct coupling between individual components, an Actor-based system is inherently concurrent and fault-tolerant. These traits lend themselves to so-called "Big Data" applications in which the volume of data to analyze requires a distributed multi-system design. For a practical demonstration of the Actor computational model, a system was developed to assist with the automated analysis of Nondestructive Evaluation (NDE) datasets using the open source Myriad Data Reduction Framework. A machine learning model trained to detect damage in two-dimensional slices of C-Scan data was deployed in a streaming data processing pipeline. To demonstrate the flexibility of the Actor model, the pipeline was deployed on a local system and re-deployed as a distributed system without recompiling, reconfiguring, or restarting the running application.
Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene
2010-01-01
Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602
Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Romero-Troncoso, Rene de Jesus
2010-01-01
Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node.
Design of shape memory alloy actuated intelligent parabolic antenna for space applications
NASA Astrophysics Data System (ADS)
Kalra, Sahil; Bhattacharya, Bishakh; Munjal, B. S.
2017-09-01
The deployment of large flexible antennas is becoming critical for space applications today. Such antenna systems can be reconfigured in space for variable antenna footprint, and hence can be utilized for signal transmission to different geographic locations. Due to quasi-static shape change requirements, coupled with the demand of large deflection, shape memory alloy (SMA) based actuators are uniquely suitable for this system. In this paper, we discuss the design and development of a reconfigurable parabolic antenna structure. The reflector skin of the antenna is vacuum formed using a metalized polycarbonate shell. Two different strategies are chosen for the antenna actuation. Initially, an SMA wire based offset network is formed on the back side of the reflector. A computational model is developed using equivalent coefficient of thermal expansion (ECTE) for the SMA wire. Subsequently, the interaction between the antenna and SMA wire is modeled as a constrained recovery system, using a 1D modified Brinson model. Joule effect based SMA phase transformation is considered for the relationship between input voltage and temperature at the SMA wire. The antenna is modeled using ABAQUS based finite element methodology. The deflection found through the computational model is compared with that measured in experiment. Subsequently, a point-wise actuation system is developed for higher deflection. For power-minimization, an auto-locking device is developed. The performance of the new configuration is compared with the offset-network configuration. It is envisaged that the study will provide a comprehensive procedure for the design of intelligent flexible structures especially suitable for space applications.
Optically intraconnected computer employing dynamically reconfigurable holographic optical element
NASA Technical Reports Server (NTRS)
Bergman, Larry A. (Inventor)
1992-01-01
An optically intraconnected computer and a reconfigurable holographic optical element employed therein. The basic computer comprises a memory for holding a sequence of instructions to be executed; logic for accessing the instructions in sequence; logic for determining for each the instruction the function to be performed and the effective address thereof; a plurality of individual elements on a common support substrate optimized to perform certain logical sequences employed in executing the instructions; and, element selection logic connected to the logic determining the function to be performed for each the instruction for determining the class of each function and for causing the instruction to be executed by those the elements which perform those associated the logical sequences affecting the instruction execution in an optimum manner. In the optically intraconnected version, the element selection logic is adapted for transmitting and switching signals to the elements optically.
Reconfigurable Embedded System for Electrocardiogram Acquisition.
Kay, Marcel Seiji; Iaione, Fábio
2015-01-01
Smartphones include features that offers the chance to develop mobile systems in medical field, resulting in an area called mobile-health. One of the most common medical examinations is the electrocardiogram (ECG), which allows the diagnosis of various heart diseases, leading to preventative measures and preventing more serious problems. The objective of this study was to develop a wireless reconfigurable embedded system using a FPAA (Field Programmable Analog Array), for the acquisition of ECG signals, and an application showing and storing these signals on Android smartphones. The application also performs the partial FPAA reconfiguration in real time (adjustable gain). Previous studies using FPAA usually use the development boards provided by the manufacturer (high cost), do not allow the reconfiguration in real time, use no smartphone and communicate via cables. The parameters tested in the acquisition circuit and the quality of ECGs registered in an individual were satisfactory.
Memristor-Based Computing Architecture: Design Methodologies and Circuit Techniques
2013-03-01
MEMRISTOR-BASED COMPUTING ARCHITECTURE : DESIGN METHODOLOGIES AND CIRCUIT TECHNIQUES POLYTECHNIC INSTITUTE OF NEW YORK UNIVERSITY...TECHNICAL REPORT 3. DATES COVERED (From - To) OCT 2010 – OCT 2012 4. TITLE AND SUBTITLE MEMRISTOR-BASED COMPUTING ARCHITECTURE : DESIGN METHODOLOGIES...schemes for a memristor-based reconfigurable architecture design have not been fully explored yet. Therefore, in this project, we investigated
Multifunctional Material Systems for Reconfigurable Antennas in Superconfigurable Structures
2016-01-05
reconFig.d states of the antenna. A polarization-reconfigurable substrate-integrated waveguide ( SIW ) cavity-resonator slot antenna has also been...the automation and control. Fig. 36 Polarization-reconfigurable substrate-integrated waveguide ( SIW ) cavity-resonator slot antenna with a...22, 3833–3839, 2012. [3] Analysis of a Variable SIW Resonator Enabled by Dielectric Material Perturbations and Applications, Barrera, J.D. ; Huff
On State Complexes and Special Cube Complexes
ERIC Educational Resources Information Center
Peterson, Valerie J.
2009-01-01
This thesis presents the first steps toward a classification of non-positively curved cube complexes called state complexes. A "state complex" is a configuration space for a "reconfigurable system," i.e., an abstract system in which local movements occur in some discrete manner. Reconfigurable systems can be used to describe, for example,…
ERIC Educational Resources Information Center
Wang, Jianfeng; Doll, William J.; Deng, Xiaodong; Park, Kihyun; Yang, Ma Ga
2013-01-01
This study explores whether learning management systems (LMSs) enable faculty course developers to use the reconfigurable characteristics of the software to implement the seven principles of effective teaching (Chickering & Gamson, 1987). If LMSs are to be considered pedagogically effective, these systems must help engage faculty in effective…
Tools and Functions of Reconfigurable Colloidal Assembly.
Solomon, Michael J
2018-02-19
We review work in reconfigurable colloidal assembly, a field in which rapid, back-and-forth transitions between the equilibrium states of colloidal self-assembly are accomplished by dynamic manipulation of the size, shape, and interaction potential of colloids, as well as the magnitude and direction of the fields applied to them. It is distinguished from the study of colloidal phase transitions by the centrality of thermodynamic variables and colloidal properties that are time switchable; by the applicability of these changes to generate transitions in assembled colloids that may be spatially localized; and by its incorporation of the effects of generalized potentials due to, for example, applied electric and magnetic fields. By drawing upon current progress in the field, we propose a matrix classification of reconfigurable colloidal systems based on the tool used and function performed by reconfiguration. The classification distinguishes between the multiple means by which reconfigurable assembly can be accomplished (i.e., the tools of reconfiguration) and the different kinds of structural transitions that can be achieved by it (i.e., the functions of reconfiguration). In the first case, the tools of reconfiguration can be broadly classed as (i) those that control the colloidal contribution to the system entropy-as through volumetric and/or shape changes of the particles; (ii) those that control the internal energy of the colloids-as through manipulation of colloidal interaction potentials; and (iii) those that control the spatially resolved potential energy that is imposed on the colloids-as through the introduction of field-induced phoretic mechanisms that yield colloidal displacement and accumulation. In the second case, the functions of reconfiguration include reversible: (i) transformation between different phases-including fluid, cluster, gel, and crystal structures; (ii) manipulation of the spacing between colloids in crystals and clusters; and (iii) translation, rotation, or shape-change of finite-size objects self-assembled from colloids. With this classification in hand, we correlate the current limits on the spatiotemporal scales for reconfigurable colloidal assembly and identify a set of future research challenges.
Identifying Model-Based Reconfiguration Goals through Functional Deficiencies
NASA Technical Reports Server (NTRS)
Benazera, Emmanuel; Trave-Massuyes, Louise
2004-01-01
Model-based diagnosis is now advanced to the point autonomous systems face some uncertain and faulty situations with success. The next step toward more autonomy is to have the system recovering itself after faults occur, a process known as model-based reconfiguration. After faults occur, given a prediction of the nominal behavior of the system and the result of the diagnosis operation, this paper details how to automatically determine the functional deficiencies of the system. These deficiencies are characterized in the case of uncertain state estimates. A methodology is then presented to determine the reconfiguration goals based on the deficiencies. Finally, a recovery process interleaves planning and model predictive control to restore the functionalities in prioritized order.
NASA Astrophysics Data System (ADS)
Wojenski, Andrzej; Kasprowicz, Grzegorz; Pozniak, Krzysztof T.; Romaniuk, Ryszard
2013-10-01
The paper describes a concept of automatic firmware generation for reconfigurable measurement systems, which uses FPGA devices and measurement cards in FMC standard. Following sections are described in details: automatic HDL code generation for FPGA devices, automatic communication interfaces implementation, HDL drivers for measurement cards, automatic serial connection between multiple measurement backplane boards, automatic build of memory map (address space), automatic generated firmware management. Presented solutions are required in many advanced measurement systems, like Beam Position Monitors or GEM detectors. This work is a part of a wider project for automatic firmware generation and management of reconfigurable systems. Solutions presented in this paper are based on previous publication in SPIE.
Smart Actuators and Adhesives for Reconfigurable Matter.
Ko, Hyunhyub; Javey, Ali
2017-04-18
Biological systems found in nature provide excellent stimuli-responsive functions. The camouflage adaptation of cephalopods (octopus, cuttlefish), rapid stiffness change of sea cucumbers, opening of pine cones in response to humidity, and rapid closure of Venus flytraps upon insect touch are some examples of nature's smart systems. Although current technologies are still premature to mimic these sophisticated structures and functions in smart biological systems, recent work on stimuli-responsive programmable matter has shown great progress. Stimuli-responsive materials based on hydrogels, responsive nanocomposites, hybrid structures, shape memory polymers, and liquid crystal elastomers have demonstrated excellent responsivities to various stimuli such as temperature, light, pH, and electric field. However, the technologies in these stimuli-responsive materials are still not sophisticated enough to demonstrate the ultimate attributes of an ideal programmable matter: fast and reversible reconfiguration of programmable matter into complex and robust shapes. Recently, reconfigurable (or programmable) matter that reversibly changes its structure/shape or physical/chemical properties in response to external stimuli has attracted great interest for applications in sensors, actuators, robotics, and smart systems. In particular, key attributes of programmable matter including fast and reversible reconfiguration into complex and robust 2D and 3D shapes have been demonstrated by various approaches. In this Account, we review focused areas of smart materials with special emphasis on the material and device structure designs to enhance the response time, reversibility, multistimuli responsiveness, and smart adhesion for efficient shape transformation and functional actuations. First, the capability of fast reconfiguration of 2D and 3D structures in a reversible way is a critical requirement for programmable matter. For the fast and reversible reconfiguration, various approaches based on enhanced solvent diffusion rate through the porous or structured hydrogel materials, electrostatic repulsion between cofacial electrolyte nanosheets, and photothermal actuation are discussed. Second, the ability to reconfigure programmable matters into a variety of complex structures is beneficial for the use of reconfigurable matter in diverse applications. For the reconfiguration of planar 2D structures into complex 3D structures, asymmetric and multidirectional stress should be applied. In this regard, local hinges with stimuli-responsive stiffness, multilayer laminations with different responsiveness in individual layers, and origami and kirigami assembly approaches are reviewed. Third, multistimuli responsiveness will be required for the efficient reconfiguration of complex programmable matter in response to user-defined stimulus under different chemical and physical environments. In addition, with multistimuli responsiveness, the reconfigured shape can be temporarily affixed by one signal and disassembled by another signal at a user-defined location and time. Photoactuation depending on the chirality of carbon nanotubes and composite gels with different responsiveness will be discussed. Finally, the development of smart adhesives with on-demand adhesion strength is critically required to maintain the robust reconfigurable shapes and for the switching on/off of the binding between components or with target objects. Among various connectors and adhesives, thermoresponsive nanowire connectors, octopus-inspired smart adhesives, and elastomeric tiles with soft joints are described due to their potential applications in joints of deformable 3D structures and smart gripping systems.
Addressing System Reconfiguration and Incremental Integration within IMA Systems
NASA Astrophysics Data System (ADS)
Ferrero, F.; Rodríques, A. I.
2009-05-01
Recently space industry is paying special attention to Integrated Modular Avionics (IMA) systems due to the benefits that modular concepts could bring to the development of space applications, especially in terms of interoperability, flexibility and software reuse. Two important IMA goals to be highlighted are system reconfiguration, and incremental integration of new functionalities into a pre-existing system. The purpose of this paper is to show how system reconfiguration is conducted based on Allied Standard Avionics Architecture Council (ASAAC) concepts for IMA Systems. Besides, it aims to provide a proposal for addressing the incremental integration concept supported by our experience gained during European Technology Acquisition Program (ETAP) TDP1.7 programme. All these topics will be discussed taking into account safety issues and showing the blueprint as an appropriate technique to support these concepts.
A fault-tolerant control architecture for unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Drozeski, Graham R.
Research has presented several approaches to achieve varying degrees of fault-tolerance in unmanned aircraft. Approaches in reconfigurable flight control are generally divided into two categories: those which incorporate multiple non-adaptive controllers and switch between them based on the output of a fault detection and identification element, and those that employ a single adaptive controller capable of compensating for a variety of fault modes. Regardless of the approach for reconfigurable flight control, certain fault modes dictate system restructuring in order to prevent a catastrophic failure. System restructuring enables active control of actuation not employed by the nominal system to recover controllability of the aircraft. After system restructuring, continued operation requires the generation of flight paths that adhere to an altered flight envelope. The control architecture developed in this research employs a multi-tiered hierarchy to allow unmanned aircraft to generate and track safe flight paths despite the occurrence of potentially catastrophic faults. The hierarchical architecture increases the level of autonomy of the system by integrating five functionalities with the baseline system: fault detection and identification, active system restructuring, reconfigurable flight control; reconfigurable path planning, and mission adaptation. Fault detection and identification algorithms continually monitor aircraft performance and issue fault declarations. When the severity of a fault exceeds the capability of the baseline flight controller, active system restructuring expands the controllability of the aircraft using unconventional control strategies not exploited by the baseline controller. Each of the reconfigurable flight controllers and the baseline controller employ a proven adaptive neural network control strategy. A reconfigurable path planner employs an adaptive model of the vehicle to re-shape the desired flight path. Generation of the revised flight path is posed as a linear program constrained by the response of the degraded system. Finally, a mission adaptation component estimates limitations on the closed-loop performance of the aircraft and adjusts the aircraft mission accordingly. A combination of simulation and flight test results using two unmanned helicopters validates the utility of the hierarchical architecture.
Pass-band reconfigurable spoof surface plasmon polaritons
NASA Astrophysics Data System (ADS)
Zhang, Hao Chi; He, Pei Hang; Gao, Xinxin; Tang, Wen Xuan; Cui, Tie Jun
2018-04-01
In this paper, we introduce a new scheme to construct the band-pass tunable filter based on the band-pass reconfigurable spoof surface plasmon polaritons (SPPs), whose cut-off frequencies at both sides of the passband can be tuned through changing the direct current (DC) bias of varactors. Compared to traditional technology (e.g. microstrip filters), the spoof SPP structure can provide more tight field confinement and more significant field enhancement, which is extremely valuable for many system applications. In order to achieve this scheme, we proposed a specially designed SPP filter integrated with varactors and DC bias feeding structure to support the spoof SPP passband reconfiguration. Furthermore, the full-wave simulated result verifies the outstanding performance on both efficiency and reconfiguration, which has the potential to be widely used in advanced intelligent systems.
NASA Technical Reports Server (NTRS)
Smith, T. B., Jr.; Lala, J. H.
1983-01-01
The basic organization of the fault tolerant multiprocessor, (FTMP) is that of a general purpose homogeneous multiprocessor. Three processors operate on a shared system (memory and I/O) bus. Replication and tight synchronization of all elements and hardware voting is employed to detect and correct any single fault. Reconfiguration is then employed to repair a fault. Multiple faults may be tolerated as a sequence of single faults with repair between fault occurrences.
A fully reconfigurable photonic integrated signal processor
NASA Astrophysics Data System (ADS)
Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping
2016-03-01
Photonic signal processing has been considered a solution to overcome the inherent electronic speed limitations. Over the past few years, an impressive range of photonic integrated signal processors have been proposed, but they usually offer limited reconfigurability, a feature highly needed for the implementation of large-scale general-purpose photonic signal processors. Here, we report and experimentally demonstrate a fully reconfigurable photonic integrated signal processor based on an InP-InGaAsP material system. The proposed photonic signal processor is capable of performing reconfigurable signal processing functions including temporal integration, temporal differentiation and Hilbert transformation. The reconfigurability is achieved by controlling the injection currents to the active components of the signal processor. Our demonstration suggests great potential for chip-scale fully programmable all-optical signal processing.
A reconfigurable NAND/NOR genetic logic gate
2012-01-01
Background Engineering genetic Boolean logic circuits is a major research theme of synthetic biology. By altering or introducing connections between genetic components, novel regulatory networks are built in order to mimic the behaviour of electronic devices such as logic gates. While electronics is a highly standardized science, genetic logic is still in its infancy, with few agreed standards. In this paper we focus on the interpretation of logical values in terms of molecular concentrations. Results We describe the results of computational investigations of a novel circuit that is able to trigger specific differential responses depending on the input standard used. The circuit can therefore be dynamically reconfigured (without modification) to serve as both a NAND/NOR logic gate. This multi-functional behaviour is achieved by a) varying the meanings of inputs, and b) using branch predictions (as in computer science) to display a constrained output. A thorough computational study is performed, which provides valuable insights for the future laboratory validation. The simulations focus on both single-cell and population behaviours. The latter give particular insights into the spatial behaviour of our engineered cells on a surface with a non-homogeneous distribution of inputs. Conclusions We present a dynamically-reconfigurable NAND/NOR genetic logic circuit that can be switched between modes of operation via a simple shift in input signal concentration. The circuit addresses important issues in genetic logic that will have significance for more complex synthetic biology applications. PMID:22989145
A reconfigurable NAND/NOR genetic logic gate.
Goñi-Moreno, Angel; Amos, Martyn
2012-09-18
Engineering genetic Boolean logic circuits is a major research theme of synthetic biology. By altering or introducing connections between genetic components, novel regulatory networks are built in order to mimic the behaviour of electronic devices such as logic gates. While electronics is a highly standardized science, genetic logic is still in its infancy, with few agreed standards. In this paper we focus on the interpretation of logical values in terms of molecular concentrations. We describe the results of computational investigations of a novel circuit that is able to trigger specific differential responses depending on the input standard used. The circuit can therefore be dynamically reconfigured (without modification) to serve as both a NAND/NOR logic gate. This multi-functional behaviour is achieved by a) varying the meanings of inputs, and b) using branch predictions (as in computer science) to display a constrained output. A thorough computational study is performed, which provides valuable insights for the future laboratory validation. The simulations focus on both single-cell and population behaviours. The latter give particular insights into the spatial behaviour of our engineered cells on a surface with a non-homogeneous distribution of inputs. We present a dynamically-reconfigurable NAND/NOR genetic logic circuit that can be switched between modes of operation via a simple shift in input signal concentration. The circuit addresses important issues in genetic logic that will have significance for more complex synthetic biology applications.
Intelligent Reconfigurable System with Self-Dammage Assessmentand Control Stress Capabilities
NASA Astrophysics Data System (ADS)
Trivailo, P.; Plotnikova, L.; Kao, T. W.
2002-01-01
Modern space structures are constructed using a modular approach that facilitates their transportation and assembly in space. Modular architecture of space structures also enables reconfiguration of large structures such that they can adapt to possible changes in environment, and also allows use of the limited structural resources available in space for completion of a much larger variety of tasks. An increase in size and complexity demands development of materials with a "smart" or active structural modulus and also of effective control algorithms to control the motion of large flexible structures. This challenging task has generated a lot of interest amongst scientists and engineers during the last two decades, however, research into the development of control schemes which can adapt to structural configuration changes has received less attention. This is possibly due to the increased complexity caused by alterations in geometry, which inevitably lead to changes in the dynamic properties of the system. This paper presents results of the application of a decentralized control approach for active control of large flexible structures undergoing significant reconfigurations. The Control Component Synthesis methodology was used to build controlled components and to assemble them into a controlled flexible structure that meets required performance specifications. To illustrate the efficiency of the method, numerical simulations were conducted for 2D and 3D modular truss structures and a multi-link beam system. In each case the performance of the decentralized control system has been evaluated using pole location maps, step and impulse response simulations and frequency response analysis. The performance of the decentralized control system has been measured against the optimal centralised control system for various excitation scenarios. A special case where one of the local component controllers fails was also examined. For better interpretation of the efficiency of the designed controllers, results of the simulations are illustrated using a Virtual Reality computer environment, offering advanced visual effects. Plotnikova@rmit.edu.au # Tsunwah@hotmail.com
Application of adaptive antenna techniques to future commercial satellite communication
NASA Technical Reports Server (NTRS)
Ersoy, L.; Lee, E. A.; Matthews, E. W.
1987-01-01
The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further sub-divided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems.
NASA Technical Reports Server (NTRS)
Ersoy, L.; Lee, E. A.; Matthews, E. W.
1987-01-01
The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further subdivided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems.
Design and validation of a wearable "DRL-less" EEG using a novel fully-reconfigurable architecture.
Mahajan, Ruhi; Morshed, Bashir I; Bidelman, Gavin M
2016-08-01
The conventional EEG system consists of a driven-right-leg (DRL) circuit, which prohibits modularization of the system. We propose a Lego-like connectable fully reconfigurable architecture of wearable EEG that can be easily customized and deployed at naturalistic settings for collecting neurological data. We have designed a novel Analog Front End (AFE) that eliminates the need for DRL while maintaining a comparable signal quality of EEG. We have prototyped this AFE for a single channel EEG, referred to as Smart Sensing Node (SSN), that senses brain signals and sends it to a Command Control Node (CCN) via an I2C bus. The AFE of each SSN (referential-montage) consists of an off-the-shelf instrumentation amplifier (gain=26), an active notch filter fc = 60Hz), 2nd-order active Butterworth low-pass filter followed by a passive low pass filter (fc = 47.5 Hz, gain = 1.61) and a passive high pass filter fc = 0.16 Hz, gain = 0.83). The filtered signals are digitized using a low-power microcontroller (MSP430F5528) with a 12-bit ADC at 512 sps, and transmitted to the CCN every 1 s at a bus rate of 100 kbps. The CCN can further transmit this data wirelessly using Bluetooth to the paired computer at a baud rate of 115.2 kbps. We have compared temporal and frequency-domain EEG signals of our system with a research-grade EEG. Results show that the proposed reconfigurable EEG captures comparable signals, and is thus promising for practical routine neurological monitoring in non-clinical settings where a flexible number of EEG channels are needed.
NASA Technical Reports Server (NTRS)
Migneault, G. E.
1979-01-01
Emulation techniques are proposed as a solution to a difficulty arising in the analysis of the reliability of highly reliable computer systems for future commercial aircraft. The difficulty, viz., the lack of credible precision in reliability estimates obtained by analytical modeling techniques are established. The difficulty is shown to be an unavoidable consequence of: (1) a high reliability requirement so demanding as to make system evaluation by use testing infeasible, (2) a complex system design technique, fault tolerance, (3) system reliability dominated by errors due to flaws in the system definition, and (4) elaborate analytical modeling techniques whose precision outputs are quite sensitive to errors of approximation in their input data. The technique of emulation is described, indicating how its input is a simple description of the logical structure of a system and its output is the consequent behavior. The use of emulation techniques is discussed for pseudo-testing systems to evaluate bounds on the parameter values needed for the analytical techniques.
The embedded operating system project
NASA Technical Reports Server (NTRS)
Campbell, R. H.
1984-01-01
This progress report describes research towards the design and construction of embedded operating systems for real-time advanced aerospace applications. The applications concerned require reliable operating system support that must accommodate networks of computers. The report addresses the problems of constructing such operating systems, the communications media, reconfiguration, consistency and recovery in a distributed system, and the issues of realtime processing. A discussion is included on suitable theoretical foundations for the use of atomic actions to support fault tolerance and data consistency in real-time object-based systems. In particular, this report addresses: atomic actions, fault tolerance, operating system structure, program development, reliability and availability, and networking issues. This document reports the status of various experiments designed and conducted to investigate embedded operating system design issues.
Radiation Mitigation and Power Optimization Design Tools for Reconfigurable Hardware in Orbit
NASA Technical Reports Server (NTRS)
French, Matthew; Graham, Paul; Wirthlin, Michael; Wang, Li; Larchev, Gregory
2005-01-01
The Reconfigurable Hardware in Orbit (RHinO)project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. In the second year of the project, design tools that leverage an established FPGA design environment have been created to visualize and analyze an FPGA circuit for radiation weaknesses and power inefficiencies. For radiation, a single event Upset (SEU) emulator, persistence analysis tool, and a half-latch removal tool for Xilinx/Virtex-II devices have been created. Research is underway on a persistence mitigation tool and multiple bit upsets (MBU) studies. For power, synthesis level dynamic power visualization and analysis tools have been completed. Power optimization tools are under development and preliminary test results are positive.
Architecutres, Models, Algorithms, and Software Tools for Configurable Computing
2000-03-06
and J.G. Nash. The gated interconnection network for dynamic programming. Plenum, 1988 . [18] Ju wook Jang, Heonchul Park, and Viktor K. Prasanna. A ...Sep. 1997. [2] C. Ebeling, D. C. Cronquist , P. Franklin and C. Fisher, "RaPiD - A configurable computing architecture for compute-intensive...ABSTRACT (Maximum 200 words) The Models, Algorithms, and Architectures for Reconfigurable Computing (MAARC) project developed a sound framework for
Reconfigurable Analog PDE computation for Baseband and RFComputation
2017-03-01
waveguiding PDEs. One-dimensional ladder topologies enable linear delays, linear-phase analog filters , as well as analog beamforming, potentially at RF...performance. This discussion focuses on ODE / PDE analog computation available in SoC FPAA structures. One such computation is a ladder filter (Fig...Implementation of a one-dimensional ladder filter for computing inductor (L) and capacitor (C) lines. These components can be implemented in CABs or as
Automated digital magnetofluidics
NASA Astrophysics Data System (ADS)
Schneider, J.; Garcia, A. A.; Marquez, M.
2008-08-01
Drops can be moved in complex patterns on superhydrophobic surfaces using a reconfigured computer-controlled x-y metrology stage with a high degree of accuracy, flexibility, and reconfigurability. The stage employs a DMC-4030 controller which has a RISC-based, clock multiplying processor with DSP functions, accepting encoder inputs up to 22 MHz, provides servo update rates as high as 32 kHz, and processes commands at rates as fast as 40 milliseconds. A 6.35 mm diameter cylindrical NdFeB magnet is translated by the stage causing water drops to move by the action of induced magnetization of coated iron microspheres that remain in the drop and are attracted to the rare earth magnet through digital magnetofluidics. Water drops are easily moved in complex patterns in automated digital magnetofluidics at an average speed of 2.8 cm/s over a superhydrophobic polyethylene surface created by solvent casting. With additional components, some potential uses for this automated microfluidic system include characterization of superhydrophobic surfaces, water quality analysis, and medical diagnostics.
NASA Technical Reports Server (NTRS)
Pang, Jackson; Pingree, Paula J.; Torgerson, J. Leigh
2006-01-01
We present the Telecommunications protocol processing subsystem using Reconfigurable Interoperable Gate Arrays (TRIGA), a novel approach that unifies fault tolerance, error correction coding and interplanetary communication protocol off-loading to implement CCSDS File Delivery Protocol and Datalink layers. The new reconfigurable architecture offers more than one order of magnitude throughput increase while reducing footprint requirements in memory, command and data handling processor utilization, communication system interconnects and power consumption.
Using instability to reconfigure smart structures in a spring-mass model
NASA Astrophysics Data System (ADS)
Zhang, Jiaying; McInnes, Colin R.
2017-07-01
Multistable phenomenon have long been used in mechanism design. In this paper a subset of unstable configurations of a smart structure model will be used to develop energy-efficient schemes to reconfigure the structure. This new concept for reconfiguration uses heteroclinic connections to transition the structure between different unstable equal-energy states. In an ideal structure model zero net energy input is required for the reconfiguration, compared to transitions between stable equilibria across a potential barrier. A simple smart structure model is firstly used to identify sets of equal-energy unstable configurations using dynamical systems theory. Dissipation is then added to be more representative of a practical structure. A range of strategies are then used to reconfigure the smart structure using heteroclinic connections with different approaches to handle dissipation.
Reconfigurable manufacturing execution system for pipe cutting
NASA Astrophysics Data System (ADS)
Yin, Y. H.; Xie, J. Y.
2011-08-01
This article presents a reconfigurable manufacturing execution system (RMES) filling the gap between enterprise resource planning and resource layer for pipe-cutting production with mass customisation and rapid adaptation to dynamic market, which consists of planning and scheduling layer and executive control layer. Starting from customer's task and process requirements, the cutting trajectories are planned under generalised mathematical model able to reconfigure in accordance with various intersecting types' joint, and all tasks are scheduled by nesting algorithm to maximise the utilisation rate of rough material. This RMES for pipe cutting has been effectively implemented in more than 100 companies.
A distributed fault-tolerant signal processor /FTSP/
NASA Astrophysics Data System (ADS)
Bonneau, R. J.; Evett, R. C.; Young, M. J.
1980-01-01
A digital fault-tolerant signal processor (FTSP), an example of a self-repairing programmable system is analyzed. The design configuration is discussed in terms of fault tolerance, system-level fault detection, isolation and common memory. Special attention is given to the FDIR (fault detection isolation and reconfiguration) logic, noting that the reconfiguration decisions are based on configuration, summary status, end-around tests, and north marker/synchro data. Several mechanisms of fault detection are described which initiate reconfiguration at different levels. It is concluded that the reliability of a signal processor can be significantly enhanced by the use of fault-tolerant techniques.
Reconfigurable microwave photonic in-phase and quadrature detector for frequency agile radar.
Emami, Hossein; Sarkhosh, Niusha
2014-06-01
A microwave photonic in-phase and quadrature detector is conceived and practically demonstrated. The detector has the ability to become electronically reconfigured to operate at any frequency over a wide range. This makes it an excellent candidate for frequency agile radars and other electronic warfare systems based on frequency hopping. The detector exhibits a very low amplitude and phase imbalance, which removes the need for any imbalance compensation technique. The system is designed based on the transversal filtering concept and reconfigurability is achieved via wavelength control in a dispersive fiber. The system operation was demonstrated over a frequency range of 3.5-35 GHz, with a maximum of -32 dB amplitude imbalance.
A Wearable Mobile Sensor Platform to Assist Fruit Grading
Aroca, Rafael V.; Gomes, Rafael B.; Dantas, Rummennigue R.; Calbo, Adonai G.; Gonçalves, Luiz M. G.
2013-01-01
Wearable computing is a form of ubiquitous computing that offers flexible and useful tools for users. Specifically, glove-based systems have been used in the last 30 years in a variety of applications, but mostly focusing on sensing people's attributes, such as finger bending and heart rate. In contrast, we propose in this work a novel flexible and reconfigurable instrumentation platform in the form of a glove, which can be used to analyze and measure attributes of fruits by just pointing or touching them with the proposed glove. An architecture for such a platform is designed and its application for intuitive fruit grading is also presented, including experimental results for several fruits. PMID:23666134
Reconfigurable modular computer networks for spacecraft on-board processing
NASA Technical Reports Server (NTRS)
Rennels, D. A.
1978-01-01
The core electronics subsystems on unmanned spacecraft, which have been sent over the last 20 years to investigate the moon, Mars, Venus, and Mercury, have progressed through an evolution from simple fixed controllers and analog computers in the 1960's to general-purpose digital computers in current designs. This evolution is now moving in the direction of distributed computer networks. Current Voyager spacecraft already use three on-board computers. One is used to store commands and provide overall spacecraft management. Another is used for instrument control and telemetry collection, and the third computer is used for attitude control and scientific instrument pointing. An examination of the control logic in the instruments shows that, for many, it is cost-effective to replace the sequencing logic with a microcomputer. The Unified Data System architecture considered consists of a set of standard microcomputers connected by several redundant buses. A typical self-checking computer module will contain 23 RAMs, two microprocessors, one memory interface, three bus interfaces, and one core building block.
Control mechanism of double-rotator-structure ternary optical computer
NASA Astrophysics Data System (ADS)
Kai, SONG; Liping, YAN
2017-03-01
Double-rotator-structure ternary optical processor (DRSTOP) has two characteristics, namely, giant data-bits parallel computing and reconfigurable processor, which can handle thousands of data bits in parallel, and can run much faster than computers and other optical computer systems so far. In order to put DRSTOP into practical application, this paper established a series of methods, namely, task classification method, data-bits allocation method, control information generation method, control information formatting and sending method, and decoded results obtaining method and so on. These methods form the control mechanism of DRSTOP. This control mechanism makes DRSTOP become an automated computing platform. Compared with the traditional calculation tools, DRSTOP computing platform can ease the contradiction between high energy consumption and big data computing due to greatly reducing the cost of communications and I/O. Finally, the paper designed a set of experiments for DRSTOP control mechanism to verify its feasibility and correctness. Experimental results showed that the control mechanism is correct, feasible and efficient.
Asymmetric Core Computing for U.S. Army High-Performance Computing Applications
2009-04-01
Playstation 4 (should one be announced). 8 4.2 FPGAs Reconfigurable computing refers to performing computations using Field Programmable Gate Arrays...2008 4 . TITLE AND SUBTITLE Asymmetric Core Computing for U.S. Army High-Performance Computing Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER...Acknowledgments vi 1. Introduction 1 2. Relevant Technologies 2 3. Technical Approach 5 4 . Research and Development Highlights 7 4.1 Cell
ERIC Educational Resources Information Center
Case, Stephen
2007-01-01
A reconfigured and realigned system of assessment feedback was implemented with undergraduates taking criminology modules at Swansea University. The reformulated system integrated explicit engagement with assessment criteria in feedback given on an electronic template form with the use of a statement bank and the offer of follow-up, feedback…
NASA Technical Reports Server (NTRS)
1990-01-01
Lunar base projects, including a reconfigurable lunar cargo launcher, a thermal and micrometeorite protection system, a versatile lifting machine with robotic capabilities, a cargo transport system, the design of a road construction system for a lunar base, and the design of a device for removing lunar dust from material surfaces, are discussed. The emphasis on the Gulf of Mexico project was on the development of a computer simulation model for predicting vessel station keeping requirements. An existing code, used in predicting station keeping requirements for oil drilling platforms operating in North Shore (Alaska) waters was used as a basis for the computer simulation. Modifications were made to the existing code. The input into the model consists of satellite altimeter readings and water velocity readings from buoys stationed in the Gulf of Mexico. The satellite data consists of altimeter readings (wave height) taken during the spring of 1989. The simulation model predicts water velocity and direction, and wind velocity.
A DNA-based molecular motor that can navigate a network of tracks
NASA Astrophysics Data System (ADS)
Wickham, Shelley F. J.; Bath, Jonathan; Katsuda, Yousuke; Endo, Masayuki; Hidaka, Kumi; Sugiyama, Hiroshi; Turberfield, Andrew J.
2012-03-01
Synthetic molecular motors can be fuelled by the hydrolysis or hybridization of DNA. Such motors can move autonomously and programmably, and long-range transport has been observed on linear tracks. It has also been shown that DNA systems can compute. Here, we report a synthetic DNA-based system that integrates long-range transport and information processing. We show that the path of a motor through a network of tracks containing four possible routes can be programmed using instructions that are added externally or carried by the motor itself. When external control is used we find that 87% of the motors follow the correct path, and when internal control is used 71% of the motors follow the correct path. Programmable motion will allow the development of computing networks, molecular systems that can sort and process cargoes according to instructions that they carry, and assembly lines that can be reconfigured dynamically in response to changing demands.
NASA Technical Reports Server (NTRS)
White, Allan L.; Palumbo, Daniel L.
1991-01-01
Semi-Markov processes have proved to be an effective and convenient tool to construct models of systems that achieve reliability by redundancy and reconfiguration. These models are able to depict complex system architectures and to capture the dynamics of fault arrival and system recovery. A disadvantage of this approach is that the models can be extremely large, which poses both a model and a computational problem. Techniques are needed to reduce the model size. Because these systems are used in critical applications where failure can be expensive, there must be an analytically derived bound for the error produced by the model reduction technique. A model reduction technique called trimming is presented that can be applied to a popular class of systems. Automatic model generation programs were written to help the reliability analyst produce models of complex systems. This method, trimming, is easy to implement and the error bound easy to compute. Hence, the method lends itself to inclusion in an automatic model generator.
2008-03-01
WVD Wigner - Ville Distribution xiv THIS PAGE INTENTIONALLY LEFT BLANK xv ACKNOWLEDGMENTS Many thanks to David Caliga of SRC Computer for his...11 2. Wigner - Ville Distribution .................................................................11 3. Choi-Williams... Ville Distribution ...................................12 Table 3. C Code Output for Wigner - Ville Distribution
Inexpensive Miniature Programmable Magnetic Stirrer from Reconfigured Computer Parts
ERIC Educational Resources Information Center
Mercer, Conan; Leech, Donal
2017-01-01
This technology report outlines a robust and easy to assemble magnetic stirrer that is programmable. All of the parts are recycled from obsolete computer hardware except the Arduino microcontroller and motor driver, at a total cost of around $40. This multidisciplinary approach introduces microcontrollers to students and grants the opportunity to…
High Speed Computing, LANs, and WAMs
NASA Technical Reports Server (NTRS)
Bergman, Larry A.; Monacos, Steve
1994-01-01
Optical fiber networks may one day offer potential capacities exceeding 10 terabits/sec. This paper describes present gigabit network techniques for distributed computing as illustrated by the CASA gigabit testbed, and then explores future all-optic network architectures that offer increased capacity, more optimized level of service for a given application, high fault tolerance, and dynamic reconfigurability.
Toward a Script Theory of Guidance in Computer-Supported Collaborative Learning
ERIC Educational Resources Information Center
Fischer, Frank; Kollar, Ingo; Stegmann, Karsten; Wecker, Christof
2013-01-01
This article presents an outline of a script theory of guidance for computer-supported collaborative learning (CSCL). With its 4 types of components of internal and external scripts (play, scene, role, and scriptlet) and 7 principles, this theory addresses the question of how CSCL practices are shaped by dynamically reconfigured internal…
Active Reconfigurable Metamaterial Unit Cell Based on Non-Foster Elements
2013-10-01
Krois Ivan Bonic Aleksandar Kiricenko Damir Muha University of Zagreb Faculty of Electrical Engineering and Computing Unksa 3 Zagreb ...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Zagreb Faculty of Electrical Engineering and Computing Unksa 3 Zagreb , HR-10000 CROATIA 8...Electrical Engineering and Computing University of Zagreb Unska 3 Zagreb , HR-10000, Croatia 14 October 2013 Distribution A: Approved for
Reconfiguration control system for an aircraft wing
NASA Technical Reports Server (NTRS)
Wakayama, Sean R. (Inventor)
2008-01-01
Independently deflectable control surfaces are located on the trailing edge of the wing of a blended wing-body aircraft. The reconfiguration control system of the present invention controls the deflection of each control surface to optimize the spanwise lift distribution across the wing for each of several flight conditions, e.g., cruise, pitch maneuver, and high lift at low speed. The control surfaces are deflected and reconfigured to their predetermined optimal positions when the aircraft is in each of the aforementioned flight conditions. With respect to cruise, the reconfiguration control system will maximize the lift to drag ratio and keep the aircraft trimmed at a stable angle of attack. In a pitch maneuver, the control surfaces are deflected to pitch the aircraft and increase lift. Moreover, this increased lift has its spanwise center of pressure shifted inboard relative to its location for cruise. This inboard shifting reduces the increased bending moment about the aircraft's x-axis occasioned by the increased pitch force acting normal to the wing. To optimize high lift at low speed, during take-off and landing for example, the control surfaces are reconfigured to increase the local maximum coefficient of lift at stall-critical spanwise locations while providing pitch trim with control surfaces that are not stall critical.
Adapting the SpaceCube v2.0 Data Processing System for Mission-Unique Application Requirements
NASA Technical Reports Server (NTRS)
Petrick, David; Gill, Nat; Hasouneh, Munther; Stone, Robert; Winternitz, Luke; Thomas, Luke; Davis, Milton; Sparacino, Pietro; Flatley, Thomas
2015-01-01
The SpaceCube (sup TM) v2.0 system is a superior high performance, reconfigurable, hybrid data processing system that can be used in a multitude of applications including those that require a radiation hardened and reliable solution. This paper provides an overview of the design architecture, flexibility, and the advantages of the modular SpaceCube v2.0 high performance data processing system for space applications. The current state of the proven SpaceCube technology is based on nine years of engineering and operations. Five systems have been successfully operated in space starting in 2008 with four more to be delivered for launch vehicle integration in 2015. The SpaceCube v2.0 system is also baselined as the avionics solution for five additional flight projects and is always a top consideration as the core avionics for new instruments or spacecraft control. This paper will highlight how this multipurpose system is currently being used to solve design challenges of three independent applications. The SpaceCube hardware adapts to new system requirements by allowing for application-unique interface cards that are utilized by reconfiguring the underlying programmable elements on the core processor card. We will show how this system is being used to improve on a heritage NASA GPS technology, enable a cutting-edge LiDAR instrument, and serve as a typical command and data handling (C&DH) computer for a space robotics technology demonstration.
Adapting the SpaceCube v2.0 Data Processing System for Mission-Unique Application Requirements
NASA Technical Reports Server (NTRS)
Petrick, David
2015-01-01
The SpaceCubeTM v2.0 system is a superior high performance, reconfigurable, hybrid data processing system that can be used in a multitude of applications including those that require a radiation hardened and reliable solution. This paper provides an overview of the design architecture, flexibility, and the advantages of the modular SpaceCube v2.0 high performance data processing system for space applications. The current state of the proven SpaceCube technology is based on nine years of engineering and operations. Five systems have been successfully operated in space starting in 2008 with four more to be delivered for launch vehicle integration in 2015. The SpaceCube v2.0 system is also baselined as the avionics solution for five additional flight projects and is always a top consideration as the core avionics for new instruments or spacecraft control. This paper will highlight how this multipurpose system is currently being used to solve design challenges of three independent applications. The SpaceCube hardware adapts to new system requirements by allowing for application-unique interface cards that are utilized by reconfiguring the underlying programmable elements on the core processor card. We will show how this system is being used to improve on a heritage NASA GPS technology, enable a cutting-edge LiDAR instrument, and serve as a typical command and data handling (CDH) computer for a space robotics technology demonstration.
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Schrenkenghost, Debra K.
2001-01-01
The Adjustable Autonomy Testbed (AAT) is a simulation-based testbed located in the Intelligent Systems Laboratory in the Automation, Robotics and Simulation Division at NASA Johnson Space Center. The purpose of the testbed is to support evaluation and validation of prototypes of adjustable autonomous agent software for control and fault management for complex systems. The AA T project has developed prototype adjustable autonomous agent software and human interfaces for cooperative fault management. This software builds on current autonomous agent technology by altering the architecture, components and interfaces for effective teamwork between autonomous systems and human experts. Autonomous agents include a planner, flexible executive, low level control and deductive model-based fault isolation. Adjustable autonomy is intended to increase the flexibility and effectiveness of fault management with an autonomous system. The test domain for this work is control of advanced life support systems for habitats for planetary exploration. The CONFIG hybrid discrete event simulation environment provides flexible and dynamically reconfigurable models of the behavior of components and fluids in the life support systems. Both discrete event and continuous (discrete time) simulation are supported, and flows and pressures are computed globally. This provides fast dynamic simulations of interacting hardware systems in closed loops that can be reconfigured during operations scenarios, producing complex cascading effects of operations and failures. Current object-oriented model libraries support modeling of fluid systems, and models have been developed of physico-chemical and biological subsystems for processing advanced life support gases. In FY01, water recovery system models will be developed.
A Secure Content Delivery System Based on a Partially Reconfigurable FPGA
NASA Astrophysics Data System (ADS)
Hori, Yohei; Yokoyama, Hiroyuki; Sakane, Hirofumi; Toda, Kenji
We developed a content delivery system using a partially reconfigurable FPGA to securely distribute digital content on the Internet. With partial reconfigurability of a Xilinx Virtex-II Pro FPGA, the system provides an innovative single-chip solution for protecting digital content. In the system, a partial circuit must be downloaded from a server to the client terminal to play content. Content will be played only when the downloaded circuit is correctly combined (=interlocked) with the circuit built in the terminal. Since each circuit has a unique I/O configuration, the downloaded circuit interlocks with the corresponding built-in circuit designed for a particular terminal. Thus, the interface of the circuit itself provides a novel authentication mechanism. This paper describes the detailed architecture of the system and clarify the feasibility and effectiveness of the system. In addition, we discuss a fail-safe mechanism and future work necessary for the practical application of the system.
Reconfigurable origami-inspired acoustic waveguides
Babaee, Sahab; Overvelde, Johannes T. B.; Chen, Elizabeth R.; Tournat, Vincent; Bertoldi, Katia
2016-01-01
We combine numerical simulations and experiments to design a new class of reconfigurable waveguides based on three-dimensional origami-inspired metamaterials. Our strategy builds on the fact that the rigid plates and hinges forming these structures define networks of tubes that can be easily reconfigured. As such, they provide an ideal platform to actively control and redirect the propagation of sound. We design reconfigurable systems that, depending on the externally applied deformation, can act as networks of waveguides oriented along one, two, or three preferential directions. Moreover, we demonstrate that the capability of the structure to guide and radiate acoustic energy along predefined directions can be easily switched on and off, as the networks of tubes are reversibly formed and disrupted. The proposed designs expand the ability of existing acoustic metamaterials and exploit complex waveguiding to enhance control over propagation and radiation of acoustic energy, opening avenues for the design of a new class of tunable acoustic functional systems. PMID:28138527
Application of precomputed control laws in a reconfigurable aircraft flight control system
NASA Technical Reports Server (NTRS)
Moerder, Daniel D.; Halyo, Nesim; Broussard, John R.; Caglayan, Alper K.
1989-01-01
A self-repairing flight control system concept in which the control law is reconfigured after actuator and/or control surface damage to preserve stability and pilot command tracking is described. A key feature of the controller is reconfigurable multivariable feedback. The feedback gains are designed off-line and scheduled as a function of the aircraft control impairment status so that reconfiguration is performed simply by updating the gain schedule after detection of an impairment. A novel aspect of the gain schedule design procedure is that the schedule is calculated using a linear quadratic optimization-based simultaneous stabilization algorithm in which the scheduled gain is constrained to stabilize a collection of plant models representing the aircraft in various control failure modes. A description and numerical evaluation of a controller design for a model of a statically unstable high-performance aircraft are given.
A Structural Model Decomposition Framework for Hybrid Systems Diagnosis
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil
2015-01-01
Nowadays, a large number of practical systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete modes of behavior, each defined by a set of continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task very challenging. In this work, we present a new modeling and diagnosis framework for hybrid systems. Models are composed from sets of user-defined components using a compositional modeling approach. Submodels for residual generation are then generated for a given mode, and reconfigured efficiently when the mode changes. Efficient reconfiguration is established by exploiting causality information within the hybrid system models. The submodels can then be used for fault diagnosis based on residual generation and analysis. We demonstrate the efficient causality reassignment, submodel reconfiguration, and residual generation for fault diagnosis using an electrical circuit case study.
Nanopatterned reconfigurable spin-textures for magnonics
NASA Astrophysics Data System (ADS)
Albisetti, E.; Petti, D.; Pancaldi, M.; Madami, M.; Tacchi, S.; Curtis, J.; King, W. P.; Papp, A.; Csaba, G.; Porod, W.; Vavassori, P.; Riedo, E.; Bertacco, R.
The control of spin-waves holds the promise to enable energy-efficient information transport and wave-based computing. Conventionally, the engineering of spin-waves is achieved via physically patterning magnetic structures such as magnonic crystals and micro-nanowires. We demonstrate a new concept for creating reconfigurable magnonic nanostructures, by crafting at the nanoscale the magnetic anisotropy landscape of a ferromagnet exchange-coupled to an antiferromagnet. By performing a highly localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are patterned without modifying the film chemistry and topography. We demonstrate that, in such structures, the spin-wave excitation and propagation can be spatially controlled at remanence, and can be tuned by external magnetic fields. This opens the way to the use of nanopatterned spin-textures, such as domains and domain walls, for exciting and manipulating magnons in reconfigurable nanocircuits. Partially funded by the EC through project SWING (no. 705326).
Development of a 32-bit UNIX-based ELAS workstation
NASA Technical Reports Server (NTRS)
Spiering, Bruce A.; Pearson, Ronnie W.; Cheng, Thomas D.
1987-01-01
A mini/microcomputer UNIX-based image analysis workstation has been designed and is being implemented to use the Earth Resources Laboratory Applications Software (ELAS). The hardware system includes a MASSCOMP 5600 computer, which is a 32-bit UNIX-based system (compatible with AT&T System V and Berkeley 4.2 BSD operating system), a floating point accelerator, a 474-megabyte fixed disk, a tri-density magnetic tape drive, and an 1152 by 910 by 12-plane color graphics/image interface. The software conversion includes reconfiguring the ELAs driver Master Task, recompiling and then testing the converted application modules. This hardware and software configuration is a self-sufficient image analysis workstation which can be used as a stand-alone system, or networked with other compatible workstations.
Development of IR imaging system simulator
NASA Astrophysics Data System (ADS)
Xiang, Xinglang; He, Guojing; Dong, Weike; Dong, Lu
2017-02-01
To overcome the disadvantages of the tradition semi-physical simulation and injection simulation equipment in the performance evaluation of the infrared imaging system (IRIS), a low-cost and reconfigurable IRIS simulator, which can simulate the realistic physical process of infrared imaging, is proposed to test and evaluate the performance of the IRIS. According to the theoretical simulation framework and the theoretical models of the IRIS, the architecture of the IRIS simulator is constructed. The 3D scenes are generated and the infrared atmospheric transmission effects are simulated using OGRE technology in real-time on the computer. The physical effects of the IRIS are classified as the signal response characteristic, modulation transfer characteristic and noise characteristic, and they are simulated on the single-board signal processing platform based on the core processor FPGA in real-time using high-speed parallel computation method.
Liu, Bo; Liu, Zhiwei; Chiu, In-Shiang; Di, MengFu; Wu, YongRen; Wang, Jer-Chyi; Hou, Tuo-Hung; Lai, Chao-Sung
2018-06-20
Memristors with rich interior dynamics of ion migration are promising for mimicking various biological synaptic functions in neuromorphic hardware systems. A graphene-based memristor shows an extremely low energy consumption of less than a femtojoule per spike, by taking advantage of weak surface van der Waals interaction of graphene. The device also shows an intriguing programmable metaplasticity property in which the synaptic plasticity depends on the history of the stimuli and yet allows rapid reconfiguration via an immediate stimulus. This graphene-based memristor could be a promising building block toward designing highly versatile and extremely energy efficient neuromorphic computing systems.
Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems
NASA Astrophysics Data System (ADS)
Hurtado, A.; Schires, K.; Henning, I. D.; Adams, M. J.
2012-03-01
We report an approach based upon vertical cavity surface emitting lasers (VCSELs) to reproduce optically different behaviors exhibited by biological neurons but on a much faster timescale. The technique proposed is based on the polarization switching and nonlinear dynamics induced in a single VCSEL under polarized optical injection. The particular attributes of VCSELs and the simple experimental configuration used in this work offer prospects of fast, reconfigurable processing elements with excellent fan-out and scaling potentials for use in future computational paradigms and artificial neural networks.
Graphene-based Yagi-Uda antenna with reconfigurable radiation patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yongle, E-mail: wuyongle138@gmail.com; Qu, Meijun; Jiao, Lingxiao
This paper presents a radiation pattern reconfigurable Yagi-Uda antenna based on graphene operating at terahertz frequencies. The antenna can be reconfigured to change the main beam pattern into two or four different radiation directions. The proposed antenna consists of a driven dipole radiation conductor, parasitic strips and embedded graphene. The hybrid graphene-metal implementation enables the antenna to have dynamic surface conductivity, which can be tuned by changing the chemical potentials. Therefore, the main beam direction, the resonance frequency, and the front-to-back ratio of the proposed antenna can be controlled by tuning the chemical potentials of the graphene embedded in differentmore » positions. The proposed two-beam reconfigurable Yagi-Uda antenna can achieve excellent unidirectional symmetrical radiation pattern with the front-to-back ratio of 11.9 dB and the10-dB impedance bandwidth of 15%. The different radiation directivity of the two-beam reconfigurable antenna can be achieved by controlling the chemical potentials of the graphene embedded in the parasitic stubs. The achievable peak gain of the proposed two-beam reconfigurable antenna is about 7.8 dB. Furthermore, we propose a four-beam reconfigurable Yagi-Uda antenna, which has stable reflection-coefficient performance although four main beams in reconfigurable cases point to four totally different directions. The corresponding peak gain, front-to-back ratio, and 10-dB impedance bandwidth of the four-beam reconfigurable antenna are about 6.4 dB, 12 dB, and 10%, respectively. Therefore, this novel design method of reconfigurable antennas is extremely promising for beam-scanning in terahertz and mid-infrared plasmonic devices and systems.« less
Evolution of a Reconfigurable Processing Platform for a Next Generation Space Software Defined Radio
NASA Technical Reports Server (NTRS)
Kacpura, Thomas J.; Downey, Joseph A.; Anderson, Keffery R.; Baldwin, Keith
2014-01-01
The National Aeronautics and Space Administration (NASA)Harris Ka-Band Software Defined Radio (SDR) is the first, fully reprogrammable space-qualified SDR operating in the Ka-Band frequency range. Providing exceptionally higher data communication rates than previously possible, this SDR offers in-orbit reconfiguration, multi-waveform operation, and fast deployment due to its highly modular hardware and software architecture. Currently in operation on the International Space Station (ISS), this new paradigm of reconfigurable technology is enabling experimenters to investigate navigation and networking in the space environment.The modular SDR and the NASA developed Space Telecommunications Radio System (STRS) architecture standard are the basis for Harris reusable, digital signal processing space platform trademarked as AppSTAR. As a result, two new space radio products are a synthetic aperture radar payload and an Automatic Detection Surveillance Broadcast (ADS-B) receiver. In addition, Harris is currently developing many new products similar to the Ka-Band software defined radio for other applications. For NASAs next generation flight Ka-Band radio development, leveraging these advancements could lead to a more robust and more capable software defined radio.The space environment has special considerations different from terrestrial applications that must be considered for any system operated in space. Each space mission has unique requirements that can make these systems unique. These unique requirements can make products that are expensive and limited in reuse. Space systems put a premium on size, weight and power. A key trade is the amount of reconfigurability in a space system. The more reconfigurable the hardware platform, the easier it is to adapt to the platform to the next mission, and this reduces the amount of non-recurring engineering costs. However, the more reconfigurable platforms often use more spacecraft resources. Software has similar considerations to hardware. Having an architecture standard promotes reuse of software and firmware. Space platforms have limited processor capability, which makes the trade on the amount of amount of flexibility paramount.
NASA Technical Reports Server (NTRS)
Davis, Robert N.; Polites, Michael E.; Trevino, Luis C.
2004-01-01
This paper details a novel scheme for autonomous component health management (ACHM) with failed actuator detection and failed sensor detection, identification, and avoidance. This new scheme has features that far exceed the performance of systems with triple-redundant sensing and voting, yet requires fewer sensors and could be applied to any system with redundant sensing. Relevant background to the ACHM scheme is provided, and the simulation results for the application of that scheme to a single-axis spacecraft attitude control system with a 3rd order plant and dual-redundant measurement of system states are presented. ACHM fulfills key functions needed by an integrated vehicle health monitoring (IVHM) system. It is: autonomous; adaptive; works in realtime; provides optimal state estimation; identifies failed components; avoids failed components; reconfigures for multiple failures; reconfigures for intermittent failures; works for hard-over, soft, and zero-output failures; and works for both open- and closed-loop systems. The ACHM scheme combines a prefilter that generates preliminary state estimates, detects and identifies failed sensors and actuators, and avoids the use of failed sensors in state estimation with a fixed-gain Kalman filter that generates optimal state estimates and provides model-based state estimates that comprise an integral part of the failure detection logic. The results show that ACHM successfully isolates multiple persistent and intermittent hard-over, soft, and zero-output failures. It is now ready to be tested on a computer model of an actual system.
PAWS/STEM - PADE APPROXIMATION WITH SCALING AND SCALED TAYLOR EXPONENTIAL MATRIX (VAX VMS VERSION)
NASA Technical Reports Server (NTRS)
Butler, R. W.
1994-01-01
Traditional fault-tree techniques for analyzing the reliability of large, complex systems fail to model the dynamic reconfiguration capabilities of modern computer systems. Markov models, on the other hand, can describe fault-recovery (via system reconfiguration) as well as fault-occurrence. The Pade Approximation with Scaling (PAWS) and Scaled Taylor Exponential Matrix (STEM) programs provide a flexible, user-friendly, language-based interface for the creation and evaluation of Markov models describing the behavior of fault-tolerant reconfigurable computer systems. PAWS and STEM produce exact solutions for the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. The calculation of the probability of entering a death state of a Markov model (representing system failure) requires the solution of a set of coupled differential equations. Because of the large disparity between the rates of fault arrivals and system recoveries, Markov models of fault-tolerant architectures inevitably lead to numerically stiff differential equations. Both PAWS and STEM have the capability to solve numerically stiff models. These complementary programs use separate methods to determine the matrix exponential in the solution of the model's system of differential equations. In general, PAWS is better suited to evaluate small and dense models. STEM operates at lower precision, but works faster than PAWS for larger models. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920); and the FTC fault tree tool (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree. PAWS/STEM and SURE are programs which interpret the same SURE language, but utilize different solution methods. ASSIST is a preprocessor that generates SURE language from a more abstract definition. SURE, ASSIST, and PAWS/STEM are also offered as a bundle. Please see the abstract for COS-10039/COS-10041, SARA - SURE/ASSIST Reliability Analysis Workstation, for pricing details. PAWS/STEM was originally developed for DEC VAX series computers running VMS and was later ported for use on Sun computers running SunOS. The package is written in PASCAL, ANSI compliant C-language, and FORTRAN 77. The standard distribution medium for the VMS version of PAWS/STEM (LAR-14165) is a 9-track 1600 BPI magnetic tape in VMSINSTAL format. It is also available on a TK50 tape cartridge in VMSINSTAL format. Executables are included. The standard distribution medium for the Sun version of PAWS/STEM (LAR-14920) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. Both Sun3 and Sun4 executables are included. PAWS/STEM was developed in 1989 and last updated in 1991. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation. SunOS, Sun3, and Sun4 are trademarks of Sun Microsystems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories.
PAWS/STEM - PADE APPROXIMATION WITH SCALING AND SCALED TAYLOR EXPONENTIAL MATRIX (SUN VERSION)
NASA Technical Reports Server (NTRS)
Butler, R. W.
1994-01-01
Traditional fault-tree techniques for analyzing the reliability of large, complex systems fail to model the dynamic reconfiguration capabilities of modern computer systems. Markov models, on the other hand, can describe fault-recovery (via system reconfiguration) as well as fault-occurrence. The Pade Approximation with Scaling (PAWS) and Scaled Taylor Exponential Matrix (STEM) programs provide a flexible, user-friendly, language-based interface for the creation and evaluation of Markov models describing the behavior of fault-tolerant reconfigurable computer systems. PAWS and STEM produce exact solutions for the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. The calculation of the probability of entering a death state of a Markov model (representing system failure) requires the solution of a set of coupled differential equations. Because of the large disparity between the rates of fault arrivals and system recoveries, Markov models of fault-tolerant architectures inevitably lead to numerically stiff differential equations. Both PAWS and STEM have the capability to solve numerically stiff models. These complementary programs use separate methods to determine the matrix exponential in the solution of the model's system of differential equations. In general, PAWS is better suited to evaluate small and dense models. STEM operates at lower precision, but works faster than PAWS for larger models. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920); and the FTC fault tree tool (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree. PAWS/STEM and SURE are programs which interpret the same SURE language, but utilize different solution methods. ASSIST is a preprocessor that generates SURE language from a more abstract definition. SURE, ASSIST, and PAWS/STEM are also offered as a bundle. Please see the abstract for COS-10039/COS-10041, SARA - SURE/ASSIST Reliability Analysis Workstation, for pricing details. PAWS/STEM was originally developed for DEC VAX series computers running VMS and was later ported for use on Sun computers running SunOS. The package is written in PASCAL, ANSI compliant C-language, and FORTRAN 77. The standard distribution medium for the VMS version of PAWS/STEM (LAR-14165) is a 9-track 1600 BPI magnetic tape in VMSINSTAL format. It is also available on a TK50 tape cartridge in VMSINSTAL format. Executables are included. The standard distribution medium for the Sun version of PAWS/STEM (LAR-14920) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. Both Sun3 and Sun4 executables are included. PAWS/STEM was developed in 1989 and last updated in 1991. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation. SunOS, Sun3, and Sun4 are trademarks of Sun Microsystems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories.
How do bendy straws bend? A study of re-configurability of multi-stable corrugated shells
NASA Astrophysics Data System (ADS)
Bende, Nakul; Selden, Sarah; Evans, Arthur; Santangelo, Christian; Hayward, Ryan
Shape programmable systems have evolved to allow for reconfiguration of structures through a variety of mechanisms including swelling, stress-relaxation, and thermal expansion. Particularly, there has been a recent interest in systems that exhibit bi-stability or multi-stability to achieve transformation between two or more pre-programmed states. Here, we study the ubiquitous architecture of corrugated shells, such as drinking straws or bellows, which has been well known for centuries. Some of these structures exhibit almost continuous stability amongst a wide range of reconfigurable shapes, but the underlying mechanisms are not well understood. To understand multi-stability in `bendy-straw' structures, we study the unit bi-conical segment using experiments and finite element modeling to elucidate the key geometrical and mechanical factors responsible for its multi-stability. The simple transformations of a unit segment - a change in length or angle can impart complex re-configurability of a structure containing many of these units. The fundamental understanding provided of this simple multi-stable building block could yield improvements in shape re-configurability for a wide array of applications such as corrugated medical tubing, robotics, and deployable structures. NSF EFRI ODISSEI-1240441.
Lemoine, E; Merceron, D; Sallantin, J; Nguifo, E M
1999-01-01
This paper describes a new approach to problem solving by splitting up problem component parts between software and hardware. Our main idea arises from the combination of two previously published works. The first one proposed a conceptual environment of concept modelling in which the machine and the human expert interact. The second one reported an algorithm based on reconfigurable hardware system which outperforms any kind of previously published genetic data base scanning hardware or algorithms. Here we show how efficient the interaction between the machine and the expert is when the concept modelling is based on reconfigurable hardware system. Their cooperation is thus achieved with an real time interaction speed. The designed system has been partially applied to the recognition of primate splice junctions sites in genetic sequences.
NASA Technical Reports Server (NTRS)
By, Andre Bernard; Caron, Ken; Rothenberg, Michael; Sales, Vic
1994-01-01
This paper presents the first phase results of a collaborative effort between university researchers and a flexible assembly systems integrator to implement a comprehensive modular approach to flexible assembly automation. This approach, named MARAS (Modular Automated Reconfigurable Assembly System), has been structured to support multiple levels of modularity in terms of both physical components and system control functions. The initial focus of the MARAS development has been on parts gauging and feeding operations for cylinder lock assembly. This phase is nearing completion and has resulted in the development of a highly configurable system for vision gauging functions on a wide range of small components (2 mm to 100 mm in size). The reconfigurable concepts implemented in this adaptive Vision Gauging Module (VGM) are now being extended to applicable aspects of the singulating, selecting, and orienting functions required for the flexible feeding of similar mechanical components and assemblies.
New design environment for defect detection in web inspection systems
NASA Astrophysics Data System (ADS)
Hajimowlana, S. Hossain; Muscedere, Roberto; Jullien, Graham A.; Roberts, James W.
1997-09-01
One of the aims of industrial machine vision is to develop computer and electronic systems destined to replace human vision in the process of quality control of industrial production. In this paper we discuss the development of a new design environment developed for real-time defect detection using reconfigurable FPGA and DSP processor mounted inside a DALSA programmable CCD camera. The FPGA is directly connected to the video data-stream and outputs data to a low bandwidth output bus. The system is targeted for web inspection but has the potential for broader application areas. We describe and show test results of the prototype system board, mounted inside a DALSA camera and discuss some of the algorithms currently simulated and implemented for web inspection applications.
Reconfigurable Wave Velocity Transmission Lines for Phased Arrays
NASA Technical Reports Server (NTRS)
Host, Nick; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix
2013-01-01
Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex, heavy and most importantly costly. This presentation paper presents a concept which overcomes these detrimental attributes by eliminating all of the phase array backend (including phase shifters). Instead, a wave velocity reconfigurable transmission line is used in a series fed array arrangement to allow phase shifting with one small (100mil) mechanical motion. Different configurations of the reconfigurable wave velocity transmission line are discussed and simulated and experimental results are presented.
Modular microfluidic system for biological sample preparation
Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean
2015-09-29
A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.
Pilots Rate Augmented Generalized Predictive Control for Reconfiguration
NASA Technical Reports Server (NTRS)
Soloway, Don; Haley, Pam
2004-01-01
The objective of this paper is to report the results from the research being conducted in reconfigurable fight controls at NASA Ames. A study was conducted with three NASA Dryden test pilots to evaluate two approaches of reconfiguring an aircraft's control system when failures occur in the control surfaces and engine. NASA Ames is investigating both a Neural Generalized Predictive Control scheme and a Neural Network based Dynamic Inverse controller. This paper highlights the Predictive Control scheme where a simple augmentation to reduce zero steady-state error led to the neural network predictor model becoming redundant for the task. Instead of using a neural network predictor model, a nominal single point linear model was used and then augmented with an error corrector. This paper shows that the Generalized Predictive Controller and the Dynamic Inverse Neural Network controller perform equally well at reconfiguration, but with less rate requirements from the actuators. Also presented are the pilot ratings for each controller for various failure scenarios and two samples of the required control actuation during reconfiguration. Finally, the paper concludes by stepping through the Generalized Predictive Control's reconfiguration process for an elevator failure.
Configurable software for satellite graphics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartzman, P D
An important goal in interactive computer graphics is to provide users with both quick system responses for basic graphics functions and enough computing power for complex calculations. One solution is to have a distributed graphics system in which a minicomputer and a powerful large computer share the work. The most versatile type of distributed system is an intelligent satellite system in which the minicomputer is programmable by the application user and can do most of the work while the large remote machine is used for difficult computations. At New York University, the hardware was configured from available equipment. The levelmore » of system intelligence resulted almost completely from software development. Unlike previous work with intelligent satellites, the resulting system had system control centered in the satellite. It also had the ability to reconfigure software during realtime operation. The design of the system was done at a very high level using set theoretic language. The specification clearly illustrated processor boundaries and interfaces. The high-level specification also produced a compact, machine-independent virtual graphics data structure for picture representation. The software was written in a systems implementation language; thus, only one set of programs was needed for both machines. A user can program both machines in a single language. Tests of the system with an application program indicate that is has very high potential. A major result of this work is the demonstration that a gigantic investment in new hardware is not necessary for computing facilities interested in graphics.« less
NASA Astrophysics Data System (ADS)
Mikolajick, T.; Heinzig, A.; Trommer, J.; Baldauf, T.; Weber, W. M.
2017-04-01
With CMOS scaling reaching physical limits in the next decade, new approaches are required to enhance the functionality of electronic systems. Reconfigurability on the device level promises to realize more complex systems with a lower device count. In the last five years a number of interesting concepts have been proposed to realize such a device level reconfiguration. Among these the reconfigurable field effect transistor (RFET), a device that can be configured between an n-channel and p-channel behavior by applying an electrical signal, can be considered as an end-of-roadmap extension of current technology with only small modifications and even simplifications to the process flow. This article gives a review on the RFET basics and current status. In the first sections state-of-the-art of reconfigurable devices will be summarized and the RFET will be introduced together with related devices based on silicon nanowire technology. The device optimization with respect to device symmetry and performance will be discussed next. The potential of the RFET device technology will then be shown by discussing selected circuit implementations making use of the unique advantages of this device concept. The basic device concept was also extended towards applications in flexible devices and sensors, also extending the capabilities towards so-called More-than-Moore applications where new functionalities are implemented in CMOS-based processes. Finally, the prospects of RFET device technology will be discussed.
Fraser, Alec; Baeza, Juan I; Boaz, Annette
2017-06-09
Health service reconfigurations are of international interest but remain poorly understood. This article focuses on the use of evidence by senior managerial decision-makers involved in the reconfiguration of stroke services in London 2008-2012. Recent work comparing stroke service reconfiguration in London and Manchester emphasises the ability of senior managerial decision-makers in London to 'hold the line' in the crucial early phases of the stroke reconfiguration programme. In this article, we explore in detail how these decision-makers 'held the line' and ask what the broader power implications of doing so are for the interaction between evidence, health policy and system redesign. The research combined semi-structured interviews (n = 20) and documentary analysis of historically relevant policy papers and contemporary stroke reconfiguration documentation published by NHS London and other interested parties (n = 125). We applied a critical interpretive and reflexive approach to the analysis of the data. We identified two forms of power which senior managerial decision-makers drew upon in order to 'hold the line'. Firstly, discursive power, which through an emphasis on evidence, better patient outcomes, professional support and clinical credibility alongside a tightly managed consultation process, helped to set an agenda that was broadly receptive to the overall decision to change stroke services in the capital in a radical way. Secondly, once the essential parameters of the decision to change services had been agreed, senior managerial decision-makers 'held the line' through hierarchical New Public Management style power to minimise the traditional pressures to de-radicalise the reconfiguration through 'top down' decision-making. We problematise the concept of 'holding the line' and explore the power implications of such managerial approaches in the early phases of health service reconfiguration. We highlight the importance of evidence for senior managerial decision-makers in agenda setting and the limitations of clinical research findings in guiding politically sensitive policy decisions which impact upon regional healthcare systems.
A Hardware-Accelerated Quantum Monte Carlo framework (HAQMC) for N-body systems
NASA Astrophysics Data System (ADS)
Gothandaraman, Akila; Peterson, Gregory D.; Warren, G. Lee; Hinde, Robert J.; Harrison, Robert J.
2009-12-01
Interest in the study of structural and energetic properties of highly quantum clusters, such as inert gas clusters has motivated the development of a hardware-accelerated framework for Quantum Monte Carlo simulations. In the Quantum Monte Carlo method, the properties of a system of atoms, such as the ground-state energies, are averaged over a number of iterations. Our framework is aimed at accelerating the computations in each iteration of the QMC application by offloading the calculation of properties, namely energy and trial wave function, onto reconfigurable hardware. This gives a user the capability to run simulations for a large number of iterations, thereby reducing the statistical uncertainty in the properties, and for larger clusters. This framework is designed to run on the Cray XD1 high performance reconfigurable computing platform, which exploits the coarse-grained parallelism of the processor along with the fine-grained parallelism of the reconfigurable computing devices available in the form of field-programmable gate arrays. In this paper, we illustrate the functioning of the framework, which can be used to calculate the energies for a model cluster of helium atoms. In addition, we present the capabilities of the framework that allow the user to vary the chemical identities of the simulated atoms. Program summaryProgram title: Hardware Accelerated Quantum Monte Carlo (HAQMC) Catalogue identifier: AEEP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 691 537 No. of bytes in distributed program, including test data, etc.: 5 031 226 Distribution format: tar.gz Programming language: C/C++ for the QMC application, VHDL and Xilinx 8.1 ISE/EDK tools for FPGA design and development Computer: Cray XD1 consisting of a dual-core, dualprocessor AMD Opteron 2.2 GHz with a Xilinx Virtex-4 (V4LX160) or Xilinx Virtex-II Pro (XC2VP50) FPGA per node. We use the compute node with the Xilinx Virtex-4 FPGA Operating system: Red Hat Enterprise Linux OS Has the code been vectorised or parallelized?: Yes Classification: 6.1 Nature of problem: Quantum Monte Carlo is a practical method to solve the Schrödinger equation for large many-body systems and obtain the ground-state properties of such systems. This method involves the sampling of a number of configurations of atoms and averaging the properties of the configurations over a number of iterations. We are interested in applying the QMC method to obtain the energy and other properties of highly quantum clusters, such as inert gas clusters. Solution method: The proposed framework provides a combined hardware-software approach, in which the QMC simulation is performed on the host processor, with the computationally intensive functions such as energy and trial wave function computations mapped onto the field-programmable gate array (FPGA) logic device attached as a co-processor to the host processor. We perform the QMC simulation for a number of iterations as in the case of our original software QMC approach, to reduce the statistical uncertainty of the results. However, our proposed HAQMC framework accelerates each iteration of the simulation, by significantly reducing the time taken to calculate the ground-state properties of the configurations of atoms, thereby accelerating the overall QMC simulation. We provide a generic interpolation framework that can be extended to study a variety of pure and doped atomic clusters, irrespective of the chemical identities of the atoms. For the FPGA implementation of the properties, we use a two-region approach for accurately computing the properties over the entire domain, employ deep pipelines and fixed-point for all our calculations guaranteeing the accuracy required for our simulation.
A light-stimulated synaptic device based on graphene hybrid phototransistor
NASA Astrophysics Data System (ADS)
Qin, Shuchao; Wang, Fengqiu; Liu, Yujie; Wan, Qing; Wang, Xinran; Xu, Yongbing; Shi, Yi; Wang, Xiaomu; Zhang, Rong
2017-09-01
Neuromorphic chips refer to an unconventional computing architecture that is modelled on biological brains. They are increasingly employed for processing sensory data for machine vision, context cognition, and decision making. Despite rapid advances, neuromorphic computing has remained largely an electronic technology, making it a challenge to access the superior computing features provided by photons, or to directly process vision data that has increasing importance to artificial intelligence. Here we report a novel light-stimulated synaptic device based on a graphene-carbon nanotube hybrid phototransistor. Significantly, the device can respond to optical stimuli in a highly neuron-like fashion and exhibits flexible tuning of both short- and long-term plasticity. These features combined with the spatiotemporal processability make our device a capable counterpart to today’s electrically-driven artificial synapses, with superior reconfigurable capabilities. In addition, our device allows for generic optical spike processing, which provides a foundation for more sophisticated computing. The silicon-compatible, multifunctional photosensitive synapse opens up a new opportunity for neural networks enabled by photonics and extends current neuromorphic systems in terms of system complexities and functionalities.
A Frequency Reconfigurable MIMO Antenna System for Cognitive Radio Applications
NASA Astrophysics Data System (ADS)
Raza, A.; Khan, Muhammad U.; Tahir, Farooq A.
2017-10-01
In this paper, a two element frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system is presented. The proposed antenna consists of miniaturized patch antenna elements, loaded with varactor diodes to achieve frequency reconfigurability. The antenna has bandwidth of 30 MHz and provides a smooth frequency sweep from 2.12 GHz to 2.4 GHz by varying the reverse bias voltage of varactor diode. The antenna is designed on an FR4 substrate and occupies a space of 50×100 × 0.8 mm3. The antenna is analyzed for its far-field characteristics as well as for MIMO performance parameters. Designed antenna showed good performance and is suitable for cognitive radios (CR) applications.
Systems and methods for reconfiguring input devices
NASA Technical Reports Server (NTRS)
Lancaster, Jeff (Inventor); De Mers, Robert E. (Inventor)
2012-01-01
A system includes an input device having first and second input members configured to be activated by a user. The input device is configured to generate activation signals associated with activation of the first and second input members, and each of the first and second input members are associated with an input function. A processor is coupled to the input device and configured to receive the activation signals. A memory coupled to the processor, and includes a reconfiguration module configured to store the input functions assigned to the first and second input members and, upon execution of the processor, to reconfigure the input functions assigned to the input members when the first input member is inoperable.
Reconfiguration of Cortical Networks in MDD Uncovered by Multiscale Community Detection with fMRI.
He, Ye; Lim, Sol; Fortunato, Santo; Sporns, Olaf; Zhang, Lei; Qiu, Jiang; Xie, Peng; Zuo, Xi-Nian
2018-04-01
Major depressive disorder (MDD) is known to be associated with altered interactions between distributed brain regions. How these regional changes relate to the reorganization of cortical functional systems, and their modulation by antidepressant medication, is relatively unexplored. To identify changes in the community structure of cortical functional networks in MDD, we performed a multiscale community detection algorithm on resting-state functional connectivity networks of unmedicated MDD (uMDD) patients (n = 46), medicated MDD (mMDD) patients (n = 38), and healthy controls (n = 50), which yielded a spectrum of multiscale community partitions. we selected an optimal resolution level by identifying the most stable community partition for each group. uMDD and mMDD groups exhibited a similar reconfiguration of the community structure of the visual association and the default mode systems but showed different reconfiguration profiles in the frontoparietal control (FPC) subsystems. Furthermore, the central system (somatomotor/salience) and 3 frontoparietal subsystems showed strengthened connectivity with other communities in uMDD but, with the exception of 1 frontoparietal subsystem, returned to control levels in mMDD. These findings provide evidence for reconfiguration of specific cortical functional systems associated with MDD, as well as potential effects of medication in restoring disease-related network alterations, especially those of the FPC system.
Analytical solutions to optimal underactuated spacecraft formation reconfiguration
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2015-11-01
Underactuated systems can generally be defined as systems with fewer number of control inputs than that of the degrees of freedom to be controlled. In this paper, analytical solutions to optimal underactuated spacecraft formation reconfiguration without either the radial or the in-track control are derived. By using a linear dynamical model of underactuated spacecraft formation in circular orbits, controllability analysis is conducted for either underactuated case. Indirect optimization methods based on the minimum principle are then introduced to generate analytical solutions to optimal open-loop underactuated reconfiguration problems. Both fixed and free final conditions constraints are considered for either underactuated case and comparisons between these two final conditions indicate that the optimal control strategies with free final conditions require less control efforts than those with the fixed ones. Meanwhile, closed-loop adaptive sliding mode controllers for both underactuated cases are designed to guarantee optimal trajectory tracking in the presence of unmatched external perturbations, linearization errors, and system uncertainties. The adaptation laws are designed via a Lyapunov-based method to ensure the overall stability of the closed-loop system. The explicit expressions of the terminal convergent regions of each system states have also been obtained. Numerical simulations demonstrate the validity and feasibility of the proposed open-loop and closed-loop control schemes for optimal underactuated spacecraft formation reconfiguration in circular orbits.
Performance characteristics of a nanoscale double-gate reconfigurable array
NASA Astrophysics Data System (ADS)
Beckett, Paul
2008-12-01
The double gate transistor is a promising device applicable to deep sub-micron design due to its inherent resistance to short-channel effects and superior subthreshold performance. Using both TCAD and SPICE circuit simulation, it is shown that the characteristics of fully depleted dual-gate thin-body Schottky barrier silicon transistors will not only uncouple the conflicting requirements of high performance and low standby power in digital logic, but will also allow the development of a locally-connected reconfigurable computing mesh. The magnitude of the threshold shift effect will scale with device dimensions and will remain compatible with oxide reliability constraints. A field-programmable architecture based on the double gate transistor is described in which the operating point of the circuit is biased via one gate while the other gate is used to form the logic array, such that complex heterogeneous computing functions may be developed from this homogeneous, mesh-connected organization.
Hierarchical MFMO Circuit Modules for an Energy-Efficient SDR DBF
NASA Astrophysics Data System (ADS)
Mar, Jeich; Kuo, Chi-Cheng; Wu, Shin-Ru; Lin, You-Rong
The hierarchical multi-function matrix operation (MFMO) circuit modules are designed using coordinate rotations digital computer (CORDIC) algorithm for realizing the intensive computation of matrix operations. The paper emphasizes that the designed hierarchical MFMO circuit modules can be used to develop a power-efficient software-defined radio (SDR) digital beamformer (DBF). The formulas of the processing time for the scalable MFMO circuit modules implemented in field programmable gate array (FPGA) are derived to allocate the proper logic resources for the hardware reconfiguration. The hierarchical MFMO circuit modules are scalable to the changing number of array branches employed for the SDR DBF to achieve the purpose of power saving. The efficient reuse of the common MFMO circuit modules in the SDR DBF can also lead to energy reduction. Finally, the power dissipation and reconfiguration function in the different modes of the SDR DBF are observed from the experiment results.
NASA Technical Reports Server (NTRS)
Frank, Andreas O.; Twombly, I. Alexander; Barth, Timothy J.; Smith, Jeffrey D.; Dalton, Bonnie P. (Technical Monitor)
2001-01-01
We have applied the linear elastic finite element method to compute haptic force feedback and domain deformations of soft tissue models for use in virtual reality simulators. Our results show that, for virtual object models of high-resolution 3D data (>10,000 nodes), haptic real time computations (>500 Hz) are not currently possible using traditional methods. Current research efforts are focused in the following areas: 1) efficient implementation of fully adaptive multi-resolution methods and 2) multi-resolution methods with specialized basis functions to capture the singularity at the haptic interface (point loading). To achieve real time computations, we propose parallel processing of a Jacobi preconditioned conjugate gradient method applied to a reduced system of equations resulting from surface domain decomposition. This can effectively be achieved using reconfigurable computing systems such as field programmable gate arrays (FPGA), thereby providing a flexible solution that allows for new FPGA implementations as improved algorithms become available. The resulting soft tissue simulation system would meet NASA Virtual Glovebox requirements and, at the same time, provide a generalized simulation engine for any immersive environment application, such as biomedical/surgical procedures or interactive scientific applications.
NASA Technical Reports Server (NTRS)
Migneault, G. E.
1979-01-01
Emulation techniques applied to the analysis of the reliability of highly reliable computer systems for future commercial aircraft are described. The lack of credible precision in reliability estimates obtained by analytical modeling techniques is first established. The difficulty is shown to be an unavoidable consequence of: (1) a high reliability requirement so demanding as to make system evaluation by use testing infeasible; (2) a complex system design technique, fault tolerance; (3) system reliability dominated by errors due to flaws in the system definition; and (4) elaborate analytical modeling techniques whose precision outputs are quite sensitive to errors of approximation in their input data. Next, the technique of emulation is described, indicating how its input is a simple description of the logical structure of a system and its output is the consequent behavior. Use of emulation techniques is discussed for pseudo-testing systems to evaluate bounds on the parameter values needed for the analytical techniques. Finally an illustrative example is presented to demonstrate from actual use the promise of the proposed application of emulation.
Reconfigurable Antenna and Cognitive Radio for Space Applications
NASA Technical Reports Server (NTRS)
Hwu, Shian U.
2012-01-01
This presentation briefly discusses a research effort on mitigation techniques of radio frequency interference (RFI) on communication systems for possible space applications. This problem is of considerable interest in the context of providing reliable communications to the space vehicle which might suffer severe performance degradation due to RFI sources such as visiting spacecrafts and various ground radar systems. This study proposes a communication system with Reconfigurable Antenna (RA) and Cognitive Radio (CR) to mitigate the RFI impact. A cognitive radio is an intelligent radio that is able to learn from the environment and adapt to the variations in its surrounding by adjusting the transmit power, carrier frequency, modulation strategy or transmission data rate. Therefore, the main objective of a cognitive radio system is to ensure highly reliable communication whenever and wherever needed. To match the intelligent adaptability of the cognitive radio, a reconfigurable antenna system will be required to ensure the system performance. The technical challenges in design such a system will be discussed in this presentation.
Mission Use of the SpaceCube Hybrid Data Processing System
NASA Technical Reports Server (NTRS)
Petrick, Dave
2017-01-01
The award-winning SpaceCube v2.0 system is a high performance, reconfigurable, hybrid data processing system that can be used in a multitude of applications including those that require a radiation hardened and reliable solution. This presentation provides an overview of the design architecture, flexibility, and the advantages of the modular SpaceCube v2.0 high performance data processing system for space applications. The current state of the proven SpaceCube technology is based on 11 years of engineering and operations. Eight systems have been successfully operated in space starting in 2008 with eight more to be delivered for payload integration in 2018 in support of various missions. This presentation will highlight how this multipurpose system is currently being used to solve design challenges of a variety of independent applications. The SpaceCube hardware adapts to new system requirements by allowing for application-unique interface cards that are utilized by reconfiguring the underlying programmable elements on the core processor card. We will show how this system is being used to improve on a heritage NASA GPS technology, enable a cutting-edge LiDAR instrument, and serve as a typical command and data handling (CDH) computer for a space robotics technology demonstration.Finally, this presentation will highlight the use of the SpaceCube v2.0 system on the Restore-L robotic satellite servicing mission. SpaceCube v2.0 is the central avionics responsible for the real-time vision system and autonomous robotic control necessary to find, capture, and service a national asset weather satellite.
Adapting the Reconfigurable SpaceCube Processing System for Multiple Mission Applications
NASA Technical Reports Server (NTRS)
Petrick, Dave
2014-01-01
This paper will detail the use of SpaceCube in multiple space flight applications including the Hubble Space Telescope Servicing Mission 4 (HST-SM4), an International Space Station (ISS) radiation test bed experiment, and the main avionics subsystem for two separate ISS attached payloads. Each mission has had varying degrees of data processing complexities, performance requirements, and external interfaces. We will show the methodology used to minimize the changes required to the physical hardware, FPGA designs, embedded software interfaces, and testing.This paper will summarize significant results as they apply to each mission application. In the HST-SM4 application we utilized the FPGA resources to accelerate portions of the image processing algorithms more than 25 times faster than a standard space processor in order to meet computational speed requirements. For the ISS radiation on-orbit demonstration, the main goal is to show that we can rely on the commercial FPGAs and processors in a space environment. We describe our FPGA and processor radiation mitigation strategies that have resulted in our eight PowerPCs being available and error free for more than 99.99 of the time over the period of four years. This positive data and proven reliability of the SpaceCube on ISS resulted in the Department of Defense (DoD) selecting SpaceCube, which is replacing an older and slower computer currently used on ISS, as the main avionics for two upcoming ISS experiment campaigns. This paper will show how we quickly reconfigured the SpaceCube system to meet the more stringent reliability requirements
Wireless Sensors Network (Sensornet)
NASA Technical Reports Server (NTRS)
Perotti, J.
2003-01-01
The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.
ERIC Educational Resources Information Center
Pelletier, Caroline
2005-01-01
Digital or computer games have recently attracted the interest of education researchers and policy-makers for two main reasons: their interactivity, which is said to allow greater agency, and their inherent pleasures, which are linked to increased motivation to learn. However, the relationship between pleasure, agency and motivation in educational…
A CCD experimental platform for large telescope in Antarctica based on FPGA
NASA Astrophysics Data System (ADS)
Zhu, Yuhua; Qi, Yongjun
2014-07-01
The CCD , as a detector , is one of the important components of astronomical telescopes. For a large telescope in Antarctica, a set of CCD detector system with large size, high sensitivity and low noise is indispensable. Because of the extremely low temperatures and unattended, system maintenance and software and hardware upgrade become hard problems. This paper introduces a general CCD controller experiment platform, using Field programmable gate array FPGA, which is, in fact, a large-scale field reconfigurable array. Taking the advantage of convenience to modify the system, construction of driving circuit, digital signal processing module, network communication interface, control algorithm validation, and remote reconfigurable module may realize. With the concept of integrated hardware and software, the paper discusses the key technology of building scientific CCD system suitable for the special work environment in Antarctica, focusing on the method of remote reconfiguration for controller via network and then offering a feasible hardware and software solution.
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.
2008-01-01
The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.
Naver: a PC-cluster-based VR system
NASA Astrophysics Data System (ADS)
Park, ChangHoon; Ko, HeeDong; Kim, TaiYun
2003-04-01
In this paper, we present a new framework NAVER for virtual reality application. The NAVER is based on a cluster of low-cost personal computers. The goal of NAVER is to provide flexible, extensible, scalable and re-configurable framework for the virtual environments defined as the integration of 3D virtual space and external modules. External modules are various input or output devices and applications on the remote hosts. From the view of system, personal computers are divided into three servers according to its specific functions: Render Server, Device Server and Control Server. While Device Server contains external modules requiring event-based communication for the integration, Control Server contains external modules requiring synchronous communication every frame. And, the Render Server consists of 5 managers: Scenario Manager, Event Manager, Command Manager, Interaction Manager and Sync Manager. These managers support the declaration and operation of virtual environment and the integration with external modules on remote servers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aderholdt, Ferrol; Caldwell, Blake A.; Hicks, Susan Elaine
High performance computing environments are often used for a wide variety of workloads ranging from simulation, data transformation and analysis, and complex workflows to name just a few. These systems may process data at various security levels but in so doing are often enclaved at the highest security posture. This approach places significant restrictions on the users of the system even when processing data at a lower security level and exposes data at higher levels of confidentiality to a much broader population than otherwise necessary. The traditional approach of isolation, while effective in establishing security enclaves poses significant challenges formore » the use of shared infrastructure in HPC environments. This report details current state-of-the-art in virtualization, reconfigurable network enclaving via Software Defined Networking (SDN), and storage architectures and bridging techniques for creating secure enclaves in HPC environments.« less
Steward, Wayne T; Koester, Kimberly A; Collins, Shane P; Maiorana, Andre; Myers, Janet J
2012-10-01
To understand the dynamic capabilities that enabled the six demonstration projects of the Information Technology Networks of Care Initiative to implement health information exchanges (HIEs) tailored to their local HIV epidemics and regional care systems. We conducted 111 semi-structured interviews with project staff and information technology (IT) specialists associated with the demonstration projects, staff from community-based organizations and public health agencies collaborating in the design and implementation of the HIEs, and providers who used each HIE. The dynamic capability framework guided analyses. In the context of a HIE, the framework's components include information systems (the actual technological exchange systems and capacity to update them), absorptive capacity (the ability to implement an operating HIE), reconfiguration capacity (the ability to adapt workflows and clinical practices in response to a HIE), and organizational size and human resources (characteristics likely to affect a clinic's ability to respond). Across the projects, we found evidence for the importance of three dynamic capabilities: information systems, reconfiguration capacity, and organizational size and human resources. However, of these three, reconfiguration capacity was the most salient. Implementation outcomes at all six of the projects were shaped substantially by the degree of attention dedicated to reworking procedures and practices so that HIE usage became routine. Electronic information exchange offers the promise of improved coordination of care. However, implementation of HIEs goes beyond programing and hardware installation challenges, and requires close attention to the needs of the HIEs end-users. Providers need to discern value from a HIE because their active participation is essential to ensuring that clinic and agency practices and procedures are reconfigured to incorporate new systems into daily work processes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Dasgupta, Partha; Leblanc, Richard J., Jr.; Appelbe, William F.
1988-01-01
Clouds is an operating system in a novel class of distributed operating systems providing the integration, reliability, and structure that makes a distributed system usable. Clouds is designed to run on a set of general purpose computers that are connected via a medium-of-high speed local area network. The system structuring paradigm chosen for the Clouds operating system, after substantial research, is an object/thread model. All instances of services, programs and data in Clouds are encapsulated in objects. The concept of persistent objects does away with the need for file systems, and replaces it with a more powerful concept, namely the object system. The facilities in Clouds include integration of resources through location transparency; support for various types of atomic operations, including conventional transactions; advanced support for achieving fault tolerance; and provisions for dynamic reconfiguration.
Real-Time Field Data Acquisition and Remote Sensor Reconfiguration Using Scientific Workflows
NASA Astrophysics Data System (ADS)
Silva, F.; Mehta, G.; Vahi, K.; Deelman, E.
2010-12-01
Despite many technological advances, field data acquisition still consists of several manual and laborious steps. Once sensors and data loggers are deployed in the field, scientists often have to periodically return to their study sites in order to collect their data. Even when field deployments have a way to communicate and transmit data back to the laboratory (e.g. by using a satellite or a cellular modem), data analysis still requires several repetitive steps. Because data often needs to be processed and inspected manually, there is usually a significant time delay between data collection and analysis. As a result, sensor failures that could be detected almost in real-time are not noted for weeks or months. Finally, sensor reconfiguration as a result of interesting events in the field is still done manually, making rapid response nearly impossible and causing important data to be missed. By working closely with scientists from different application domains, we identified several tasks that, if automated, could greatly improve the way field data is collected, processed, and distributed. Our goals are to enable real-time data collection and validation, automate sensor reconfiguration in response to interest events in the field, and allow scientists to easily automate their data processing. We began our design by employing the Sensor Processing and Acquisition Network (SPAN) architecture. SPAN uses an embedded processor in the field to coordinate sensor data acquisition from analog and digital sensors by interfacing with different types of devices and data loggers. SPAN is also able to interact with various types of communication devices in order to provide real-time communication to and from field sites. We use the Pegasus Workflow Management System (Pegasus WMS) to coordinate data collection and control sensors and deployments in the field. Because scientific workflows can be used to automate multi-step, repetitive tasks, scientists can create simple workflows to download sensor data, perform basic QA/QC, and identify events of interest as well as sensor and data logger failures almost in real-time. As a result of this automation, scientists can quickly be notified (e.g. via e-mail or SMS) so that important events are not missed. In addition, Pegasus WMS has the ability to abstract the execution environment of where programs run. By placing a Pegasus WMS agent inside an embedded processor in the field, we allow scientists to ship simple computational models to the field, enabling remote data processing at the field site. As an example, scientists can send an image processing algorithm to the field so that the embedded processor can analyze images, thus reducing the bandwidth necessary for communication. In addition, when real-time communication to the laboratory is not possible, scientists can create simple computational models that can be run on sensor nodes autonomously, monitoring sensor data and making adjustments without any human intervention. We believe our system lowers the bar for the adoption of reconfigurable sensor networks by field scientists. In this poster, we will show how this technology can be used to provide not only data acquisition, but also real-time data validation and sensor reconfiguration.
Reconfigurable Pointing Control for High Resolution Space Spectroscopy
NASA Technical Reports Server (NTRS)
Bayard, David S.; Kia, Tooraj; vanCleve, Jeffrey
1997-01-01
In this paper, a pointing control performance criteria is established to support high resolution space spectroscopy. Results indicate that these pointing requirements are very stringent, and would typically be difficult to meet using standard 3-axis spacecraft control. To resolve this difficulty, it is shown that performance can be significantly improved using a reconfigurable control architecture that switches among a small bank of detuned Kalman filters. The effectiveness of the control reconfiguration approach is demonstrated by example on the Space Infra, Red Telescope Facility (SIRTF) pointing system, in support of the Infrared Spectrograph (IRS) payload.
Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing
Kudithipudi, Dhireesha; Saleh, Qutaiba; Merkel, Cory; Thesing, James; Wysocki, Bryant
2016-01-01
Reservoir computing (RC) is gaining traction in several signal processing domains, owing to its non-linear stateful computation, spatiotemporal encoding, and reduced training complexity over recurrent neural networks (RNNs). Previous studies have shown the effectiveness of software-based RCs for a wide spectrum of applications. A parallel body of work indicates that realizing RNN architectures using custom integrated circuits and reconfigurable hardware platforms yields significant improvements in power and latency. In this research, we propose a neuromemristive RC architecture, with doubly twisted toroidal structure, that is validated for biosignal processing applications. We exploit the device mismatch to implement the random weight distributions within the reservoir and propose mixed-signal subthreshold circuits for energy efficiency. A comprehensive analysis is performed to compare the efficiency of the neuromemristive RC architecture in both digital(reconfigurable) and subthreshold mixed-signal realizations. Both Electroencephalogram (EEG) and Electromyogram (EMG) biosignal benchmarks are used for validating the RC designs. The proposed RC architecture demonstrated an accuracy of 90 and 84% for epileptic seizure detection and EMG prosthetic finger control, respectively. PMID:26869876
A Survey of Memristive Threshold Logic Circuits.
Maan, Akshay Kumar; Jayadevi, Deepthi Anirudhan; James, Alex Pappachen
2017-08-01
In this paper, we review different memristive threshold logic (MTL) circuits that are inspired from the synaptic action of the flow of neurotransmitters in the biological brain. The brainlike generalization ability and the area minimization of these threshold logic circuits aim toward crossing Moore's law boundaries at device, circuits, and systems levels. Fast switching memory, signal processing, control systems, programmable logic, image processing, reconfigurable computing, and pattern recognition are identified as some of the potential applications of MTL systems. The physical realization of nanoscale devices with memristive behavior from materials, such as TiO 2 , ferroelectrics, silicon, and polymers, has accelerated research effort in these application areas, inspiring the scientific community to pursue the design of high-speed, low-cost, low-power, and high-density neuromorphic architectures.
Advanced Helmet Mounted Display (AHMD) for simulator applications
NASA Astrophysics Data System (ADS)
Sisodia, Ashok; Riser, Andrew; Bayer, Michael; McGuire, James P.
2006-05-01
The Advanced Helmet Mounted Display (AHMD), augmented reality visual system first presented at last year's Cockpit and Future Displays for Defense and Security conference, has now been evaluated in a number of military simulator applications and by L-3 Link Simulation and Training. This paper presents the preliminary results of these evaluations and describes current and future simulator and training applications for HMD technology. The AHMD blends computer-generated data (symbology, synthetic imagery, enhanced imagery) with the actual and simulated visible environment. The AHMD is designed specifically for highly mobile deployable, minimum resource demanding reconfigurable virtual training systems to satisfy the military's in-theater warrior readiness objective. A description of the innovative AHMD system and future enhancements will be discussed.
Toward a Proof of Concept Cloud Framework for Physics Applications on Blue Gene Supercomputers
NASA Astrophysics Data System (ADS)
Dreher, Patrick; Scullin, William; Vouk, Mladen
2015-09-01
Traditional high performance supercomputers are capable of delivering large sustained state-of-the-art computational resources to physics applications over extended periods of time using batch processing mode operating environments. However, today there is an increasing demand for more complex workflows that involve large fluctuations in the levels of HPC physics computational requirements during the simulations. Some of the workflow components may also require a richer set of operating system features and schedulers than normally found in a batch oriented HPC environment. This paper reports on progress toward a proof of concept design that implements a cloud framework onto BG/P and BG/Q platforms at the Argonne Leadership Computing Facility. The BG/P implementation utilizes the Kittyhawk utility and the BG/Q platform uses an experimental heterogeneous FusedOS operating system environment. Both platforms use the Virtual Computing Laboratory as the cloud computing system embedded within the supercomputer. This proof of concept design allows a cloud to be configured so that it can capitalize on the specialized infrastructure capabilities of a supercomputer and the flexible cloud configurations without resorting to virtualization. Initial testing of the proof of concept system is done using the lattice QCD MILC code. These types of user reconfigurable environments have the potential to deliver experimental schedulers and operating systems within a working HPC environment for physics computations that may be different from the native OS and schedulers on production HPC supercomputers.
NASA Astrophysics Data System (ADS)
Deng, Peng; Kavehrad, Mohsen; Lou, Yan
2017-01-01
Flexible wireless datacenter networks based on free space optical communication (FSO) links are being considered as promising solutions to meet the future datacenter demands of high throughput, robustness to dynamic traffic patterns, cabling complexity and energy efficiency. Robust and precise steerable FSO links over dynamic traffic play a key role in the reconfigurable optical wireless datacenter inter-rack network. In this work, we propose and demonstrate a reconfigurable 10Gbps FSO system incorporated with smart beam acquisition and tracking mechanism based on gimballess two-axis MEMS micro-mirror and retro-reflective film marked aperture. The fast MEMS-based beam acquisition switches laser beam of FSO terminal from one rack to the next for reconfigurable networks, and the precise beam tracking makes FSO device auto-correct the misalignment in real-time. We evaluate the optical power loss and bit error rate performance of steerable FSO links at various directions. Experimental results suggest that the MEMS based beam steerable FSO links hold considerable promise for the future reconfigurable wireless datacenter networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandes, Ana; Pereira, Rita C.; Sousa, Jorge
The Instituto de Plasmas e Fusao Nuclear (IPFN) has developed dedicated re-configurable modules based on field programmable gate array (FPGA) devices for several nuclear fusion machines worldwide. Moreover, new Advanced Telecommunication Computing Architecture (ATCA) based modules developed by IPFN are already included in the ITER catalogue. One of the requirements for re-configurable modules operating in future nuclear environments including ITER is the remote update capability. Accordingly, this work presents an alternative method for FPGA remote programing to be implemented in new ATCA based re-configurable modules. FPGAs are volatile devices and their programming code is usually stored in dedicated flash memoriesmore » for properly configuration during module power-on. The presented method is capable to store new FPGA codes in Serial Peripheral Interface (SPI) flash memories using the PCIexpress (PCIe) network established on the ATCA back-plane, linking data acquisition endpoints and the data switch blades. The method is based on the Xilinx Quick Boot application note, adapted to PCIe protocol and ATCA based modules. (authors)« less
A variational eigenvalue solver on a photonic quantum processor
Peruzzo, Alberto; McClean, Jarrod; Shadbolt, Peter; Yung, Man-Hong; Zhou, Xiao-Qi; Love, Peter J.; Aspuru-Guzik, Alán; O’Brien, Jeremy L.
2014-01-01
Quantum computers promise to efficiently solve important problems that are intractable on a conventional computer. For quantum systems, where the physical dimension grows exponentially, finding the eigenvalues of certain operators is one such intractable problem and remains a fundamental challenge. The quantum phase estimation algorithm efficiently finds the eigenvalue of a given eigenvector but requires fully coherent evolution. Here we present an alternative approach that greatly reduces the requirements for coherent evolution and combine this method with a new approach to state preparation based on ansätze and classical optimization. We implement the algorithm by combining a highly reconfigurable photonic quantum processor with a conventional computer. We experimentally demonstrate the feasibility of this approach with an example from quantum chemistry—calculating the ground-state molecular energy for He–H+. The proposed approach drastically reduces the coherence time requirements, enhancing the potential of quantum resources available today and in the near future. PMID:25055053
Microelectromechanical Systems Actuator Based Reconfigurable Printed Antenna
NASA Technical Reports Server (NTRS)
Simons, Rainee N. (Inventor)
2005-01-01
A polarization reconfigurable patch antenna is disclosed. The antenna includes a feed element, a patch antenna element electrically connected to the feed element, and at least one microelectromechanical systems (MEMS) actuator, with a partial connection to the patch antenna element along an edge of the patch antenna element. The polarization of the antenna can be switched between circular polarization and linear polarization through action of the at least one MEMS actuator.
Catastrophic Fault Recovery with Self-Reconfigurable Chips
NASA Technical Reports Server (NTRS)
Zheng, Will Hua; Marzwell, Neville I.; Chau, Savio N.
2006-01-01
Mission critical systems typically employ multi-string redundancy to cope with possible hardware failure. Such systems are only as fault tolerant as there are many redundant strings. Once a particular critical component exhausts its redundant spares, the multi-string architecture cannot tolerate any further hardware failure. This paper aims at addressing such catastrophic faults through the use of 'Self-Reconfigurable Chips' as a last resort effort to 'repair' a faulty critical component.
A Need for Systems Architecture Approach for Next Generation Mine Warfare Capability
2006-09-01
MRUUV Mission Reconfigurable Unmanned Undersea Vehicle MSC Mine Countermeasures Ship Coastal MSO Mine Countermeasures Ship Open-ocean P3I Preplanned...Helicopter, the Remote Mine Hunting System (RMS), the Mission Reconfigurable Unmanned Undersea Vehicle (MRUUV) and finally the Littoral Combat Ship (LCS...guarding against the sophisticated Soviet blue-water, air, and undersea threats. Yet since World War II, U.S. Naval Forces have suffered significantly
Logic design for dynamic and interactive recovery.
NASA Technical Reports Server (NTRS)
Carter, W. C.; Jessep, D. C.; Wadia, A. B.; Schneider, P. R.; Bouricius, W. G.
1971-01-01
Recovery in a fault-tolerant computer means the continuation of system operation with data integrity after an error occurs. This paper delineates two parallel concepts embodied in the hardware and software functions required for recovery; detection, diagnosis, and reconfiguration for hardware, data integrity, checkpointing, and restart for the software. The hardware relies on the recovery variable set, checking circuits, and diagnostics, and the software relies on the recovery information set, audit, and reconstruct routines, to characterize the system state and assist in recovery when required. Of particular utility is a handware unit, the recovery control unit, which serves as an interface between error detection and software recovery programs in the supervisor and provides dynamic interactive recovery.
A Novel Approach to Photonic Generation and Modulation of Ultra-Wideband Pulses
NASA Astrophysics Data System (ADS)
Xiang, Peng; Guo, Hao; Chen, Dalei; Zhu, Huatao
2016-01-01
A novel approach to photonic generation of ultra-wideband (UWB) signals is proposed in this paper. The proposed signal generator is capable of generating UWB doublet pulses with flexible reconfigurability, and many different pulse modulation formats, including the commonly used pulse-position modulation (PPM) and bi-phase modulation (BPM) can be realized. Moreover, the photonic UWB pulse generator is capable of generating UWB signals with a tunable spectral notch-band, which is desirable to realize the interference avoidance between UWB and other narrow band systems, such as Wi-Fi. A mathematical model describing the proposed system is developed and the generation of UWB signals with different modulation formats is demonstrated via computer simulations.
Jin, Miaomiao; Cheng, Long; Li, Yi; Hu, Siyu; Lu, Ke; Chen, Jia; Duan, Nian; Wang, Zhuorui; Zhou, Yaxiong; Chang, Ting-Chang; Miao, Xiangshui
2018-06-27
Owing to the capability of integrating the information storage and computing in the same physical location, in-memory computing with memristors has become a research hotspot as a promising route for non von Neumann architecture. However, it is still a challenge to develop high performance devices as well as optimized logic methodologies to realize energy-efficient computing. Herein, filamentary Cu/GeTe/TiN memristor is reported to show satisfactory properties with nanosecond switching speed (< 60 ns), low voltage operation (< 2 V), high endurance (>104 cycles) and good retention (>104 s @85℃). It is revealed that the charge carrier conduction mechanisms in high resistance and low resistance states are Schottky emission and hopping transport between the adjacent Cu clusters, respectively, based on the analysis of current-voltage behaviors and resistance-temperature characteristics. An intuitive picture is given to describe the dynamic processes of resistive switching. Moreover, based on the basic material implication (IMP) logic circuit, we proposed a reconfigurable logic method and experimentally implemented IMP, NOT, OR, and COPY logic functions. Design of a one-bit full adder with reduction in computational sequences and its validation in simulation further demonstrate the potential practical application. The results provide important progress towards understanding of resistive switching mechanism and realization of energy-efficient in-memory computing architecture. © 2018 IOP Publishing Ltd.
Reconfigurable metasurface aperture for security screening and microwave imaging
NASA Astrophysics Data System (ADS)
Sleasman, Timothy; Imani, Mohammadreza F.; Boyarsky, Michael; Pulido-Mancera, Laura; Reynolds, Matthew S.; Smith, David R.
2017-05-01
Microwave imaging systems have seen growing interest in recent decades for applications ranging from security screening to space/earth observation. However, hardware architectures commonly used for this purpose have not seen drastic changes. With the advent of metamaterials a wealth of opportunities have emerged for honing metasurface apertures for microwave imaging systems. Recent thrusts have introduced dynamic reconfigurability directly into the aperture layer, providing powerful capabilities from a physical layer with considerable simplicity. The waveforms generated from such dynamic metasurfaces make them suitable for application in synthetic aperture radar (SAR) and, more generally, computational imaging. In this paper, we investigate a dynamic metasurface aperture capable of performing microwave imaging in the K-band (17.5-26.5 GHz). The proposed aperture is planar and promises an inexpensive fabrication process via printed circuit board techniques. These traits are further augmented by the tunability of dynamic metasurfaces, which provides the dexterity necessary to generate field patterns ranging from a sequence of steered beams to a series of uncorrelated radiation patterns. Imaging is experimentally demonstrated with a voltage-tunable metasurface aperture. We also demonstrate the aperture's utility in real-time measurements and perform volumetric SAR imaging. The capabilities of a prototype are detailed and the future prospects of general dynamic metasurface apertures are discussed.
Neuron array with plastic synapses and programmable dendrites.
Ramakrishnan, Shubha; Wunderlich, Richard; Hasler, Jennifer; George, Suma
2013-10-01
We describe a novel neuromorphic chip architecture that models neurons for efficient computation. Traditional architectures of neuron array chips consist of large scale systems that are interfaced with AER for implementing intra- or inter-chip connectivity. We present a chip that uses AER for inter-chip communication but uses fast, reconfigurable FPGA-style routing with local memory for intra-chip connectivity. We model neurons with biologically realistic channel models, synapses and dendrites. This chip is suitable for small-scale network simulations and can also be used for sequence detection, utilizing directional selectivity properties of dendrites, ultimately for use in word recognition.
NASA Technical Reports Server (NTRS)
Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Morales, Ray H. (Inventor); Le, Thang D. (Inventor)
2002-01-01
The present invention relates to a fully androgynous, reconfigurable closed loop feedback controlled low impact docking system with load sensing electromagnetic capture ring. The docking system of the present invention preferably comprises two Docking- assemblies, each docking assembly comprising a load sensing ring having an outer face, one of more electromagnets, one or more load cells coupled to said load sensing ring. The docking assembly further comprises a plurality of actuator arms coupled to said load sensing ring and capable of dynamically adjusting the orientation of said load sensing ring and a reconfigurable closed loop control system capable of analyzing signals originating from said plurality of load cells and of outputting real time control for each of the actuators. The docking assembly of the present invention incorporates an active load sensing system to automatically dynamically adjust the load sensing ring during capture instead of requiring significant force to push and realign the ring.
Programmable computing with a single magnetoresistive element
NASA Astrophysics Data System (ADS)
Ney, A.; Pampuch, C.; Koch, R.; Ploog, K. H.
2003-10-01
The development of transistor-based integrated circuits for modern computing is a story of great success. However, the proved concept for enhancing computational power by continuous miniaturization is approaching its fundamental limits. Alternative approaches consider logic elements that are reconfigurable at run-time to overcome the rigid architecture of the present hardware systems. Implementation of parallel algorithms on such `chameleon' processors has the potential to yield a dramatic increase of computational speed, competitive with that of supercomputers. Owing to their functional flexibility, `chameleon' processors can be readily optimized with respect to any computer application. In conventional microprocessors, information must be transferred to a memory to prevent it from getting lost, because electrically processed information is volatile. Therefore the computational performance can be improved if the logic gate is additionally capable of storing the output. Here we describe a simple hardware concept for a programmable logic element that is based on a single magnetic random access memory (MRAM) cell. It combines the inherent advantage of a non-volatile output with flexible functionality which can be selected at run-time to operate as an AND, OR, NAND or NOR gate.
Advanced helmet mounted display (AHMD)
NASA Astrophysics Data System (ADS)
Sisodia, Ashok; Bayer, Michael; Townley-Smith, Paul; Nash, Brian; Little, Jay; Cassarly, William; Gupta, Anurag
2007-04-01
Due to significantly increased U.S. military involvement in deterrent, observer, security, peacekeeping and combat roles around the world, the military expects significant future growth in the demand for deployable virtual reality trainers with networked simulation capability of the battle space visualization process. The use of HMD technology in simulated virtual environments has been initiated by the demand for more effective training tools. The AHMD overlays computer-generated data (symbology, synthetic imagery, enhanced imagery) augmented with actual and simulated visible environment. The AHMD can be used to support deployable reconfigurable training solutions as well as traditional simulation requirements, UAV augmented reality, air traffic control and Command, Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR) applications. This paper will describe the design improvements implemented for production of the AHMD System.
Computational model for vocal tract dynamics in a suboscine bird.
Assaneo, M F; Trevisan, M A
2010-09-01
In a recent work, active use of the vocal tract has been reported for singing oscines. The reconfiguration of the vocal tract during song serves to match its resonances to the syringeal fundamental frequency, demonstrating a precise coordination of the two main pieces of the avian vocal system for songbirds characterized by tonal songs. In this work we investigated the Great Kiskadee (Pitangus sulfuratus), a suboscine bird whose calls display a rich harmonic content. Using a recently developed mathematical model for the syrinx and a mobile vocal tract, we set up a computational model that provides a plausible reconstruction of the vocal tract movement using a few spectral features taken from the utterances. Moreover, synthetic calls were generated using the articulated vocal tract that accounts for all the acoustical features observed experimentally.
Modular, Reconfigurable, High-Energy Technology Development
NASA Technical Reports Server (NTRS)
Carrington, Connie; Howell, Joe
2006-01-01
The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed containing software models representing the technologies being matured in the laboratory demos. The testbed would have also included models for non-MRHE developed subsystems such as electric propulsion, so that end-to-end performance could have been assessed. This paper presents an overview of the MRHE Phase I activities at MSFC and its contractor partners. One of the major Phase I accomplishments is the assembly demonstration in the Lockheed Martin Advanced Technology Center (LMATC) Robot-Satellite facility, in which three robot-satellites successfully demonstrated rendezvous & docking, self-assembly, reconfiguration, adaptable GN&C, deployment, and interfaces between modules. Phase I technology maturation results from ENTECH include material recommendations for radiation hardened Stretched Lens Array (SLA) concentrator lenses, and a design concept and test results for a hi-voltage PV receiver. UAH's accomplishments include Supertube heatpipe test results, which support estimates of thermal conductivities at 30,000 times that of an equivalent silver rod. MSFC performed systems trades and developed a preliminary concept design for a 100kW-class modular reconfigurable solar electric propulsion transport vehicle, and Boeing Phantom Works in Huntsville performed assembly and rendezvous and docking trades. A concept animation video was produced by SAIC, wllich showed rendezvous and docking and SLA-square-rigger deployment in LEO.
The operation of large computer-controlled manufacturing systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upton, D.M.
1988-01-01
This work examines methods for operation of large computer-controlled manufacturing systems, with more than 50 or so disparate CNC machines in congregation. The central theme is the development of a distributed control system, which requires minimal central supervision, and allows manufacturing system re-configuration without extensive control software re-writes. Provision is made for machines to learn from their experience and provide estimates of the time necessary to effect various tasks. Routing is opportunistic, with varying degrees of myopia depending on the prevailing situation. Necessary curtailments of opportunism are built in to the system, in order to provide a society of machinesmore » that operate in unison rather than in chaos. Negotiation and contention resolution are carried out using a UHF radio communications network, along with processing capability on both pallets and tools. Graceful and robust error recovery is facilitated by ensuring adequate pessimistic consideration of failure modes at each stage in the scheme. Theoretical models are developed and an examination is made of fundamental characteristics of auction-based scheduling methods.« less
High level language-based robotic control system
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Inventor); Kruetz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)
1994-01-01
This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.
High level language-based robotic control system
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Inventor); Kreutz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)
1996-01-01
This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.
NASA Technical Reports Server (NTRS)
Peterson, Peter; Kamhawi, Hani; Huang, Wensheng; Yim, John; Haag, Tom; Mackey, Jonathan; McVetta, Mike; Sorrelle, Luke; Tomsik, Tom; Gilligan, Ryan;
2016-01-01
The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kilowatt Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate and is intended to be used as the electric propulsion system on the Power and Propulsion Element of the recently announced Deep Space Gateway. The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU) 1 and TDU-3 Hall thrusters are also included.
NASA Technical Reports Server (NTRS)
Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John; Haag, Tom; Mackey, Jonathan; McVetta, Mike; Sorrelle, Luke; Tomsik, Tom; Gilligan, Ryan;
2017-01-01
The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kilowatt Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate and is intended to be used as the electric propulsion system on the Power and Propulsion Element of the recently announced Deep Space Gateway. The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU) 1 and TDU-3 Hall thrusters are also included.
NASA Technical Reports Server (NTRS)
Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John T.; Haag, Thomas W.; Mackey, Jonathan A.; McVetta, Michael S.; Sorrelle, Luke T.; Tomsik, Thomas M.; Gilligan, Ryan P.;
2018-01-01
The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate (STMD) and is intended to be used as the electric propulsion system on the Power and Propulsion Element (PPE) of the recently announced Deep Space Gateway (DSG). The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet-Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 (VF-6) for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU)-1 and TDU-3 Hall thrusters are also included.
Comparison of two reconfigurable N×N interconnects for a recurrent neural network
NASA Astrophysics Data System (ADS)
Berger, Christoph; Collings, Neil; Pourzand, Ali R.; Volkel, Reinnard
1996-11-01
Two different methods of pattern replication (conventional and interlaced fan-out) have been investigated and experimentally tested in a reconfigurable 5X5 optical interconnect. Similar alignment problems due to imaging errors (field curvature) were observed in both systems. We conclude that of the two methods the interlaced fan-out is better suited to avoid these imaging errors, to reduce system size and to implement an optical feedback loop.
Practical, redundant, failure-tolerant, self-reconfiguring embedded system architecture
Klarer, Paul R.; Hayward, David R.; Amai, Wendy A.
2006-10-03
This invention relates to system architectures, specifically failure-tolerant and self-reconfiguring embedded system architectures. The invention provides both a method and architecture for redundancy. There can be redundancy in both software and hardware for multiple levels of redundancy. The invention provides a self-reconfiguring architecture for activating redundant modules whenever other modules fail. The architecture comprises: a communication backbone connected to two or more processors and software modules running on each of the processors. Each software module runs on one processor and resides on one or more of the other processors to be available as a backup module in the event of failure. Each module and backup module reports its status over the communication backbone. If a primary module does not report, its backup module takes over its function. If the primary module becomes available again, the backup module returns to its backup status.
Modeling and Simulation Reliable Spacecraft On-Board Computing
NASA Technical Reports Server (NTRS)
Park, Nohpill
1999-01-01
The proposed project will investigate modeling and simulation-driven testing and fault tolerance schemes for Spacecraft On-Board Computing, thereby achieving reliable spacecraft telecommunication. A spacecraft communication system has inherent capabilities of providing multipoint and broadcast transmission, connectivity between any two distant nodes within a wide-area coverage, quick network configuration /reconfiguration, rapid allocation of space segment capacity, and distance-insensitive cost. To realize the capabilities above mentioned, both the size and cost of the ground-station terminals have to be reduced by using reliable, high-throughput, fast and cost-effective on-board computing system which has been known to be a critical contributor to the overall performance of space mission deployment. Controlled vulnerability of mission data (measured in sensitivity), improved performance (measured in throughput and delay) and fault tolerance (measured in reliability) are some of the most important features of these systems. The system should be thoroughly tested and diagnosed before employing a fault tolerance into the system. Testing and fault tolerance strategies should be driven by accurate performance models (i.e. throughput, delay, reliability and sensitivity) to find an optimal solution in terms of reliability and cost. The modeling and simulation tools will be integrated with a system architecture module, a testing module and a module for fault tolerance all of which interacting through a centered graphical user interface.
Parametric dense stereovision implementation on a system-on chip (SoC).
Gardel, Alfredo; Montejo, Pablo; García, Jorge; Bravo, Ignacio; Lázaro, José L
2012-01-01
This paper proposes a novel hardware implementation of a dense recovery of stereovision 3D measurements. Traditionally 3D stereo systems have imposed the maximum number of stereo correspondences, introducing a large restriction on artificial vision algorithms. The proposed system-on-chip (SoC) provides great performance and efficiency, with a scalable architecture available for many different situations, addressing real time processing of stereo image flow. Using double buffering techniques properly combined with pipelined processing, the use of reconfigurable hardware achieves a parametrisable SoC which gives the designer the opportunity to decide its right dimension and features. The proposed architecture does not need any external memory because the processing is done as image flow arrives. Our SoC provides 3D data directly without the storage of whole stereo images. Our goal is to obtain high processing speed while maintaining the accuracy of 3D data using minimum resources. Configurable parameters may be controlled by later/parallel stages of the vision algorithm executed on an embedded processor. Considering hardware FPGA clock of 100 MHz, image flows up to 50 frames per second (fps) of dense stereo maps of more than 30,000 depth points could be obtained considering 2 Mpix images, with a minimum initial latency. The implementation of computer vision algorithms on reconfigurable hardware, explicitly low level processing, opens up the prospect of its use in autonomous systems, and they can act as a coprocessor to reconstruct 3D images with high density information in real time.
Split and flow: reconfigurable capillary connection for digital microfluidic devices.
Lapierre, Florian; Harnois, Maxime; Coffinier, Yannick; Boukherroub, Rabah; Thomy, Vincent
2014-09-21
Supplying liquid to droplet-based microfluidic microsystems remains a delicate task facing the problems of coupling continuous to digital or macro- to microfluidic systems. Here, we take advantage of superhydrophobic microgrids to address this problem. Insertion of a capillary tube inside a microgrid aperture leads to a simple and reconfigurable droplet generation setup.
A Reconfigurable Instrument System for Nuclear and Particle Physics Experiments
NASA Astrophysics Data System (ADS)
Sang, Ziru; Li, Feng; Jiang, Xiao; Jin, Ge
2014-04-01
We developed a reconfigurable nuclear instrument system (RNIS) that could satisfy the requirements of diverse nuclear and particle physics experiments, and the inertial confinement fusion diagnostic. Benefiting from the reconfigurable hardware structure and digital pulse processing technology, RNIS shakes off the restrictions of cumbersome crates and miscellaneous modules. It retains all the advantages of conventional nuclear instruments and is more flexible and portable. RNIS is primarily composed of a field programmable hardware board and relevant PC software. Separate analog channels are designed to provide different functions, such as amplifiers, ADC, fast discriminators and Schmitt discriminators for diverse experimental purposes. The high-performance field programmable gate array could complete high-precision time interval measurement, histogram accumulation, counting, and coincidence anticoincidence measurement. To illustrate the prospects of RNIS, a series of applications to the experiments are described in this paper. The first, for which RNIS was originally developed, involves nuclear energy spectrum measurement with a scintillation detector and photomultiplier. The second experiment applies RNIS to a G-M tube counting experiment, and in the third, it is applied to a quantum communication experiment through reconfiguration.
Specifying structural constraints of architectural patterns in the ARCHERY language
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Alejandro; HASLab INESC TEC and Universidade do Minho, Campus de Gualtar, 4710-057 Braga; Barbosa, Luis S.
ARCHERY is an architectural description language for modelling and reasoning about distributed, heterogeneous and dynamically reconfigurable systems in terms of architectural patterns. The language supports the specification of architectures and their reconfiguration. This paper introduces a language extension for precisely describing the structural design decisions that pattern instances must respect in their (re)configurations. The extension is a propositional modal logic with recursion and nominals referencing components, i.e., a hybrid µ-calculus. Its expressiveness allows specifying safety and liveness constraints, as well as paths and cycles over structures. Refinements of classic architectural patterns are specified.
On Line Service Composition in the Integrated Clinical Environment for eHealth and Medical Systems
García-Valls, Marisol; Touahria, Imad Eddine
2017-01-01
Medical and eHealth systems are progressively realized in the context of standardized architectures that support safety and ease the integration of the heterogeneous (and often proprietary) medical devices and sensors. The Integrated Clinical Environment (ICE) architecture appeared recently with the goal of becoming a common framework for defining the structure of the medical applications as concerns the safe integration of medical devices and sensors. ICE is simply a high level architecture that defines the functional blocks that should be part of a medical system to support interoperability. As a result, the underlying communication backbone is broadly undefined as concerns the enabling software technology (including the middleware) and associated algorithms that meet the ICE requirements of the flexible integration of medical devices and services. Supporting the on line composition of services in a medical system is also not part of ICE; however, supporting this behavior would enable flexible orchestration of functions (e.g., addition and/or removal of services and medical equipment) on the fly. iLandis one of the few software technologies that supports on line service composition and reconfiguration, ensuring time-bounded transitions across different service orchestrations; it supports the design, deployment and on line reconfiguration of applications, which this paper applies to service-based eHealth domains. This paper designs the integration between ICE architecture and iLand middleware to enhance the capabilities of ICE with on line service composition and the time-bounded reconfiguration of medical systems based on distributed services. A prototype implementation of a service-based eHealth system for the remote monitoring of patients is described; it validates the enhanced capacity of ICE to support dynamic reconfiguration of the application services. Results show that the temporal cost of the on line reconfiguration of the eHealth application is bounded, achieving a low overhead resulting from the addition of ICE compliance. PMID:28594371
On Line Service Composition in the Integrated Clinical Environment for eHealth and Medical Systems.
García-Valls, Marisol; Touahria, Imad Eddine
2017-06-08
Medical and eHealth systems are progressively realized in the context of standardized architectures that support safety and ease the integration of the heterogeneous (and often proprietary) medical devices and sensors. The Integrated Clinical Environment (ICE) architecture appeared recently with the goal of becoming a common framework for defining the structure of the medical applications as concerns the safe integration of medical devices and sensors. ICE is simply a high level architecture that defines the functional blocks that should be part of a medical system to support interoperability. As a result, the underlying communication backbone is broadly undefined as concerns the enabling software technology (including the middleware) and associated algorithms that meet the ICE requirements of the flexible integration of medical devices and services. Supporting the on line composition of services in a medical system is also not part of ICE; however, supporting this behavior would enable flexible orchestration of functions (e.g., addition and/or removal of services and medical equipment) on the fly. iLandis one of the few software technologies that supports on line service composition and reconfiguration, ensuring time-bounded transitions across different service orchestrations; it supports the design, deployment and on line reconfiguration of applications, which this paper applies to service-based eHealth domains. This paper designs the integration between ICE architecture and iLand middleware to enhance the capabilities of ICE with on line service composition and the time-bounded reconfiguration of medical systems based on distributed services. A prototype implementation of a service-based eHealth system for the remote monitoring of patients is described; it validates the enhanced capacity of ICE to support dynamic reconfiguration of the application services. Results show that the temporal cost of the on line reconfiguration of the eHealth application is bounded, achieving a low overhead resulting from the addition of ICE compliance.
Two Reconfigurable Flight-Control Design Methods: Robust Servomechanism and Control Allocation
NASA Technical Reports Server (NTRS)
Burken, John J.; Lu, Ping; Wu, Zheng-Lu; Bahm, Cathy
2001-01-01
Two methods for control system reconfiguration have been investigated. The first method is a robust servomechanism control approach (optimal tracking problem) that is a generalization of the classical proportional-plus-integral control to multiple input-multiple output systems. The second method is a control-allocation approach based on a quadratic programming formulation. A globally convergent fixed-point iteration algorithm has been developed to make onboard implementation of this method feasible. These methods have been applied to reconfigurable entry flight control design for the X-33 vehicle. Examples presented demonstrate simultaneous tracking of angle-of-attack and roll angle commands during failures of the fight body flap actuator. Although simulations demonstrate success of the first method in most cases, the control-allocation method appears to provide uniformly better performance in all cases.
Reconfigurable Flight Control Designs With Application to the X-33 Vehicle
NASA Technical Reports Server (NTRS)
Burken, John J.; Lu, Ping; Wu, Zhenglu
1999-01-01
Two methods for control system reconfiguration have been investigated. The first method is a robust servomechanism control approach (optimal tracking problem) that is a generalization of the classical proportional-plus-integral control to multiple input-multiple output systems. The second method is a control-allocation approach based on a quadratic programming formulation. A globally convergent fixed-point iteration algorithm has been developed to make onboard implementation of this method feasible. These methods have been applied to reconfigurable entry flight control design for the X-33 vehicle. Examples presented demonstrate simultaneous tracking of angle-of-attack and roll angle commands during failures of the right body flap actuator. Although simulations demonstrate success of the first method in most cases, the control-allocation method appears to provide uniformly better performance in all cases.
SMART: The Future of Spaceflight Avionics
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.; Howard, David E.
2010-01-01
A novel avionics approach is necessary to meet the future needs of low cost space and lunar missions that require low mass and low power electronics. The current state of the art for avionics systems are centralized electronic units that perform the required spacecraft functions. These electronic units are usually custom-designed for each application and the approach compels avionics designers to have in-depth system knowledge before design can commence. The overall design, development, test and evaluation (DDT&E) cycle for this conventional approach requires long delivery times for space flight electronics and is very expensive. The Small Multi-purpose Advanced Reconfigurable Technology (SMART) concept is currently being developed to overcome the limitations of traditional avionics design. The SMART concept is based upon two multi-functional modules that can be reconfigured to drive and sense a variety of mechanical and electrical components. The SMART units are key to a distributed avionics architecture whereby the modules are located close to or right at the desired application point. The drive module, SMART-D, receives commands from the main computer and controls the spacecraft mechanisms and devices with localized feedback. The sensor module, SMART-S, is used to sense the environmental sensors and offload local limit checking from the main computer. There are numerous benefits that are realized by implementing the SMART system. Localized sensor signal conditioning electronics reduces signal loss and overall wiring mass. Localized drive electronics increase control bandwidth and minimize time lags for critical functions. These benefits in-turn reduce the main processor overhead functions. Since SMART units are standard flight qualified units, DDT&E is reduced and system design can commence much earlier in the design cycle. Increased production scale lowers individual piece part cost and using standard modules also reduces non-recurring costs. The benefit list continues, but the overall message is already evident: the SMART concept is an evolution in spacecraft avionics. SMART devices have the potential to change the design paradigm for future satellites, spacecraft and even commercial applications.
Operational Dynamic Configuration Analysis
NASA Technical Reports Server (NTRS)
Lai, Chok Fung; Zelinski, Shannon
2010-01-01
Sectors may combine or split within areas of specialization in response to changing traffic patterns. This method of managing capacity and controller workload could be made more flexible by dynamically modifying sector boundaries. Much work has been done on methods for dynamically creating new sector boundaries [1-5]. Many assessments of dynamic configuration methods assume the current day baseline configuration remains fixed [6-7]. A challenging question is how to select a dynamic configuration baseline to assess potential benefits of proposed dynamic configuration concepts. Bloem used operational sector reconfigurations as a baseline [8]. The main difficulty is that operational reconfiguration data is noisy. Reconfigurations often occur frequently to accommodate staff training or breaks, or to complete a more complicated reconfiguration through a rapid sequence of simpler reconfigurations. Gupta quantified a few aspects of airspace boundary changes from this data [9]. Most of these metrics are unique to sector combining operations and not applicable to more flexible dynamic configuration concepts. To better understand what sort of reconfigurations are acceptable or beneficial, more configuration change metrics should be developed and their distribution in current practice should be computed. This paper proposes a method to select a simple sequence of configurations among operational configurations to serve as a dynamic configuration baseline for future dynamic configuration concept assessments. New configuration change metrics are applied to the operational data to establish current day thresholds for these metrics. These thresholds are then corroborated, refined, or dismissed based on airspace practitioner feedback. The dynamic configuration baseline selection method uses a k-means clustering algorithm to select the sequence of configurations and trigger times from a given day of operational sector combination data. The clustering algorithm selects a simplified schedule containing k configurations based on stability score of the sector combinations among the raw operational configurations. In addition, the number of the selected configurations is determined based on balance between accuracy and assessment complexity.
Neural Network Design on the SRC-6 Reconfigurable Computer
2006-12-01
fingerprint identification. In this field, automatic identification methods are used to save time, especially for the purpose of fingerprint matching in...grid widths and lengths and therefore was useful in producing an accurate canvas with which to create sample training images. The added benefit of...tools available free of charge and readily accessible on the computer, it was simple to design bitmap data files visually on a canvas and then
Network Management of the SPLICE Computer Network.
1982-12-01
Approved for public release; distri4ition unlimited. Network lanagenent Df the SPLICE Computer Network by Zriig E. Opal captaini United St~tes larine... structure of the network must leni itself t3 change and reconfiguration, one author [Ref. 2: p.21] recommended that a global bus topology be adopted for...statistics, trace statistics, snapshot statistiZs, artifi - cial traffic generators, auulat on, a network measurement center which includes control, collction
A High Performance VLSI Computer Architecture For Computer Graphics
NASA Astrophysics Data System (ADS)
Chin, Chi-Yuan; Lin, Wen-Tai
1988-10-01
A VLSI computer architecture, consisting of multiple processors, is presented in this paper to satisfy the modern computer graphics demands, e.g. high resolution, realistic animation, real-time display etc.. All processors share a global memory which are partitioned into multiple banks. Through a crossbar network, data from one memory bank can be broadcasted to many processors. Processors are physically interconnected through a hyper-crossbar network (a crossbar-like network). By programming the network, the topology of communication links among processors can be reconfigurated to satisfy specific dataflows of different applications. Each processor consists of a controller, arithmetic operators, local memory, a local crossbar network, and I/O ports to communicate with other processors, memory banks, and a system controller. Operations in each processor are characterized into two modes, i.e. object domain and space domain, to fully utilize the data-independency characteristics of graphics processing. Special graphics features such as 3D-to-2D conversion, shadow generation, texturing, and reflection, can be easily handled. With the current high density interconnection (MI) technology, it is feasible to implement a 64-processor system to achieve 2.5 billion operations per second, a performance needed in most advanced graphics applications.
NASA Astrophysics Data System (ADS)
Li, Will X. Y.; Cui, Ke; Zhang, Wei
2017-04-01
Cognitive neural prosthesis is a manmade device which can be used to restore or compensate for lost human cognitive modalities. The generalized Laguerre-Volterra (GLV) network serves as a robust mathematical underpinning for the development of such prosthetic instrument. In this paper, a hardware implementation scheme of Gauss error function for the GLV network targeting reconfigurable platforms is reported. Numerical approximations are formulated which transform the computation of nonelementary function into combinational operations of elementary functions, and memory-intensive look-up table (LUT) based approaches can therefore be circumvented. The computational precision can be made adjustable with the utilization of an error compensation scheme, which is proposed based on the experimental observation of the mathematical characteristics of the error trajectory. The precision can be further customizable by exploiting the run-time characteristics of the reconfigurable system. Compared to the polynomial expansion based implementation scheme, the utilization of slice LUTs, occupied slices, and DSP48E1s on a Xilinx XC6VLX240T field-programmable gate array has decreased by 94.2%, 94.1%, and 90.0%, respectively. While compared to the look-up table based scheme, 1.0 ×1017 bits of storage can be spared under the maximum allowable error of 1.0 ×10-3 . The proposed implementation scheme can be employed in the study of large-scale neural ensemble activity and in the design and development of neural prosthetic device.
Design of a Thermal and Micrometeorite Protection System for an Unmanned Lunar Cargo Lander
NASA Technical Reports Server (NTRS)
Hernandez, Carlos A.; Sunder, Sankar; Vestgaard, Baard
1989-01-01
The first vehicles to land on the lunar surface during the establishment phase of a lunar base will be unmanned lunar cargo landers. These landers will need to be protected against the hostile lunar environment for six to twelve months until the next manned mission arrives. The lunar environment is characterized by large temperature changes and periodic micrometeorite impacts. An automatically deployable and reconfigurable thermal and micrometeorite protection system was designed for an unmanned lunar cargo lander. The protection system is a lightweight multilayered material consisting of alternating layers of thermal and micrometeorite protection material. The protection system is packaged and stored above the lander common module. After landing, the system is deployed to cover the lander using a system of inflatable struts that are inflated using residual fuel (liquid oxygen) from the fuel tanks. Once the lander is unloaded and the protection system is no longer needed, the protection system is reconfigured as a regolith support blanket for the purpose of burying and protecting the common module, or as a lunar surface garage that can be used to sort and store lunar surface vehicles and equipment. A model showing deployment and reconfiguration of the protection system was also constructed.
Failure detection and identification for a reconfigurable flight control system
NASA Technical Reports Server (NTRS)
Dallery, Francois
1987-01-01
Failure detection and identification logic for a fault-tolerant longitudinal control system were investigated. Aircraft dynamics were based upon the cruise condition for a hypothetical transonic business jet transport configuration. The fault-tolerant control system consists of conventional control and estimation plus a new outer loop containing failure detection, identification, and reconfiguration (FDIR) logic. It is assumed that the additional logic has access to all measurements, as well as to the outputs of the control and estimation logic. The pilot may also command the FDIR logic to perform special tests.
NASA Technical Reports Server (NTRS)
Kaufman, Howard
1998-01-01
Many papers relevant to reconfigurable flight control have appeared over the past fifteen years. In general these have consisted of theoretical issues, simulation experiments, and in some cases, actual flight tests. Results indicate that reconfiguration of flight controls is certainly feasible for a wide class of failures. However many of the proposed procedures although quite attractive, need further analytical and experimental studies for meaningful validation. Many procedures assume the availability of failure detection and identification logic that will supply adequately fast, the dynamics corresponding to the failed aircraft. This in general implies that the failure detection and fault identification logic must have access to all possible anticipated faults and the corresponding dynamical equations of motion. Unless some sort of explicit on line parameter identification is included, the computational demands could possibly be too excessive. This suggests the need for some form of adaptive control, either by itself as the prime procedure for control reconfiguration or in conjunction with the failure detection logic. If explicit or indirect adaptive control is used, then it is important that the identified models be such that the corresponding computed controls deliver adequate performance to the actual aircraft. Unknown changes in trim should be modelled, and parameter identification needs to be adequately insensitive to noise and at the same time capable of tracking abrupt changes. If however, both failure detection and system parameter identification turn out to be too time consuming in an emergency situation, then the concepts of direct adaptive control should be considered. If direct model reference adaptive control is to be used (on a linear model) with stability assurances, then a positive real or passivity condition needs to be satisfied for all possible configurations. This condition is often satisfied with a feedforward compensator around the plant. This compensator must be robustly designed such that the compensated plant satisfies the required positive real conditions over all expected parameter values. Furthermore, with the feedforward only around the plant, a nonzero (but bounded error) will exist in steady state between the plant and model outputs. This error can be removed by placing the compensator also in the reference model. Design of such a compensator should not be too difficult a problem since for flight control it is generally possible to feedback all the system states.
Cellular computational platform and neurally inspired elements thereof
Okandan, Murat
2016-11-22
A cellular computational platform is disclosed that includes a multiplicity of functionally identical, repeating computational hardware units that are interconnected electrically and optically. Each computational hardware unit includes a reprogrammable local memory and has interconnections to other such units that have reconfigurable weights. Each computational hardware unit is configured to transmit signals into the network for broadcast in a protocol-less manner to other such units in the network, and to respond to protocol-less broadcast messages that it receives from the network. Each computational hardware unit is further configured to reprogram the local memory in response to incoming electrical and/or optical signals.
NASA Technical Reports Server (NTRS)
Butler, Roy
2013-01-01
The growth in computer hardware performance, coupled with reduced energy requirements, has led to a rapid expansion of the resources available to software systems, driving them towards greater logical abstraction, flexibility, and complexity. This shift in focus from compacting functionality into a limited field towards developing layered, multi-state architectures in a grand field has both driven and been driven by the history of embedded processor design in the robotic spacecraft industry.The combinatorial growth of interprocess conditions is accompanied by benefits (concurrent development, situational autonomy, and evolution of goals) and drawbacks (late integration, non-deterministic interactions, and multifaceted anomalies) in achieving mission success, as illustrated by the case of the Mars Reconnaissance Orbiter. Approaches to optimizing the benefits while mitigating the drawbacks have taken the form of the formalization of requirements, modular design practices, extensive system simulation, and spacecraft data trend analysis. The growth of hardware capability and software complexity can be expected to continue, with future directions including stackable commodity subsystems, computer-generated algorithms, runtime reconfigurable processors, and greater autonomy.
Cache Energy Optimization Techniques For Modern Processors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh
2013-01-01
Modern multicore processors are employing large last-level caches, for example Intel's E7-8800 processor uses 24MB L3 cache. Further, with each CMOS technology generation, leakage energy has been dramatically increasing and hence, leakage energy is expected to become a major source of energy dissipation, especially in last-level caches (LLCs). The conventional schemes of cache energy saving either aim at saving dynamic energy or are based on properties specific to first-level caches, and thus these schemes have limited utility for last-level caches. Further, several other techniques require offline profiling or per-application tuning and hence are not suitable for product systems. In thismore » book, we present novel cache leakage energy saving schemes for single-core and multicore systems; desktop, QoS, real-time and server systems. Also, we present cache energy saving techniques for caches designed with both conventional SRAM devices and emerging non-volatile devices such as STT-RAM (spin-torque transfer RAM). We present software-controlled, hardware-assisted techniques which use dynamic cache reconfiguration to configure the cache to the most energy efficient configuration while keeping the performance loss bounded. To profile and test a large number of potential configurations, we utilize low-overhead, micro-architecture components, which can be easily integrated into modern processor chips. We adopt a system-wide approach to save energy to ensure that cache reconfiguration does not increase energy consumption of other components of the processor. We have compared our techniques with state-of-the-art techniques and have found that our techniques outperform them in terms of energy efficiency and other relevant metrics. The techniques presented in this book have important applications in improving energy-efficiency of higher-end embedded, desktop, QoS, real-time, server processors and multitasking systems. This book is intended to be a valuable guide for both newcomers and veterans in the field of cache power management. It will help graduate students, CAD tool developers and designers in understanding the need of energy efficiency in modern computing systems. Further, it will be useful for researchers in gaining insights into algorithms and techniques for micro-architectural and system-level energy optimization using dynamic cache reconfiguration. We sincerely believe that the ``food for thought'' presented in this book will inspire the readers to develop even better ideas for designing ``green'' processors of tomorrow.« less
Study of the characteristics of reconfigurable plasma antenna array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alias, Nur Salihah; Dagang, Ahmad Nazri; Ali, Mohd Tarmizi
This paper presents a design and simulation of a reconfigurable array of plasma antenna. The plasma column is used as radiating elements instead of metal to create an antenna. The advantages of the plasma antenna over the conventional antenna are its possible to change the operating parameters, such as the working pressure, input power, radius of the discharge tube, resonant frequency, and length of the plasma column. In addition, plasma antenna can be reconfigurable with respect to shape, frequency and radiation parameters in a very short time. The plasma discharge tube was designed with a length of 200 mm, the radiusmore » of the plasma column was 2.5 mm and the coupling sleeve was connected to the SMA as the ground. This simulation was performed by using the simulation software Computer Simulation Technology (CST). The frequency is set in the range of 1 GHz to 10 GHz. The performance of the designed antenna was analyzed in term of return loss, gain and radiation pattern. For reconfigurable plasma antenna array, it shows that the gain is increase when the number of antenna element is increase. The combination of the discharge tube and metal rod as an antenna array has been done, and the result shows that an array with the plasma element can achieve higher gain.« less
Photochromic molecular implementations of universal computation.
Chaplin, Jack C; Krasnogor, Natalio; Russell, Noah A
2014-12-01
Unconventional computing is an area of research in which novel materials and paradigms are utilised to implement computation. Previously we have demonstrated how registers, logic gates and logic circuits can be implemented, unconventionally, with a biocompatible molecular switch, NitroBIPS, embedded in a polymer matrix. NitroBIPS and related molecules have been shown elsewhere to be capable of modifying many biological processes in a manner that is dependent on its molecular form. Thus, one possible application of this type of unconventional computing is to embed computational processes into biological systems. Here we expand on our earlier proof-of-principle work and demonstrate that universal computation can be implemented using NitroBIPS. We have previously shown that spatially localised computational elements, including registers and logic gates, can be produced. We explain how parallel registers can be implemented, then demonstrate an application of parallel registers in the form of Turing machine tapes, and demonstrate both parallel registers and logic circuits in the form of elementary cellular automata. The Turing machines and elementary cellular automata utilise the same samples and same hardware to implement their registers, logic gates and logic circuits; and both represent examples of universal computing paradigms. This shows that homogenous photochromic computational devices can be dynamically repurposed without invasive reconfiguration. The result represents an important, necessary step towards demonstrating the general feasibility of interfacial computation embedded in biological systems or other unconventional materials and environments. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Saponara, M.; Tramutola, A.; Creten, P.; Hardy, J.; Philippe, C.
2013-08-01
Optimization-based control techniques such as Model Predictive Control (MPC) are considered extremely attractive for space rendezvous, proximity operations and capture applications that require high level of autonomy, optimal path planning and dynamic safety margins. Such control techniques require high-performance computational needs for solving large optimization problems. The development and implementation in a flight representative avionic architecture of a MPC based Guidance, Navigation and Control system has been investigated in the ESA R&T study “On-line Reconfiguration Control System and Avionics Architecture” (ORCSAT) of the Aurora programme. The paper presents the baseline HW and SW avionic architectures, and verification test results obtained with a customised RASTA spacecraft avionics development platform from Aeroflex Gaisler.
Optimizing a reconfigurable material via evolutionary computation
NASA Astrophysics Data System (ADS)
Wilken, Sam; Miskin, Marc Z.; Jaeger, Heinrich M.
2015-08-01
Rapid prototyping by combining evolutionary computation with simulations is becoming a powerful tool for solving complex design problems in materials science. This method of optimization operates in a virtual design space that simulates potential material behaviors and after completion needs to be validated by experiment. However, in principle an evolutionary optimizer can also operate on an actual physical structure or laboratory experiment directly, provided the relevant material parameters can be accessed by the optimizer and information about the material's performance can be updated by direct measurements. Here we provide a proof of concept of such direct, physical optimization by showing how a reconfigurable, highly nonlinear material can be tuned to respond to impact. We report on an entirely computer controlled laboratory experiment in which a 6 ×6 grid of electromagnets creates a magnetic field pattern that tunes the local rigidity of a concentrated suspension of ferrofluid and iron filings. A genetic algorithm is implemented and tasked to find field patterns that minimize the force transmitted through the suspension. Searching within a space of roughly 1010 possible configurations, after testing only 1500 independent trials the algorithm identifies an optimized configuration of layered rigid and compliant regions.
On Why It Is Impossible to Prove that the BDX90 Dispatcher Implements a Time-sharing System
NASA Technical Reports Server (NTRS)
Boyer, R. S.; Moore, J. S.
1983-01-01
The Software Implemented Fault Tolerance SIFT system, is written in PASCAL except for about a page of machine code. The SIFT system implements a small time sharing system in which PASCAL programs for separate application tasks are executed according to a schedule with real time constraints. The PASCAL language has no provision for handling the notion of an interrupt such as the B930 clock interrupt. The PASCAL language also lacks the notion of running a PASCAL subroutine for a given amount of time, suspending it, saving away the suspension, and later activating the suspension. Machine code was used to overcome these inadequacies of PASCAL. Code which handles clock interrupts and suspends processes is called a dispatcher. The time sharing/virtual machine idea is completely destroyed by the reconfiguration task. After termination of the reconfiguration task, the tasks run by the dispatcher have no relation to those run before reconfiguration. It is impossible to view the dispatcher as a time-sharing system implementing virtual BDX930s running concurrently when one process can wipe out the others.
Active vibration control of a full scale aircraft wing using a reconfigurable controller
NASA Astrophysics Data System (ADS)
Prakash, Shashikala; Renjith Kumar, T. G.; Raja, S.; Dwarakanathan, D.; Subramani, H.; Karthikeyan, C.
2016-01-01
This work highlights the design of a Reconfigurable Active Vibration Control (AVC) System for aircraft structures using adaptive techniques. The AVC system with a multichannel capability is realized using Filtered-X Least Mean Square algorithm (FxLMS) on Xilinx Virtex-4 Field Programmable Gate Array (FPGA) platform in Very High Speed Integrated Circuits Hardware Description Language, (VHDL). The HDL design is made based on Finite State Machine (FSM) model with Floating point Intellectual Property (IP) cores for arithmetic operations. The use of FPGA facilitates to modify the system parameters even during runtime depending on the changes in user's requirements. The locations of the control actuators are optimized based on dynamic modal strain approach using genetic algorithm (GA). The developed system has been successfully deployed for the AVC testing of the full-scale wing of an all composite two seater transport aircraft. Several closed loop configurations like single channel and multi-channel control have been tested. The experimental results from the studies presented here are very encouraging. They demonstrate the usefulness of the system's reconfigurability for real time applications.
A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing.
Zhang, Weifeng; Yao, Jianping
2018-04-11
Since the discovery of the Bragg's law in 1913, Bragg gratings have become important optical devices and have been extensively used in various systems. In particular, the successful inscription of a Bragg grating in a fiber core has significantly boosted its engineering applications. However, a conventional grating device is usually designed for a particular use, which limits general-purpose applications since its index modulation profile is fixed after fabrication. In this article, we propose to implement a fully reconfigurable grating, which is fast and electrically reconfigurable by field programming. The concept is verified by fabricating an integrated grating on a silicon-on-insulator platform, which is employed as a programmable signal processor to perform multiple signal processing functions including temporal differentiation, microwave time delay, and frequency identification. The availability of ultrafast and reconfigurable gratings opens new avenues for programmable optical signal processing at the speed of light.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
2002-01-01
The paper presents a novel on-wafer, antenna far field pattern measurement technique for microelectromechanical systems (MEMS) based reconfigurable patch antennas. The measurement technique significantly reduces the time and the cost associated with the characterization of printed antennas, fabricated on a semiconductor wafer or dielectric substrate. To measure the radiation patterns, the RF probe station is modified to accommodate an open-ended rectangular waveguide as the rotating linearly polarized sampling antenna. The open-ended waveguide is attached through a coaxial rotary joint to a Plexiglas(Trademark) arm and is driven along an arc by a stepper motor. Thus, the spinning open-ended waveguide can sample the relative field intensity of the patch as a function of the angle from bore sight. The experimental results include the measured linearly polarized and circularly polarized radiation patterns for MEMS-based frequency reconfigurable rectangular and polarization reconfigurable nearly square patch antennas, respectively.
Cloud-Based Virtual Laboratory for Network Security Education
ERIC Educational Resources Information Center
Xu, Le; Huang, Dijiang; Tsai, Wei-Tek
2014-01-01
Hands-on experiments are essential for computer network security education. Existing laboratory solutions usually require significant effort to build, configure, and maintain and often do not support reconfigurability, flexibility, and scalability. This paper presents a cloud-based virtual laboratory education platform called V-Lab that provides a…
Memristor-CMOS hybrid integrated circuits for reconfigurable logic.
Xia, Qiangfei; Robinett, Warren; Cumbie, Michael W; Banerjee, Neel; Cardinali, Thomas J; Yang, J Joshua; Wu, Wei; Li, Xuema; Tong, William M; Strukov, Dmitri B; Snider, Gregory S; Medeiros-Ribeiro, Gilberto; Williams, R Stanley
2009-10-01
Hybrid reconfigurable logic circuits were fabricated by integrating memristor-based crossbars onto a foundry-built CMOS (complementary metal-oxide-semiconductor) platform using nanoimprint lithography, as well as materials and processes that were compatible with the CMOS. Titanium dioxide thin-film memristors served as the configuration bits and switches in a data routing network and were connected to gate-level CMOS components that acted as logic elements, in a manner similar to a field programmable gate array. We analyzed the chips using a purpose-built testing system, and demonstrated the ability to configure individual devices, use them to wire up various logic gates and a flip-flop, and then reconfigure devices.
Software-Defined Radio for Space-to-Space Communications
NASA Technical Reports Server (NTRS)
Fisher, Ken; Jih, Cindy; Moore, Michael S.; Price, Jeremy C.; Abbott, Ben A.; Fritz, Justin A.
2011-01-01
A paper describes the Space- to-Space Communications System (SSCS) Software- Defined Radio (SDR) research project to determine the most appropriate method for creating flexible and reconfigurable radios to implement wireless communications channels for space vehicles so that fewer radios are required, and commonality in hardware and software architecture can be leveraged for future missions. The ability to reconfigure the SDR through software enables one radio platform to be reconfigured to interoperate with many different waveforms. This means a reduction in the number of physical radio platforms necessary to support a space mission s communication requirements, thus decreasing the total size, weight, and power needed for a mission.
Master-slave mixed arrays for data-flow computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, T.L.; Fisher, P.D.
1983-01-01
Control cells (masters) and computation cells (slaves) are mixed in regular geometric patterns to form reconfigurable arrays known as master-slave mixed arrays (MSMAS). Interconnections of the corners and edges of the hexagonal control cells and the edges of the hexagonal computation cells are used to construct synchronous and asynchronous communication networks, which support local computation and local communication. Data-driven computations result in self-directed ring pipelines within the MSMA, and composite data-flow computations are executed in a pipelined fashion. By viewing an MSMA as a computing network of tightly-linked ring pipelines, data-flow programs can be uniformly distributed over these pipelines formore » efficient resource utilisation. 9 references.« less
Cost-effective solutions to maintaining smart grid reliability
NASA Astrophysics Data System (ADS)
Qin, Qiu
As the aging power systems are increasingly working closer to the capacity and thermal limits, maintaining an sufficient reliability has been of great concern to the government agency, utility companies and users. This dissertation focuses on improving the reliability of transmission and distribution systems. Based on the wide area measurements, multiple model algorithms are developed to diagnose transmission line three-phase short to ground faults in the presence of protection misoperations. The multiple model algorithms utilize the electric network dynamics to provide prompt and reliable diagnosis outcomes. Computational complexity of the diagnosis algorithm is reduced by using a two-step heuristic. The multiple model algorithm is incorporated into a hybrid simulation framework, which consist of both continuous state simulation and discrete event simulation, to study the operation of transmission systems. With hybrid simulation, line switching strategy for enhancing the tolerance to protection misoperations is studied based on the concept of security index, which involves the faulted mode probability and stability coverage. Local measurements are used to track the generator state and faulty mode probabilities are calculated in the multiple model algorithms. FACTS devices are considered as controllers for the transmission system. The placement of FACTS devices into power systems is investigated with a criterion of maintaining a prescribed level of control reconfigurability. Control reconfigurability measures the small signal combined controllability and observability of a power system with an additional requirement on fault tolerance. For the distribution systems, a hierarchical framework, including a high level recloser allocation scheme and a low level recloser placement scheme, is presented. The impacts of recloser placement on the reliability indices is analyzed. Evaluation of reliability indices in the placement process is carried out via discrete event simulation. The reliability requirements are described with probabilities and evaluated from the empirical distributions of reliability indices.
Reconfiguring redundancy management
NASA Technical Reports Server (NTRS)
Gelderloos, H. J. C. (Inventor)
1982-01-01
A redundancy management system is described wherein input signals from a sensor are provided redundantly in parallel so that a primary control signal may be selected. Median value signals for groups of three sensors are detected in median value selectors of selection filter. The detected median value signals are then also compared in a subtractor/comparator to determine whether any of them exceed the others by an amount greater than the signal level for a failed sensor. If so, the exceeding detected medium value signal is sent to a control computer as the primary control signal. If not, the lowest level detected medium value signal is sent as the primary control signal.
Optical computing and image processing using photorefractive gallium arsenide
NASA Technical Reports Server (NTRS)
Cheng, Li-Jen; Liu, Duncan T. H.
1990-01-01
Recent experimental results on matrix-vector multiplication and multiple four-wave mixing using GaAs are presented. Attention is given to a simple concept of using two overlapping holograms in GaAs to do two matrix-vector multiplication processes operating in parallel with a common input vector. This concept can be used to construct high-speed, high-capacity, reconfigurable interconnection and multiplexing modules, important for optical computing and neural-network applications.
Reconfiguration Schemes for Fault-Tolerant Processor Arrays
1992-10-15
partially notion of linear schedule are easily related to similar ordered subset of a multidimensional integer lattice models and concepts used in [11-[131...and several other (called indec set). The points of this lattice correspond works. to (i.e.. are the indices of) computations, and the partial There are...These data dependencies are represented as vectors that of all computations of the algorithm is to be minimized. connect points of the lattice . If a
Computing the Algebraic Immunity of Boolean Functions on the SRC-6 Reconfigurable Computer
2012-03-01
and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2 . REPORT DATE March 2012 3. REPORT... CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/A 10. SPONSORING...developed for this conversion. This reduced form requires many fewer gates and has ( )n delay versus ( 2 ) n delay for a full transeunt triangle
Optical Interconnection Via Computer-Generated Holograms
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang; Zhou, Shaomin
1995-01-01
Method of free-space optical interconnection developed for data-processing applications like parallel optical computing, neural-network computing, and switching in optical communication networks. In method, multiple optical connections between multiple sources of light in one array and multiple photodetectors in another array made via computer-generated holograms in electrically addressed spatial light modulators (ESLMs). Offers potential advantages of massive parallelism, high space-bandwidth product, high time-bandwidth product, low power consumption, low cross talk, and low time skew. Also offers advantage of programmability with flexibility of reconfiguration, including variation of strengths of optical connections in real time.
Volunteered Cloud Computing for Disaster Management
NASA Astrophysics Data System (ADS)
Evans, J. D.; Hao, W.; Chettri, S. R.
2014-12-01
Disaster management relies increasingly on interpreting earth observations and running numerical models; which require significant computing capacity - usually on short notice and at irregular intervals. Peak computing demand during event detection, hazard assessment, or incident response may exceed agency budgets; however some of it can be met through volunteered computing, which distributes subtasks to participating computers via the Internet. This approach has enabled large projects in mathematics, basic science, and climate research to harness the slack computing capacity of thousands of desktop computers. This capacity is likely to diminish as desktops give way to battery-powered mobile devices (laptops, smartphones, tablets) in the consumer market; but as cloud computing becomes commonplace, it may offer significant slack capacity -- if its users are given an easy, trustworthy mechanism for participating. Such a "volunteered cloud computing" mechanism would also offer several advantages over traditional volunteered computing: tasks distributed within a cloud have fewer bandwidth limitations; granular billing mechanisms allow small slices of "interstitial" computing at no marginal cost; and virtual storage volumes allow in-depth, reversible machine reconfiguration. Volunteered cloud computing is especially suitable for "embarrassingly parallel" tasks, including ones requiring large data volumes: examples in disaster management include near-real-time image interpretation, pattern / trend detection, or large model ensembles. In the context of a major disaster, we estimate that cloud users (if suitably informed) might volunteer hundreds to thousands of CPU cores across a large provider such as Amazon Web Services. To explore this potential, we are building a volunteered cloud computing platform and targeting it to a disaster management context. Using a lightweight, fault-tolerant network protocol, this platform helps cloud users join parallel computing projects; automates reconfiguration of their virtual machines; ensures accountability for donated computing; and optimizes the use of "interstitial" computing. Initial applications include fire detection from multispectral satellite imagery and flood risk mapping through hydrological simulations.
Smart reconfigurable parabolic space antenna for variable electromagnetic patterns
NASA Astrophysics Data System (ADS)
Kalra, Sahil; Datta, Rituparna; Munjal, B. S.; Bhattacharya, Bishakh
2018-02-01
An application of reconfigurable parabolic space antenna for satellite is discussed in this paper. The present study focuses on shape morphing of flexible parabolic antenna actuated with Shape Memory Alloy (SMA) wires. The antenna is able to transmit the signals to the desired footprint on earth with a desired gain value. SMA wire based actuation with a locking device is developed for a precise control of Antenna shape. The locking device is efficient to hold the structure in deformed configuration during power cutoff from the system. The maximum controllable deflection at any point using such actuation system is about 25mm with a precision of ±100 m. In order to control the shape of the antenna in a closed feedback loop, a Proportional, Integral and Derivative (PID) based controller is developed using LabVIEW (NI) and experiments are performed. Numerical modeling and analysis of the structure is carried out using finite element software ABAQUS. For data reduction and fast computation, stiffness matrix generated by ABAQUS is condensed by Guyan Reduction technique and shape optimization is performed using Non-dominated Sorting Genetic Algorithm (NSGA-II). The matching in comparative study between numerical and experimental set-up shows efficacy of our method. Thereafter, Electro-Magnetic (EM) simulations of the deformed shape is carried out using electromagnetic field simulation, High Frequency Structure Simulator (HFSS). The proposed design is envisaged to be very effective for multipurpose application of satellite system in the future missions of Indian Space Research Organization (ISRO).
Distributed reconfigurable control strategies for switching topology networked multi-agent systems.
Gallehdari, Z; Meskin, N; Khorasani, K
2017-11-01
In this paper, distributed control reconfiguration strategies for directed switching topology networked multi-agent systems are developed and investigated. The proposed control strategies are invoked when the agents are subject to actuator faults and while the available fault detection and isolation (FDI) modules provide inaccurate and unreliable information on the estimation of faults severities. Our proposed strategies will ensure that the agents reach a consensus while an upper bound on the team performance index is ensured and satisfied. Three types of actuator faults are considered, namely: the loss of effectiveness fault, the outage fault, and the stuck fault. By utilizing quadratic and convex hull (composite) Lyapunov functions, two cooperative and distributed recovery strategies are designed and provided to select the gains of the proposed control laws such that the team objectives are guaranteed. Our proposed reconfigurable control laws are applied to a team of autonomous underwater vehicles (AUVs) under directed switching topologies and subject to simultaneous actuator faults. Simulation results demonstrate the effectiveness of our proposed distributed reconfiguration control laws in compensating for the effects of sudden actuator faults and subject to fault diagnosis module uncertainties and unreliabilities. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Prasad, Guru; Jayaram, Sanjay; Ward, Jami; Gupta, Pankaj
2004-08-01
In this paper, Aximetric proposes a decentralized Command and Control (C2) architecture for a distributed control of a cluster of on-board health monitoring and software enabled control systems called SimBOX that will use some of the real-time infrastructure (RTI) functionality from the current military real-time simulation architecture. The uniqueness of the approach is to provide a "plug and play environment" for various system components that run at various data rates (Hz) and the ability to replicate or transfer C2 operations to various subsystems in a scalable manner. This is possible by providing a communication bus called "Distributed Shared Data Bus" and a distributed computing environment used to scale the control needs by providing a self-contained computing, data logging and control function module that can be rapidly reconfigured to perform different functions. This kind of software-enabled control is very much needed to meet the needs of future aerospace command and control functions.
NASA Astrophysics Data System (ADS)
Prasad, Guru; Jayaram, Sanjay; Ward, Jami; Gupta, Pankaj
2004-09-01
In this paper, Aximetric proposes a decentralized Command and Control (C2) architecture for a distributed control of a cluster of on-board health monitoring and software enabled control systems called
Real-time LMR control parameter generation using advanced adaptive synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, R.W.; Mott, J.E.
1990-01-01
The reactor delta T'', the difference between the average core inlet and outlet temperatures, for the liquid-sodium-cooled Experimental Breeder Reactor 2 is empirically synthesized in real time from, a multitude of examples of past reactor operation. The real-time empirical synthesis is based on reactor operation. The real-time empirical synthesis is based on system state analysis (SSA) technology embodied in software on the EBR 2 data acquisition computer. Before the real-time system is put into operation, a selection of reactor plant measurements is made which is predictable over long periods encompassing plant shutdowns, core reconfigurations, core load changes, and plant startups.more » A serial data link to a personal computer containing SSA software allows the rapid verification of the predictability of these plant measurements via graphical means. After the selection is made, the real-time synthesis provides a fault-tolerant estimate of the reactor delta T accurate to {plus}/{minus}1{percent}. 5 refs., 7 figs.« less
NASA Technical Reports Server (NTRS)
Farral, Joseph F.; Seshan, P. K.; Rohatgi, Naresh K.
1991-01-01
This paper describes the Generic Modular Flow Schematic (GMFS) architecture capable of encompassing all functional elements of a physical/chemical life support system (LSS). The GMFS can be implemented to synthesize, model, analyze, and quantitatively compare many configurations of LSSs, from a simple, completely open-loop to a very complex closed-loop. The GMFS model is coded in ASPEN, a state-of-the-art chemical process simulation program, to accurately compute the material, heat, and power flow quantities for every stream in each of the subsystem functional elements (SFEs) in the chosen configuration of a life support system. The GMFS approach integrates the various SFEs and subsystems in a hierarchical and modular fashion facilitating rapid substitutions and reconfiguration of a life support system. The comprehensive ASPEN material and energy balance output is transferred to a systems and technology assessment spreadsheet for rigorous system analysis and trade studies.
Comprehensive Fault Tolerance and Science-Optimal Attitude Planning for Spacecraft Applications
NASA Astrophysics Data System (ADS)
Nasir, Ali
Spacecraft operate in a harsh environment, are costly to launch, and experience unavoidable communication delay and bandwidth constraints. These factors motivate the need for effective onboard mission and fault management. This dissertation presents an integrated framework to optimize science goal achievement while identifying and managing encountered faults. Goal-related tasks are defined by pointing the spacecraft instrumentation toward distant targets of scientific interest. The relative value of science data collection is traded with risk of failures to determine an optimal policy for mission execution. Our major innovation in fault detection and reconfiguration is to incorporate fault information obtained from two types of spacecraft models: one based on the dynamics of the spacecraft and the second based on the internal composition of the spacecraft. For fault reconfiguration, we consider possible changes in both dynamics-based control law configuration and the composition-based switching configuration. We formulate our problem as a stochastic sequential decision problem or Markov Decision Process (MDP). To avoid the computational complexity involved in a fully-integrated MDP, we decompose our problem into multiple MDPs. These MDPs include planning MDPs for different fault scenarios, a fault detection MDP based on a logic-based model of spacecraft component and system functionality, an MDP for resolving conflicts between fault information from the logic-based model and the dynamics-based spacecraft models" and the reconfiguration MDP that generates a policy optimized over the relative importance of the mission objectives versus spacecraft safety. Approximate Dynamic Programming (ADP) methods for the decomposition of the planning and fault detection MDPs are applied. To show the performance of the MDP-based frameworks and ADP methods, a suite of spacecraft attitude planning case studies are described. These case studies are used to analyze the content and behavior of computed policies in response to the changes in design parameters. A primary case study is built from the Far Ultraviolet Spectroscopic Explorer (FUSE) mission for which component models and their probabilities of failure are based on realistic mission data. A comparison of our approach with an alternative framework for spacecraft task planning and fault management is presented in the context of the FUSE mission.
FPGA-based distributed computing microarchitecture for complex physical dynamics investigation.
Borgese, Gianluca; Pace, Calogero; Pantano, Pietro; Bilotta, Eleonora
2013-09-01
In this paper, we present a distributed computing system, called DCMARK, aimed at solving partial differential equations at the basis of many investigation fields, such as solid state physics, nuclear physics, and plasma physics. This distributed architecture is based on the cellular neural network paradigm, which allows us to divide the differential equation system solving into many parallel integration operations to be executed by a custom multiprocessor system. We push the number of processors to the limit of one processor for each equation. In order to test the present idea, we choose to implement DCMARK on a single FPGA, designing the single processor in order to minimize its hardware requirements and to obtain a large number of easily interconnected processors. This approach is particularly suited to study the properties of 1-, 2- and 3-D locally interconnected dynamical systems. In order to test the computing platform, we implement a 200 cells, Korteweg-de Vries (KdV) equation solver and perform a comparison between simulations conducted on a high performance PC and on our system. Since our distributed architecture takes a constant computing time to solve the equation system, independently of the number of dynamical elements (cells) of the CNN array, it allows us to reduce the elaboration time more than other similar systems in the literature. To ensure a high level of reconfigurability, we design a compact system on programmable chip managed by a softcore processor, which controls the fast data/control communication between our system and a PC Host. An intuitively graphical user interface allows us to change the calculation parameters and plot the results.
Reconfigurable Antennas for High Data Rate Multi-beam Communication Systems
NASA Technical Reports Server (NTRS)
Bernhard, Jennifer T.; Michielssen, Eric
2005-01-01
High-speed (2-100 Mb/sec) wireless data communication - whether land- or satellite-based - faces a major challenge: high error rates caused by interference and unpredictable environments. A planar antenna system that can be reconfigured to respond to changing conditions has the potential to dramatically improve data throughput and system reliability. Moreover, new planar antenna designs that reduce array size, weight, and cost can have a significant impact on terrestrial and satellite communication system performance. This research developed new individually-reconfigurable planar antenna array elements that can be adjusted to provide multiple beams while providing increased scan angles and higher aperture efficiency than traditional diffraction-limited arrays. These new elements are microstrip spiral antennas with specialized tuning mechanisms that provide adjustable radiation patterns. We anticipate that these new elements can be used in both large and small arrays for inter-satellite communication as well as tracking of multiple mobile surface-based units. Our work has developed both theoretical descriptions as well as experimental prototypes of the antennas in both single element and array embodiments. The technical summary of the results of this work is divided into six sections: A. Cavity model for analysis and design of pattern reconfigurable antennas; B. Performance of antenna in array configurations for broadside and endfire operation; C. Performance of antenna in array configurations for beam scanning operation; D. Simulation of antennas in infinite phased arrays; E. Demonstration of antenna with commercially-available RF MEMS switches; F. Design of antenna MEMS switch combinations for direct simultaneous fabrication.
Development of a Deployable Nonmetallic Boom for Reconfigurable Systems of Small Spacecraft
NASA Technical Reports Server (NTRS)
Rehnmark, Fredrik; Pryor, Mark; Holmes, Buck; Schaechter, David; Pedreiro, Nelson; Carrington, Connie
2007-01-01
In 2005, NASA commenced Phase 1 of the Modular Reconfigurable High Energy Technology Demonstrator (MRHE) program to investigate reconfigurable systems of small spacecraft. During that year, Lockheed Martin's Advanced Technology Center (ATC) led an accelerated effort to develop a 1-g MRHE concept demonstration featuring robotic spacecraft simulators equipped with docking mechanisms and deployable booms. The deployable boom built for MRHE was the result of a joint effort in which ATK was primarily responsible for developing and fabricating the Collapsible Rollable Tube (CRT patent pending) boom while Lockheed Martin designed and built the motorized Boom Deployment Mechanism (BDM) under a concurrent but separate IR&D program. Tight coordination was necessary to meet testbed integration and functionality requirements. This paper provides an overview of the CRT boom and BDM designs and presents preliminary results of integration and testing to support the MRHE demonstration.
A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems
Park, Kyeonghwan; Kim, Seung Mok; Eom, Won-Jin; Kim, Jae Joon
2017-01-01
This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC) for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR) of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS) process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors. PMID:28368355
A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems.
Park, Kyeonghwan; Kim, Seung Mok; Eom, Won-Jin; Kim, Jae Joon
2017-04-03
This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC) for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR) of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS) process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors.
A Fixed Point VHDL Component Library for a High Efficiency Reconfigurable Radio Design Methodology
NASA Technical Reports Server (NTRS)
Hoy, Scott D.; Figueiredo, Marco A.
2006-01-01
Advances in Field Programmable Gate Array (FPGA) technologies enable the implementation of reconfigurable radio systems for both ground and space applications. The development of such systems challenges the current design paradigms and requires more robust design techniques to meet the increased system complexity. Among these techniques is the development of component libraries to reduce design cycle time and to improve design verification, consequently increasing the overall efficiency of the project development process while increasing design success rates and reducing engineering costs. This paper describes the reconfigurable radio component library developed at the Software Defined Radio Applications Research Center (SARC) at Goddard Space Flight Center (GSFC) Microwave and Communications Branch (Code 567). The library is a set of fixed-point VHDL components that link the Digital Signal Processing (DSP) simulation environment with the FPGA design tools. This provides a direct synthesis path based on the latest developments of the VHDL tools as proposed by the BEE VBDL 2004 which allows for the simulation and synthesis of fixed-point math operations while maintaining bit and cycle accuracy. The VHDL Fixed Point Reconfigurable Radio Component library does not require the use of the FPGA vendor specific automatic component generators and provide a generic path from high level DSP simulations implemented in Mathworks Simulink to any FPGA device. The access to the component synthesizable, source code provides full design verification capability:
NASA Astrophysics Data System (ADS)
Wang, Rui
It is known that high intensity radiated fields (HIRF) can produce upsets in digital electronics, and thereby degrade the performance of digital flight control systems. Such upsets, either from natural or man-made sources, can change data values on digital buses and memory and affect CPU instruction execution. HIRF environments are also known to trigger common-mode faults, affecting nearly-simultaneously multiple fault containment regions, and hence reducing the benefits of n-modular redundancy and other fault-tolerant computing techniques. Thus, it is important to develop models which describe the integration of the embedded digital system, where the control law is implemented, as well as the dynamics of the closed-loop system. In this dissertation, theoretical tools are presented to analyze the relationship between the design choices for a class of distributed recoverable computing platforms and the tracking performance degradation of a digital flight control system implemented on such a platform while operating in a HIRF environment. Specifically, a tractable hybrid performance model is developed for a digital flight control system implemented on a computing platform inspired largely by the NASA family of fault-tolerant, reconfigurable computer architectures known as SPIDER (scalable processor-independent design for enhanced reliability). The focus will be on the SPIDER implementation, which uses the computer communication system known as ROBUS-2 (reliable optical bus). A physical HIRF experiment was conducted at the NASA Langley Research Center in order to validate the theoretical tracking performance degradation predictions for a distributed Boeing 747 flight control system subject to a HIRF environment. An extrapolation of these results for scenarios that could not be physically tested is also presented.
Overview of the LINCS architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, J.G.; Watson, R.W.
1982-01-13
Computing at the Lawrence Livermore National Laboratory (LLNL) has evolved over the past 15 years with a computer network based resource sharing environment. The increasing use of low cost and high performance micro, mini and midi computers and commercially available local networking systems will accelerate this trend. Further, even the large scale computer systems, on which much of the LLNL scientific computing depends, are evolving into multiprocessor systems. It is our belief that the most cost effective use of this environment will depend on the development of application systems structured into cooperating concurrent program modules (processes) distributed appropriately over differentmore » nodes of the environment. A node is defined as one or more processors with a local (shared) high speed memory. Given the latter view, the environment can be characterized as consisting of: multiple nodes communicating over noisy channels with arbitrary delays and throughput, heterogenous base resources and information encodings, no single administration controlling all resources, distributed system state, and no uniform time base. The system design problem is - how to turn the heterogeneous base hardware/firmware/software resources of this environment into a coherent set of resources that facilitate development of cost effective, reliable, and human engineered applications. We believe the answer lies in developing a layered, communication oriented distributed system architecture; layered and modular to support ease of understanding, reconfiguration, extensibility, and hiding of implementation or nonessential local details; communication oriented because that is a central feature of the environment. The Livermore Interactive Network Communication System (LINCS) is a hierarchical architecture designed to meet the above needs. While having characteristics in common with other architectures, it differs in several respects.« less
Sekar, Ramanan; Taillefert, Martial; DiChristina, Thomas J
2016-11-01
Improper disposal of 1,4-dioxane and the chlorinated organic solvents trichloroethylene (TCE) and tetrachloroethylene (also known as perchloroethylene [PCE]) has resulted in widespread contamination of soil and groundwater. In the present study, a previously designed microbially driven Fenton reaction system was reconfigured to generate hydroxyl (HO˙) radicals for simultaneous transformation of source zone levels of single, binary, and ternary mixtures of TCE, PCE, and 1,4-dioxane. The reconfigured Fenton reaction system was driven by fed batch cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis amended with lactate, Fe(III), and contaminants and exposed to alternating anaerobic and aerobic conditions. To avoid contaminant loss due to volatility, the Fe(II)-generating, hydrogen peroxide-generating, and contaminant transformation phases of the microbially driven Fenton reaction system were separated. The reconfigured Fenton reaction system transformed TCE, PCE, and 1,4-dioxane either as single contaminants or as binary and ternary mixtures. In the presence of equimolar concentrations of PCE and TCE, the ratio of the experimentally derived rates of PCE and TCE transformation was nearly identical to the ratio of the corresponding HO˙ radical reaction rate constants. The reconfigured Fenton reaction system may be applied as an ex situ platform for simultaneous degradation of commingled TCE, PCE, and 1,4-dioxane and provides valuable information for future development of in situ remediation technologies. A microbially driven Fenton reaction system [driven by the Fe(III)-reducing facultative anaerobe S. oneidensis] was reconfigured to transform source zone levels of TCE, PCE, and 1,4-dioxane as single contaminants or as binary and ternary mixtures. The microbially driven Fenton reaction may thus be applied as an ex situ platform for simultaneous degradation of at least three (and potentially more) commingled contaminants. Additional targets for ex situ and in situ degradation by the microbially driven Fenton reaction developed in the present study include multiple combinations of environmental contaminants susceptible to attack by Fenton reaction-generated HO˙ radicals, including commingled plumes of 1,4-dioxane, pentachlorophenol (PCP), PCE, TCE, 1,1,2-trichloroethane (TCA), and perfluoroalkylated substances (PFAS). Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Sekar, Ramanan; Taillefert, Martial
2016-01-01
ABSTRACT Improper disposal of 1,4-dioxane and the chlorinated organic solvents trichloroethylene (TCE) and tetrachloroethylene (also known as perchloroethylene [PCE]) has resulted in widespread contamination of soil and groundwater. In the present study, a previously designed microbially driven Fenton reaction system was reconfigured to generate hydroxyl (HO˙) radicals for simultaneous transformation of source zone levels of single, binary, and ternary mixtures of TCE, PCE, and 1,4-dioxane. The reconfigured Fenton reaction system was driven by fed batch cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis amended with lactate, Fe(III), and contaminants and exposed to alternating anaerobic and aerobic conditions. To avoid contaminant loss due to volatility, the Fe(II)-generating, hydrogen peroxide-generating, and contaminant transformation phases of the microbially driven Fenton reaction system were separated. The reconfigured Fenton reaction system transformed TCE, PCE, and 1,4-dioxane either as single contaminants or as binary and ternary mixtures. In the presence of equimolar concentrations of PCE and TCE, the ratio of the experimentally derived rates of PCE and TCE transformation was nearly identical to the ratio of the corresponding HO˙ radical reaction rate constants. The reconfigured Fenton reaction system may be applied as an ex situ platform for simultaneous degradation of commingled TCE, PCE, and 1,4-dioxane and provides valuable information for future development of in situ remediation technologies. IMPORTANCE A microbially driven Fenton reaction system [driven by the Fe(III)-reducing facultative anaerobe S. oneidensis] was reconfigured to transform source zone levels of TCE, PCE, and 1,4-dioxane as single contaminants or as binary and ternary mixtures. The microbially driven Fenton reaction may thus be applied as an ex situ platform for simultaneous degradation of at least three (and potentially more) commingled contaminants. Additional targets for ex situ and in situ degradation by the microbially driven Fenton reaction developed in the present study include multiple combinations of environmental contaminants susceptible to attack by Fenton reaction-generated HO˙ radicals, including commingled plumes of 1,4-dioxane, pentachlorophenol (PCP), PCE, TCE, 1,1,2-trichloroethane (TCA), and perfluoroalkylated substances (PFAS). PMID:27542932
Reconfiguration of a smart surface using heteroclinic connections
McInnes, Colin R.; Xu, Ming
2017-01-01
A reconfigurable smart surface with multiple equilibria is presented, modelled using discrete point masses and linear springs with geometric nonlinearity. An energy-efficient reconfiguration scheme is then investigated to connect equal-energy unstable (but actively controlled) equilibria. In principle, zero net energy input is required to transition the surface between these unstable states, compared to transitions between stable equilibria across a potential barrier. These transitions between equal-energy unstable states, therefore, form heteroclinic connections in the phase space of the problem. Moreover, the smart surface model developed can be considered as a unit module for a range of applications, including modules which can aggregate together to form larger distributed smart surface systems. PMID:28265191
Craciun, Stefan; Brockmeier, Austin J; George, Alan D; Lam, Herman; Príncipe, José C
2011-01-01
Methods for decoding movements from neural spike counts using adaptive filters often rely on minimizing the mean-squared error. However, for non-Gaussian distribution of errors, this approach is not optimal for performance. Therefore, rather than using probabilistic modeling, we propose an alternate non-parametric approach. In order to extract more structure from the input signal (neuronal spike counts) we propose using minimum error entropy (MEE), an information-theoretic approach that minimizes the error entropy as part of an iterative cost function. However, the disadvantage of using MEE as the cost function for adaptive filters is the increase in computational complexity. In this paper we present a comparison between the decoding performance of the analytic Wiener filter and a linear filter trained with MEE, which is then mapped to a parallel architecture in reconfigurable hardware tailored to the computational needs of the MEE filter. We observe considerable speedup from the hardware design. The adaptation of filter weights for the multiple-input, multiple-output linear filters, necessary in motor decoding, is a highly parallelizable algorithm. It can be decomposed into many independent computational blocks with a parallel architecture readily mapped to a field-programmable gate array (FPGA) and scales to large numbers of neurons. By pipelining and parallelizing independent computations in the algorithm, the proposed parallel architecture has sublinear increases in execution time with respect to both window size and filter order.
Adaptive laser link reconfiguration using constraint propagation
NASA Technical Reports Server (NTRS)
Crone, M. S.; Julich, P. M.; Cook, L. M.
1993-01-01
This paper describes Harris AI research performed on the Adaptive Link Reconfiguration (ALR) study for Rome Lab, and focuses on the application of constraint propagation to the problem of link reconfiguration for the proposed space based Strategic Defense System (SDS) Brilliant Pebbles (BP) communications system. According to the concept of operations at the time of the study, laser communications will exist between BP's and to ground entry points. Long-term links typical of RF transmission will not exist. This study addressed an initial implementation of BP's based on the Global Protection Against Limited Strikes (GPALS) SDI mission. The number of satellites and rings studied was representative of this problem. An orbital dynamics program was used to generate line-of-site data for the modeled architecture. This was input into a discrete event simulation implemented in the Harris developed COnstraint Propagation Expert System (COPES) Shell, developed initially on the Rome Lab BM/C3 study. Using a model of the network and several heuristics, the COPES shell was used to develop the Heuristic Adaptive Link Ordering (HALO) Algorithm to rank and order potential laser links according to probability of communication. A reduced set of links based on this ranking would then be used by a routing algorithm to select the next hop. This paper includes an overview of Constraint Propagation as an Artificial Intelligence technique and its embodiment in the COPES shell. It describes the design and implementation of both the simulation of the GPALS BP network and the HALO algorithm in COPES. This is described using a 59 Data Flow Diagram, State Transition Diagrams, and Structured English PDL. It describes a laser communications model and the heuristics involved in rank-ordering the potential communication links. The generation of simulation data is described along with its interface via COPES to the Harris developed View Net graphical tool for visual analysis of communications networks. Conclusions are presented, including a graphical analysis of results depicting the ordered set of links versus the set of all possible links based on the computed Bit Error Rate (BER). Finally, future research is discussed which includes enhancements to the HALO algorithm, network simulation, and the addition of an intelligent routing algorithm for BP.
Towards Reconfigurable, Separable and Hard Real-Time Hybrid Simulation and Test Systems
NASA Astrophysics Data System (ADS)
Quartier, F.; Delatte, B.; Joubert, M.
2009-05-01
Formation flight needs several new technologies, new disciplines, new approaches and above all, more concurrent engineering by more players. One of the problems to be addressed are more complex simulation and test systems that are easy to re-configure to include parts of the target hardware and that can provide sufficient power to handle simulation cores that are requiring one to two orders of magnitude more processing power than the current technology provides. Critical technologies that are already addressed by CNES and Spacebel are study model reuse and simulator reconfigurability (Basiles), model portability (SMP2) and the federation of several simulators using HLA. Two more critical issues are addressed in ongoing R&D work by CNES and Spacebel and are covered by this paper and concern the time engineering and management. The first issue concerns separability (characterisation, identification and handling of separable subsystems) and the consequences on practical systems. Experiments on the Pleiades operational simulator have shown that adding precise simulation of instruments such as Doris and the Star Tracker can be added without significantly impacting overall performance. Improved time analysis leads to better system understanding and testability. The second issue concerns architectures for distributed hybrid simulators systems that provide hard real-time capabilities and can react with a relative time precision and jitter that is in the 10 to 50 µsecond range using mainstream PC's and mainstream Operating Systems. This opens a way to make smaller economic hardware test systems that can be reconfigured to make large hardware test systems without restarting development. Although such systems were considered next to impossible till now, distributed hard real-time systems are getting in reach when modern but mainstream electronics are used and when processor cores can be isolated and reserved for real-time cores. This requires a complete rethinking of the overall system, but needs very little overall changes. Automated identification of potential parallel simulation capability might become possible in a not so distant future.
ACES: Space shuttle flight software analysis expert system
NASA Technical Reports Server (NTRS)
Satterwhite, R. Scott
1990-01-01
The Analysis Criteria Evaluation System (ACES) is a knowledge based expert system that automates the final certification of the Space Shuttle onboard flight software. Guidance, navigation and control of the Space Shuttle through all its flight phases are accomplished by a complex onboard flight software system. This software is reconfigured for each flight to allow thousands of mission-specific parameters to be introduced and must therefore be thoroughly certified prior to each flight. This certification is performed in ground simulations by executing the software in the flight computers. Flight trajectories from liftoff to landing, including abort scenarios, are simulated and the results are stored for analysis. The current methodology of performing this analysis is repetitive and requires many man-hours. The ultimate goals of ACES are to capture the knowledge of the current experts and improve the quality and reduce the manpower required to certify the Space Shuttle onboard flight software.
Rational design of reconfigurable prismatic architected materials.
Overvelde, Johannes T B; Weaver, James C; Hoberman, Chuck; Bertoldi, Katia
2017-01-18
Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. Most such materials are characterized by a fixed geometry, but in the design of some materials it is possible to incorporate internal mechanisms capable of reconfiguring their spatial architecture, and in this way to enable tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami technique, here we introduce a robust design strategy based on space-filling tessellations of polyhedra to create three-dimensional reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively different deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems.
Rational design of reconfigurable prismatic architected materials
NASA Astrophysics Data System (ADS)
Overvelde, Johannes T. B.; Weaver, James C.; Hoberman, Chuck; Bertoldi, Katia
2017-01-01
Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. Most such materials are characterized by a fixed geometry, but in the design of some materials it is possible to incorporate internal mechanisms capable of reconfiguring their spatial architecture, and in this way to enable tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami technique, here we introduce a robust design strategy based on space-filling tessellations of polyhedra to create three-dimensional reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively different deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems.
Decentralized Formation Flying Control in a Multiple-Team Hierarchy
NASA Technical Reports Server (NTRS)
Mueller, Joseph .; Thomas, Stephanie J.
2005-01-01
This paper presents the prototype of a system that addresses these objectives-a decentralized guidance and control system that is distributed across spacecraft using a multiple-team framework. The objective is to divide large clusters into teams of manageable size, so that the communication and computational demands driven by N decentralized units are related to the number of satellites in a team rather than the entire cluster. The system is designed to provide a high-level of autonomy, to support clusters with large numbers of satellites, to enable the number of spacecraft in the cluster to change post-launch, and to provide for on-orbit software modification. The distributed guidance and control system will be implemented in an object-oriented style using MANTA (Messaging Architecture for Networking and Threaded Applications). In this architecture, tasks may be remotely added, removed or replaced post-launch to increase mission flexibility and robustness. This built-in adaptability will allow software modifications to be made on-orbit in a robust manner. The prototype system, which is implemented in MATLAB, emulates the object-oriented and message-passing features of the MANTA software. In this paper, the multiple-team organization of the cluster is described, and the modular software architecture is presented. The relative dynamics in eccentric reference orbits is reviewed, and families of periodic, relative trajectories are identified, expressed as sets of static geometric parameters. The guidance law design is presented, and an example reconfiguration scenario is used to illustrate the distributed process of assigning geometric goals to the cluster. Next, a decentralized maneuver planning approach is presented that utilizes linear-programming methods to enact reconfiguration and coarse formation keeping maneuvers. Finally, a method for performing online collision avoidance is discussed, and an example is provided to gauge its performance.
Multimodality, "Reading", and "Writing" for the 21st Century
ERIC Educational Resources Information Center
Jewitt, Carey
2005-01-01
As words fly onto the computer screen, revolve, and dissolve, image, sound, and movement enter school classrooms in "new" and significant ways, ways that reconfigure the relationship of image and word. In this paper I discuss these "new" modal configurations and explore how they impact on students' text production and reading…
Moving an In-Class Module Online: A Case Study for Chemistry
ERIC Educational Resources Information Center
Seery, Michael K.
2012-01-01
This article summarises the author's experiences in running a module "Computers for Chemistry" entirely online for the past four years. The module, previously taught in a face-to-face environment, was reconfigured for teaching in an online environment. The rationale for moving online along with the design, implementation and evaluation of the…
Synchronization and fault-masking in redundant real-time systems
NASA Technical Reports Server (NTRS)
Krishna, C. M.; Shin, K. G.; Butler, R. W.
1983-01-01
A real time computer may fail because of massive component failures or not responding quickly enough to satisfy real time requirements. An increase in redundancy - a conventional means of improving reliability - can improve the former but can - in some cases - degrade the latter considerably due to the overhead associated with redundancy management, namely the time delay resulting from synchronization and voting/interactive consistency techniques. The implications of synchronization and voting/interactive consistency algorithms in N-modular clusters on reliability are considered. All these studies were carried out in the context of real time applications. As a demonstrative example, we have analyzed results from experiments conducted at the NASA Airlab on the Software Implemented Fault Tolerance (SIFT) computer. This analysis has indeed indicated that in most real time applications, it is better to employ hardware synchronization instead of software synchronization and not allow reconfiguration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chase Qishi; Zhu, Michelle Mengxia
The advent of large-scale collaborative scientific applications has demonstrated the potential for broad scientific communities to pool globally distributed resources to produce unprecedented data acquisition, movement, and analysis. System resources including supercomputers, data repositories, computing facilities, network infrastructures, storage systems, and display devices have been increasingly deployed at national laboratories and academic institutes. These resources are typically shared by large communities of users over Internet or dedicated networks and hence exhibit an inherent dynamic nature in their availability, accessibility, capacity, and stability. Scientific applications using either experimental facilities or computation-based simulations with various physical, chemical, climatic, and biological models featuremore » diverse scientific workflows as simple as linear pipelines or as complex as a directed acyclic graphs, which must be executed and supported over wide-area networks with massively distributed resources. Application users oftentimes need to manually configure their computing tasks over networks in an ad hoc manner, hence significantly limiting the productivity of scientists and constraining the utilization of resources. The success of these large-scale distributed applications requires a highly adaptive and massively scalable workflow platform that provides automated and optimized computing and networking services. This project is to design and develop a generic Scientific Workflow Automation and Management Platform (SWAMP), which contains a web-based user interface specially tailored for a target application, a set of user libraries, and several easy-to-use computing and networking toolkits for application scientists to conveniently assemble, execute, monitor, and control complex computing workflows in heterogeneous high-performance network environments. SWAMP will enable the automation and management of the entire process of scientific workflows with the convenience of a few mouse clicks while hiding the implementation and technical details from end users. Particularly, we will consider two types of applications with distinct performance requirements: data-centric and service-centric applications. For data-centric applications, the main workflow task involves large-volume data generation, catalog, storage, and movement typically from supercomputers or experimental facilities to a team of geographically distributed users; while for service-centric applications, the main focus of workflow is on data archiving, preprocessing, filtering, synthesis, visualization, and other application-specific analysis. We will conduct a comprehensive comparison of existing workflow systems and choose the best suited one with open-source code, a flexible system structure, and a large user base as the starting point for our development. Based on the chosen system, we will develop and integrate new components including a black box design of computing modules, performance monitoring and prediction, and workflow optimization and reconfiguration, which are missing from existing workflow systems. A modular design for separating specification, execution, and monitoring aspects will be adopted to establish a common generic infrastructure suited for a wide spectrum of science applications. We will further design and develop efficient workflow mapping and scheduling algorithms to optimize the workflow performance in terms of minimum end-to-end delay, maximum frame rate, and highest reliability. We will develop and demonstrate the SWAMP system in a local environment, the grid network, and the 100Gpbs Advanced Network Initiative (ANI) testbed. The demonstration will target scientific applications in climate modeling and high energy physics and the functions to be demonstrated include workflow deployment, execution, steering, and reconfiguration. Throughout the project period, we will work closely with the science communities in the fields of climate modeling and high energy physics including Spallation Neutron Source (SNS) and Large Hadron Collider (LHC) projects to mature the system for production use.« less
An Analysis of the Joint Modular Intermodal Distribution System
2007-06-01
the differing airframes. “Two methods are available to move a CROP-load of ammunition: 1. Reconfigure the load from the CROP onto multiple 463L...used among the services lack: • Transportability across different modes without re-handling/packaging • Quick reconfiguration for onward movement...numerous linkages among different channels of distribution. In the world of integrated logistics, that means that ground, rail, air, and sea modes of
Matejic, Marko
2017-04-01
In the context of healthcare reforms in post-socialist Serbia, this research analyses the reconfiguration of acute care hospitals from the aspect of the spatial distribution of hospital beds among and within state-owned hospitals. The research builds a relationship between the macro or national level and the micro or hospital level of the spatial distribution of hospital beds. The aim of the study is to point out that a high level of efficiency in hospital functionality is difficult to achieve within the current hospital network and architectural-urban patterns of hospitals, and to draw attention to the necessity of a strategically planned hospital spatial reconfiguration, conducted simultaneously with other segments of the healthcare system reform. The research analyses published and unpublished data presented in tables and diagrams. The theoretical platform of the research covers earlier discussions of the Yugoslav healthcare system, its post-socialist reforms and the experiences of developed countries. The results show that the hospital bed distribution has not undergone significant changes, while the hospital spatial reconfiguration has either not been carried out at all or, if it has, only on a small scale. All this has contributed to overall inadequate, inflexible, inefficient, defragmented and unequal bed distribution. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Evolution of the Hubble Space Telescope Safing Systems
NASA Technical Reports Server (NTRS)
Pepe, Joyce; Myslinski, Michael
2006-01-01
The Hubble Space Telescope (HST) was launched on April 24 1990, with an expected lifespan of 15 years. Central to the spacecraft design was the concept of a series of on-orbit shuttle servicing missions permitting astronauts to replace failed equipment, update the scientific instruments and keep the HST at the forefront of astronomical discoveries. One key to the success of the Hubble mission has been the robust Safing systems designed to monitor the performance of the observatory and to react to keep the spacecraft safe in the event of equipment anomaly. The spacecraft Safing System consists of a range of software tests in the primary flight computer that evaluate the performance of mission critical hardware, safe modes that are activated when the primary control mode is deemed inadequate for protecting the vehicle, and special actions that the computer can take to autonomously reconfigure critical hardware. The HST Safing System was structured to autonomously detect electrical power system, data management system, and pointing control system malfunctions and to configure the vehicle to ensure safe operation without ground intervention for up to 72 hours. There is also a dedicated safe mode computer that constantly monitors a keep-alive signal from the primary computer. If this signal stops, the safe mode computer shuts down the primary computer and takes over control of the vehicle, putting it into a safe, low-power configuration. The HST Safing system has continued to evolve as equipment has aged, as new hardware has been installed on the vehicle, and as the operation modes have matured during the mission. Along with the continual refinement of the limits used in the safing tests, several new tests have been added to the monitoring system, and new safe modes have been added to the flight software. This paper will focus on the evolution of the HST Safing System and Safing tests, and the importance of this evolution to prolonging the science operations of the telescope.
NASA Technical Reports Server (NTRS)
Nagle, Gail; Masotto, Thomas; Alger, Linda
1990-01-01
The need to meet the stringent performance and reliability requirements of advanced avionics systems has frequently led to implementations which are tailored to a specific application and are therefore difficult to modify or extend. Furthermore, many integrated flight critical systems are input/output intensive. By using a design methodology which customizes the input/output mechanism for each new application, the cost of implementing new systems becomes prohibitively expensive. One solution to this dilemma is to design computer systems and input/output subsystems which are general purpose, but which can be easily configured to support the needs of a specific application. The Advanced Information Processing System (AIPS), currently under development has these characteristics. The design and implementation of the prototype I/O communication system for AIPS is described. AIPS addresses reliability issues related to data communications by the use of reconfigurable I/O networks. When a fault or damage event occurs, communication is restored to functioning parts of the network and the failed or damage components are isolated. Performance issues are addressed by using a parallelized computer architecture which decouples Input/Output (I/O) redundancy management and I/O processing from the computational stream of an application. The autonomous nature of the system derives from the highly automated and independent manner in which I/O transactions are conducted for the application as well as from the fact that the hardware redundancy management is entirely transparent to the application.
Radiation-Hardened Electronics for Advanced Communications Systems
NASA Technical Reports Server (NTRS)
Whitaker, Sterling
2015-01-01
Novel approach enables high-speed special-purpose processors Advanced reconfigurable and reprogrammable communication systems will require sub-130-nanometer electronics. Legacy single event upset (SEU) radiation-tolerant circuits are ineffective at speeds greater than 125 megahertz. In Phase I of this project, ICs, LLC, demonstrated new base-level logic circuits that provide SEU immunity for sub-130-nanometer high-speed circuits. In Phase II, the company developed an innovative self-restoring logic (SRL) circuit and a system approach that provides high-speed, SEU-tolerant solutions that are effective for sub-130-nanometer electronics scalable to at least 22-nanometer processes. The SRL system can be used in the design of NASA's next-generation special-purpose processors, especially reconfigurable communication processors.
Integration of multi-interface conversion channel using FPGA for modular photonic network
NASA Astrophysics Data System (ADS)
Janicki, Tomasz; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.
2010-09-01
The article discusses the integration of different types of interfaces with FPGA circuits using a reconfigurable communication platform. The solution has been implemented in practice in a single node of a distributed measurement system. Construction of communication platform has been presented with its selected hardware modules, described in VHDL and implemented in FPGA circuits. The graphical user interface (GUI) has been described that allows a user to control the operation of the system. In the final part of the article selected practical solutions have been introduced. The whole measurement system resides on multi-gigabit optical network. The optical network construction is highly modular, reconfigurable and scalable.
Extended Logic Intelligent Processing System for a Sensor Fusion Processor Hardware
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Thomas, Tyson; Li, Wei-Te; Daud, Taher; Fabunmi, James
2000-01-01
The paper presents the hardware implementation and initial tests from a low-power, highspeed reconfigurable sensor fusion processor. The Extended Logic Intelligent Processing System (ELIPS) is described, which combines rule-based systems, fuzzy logic, and neural networks to achieve parallel fusion of sensor signals in compact low power VLSI. The development of the ELIPS concept is being done to demonstrate the interceptor functionality which particularly underlines the high speed and low power requirements. The hardware programmability allows the processor to reconfigure into different machines, taking the most efficient hardware implementation during each phase of information processing. Processing speeds of microseconds have been demonstrated using our test hardware.
Transformation of personal computers and mobile phones into genetic diagnostic systems.
Walker, Faye M; Ahmad, Kareem M; Eisenstein, Michael; Soh, H Tom
2014-09-16
Molecular diagnostics based on the polymerase chain reaction (PCR) offer rapid and sensitive means for detecting infectious disease, but prohibitive costs have impeded their use in resource-limited settings where such diseases are endemic. In this work, we report an innovative method for transforming a desktop computer and a mobile camera phone--devices that have become readily accessible in developing countries--into a highly sensitive DNA detection system. This transformation was achieved by converting a desktop computer into a de facto thermal cycler with software that controls the temperature of the central processing unit (CPU), allowing for highly efficient PCR. Next, we reconfigured the mobile phone into a fluorescence imager by adding a low-cost filter, which enabled us to quantitatively measure the resulting PCR amplicons. Our system is highly sensitive, achieving quantitative detection of as little as 9.6 attograms of target DNA, and we show that its performance is comparable to advanced laboratory instruments at approximately 1/500th of the cost. Finally, in order to demonstrate clinical utility, we have used our platform for the successful detection of genomic DNA from the parasite that causes Chagas disease, Trypanosoma cruzi, directly in whole, unprocessed human blood at concentrations 4-fold below the clinical titer of the parasite.
Transformation of Personal Computers and Mobile Phones into Genetic Diagnostic Systems
2014-01-01
Molecular diagnostics based on the polymerase chain reaction (PCR) offer rapid and sensitive means for detecting infectious disease, but prohibitive costs have impeded their use in resource-limited settings where such diseases are endemic. In this work, we report an innovative method for transforming a desktop computer and a mobile camera phone—devices that have become readily accessible in developing countries—into a highly sensitive DNA detection system. This transformation was achieved by converting a desktop computer into a de facto thermal cycler with software that controls the temperature of the central processing unit (CPU), allowing for highly efficient PCR. Next, we reconfigured the mobile phone into a fluorescence imager by adding a low-cost filter, which enabled us to quantitatively measure the resulting PCR amplicons. Our system is highly sensitive, achieving quantitative detection of as little as 9.6 attograms of target DNA, and we show that its performance is comparable to advanced laboratory instruments at approximately 1/500th of the cost. Finally, in order to demonstrate clinical utility, we have used our platform for the successful detection of genomic DNA from the parasite that causes Chagas disease, Trypanosoma cruzi, directly in whole, unprocessed human blood at concentrations 4-fold below the clinical titer of the parasite. PMID:25223929
Fault-Tolerant, Radiation-Hard DSP
NASA Technical Reports Server (NTRS)
Czajkowski, David
2011-01-01
Commercial digital signal processors (DSPs) for use in high-speed satellite computers are challenged by the damaging effects of space radiation, mainly single event upsets (SEUs) and single event functional interrupts (SEFIs). Innovations have been developed for mitigating the effects of SEUs and SEFIs, enabling the use of very-highspeed commercial DSPs with improved SEU tolerances. Time-triple modular redundancy (TTMR) is a method of applying traditional triple modular redundancy on a single processor, exploiting the VLIW (very long instruction word) class of parallel processors. TTMR improves SEU rates substantially. SEFIs are solved by a SEFI-hardened core circuit, external to the microprocessor. It monitors the health of the processor, and if a SEFI occurs, forces the processor to return to performance through a series of escalating events. TTMR and hardened-core solutions were developed for both DSPs and reconfigurable field-programmable gate arrays (FPGAs). This includes advancement of TTMR algorithms for DSPs and reconfigurable FPGAs, plus a rad-hard, hardened-core integrated circuit that services both the DSP and FPGA. Additionally, a combined DSP and FPGA board architecture was fully developed into a rad-hard engineering product. This technology enables use of commercial off-the-shelf (COTS) DSPs in computers for satellite and other space applications, allowing rapid deployment at a much lower cost. Traditional rad-hard space computers are very expensive and typically have long lead times. These computers are either based on traditional rad-hard processors, which have extremely low computational performance, or triple modular redundant (TMR) FPGA arrays, which suffer from power and complexity issues. Even more frustrating is that the TMR arrays of FPGAs require a fixed, external rad-hard voting element, thereby causing them to lose much of their reconfiguration capability and in some cases significant speed reduction. The benefits of COTS high-performance signal processing include significant increase in onboard science data processing, enabling orders of magnitude reduction in required communication bandwidth for science data return, orders of magnitude improvement in onboard mission planning and critical decision making, and the ability to rapidly respond to changing mission environments, thus enabling opportunistic science and orders of magnitude reduction in the cost of mission operations through reduction of required staff. Additional benefits of COTS-based, high-performance signal processing include the ability to leverage considerable commercial and academic investments in advanced computing tools, techniques, and infra structure, and the familiarity of the science and IT community with these computing environments.
David Florida Laboratory Thermal Vacuum Data Processing System
NASA Technical Reports Server (NTRS)
Choueiry, Elie
1994-01-01
During 1991, the Space Simulation Facility conducted a survey to assess the requirements and analyze the merits for purchasing a new thermal vacuum data processing system for its facilities. A new, integrated, cost effective PC-based system was purchased which uses commercial off-the-shelf software for operation and control. This system can be easily reconfigured and allows its users to access a local area network. In addition, it provides superior performance compared to that of the former system which used an outdated mini-computer and peripheral hardware. This paper provides essential background on the old data processing system's features, capabilities, and the performance criteria that drove the genesis of its successor. This paper concludes with a detailed discussion of the thermal vacuum data processing system's components, features, and its important role in supporting our space-simulation environment and our capabilities for spacecraft testing. The new system was tested during the ANIK E spacecraft test, and was fully operational in November 1991.
A programmable five qubit quantum computer using trapped atomic ions
NASA Astrophysics Data System (ADS)
Debnath, Shantanu
2017-04-01
In order to harness the power of quantum information processing, several candidate systems have been investigated, and tailored to demonstrate only specific computations. In my thesis work, we construct a general-purpose multi-qubit device using a linear chain of trapped ion qubits, which in principle can be programmed to run any quantum algorithm. To achieve such flexibility, we develop a pulse shaping technique to realize a set of fully connected two-qubit rotations that entangle arbitrary pairs of qubits using multiple motional modes of the chain. Following a computation architecture, such highly expressive two-qubit gates along with arbitrary single-qubit rotations can be used to compile modular universal logic gates that are effected by targeted optical fields and hence can be reconfigured according to any algorithm circuit programmed in the software. As a demonstration, we run the Deutsch-Jozsa and Bernstein-Vazirani algorithm, and a fully coherent quantum Fourier transform, that we use to solve the `period finding' and `quantum phase estimation' problem. Combining these results with recent demonstrations of quantum fault-tolerance, Grover's search algorithm, and simulation of boson hopping establishes the versatility of such a computation module that can potentially be connected to other modules for future large-scale computations.
CSP: A Multifaceted Hybrid Architecture for Space Computing
NASA Technical Reports Server (NTRS)
Rudolph, Dylan; Wilson, Christopher; Stewart, Jacob; Gauvin, Patrick; George, Alan; Lam, Herman; Crum, Gary Alex; Wirthlin, Mike; Wilson, Alex; Stoddard, Aaron
2014-01-01
Research on the CHREC Space Processor (CSP) takes a multifaceted hybrid approach to embedded space computing. Working closely with the NASA Goddard SpaceCube team, researchers at the National Science Foundation (NSF) Center for High-Performance Reconfigurable Computing (CHREC) at the University of Florida and Brigham Young University are developing hybrid space computers that feature an innovative combination of three technologies: commercial-off-the-shelf (COTS) devices, radiation-hardened (RadHard) devices, and fault-tolerant computing. Modern COTS processors provide the utmost in performance and energy-efficiency but are susceptible to ionizing radiation in space, whereas RadHard processors are virtually immune to this radiation but are more expensive, larger, less energy-efficient, and generations behind in speed and functionality. By featuring COTS devices to perform the critical data processing, supported by simpler RadHard devices that monitor and manage the COTS devices, and augmented with novel uses of fault-tolerant hardware, software, information, and networking within and between COTS devices, the resulting system can maximize performance and reliability while minimizing energy consumption and cost. NASA Goddard has adopted the CSP concept and technology with plans underway to feature flight-ready CSP boards on two upcoming space missions.
NASA Astrophysics Data System (ADS)
Leamy, Michael J.; Springer, Adam C.
In this research we report parallel implementation of a Cellular Automata-based simulation tool for computing elastodynamic response on complex, two-dimensional domains. Elastodynamic simulation using Cellular Automata (CA) has recently been presented as an alternative, inherently object-oriented technique for accurately and efficiently computing linear and nonlinear wave propagation in arbitrarily-shaped geometries. The local, autonomous nature of the method should lead to straight-forward and efficient parallelization. We address this notion on symmetric multiprocessor (SMP) hardware using a Java-based object-oriented CA code implementing triangular state machines (i.e., automata) and the MPI bindings written in Java (MPJ Express). We use MPJ Express to reconfigure our existing CA code to distribute a domain's automata to cores present on a dual quad-core shared-memory system (eight total processors). We note that this message passing parallelization strategy is directly applicable to computer clustered computing, which will be the focus of follow-on research. Results on the shared memory platform indicate nearly-ideal, linear speed-up. We conclude that the CA-based elastodynamic simulator is easily configured to run in parallel, and yields excellent speed-up on SMP hardware.
NASA Technical Reports Server (NTRS)
Rabideau, Gregg; Chien, Steve; Knight, Russell; Schaffer, Steven; Tran, Daniel; Cichy, Benjamin; Sherwood, Robert
2006-01-01
The Automated Scheduling and Planning Environment (ASPEN) computer program has been updated to version 3.0. ASPEN is a modular, reconfigurable, application software framework for solving batch problems that involve reasoning about time, activities, states, and resources. Applications of ASPEN can include planning spacecraft missions, scheduling of personnel, and managing supply chains, inventories, and production lines. ASPEN 3.0 can be customized for a wide range of applications and for a variety of computing environments that include various central processing units and random access memories.
Romano, Ron; Baum, Neil
2014-01-01
Having a Web page and a blog site are the minimum requirements for an Internet presence in the new millennium. However, a Web page that loads on a personal computer or a laptop will be ineffective on a mobile or cellular phone. Today, with more existing and potential patients having access to cellular technology, it is necessary to reconfigure the appearance of your Web site that appears on a mobile phone. This article discusses mobile computing and suggestions for improving the appearance of your Web site on a mobile or cellular phone.
Buttles, John W [Idaho Falls, ID
2011-12-20
Wireless communication devices include a software-defined radio coupled to processing circuitry. The processing circuitry is configured to execute computer programming code. Storage media is coupled to the processing circuitry and includes computer programming code configured to cause the processing circuitry to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.
Temperature-Adaptive Circuits on Reconfigurable Analog Arrays
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Zebulum, Ricardo S.; Keymeulen, Didier; Ramesham, Rajeshuni; Neff, Joseph; Katkoori, Srinivas
2006-01-01
Demonstration of a self-reconfigurable Integrated Circuit (IC) that would operate under extreme temperature (-180 C and 120 C) and radiation (300krad), without the protection of thermal controls and radiation shields. Self-Reconfigurable Electronics platform: a) Evolutionary Processor (EP) to run reconfiguration mechanism; b) Reconfigurable chip (FPGA, FPAA, etc).
Tunable Polarization Conversion and Rotation based on a Reconfigurable Metasurface.
Zhang, M; Zhang, W; Liu, A Q; Li, F C; Lan, C F
2017-09-21
Polarization is an important property of electromagnetic (EM) wave and different polarization manipulations are required for varied optical applications. Here we report a reconfigurable metasurface which achieves both the polarization conversion and the polarization rotation in THz regime. The metasurface is reconfigured through the micro-electro-mechanical-systems (MEMS) actuation. The cross polarization transmittance from a linear polarized incidence is experimentally tuned from 0 to 28% at 2.66 THz. In addition, the polarization rotation angle is effectively changed from -12.8° to 13.1° at 1.78 THz. The tunable bi-functional metasurface for polarization conversion and the polarization rotation can be flexibly applied in various applications such as imaging, polarization microscopy and material analysis, etc.
Han, Yu Long; Wang, Wenqi; Hu, Jie; Huang, Guoyou; Wang, Shuqi; Lee, Won Gu; Lu, Tian Jian; Xu, Feng
2013-12-21
We presented a benchtop technique that can fabricate reconfigurable, three-dimensional (3D) microfluidic devices made from a soft paper-polymer composite. This fabrication approach can produce microchannels at a minimal width of 100 μm and can be used to prototype 3D microfluidic devices by simple bending and stretching. The entire fabrication process can be finished in 2 hours on a laboratory bench without the need for special equipment involved in lithography. Various functional microfluidic devices (e.g., droplet generator and reconfigurable electronic circuit) were prepared using this paper-polymer hybrid microfluidic system. The developed method can be applied in a wide range of standard applications and emerging technologies such as liquid-phase electronics.
A reconfigurable robot with tensegrity structure using nylon artificial muscle
NASA Astrophysics Data System (ADS)
Wu, Lianjun; de Andrade, Monica Jung; Brahme, Tarang; Tadesse, Yonas; Baughman, Ray H.
2016-04-01
This paper describes the design and experimental investigation of a self-reconfigurable icosahedral robot for locomotion. The robot consists of novel and modular tensegrity structures, which can potentially maneuver in unstructured environments while carrying a payload. Twisted and Coiled Polymer (TCP) muscles were utilized to actuate the tensegrity structure as needed. The tensegrity system has rigid struts and flexible TCP muscles that allow keeping a payload in the central region. The TCP muscles provide large actuation stroke, high mechanical power per fiber mass and can undergo millions of highly reversible cycles. The muscles are electrothermally driven, and, upon stimulus, the heated muscles reconfigure the shape of the tensegrity structure. Here, we present preliminary experimental results that determine the rolling motion of the structure.
Wideband Reconfigurable Harmonically Tuned GaN SSPA for Cognitive Radios
NASA Technical Reports Server (NTRS)
Waldstein, Seth W.; Barbosa Kortright, Miguel A.; Simons, Rainee N.
2017-01-01
The paper presents the architecture of a wideband reconfigurable harmonically-tuned Gallium Nitrate (GaN) Solid State Power Amplifier (SSPA) for cognitive radios. When interfaced with the physical layer of a cognitive communication system, this amplifier topology offers broadband high efficiency through the use of multiple tuned input/output matching networks. This feature enables the cognitive radio to reconfigure the operating frequency without sacrificing efficiency. This paper additionally presents as a proof-of-concept the design, fabrication, and test results for a GaN inverse class-F type amplifier operating at X-band (8.4 GHz) that achieves a maximum output power of 5.14-W, Power Added Efficiency (PAE) of 38.6, and Drain Efficiency (DE) of 48.9 under continuous wave (CW) operation.
Open Source Next Generation Visualization Software for Interplanetary Missions
NASA Technical Reports Server (NTRS)
Trimble, Jay; Rinker, George
2016-01-01
Mission control is evolving quickly, driven by the requirements of new missions, and enabled by modern computing capabilities. Distributed operations, access to data anywhere, data visualization for spacecraft analysis that spans multiple data sources, flexible reconfiguration to support multiple missions, and operator use cases, are driving the need for new capabilities. NASA's Advanced Multi-Mission Operations System (AMMOS), Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) are collaborating to build a new generation of mission operations software for visualization, to enable mission control anywhere, on the desktop, tablet and phone. The software is built on an open source platform that is open for contributions (http://nasa.github.io/openmct).
Electrically switchable metadevices via graphene
Balci, Osman; Kakenov, Nurbek; Karademir, Ertugrul; Balci, Sinan; Cakmakyapan, Semih; Polat, Emre O.; Caglayan, Humeyra; Özbay, Ekmel; Kocabas, Coskun
2018-01-01
Metamaterials bring subwavelength resonating structures together to overcome the limitations of conventional materials. The realization of active metadevices has been an outstanding challenge that requires electrically reconfigurable components operating over a broad spectrum with a wide dynamic range. However, the existing capability of metamaterials is not sufficient to realize this goal. By integrating passive metamaterials with active graphene devices, we demonstrate a new class of electrically controlled active metadevices working in microwave frequencies. The fabricated active metadevices enable efficient control of both amplitude (>50 dB) and phase (>90°) of electromagnetic waves. In this hybrid system, graphene operates as a tunable Drude metal that controls the radiation of the passive metamaterials. Furthermore, by integrating individually addressable arrays of metadevices, we demonstrate a new class of spatially varying digital metasurfaces where the local dielectric constant can be reconfigured with applied bias voltages. In addition, we reconfigure resonance frequency of split-ring resonators without changing its amplitude by damping one of the two coupled metasurfaces via graphene. Our approach is general enough to implement various metamaterial systems that could yield new applications ranging from electrically switchable cloaking devices to adaptive camouflage systems. PMID:29322094
Reconfigurable virtual electrowetting channels.
Banerjee, Ananda; Kreit, Eric; Liu, Yuguang; Heikenfeld, Jason; Papautsky, Ian
2012-02-21
Lab-on-a-chip systems rely on several microfluidic paradigms. The first uses a fixed layout of continuous microfluidic channels. Such lab-on-a-chip systems are almost always application specific and far from a true "laboratory." The second involves electrowetting droplet movement (digital microfluidics), and allows two-dimensional computer control of fluidic transport and mixing. The merging of the two paradigms in the form of programmable electrowetting channels takes advantage of both the "continuous" functionality of rigid channels based on which a large number of applications have been developed to date and the "programmable" functionality of digital microfluidics that permits electrical control of on-chip functions. In this work, we demonstrate for the first time programmable formation of virtual microfluidic channels and their continuous operation with pressure driven flows using an electrowetting platform. Experimental, theoretical, and numerical analyses of virtual channel formation with biologically relevant electrolyte solutions and electrically-programmable reconfiguration are presented. We demonstrate that the "wall-less" virtual channels can be formed reliably and rapidly, with propagation rates of 3.5-3.8 mm s(-1). Pressure driven transport in these virtual channels at flow rates up to 100 μL min(-1) is achievable without distortion of the channel shape. We further demonstrate that these virtual channels can be switched on-demand between multiple inputs and outputs. Ultimately, we envision a platform that would provide rapid prototyping of microfluidic concepts and would be capable of a vast library of functions and benefitting applications from clinical diagnostics in resource-limited environments to rapid system prototyping to high throughput pharmaceutical applications.
Modelling the protocol stack in NCS with deterministic and stochastic petri net
NASA Astrophysics Data System (ADS)
Hui, Chen; Chunjie, Zhou; Weifeng, Zhu
2011-06-01
Protocol stack is the basis of the networked control systems (NCS). Full or partial reconfiguration of protocol stack offers both optimised communication service and system performance. Nowadays, field testing is unrealistic to determine the performance of reconfigurable protocol stack; and the Petri net formal description technique offers the best combination of intuitive representation, tool support and analytical capabilities. Traditionally, separation between the different layers of the OSI model has been a common practice. Nevertheless, such a layered modelling analysis framework of protocol stack leads to the lack of global optimisation for protocol reconfiguration. In this article, we proposed a general modelling analysis framework for NCS based on the cross-layer concept, which is to establish an efficiency system scheduling model through abstracting the time constraint, the task interrelation, the processor and the bus sub-models from upper and lower layers (application, data link and physical layer). Cross-layer design can help to overcome the inadequacy of global optimisation based on information sharing between protocol layers. To illustrate the framework, we take controller area network (CAN) as a case study. The simulation results of deterministic and stochastic Petri-net (DSPN) model can help us adjust the message scheduling scheme and obtain better system performance.
Control of soft machines using actuators operated by a Braille display.
Mosadegh, Bobak; Mazzeo, Aaron D; Shepherd, Robert F; Morin, Stephen A; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M
2014-01-07
One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds-often built for a single purpose-are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled Braille display and a micropneumatic device. The Braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface.
Control of Soft Machines using Actuators Operated by a Braille Display
Mosadegh, Bobak; Mazzeo, Aaron D.; Shepherd, Robert F.; Morin, Stephen A.; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M.
2013-01-01
One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds—often built for a single purpose—are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled braille display and a micropneumatic device. The braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface. PMID:24196070
Leveraging FPGAs for Accelerating Short Read Alignment.
Arram, James; Kaplan, Thomas; Luk, Wayne; Jiang, Peiyong
2017-01-01
One of the key challenges facing genomics today is how to efficiently analyze the massive amounts of data produced by next-generation sequencing platforms. With general-purpose computing systems struggling to address this challenge, specialized processors such as the Field-Programmable Gate Array (FPGA) are receiving growing interest. The means by which to leverage this technology for accelerating genomic data analysis is however largely unexplored. In this paper, we present a runtime reconfigurable architecture for accelerating short read alignment using FPGAs. This architecture exploits the reconfigurability of FPGAs to allow the development of fast yet flexible alignment designs. We apply this architecture to develop an alignment design which supports exact and approximate alignment with up to two mismatches. Our design is based on the FM-index, with optimizations to improve the alignment performance. In particular, the n-step FM-index, index oversampling, a seed-and-compare stage, and bi-directional backtracking are included. Our design is implemented and evaluated on a 1U Maxeler MPC-X2000 dataflow node with eight Altera Stratix-V FPGAs. Measurements show that our design is 28 times faster than Bowtie2 running with 16 threads on dual Intel Xeon E5-2640 CPUs, and nine times faster than Soap3-dp running on an NVIDIA Tesla C2070 GPU.
2006-01-01
cool , the ink is solid and does not flow. When the cantilever is heated , the ink melts and flows from the tip onto the surface. Mov ing the tip...IBM for use in the “Millipede” memory storage system. Thermal cantilevers may be designed to give rapid heating (1 to 20 µs) and cooling (1 to 50 µs...ability of combin- ing reconfigurable hardware devices with optimization software capable of executing real-time autonomous reconfiguration opens up a
NASA Astrophysics Data System (ADS)
Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris
2015-05-01
Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.
High throughput reconfigurable data analysis system
NASA Technical Reports Server (NTRS)
Bearman, Greg (Inventor); Pelletier, Michael J. (Inventor); Seshadri, Suresh (Inventor); Pain, Bedabrata (Inventor)
2008-01-01
The present invention relates to a system and method for performing rapid and programmable analysis of data. The present invention relates to a reconfigurable detector comprising at least one array of a plurality of pixels, where each of the plurality of pixels can be selected to receive and read-out an input. The pixel array is divided into at least one pixel group for conducting a common predefined analysis. Each of the pixels has a programmable circuitry programmed with a dynamically configurable user-defined function to modify the input. The present detector also comprises a summing circuit designed to sum the modified input.
Go reconfigure: how fish change shape as they swim and evolve.
Long, John H; Porter, Marianne E; Root, Robert G; Liew, Chun Wai
2010-12-01
The bodies of fish change shape over propulsive, behavioral, developmental, and evolutionary time scales, a general phenomenon that we call "reconfiguration". Undulatory, postural, and form-reconfiguration can be distinguished, studied independently, and examined in terms of mechanical interactions and evolutionary importance. Using a combination of live, swimming fishes and digital robotic fish that are autonomous and self-propelled, we examined the functional relation between undulatory and postural reconfiguration in forward swimming, backward swimming, and yaw turning. To probe how postural and form reconfiguration interact, the yaw turning of leopard sharks was examined using morphometric and kinematic analyses. To test how undulatory reconfiguration might evolve, the digital robotic fish were subjected to selection for enhanced performance in a simulated ecology in which each individual had to detect and move towards a food source. In addition to the general issue of reconfiguration, these investigations are united by the fact that the dynamics of undulatory and postural reconfigurations are predicted to be determined, in part, by the structural stiffness of the fish's body. Our method defines undulatory reconfiguration as the combined, point-by-point periodic motion of the body, leaving postural reconfiguration as the combined deviations from undulatory reconfiguration. While undulatory reconfiguration appears to be the sole or primary propulsive driver, postural reconfiguration may contribute to propulsion in hagfish and it is correlated with differences in forward, and backward, swimming in lamprey. Form reconfigures over developmental time in leopard sharks in a manner that is consistent with an allometric scaling theory in which structural stiffness of the body is held constant. However, correlation of a form proxy for structural stiffness of the body suggests that body stiffness may scale in order to limit maximum postural reconfiguration during routine yaw turns. When structural stiffness and undulatory frequency are modeled as determining the tail's undulatory wave speed, both factors evolve under selection for enhanced foraging behavior in the digital fish-like robots. The methods used in making these distinctions between kinds of reconfiguration have broad applicability in fish biology, especially for quantifying complex motor behaviors in the wild and for simulating selection on behavior that leads to directional evolution of functional phenotypes.
Transformational electronics are now reconfiguring
NASA Astrophysics Data System (ADS)
Rojas, Jhonathan P.; Hussain, Aftab M.; Arevalo, A.; Foulds, I. G.; Torres Sevilla, Galo A.; Nassar, Joanna M.; Hussain, Muhammad M.
2015-05-01
Current developments on enhancing our smart living experience are leveraging the increased interest for novel systems that can be compatible with foldable, wrinkled, wavy and complex geometries and surfaces, and thus become truly ubiquitous and easy to deploy. Therefore, relying on innovative structural designs we have been able to reconfigure the physical form of various materials, to achieve remarkable mechanical flexibility and stretchability, which provides us with the perfect platform to develop enhanced electronic systems for application in entertainment, healthcare, fitness and wellness, military and manufacturing industry. Based on these novel structural designs we have developed a siliconbased network of hexagonal islands connected through double-spiral springs, forming an ultra-stretchable (~1000%) array for full compliance to highly asymmetric shapes and surfaces, as well as a serpentine design used to show an ultrastretchable (~800%) and flexible, spatially reconfigurable, mobile, metallic thin film copper (Cu)-based, body-integrated and non-invasive thermal heater with wireless controlling capability, reusability, heating-adaptability and affordability due to low-cost complementary metal oxide semiconductor (CMOS)-compatible integration.
A Plug and Play GNC Architecture Using FPGA Components
NASA Technical Reports Server (NTRS)
KrishnaKumar, K.; Kaneshige, J.; Waterman, R.; Pires, C.; Ippoloito, C.
2005-01-01
The goal of Plug and Play, or PnP, is to allow hardware and software components to work together automatically, without requiring manual setup procedures. As a result, new or replacement hardware can be plugged into a system and automatically configured with the appropriate resource assignments. However, in many cases it may not be practical or even feasible to physically replace hardware components. One method for handling these types of situations is through the incorporation of reconfigurable hardware such as Field Programmable Gate Arrays, or FPGAs. This paper describes a phased approach to developing a Guidance, Navigation, and Control (GNC) architecture that expands on the traditional concepts of PnP, in order to accommodate hardware reconfiguration without requiring detailed knowledge of the hardware. This is achieved by establishing a functional based interface that defines how the hardware will operate, and allow the hardware to reconfigure itself. The resulting system combines the flexibility of manipulating software components with the speed and efficiency of hardware.
NASA Astrophysics Data System (ADS)
Girish, B. S.; Pandey, Deepak; Ramachandran, Hema
2017-08-01
We present a compact, inexpensive multichannel module, APODAS (Avalanche Photodiode Output Data Acquisition System), capable of detecting 0.8 billion photons per second and providing real-time recording on a computer hard-disk, of channel- and time-tagged information of the arrival of upto 0.4 billion photons per second. Built around a Virtex-5 Field Programmable Gate Array (FPGA) unit, APODAS offers a temporal resolution of 5 nanoseconds with zero deadtime in data acquisition, utilising an efficient scheme for time and channel tagging and employing Gigabit ethernet for the transfer of data. Analysis tools have been developed on a Linux platform for multi-fold coincidence studies and time-delayed intensity interferometry. As illustrative examples, the second-order intensity correlation function ( g 2) of light from two commonly used sources in quantum optics —a coherent laser source and a dilute atomic vapour emitting spontaneously, constituting a thermal source— are presented. With easy reconfigurability and with no restriction on the total record length, APODAS can be readily used for studies over various time scales. This is demonstrated by using APODAS to reveal Rabi oscillations on nanosecond time scales in the emission of ultracold atoms, on the one hand, and, on the other hand, to measure the second-order correlation function on the millisecond time scales from tailored light sources. The efficient and versatile performance of APODAS promises its utility in diverse fields, like quantum optics, quantum communication, nuclear physics, astrophysics and biology.
Service user engagement in health service reconfiguration: a rapid evidence synthesis.
Dalton, Jane; Chambers, Duncan; Harden, Melissa; Street, Andrew; Parker, Gillian; Eastwood, Alison
2016-07-01
To assess what is known about effective patient and public engagement in health service reconfiguration processes and identify implications for further research and health care practice. Rapid systematic review of published and grey literature to identify methods or approaches to engagement in decisions about health service reconfiguration; and to examine how engagement has worked or not worked in specific examples of system change. Following a search for literature published in English from 2000 to March 2014, eight systematic reviews, seven primary studies and 24 case studies (of which 6 were exemplars) were included. We undertook a narrative synthesis to consider five aspects of engagement with health service reconfiguration. Engagement varied in nature and intensity, and efforts generally involved multiple methods. There was no evidence on the isolated impact of any particular engagement method or collection of methods. In general, engagement was most likely to be successful when started early, when led and supported by clinicians, and when it offered opportunities for genuine interaction. The impact of engagement was variably measured and demonstrated, and frequently defined as process measures rather than the outcomes of proposals for service reconfiguration. Little was reported on the potential negative impact of service user engagement. Patients and the public can be engaged through various methods. Problems often arise because decision-makers paid insufficient attention to issues considered important by patients and the public. Guidance setting out the stages of reconfiguration and opportunities for service user input could be a helpful practical framework for future engagement activity. Future evaluation and explicit reporting of engagement and impact is needed. © The Author(s) 2015.
Metamaterial-inspired reconfigurable series-fed arrays
NASA Astrophysics Data System (ADS)
Ijaz, Bilal
One of the biggest challenges in modern day wireless communication systems is to attain agility and provide more degrees of freedom in parameters such as frequency, radiation pattern and polarization. Existing phased array antenna technology has limitations in frequency bandwidth and scan angle. So it is important to design frequency reconfigurable antenna arrays which can provide two different frequency bandwidths with a broadside radiation pattern having a lower sidelobe and reduced frequency scanning. The reconfigurable antenna array inspired by the properties of metamaterials presented here provides a solution to attain frequency agility in a wireless communication system. The adaptive change in operating frequency is attained by using RF p-i-n diodes on the antenna array. The artificially made materials having properties of negative permeability and negative permittivity have antiparallel group and phase velocities, and, in consequence of that, they support backward wave propagation. The key idea of this work is to demonstrate that the properties of metamaterial non-radiating phase shifting transmission lines can be utilized to design a series-fed antenna array to operate at two different frequency bands with a broadside radiation pattern in both configurations. In this research, first, a design of a series-fed microstrip array with composite right/left-handed transmission lines (CRLH-TLs) is proposed. To ensure that each element in the array is driven with the same voltage phase, dual-band CRLH-TLs are adopted instead of meander-line microstrip lines to provide a compact interconnect with a zero phase-constant at the frequency of operation. Next, the work is extended to design a reconfigurable series-fed antenna array with reconfigurable metamaterial interconnects, and the expressions for array factor are derived for both switching bands.
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Flatley, Thomas P.; Hestnes, Phyllis; Jentoft-Nilsen, Marit; Petrick, David J.; Day, John H. (Technical Monitor)
2001-01-01
Spacecraft telemetry rates have steadily increased over the last decade presenting a problem for real-time processing by ground facilities. This paper proposes a solution to a related problem for the Geostationary Operational Environmental Spacecraft (GOES-8) image processing application. Although large super-computer facilities are the obvious heritage solution, they are very costly, making it imperative to seek a feasible alternative engineering solution at a fraction of the cost. The solution is based on a Personal Computer (PC) platform and synergy of optimized software algorithms and re-configurable computing hardware technologies, such as Field Programmable Gate Arrays (FPGA) and Digital Signal Processing (DSP). It has been shown in [1] and [2] that this configuration can provide superior inexpensive performance for a chosen application on the ground station or on-board a spacecraft. However, since this technology is still maturing, intensive pre-hardware steps are necessary to achieve the benefits of hardware implementation. This paper describes these steps for the GOES-8 application, a software project developed using Interactive Data Language (IDL) (Trademark of Research Systems, Inc.) on a Workstation/UNIX platform. The solution involves converting the application to a PC/Windows/RC platform, selected mainly by the availability of low cost, adaptable high-speed RC hardware. In order for the hybrid system to run, the IDL software was modified to account for platform differences. It was interesting to examine the gains and losses in performance on the new platform, as well as unexpected observations before implementing hardware. After substantial pre-hardware optimization steps, the necessity of hardware implementation for bottleneck code in the PC environment became evident and solvable beginning with the methodology described in [1], [2], and implementing a novel methodology for this specific application [6]. The PC-RC interface bandwidth problem for the class of applications with moderate input-output data rates but large intermediate multi-thread data streams has been addressed and mitigated. This opens a new class of satellite image processing applications for bottleneck problems solution using RC technologies. The issue of a science algorithm level of abstraction necessary for RC hardware implementation is also described. Selected Matlab functions already implemented in hardware were investigated for their direct applicability to the GOES-8 application with the intent to create a library of Matlab and IDL RC functions for ongoing work. A complete class of spacecraft image processing applications using embedded re-configurable computing technology to meet real-time requirements, including performance results and comparison with the existing system, is described in this paper.
Development of a Deployable Nonmetallic Boom for Reconfigurable Systems of Small Modular Spacecraft
NASA Technical Reports Server (NTRS)
Rehnmark, Fredrik
2007-01-01
Launch vehicle payload capacity and the launch environment represent two of the most operationally limiting constraints on space system mass, volume, and configuration. Large-scale space science and power platforms as well as transit vehicles have been proposed that greatly exceed single-launch capabilities. Reconfigurable systems launched as multiple small modular spacecraft with the ability to rendezvous, approach, mate, and conduct coordinated operations have the potential to make these designs feasible. A key characteristic of these proposed systems is their ability to assemble into desired geometric (spatial) configurations. While flexible and sparse formations may be realized by groups of spacecraft flying in close proximity, flyers physically connected by active structural elements could continuously exchange power, fluids, and heat (via fluids). Configurations of small modular spacecraft temporarily linked together could be sustained as long as needed with minimal propellant use and reconfigured as often as needed over extended missions with changing requirements. For example, these vehicles could operate in extremely compact configurations during boost phases of a mission and then redeploy to generate power or communicate while coasting and upon reaching orbit. In 2005, NASA funded Phase 1 of a program called Modular Reconfigurable High-Energy Technology Demonstrator Assembly Testbed (MRHE) to investigate reconfigurable systems of small spacecraft. The MRHE team was led by NASA's Marshall Space Flight Center and included Lockheed Martin's Advanced Technology Center (ATC) in Palo Alto and its subcontractor, ATK. One of the goals of Phase 1 was to develop an MRHE concept demonstration in a relevant 1-g environment to highlight a number of requisite technologies. In Phase 1 of the MRHE program, Lockheed Martin devised and conducted an automated space system assembly demonstration featuring multipurpose free-floating robots representing Spacecraft in the newly built Controls and Automation Laboratory (CAL) at the ATC. The CAL lab features a 12' x 24' granite air-bearing table and an overhead simulated starfield. Among the technologies needed for the concept demo were mating interfaces allowing the spacecraft to dock and deployable structures allowing for adjustable separation between spacecraft after a rigid connection had been established. The decision to use a nonmetallic deployable boom for this purpose was driven by the MRHE concept demo requirements reproduced in Table 1.
Laplace Transform Based Radiative Transfer Studies
NASA Astrophysics Data System (ADS)
Hu, Y.; Lin, B.; Ng, T.; Yang, P.; Wiscombe, W.; Herath, J.; Duffy, D.
2006-12-01
Multiple scattering is the major uncertainty for data analysis of space-based lidar measurements. Until now, accurate quantitative lidar data analysis has been limited to very thin objects that are dominated by single scattering, where photons from the laser beam only scatter a single time with particles in the atmosphere before reaching the receiver, and simple linear relationship between physical property and lidar signal exists. In reality, multiple scattering is always a factor in space-based lidar measurement and it dominates space- based lidar returns from clouds, dust aerosols, vegetation canopy and phytoplankton. While multiple scattering are clear signals, the lack of a fast-enough lidar multiple scattering computation tool forces us to treat the signal as unwanted "noise" and use simple multiple scattering correction scheme to remove them. Such multiple scattering treatments waste the multiple scattering signals and may cause orders of magnitude errors in retrieved physical properties. Thus the lack of fast and accurate time-dependent radiative transfer tools significantly limits lidar remote sensing capabilities. Analyzing lidar multiple scattering signals requires fast and accurate time-dependent radiative transfer computations. Currently, multiple scattering is done with Monte Carlo simulations. Monte Carlo simulations take minutes to hours and are too slow for interactive satellite data analysis processes and can only be used to help system / algorithm design and error assessment. We present an innovative physics approach to solve the time-dependent radiative transfer problem. The technique utilizes FPGA based reconfigurable computing hardware. The approach is as following, 1. Physics solution: Perform Laplace transform on the time and spatial dimensions and Fourier transform on the viewing azimuth dimension, and convert the radiative transfer differential equation solving into a fast matrix inversion problem. The majority of the radiative transfer computation goes to matrix inversion processes, FFT and inverse Laplace transforms. 2. Hardware solutions: Perform the well-defined matrix inversion, FFT and Laplace transforms on highly parallel, reconfigurable computing hardware. This physics-based computational tool leads to accurate quantitative analysis of space-based lidar signals and improves data quality of current lidar mission such as CALIPSO. This presentation will introduce the basic idea of this approach, preliminary results based on SRC's FPGA-based Mapstation, and how we may apply it to CALIPSO data analysis.
NASA Technical Reports Server (NTRS)
Kim, Sungwan
1994-01-01
System parameters should be tracked on-line to build a reconfigurable control system even though there exists an abrupt change. For this purpose, a new performance index that we are studying is the speed of adaptation- how quickly does the system determine that a change has occurred? In this paper, a new, robust algorithm that is optimized to minimize the time delay in detecting a change for fixed false alarm probability is proposed. Simulation results for the aircraft lateral motion with a known or unknown change in control gain matrices, in the presence of doublet input, indicate that the algorithm works fairly well. One of its distinguishing properties is that detection delay of this algorithm is superior to that of Whiteness Test.
NASA Astrophysics Data System (ADS)
Sterpone, L.; Violante, M.
2007-08-01
Modern SRAM-based field programmable gate array (FPGA) devices offer high capability in implementing complex system. Unfortunately, SRAM-based FPGAs are extremely sensitive to single event upsets (SEUs) induced by radiation particles. In order to successfully deploy safety- or mission-critical applications, designer need to validate the correctness of the obtained designs. In this paper we describe a system based on partial-reconfiguration for running fault-injection experiments within the configuration memory of SRAM-based FPGAs. The proposed fault-injection system uses the internal configuration capabilities that modern FPGAs offer in order to inject SEU within the configuration memory. Detailed experimental results show that the technique is orders of magnitude faster than previously proposed ones.
Control of nonlinear flexible space structures
NASA Astrophysics Data System (ADS)
Shi, Jianjun
With the advances made in computer technology and efficiency of numerical algorithms over last decade, the MPC strategies have become quite popular among control community. However, application of MPC or GPC to flexible space structure control has not been explored adequately in the literature. The work presented in this thesis primarily focuses on application of GPC to control of nonlinear flexible space structures. This thesis is particularly devoted to the development of various approximate dynamic models, design and assessment of candidate controllers, and extensive numerical simulations for a realistic multibody flexible spacecraft, namely, Jupiter Icy Moons Orbiter (JIMO)---a Prometheus class of spacecraft proposed by NASA for deep space exploratory missions. A stable GPC algorithm is developed for Multi-Input-Multi-Output (MIMO) systems. An end-point weighting (penalty) is used in the GPC cost function to guarantee the nominal stability of the closed-loop system. A method is given to compute the desired end-point state from the desired output trajectory. The methodologies based on Fake Algebraic Riccati Equation (FARE) and constrained nonlinear optimization, are developed for synthesis of state weighting matrix. This makes this formulation more practical. A stable reconfigurable GPC architecture is presented and its effectiveness is demonstrated on both aircraft as well as spacecraft model. A representative in-orbit maneuver is used for assessing the performance of various control strategies using various design models. Different approximate dynamic models used for analysis include linear single body flexible structure, nonlinear single body flexible structure, and nonlinear multibody flexible structure. The control laws evaluated include traditional GPC, feedback linearization-based GPC (FLGPC), reconfigurable GPC, and nonlinear dissipative control. These various control schemes are evaluated for robust stability and robust performance in the presence of parametric uncertainties and input disturbances. Finally, the conclusions are made with regard to the efficacy of these controllers and potential directions for future research.
NASA Technical Reports Server (NTRS)
Waldstein, Seth W.; Kortright, Barbosa Miguel A.; Simons, Rainee N.
2017-01-01
The paper presents the architecture of a wideband reconfigurable harmonically-tuned Gallium Nitride (GaN) Solid State Power Amplifier (SSPA) for cognitive radios. When interfaced with the physical layer of a cognitive communication system, this amplifier topology offers broadband high efficiency through the use of multiple tuned input/output matching networks. This feature enables the cognitive radio to reconfigure the operating frequency without sacrificing efficiency. This paper additionally presents as a proof-of-concept the design, fabrication, and test results for a GaN inverse Class-F type amplifier operating at X-band (8.4 GHz) that achieves a maximum output power of 5.14-W, Power Added Efficiency (PAE) of 38.6 percent, and Drain Efficiency (DE) of 48.9 percent under continuous wave (CW) operation.
Dynamically reconfigurable optical packet switch (DROPS)
NASA Astrophysics Data System (ADS)
Huang, Chi-Heng; Chou, Hsu-Feng; Bowers, John E.; Toudeh-Fallah, Farzam; Gyurek, Russ
2006-12-01
A novel Dynamically Reconfigurable Optical Packet Switch (DROPS) that combines both spectral and spatial switching capabilities is proposed and experimentally demonstrated for the first time. Compared with an Arrayed Waveguide Grating Router (AWGR), the added spatial switching capability provided by the microelectromechanical systems (MEMS) enables dynamically reconfigurable routing that is not possible with an AWGR alone. This methodology has several advantages over an AWGR including scalability, additional degrees of freedom in routing a packet from an ingress port to an egress port and more flexibility in path or line card recovery. The experimental demonstration implemented with 10-Gb/s packets shows that the added spatial switching does not degrade the bit-error-rate performance, indicating the promising potential of DROPS as a versatile and ultra-high capacity switch for optical packet-switched networks.
Programmable multi-zone furnace for microgravity research
NASA Technical Reports Server (NTRS)
Rosenthal, Bruce N.; Krolikowski, Cathryn R.
1991-01-01
In order to provide new furnace technology to accommodate microgravity research studies and commercial applications in material processes, research has been initiated on the development of the Programmable-Multi-zone Furnace (PMZF). The PMZF is described as a multi-user materials processing furnace facility that is composed of thirty or more heater elements in series on a muffle tube or in a stacked ring-type configuration and independently controlled by a computer. One of the aims of the PMZF project is to allow furnace thermal gradient profiles to be reconfigured without physical modification of the hardware by creating the capability of reconfiguring thermal profiles in response to investigators' requests. The future location of the PMZF facility is discussed; the preliminary science survey results and preliminary conceptual designs for the PMZF are presented; and a review of multi-zone furnace technology is given.
Atoche, Alejandro Castillo; Castillo, Javier Vázquez
2012-01-01
A high-speed dual super-systolic core for reconstructive signal processing (SP) operations consists of a double parallel systolic array (SA) machine in which each processing element of the array is also conceptualized as another SA in a bit-level fashion. In this study, we addressed the design of a high-speed dual super-systolic array (SSA) core for the enhancement/reconstruction of remote sensing (RS) imaging of radar/synthetic aperture radar (SAR) sensor systems. The selected reconstructive SP algorithms are efficiently transformed in their parallel representation and then, they are mapped into an efficient high performance embedded computing (HPEC) architecture in reconfigurable Xilinx field programmable gate array (FPGA) platforms. As an implementation test case, the proposed approach was aggregated in a HW/SW co-design scheme in order to solve the nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) from a remotely sensed scene. We show how such dual SSA core, drastically reduces the computational load of complex RS regularization techniques achieving the required real-time operational mode. PMID:22736964
F-15 HiDEC in flight over Mojave desert
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's F-15 HIDEC (Highly Integrated Digital Electronic Control) research aircraft cruises over California's Mojave Desert at sunset on a flight out of the Dryden Flight Research Center, Edwards, California. The aircraft was used to carry out research on engine and flight control systems and most recently demonstrated the use of computer-assisted engine controls as a means of landing an aircraft safely with only engine power if its normal control surfaces such as elevators, rudders or ailerons are disabled. The aircraft also tested and evaluated a computerized self-repair flight control system for the Air Force that detects damaged or failed flight control surfaces, and then reconfigures undamaged flight surfaces so the mission can continue or the aircraft is landed safely. Nearly all research being carried out in the HIDEC program is applicable to future civilian and military aircraft.
NASA Astrophysics Data System (ADS)
McNie, Mark E.; Combes, David J.; Smith, Gilbert W.; Price, Nicola; Ridley, Kevin D.; Brunson, Kevin M.; Lewis, Keith L.; Slinger, Chris W.; Rogers, Stanley
2007-09-01
Coded aperture imaging has been used for astronomical applications for several years. Typical implementations use a fixed mask pattern and are designed to operate in the X-Ray or gamma ray bands. More recent applications have emerged in the visible and infra red bands for low cost lens-less imaging systems. System studies have shown that considerable advantages in image resolution may accrue from the use of multiple different images of the same scene - requiring a reconfigurable mask. We report on work to develop a novel, reconfigurable mask based on micro-opto-electro-mechanical systems (MOEMS) technology employing interference effects to modulate incident light in the mid-IR band (3-5μm). This is achieved by tuning a large array of asymmetric Fabry-Perot cavities by applying an electrostatic force to adjust the gap between a moveable upper polysilicon mirror plate supported on suspensions and underlying fixed (electrode) layers on a silicon substrate. A key advantage of the modulator technology developed is that it is transmissive and high speed (e.g. 100kHz) - allowing simpler imaging system configurations. It is also realised using a modified standard polysilicon surface micromachining process (i.e. MUMPS-like) that is widely available and hence should have a low production cost in volume. We have developed designs capable of operating across the entire mid-IR band with peak transmissions approaching 100% and high contrast. By using a pixelated array of small mirrors, a large area device comprising individually addressable elements may be realised that allows reconfiguring of the whole mask at speeds in excess of video frame rates.
Use of Patterned CNT Arrays for Display Purposes
NASA Technical Reports Server (NTRS)
Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)
2009-01-01
Method and system for providing a dynamically reconfigurable display having nanometer-scale resolution, using a patterned array of multi-wall carbon nanotube (MWCNT) clusters. A diode, phosphor or other light source on each MWCNT cluster is independently activated, and different color light sources (e.g., red, green, blue, grey scale, infrared) can be mixed if desired. Resolution is estimated to be 40-100 nm, and reconfiguration time for each MWCNT cluster is no greater than one microsecond.
Uncertainty Modeling for Robustness Analysis of Control Upset Prevention and Recovery Systems
NASA Technical Reports Server (NTRS)
Belcastro, Christine M.; Khong, Thuan H.; Shin, Jong-Yeob; Kwatny, Harry; Chang, Bor-Chin; Balas, Gary J.
2005-01-01
Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. Such systems (developed for failure detection, identification, and reconfiguration, as well as upset recovery) need to be evaluated over broad regions of the flight envelope and under extreme flight conditions, and should include various sources of uncertainty. However, formulation of linear fractional transformation (LFT) models for representing system uncertainty can be very difficult for complex parameter-dependent systems. This paper describes a preliminary LFT modeling software tool which uses a matrix-based computational approach that can be directly applied to parametric uncertainty problems involving multivariate matrix polynomial dependencies. Several examples are presented (including an F-16 at an extreme flight condition, a missile model, and a generic example with numerous crossproduct terms), and comparisons are given with other LFT modeling tools that are currently available. The LFT modeling method and preliminary software tool presented in this paper are shown to compare favorably with these methods.
Holonic Rationale and Bio-inspiration on Design of Complex Emergent and Evolvable Systems
NASA Astrophysics Data System (ADS)
Leitao, Paulo
Traditional centralized and rigid control structures are becoming inflexible to face the requirements of reconfigurability, responsiveness and robustness, imposed by customer demands in the current global economy. The Holonic Manufacturing Systems (HMS) paradigm, which was pointed out as a suitable solution to face these requirements, translates the concepts inherited from social organizations and biology to the manufacturing world. It offers an alternative way of designing adaptive systems where the traditional centralized control is replaced by decentralization over distributed and autonomous entities organized in hierarchical structures formed by intermediate stable forms. In spite of its enormous potential, methods regarding the self-adaptation and self-organization of complex systems are still missing. This paper discusses how the insights from biology in connection with new fields of computer science can be useful to enhance the holonic design aiming to achieve more self-adaptive and evolvable systems. Special attention is devoted to the discussion of emergent behavior and self-organization concepts, and the way they can be combined with the holonic rationale.
NASA Astrophysics Data System (ADS)
Kyrkou, Christos; Theocharides, Theocharis
2016-07-01
Object detection is a major step in several computer vision applications and a requirement for most smart camera systems. Recent advances in hardware acceleration for real-time object detection feature extensive use of reconfigurable hardware [field programmable gate arrays (FPGAs)], and relevant research has produced quite fascinating results, in both the accuracy of the detection algorithms as well as the performance in terms of frames per second (fps) for use in embedded smart camera systems. Detecting objects in images, however, is a daunting task and often involves hardware-inefficient steps, both in terms of the datapath design and in terms of input/output and memory access patterns. We present how a visual-feature-directed search cascade composed of motion detection, depth computation, and edge detection, can have a significant impact in reducing the data that needs to be examined by the classification engine for the presence of an object of interest. Experimental results on a Spartan 6 FPGA platform for face detection indicate data search reduction of up to 95%, which results in the system being able to process up to 50 1024×768 pixels images per second with a significantly reduced number of false positives.
A framework for plasticity implementation on the SpiNNaker neural architecture.
Galluppi, Francesco; Lagorce, Xavier; Stromatias, Evangelos; Pfeiffer, Michael; Plana, Luis A; Furber, Steve B; Benosman, Ryad B
2014-01-01
Many of the precise biological mechanisms of synaptic plasticity remain elusive, but simulations of neural networks have greatly enhanced our understanding of how specific global functions arise from the massively parallel computation of neurons and local Hebbian or spike-timing dependent plasticity rules. For simulating large portions of neural tissue, this has created an increasingly strong need for large scale simulations of plastic neural networks on special purpose hardware platforms, because synaptic transmissions and updates are badly matched to computing style supported by current architectures. Because of the great diversity of biological plasticity phenomena and the corresponding diversity of models, there is a great need for testing various hypotheses about plasticity before committing to one hardware implementation. Here we present a novel framework for investigating different plasticity approaches on the SpiNNaker distributed digital neural simulation platform. The key innovation of the proposed architecture is to exploit the reconfigurability of the ARM processors inside SpiNNaker, dedicating a subset of them exclusively to process synaptic plasticity updates, while the rest perform the usual neural and synaptic simulations. We demonstrate the flexibility of the proposed approach by showing the implementation of a variety of spike- and rate-based learning rules, including standard Spike-Timing dependent plasticity (STDP), voltage-dependent STDP, and the rate-based BCM rule. We analyze their performance and validate them by running classical learning experiments in real time on a 4-chip SpiNNaker board. The result is an efficient, modular, flexible and scalable framework, which provides a valuable tool for the fast and easy exploration of learning models of very different kinds on the parallel and reconfigurable SpiNNaker system.
A framework for plasticity implementation on the SpiNNaker neural architecture
Galluppi, Francesco; Lagorce, Xavier; Stromatias, Evangelos; Pfeiffer, Michael; Plana, Luis A.; Furber, Steve B.; Benosman, Ryad B.
2015-01-01
Many of the precise biological mechanisms of synaptic plasticity remain elusive, but simulations of neural networks have greatly enhanced our understanding of how specific global functions arise from the massively parallel computation of neurons and local Hebbian or spike-timing dependent plasticity rules. For simulating large portions of neural tissue, this has created an increasingly strong need for large scale simulations of plastic neural networks on special purpose hardware platforms, because synaptic transmissions and updates are badly matched to computing style supported by current architectures. Because of the great diversity of biological plasticity phenomena and the corresponding diversity of models, there is a great need for testing various hypotheses about plasticity before committing to one hardware implementation. Here we present a novel framework for investigating different plasticity approaches on the SpiNNaker distributed digital neural simulation platform. The key innovation of the proposed architecture is to exploit the reconfigurability of the ARM processors inside SpiNNaker, dedicating a subset of them exclusively to process synaptic plasticity updates, while the rest perform the usual neural and synaptic simulations. We demonstrate the flexibility of the proposed approach by showing the implementation of a variety of spike- and rate-based learning rules, including standard Spike-Timing dependent plasticity (STDP), voltage-dependent STDP, and the rate-based BCM rule. We analyze their performance and validate them by running classical learning experiments in real time on a 4-chip SpiNNaker board. The result is an efficient, modular, flexible and scalable framework, which provides a valuable tool for the fast and easy exploration of learning models of very different kinds on the parallel and reconfigurable SpiNNaker system. PMID:25653580
Real-time dynamics and control strategies for space operations of flexible structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Alvin, K. F.; Alexander, S.
1993-01-01
This project (NAG9-574) was meant to be a three-year research project. However, due to NASA's reorganizations during 1992, the project was funded only for one year. Accordingly, every effort was made to make the present final report as if the project was meant to be for one-year duration. Originally, during the first year we were planning to accomplish the following: we were to start with a three dimensional flexible manipulator beam with articulated joints and with a linear control-based controller applied at the joints; using this simple example, we were to design the software systems requirements for real-time processing, introduce the streamlining of various computational algorithms, perform the necessary reorganization of the partitioned simulation procedures, and assess the potential speed-up realization of the solution process by parallel computations. The three reports included as part of the final report address: the streamlining of various computational algorithms; the necessary reorganization of the partitioned simulation procedures, in particular the observer models; and an initial attempt of reconfiguring the flexible space structures.
NASA Astrophysics Data System (ADS)
Terzopoulos, Demetri; Qureshi, Faisal Z.
Computer vision and sensor networks researchers are increasingly motivated to investigate complex multi-camera sensing and control issues that arise in the automatic visual surveillance of extensive, highly populated public spaces such as airports and train stations. However, they often encounter serious impediments to deploying and experimenting with large-scale physical camera networks in such real-world environments. We propose an alternative approach called "Virtual Vision", which facilitates this type of research through the virtual reality simulation of populated urban spaces, camera sensor networks, and computer vision on commodity computers. We demonstrate the usefulness of our approach by developing two highly automated surveillance systems comprising passive and active pan/tilt/zoom cameras that are deployed in a virtual train station environment populated by autonomous, lifelike virtual pedestrians. The easily reconfigurable virtual cameras distributed in this environment generate synthetic video feeds that emulate those acquired by real surveillance cameras monitoring public spaces. The novel multi-camera control strategies that we describe enable the cameras to collaborate in persistently observing pedestrians of interest and in acquiring close-up videos of pedestrians in designated areas.
A probabilistic technique for the assessment of complex dynamic system resilience
NASA Astrophysics Data System (ADS)
Balchanos, Michael Gregory
In the presence of operational uncertainty, one of the greatest challenges in systems engineering is to ensure system effectiveness, mission capability and survivability for large scale, complex system architectures. Historic events such as the 2003 Northeastern Blackout, and the 2005 Hurricane Katrina, have underlined the great importance of system safety, and survivability. With safety management currently applied on a reactive basis to emerging incidents and risk challenges, there is a paradigm shift from passive, reactive and diagnosis-based approaches to the development of architectures that will autonomously manage safety and survivability through active, proactive and prognosis-based engineering solutions. The shift aims to bring safety considerations early in the engineering design process, in order to reduce retrofitting and additional safety certification costs, increase flexibility in risk management, and essentially make safety be "built-in" the design. As a possible enabling research direction, resilience engineering is an emerging discipline, pertinent to safety management, which offers alternative insights on the design of more safe and survivable system architectures. Conceptually, resilience engineering brings new perspectives on the understanding of system safety, accidents, failures, performance degradations and risk. A resilient system can "absorb" the impact of change due to unexpected disturbances, while it "adapts" to change, in order to maintain the system's physical integrity and capability to carry on with its mission. The leading hypothesis advocates that if a complex dynamic system is more resilient, then it would be more survivable, thus more effective, despite the unexpected disturbances that could affect its normal operating conditions. For investigating the impact of more resilient systems on survivability and safety, a framework for theoretical resilience estimations has been formulated. It constitutes the basis for quantitative techniques for total system resilience evaluation, based on scenario-based, dynamic system simulations. Physics-based Modeling and Simulation (M&S) is applied for dynamical system behavior analysis, which includes system performance, health monitoring, damage propagation and overall mission capability. For the development of the assessment framework and testing of a resilience assessment technique, a small-scale canonical problem has been formulated, involving a computational model of a degradable and reconfigurable spring-mass-damper SDOF system, in a multiple main and redundant spring configuration. A rule-based feedback controller is responsible for system performance recovery, through the application of different reconfiguration strategies and strategic activation of the necessary main or redundant springs. Uncertainty effects on system operation are introduced through disturbance factors, such as external forces with varying magnitude, input frequency, event duration and occurrence time. Such factors are the basis for scenario formulation, in support of a Monte Carlo simulation analysis. Case studies with varying levels of damping and different reconfiguration strategies, involve the investigation of operational uncertainty effects on system performance, mission capability, and system survivability. These studies furthermore explore uncertainty effects on resilience functions that describe the system's capacities on "restoring" mission capability, on "absorbing" the effects of changing conditions, and on "adapting" to the occurring change. The proposed resilience assessment technique or the Topological Investigation for Resilient and Effective Systems, through Increased Architecture Survivability (TIRESIAS) is then applied and demonstrated for a naval system application, in the form of a reduced scale, reconfigurable cooling network of a naval combatant. Uncertainty effects are modeled through combinations of different number of network fluid leaks. The TIRESIAS approach on the system baseline (32-control valve configuration) has allowed for the investigation of leak effects on survival times, mission capability degradations, as well as the resilience function capacities. As part of the technique demonstration, case studies were conducted for different architecture configurations, which have been generated for different total number of control valves and valve locations on the topology.
Reconfigurable radio-over-fiber system based on optical switch and tunable filter
NASA Astrophysics Data System (ADS)
Li, Xiao; Yin, Rui; Ji, Wei; Sun, Kai; Zhang, Shicheng
2017-09-01
As the best candidate for wireless-access networks, radio-over-fiber (RoF) technology can carry a variety of business. It is necessary to provide differentiated services for different users, so the network needs to produce signals with different modulation formats and different frequencies. A reconfigurable RoF system based on a switch and tunable optical filter that can realize modulation format conversion and multiple frequency signal switching functions is designed. It has a good performance in terms of bit error rate and an eye diagram. The design can help to use radio frequency resources efficiently and make dynamic bandwidth resources controllable.
NASA Astrophysics Data System (ADS)
Yue, Yang; Wang, Qiang; Zhang, Bo; Vovan, Andre; Anderson, Jon
2017-01-01
DP-QAM is one of the most promising paths towards 400-Gb/s and 1-Tb/s commercial optical communications systems. For DP-QAM transmitter, different tributary channel powers lead to IQ or XY power imbalance. Large uncompensated IQ or XY power imbalance can significantly degrade the performance in the coherent optical communications system. In this work, we propose and experimentally demonstrate a technique to detect and compensate DP-QAM transmitter power imbalances for tributary channels. By reconfigurably interfering de-skewed identical BPSK channels, the optical powers of any two tributaries can be balanced by minimizing the output power from their optical interference.
Chiou, Jin-Chern; Hsu, Shun-Hsi; Huang, Yu-Chieh; Yeh, Guan-Ting; Liou, Wei-Ting; Kuei, Cheng-Kai
2017-01-01
This study presented a wireless smart contact lens system that was composed of a reconfigurable capacitive sensor interface circuitry and wirelessly powered radio-frequency identification (RFID) addressable system for sensor control and data communication. In order to improve compliance and reduce user discomfort, a capacitive sensor was embedded on a soft contact lens of 200 μm thickness using commercially available bio-compatible lens material and a standard manufacturing process. The results indicated that the reconfigurable sensor interface achieved sensitivity and baseline tuning up to 120 pF while consuming only 110 μW power. The range and sensitivity tuning of the readout circuitry ensured a reliable operation with respect to sensor fabrication variations and independent calibration of the sensor baseline for individuals. The on-chip voltage scaling allowed the further extension of the detection range and prevented the implementation of large on-chip elements. The on-lens system enabled the detection of capacitive variation caused by pressure changes in the range of 2.25 to 30 mmHg and hydration level variation from a distance of 1 cm using incident power from an RFID reader at 26.5 dBm. PMID:28067859
2010-12-01
with high correlation immunity and then evaluate these functions for other desirable cryptographic features. C. METHOD The only known primary methods...out if not used) # ---------------------------------- # PRIMARY = < primary file 1> < primary file 2> #SECONDARY = <secondary file 1...finding the fuction value for a //set u and for each value of v. end end