Sample records for reconnected flux tubes

  1. Forced three-dimensional magnetic reconnection due to linkage of magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Otto, A.

    1995-01-01

    During periods of southward interplanetary magnetic field (IMF) orientation the magnetic field geometry at the dayside magnetopause is susceptible to magnetic reconnection. It has been suggested that reconnection may occur in a localized manner at several patches on the magnetopause. A major problem with this picture is the interaction of magnetic flux ropes which are generated by different reconnection processes. An individual flux rope is bent elbowlike where it intersects the magnetopause and the magnetic field changes from magnetospheric to interplanetary magnetic field orientation. Multiple patches of reconnection can lead to the formation of interlinked magnetic flux tubes. Although the corresponding flux is connected to the IMF the northward and southward connected branches are hooked into each other and cannot develop independently. We have studied this problem in the framework of three-dimensional magnetohydrodynamic simulations. The results indicate that a singular current sheet forms at the interface of two interlinked flux tubes if no resistivity is present in the simulation. This current sheet is strongly tilted compared to the original current sheet. In the presence of resistivity the interaction of the two flux tubes forces a fast reconnection process which generates helically twisted closed magnetospheric flux. This linkage induced reconnection generates a boundary layer with layers of open and closed magnetospheric flux and may account for the brightening of auroral arcs poleward of the boundary between open and closed magnetic flux.

  2. Vortex line topology during vortex tube reconnection

    NASA Astrophysics Data System (ADS)

    McGavin, P.; Pontin, D. I.

    2018-05-01

    This paper addresses reconnection of vortex tubes, with particular focus on the topology of the vortex lines (field lines of the vorticity). This analysis of vortex line topology reveals key features of the reconnection process, such as the generation of many small flux rings, formed when reconnection occurs in multiple locations in the vortex sheet between the tubes. Consideration of three-dimensional reconnection principles leads to a robust measurement of the reconnection rate, even once instabilities break the symmetry. It also allows us to identify internal reconnection of vortex lines within the individual vortex tubes. Finally, the introduction of a third vortex tube is shown to render the vortex reconnection process fully three-dimensional, leading to a fundamental change in the topological structure of the process. An additional interesting feature is the generation of vorticity null points.

  3. Magnetic merging in colliding flux tubes

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.; Rhoads, James E.

    1995-01-01

    We develop an analytical theory of reconnection between colliding, twisted magnetic flux tubes. Our analysis is restricted to direct collisions between parallel tubes and is based on the collision dynamics worked out by Bogdan (1984). We show that there is a range of collision velocities for which neutral point reconnection of the Parker-Sweet type can occur, and a smaller range for which reconnection leads to coalescence. Mean velocities within the solar convection zone are probably significantly greater than the upper limit for coalescence. This suggests that the majority of flux tube collisions do not result in merging, unless the frictional coupling of the tubes to the background flow is extremely strong.

  4. Patchy reconnection in the solar corona

    NASA Astrophysics Data System (ADS)

    Guidoni, Silvina Esther

    2011-05-01

    Magnetic reconnection in plasmas, a process characterized by a change in connectivity of field lines that are broken and connected to other ones with different topology, owes its usefulness to its ability to unify a wide range of phenomena within a single universal principle. There are newly observed phenomena in the solar corona that cannot be reconciled with two-dimensional or steady-state standard models of magnetic reconnection. Supra-arcade downflows (SADs) and supra-arcade downflowing loops (SADLs) descending from reconnection regions toward solar post-flare arcades seem to be two different observational signatures of retracting, isolated reconnected flux tubes with irreducible three-dimensional geometries. This dissertation describes work in refining and improving a novel model of patchy reconnection, where only a small bundle of field lines is reconnected across a current sheet (magnetic discontinuity) and forms a reconnected thin flux tube. Traditional models have not been able to explain why some of the observed SADs appear to be hot and relatively devoid of plasma. The present work shows that plasma depletion naturally occurs in flux tubes that are reconnected across nonuniform current sheets and slide trough regions of decreasing magnetic field magnitude. Moreover, through a detailed theoretical analysis of generalized thin flux tube equations, we show that the addition to the model of pressure-driven parallel dynamics, as well as temperature-dependent, anisotropic viscosity and thermal conductivity is essential for self-consistently producing gas-dynamic shocks inside reconnected tubes that heat and compress plasma to observed temperatures and densities. The shock thickness can be as long as the entire tube and heat can be conducted along tube's legs, possibly driving chromospheric evaporation. We developed a computer program that solves numerically the thin flux tube equations that govern the retraction of reconnected tubes. Simulations carried out

  5. Magnetic Reconnection at a Thin Current Sheet Separating Two Interlaced Flux Tubes at the Earth's Magnetopause

    NASA Astrophysics Data System (ADS)

    Kacem, I.; Jacquey, C.; Génot, V.; Lavraud, B.; Vernisse, Y.; Marchaudon, A.; Le Contel, O.; Breuillard, H.; Phan, T. D.; Hasegawa, H.; Oka, M.; Trattner, K. J.; Farrugia, C. J.; Paulson, K.; Eastwood, J. P.; Fuselier, S. A.; Turner, D.; Eriksson, S.; Wilder, F.; Russell, C. T.; Øieroset, M.; Burch, J.; Graham, D. B.; Sauvaud, J.-A.; Avanov, L.; Chandler, M.; Coffey, V.; Dorelli, J.; Gershman, D. J.; Giles, B. L.; Moore, T. E.; Saito, Y.; Chen, L.-J.; Penou, E.

    2018-03-01

    The occurrence of spatially and temporally variable reconnection at the Earth's magnetopause leads to the complex interaction of magnetic fields from the magnetosphere and magnetosheath. Flux transfer events (FTEs) constitute one such type of interaction. Their main characteristics are (1) an enhanced core magnetic field magnitude and (2) a bipolar magnetic field signature in the component normal to the magnetopause, reminiscent of a large-scale helicoidal flux tube magnetic configuration. However, other geometrical configurations which do not fit this classical picture have also been observed. Using high-resolution measurements from the Magnetospheric Multiscale mission, we investigate an event in the vicinity of the Earth's magnetopause on 7 November 2015. Despite signatures that, at first glance, appear consistent with a classic FTE, based on detailed geometrical and dynamical analyses as well as on topological signatures revealed by suprathermal electron properties, we demonstrate that this event is not consistent with a single, homogenous helicoidal structure. Our analysis rather suggests that it consists of the interaction of two separate sets of magnetic field lines with different connectivities. This complex three-dimensional interaction constructively conspires to produce signatures partially consistent with that of an FTE. We also show that, at the interface between the two sets of field lines, where the observed magnetic pileup occurs, a thin and strong current sheet forms with a large ion jet, which may be consistent with magnetic flux dissipation through magnetic reconnection in the interaction region.

  6. Eruption of a Multiple-Turn Helical Magnetic Flux Tube in a Large Flare: Evidence for External and Internal Reconnection that Fits the Breakout Model of Solar Magnetic Eruptions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Moore, R. L.

    2003-01-01

    We present observations and an interpretation of a unique multiple-turn spiral flux tube eruption from AR10030 on 2002 July 15. The TRACE CIV observations clearly show a flux tube that is helical and that is erupting from within a sheared magnetic field. These observations are interpreted in the context of the breakout model for magnetic field explosions. The initiation of the helix eruption starts 25 seconds after the peak of the flare s strongest impulsive spike of microwave gryosynchrotron radiation early in the flare s explosive phase, implying that the sheared core field is not the site of the initial reconnection. Within the quadrupolar configuration of the active region, the external and internal reconnection sites are identified in each of two consecutive eruptive flares that produce a double CME. The first external breakout reconnection apparently releases an underlying sheared core field and allows it to erupt, leading to internal reconnection in the wake of the erupting helix. This internal reconnection heats the two-ribbon flare and might or might not produce the helix. These events lead to the first CME and are followed by a second breakout that initiates a second and larger halo CME. The strong magnetic shear in the region is associated with rapid proper motion and evolution of the active region. The multiple-turn helix originates from above a sheared-field magnetic inversion line within a filament channel, and starts to erupt only after fast breakout reconnection has started. These observations are counter to the standard flare model and support the breakout model for eruptive flare initiation. However, the observations are compatible with internal reconnection in a sheared magnetic arcade in the formation and eruption of the helix.

  7. Reconnecting flux-rope dynamo.

    PubMed

    Baggaley, Andrew W; Barenghi, Carlo F; Shukurov, Anvar; Subramanian, Kandaswamy

    2009-11-01

    We develop a model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multiscale model of turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. This model can be viewed as an implementation of the asymptotic limit R_{m}-->infinity for a continuous magnetic field, where magnetic dissipation is strongly localized to small regions of strong-field gradients. We investigate the kinetic-energy release into heat mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux-rope dynamo is an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy release in reconnections has a power-law form with the slope -3 , consistent with the solar corona heating by nanoflares.

  8. Eruption of a Multiple-Turn Helical Magnetic Flux Tube in a Large Flare: Evidence for External and Internal Reconnection that Fits the Breakout Model of Solar Magnetic Eruptions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Moore, R. L.

    2004-01-01

    We present observations and an interpretation of a unique multiple-turn spiral flux tube eruption from active region 10030 on 2002 July 15. The TRACE C IV observations clearly show a flux tube that is helical and erupting from within a sheared magnetic field. These observations are interpreted in the context of the breakout model for magnetic field explosions. The initiation of the helix eruption. as determined by a linear backward extrapolation, starts 25 s after the peak of the flare's strongest impulsive spike of microwave gyrosynchrotron radiation early in the flare s explosive phase, implying that the sheared core field is not the site of the initial reconnection. Within the quadrupolar configuration of the active region, the external and internal reconnection sites are identified in each of two consecutive eruptive flares that produce a double coronal mass ejection (CME). The first external breakout reconnection apparently releases an underlying sheared core field and allows it to erupt, leading to internal reconnection in the wake of the erupting helix. This internal reconnection releases the helix and heats the two-ribbon flare. These events lead to the first CME and are followed by a second breakout that initiates a second and larger halo CME. The strong magnetic shear in the region is compatible with the observed rapid proper motion and evolution of the active region. The multiple-turn helix originates from above a sheared-field magnetic inversion line within a filament channel. and starts to erupt only after fast breakout reconnection has started. These observations are counter to the standard flare model and support the breakout model for eruptive flare initiation.

  9. The magnetic topology of the plasmoid flux rope in a MHD-simulation of magnetotail reconnection

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, M.

    1990-01-01

    On the basis of a 3D MHD simulation, the magnetic topology of a plasmoid that forms by a localized reconnection process in a magnetotail configuration (including a net dawn-dusk magnetic field component B sub y N is discussed. As a consequence of B sub y N not equalling 0, the plasmoid assumes a helical flux rope structure rather than an isolated island or bubble structure. Initially all field lines of the plasmoid flux rope remain connected with the earth, while at later times a gradually increasing amount of flux tubes becomes separated, connecting to either the distant boundary or to the flank boundaries. In this stage, topologically different flux tubes become tangled and wrapped around each other, consistent with predictions on the basis of an ad hoc plasmoid model.

  10. Observing Formation of Flux Rope by Tether-cutting Reconnection in the Sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Zhike; Yan, Xiaoli; Yang, Liheng

    Tether-cutting reconnection is considered as one mechanism for the formation of a flux rope. It has been proposed for more than 30 years; however, so far, direct observations of it are very rare. In this Letter, we present observations of the formation of a flux rope via tether-cutting reconnection in NOAA AR 11967 on 2014 February 2 by combining observations with the New Vacuum Solar Telescope and the Solar Dynamic Observatory . The tether-cutting reconnection occurs between two sets of highly sheared magnetic arcades. Comprehensive observational evidence of the reconnection is as follows: changes of the connections between the arcades,more » brightenings at the reconnection site, hot outflows, formation of a flux rope, slow-rise motion of the flux rope, and flux cancelation. The outflows are along three directions from the reconnection site to the footpoints with the velocities from 24 ± 1 km s{sup −1} to 69 ± 5 km s{sup −1}. Additionally, it is found that the newly formed flux rope connects far footpoints and has a left-handed twisted structure with many fine threads and a concave-up-shape structure in the middle. All the observations are in agreement with the tether-cutting model and provide evidence that tether-cutting reconnection leads to the formation of the flux rope associated with flux shear flow and cancelation.« less

  11. Generation Mechanism for Interlinked Flux Tubes on the Magnetopause

    NASA Astrophysics Data System (ADS)

    Farinas Perez, G.; Cardoso, F. R.; Sibeck, D.; Gonzalez, W. D.; Facskó, G.; Coxon, J. C.; Pembroke, A. D.

    2018-02-01

    We use a global magnetohydrodynamics simulation to analyze transient magnetic reconnection processes at the magnetopause. The solar wind conditions have been kept constant, and an interplanetary magnetic field with large duskward BY and southward BZ components has been imposed. Five flux transfer events (FTEs) with clear bipolar magnetic field signatures have been observed. We observed a peculiar structure defined as interlinked flux tubes (IFTs) in the first and fourth FTE, which had very different generation mechanisms. The first FTE originates as an IFTs and remains with this configuration until its final moment. However, the fourth FTE develops as a classical flux rope but changes its 3-D magnetic configuration to that of IFTs. This work studies the mechanism for generating IFTs. The growth of the resistive tearing instability has been identified as the cause for the first IFTs formation. We believe that the instability has been triggered by the accumulation of interplanetary magnetic field at the subsolar point where the grid resolution is very high. The evidence shows that two new reconnection lines form northward and southward of the subsolar region. The IFTs have been generated with all the classical signatures of a single flux rope. The other IFTs detected in the fourth FTE developed as a result of magnetic reconnection inside its complex and twisted magnetic fields, which leads to a change in the magnetic configuration from a flux rope of twisted magnetic field lines to IFTs.

  12. Observations of a Small Interplanetary Magnetic Flux Rope Opening by Interchange Reconnection

    NASA Astrophysics Data System (ADS)

    Wang, J. M.; Feng, H. Q.; Zhao, G. Q.

    2018-01-01

    Interchange reconnection, specifically magnetic reconnection between open magnetic fields and closed magnetic flux ropes, plays a major role in the heliospheric magnetic flux budget. It is generally accepted that closed magnetic field lines of interplanetary magnetic flux ropes (IMFRs) can gradually open through reconnection between one of its legs and other open field lines until no closed field lines are left to contribute flux to the heliosphere. In this paper, we report an IMFR associated with a magnetic reconnection exhaust, whereby its closed field lines were opening by a magnetic reconnection event near 1 au. The reconnection exhaust and the following IMFR were observed on 2002 February 2 by both the Wind and ACE spacecraft. Observations on counterstreaming suprathermal electrons revealed that most magnetic field lines of the IMFR were closed, especially those after the front boundary of the IMFR, with both ends connected to the Sun. The unidirectional suprathermal electron strahls before the exhaust manifested the magnetic field lines observed before the exhaust was open. These observations provide direct evidence that closed field lines of IMFRs can be opened by interchange reconnection in interplanetary space. This is the first report of the closed field lines of IMFRs being opened by interchange reconnection in interplanetary space. This type of interplanetary interchange reconnection may pose important implications for balancing the heliospheric flux budget.

  13. Relaxation of flux ropes and magnetic reconnection in the Reconnection Scaling Experiment at LANL

    NASA Astrophysics Data System (ADS)

    Furno, I.; Intrator, T.; Hemsing, E.; Hsu, S.; Lapenta, G.; Abbate, S.

    2004-12-01

    Magnetic reconnection and plasma relaxation are studied in the Reconnection Scaling Experiment (RSX) with current carrying plasma columns (magnetic flux ropes). Using plasma guns, multiple flux ropes (Bθ ≤ 100 Gauss, L=90 cm, r≤3 cm) are generated in a three-dimensional (3D) cylindrical geometry and are observed to evolve dynamically during the injection of magnetic helicity. Detailed evolution of electron density, temperature, plasma potential and magnetic field structures is reconstructed experimentally and visible light emission is captured with a fast-gated, intensified CCD camera to provide insight into the global flux rope dynamics. Experiments with two flux ropes in collisional plasmas and in a strong axial guide field (Bz / Bθ > 10) suggest that magnetic reconnection plays an important role in the initial stages of flux rope evolution. During the early stages of the applied current drive (t≤ 20 τ Alfv´ {e}n), the flux ropes are observed to twist, partially coalesce and form a thin current sheet with a scale size comparable to that of the ion sound gyro-radius. Here, non-ideal terms in a generalized Ohm's Law appear to play a significant role in the 3D reconnection process as shown by the presence of a strong axial pressure gradient in the current sheet. In addition, a density perturbation with a structure characteristic of a kinetic Alfvén wave is observed to propagate axially in the current layer, anti-parallel to the induced sheet current. Later in the evolution, when a sufficient amount of helicity is injected into the system, a critical threshold for the kink instability is exceeded and the helical twisting of each individual flux rope can dominate the dynamics of the system. This may prevent the complete coalescence of the flux ropes.

  14. Relaxation of flux ropes and magnetic reconnection in the Reconnection Scaling Experiment at LANL

    NASA Astrophysics Data System (ADS)

    Furno, Ivo

    2004-11-01

    Magnetic reconnection and plasma relaxation are studied in the Reconnection Scaling Experiment (RSX) with current carrying plasma columns (magnetic flux ropes). Using plasma guns, multiple flux ropes (B_pol < 100 Gauss, L=90 cm, r < 3 cm) are generated in a three-dimensional (3D) cylindrical geometry and are observed to evolve dynamically during the injection of magnetic helicity. Detailed evolution of electron density, temperature, plasma potential and magnetic field structures is reconstructed experimentally and visible light emission is captured with a fast-gated, intensified CCD camera to provide insight into the global flux rope dynamics. Experiments with two flux ropes in collisional plasmas and in a strong axial guide field (Bz / B_pol > 10) suggest that magnetic reconnection plays an important role in the initial stages of flux rope evolution. During the early stages of the applied current drive (t < 20τ_Alfven), the flux ropes are observed to twist, partially coalesce and form a thin current sheet with a scale size comparable to that of the ion sound gyro-radius. Here, non-ideal terms in a generalized Ohm's Law appear to play a significant role in the 3D reconnection process as shown by the presence of a strong axial pressure gradient in the current sheet. In addition, a density perturbation with a structure characteristic of a kinetic Alfvén wave is observed to propagate axially in the current layer, anti-parallel to the induced sheet current. Later in the evolution, when a sufficient amount of helicity is injected into the system, a critical threshold for the kink instability is exceeded and the helical twisting of each individual flux rope can dominate the dynamics of the system. This may prevent the complete coalescence of the flux ropes.

  15. Laboratory Experiment of Magnetic Reconnection between Merging Flux Tubes with Strong Guide FIeld

    NASA Astrophysics Data System (ADS)

    Inomoto, M.; Kamio, S.; Kuwahata, A.; Ono, Y.

    2013-12-01

    Magnetic reconnection governs variety of energy release events in the universe, such as solar flares, geomagnetic substorms, and sawtooth crash in laboratory nuclear fusion experiments. Differently from the classical steady reconnection models, non-steady behavior of magnetic reconnection is often observed. In solar flares, intermittent enhancement of HXR emission is observed synchronously with multiple ejection of plammoids [1]. In laboratory reconnection experiments, the existence of the guide field, that is perpendicular to the reconnection field, makes significant changes on reconnection process. Generally the guide field will slow down the reconnection rate due to the increased magnetic pressure inside the current sheet. It also brings about asymmetric structure of the separatrices or effective particle acceleration in collisionless conditions. We have conducted laboratory experiments to study the behavior of the guide-field magnetic reconnection using plasma merging technique (push reconnection). Under substantial guide field even larger than the reconnection field, the reconnection generally exhibits non-steady feature which involves intermittent detachment of X-point and reconnection current center[2]. Transient enhancement of reconnection rate is observed simultaneously with the X-point motion[3]. We found two distinct phenomena associated with the guide-field non-steady reconnection. The one is the temporal and localized He II emission from X-point region, suggesting the production of energetic electrons which could excite the He ions in the vicinity of the X-point. The other is the excitation of large-amplitude electromagnetic waves which have similar properties with kinetic Alfven waves, whose amplitude show positive correlation with the enhancement of the reconnection electric field[4]. Electron beam instability caused by the energetic electrons accelerated to more than twice of the electron thermal velocity could be a potential driver of the

  16. Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection

    DOE Data Explorer

    Ebrahimi, Fatima [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000331095367); Raman, Roger [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000220273271)

    2016-01-01

    A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form a narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet–Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. These results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.

  17. Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection

    DOE Data Explorer

    Ebrahimi, F. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Raman, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-04-01

    A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form a narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet–Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. These results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.

  18. Stochastic Flux-Freezing in MHD Turbulence and Reconnection in the Heliosheath

    NASA Astrophysics Data System (ADS)

    Eyink, G. L.; Lalescu, C.; Vishniac, E.

    2012-12-01

    Fast reconnection of the sectored magnetic field in the heliosheath created by flapping of the heliospheric current sheet has been conjectured to accelerate anomalous cosmic rays and to create other signatures observed by the Voyager probes. The reconnecting flux structures could have sizes up to ˜100 AU, much larger than the ion cyclotron radius ˜10^3 km. Hence MHD should be valid at those scales. To account for rapid reconnection of such large-scale structures, we note that the high Reynolds numbers in the heliosheath for motions perpendicular to the magnetic field (Re ˜10^{14}) suggest transition to turbulence. The Lazarian-Vishnian theory of turbulent reconnection can account for the fast rates, but it implies a puzzling breakdown of magnetic flux-freezing in high-conductivity MHD plasmas. We address this paradox with a novel stochastic formulation of flux-freezing for resistive MHD and a numerical Lagrangian study with a spacetime database of MHD turbulence. We report the first observation of Richardson diffusion in MHD turbulence, which leads to "spontaneous stochasticity" of the Lagrangian trajectories and a violation of standard flux-freezing by many orders of magnitude. The work supports a prediction by Lazarian-Opher (2009) of extended thick reconnection zones within the heliosheath, perhaps up to an AU across, although the microscale reconnection events within these zones would have thickness of order the ion cyclotron radius and be described by kinetic Vlasov theory.

  19. Interchange Slip-Running Reconnection and Sweeping SEP-Beams

    NASA Technical Reports Server (NTRS)

    Masson, S.; Aulanier, G.; Pariat, E.; Klein, K.-L.

    2011-01-01

    We present a new model to explain how particles, accelerated at a reconnection site that is not magnetically connected to the Earth, could eventually propagate along the well-connected open flux tube. Our model is based on the results of a low-beta resistive magnetohydrodynamics simulation of a three-dimensional line-tied and initially current-free bipole, that is embedded in a non-uniform open potential field. The topology of this configuration is that of an asymmetric coronal null-point, with a closed fan surface and an open outer spine. When driven by slow photospheric shearing motions, field lines, initially fully anchored below the fan dome, reconnect at the null point, and jump to the open magnetic domain. This is the standard interchange mode as sketched and calculated in 2D. The key result in 3D is that, reconnected open field lines located in the vicinity of the outer spine, keep reconnecting continuously, across an open quasi-separatrix layer, as previously identified for non-open-null-point reconnection. The apparent slipping motion of these field lines leads to form an extended narrow magnetic flux tube at high altitude. Because of the slip-running reconnection, we conjecture that if energetic particles would be travelling through, or be accelerated inside, the diffusion region, they would be successively injected along continuously reconnecting field lines that are connected farther and farther from the spine. At the scale of the full Sun, owing to the super-radial expansion of field lines below 3 solar radius, such energetic particles could easily be injected in field lines slipping over significant distances, and could eventually reach the distant flux tube that is well-connected to the Earth.

  20. Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection

    DOE PAGES

    Ebrahimi, F.; Raman, R.

    2016-03-23

    A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form amore » narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet-Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. Furthermore, these results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.« less

  1. Kinetic-scale flux rope reconnection in periodic and line-tied geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauppe, J. P.; Daughton, W.

    Here, the collisionless reconnection of two parallel flux ropes driven by both the coalescence and kink instabilities is examined using fully kinetic simulations in periodic and line-tied geometries. The three-dimensional reconnection rate is computed from the maximum of the quasi-potential, Ξ≡-∫E·dℓ, where the integral of the electric field is taken along the magnetic field lines across the system. In periodic simulations in which the kink mode is nearly suppressed, reconnection is driven by the coalescence instability, and the peak rate is within 3%–8% of comparable 2D simulations. When a strong kink growth is observed, the peak reconnection rate drops bymore » 10%–25%, and there is a larger drop for lower guide field. With line-tied boundary conditions, the kink instability plays a key role in allowing the flux ropes to interact and partially reconnect. In this limit, the field lines with maximum quasi-potential are associated with a quasi-separatrix layer, and the electric field along these special field lines is supported predominantly by the divergence of the electron pressure tensor. Both of these features, along with the observed reconnection rate, are consistent with recent laboratory experiments on kinetic-scale flux ropes. In kinetic simulations, the non-gyrotropic pressure tensor terms contribute significantly more to the reconnecting electric field than do the gyrotropic terms, while contributions from the electron inertia are significant for field lines adjacent to the quasi-separatrix layer.« less

  2. Kinetic-scale flux rope reconnection in periodic and line-tied geometries

    DOE PAGES

    Sauppe, J. P.; Daughton, W.

    2017-12-28

    Here, the collisionless reconnection of two parallel flux ropes driven by both the coalescence and kink instabilities is examined using fully kinetic simulations in periodic and line-tied geometries. The three-dimensional reconnection rate is computed from the maximum of the quasi-potential, Ξ≡-∫E·dℓ, where the integral of the electric field is taken along the magnetic field lines across the system. In periodic simulations in which the kink mode is nearly suppressed, reconnection is driven by the coalescence instability, and the peak rate is within 3%–8% of comparable 2D simulations. When a strong kink growth is observed, the peak reconnection rate drops bymore » 10%–25%, and there is a larger drop for lower guide field. With line-tied boundary conditions, the kink instability plays a key role in allowing the flux ropes to interact and partially reconnect. In this limit, the field lines with maximum quasi-potential are associated with a quasi-separatrix layer, and the electric field along these special field lines is supported predominantly by the divergence of the electron pressure tensor. Both of these features, along with the observed reconnection rate, are consistent with recent laboratory experiments on kinetic-scale flux ropes. In kinetic simulations, the non-gyrotropic pressure tensor terms contribute significantly more to the reconnecting electric field than do the gyrotropic terms, while contributions from the electron inertia are significant for field lines adjacent to the quasi-separatrix layer.« less

  3. Pulsating Magnetic Reconnection Driven by Three-Dimensional Flux-Rope Interactions.

    PubMed

    Gekelman, W; De Haas, T; Daughton, W; Van Compernolle, B; Intrator, T; Vincena, S

    2016-06-10

    The dynamics of magnetic reconnection is investigated in a laboratory experiment consisting of two magnetic flux ropes, with currents slightly above the threshold for the kink instability. The evolution features periodic bursts of magnetic reconnection. To diagnose this complex evolution, volumetric three-dimensional data were acquired for both the magnetic and electric fields, allowing key field-line mapping quantities to be directly evaluated for the first time with experimental data. The ropes interact by rotating about each other and periodically bouncing at the kink frequency. During each reconnection event, the formation of a quasiseparatrix layer (QSL) is observed in the magnetic field between the flux ropes. Furthermore, a clear correlation is demonstrated between the quasiseparatrix layer and enhanced values of the quasipotential computed by integrating the parallel electric field along magnetic field lines. These results provide clear evidence that field lines passing through the quasiseparatrix layer are undergoing reconnection and give a direct measure of the nonlinear reconnection rate. The measurements suggest that the parallel electric field within the QSL is supported predominantly by electron pressure; however, resistivity may play a role.

  4. A generalized two-fluid picture of non-driven collisionless reconnection and its relation to whistler waves

    NASA Astrophysics Data System (ADS)

    Yoon, Young Dae

    2017-10-01

    A generalized, intuitive two-fluid picture of 2D non-driven collisionless magnetic reconnection is described using results from a full-3D numerical simulation. The relevant two-fluid equations simplify to the condition that the flux associated with canonical circulation Q =me ∇ ×ue +qe B is perfectly frozen into the electron fluid. Q is the curl of P =meue +qe A , which is the electron canonical momenrum. Since ∇ . Q = 0 , the Q flux tubes are incompressible and so have a fixed volume. Because they are perfectly frozen into the electron fluid, the Q flux tubes cannot reconnect. Following the behavior of these Q flux tubes provides an intuitive insight into 2D collisionless reconnection of B . In the reconnection geometry, a small perturbation to the central electron current sheet effectively brings a localized segment of a Q flux tube towards the X-point. This flux tube segment is convected downwards with the central electron current, effectively stretching the flux tube, decreasing its cross-section to maintain a fixed volume and so increasing the magnitude of Q . Also, because Q is the sum of the electron vorticity and the magnetic field, the two terms may change in such a way that one term becomes smaller while the other becomes larger while preserving constant Q flux. This allows magnetic reconnection, which is a conversion of magnetic field into particle velocity, to occur without any dissipation mechanism. The entire process has positive feedback with no restoring mechanism and therefore is an instability. The Q motion provides an interpretation for other phenomena as well, such as spiked central electron current filaments. The simulated reconnection rate was found to agree with a previous analytical calculation having the same geometry. Energy analysis shows that the magnetic energy is converted and propagated mainly in the form of the Poynting flux, while helicity analysis shows that the canonical helicity ∫ P . QdV as a whole must be considered when

  5. Stochastic Flux-Freezing in MHD Turbulence and Reconnection in the Heliosheath (Invited)

    NASA Astrophysics Data System (ADS)

    Eyink, G. L.; Lalescu, C. C.; Vishniac, E. T.

    2013-12-01

    Fast reconnection of the sectored magnetic field in the heliosheath created by flapping of the heliospheric current sheet has been conjectured to accelerate anomalous cosmic rays and to create other signatures observed by the Voyager probes. The reconnecting flux structures could have sizes up to ˜100 AU, much larger than the ion cyclotron radius ˜103 km. Hence MHD should be valid at those scales. To account for rapid reconnection of such large-scale structures, we note that the high Reynolds numbers in the heliosheath for motions perpendicular to the magnetic field (Re ˜1014) suggest transition to turbulence. The Lazarian-Vishnian theory of turbulent reconnection can account for the fast rates, but it implies a puzzling breakdown of magnetic flux-freezing in high-conductivity MHD plasmas. We address this paradox with a novel stochastic formulation of flux-freezing for resistive MHD and a numerical Lagrangian study with a spacetime database of MHD turbulence. We report the first observation of Richardson diffusion in MHD turbulence, which leads to 'spontaneous stochasticity' of the Lagrangian trajectories and a violation of standard flux- freezing by many orders of magnitude. The work supports a prediction by Lazarian-Opher (2009) of extended thick reconnection zones within the heliosheath, perhaps up to an AU across, although the microscale reconnection events within these zones would have thickness of order the ion cyclotron radius and be described by kinetic Vlasov theory.

  6. Density Enhancements and Voids Following Patchy Reconnection

    NASA Astrophysics Data System (ADS)

    Guidoni, S. E.; Longcope, D. W.

    2011-04-01

    We show, through a simple patchy reconnection model, that retracting reconnected flux tubes may present elongated regions relatively devoid of plasma, as well as long lasting, dense central hot regions. Reconnection is assumed to happen in a small patch across a Syrovatskiiˇ (non-uniform) current sheet (CS) with skewed magnetic fields. The background magnetic pressure has its maximum at the center of the CS plane and decreases toward its edges. The reconnection patch creates two V-shaped reconnected tubes that shorten as they retract in opposite directions, due to magnetic tension. One of them moves upward toward the top edge of the CS, and the other one moves downward toward the top of the underlying arcade. Rotational discontinuities (RDs) propagate along the legs of the tubes and generate parallel supersonic flows that collide at the center of the tube. There, gas-dynamic shocks that compress and heat the plasma are launched outwardly. The descending tube moves through the bottom part of the CS where it expands laterally in response to the decreasing background magnetic pressure. This effect may decrease plasma density by 30%-50% of background levels. This tube will arrive at the top of the arcade that will slow it to a stop. Here, the perpendicular dynamics is halted, but the parallel dynamics continues along its legs; the RDs are shut down, and the gas is rarified to even lower densities. The hot post-shock regions continue evolving, determining a long lasting hot region on top of the arcade. We provide an observational method based on total emission measure and mean temperature that indicates where in the CS the tube has been reconnected.

  7. Physics of magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Priest, E. R.; Lee, L. C.

    The present work encompasses papers on the structure, waves, and instabilities of magnetic flux ropes (MFRs), photospheric flux tubes (PFTs), the structure and heating of coronal loops, solar prominences, coronal mass ejections and magnetic clouds, flux ropes in planetary ionospheres, the magnetopause, magnetospheric field-aligned currents and flux tubes, and the magnetotail. Attention is given to the equilibrium of MFRs, resistive instability, magnetic reconnection and turbulence in current sheets, dynamical effects and energy transport in intense flux tubes, waves in solar PFTs, twisted flux ropes in the solar corona, an electrodynamical model of solar flares, filament cooling and condensation in a sheared magnetic field, the magnetopause, the generation of twisted MFRs during magnetic reconnection, ionospheric flux ropes above the South Pole, substorms and MFR structures, evidence for flux ropes in the earth magnetotail, and MFRs in 3D MHD simulations.

  8. Intermittent Reconnection Downflow Enhancements In A Simulated Flux Rope Eruption

    NASA Astrophysics Data System (ADS)

    Kliem, Bernhard; Linton, M. G.

    2009-05-01

    Supra-arcade downflows in X-ray and EUV flare emissions and post-eruption inflows in coronagraph data have been interpreted to be signatures of the downward reconnection outflow from a vertical (flare) current sheet. These downflows show an intermittent occurrence pattern, indicating that the reconnection is bursty in time or patchy in space, or both. We present MHD simulations of such reconnection in the realistic configuration of a vertical current sheet formed beneath and driven by an erupting flux rope. The reconnection is found to develop bursty outflows, both upward and downward, with the upward outflows generally showing the stronger variablity. While the reconnection starts early in the rise of the flux rope and its peak upward outflow velocity is closely correlated with the rope's rise velocity, the burstiness develops in a clear fashion only as the rope's height has increased from the initial position by about an order of magnitude, so that the current sheet has reached a sufficient vertical extent. The reconnection downflow shows a series of enhancements, each of them starting at a successively greater height from a newly developed magnetic X line. The plasma temporarily accelerated downward in such an enhancement soon turns into a gradual deceleration and then eventually comes to rest on top of previously accelerated plasma. These findings are consistent with the observations of intermittent downflows.

  9. Evidence for Spiral Magnetic Structures at the Magnetopause: A Case for Multiple Reconnections

    NASA Technical Reports Server (NTRS)

    Vaisberg, O. L.; Smirnov, V. N.; Avanov, L. A.; Moore, T. E.

    2003-01-01

    We analyze plasma structures within the low latitude boundary layer (LLBL) observed by the lnterball Tail spacecraft under southward interplanetary magnetic field. Ion velocity distributions observed in the LLBL under these conditions fall into three categories: (a) D-shaped distributions, (b) ion velocity distributions consisting of two counterstreaming magnetosheath-type, and (c) distributions with three components where one of them has nearly zero velocity parallel to magnetic field (VlI), while the other two are counter-streaming components. D-shaped ion velocity distributions (a) correspond to magnetosheath plasma injections into reconnected flux tubes, as influenced by spacecraft location relative to the reconnection site. Simultaneous counter-streaming injections (b) suggest multiple reconnections. Three-component ion velocity distributions (c) and theii evolution with decreasing number density in the LLBL are consistent v behavior expected on long spiral flux tube islands at the magnetopaus as has been proposed and found to occur in magnetopause simulatior We interpret these distributions as a natural consequence of the formation of spiral magnetic flux tubes consisting of a mixture of alternating segments originating from the magnetosheath and magnetospheric plasmas. We suggest that multiple reconnections pla! an important role in the formation of the LLBL.

  10. Global electrostatic potential structures of merging flux tubes in TS-U torus plasma merging experiment

    NASA Astrophysics Data System (ADS)

    Sawada, Asuka; Hatano, Hironori; Akimitsu, Moe; Cao, Qinghong; Yamasaki, Kotaro; Tanabe, Hiroshi; Ono, Yasushi; TS-Group Team

    2017-10-01

    We have been investigating 2D potential profile of global merging tokamaks to solve high-power heating of magnetic reconnection in TS-3 and TS-3U (ST, FRC:R =0.2m, 1985-, 2017-) and TS-4 (ST, FRC:R =0.5m, 2000-), UTST (ST:R =0.45m, 2008-) and MAST (ST:R = 0.9m, 2000-) devices. These experiments made clear that the electrostatic potential well is formed not only in the downstream area of magnetic reconnection but also in the whole common (reconnected) flux area of two merging flux tubes: tokamak plasmas. This fact suggests that the ion acceleration/heating occurs in much wider region than the reconnection downstream. We studied how the potential structure depends on key reconnection parameters:guide toroidal field and plasma collisionality. We found the polarity of the guide toroidal field determines those of potential hills and wells, indicating their formation is affected by the Hall effect. The peak value of the electrostatic potential well decreased with gas pressure increasing, suggesting plasma collisionality suppresses the Hall effect. The relationship between the electrostatic potential structure and anomalous ion heating is being studied as a possible cause for the high-power heating of fast magnetic reconnection. This work was supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.

  11. 3D Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Parnell, Clare E.; Maclean, Rhona C.; Haynes, Andrew L.; Galsgaard, Klaus

    2011-08-01

    Magnetic reconnection is an important process that is prevalent in a wide range of astrophysical bodies. It is the mechanism that permits magnetic fields to relax to a lower energy state through the global restructuring of the magnetic field and is thus associated with a range of dynamic phenomena such as solar flares and CMEs. The characteristics of three-dimensional reconnection are reviewed revealing how much more diverse it is than reconnection in two dimensions. For instance, three-dimensional reconnection can occur both in the vicinity of null points, as well as in the absence of them. It occurs continuously and continually throughout a diffusion volume, as opposed to at a single point, as it does in two dimensions. This means that in three-dimensions field lines do not reconnect in pairs of lines making the visualisation and interpretation of three-dimensional reconnection difficult. By considering particular numerical 3D magnetohydrodynamic models of reconnection, we consider how magnetic reconnection can lead to complex magnetic topologies and current sheet formation. Indeed, it has been found that even simple interactions, such as the emergence of a flux tube, can naturally give rise to `turbulent-like' reconnection regions.

  12. Inertial-Range Reconnection in Magnetohydrodynamic Turbulence and in the Solar Wind.

    PubMed

    Lalescu, Cristian C; Shi, Yi-Kang; Eyink, Gregory L; Drivas, Theodore D; Vishniac, Ethan T; Lazarian, Alexander

    2015-07-10

    In situ spacecraft data on the solar wind show events identified as magnetic reconnection with wide outflows and extended "X lines," 10(3)-10(4) times ion scales. To understand the role of turbulence at these scales, we make a case study of an inertial-range reconnection event in a magnetohydrodynamic simulation. We observe stochastic wandering of field lines in space, breakdown of standard magnetic flux freezing due to Richardson dispersion, and a broadened reconnection zone containing many current sheets. The coarse-grain magnetic geometry is like large-scale reconnection in the solar wind, however, with a hyperbolic flux tube or apparent X line extending over integral length scales.

  13. Dynamics of Single Flux Rope in the Reconnection Scaling Experiment

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Sears, J.; Intrator, T.; Weber, T.; Swan, H.; Dunn, J. P.; Gao, K.; Chapdelaine, L.

    2013-12-01

    A magnetic flux tube threaded by current is a flux rope with helically twisted field lines. In the Reconnection Scaling Experiment (RSX) we use a plasma gun to generate a single flux rope with a choice of axial boundary conditions. If this flux rope is driven hard enough, i.e., when J●B /B2 is larger than the kink instability threshold, we measure a helically distorted kinked structure. Rather than exploding in an Alfvén time, this kink appears to saturate to a steady amplitude, helical, gyrating flux rope, which persists as long as the plasma gun sources the current. To understand it, we have experimentally measured three-dimensional (3D) profiles of various quantities of this flux rope. These quantities include magnetic field B, plasma density n and potential φ, ion flow velocity vi, so that current density J, electron flow velocity ve and electron pressure Pe can also be derived. Consequently we can analyze the single flux rope dynamics systematically in 3D. Besides gyrating (writhe), we also find the flux rope has a spin (twist) center, around which the J×B - ▽Pe ≠ 0 suggesting that there should be other forces for the radial balance. We also find that there is a reverse current moving around with the flux rope at some locations, i.e. there are local induced currents that are not at all apparent from measurements outside the 3D volume. Work supported by LANL-DOE, DOE Fusion Energy Sciences DE-AC52-06NA25396, NASA Geospace NNHIOA044I Basic, CMSO, SULI, NUF.

  14. The Impact of Geometrical Constraints on Collisionless Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Aunai, Nico; Kuznetsova, Masha; Frolov, Rebekah; Black, Carrrie

    2012-01-01

    One of the most often cited features associated with collisionless magnetic reconnection is a Hall-type magnetic field, which leads, in antiparallel geometries, to a quadrupolar magnetic field signature. The combination of this out of plane magnetic field with the reconnection in-plane magnetic field leads to angling of magnetic flux tubes out of the plane defined by the incoming magnetic flux. Because it is propagated by Whistler waves, the quadrupolar field can extend over large distances in relatively short amounts of time - in fact, it will extend to the boundary of any modeling domain. In reality, however, the surrounding plasma and magnetic field geometry, defined, for example, by the overall solar wind flow, will in practice limit the extend over which a flux tube can be angled out of the main plain. This poses the question to what extent geometric constraints limit or control the reconnection process and this is the question investigated in this presentation. The investigation will involve a comparison of calculations, where open boundary conditions are set up to mimic either free or constrained geometries. We will compare momentum transport, the geometry of the reconnection regions, and the acceleration if ions and electrons to provide the current sheet in the outflow jet.

  15. Dipolarization Fronts from Reconnection Onset

    NASA Astrophysics Data System (ADS)

    Sitnov, M. I.; Swisdak, M. M.; Merkin, V. G.; Buzulukova, N.; Moore, T. E.

    2012-12-01

    Dipolarization fronts observed in the magnetotail are often viewed as signatures of bursty magnetic reconnection. However, until recently spontaneous reconnection was considered to be fully prohibited in the magnetotail geometry because of the linear stability of the ion tearing mode. Recent theoretical studies showed that spontaneous reconnection could be possible in the magnetotail geometries with the accumulation of magnetic flux at the tailward end of the thin current sheet, a distinctive feature of the magnetotail prior to substorm onset. That result was confirmed by open-boundary full-particle simulations of 2D current sheet equilibria, where two magnetotails were separated by an equilibrium X-line and weak external electric field was imposed to nudge the system toward the instability threshold. To investigate the roles of the equilibrium X-line, driving electric field and other parameters in the reconnection onset process we performed a set of 2D PIC runs with different initial settings. The investigated parameter space includes the critical current sheet thickness, flux tube volume per unit magnetic flux and the north-south component of the magnetic field. Such an investigation is critically important for the implementation of kinetic reconnection onset criteria into global MHD codes. The results are compared with Geotail visualization of the magnetotail during substorms, as well as Cluster and THEMIS observations of dipolarization fronts.

  16. An intuitive two-fluid picture of spontaneous 2D collisionless magnetic reconnection and whistler wave generation

    NASA Astrophysics Data System (ADS)

    Yoon, Young Dae; Bellan, Paul M.

    2018-05-01

    An intuitive and physical two-fluid picture of spontaneous 2D collisionless magnetic reconnection and whistler wave generation is presented in the framework of 3D electron-magnetohydrodynamics. In this regime, canonical circulation (Q =me∇×u +qeB ) flux tubes can be defined in analogy to magnetic flux tubes in ideal magnetohydrodynamics. Following the 3D behavior of these Q flux tubes provides a new perspective on collisionless reconnection—a perspective that has been hard to perceive via examinations of 2D projections. This shows that even in a 2D geometry with an ignorable coordinate, a 3D examination is essential for a full comprehension of the process. Intuitive answers are given to three main questions in collisionless reconnection: why is reconnection spontaneous, why do particles accelerate extremely fast, and why are whistler waves generated? Possible extensions to other regimes are discussed.

  17. Magnetotail Reconnection and Flux Circulation: Jupiter and Saturn Compared

    NASA Technical Reports Server (NTRS)

    Jackman, C. M.; Vogt, M. F.; Slavin, J. A.; Cowley, S. W. H.; Boardsen, S. A.

    2011-01-01

    The Jovian magnetosphere has been visited by eight spacecraft, and the magnetometer data have been used to identify dozens of plasmoids and 250 field dipolarizations associated with magnetic reconnection in the tail [e.g. Vogt et al., 2010]. Since the arrival of the Cassini spacecraft at Saturn in 2004, the magnetometer instrument has also been used to identify reconnection signatures. The deepest magnetotail orbits were in 2006, and during this time 34 signatures of plasmoids were identified. In this study we compare the statistical properties of plasmoids at Jupiter and Saturn such as duration, size, location, and recurrence period. Such parameters can be influenced by many factors, including the different Dungey cycle timescales and cross-magnetospheric potential drops at the two planets. We present superposed epoch analyses of plasmoids at the two planets to determine their average properties and to infer their role in the reconfiguration of the nightside of the magnetosphere. We examine the contributions of plasmoids to the magnetic flux transfer cycle at both planets. At Jupiter, there is evidence of an extended interval after reconnection where the field remains northward (analogous to the terrestrial post-plasmoid plasma sheet). At Saturn we see a similar feature, and calculate the amount of flux closed on average in reconnection events, leading us to an estimation of the recurrence rate of plasmoid release.

  18. MMS observations of guide field reconnection at the interface between colliding reconnection jets inside flux rope-like structures at the magnetopause

    NASA Astrophysics Data System (ADS)

    Oieroset, M.; Phan, T.; Haggerty, C. C.; Shay, M.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R.; Mozer, F.; Oka, M.; Torbert, R. B.; Burch, J. L.; Wang, S.; Chen, L. J.; Swisdak, M.; Pollock, C. J.; Dorelli, J.; Fuselier, S. A.; Lavraud, B.; Kacem, I.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W. R.; Strangeway, R. J.; Schwartz, S. J.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Malakit, K.

    2017-12-01

    The formation and evolution of magnetic flux ropes is of critical importance for a number of collisionless plasma phenomena. At the dayside magnetopause flux rope-like structures can form between two X-lines. The two X-lines produce converging plasma jets. At the interface between the colliding jets a compressed current sheet can form, which in turn can undergo reconnection. We present MMS observations of the exhaust and diffusion region of such reconnection.

  19. The physical foundation of the reconnection electric field

    NASA Astrophysics Data System (ADS)

    Hesse, M.; Liu, Y.-H.; Chen, L.-J.; Bessho, N.; Wang, S.; Burch, J. L.; Moretto, T.; Norgren, C.; Genestreti, K. J.; Phan, T. D.; Tenfjord, P.

    2018-03-01

    Magnetic reconnection is a key charged particle transport and energy conversion process in environments ranging from astrophysical systems to laboratory plasmas [Yamada et al., Rev. Mod. Phys. 82, 603-664 (2010)]. Magnetic reconnection facilitates plasma transport by establishing new connections of magnetic flux tubes, and it converts, often explosively, energy stored in the magnetic field to kinetic energy of charged particles [J. L. Burch and J. F. Drake, Am. Sci. 97, 392-299 (2009)]. The intensity of the magnetic reconnection process is measured by the reconnection electric field, which regulates the rate of flux tube connectivity changes. The change of magnetic connectivity occurs in the current layer of the diffusion zone, where the plasma transport is decoupled from the transport of magnetic flux. Here we report on computer simulations and analytic theory to provide a self-consistent understanding of the role of the reconnection electric field, which extends substantially beyond the simple change of magnetic connections. Rather, we find that the reconnection electric field is essential to maintain the current density in the diffusion region, which would otherwise be dissipated by a set of processes. Natural candidates for current dissipation are the average convection of current carriers away from the reconnection region by the outflow of accelerated particles, or the average rotation of the current density by the magnetic field reversal in the vicinity. Instead, we show here that the current dissipation is the result of thermal effects, underlying the statistical interaction of current-carrying particles with the adjacent magnetic field. We find that this interaction serves to redirect the directed acceleration of the reconnection electric field to thermal motion. This thermalization manifests itself in form of quasi-viscous terms in the thermal energy balance of the current layer. This collisionless viscosity, found in the pressure evolution equation

  20. Magnetic Reconnections in Mast

    NASA Astrophysics Data System (ADS)

    Turri, G.; Buttery, R. J.; Hastie, R. J.; Gimblett, C. G.; Cowley, S. C.; Lehane, I.

    2004-11-01

    In MAST the appearance of a spontaneous snake in the plasma core has many of the properties of a full reconnection. Analysis of SXR and TS data indicates a strongly radiating core with high impurity levels forming before the onset of the snake. Following the appearance of an x-point (island on the q=1 surface) the former core is hypothesised to move off axis and shrink, appearing as a radiative region with flux-tube-like rotating helical structure (the snake). A code has been developed to compare this with a slow full Kadomtsev type reconnection process including effects of impurities, density and temperature perturbations, current profile evolution and transport. The code reproduces many of the trends and effects seen in the data, confirming the event as consistent with full reconnection. The time-scale of the event is also consistent with estimates of hybrid growth times for such a reconnection process. Further analysis will be presented exploring the physics of this process in more detail.

  1. Application of Stereo Vision to the Reconnection Scaling Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klarenbeek, Johnny; Sears, Jason A.; Gao, Kevin W.

    The measurement and simulation of the three-dimensional structure of magnetic reconnection in astrophysical and lab plasmas is a challenging problem. At Los Alamos National Laboratory we use the Reconnection Scaling Experiment (RSX) to model 3D magnetohydrodynamic (MHD) relaxation of plasma filled tubes. These magnetic flux tubes are called flux ropes. In RSX, the 3D structure of the flux ropes is explored with insertable probes. Stereo triangulation can be used to compute the 3D position of a probe from point correspondences in images from two calibrated cameras. While common applications of stereo triangulation include 3D scene reconstruction and robotics navigation, wemore » will investigate the novel application of stereo triangulation in plasma physics to aid reconstruction of 3D data for RSX plasmas. Several challenges will be explored and addressed, such as minimizing 3D reconstruction errors in stereo camera systems and dealing with point correspondence problems.« less

  2. A generalized two-fluid picture of non-driven collisionless reconnection and its relation to whistler waves

    DOE PAGES

    None, None

    2017-05-05

    A generalized, intuitive two-fluid picture of 2D non-driven collisionless magnetic reconnection is described using results from a full-3D numerical simulation. The relevant two-fluid equations simplify to the condition that the flux associated with canonical circulation Q=m e∇×u e+q eB is perfectly frozen into the electron fluid. In the reconnection geometry, flux tubes defined by Q are convected with the central electron current, effectively stretching the tubes and increasing the magnitude of Q exponentially. This, coupled with the fact that Q is a sum of two quantities, explains how the magnetic fields in the reconnection region reconnect and give rise tomore » strong electron acceleration. The Q motion provides an interpretation for other phenomena as well, such as spiked central electron current filaments. The simulated reconnection rate was found to agree with a previous analytical calculation having the same geometry. Energy analysis shows that the magnetic energy is converted and propagated mainly in the form of the Poynting flux, and helicity analysis shows that the canonical helicity ∫P·Q dV as a whole must be considered when analyzing reconnection. A mechanism for whistler wave generation and propagation is also described, with comparisons to recent spacecraft observations.« less

  3. The Return of Magnetic Flux to the Inner Saturnian Magnetosphere

    NASA Astrophysics Data System (ADS)

    Lai, Hairong; Russell, Christopher T.; Jia, Yingdong; Masters, Adam; Dougherty, Michele K.

    2017-04-01

    The addition of plasma to the rotating inner Saturnian magnetosphere drives the circulation of the magnetic flux. The magnetic flux is loaded with cold plasma originating from Enceladus and its plasma torus. It then convects outward to the tail region, is emptied of plasma during reconnection events, and returns buoyantly to the inner magnetosphere. Returning flux tubes carry hot and tenuous plasma that serves as a marker of this type of flux tube. The plasma inside the tubes drifts at different rates depending on energy in the curved and inhomogeneous magnetosphere when the tubes convect inward. This energy dispersion can be used to track the flux tube. With data from MAG and CAPS, we model the energy dispersion of the electrons to determine the age and the point of return of the 'empty' flux tubes. The results show that even the 'fresh' flux tubes are several hours old when seen and they start to return at 19 Saturn radii, near Titan's orbit. This supports the hypothesis that returning flux tubes generated by reconnection in the far-tail region are injected directly into the inner magnetosphere.

  4. Siphon flows in isolated magnetic flux tubes. III - The equilibrium path of the flux-tube arch

    NASA Technical Reports Server (NTRS)

    Thomas, John H.; Montesinos, Benjamin

    1990-01-01

    It is shown how to calculate the equilibrium path of a thin magnetic flux tube in a stratified, nonmagnetic atmosphere when the flux tube contains a steady siphon flow. The equilbrium path of a static thin flux tube in an infinite stratified atmosphere generally takes the form of a symmetric arch of finite width, with the flux tube becoming vertical at either end of the arch. A siphon flow within the flux tube increases the curvature of the arched equilibrium path in order that the net magnetic tension force can balance the inertial force of the flow, which tries to straighten the flux tube. Thus, a siphon flow reduces the width of the arched equilibrium path, with faster flows producing narrower arches. The effect of the siphon flow on the equilibrium path is generally greater for flux tubes of weaker magnetic field strength. Examples of the equilibrium are shown for both isothemal and adiabatic siphon flows in thin flux tubes in an isothermal external atmosphere.

  5. 3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, T., E-mail: shimizu@solar.isas.jaxa.jp; Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033

    2015-10-15

    The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at themore » photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconnection can occur only between anti-parallel components of the magnetic flux tubes and may be referred to as component reconnection. The latter configuration type may be more important for the larger class of small-scale reconnection events. The two types of magnetic configurations can be compared to counter-helicity and co-helicity configurations, respectively, in laboratory plasma collision experiments.« less

  6. Comparison of MMS data and virtual simulation data relative to secondary reconnection within a flux rope in the magnetopause

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Oieroset, Marit; Phan, Tai; Eastwood, Jonathan; Goldman, Martin; Newman, David L.; Russel, Christopher; Strangeway, Robert; Paterson, William; Giles, Barbara; Lavraud, Benoit; Khotyaintsev, Yuri; Ergun, Robert; Torbert, Roy; Burch, James

    2017-04-01

    Recently Øieroset et al. [2016] reported evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. Here, we set up a simulation with parameters similar to those observed: in particular we used the same guide field ratio to the in plane field. The initial state is a Harris sheet with mass ratio 256 and temperature ratio 10. The domain is 3D with box size 20x15x10 di. Reconnection is initiated at the two edges of the box by seeding an initial localized x-line. Reconnection starts at the two x-lines by design due to the strong perturbation. The subsequent evolution shows reconnection taking root in the initially seeded x-lines. Later an instability develops within the flux rope, likely similar to those reported in Lapenta et al. [2015], and secondary reconnection starts in a ring near the center of the flux rope. The analogy with the kink mode of laboratory and solar wind flux ropes[Lapenta et al., 2006] is striking and future work will be needed to investigate if the instability satisfies the Kruskal-Shafranov limit [Shafranov, 1957, Kruskal and Tuck, 1958]. At late times, the primary reconnection site becomes inactive and the secondary reconnection site becomes dominant. In this later stage, agyrotropy and J · E' are stronger in the center. But more strikingly, the ions are outflowing predominantly away from the secondary reconnection site in the central region of the flux rope and the ring near the center where reconnection signatures (agyrotropy and J · E') are strongest. The electron pressure presents several intense loci, identifying where strong electron energization by secondary reconnection takes place. The results of the simulation are studied producing synthetic virtual satellite diagnostics obtained from the simulation results but with a format similar to in situ spacecraft observations. With these data formats the results can be more readily be compared

  7. Reconnection at the earth's magnetopause - Magnetic field observations and flux transfer events

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1984-01-01

    Theoretical models of plasma acceleration by magnetic-field-line reconnection at the earth magnetopause and the high-resolution three-dimensional plasma measurements obtained with the ISEE satellites are compared and illustrated with diagrams, graphs, drawings, and histograms. The history of reconnection theory and the results of early satellite observations are summarized; the thickness of the magnetopause current layer is discussed; problems in analyzing the polarization of current-layer rotation are considered; and the flux-transfer events responsible for periods of patchy reconnection are characterized in detail. The need for further observations and refinements of the theory to explain the initiation of reconnection and identify the mechanism determining whether it is patchy or steady-state is indicated.

  8. MMS observations of magnetic reconnection signatures of dissipating ion inertial-scale flux ropes associated with dipolarization events

    NASA Astrophysics Data System (ADS)

    Poh, G.; Slavin, J. A.; Lu, S.; Le, G.; Cassak, P.; Eastwood, J. P.; Ozturk, D. S.; Zou, S.; Nakamura, R.; Baumjohann, W.; Russell, C. T.; Gershman, D. J.; Giles, B. L.; Pollock, C.; Moore, T. E.; Torbert, R. B.; Burch, J. L.

    2017-12-01

    The formation of flux ropes is thought to be an integral part of the process that may have important consequences for the onset and subsequent rate of reconnection in the tail. Earthward flows, i.e. bursty bulk flows (BBFs), generate dipolarization fronts (DFs) as they interact with the closed magnetic flux in their path. Global hybrid simulations and THEMIS observations have shown that earthward-moving flux ropes can undergo magnetic reconnection with the near-Earth dipole field in the downtail region between the Near Earth Neutral Line and the near-Earth dipole field to create DFs-like signatures. In this study, we analyzed sequential "chains" of earthward-moving, ion-scale flux ropes embedded within DFs observed during MMS first tail season. MMS high-resolution plasma measurements indicate that these earthward flux ropes embedded in DFs have a mean bulk flow velocity and diameter of 250 km/s and 1000 km ( 2‒3 ion inertial length λi), respectively. Magnetic reconnection signatures preceding the flux rope/DF encounter were also observed. As the southward-pointing magnetic field in the leading edge of the flux rope reconnects with the northward-pointing geomagnetic field, the characteristic quadrupolar Hall magnetic field in the ion diffusion region and electron outflow jets in the north-south direction are observed. Our results strongly suggest that the earthward moving flux ropes brake and gradually dissipate due to magnetic reconnection with the near Earth magnetic field. We have also examined the occurrence rate of these dissipating flux ropes/DF events as a function of downtail distances.

  9. Magnetotail reconnection, MHD theory and simulations

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, M.; Schindler, K.

    1989-01-01

    Magnetotail reconnection leading to plasmoid formation and ejection is discussed, emphasizing three-dimensional structures and deviations from earlier imposed symmetries, based on MHD simulations and topological considerations. In general, the separation of the plasmoid takes a finite amount of time. During this stage the plasmoid is characterized by filamentary structures of interwoven flux tubes with different topological connections.

  10. Flux rope, hyperbolic flux tube, and late extreme ultraviolet phases in a non-eruptive circular-ribbon flare

    NASA Astrophysics Data System (ADS)

    Masson, Sophie; Pariat, Étienne; Valori, Gherardo; Deng, Na; Liu, Chang; Wang, Haimin; Reid, Hamish

    2017-08-01

    Context. The dynamics of ultraviolet (UV) emissions during solar flares provides constraints on the physical mechanisms involved in the trigger and the evolution of flares. In particular it provides some information on the location of the reconnection sites and the associated magnetic fluxes. In this respect, confined flares are far less understood than eruptive flares generating coronal mass ejections. Aims: We present a detailed study of a confined circular flare dynamics associated with three UV late phases in order to understand more precisely which topological elements are present and how they constrain the dynamics of the flare. Methods: We perform a non-linear force-free field extrapolation of the confined flare observed with the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) instruments on board Solar Dynamics Observatory (SDO). From the 3D magnetic field we compute the squashing factor and we analyse its distribution. Conjointly, we analyse the AIA extreme ultraviolet (EUV) light curves and images in order to identify the post-flare loops, and their temporal and thermal evolution. By combining the two analyses we are able to propose a detailed scenario that explains the dynamics of the flare. Results: Our topological analysis shows that in addition to a null-point topology with the fan separatrix, the spine lines and its surrounding quasi-separatix layer (QSL) halo (typical for a circular flare), a flux rope and its hyperbolic flux tube (HFT) are enclosed below the null. By comparing the magnetic field topology and the EUV post-flare loops we obtain an almost perfect match between the footpoints of the separatrices and the EUV 1600 Å ribbons and between the HFT field line footpoints and bright spots observed inside the circular ribbons. We show, for the first time in a confined flare, that magnetic reconnection occurred initially at the HFT below the flux rope. Reconnection at the null point between the flux rope and the

  11. Momentum transport and nonlocality in heat-flux-driven magnetic reconnection in high-energy-density plasmas.

    PubMed

    Liu, Chang; Fox, William; Bhattacharjee, Amitava; Thomas, Alexander G R; Joglekar, Archis S

    2017-10-01

    Recent theory has demonstrated a novel physics regime for magnetic reconnection in high-energy-density plasmas where the magnetic field is advected by heat flux via the Nernst effect. Here we elucidate the physics of the electron dissipation layer in this regime. Through fully kinetic simulation and a generalized Ohm's law derived from first principles, we show that momentum transport due to a nonlocal effect, the heat-flux-viscosity, provides the dissipation mechanism for magnetic reconnection. Scaling analysis, and simulations show that the reconnection process comprises a magnetic field compression stage and quasisteady reconnection stage, and the characteristic width of the current sheet in this regime is several electron mean-free paths. These results show the important interplay between nonlocal transport effects and generation of anisotropic components to the distribution function.

  12. Momentum transport and non-local transport in heat-flux-driven magnetic reconnection in HEDP

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Fox, Will; Bhattacharjee, Amitava

    2016-10-01

    Strong magnetic fields are readily generated in high-energy-density plasmas and can affect the heat confinement properties of the plasma. Magnetic reconnection can in turn be important as an inverse process, which destroys or reconfigures the magnetic field. Recent theory has demonstrated a novel physics regime for reconnection in high-energy-density plasmas where the magnetic field is advected into the reconnection layer by plasma heat flux via the Nernst effect. In this work we elucidate the physics of the electron dissipation layer in this heat-flux-driven regime. Through fully kinetic simulation and a new generalized Ohm's law, we show that momentum transport due to the heat-flux-viscosity effect provides the dissipation mechanism to allow magnetic field line reconnection. Scaling analysis and simulations show that the characteristic width of the current sheet in this regime is several electron mean-free-paths. These results additionally show a coupling between non-local transport and momentum transport, which in turn affects the dynamics of the magnetic field. This work was supported by the U.S. Department of Energy under Contract No. DE-SC0008655.

  13. Siphon flows in isolated magnetic flux tubes. 3: The equilibrium path of the flux tube arch

    NASA Technical Reports Server (NTRS)

    Thomas, John H.; Montesinis, Benjamin

    1989-01-01

    The arched equilibrium path of a thin magnetic flux tube in a plane-stratified, nonmagnetic atmosphere is calculated for cases in which the flux tube contains a steady siphon flow. The large scale mechanical equilibrium of the flux tube involves a balance among the magnetic buoyancy force, the net magnetic tension force due to the curvature of the flux tube axis, and the inertial (centrifugal) force due to the siphon flow along curved streamlines. The ends of the flux tube are assumed to be pinned down by some other external force. Both isothermal and adiabatic siphon flows are considered for flux tubes in an isothermal external atmosphere. For the isothermal case, in the absence of a siphon flow the equilibrium path reduces to the static arch calculated by Parker (1975, 1979). The presence of a siphon flow causes the flux tube arch to bend more sharply, so that magnetic tension can overcome the additional straightening effect of the inertial force, and reduces the maximum width of the arch. The curvature of the arch increases as the siphon flow speed increases. For a critical siphon flow, with supercritical flow in the downstream leg, the arch is asymmetric, with greater curvature in the downstream leg of the arch. Adiabatic flow have qualitatively similar effects, except that adiabatic cooling reduces the buoyancy of the flux tube and thus leads to significantly wider arches. In some cases the cooling is strong enough to create negative buoyancy along sections of the flux tube, requiring upward curvature of the flux tube path along these sections and sometimes leading to unusual equilibrium paths of periodic, sinusoidal form.

  14. Evidence for Secondary Flux Rope Generated by the Electron Kelvin-Helmholtz Instability in a Magnetic Reconnection Diffusion Region

    NASA Astrophysics Data System (ADS)

    Zhong, Z. H.; Tang, R. X.; Zhou, M.; Deng, X. H.; Pang, Y.; Paterson, W. R.; Giles, B. L.; Burch, J. L.; Tobert, R. B.; Ergun, R. E.; Khotyaintsev, Y. V.; Lindquist, P.-A.

    2018-02-01

    Secondary flux ropes are suggested to play important roles in energy dissipation and particle acceleration during magnetic reconnection. However, their generation mechanism is not fully understood. In this Letter, we present the first direct evidence that a secondary flux rope was generated due to the evolution of an electron vortex, which was driven by the electron Kelvin-Helmholtz instability in an ion diffusion region as observed by the Magnetospheric Multiscale mission. The subion scale (less than the ion inertial length) flux rope was embedded within the electron vortex, which contained a secondary electron diffusion region at the trailing edge of the flux rope. We propose that intense electron shear flow produced by reconnection generated the electron Kelvin-Helmholtz vortex, which induced a secondary reconnection in the exhaust of the primary X line and then led to the formation of the flux rope. This result strongly suggests that secondary electron Kelvin-Helmholtz instability is important for reconnection dynamics.

  15. Evidence for Secondary Flux Rope Generated by the Electron Kelvin-Helmholtz Instability in a Magnetic Reconnection Diffusion Region.

    PubMed

    Zhong, Z H; Tang, R X; Zhou, M; Deng, X H; Pang, Y; Paterson, W R; Giles, B L; Burch, J L; Tobert, R B; Ergun, R E; Khotyaintsev, Y V; Lindquist, P-A

    2018-02-16

    Secondary flux ropes are suggested to play important roles in energy dissipation and particle acceleration during magnetic reconnection. However, their generation mechanism is not fully understood. In this Letter, we present the first direct evidence that a secondary flux rope was generated due to the evolution of an electron vortex, which was driven by the electron Kelvin-Helmholtz instability in an ion diffusion region as observed by the Magnetospheric Multiscale mission. The subion scale (less than the ion inertial length) flux rope was embedded within the electron vortex, which contained a secondary electron diffusion region at the trailing edge of the flux rope. We propose that intense electron shear flow produced by reconnection generated the electron Kelvin-Helmholtz vortex, which induced a secondary reconnection in the exhaust of the primary X line and then led to the formation of the flux rope. This result strongly suggests that secondary electron Kelvin-Helmholtz instability is important for reconnection dynamics.

  16. Magnetospheric Multiscale observations of Poynting flux associated with magnetic reconnection in the Earth's magnetotail from 10 to 25 RE

    NASA Astrophysics Data System (ADS)

    Stawarz, J. E.; Eastwood, J. P.; Ergun, R.; Shay, M. A.; Phan, T.; Nakamura, R.; Varsani, A.; Burch, J. L.; Fuselier, S. A.; Gershman, D. J.; Giles, B. L.; Goodrich, K.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.

    2017-12-01

    Magnetic reconnection plays an important role in energy conversion and transport in space plasmas. In the Earth's magnetotail, fast Earthward, as well as tailward, flows known as bursty bulk flows (BBFs) are thought to be jets caused by reconnection. Alfvénic Poynting flux associated with these reconnection events is thought to transport energy that results in auroral activity. It has been proposed that the reconnection event itself can generate a kinetic Alfvén wave signature along the separatrix. Furthermore, the process of BBF braking as the reconnection jet impinges on the dipolar near-Earth magnetic field can excite turbulence and wave activity, which can propagate along the field to the auroral region. Recently, Poynting flux at 10 RE in the tail near the plasma sheet boundary has been examined using observations from the Magnetospheric Multiscale (MMS) mission. The 3D structure of the fluctuations was investigated and it was demonstrated that they are consistent with kinetic Alfvén waves with non-plane-wave structure. However, at this location in the tail, the observed Poynting flux may be linked to either the reconnection separatrix or waves excited by BBF braking. Some evidence for two classes of Poynting flux events that may be consistent with these two source mechanisms has been found at 10 RE distances. In this presentation, these results will be discussed and compared with new MMS observations nearer to the reconnection site at 25 RE. At this location, BBF braking is likely not contributing to the Poynting flux, which helps to further elucidate the importance of the various sources of reconnection related Alfvénic Poynting flux in the magnetotail.

  17. Quantized Chiral Magnetic Current from Reconnections of Magnetic Flux.

    PubMed

    Hirono, Yuji; Kharzeev, Dmitri E; Yin, Yi

    2016-10-21

    We introduce a new mechanism for the chiral magnetic effect that does not require an initial chirality imbalance. The chiral magnetic current is generated by reconnections of magnetic flux that change the magnetic helicity of the system. The resulting current is entirely determined by the change of magnetic helicity, and it is quantized.

  18. Momentum transport and nonlocality in heat-flux-driven magnetic reconnection in high-energy-density plasmas

    DOE PAGES

    Liu, Chang; Fox, William; Bhattacharjee, Amitava; ...

    2017-10-06

    Recent theory has demonstrated a novel physics regime for magnetic reconnection in high-energy-density plasmas where the magnetic field is advected by heat flux via the Nernst effect. In this paper, we elucidate the physics of the electron dissipation layer in this regime. Through fully kinetic simulation and a generalized Ohm's law derived from first principles, we show that momentum transport due to a nonlocal effect, the heat-flux-viscosity, provides the dissipation mechanism for magnetic reconnection. Scaling analysis, and simulations show that the reconnection process comprises a magnetic field compression stage and quasisteady reconnection stage, and the characteristic width of the currentmore » sheet in this regime is several electron mean-free paths. Finally, these results show the important interplay between nonlocal transport effects and generation of anisotropic components to the distribution function.« less

  19. Particle acceleration in relativistic magnetic flux-merging events

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    Using analytical and numerical methods (fluid and particle-in-cell simulations) we study a number of model problems involving merger of magnetic flux tubes in relativistic magnetically dominated plasma. Mergers of current-carrying flux tubes (exemplified by the two-dimensional `ABC' structures) and zero-total-current magnetic flux tubes are considered. In all cases regimes of spontaneous and driven evolution are investigated. We identify two stages of particle acceleration during flux mergers: (i) fast explosive prompt X-point collapse and (ii) ensuing island merger. The fastest acceleration occurs during the initial catastrophic X-point collapse, with the reconnection electric field of the order of the magnetic field. During the X-point collapse, particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For plasma magnetization 2$ the spectrum power-law index is 2$ ; in this case the maximal energy depends linearly on the size of the reconnecting islands. For higher magnetization, 2$ , the spectra are hard, , yet the maximal energy \\text{max}$ can still exceed the average magnetic energy per particle, , by orders of magnitude (if is not too close to unity). The X-point collapse stage is followed by magnetic island merger that dissipates a large fraction of the initial magnetic energy in a regime of forced magnetic reconnection, further accelerating the particles, but proceeds at a slower reconnection rate.

  20. Flux transfer events: Reconnection without separators. [magnetopause

    NASA Technical Reports Server (NTRS)

    Hesse, M.; Birn, J.; Schindler, K.

    1989-01-01

    A topological analysis of a simple model magnetic field of a perturbation at the magnetopause modeling an apparent flux transfer event is presented. It is shown that a localized perturbation at the magnetopause can in principle open a closed magnetosphere by establishing magnetic connections across the magnetopause. Although the model field exhibits neutral points, these are not involved in the magnetic connection of the flux tubes. The topological substructure of a localized perturbation is analyzed in a simpler configuration. The presence of both signs of the magnetic field component normal to the magnetopause leads to a linkage of topologically different flux tubes, described as a flux knot, and a filamentary substructure of field lines of different topological types which becomes increasingly complicated for decreasing magnetic shear at the magnetopause.

  1. Magnetic reconnection during eruptive magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Mei, Z. X.; Keppens, R.; Roussev, I. I.; Lin, J.

    2017-08-01

    Aims: We perform a three-dimensional (3D) high resolution numerical simulation in isothermal magnetohydrodynamics to study the magnetic reconnection process in a current sheet (CS) formed during an eruption of a twisted magnetic flux rope (MFR). Because the twist distribution violates the Kruskal-Shafranov condition, the kink instability occurs, and the MFR is distorted. The centre part of the MFR loses its equilibrium and erupts upward, which leads to the formation of a 3D CS underneath it. Methods: In order to study the magnetic reconnection inside the CS in detail, mesh refinement has been used to reduce the numerical diffusion and we estimate a Lundquist number S = 104 in the vicinity of the CS. Results: The refined mesh allows us to resolve fine structures inside the 3D CS: a bifurcating sheet structure signaling the 3D generalization of Petschek slow shocks, some distorted-cylindrical substructures due to the tearing mode instabilities, and two turbulence regions near the upper and the lower tips of the CS. The topological characteristics of the MFR depend sensitively on the observer's viewing angle: it presents as a sigmoid structure, an outwardly expanding MFR with helical distortion, or a flare-CS-coronal mass ejection symbiosis as in 2D flux-rope models when observed from the top, the front, or the side. The movie associated to Fig. 2 is available at http://www.aanda.org

  2. The role of electron heat flux in guide-field magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hesse, Michael; Kuznetsova, Masha; Birn, Joachim

    2004-12-01

    A combination of analytical theory and particle-in-cell simulations are employed in order to investigate the electron dynamics near and at the site of guide field magnetic reconnection. A detailed analysis of the contributions to the reconnection electric field shows that both bulk inertia and pressure-based quasiviscous processes are important for the electrons. Analytic scaling demonstrates that conventional approximations for the electron pressure tensor behavior in the dissipation region fail, and that heat flux contributions need to be accounted for. Based on the evolution equation of the heat flux three tensor, which is derived in this paper, an approximate form ofmore » the relevant heat flux contributions to the pressure tensor is developed, which reproduces the numerical modeling result reasonably well. Based on this approximation, it is possible to develop a scaling of the electron current layer in the central dissipation region. It is shown that the pressure tensor contributions become important at the scale length defined by the electron Larmor radius in the guide magnetic field.« less

  3. Substorms At Jupiter: Galileo Observations of Transient Reconnection in The Near Tail

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Khurana, K. K.; Kivelson, M. G.; Huddleston, D. E.

    2000-01-01

    The magnetic flux content of the Jovian magnetosphere is set by the internal dynamo, but those magnetic field lines are constantly being loaded by heavy ions at the orbit of lo and dragged inexorably outward by the centrifugal force. Vasyliunas has proposed a steady state reconnecting magnetospheric model that sheds plasma islands of zero net magnetic flux and returns nearly empty flux tubes to the inner magnetosphere. The Galileo observations indicate that beyond 40 Rj the current sheet begins to tear and beyond 50 Rj on the nightside explosively reconnects as the tearing site reaches the low density lobe region above and below the current sheet. Small events occur irregularly but on average about every 4 hours and large events about once a day. The magnetic flux reconnected in such events amounts up to about 70,000 Webers/sec and is sufficient to return the outwardly convected magnetic flux to the inner magnetosphere. Since this process releases plasmoids into the jovian tail, as do terrestrial substorms; since this process involves explosive reconnection across the current sheet on the nightside of the planet, as do terrestrial substorms; and since the process is a key in closing the circulation pattern of the magnetic and plasma flux, as it is in terrestrial substorms; we refer to these events as jovian substorms.

  4. Simulations of Emerging Magnetic Flux. II. The Formation of Unstable Coronal Flux Ropes and the Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-01-01

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (approximately 36 Mm above the surface).We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as "magnetic breakout," are operating during the emergence of new active regions.

  5. Magnetic reconnection in 3D magnetosphere models: magnetic separators and open flux production

    NASA Astrophysics Data System (ADS)

    Glocer, A.; Dorelli, J.; Toth, G.; Komar, C. M.; Cassak, P.

    2014-12-01

    There are multiple competing definitions of magnetic reconnection in 3D (e.g., Hesse and Schindler [1988], Lau and Finn [1990], and Boozer [2002]). In this work we focus on separator reconnection. A magnetic separator can be understood as the 3D analogue of a 2D x line with a guide field, and is defined by the line corresponding to the intersection of the separatrix surfaces associated with the magnetic nulls. A separator in the magnetosphere represents the intersection of four distinct magnetic topologies: solar wind, closed, open connected to the northern hemisphere, and open connected to the southern hemisphere. The integral of the parallel electric field along the separator defines the rate of open flux production, and is one measure of the reconnection rate. We present three methods for locating magnetic separators and apply them to 3D resistive MHD simulations of the Earth's magnetosphere using the BATS-R-US code. The techniques for finding separators and determining the reconnection rate are insensitive to IMF clock angle and can in principle be applied to any magnetospheric model. The present work examines cases of high and low resistivity, for two clock angles. We also examine the separator during Flux Transfer Events (FTEs) and Kelvin-Helmholtz instability.

  6. Pre-eruptive Magnetic Reconnection within a Multi-flux-rope System in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Awasthi, Arun Kumar; Liu, Rui; Wang, Haimin; Wang, Yuming; Shen, Chenglong

    2018-04-01

    The solar corona is frequently disrupted by coronal mass ejections (CMEs), whose core structure is believed to be a flux rope made of helical magnetic field. This has become a “standard” picture; though, it remains elusive how the flux rope forms and evolves toward eruption. While one-third of the ejecta passing through spacecraft demonstrate a flux-rope structure, the rest have complex magnetic fields. Are they originating from a coherent flux rope, too? Here we investigate the source region of a complex ejecta, focusing on a flare precursor with definitive signatures of magnetic reconnection, i.e., nonthermal electrons, flaring plasma, and bidirectional outflowing blobs. Aided by nonlinear force-free field modeling, we conclude that the reconnection occurs within a system of multiple braided flux ropes with different degrees of coherency. The observation signifies the importance of internal structure and dynamics in understanding CMEs and in predicting their impacts on Earth.

  7. Reconnection Fluxes in Eruptive and Confined Flares and Implications for Superflares on the Sun

    NASA Astrophysics Data System (ADS)

    Tschernitz, Johannes; Veronig, Astrid M.; Thalmann, Julia K.; Hinterreiter, Jürgen; Pötzi, Werner

    2018-01-01

    We study the energy release process of a set of 51 flares (32 confined, 19 eruptive) ranging from GOES class B3 to X17. We use Hα filtergrams from Kanzelhöhe Observatory together with Solar Dynamics Observatory HMI and Solar and Heliospheric Observatory MDI magnetograms to derive magnetic reconnection fluxes and rates. The flare reconnection flux is strongly correlated with the peak of the GOES 1–8 Å soft X-ray flux (c = 0.92, in log–log space) for both confined and eruptive flares. Confined flares of a certain GOES class exhibit smaller ribbon areas but larger magnetic flux densities in the flare ribbons (by a factor of 2). In the largest events, up to ≈50% of the magnetic flux of the active region (AR) causing the flare is involved in the flare magnetic reconnection. These findings allow us to extrapolate toward the largest solar flares possible. A complex solar AR hosting a magnetic flux of 2 × 1023 Mx, which is in line with the largest AR fluxes directly measured, is capable of producing an X80 flare, which corresponds to a bolometric energy of about 7 × 1032 erg. Using a magnetic flux estimate of 6 × 1023 Mx for the largest solar AR observed, we find that flares of GOES class ≈X500 could be produced (E bol ≈ 3 × 1033 erg). These estimates suggest that the present day’s Sun is capable of producing flares and related space weather events that may be more than an order of magnitude stronger than have been observed to date.

  8. Energy release and transfer in guide field reconnection

    NASA Astrophysics Data System (ADS)

    Birn, J.; Hesse, M.

    2010-01-01

    Properties of energy release and transfer by magnetic reconnection in the presence of a guide field are investigated on the basis of 2.5-dimensional magnetohydrodynamic (MHD) and particle-in-cell (PIC) simulations. Two initial configurations are considered: a plane current sheet with a uniform guide field of 80% of the reconnecting magnetic field component and a force-free current sheet in which the magnetic field strength is constant but the field direction rotates by 180° through the current sheet. The onset of reconnection is stimulated by localized, temporally limited compression. Both MHD and PIC simulations consistently show that the outgoing energy fluxes are dominated by (redirected) Poynting flux and enthalpy flux, whereas bulk kinetic energy flux and heat flux (in the PIC simulation) are small. The Poynting flux is mainly associated with the magnetic energy of the guide field which is carried from inflow to outflow without much alteration. The conversion of annihilated magnetic energy to enthalpy flux (that is, thermal energy) stems mainly from the fact that the outflow occurs into a closed field region governed by approximate force balance between Lorentz and pressure gradient forces. Therefore, the energy converted from magnetic to kinetic energy by Lorentz force acceleration becomes immediately transferred to thermal energy by the work done by the pressure gradient force. Strong similarities between late stages of MHD and PIC simulations result from the fact that conservation of mass and entropy content and footpoint displacement of magnetic flux tubes, imposed in MHD, are also approximately satisfied in the PIC simulations.

  9. MMS observations of large guide field symmetric reconnection between colliding reconnection jets at the center of a magnetic flux rope at the magnetopause

    NASA Astrophysics Data System (ADS)

    Øieroset, M.; Phan, T. D.; Haggerty, C.; Shay, M. A.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R. E.; Mozer, F. S.; Oka, M.; Torbert, R. B.; Burch, J. L.; Wang, S.; Chen, L. J.; Swisdak, M.; Pollock, C.; Dorelli, J. C.; Fuselier, S. A.; Lavraud, B.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W.; Strangeway, R. J.; Russell, C. T.; Khotyaintsev, Y.; Lindqvist, P. A.; Malakit, K.

    2016-06-01

    We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (di) width) current sheet (at ~12 di downstream of the X line) was well resolved by MMS, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.

  10. MMS observations of large guide field symmetric reconnection between colliding reconnection jets at the center of a magnetic flux rope at the magnetopause

    NASA Astrophysics Data System (ADS)

    Oieroset, M.; Phan, T.; Haggerty, C. C.; Shay, M. A.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R.; Mozer, F.; Oka, M.; Torbert, R. B.; Burch, J. L.; Wang, S.; Chen, L. J.; Swisdak, M.; Pollock, C.; Dorelli, J.; Fuselier, S. A.; Lavraud, B.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W. R.; Strangeway, R. J.; Russell, C. T.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Malakit, K.

    2016-12-01

    We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (di) width) current sheet (at 12 di downstream of the X line) was well resolved by Magnetospheric Multiscale, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.

  11. MMS Observations of Large Guide Field Symmetric Reconnection Between Colliding Reconnection Jets at the Center of a Magnetic Flux Rope at the Magnetopause

    NASA Technical Reports Server (NTRS)

    Oieroset, M.; Phan, T. D.; Haggerty, C.; Shay, M. A.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R. E.; Mozer, F. S.; hide

    2016-01-01

    We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric Inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (d(sub i) width) current sheet (at approximately 12 d(sub i) downstream of the X line) was well resolved by MMS, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.

  12. Measurement of the magnetotail reconnection rate

    NASA Astrophysics Data System (ADS)

    Blanchard, G. T.; Lyons, L. R.; de la Beaujardière, O.; Doe, R. A.; Mendillo, M.

    1996-07-01

    A technique to measure the magnetotail reconnection rate from the ground is described and applied to 71 hours of measurements from 20 nights. The reconnection rate is obtained from the ionospheric flow across the polar cap boundary in the frame of reference of the boundary, measured by the Sondrestrom incoherent scatter radar. For our measurements, the polar cap boundary is located using 6300 Å auroral emissions and E region electron density. The average experimental uncertainty of the reconnection rate measurement is 11.6 mVm-1 in the ionospheric electric field. By using a large data set, we obtain the dependence of the reconnection rate on magnetic local time, the interplanetary magnetic field, and substorm activity, with much higher accuracy. We find that two thirds of the average polar cap potential drop occurs over the 4-hour segment of the separatrix centered on 2330 MLT, that the linear correlation between the reconnection electric field and the half-wave rectified dawn-dusk solar wind electric field VBs peaks between 1.0 and 1.5 hours, with a maximum linear correlation coefficient of 0.46 at 70 min; and that following substorm expansion phase onset, the reconnection electric field becomes larger than the experimental uncertainty, with an average delay of 23 min. The 70-min delay of the reconnection rate with respect to VBs is a typical convection time for a flux tube across the polar cap. This result indicates that reconnection in the magnetotail is influenced by the solar wind electric field VBs on the field line being reconnected.

  13. Decay of Mesoscale Flux Transfer Events During Quasi-Continuous Spatially Extended Reconnection at the Magentopause

    NASA Technical Reports Server (NTRS)

    Hasegawa, H.; Kitamura, N.; Saito, Y.; Nagai, T.; Shinohara, I.; Yokota, S.; Pollock, C. J.; Giles, B. L.; Dorelli, J. C.; Gershman, D. J.; hide

    2016-01-01

    We present observations on 2 October 201Swhen the Geotail spacecraft, near the Earth's equatorial plane, and the Magnetospheric Multiscale (MMS) spacecraft, at mid-southem latitudes, simultaneously encountered southward jets from dayside magnetopause reconnection under southward interplanetary magnetic field conditions. The observations show that the equatorial reconnection site under modest solar wind Alfven Mach number conditions remained active almost continuously for hours and, at the same time, extended over a wide range of local times (4h). The reconnection jets expanded toward the magnetosphere with distance from the reconnection site. Geotall, closer to the reconnection site, occasionally encountered large-amplitude mesoscale flux transfer events (FTEs) with durations about or less than 1 min. However, MMS subsequently detected no or only smaller-amplitude corresponding FTE signatures. It is suggested that during quasi-continuous spatially extended reconnection, mesoscale FTEs decay as the jet spatially evolves over distances between the two spacecraft of 350 ion inertial lengths.

  14. Multiwavelength observations of a flux rope formation by series of magnetic reconnection in the chromosphere

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Yurchyshyn, Vasyl; Cho, Kyung-Suk; Wang, Haimin

    2017-07-01

    Using high-resolution observations from the 1.6 m New Solar Telescope (NST) operating at the Big Bear Solar Observatory (BBSO), we report direct evidence of merging and reconnection of cool Hα loops in the chromosphere during two homologous flares (B and C class) caused by a shear motion at the footpoints of two loops. The reconnection between these loops caused the formation of an unstable flux rope that showed counterclockwise rotation. The flux rope could not reach the height of torus instability and failed to form a coronal mass ejection. The HMI magnetograms revealed rotation of the negative and positive (N1/P2) polarity sunspots in the opposite directions, which increased the right- and left-handed twist in the magnetic structures rooted at N1/P2. Rapid photospheric flux cancellation (duration 20-30 min, rate ≈3.44 × 1020 Mx h-1) was observed during and even after the first B6.0 flare and continued until the end of the second C2.3 flare. The RHESSI X-ray sources were located at the site of the loop coalescence. To the best of our knowledge, such a clear interaction of chromospheric loops along with rapid flux cancellation has not been reported before. These high-resolution observations suggest the formation of a small flux rope by a series of magnetic reconnections within chromospheric loops that are associated with very rapid flux cancellation. Movies attached to Figs. 2, 7, 8, and 10 are available at http://www.aanda.org

  15. Unraveling the Nature of Steady Magnetopause Reconnection Versus Flux Transfer Events

    NASA Astrophysics Data System (ADS)

    Raeder, J.

    2002-12-01

    Magnetic reconnection is a fundamental mode of energy and momentum transfer from the solar wind to the magnetosphere. It is known to occur in different forms depending on solar wind and magnetospheric conditions. In particular, steady reconnection can be distinguished from pulse-like reconnection events which are also known as Flux Transfer Events (FTEs). The formation mechanism of FTEs and their contolling factors remain controversial. We use global MHD simulations of Earth's magnetosphere to show that for southward IMF conditions: a) steady reconnection preferentially occurs without FTEs when the stagnation flow line nearly coincides with the X-line location, which requires small dipole tilt and nearly due southward IMF, b) FTEs occur when the flow/field symmetry is broken, which requires either a large dipole tilt and/or a substantial east-west component of the IMF, c) the predicted spacecraft signature and the repetition frequency of FTEs in the simulations agrees very well with typical observations, lending credibility to the the model, d) the fundamental process that leads to FTE formation is multiple X-line formation caused by the flow and field patterns in the magnetosheath and requires no intrinsic plasma property variations like variable resistivity, e) if the dipole tilt breaks the symmetry FTEs occur only in the winter hemisphere whereas the reconnection signatures in the summer hemisphere are steady with no bipolar FTE-like signatures, f) if the IMF east-west field component breaks the symmetry FTEs occur in both hemispheres, and g) FTE formation depends on sufficient resolution and low diffusion in the model -- coarse resolution and/or high diffusivity lead to flow-through reconnection signatures that appear unphysical given the frequent observation of FTEs.

  16. Investigation of the viscous reconnection phenomenon of two vortex tubes through spectral simulations

    NASA Astrophysics Data System (ADS)

    Beardsell, Guillaume; Dufresne, Louis; Dumas, Guy

    2016-09-01

    This paper aims to shed further light on the viscous reconnection phenomenon. To this end, we propose a robust and efficient method in order to quantify the degree of reconnection of two vortex tubes. This method is used to compare the evolutions of two simple initial vortex configurations: orthogonal and antiparallel. For the antiparallel configuration, the proposed method is compared with alternative estimators and it is found to improve accuracy since it can account properly for the formation of looping structures inside the domain. This observation being new, the physical mechanism for the formation of those looping structures is discussed. For the orthogonal configuration, we report results from simulations that were performed at a much higher vortex Reynolds number (ReΓ ≡ circulation/viscosity = 104) and finer resolution (N3 = 10243) than previously presented in the literature. The incompressible Navier-stokes equations are solved directly (Direct Numerical Simulation or DNS) using a Fourier pseudospectral algorithm with triply periodic boundary conditions. The associated zero-circulation constraint is circumvented by solving the governing equations in a proper rotating frame of reference. Using ideas similar to those behind our method to compute the degree of reconnection, we split the vorticity field into its reconnected and non-reconnected parts, which allows to create insightful visualizations of the evolving vortex topology. It also allows to detect regions in the vorticity field that are neither reconnected nor non-reconnected and thus must be associated to internal looping structures. Finally, the Reynolds number dependence of the reconnection time scale Trec is investigated in the range 500 ≤ ReΓ ≤ 10 000. For both initial configurations, the scaling is generally found to vary continuously as ReΓ is increased from T rec ˜ R eΓ - 1 to T rec ˜ R eΓ - 1 / 2 , thus providing quantitative support for previous claims that the reconnection

  17. Siphon flows in isolated magnetic flux tubes. IV - Critical flows with standing tube shocks

    NASA Technical Reports Server (NTRS)

    Thomas, John H.; Montesinos, Benjamin

    1991-01-01

    Critical siphon flows in arched, isolated magnetic flux tubes are studied within the thin flux tube approximation, with a view toward applications to intense magnetic flux concentrations in the solar photosphere. The results of calculations of the strength and position of the standing tube shock in the supercritical downstream branch of a critical siphon flow are presented, as are calculations of the flow variables all along the flux tube and the equilibrium path of the flux tube in the surrounding atmosphere. It is suggested that arched magnetic flux tubes, with magnetic field strength increased by a siphon flow, may be associated with some of the intense, discrete magnetic elements observed in the solar photosphere.

  18. Electric flux tube in a magnetic plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao Jinfeng; Shuryak, Edward

    2008-06-15

    In this paper we study a methodical problem related to the magnetic scenario recently suggested and initiated by Liao and Shuryak [Phys. Rev. C 75, 054907 (2007)] to understand the strongly coupled quark-gluon plasma (sQGP): the electric flux tube in a monopole plasma. A macroscopic approach, in which we interpolate between a Bose condensed (dual superconductor) medium and a classical gas medium, is developed first. Then we work out a microscopic approach based on detailed quantum mechanical calculations of the monopole scattering on the electric flux tube, evaluating induced currents for all partial waves. As expected, the flux tube losesmore » its stability when particles can penetrate it: We make this condition precise by calculating the critical value for the product of the flux tube size times the particle momentum, above which the flux tube dissolves. Lattice static potentials indicate that flux tubes seem to dissolve at T>T{sub dissolution}{approx_equal}1.3T{sub c}. Using our criterion one gets an estimate of the magnetic density n{approx_equal}4.4-6.6 fm{sup -3} at this temperature.« less

  19. Magnetic Reconnection at the Earliest Stage of Solar Flux Emergence

    NASA Astrophysics Data System (ADS)

    Tian, Hui; Zhu, Xiaoshuai; Peter, Hardi; Zhao, Jie; Samanta, Tanmoy; Chen, Yajie

    2018-02-01

    On 2016 September 20, the Interface Region Imaging Spectrograph observed an active region during its earliest emerging phase for almost 7 hr. The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory observed continuous emergence of small-scale magnetic bipoles with a rate of ∼1016 Mx s‑1. The emergence of magnetic fluxes and interactions between different polarities lead to the frequent occurrence of ultraviolet (UV) bursts, which exhibit as intense transient brightenings in the 1400 Å images. In the meantime, discrete small patches with the same magnetic polarity tend to move together and merge, leading to the enhancement of the magnetic fields and thus the formation of pores (small sunspots) at some locations. The spectra of these UV bursts are characterized by the superposition of several chromospheric absorption lines on the greatly broadened profiles of some emission lines formed at typical transition region temperatures, suggesting heating of the local materials to a few tens of thousands of kelvin in the lower atmosphere by magnetic reconnection. Some bursts reveal blue- and redshifts of ∼100 km s‑1 at neighboring pixels, indicating the spatially resolved bidirectional reconnection outflows. Many such bursts appear to be associated with the cancellation of magnetic fluxes with a rate of the order of ∼1015 Mx s‑1. We also investigate the three-dimensional magnetic field topology through a magnetohydrostatic model and find that a small fraction of the bursts are associated with bald patches (magnetic dips). Finally, we find that almost all bursts are located in regions of large squashing factor at the height of ∼1 Mm, reinforcing our conclusion that these bursts are produced through reconnection in the lower atmosphere.

  20. THE TOPOLOGY OF CANONICAL FLUX TUBES IN FLARED JET GEOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavine, Eric Sander; You, Setthivoine, E-mail: Slavine2@uw.edu, E-mail: syou@aa.washington.edu

    2017-01-20

    Magnetized plasma jets are generally modeled as magnetic flux tubes filled with flowing plasma governed by magnetohydrodynamics (MHD). We outline here a more fundamental approach based on flux tubes of canonical vorticity, where canonical vorticity is defined as the circulation of the species’ canonical momentum. This approach extends the concept of magnetic flux tube evolution to include the effects of finite particle momentum and enables visualization of the topology of plasma jets in regimes beyond MHD. A flared, current-carrying magnetic flux tube in an ion-electron plasma with finite ion momentum is thus equivalent to either a pair of electron andmore » ion flow flux tubes, a pair of electron and ion canonical momentum flux tubes, or a pair of electron and ion canonical vorticity flux tubes. We examine the morphology of all these flux tubes for increasing electrical currents, different radial current profiles, different electron Mach numbers, and a fixed, flared, axisymmetric magnetic geometry. Calculations of gauge-invariant relative canonical helicities track the evolution of magnetic, cross, and kinetic helicities in the system, and show that ion flow fields can unwind to compensate for an increasing magnetic twist. The results demonstrate that including a species’ finite momentum can result in a very long collimated canonical vorticity flux tube even if the magnetic flux tube is flared. With finite momentum, particle density gradients must be normal to canonical vorticities, not to magnetic fields, so observations of collimated astrophysical jets could be images of canonical vorticity flux tubes instead of magnetic flux tubes.« less

  1. A THEMIS Survey of Flux Ropes and Traveling Compression Regions: Location of the Near-Earth Reconnection Site During Solar Minimum

    NASA Technical Reports Server (NTRS)

    Imber, S. M.; Slavin, J. A.; Auster, H. U.; Angelopoulos, V.

    2011-01-01

    A statistical study of flux ropes and traveling compression regions (TCRs) during the Time History of Events and Macroscale Interactions during Substorms (THEMIS) second tail season has been performed. A combined total of 135 flux ropes and TCRs in the range GSM X approx -14 to -31 R(sub E) were identified, many of these occurring in series of two or more events separated by a few tens of seconds. Those occurring within 10 min of each other were combined into aggregated reconnection events. For the purposes of this survey, these are most likely the products of reconnect ion occurring simultaneously at multiple, closely spaced x-lines as opposed to statistically independent episodes of reconnection. The 135 flux ropes and TCRs were grouped into 87 reconnection events; of these, 28 were moving tailward and 59 were moving Earthward. The average location of the near-Earth x-line determined from statistical analysis of these reconnection events is (X(sub GSM), Y*(sub GSM)) = (-30R(sub E), 5R(sub E)), where Y* includes a correction for the solar aberration angle. A strong east-west asymmetry is present in the tailward events, with >80% being observed at GSM Y* > O. Our results indicate that the Earthward flows are similarly asymmetric in the midtail region, becoming more symmetric inside - 18 R(sub E). Superposed epoch analyses indicate that the occurrence of reconnection closer to the Earth, i.e., X > -20 R(sub E), is associated with elevated solar wind velocity and enhanced negative interplanetary magnetic field B(sub z). Reconnection events taking place closer to the Earth are also far more effective in producing geomagnetic activity, judged by the AL index, than reconnection initiated beyond X approx -25 R(sub E).

  2. Benchmarking gyrokinetic simulations in a toroidal flux-tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.; Parker, S. E.; Wan, W.

    2013-09-15

    A flux-tube model is implemented in the global turbulence code GEM [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 839 (2007)] in order to facilitate benchmarking with Eulerian codes. The global GEM assumes the magnetic equilibrium to be completely given. The initial flux-tube implementation simply selects a radial location as the center of the flux-tube and a radial size of the flux-tube, sets all equilibrium quantities (B, ∇B, etc.) to be equal to the values at the center of the flux-tube, and retains only a linear radial profile of the safety factor needed for boundary conditions. This implementationmore » shows disagreement with Eulerian codes in linear simulations. An alternative flux-tube model based on a complete local equilibrium solution of the Grad-Shafranov equation [J. Candy, Plasma Phys. Controlled Fusion 51, 105009 (2009)] is then implemented. This results in better agreement between Eulerian codes and the particle-in-cell (PIC) method. The PIC algorithm based on the v{sub ||}-formalism [J. Reynders, Ph.D. dissertation, Princeton University, 1992] and the gyrokinetic ion/fluid electron hybrid model with kinetic electron closure [Y. Chan and S. E. Parker, Phys. Plasmas 18, 055703 (2011)] are also implemented in the flux-tube geometry and compared with the direct method for both the ion temperature gradient driven modes and the kinetic ballooning modes.« less

  3. ON THE ROLE OF REPETITIVE MAGNETIC RECONNECTIONS IN EVOLUTION OF MAGNETIC FLUX ROPES IN SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sanjay; Bhattacharyya, R.; Joshi, Bhuwan

    Parker's magnetostatic theorem, extended to astrophysical magnetofluids with large magnetic Reynolds number, supports ceaseless regeneration of current sheets and, hence, spontaneous magnetic reconnections recurring in time. Consequently, a scenario is possible where the repeated reconnections provide an autonomous mechanism governing emergence of coherent structures in astrophysical magnetofluids. In this work, such a scenario is explored by performing numerical computations commensurate with the magnetostatic theorem. In particular, the computations explore the evolution of a flux rope governed by repeated reconnections in a magnetic geometry resembling bipolar loops of solar corona. The revealed morphology of the evolution process—including onset and ascent ofmore » the rope, reconnection locations, and the associated topology of the magnetic field lines—agrees with observations, and thus substantiates physical realizability of the advocated mechanism.« less

  4. Evidence of Multiple Reconnection Lines at the Magnetopause from Cusp Observations

    NASA Technical Reports Server (NTRS)

    Trattner, K. J.; Petrinec, S. M.; Fuselier, S. A.; Omidi, N.; Sibeck, David Gary

    2012-01-01

    Recent global hybrid simulations investigated the formation of flux transfer events (FTEs) and their convection and interaction with the cusp. Based on these simulations, we have analyzed several Polar cusp crossings in the Northern Hemisphere to search for the signature of such FTEs in the energy distribution of downward precipitating ions: precipitating ion beams at different energies parallel to the ambient magnetic field and overlapping in time. Overlapping ion distributions in the cusp are usually attributed to a combination of variable ion acceleration during the magnetopause crossing together with the time-of-flight effect from the entry point to the observing satellite. Most "step up" ion cusp structures (steps in the ion energy dispersions) only overlap for the populations with large pitch angles and not for the parallel streaming populations. Such cusp structures are the signatures predicted by the pulsed reconnection model, where the reconnection rate at the magnetopause decreased to zero, physically separating convecting flux tubes and their parallel streaming ions. However, several Polar cusp events discussed in this study also show an energy overlap for parallel-streaming precipitating ions. This condition might be caused by reopening an already reconnected field line, forming a magnetic island (flux rope) at the magnetopause similar to that reported in global MHD and Hybrid simulations

  5. Invariant structures of magnetic flux tubes

    NASA Astrophysics Data System (ADS)

    Solovev, A. A.

    1982-04-01

    The basic properties of a screened magnetic flux tube possessing a finite radius of curvature are discussed in order to complement the findings of Parker (1974, 1976) and improve their accuracy. Conditions of equilibrium, twisting equilibrium, and twisting oscillations are discussed, showing that a twisted magnetic loop or arch is capable of executing elastic oscillations about an equilibrium state. This property can in particular be used in the theory of solar flares. Invariant structures of a force-free magnetic tube are analyzed, showing that invariant structures of the field preserve their form when the geometrical parameters of the flux tube are changed. In a quasi-equilibrium transition of the tube from one state to another the length and pitch of the tube spiral change in proportion to the radius of its cross section.

  6. Reconnection and interchange instability in the near magnetotail

    DOE PAGES

    Birn, Joachim; Liu, Yi -Hsin; Daughton, William; ...

    2015-07-16

    This paper provides insights into the possible coupling between reconnection and interchange/ballooning in the magnetotail related to substorms and flow bursts. The results presented are largely based on recent simulations of magnetotail dynamics, exploring onset and progression of reconnection. 2.5-dimensional particle-in-cell (PIC) simulations with different tail deformation demonstrate a clear boundary between stable and unstable cases depending on the amount of deformation, explored up to the real proton/electron mass ratio. The evolution prior to onset, as well as the evolution of stable cases, are governed by the conservation of integral flux tube entropy S as imposed in ideal MHD, maintainingmore » a monotonic increase with distance downtail. This suggests that ballooning instability in the tail should not be expected prior to the onset of tearing and reconnection. 3-D MHD simulations confirm this conclusion, showing no indication of ballooning prior to reconnection, if the initial state is ballooning stable. The simulation also shows that, after imposing resistivity necessary to initiate reconnection, the reconnection rate and energy release initially remain slow. However, when S becomes reduced from plasmoid ejection and lobe reconnection, forming a negative slope in S as a function of distance from Earth, the reconnection rate and energy release increase drastically. The latter condition has been shown to be necessary for ballooning/interchange instability, and the cross-tail structures that develop subsequently in the MHD simulation are consistent with such modes. The simulations support a concept in which tail activity is initiated by tearing instability but significantly enhanced by the interaction with ballooning/interchange enabled by plasmoid loss and lobe reconnection.« less

  7. CHAIN RECONNECTIONS OBSERVED IN SYMPATHETIC ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Navin Chandra; Magara, Tetsuya; Schmieder, Brigitte

    2016-04-01

    The nature of various plausible causal links between sympathetic events is still a controversial issue. In this work, we present multiwavelength observations of sympathetic eruptions, associated flares, and coronal mass ejections (CMEs) occurring on 2013 November 17 in two close active regions. Two filaments, i.e., F1 and F2, are observed in between the active regions. Successive magnetic reconnections, caused for different reasons (flux cancellation, shear, and expansion) have been identified during the whole event. The first reconnection occurred during the first eruption via flux cancellation between the sheared arcades overlying filament F2, creating a flux rope and leading to themore » first double-ribbon solar flare. During this phase, we observed the eruption of overlying arcades and coronal loops, which leads to the first CME. The second reconnection is believed to occur between the expanding flux rope of F2 and the overlying arcades of filament F1. We suggest that this reconnection destabilized the equilibrium of filament F1, which further facilitated its eruption. The third stage of reconnection occurred in the wake of the erupting filament F1 between the legs of the overlying arcades. This may create a flux rope and the second double-ribbon flare and a second CME. The fourth reconnection was between the expanding arcades of the erupting filament F1 and the nearby ambient field, which produced the bi-directional plasma flows both upward and downward. Observations and a nonlinear force-free field extrapolation confirm the possibility of reconnection and the causal link between the magnetic systems.« less

  8. Magnetic Reconnection Results on the Swarthmore Spheromak Experiment

    NASA Astrophysics Data System (ADS)

    Kornack, T. W.; Sollins, P. K.; Brown, M. R.

    1997-11-01

    Linear and 2D arrays of magnetic probes are used to study magnetic reconnection in the Swarthmore Spheromak Experiment (SSX). Opposing coaxial plasma guns form two identical spheromaks into adjacent 0.5 m diameter copper flux conservers. The flux conservers have symmetrical openings that allow the spheromaks to merge in a controlled manner. The stable equilibrium of the spheromaks provides a reservoir of magnetic flux for reconnection experiments. Currently, the magnetic configuration of the spheromaks allows the study of counter-helicity reconnection. Preliminary analysis will be presented and may include 2D B field movies of the reconnection region, measurement of the reconnection rate and comparison to the Sweet-Parker and standard Petschek models.

  9. Estimation of Reconnection Flux Using Post-Eruption Arcades and Its Relevance to Magnetic Clouds at 1 AU

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Yashiro, S.; Akiyama, S.; Xie, H.

    2017-01-01

    We report on a new method to compute the flare reconnection (RC) flux from post-eruption arcades (PEAs) and the underlying photospheric magnetic fields. In previous works, the RC flux has been computed using the cumulative flare ribbon area. Here we obtain the RC flux as the flux in half of the area underlying the PEA in EUV imaged after the flare maximum. We apply this method to a set of 21 eruptions that originated near the solar disk center in Solar Cycle 23. We find that the RC flux from the arcade method ((Phi)rA) has excellent agreement with the flux from the flare-ribbon method ((Phi)rR) according to (Phi)rA = 1.24((Phi)rR)(sup 0.99). We also find (Phi)rA to be correlated with the poloidal flux ((Phi)P) of the associated magnetic cloud at 1 AU: (Phi)P = 1.20((Phi)rA)(sup 0.85). This relation is nearly identical to that obtained by Qiu et al. (Astrophys. J. 659, 758, 2007) using a set of only 9 eruptions. Our result supports the idea that flare reconnection results in the formation of the flux rope and PEA as a common process.

  10. Shock wave propagation in a magnetic flux tube

    NASA Astrophysics Data System (ADS)

    Ferriz-Mas, A.; Moreno-Insertis, F.

    1992-12-01

    The propagation of a shock wave in a magnetic flux tube is studied within the framework of the Brinkley-Kirkwood theory adapted to a radiating gas. Simplified thermodynamic paths along which the compressed plasma returns to its initial state are considered. It is assumed that the undisturbed medium is uniform and that the flux tube is optically thin. The shock waves investigated, which are described with the aid of the thin flux-tube approximation, are essentially slow magnetohydrodynamic shocks modified by the constraint of lateral pressure balance between the flux tube and the surrounding field-free fluid; the confining external pressure must be balanced by the internal gas plus magnetic pressures. Exact analytical solutions giving the evolution of the shock wave are obtained for the case of weak shocks.

  11. The Formation of Magnetic Depletions and Flux Annihilation Due to Reconnection in the Heliosheath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, J. F.; Swisdak, M.; Opher, M.

    The misalignment of the solar rotation axis and the magnetic axis of the Sun produces a periodic reversal of the Parker spiral magnetic field and the sectored solar wind. The compression of the sectors is expected to lead to reconnection in the heliosheath (HS). We present particle-in-cell simulations of the sectored HS that reflect the plasma environment along the Voyager 1 and 2 trajectories, specifically including unequal positive and negative azimuthal magnetic flux as seen in the Voyager data. Reconnection proceeds on individual current sheets until islands on adjacent current layers merge. At late time, bands of the dominant fluxmore » survive, separated by bands of deep magnetic field depletion. The ambient plasma pressure supports the strong magnetic pressure variation so that pressure is anticorrelated with magnetic field strength. There is little variation in the magnetic field direction across the boundaries of the magnetic depressions. At irregular intervals within the magnetic depressions are long-lived pairs of magnetic islands where the magnetic field direction reverses so that spacecraft data would reveal sharp magnetic field depressions with only occasional crossings with jumps in magnetic field direction. This is typical of the magnetic field data from the Voyager spacecraft. Voyager 2 data reveal that fluctuations in the density and magnetic field strength are anticorrelated in the sector zone, as expected from reconnection, but not in unipolar regions. The consequence of the annihilation of subdominant flux is a sharp reduction in the number of sectors and a loss in magnetic flux, as documented from the Voyager 1 magnetic field and flow data.« less

  12. The magnetic non-equilibrium of buoyant flux tubes in the solar corona

    NASA Technical Reports Server (NTRS)

    Browning, P. K.; Priest, E. R.

    1984-01-01

    The magnetic field in the convection zone and photosphere of the sun exists mostly as concentrated tubes of magnetic flux. It is, therefore, necessary to study the basic properties of magnetic flux tubes to obtain a basis for understanding the behavior of the sun's magnetic field. The present investigation is concerned with the global equilibrium shape of a flux tube in the stratified solar atmosphere. A fundamental property of isolated flux tubes is magnetic buoyancy. Attention is given to flux tubes with external field, and twisted flux tubes. It is shown that the analysis of Parker (1975, 1979) and Spruit (1981) for calculating the equilibrium of a slender flux tube in a stratified atmosphere may be extended to more general situations. The slender tube approximation provides a method of solving the problem of modeling the overall curvature of flux tubes. It is found that for a twisted flux tube, there can be two possible equilibrium values of the height.

  13. Simulations of anti-parallel reconnection using a nonlocal heat flux closure

    DOE PAGES

    Ng, Jonathan; Hakim, Ammar; Bhattacharjee, A.; ...

    2017-08-08

    The integration of kinetic effects in fluid models is important for global simulations of the Earth's magnetosphere. In particular, it has been shown that ion kinetics play a crucial role in the dynamics of large reconnecting systems, and that higher-order fluid moment models can account for some of these effects. Here, we use a ten-moment model for electrons and ions, which includes the off diagonal elements of the pressure tensor that are important for magnetic reconnection. Kinetic effects are recovered by using a nonlocal heat flux closure, which approximates linear Landau damping in the fluid framework. Moreover, the closure ismore » tested using the island coalescence problem, which is sensitive to ion dynamics. We also demonstrate that the nonlocal closure is able to self-consistently reproduce the structure of the ion diffusion region, pressure tensor, and ion velocity without the need for fine-tuning of relaxation coefficients present in earlier models.« less

  14. Concerning the Motion and Orientation of Flux Transfer Events Produced by Component and Antiparallel Reconnection

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Lin, R.-Q.

    2011-01-01

    We employ the Cooling et al. (2001) model to predict the location, orientation, motion, and signatures of flux transfer events (FTEs) generated at the solstices and equinoxes along extended subsolar component and high ]latitude antiparallel reconnection curves for typical solar wind plasma conditions and various interplanetary magnetic field (IMF) strengths and directions. In general, events generated by the two mechanisms maintain the strikingly different orientations they begin with as they move toward the terminator in opposite pairs of magnetopause quadrants. The curves along which events generated by component reconnection form bow toward the winter cusp. Events generated by antiparallel reconnection form on the equatorial magnetopause during intervals of strongly southward IMF orientation during the equinoxes, form in the winter hemisphere and only reach the dayside equatorial magnetopause during the solstices when the IMF strength is very large and the IMF points strongly southward, never reach the equatorial dayside magnetopause when the IMF has a substantial dawnward or duskward component, and never reach the equatorial flank magnetopause during intervals of northward and dawnward or duskward IMF orientation. Magnetosheath magnetic fields typically have strong components transverse to events generated by component reconnection but only weak components transverse to the axes of events generated by antiparallel reconnection. As a result, much stronger bipolar magnetic field signatures normal to the nominal magnetopause should accompany events generated by component reconnection. The results presented in this paper suggest that events generated by component reconnection predominate on the dayside equatorial and flank magnetopause for most solar wind conditions.

  15. Frozen flux violation, electron demagnetization and magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scudder, J. D.; Karimabadi, H.; Roytershteyn, V.

    2015-10-15

    We argue that the analogue in collisionless plasma of the collisional diffusion region of magnetic reconnection is properly defined in terms of the demagnetization of the plasma electrons that enable “frozen flux” slippage to occur. This condition differs from the violation of the “frozen-in” condition, which only implies that two fluid effects are involved, rather than the necessary slippage of magnetic flux as viewed in the electron frame. Using 2D Particle In Cell (PIC) simulations, this approach properly finds the saddle point region of the flux function. Our demagnetization conditions are the dimensionless guiding center approximation expansion parameters for electronsmore » which we show are observable and determined locally by the ratio of non-ideal electric to magnetic field strengths. Proxies for frozen flux slippage are developed that (a) are measurable on a single spacecraft, (b) are dimensionless with theoretically justified threshold values of significance, and (c) are shown in 2D simulations to recover distinctions theoretically possible with the (unmeasurable) flux function. A new potentially observable dimensionless frozen flux rate, Λ{sub Φ}, differentiates significant from anecdotal frozen flux slippage. A single spacecraft observable, ϒ, is shown with PIC simulations to be essentially proportional to the unobservable local Maxwell frozen flux rate. This relationship theoretically establishes electron demagnetization in 3D as the general cause of frozen flux slippage. In simple 2D cases with an isolated central diffusion region surrounded by separatrices, these diagnostics uniquely identify the traditional diffusion region (without confusing it with the two fluid “ion-diffusion” region) and clarify the role of the separatrices where frozen flux violations do occur but are not substantial. In the more complicated guide and asymmetric 2D cases, substantial flux slippage regions extend out along, but inside of, the preferred

  16. Why coronal flux tubes have axially invariant cross-section

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2001-10-01

    We present here a model that not only explains the long-standing mystery^1 of why solar coronal flux tubes tend towards having axially invariant cross-sections but also explains several other enigmatic features, namely: rotating jets emanating from the ends (surges), counter-streaming beams, ingestion of photospheric material, and elevated pressure/temperature compared to adjacent plasma. The model shows that when a steady current flows along a flux tube with a bulging middle (i.e., a flux tube that is initially produced by a potential magnetic field), non-conservative forces develop which accelerate fluid axially from both ends towards the middle. Remarkably, this axial pumping of fluid into the flux tube causes the flux tube cross-section and volume to decrease in a manner such that the flux tube develops an axial uniform cross-section as observed in coronal loops. The pumping process produces counter-rotating, counter-streaming Alfvenic bulk motion consistent with observations. Collision of the counter-streaming beams causes non-localized bulk heating. This picture also has relevance to astrophysical jets and coaxial spheromak guns and explains why these systems tend to form an axial jet along the geometric axis. Supported by USDOE. l ^1 J. A. Klimchuk, Solar Phys. 193, 53 (2000)

  17. Why coronal flux tubes have axially invariant cross-section

    NASA Astrophysics Data System (ADS)

    Bellan, P. M.

    2001-12-01

    We present here a model that not only explains the long-standing mystery of why solar coronal flux tubes tend towards having axially in-variant cross-sections but also explains several other enigmatic features, namely: rotating jets emanating from the ends (surges), counter-streaming beams, ingestion of photospheric material, and elevated pressure/temperature compared to adjacent plasma. The model shows that when a steady current flows along a flux tube with a bulging middle (i.e., a flux tube that is initially produced by a potential magnetic field), non-conservative forces develop which accelerate fluid axially from both ends towards the middle. Remarkably, this axial pumping of fluid into the flux tube causes the flux tube cross-section and volume to decrease in a manner such that the flux tube develops an axial uniform cross-section as observed in coronal loops. The pumping process produces counter-rotating, counter-streaming Alfvenic bulk motion consistent with observations. Collision of the counter-streaming beams causes non-localized bulk heating. This picture also has relevance to astrophysical jets and coaxial spheromak guns and explains why these systems tend to form an axial jet along the geometric axis. Supported by USDOE. [1]J. A. Klimchuk, Solar Phys. 193, 53 (2000)

  18. Intermittent magnetic reconnection in TS-3 merging experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Y.; Hayashi, Y.; Ii, T.

    2011-11-15

    Ejection of current sheet with plasma mass causes impulsive and intermittent magnetic reconnection in the TS-3 spherical tokamak (ST) merging experiment. Under high guide toroidal field, the sheet resistivity is almost classical due to the sheet thickness much longer than the ion gyroradius. Large inflow flux and low current-sheet resistivity result in flux and plasma pileup followed by rapid growth of the current sheet. When the pileup exceeds a critical limit, the sheet is ejected mechanically from the squeezed X-point area. The reconnection (outflow) speed is slow during the flux/plasma pileup and is fast during the ejection, suggesting that intermittentmore » reconnection similar to the solar flare increases the averaged reconnection speed. These transient effects enable the merging tokamaks to have the fast reconnection as well as the high-power reconnection heating, even when their current-sheet resistivity is low under high guide field.« less

  19. Implications of depleted flux tubes in the Jovian magnetosphere

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Kivelson, M. G.; Kurth, W. S.; Gurnett, D. A.

    2000-10-01

    A rare but persistent phenomenon in the jovian magnetosphere is the occurrence of apparently depleted flux tubes, whose magnetic pressures are significantly above ambient levels. These flux tubes occur about 0.25% of the observing time in the region of the Io torus in the Galileo high resolution data. The importance of these tubes is that they can return to the inner magnetosphere the magnetic flux that has been convected radially outward with the iogenic plasma to the tail. The paucity of these tubes is consistent with the expected flux return rates if the tubes are moving inward at an average rate of about 5-10 km/s in the torus. Depleted flux tubes have yet to be observed inside of the Io orbit where the plasma beta is lower than in the hot torus. Estimates of the plasma density outside the tube from plasma wave measurements enable the average perpendicular temperature to be obtained from the magnetic field change. Extrapolating this temperature back to Io, we obtain an average ion temperature of approximately 60 eV. These values are generally consistent with earlier Voyager observations but on the low side of their range of uncertainty, and agree quite well with contemporaneous Galileo measurements where these are available.

  20. Implications of Depleted flux Tubes in the Jovian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Kivelson, M. G.; Kurth, W. S.; Gurnett, D. A.

    2000-01-01

    A rare but persistent phenomenon in the jovian magnetosphere is the occurrence of apparently depleted flux tubes, whose magnetic pressures are significantly above ambient levels. These flux tubes occur about 0.25% of the observing time in the region of the Io torus in the Galileo high resolution data. The importance of these tubes is that they can return to the inner magnetosphere the magnetic flux that has been convected radially outward with the iogenic plasma to the tail. The paucity of these tubes is consistent with the expected flux return rates if the tubes are moving inward at an average rate of about 5-10 km/s in the torus. Depleted flux tubes have yet to be observed inside of the lo orbit where the plasma beta is lower than in the hot torus. Estimates of the plasma density outside the tube from plasma wave measurements enable the average perpendicular temperature to be obtained from the magnetic field change. Extrapolating this temperature back to lo, we obtain an average ion temperature of approximately 60 eV. These values are generally consistent with earlier Voyager observations but on the low side of their range of uncertainty, and agree quite well with contemporaneous Galileo measurements where these are available.

  1. Observation of a Coulomb flux tube

    NASA Astrophysics Data System (ADS)

    Greensite, Jeff; Chung, Kristian

    2018-03-01

    In Coulomb gauge there is a longitudinal color electric field associated with a static quark-antiquark pair. We have measured the spatial distribution of this field, and find that it falls off exponentially with transverse distance from a line joining the two quarks. In other words there is a Coulomb flux tube, with a width that is somewhat smaller than that of the minimal energy flux tube associated with the asymptotic string tension. A confinement criterion for gauge theories with matter fields is also proposed.

  2. Exploring the Flux Tube Paradigm in Solar-like Convection Zones

    NASA Astrophysics Data System (ADS)

    Weber, Maria A.; Nelson, Nicholas; Browning, Matthew

    2017-08-01

    In the solar context, important insight into the flux emergence process has been obtained by assuming the magnetism giving rise to sunspots consists partly of idealized flux tubes. Global-scale dynamo models are only now beginning to capture some aspects of flux emergence. In certain regimes, these simulations self-consistently generate magnetic flux structures that rise buoyantly through the computational domain. How similar are these dynamo-generated, rising flux structures to traditional flux tube models? The work we present here is a step toward addressing this question. We utilize the thin flux tube (TFT) approximation to simply model the evolution of flux tubes in a global, three-dimensional geometry. The TFTs are embedded in convective flows taken from a global dynamo simulation of a rapidly rotating Sun within which buoyant flux structures arise naturally from wreaths of magnetism. The initial conditions of the TFTs are informed by rising flux structures identified in the dynamo simulation. We compare the trajectories of the dynamo-generated flux loops with those computed through the TFT approach. We also assess the nature of the relevant forces acting on both sets of flux structures, such as buoyancy, the Coriolis force, and external forces imparted by the surrounding convection. To achieve the fast <15 day rise of the buoyant flux structures, we must suppress the large retrograde flow established inside the TFTs which occurs due to a strong conservation of angular momentum as they move outward. This tendency is common in flux tube models in solar-like convection zones, but is not present to the same degree in the dynamo-generated flux loops. We discuss the mechanisms that may be responsible for suppressing the axial flow inside the flux tube, and consider the implications this has regarding the role of the Coriolis force in explaining sunspot latitudes and the observed Joy’s Law trend of active regions. Our work aims to provide constraints, and possible

  3. Reconnection at three dimensional magnetic null points: Effect of current sheet asymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyper, P. F.; Jain, Rekha

    2013-05-15

    Asymmetric current sheets are likely to be prevalent in both astrophysical and laboratory plasmas with complex three dimensional (3D) magnetic topologies. This work presents kinematic analytical models for spine and fan reconnection at a radially symmetric 3D null (i.e., a null where the eigenvalues associated with the fan plane are equal) with asymmetric current sheets. Asymmetric fan reconnection is characterized by an asymmetric reconnection of flux past each spine line and a bulk flow of plasma across the null point. In contrast, asymmetric spine reconnection is characterized by the reconnection of an equal quantity of flux across the fan planemore » in both directions. The higher modes of spine reconnection also include localized wedges of vortical flux transport in each half of the fan. In this situation, two definitions for reconnection rate become appropriate: a local reconnection rate quantifying how much flux is genuinely reconnected across the fan plane and a global rate associated with the net flux driven across each semi-plane. Through a scaling analysis, it is shown that when the ohmic dissipation in the layer is assumed to be constant, the increase in the local rate bleeds from the global rate as the sheet deformation is increased. Both models suggest that asymmetry in the current sheet dimensions will have a profound effect on the reconnection rate and manner of flux transport in reconnection involving 3D nulls.« less

  4. Siphon flows in isolated magnetic flux tubes. II - Adiabatic flows

    NASA Technical Reports Server (NTRS)

    Montesinos, Benjamin; Thomas, John H.

    1989-01-01

    This paper extends the study of steady siphon flows in isolated magnetic flux tubes surrounded by field-free gas to the case of adiabatic flows. The basic equations governing steady adiabatic siphon flows in a thin, isolated magnetic flux tube are summarized, and qualitative features of adiabatic flows in elevated, arched flux tubes are discussed. The equations are then cast in nondimensional form and the results of numerical computations of adiabatic siphon flows in arched flux tubes are presented along with comparisons between isothermal and adiabatic flows. The effects of making the interior of the flux tube hotter or colder than the surrounding atmosphere at the upstream footpoint of the arch is considered. In this case, is it found that the adiabatic flows are qualitatively similar to the isothermal flows, with adiabatic cooling producing quantitative differences. Critical flows can produce a bulge point in the rising part of the arch and a concentration of magnetic flux above the bulge point.

  5. Relating magnetic reconnection to coronal heating

    PubMed Central

    Longcope, D. W.; Tarr, L. A.

    2015-01-01

    It is clear that the solar corona is being heated and that coronal magnetic fields undergo reconnection all the time. Here we attempt to show that these two facts are related—i.e. coronal reconnection generates heat. This attempt must address the fact that topological change of field lines does not automatically generate heat. We present one case of flux emergence where we have measured the rate of coronal magnetic reconnection and the rate of energy dissipation in the corona. The ratio of these two, , is a current comparable to the amount of current expected to flow along the boundary separating the emerged flux from the pre-existing flux overlying it. We can generalize this relation to the overall corona in quiet Sun or in active regions. Doing so yields estimates for the contribution to coronal heating from magnetic reconnection. These estimated rates are comparable to the amount required to maintain the corona at its observed temperature. PMID:25897089

  6. The Relation between Reconnected Flux, the Parallel Electric Field, and the Reconnection Rate in a Three-Dimensional Kinetic Simulation of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Wendel, D. E.; Olson, D. K.; Hesse, M.; Karimabadi, H.; Daughton, W. S.

    2013-12-01

    We investigate the distribution of parallel electric fields and their relationship to the location and rate of magnetic reconnection of a large particle-in-cell simulation of 3D turbulent magnetic reconnection with open boundary conditions. The simulation's guide field geometry inhibits the formation of topological features such as separators and null points. Therefore, we derive the location of potential changes in magnetic connectivity by finding the field lines that experience a large relative change between their endpoints, i.e., the quasi-separatrix layer. We find a correspondence between the locus of changes in magnetic connectivity, or the quasi-separatrix layer, and the map of large gradients in the integrated parallel electric field (or quasi-potential). Furthermore, we compare the distribution of parallel electric fields along field lines with the reconnection rate. We find the reconnection rate is controlled by only the low-amplitude, zeroth and first-order trends in the parallel electric field, while the contribution from high amplitude parallel fluctuations, such as electron holes, is negligible. The results impact the determination of reconnection sites within models of 3D turbulent reconnection as well as the inference of reconnection rates from in situ spacecraft measurements. It is difficult through direct observation to isolate the locus of the reconnection parallel electric field amidst the large amplitude fluctuations. However, we demonstrate that a positive slope of the partial sum of the parallel electric field along the field line as a function of field line length indicates where reconnection is occurring along the field line.

  7. SLIPPING MAGNETIC RECONNECTION OF FLUX-ROPE STRUCTURES AS A PRECURSOR TO AN ERUPTIVE X-CLASS SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ting; Hou, Yijun; Zhang, Jun

    We present the quasi-periodic slipping motion of flux-rope structures prior to the onset of an eruptive X-class flare on 2015 March 11, obtained by the Interface Region Imaging Spectrograph and the Solar Dynamics Observatory . The slipping motion occurred at the north part of the flux rope and seemed to successively peel off the flux rope. The speed of the slippage was 30−40 km s{sup −1}, with an average period of 130 ± 30 s. The Si iv λ 1402.77 line showed a redshift of 10−30 km s{sup −1} and a line width of 50−120 km s{sup −1} at themore » west legs of slipping structures, indicative of reconnection downflow. The slipping motion lasted about 40 minutes, and the flux rope started to rise up slowly at the late stage of the slippage. Then an X2.1 flare was initiated, and the flux rope was impulsively accelerated. One of the flare ribbons swept across a negative-polarity sunspot, and the penumbral segments of the sunspot decayed rapidly after the flare. We studied the magnetic topology at the flaring region, and the results showed the existence of a twisted flux rope, together with quasi-separatrix layer (QSL) structures binding the flux rope. Our observations imply that quasi-periodic slipping magnetic reconnection occurs along the flux-rope-related QSLs in the preflare stage, which drives the later eruption of the flux rope and the associated flare.« less

  8. Flow instabilities of magnetic flux tubes. IV. Flux storage in the solar overshoot region

    NASA Astrophysics Data System (ADS)

    Işık, E.; Holzwarth, V.

    2009-12-01

    Context: Flow-induced instabilities of magnetic flux tubes are relevant to the storage of magnetic flux in the interiors of stars with outer convection zones. The stability of magnetic fields in stellar interiors is of importance to the generation and transport of solar and stellar magnetic fields. Aims: We consider the effects of material flows on the dynamics of toroidal magnetic flux tubes located close to the base of the solar convection zone, initially within the overshoot region. The problem is to find the physical conditions in which magnetic flux can be stored for periods comparable to the dynamo amplification time, which is of the order of a few years. Methods: We carry out nonlinear numerical simulations to investigate the stability and dynamics of thin flux tubes subject to perpendicular and longitudinal flows. We compare the simulations with the results of simplified analytical approximations. Results: The longitudinal flow instability induced by the aerodynamic drag force is nonlinear in the sense that the growth rate depends on the perturbation amplitude. This result is consistent with the predictions of linear theory. Numerical simulations without friction show that nonlinear Parker instability can be triggered below the linear threshold of the field strength, when the difference in superadiabaticity along the tube is sufficiently large. A localised downflow acting on a toroidal tube in the overshoot region leads to instability depending on the parameters describing the flow, as well as the magnetic field strength. We determined ranges of the flow parameters for which a linearly Parker-stable magnetic flux tube is stored in the middle of the overshoot region for a period comparable to the dynamo amplification time. Conclusions: The longitudinal flow instability driven by frictional interaction of a flux tube with its surroundings is relevant to determining the storage time of magnetic flux in the solar overshoot region. The residence time for

  9. Structure of sunspot penumbrae - Fallen magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Wentzel, Donat G.

    1992-01-01

    A model is presented of a sunspot penumbra involving magnetic flux tubes that have fallen into the photosphere and float there. An upwelling at the inner end of a fallen tube continuously provides additional gas. This gas flows along and lengthens the tube and is observable as the Evershed flow. Fallen flux tubes may appear as bright streaks near the upwelling, but they become dark filaments further out. The model is corroborated by recent optical high-resolution magnetic data regarding the penumbral filaments, by the 12-micron magnetic measurements relevant to the height of the temperature minimum, and by photographs of the umbra/penumbra boundary.

  10. Asymmetric Magnetic Reconnection in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Murphy, N. A.; Miralles, M. P.; Ranquist, D. A.; Pope, C. L.; Raymond, J. C.; Lukin, V. S.; McKillop, S.; Shen, C.; Winter, H. D.; Reeves, K. K.; Lin, J.

    2013-12-01

    Models of solar flares and coronal mass ejections typically predict the development of an elongated current sheet in the wake behind the rising flux rope. In reality, reconnection in these current sheets will be asymmetric along the inflow, outflow, and out-of-plane directions. We perform resistive MHD simulations to investigate the consequences of asymmetry during solar reconnection. We predict several observational signatures of asymmetric reconnection, including flare loops with a skewed candle flame shape, slow drifting of the current sheet into the strong field upstream region, asymmetric footpoint speeds and hard X-ray emission, and rolling motions within the erupting flux rope. There is net plasma flow across the magnetic field null along both the inflow and outflow directions. We compare simulations to SDO/AIA, Hinode/XRT, and STEREO observations of flare loop shapes, current sheet drifting, and rolling motions during prominence eruptions. Simulations of the plasmoid instability with different upstream magnetic fields show that the reconnection rate remains enhanced even during the asymmetric case. The islands preferentially grow into the weak field upstream region. The islands develop net vorticity because the outflow jets impact them obliquely rather than directly. Asymmetric reconnection in the chromosphere occurs when emerging flux interacts with pre-existing overlying flux. We present initial results on asymmetric reconnection in partially ionized chromospheric plasmas. Finally, we discuss how comparisons to observations are necessary to understand the role of three-dimensional effects.

  11. Asymmetric Magnetic Reconnection in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Murphy, N. A.; Miralles, M. P.; Ranquist, D. A.; Pope, C. L.; Raymond, J. C.; Lukin, V. S.; McKillop, S. C.; Shen, C.; Winter, H. D.; Reeves, K. K.; Lin, J.

    2013-12-01

    Models of solar flares and coronal mass ejections typically predict the development of an elongated current sheet in the wake behind the rising flux rope. In reality, reconnection in these current sheets will be asymmetric along the inflow, outflow, and out-of-plane directions. We perform resistive MHD simulations to investigate the consequences of asymmetry during solar reconnection. We predict several observational signatures of asymmetric reconnection, including flare loops with a skewed candle flame shape, slow drifting of the current sheet into the strong field upstream region, asymmetric footpoint speeds and hard X-ray emission, and rolling motions within the erupting flux rope. There is net plasma flow across the magnetic field null along both the inflow and outflow directions. We compare simulations to SDO/AIA, Hinode/XRT, and STEREO observations of flare loop shapes, current sheet drifting, and rolling motions during prominence eruptions. Simulations of the plasm! oid instability with different upstream magnetic fields show that the reconnection rate remains enhanced even during the asymmetric case. The islands preferentially grow into the weak field upstream region. The islands develop net vorticity because the outflow jets impact them obliquely rather than directly. Asymmetric reconnection in the chromosphere occurs when emerging flux interacts with pre-existing overlying flux. We present initial results on asymmetric reconnection in partially ionized chromospheric plasmas. Finally, we discuss how comparisons to observations are necessary to understand the role of three-dimensional effects.

  12. Magnetic Reconnection and Associated Transient Phenomena Within the Magnetospheres of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Louarn, Philippe; Andre, Nicolas; Jackman, Caitriona M.; Kasahara, Satoshi; Kronberg, Elena A.; Vogt, Marissa F.

    2015-04-01

    We review in situ observations made in Jupiter and Saturn's magnetosphere that illustrate the possible roles of magnetic reconnection in rapidly-rotating magnetospheres. In the Earth's solar wind-driven magnetosphere, the magnetospheric convection is classically described as a cycle of dayside opening and tail closing reconnection (the Dungey cycle). For the rapidly-rotating Jovian and Kronian magnetospheres, heavily populated by internal plasma sources, the classical concept (the Vasyliunas cycle) is that the magnetic reconnection plays a key role in the final stage of the radial plasma transport across the disk. By cutting and closing flux tubes that have been elongated by the rotational stress, the reconnection process would lead to the formation of plasmoids that propagate down the tail, contributing to the final evacuation of the internally produced plasma and allowing the return of the magnetic flux toward the planet. This process has been studied by inspecting possible `local' signatures of the reconnection, as magnetic field reversals, plasma flow anisotropies, energetic particle bursts, and more global consequences on the magnetospheric activity. The investigations made at Jupiter support the concept of an `average' X-line, extended in the dawn/dusk direction and located at 90-120 Jovian radius (RJ) on the night side. The existence of a similar average X-line has not yet been established at Saturn, perhaps by lack of statistics. Both at Jupiter and Saturn, the reconfiguration signatures are consistent with magnetospheric dipolarizations and formation of plasmoids and flux ropes. In several cases, the reconfigurations also appear to be closely associated with large scale activations of the magnetosphere, seen from the radio and auroral emissions. Nevertheless, the statistical study also suggests that the reconnection events and the associated plasmoids are not frequent enough to explain a plasma evacuation that matches the mass input rate from the

  13. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law.

    PubMed

    Joglekar, A S; Thomas, A G R; Fox, W; Bhattacharjee, A

    2014-03-14

    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields. We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfvènic flows. We find that this mechanism is only relevant in a high β plasma. However, the Hall parameter ωcτei can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.

  14. The structure of untwisted magnetic flux tubes. [solar magnetic field distribution

    NASA Technical Reports Server (NTRS)

    Browning, P. K.; Priest, E. R.

    1982-01-01

    While most previous investigations have concentrated on slender flux tubes, the present study of the equilibrium structure of an axisymmetric magnetic flux tube, confined by an external pressure that varies along the length of the tube, explores the properties of thick tubes in order to establish the degree to which slender tube theory is valid. It is found that slender flux tube results may in some cases give no indication of thick tube behavior in a nonuniform atmosphere. Depending on boundary conditions applied at the ends of the tube, it may expand or contract upon entering a region of increasing pressure. Rather than expanding indefinitely, the tube surface may form a cusped shape when a point of external pressure on the tube surface falls to equality with the internal pressure. Numerical solutions for an initially uniform tube give smaller expansions than would be expected from slender tube theory.

  15. Spontaneous magnetic reconnection. Collisionless reconnection and its potential astrophysical relevance

    NASA Astrophysics Data System (ADS)

    Treumann, R. A.; Baumjohann, W.

    2015-10-01

    The present review concerns the relevance of collisionless reconnection in the astrophysical context. Emphasis is put on recent developments in theory obtained from collisionless numerical simulations in two and three dimensions. It is stressed that magnetic reconnection is a universal process of particular importance under collisionless conditions, when both collisional and anomalous dissipation are irrelevant. While collisional (resistive) reconnection is a slow, diffusive process, collisionless reconnection is spontaneous. On any astrophysical time scale, it is explosive. It sets on when electric current widths become comparable to the leptonic inertial length in the so-called lepton (electron/positron) "diffusion region", where leptons de-magnetise. Here, the magnetic field contacts its oppositely directed partner and annihilates. Spontaneous reconnection breaks the original magnetic symmetry, violently releases the stored free energy of the electric current, and causes plasma heating and particle acceleration. Ultimately, the released energy is provided by mechanical motion of either the two colliding magnetised plasmas that generate the current sheet or the internal turbulence cascading down to lepton-scale current filaments. Spontaneous reconnection in such extended current sheets that separate two colliding plasmas results in the generation of many reconnection sites (tearing modes) distributed over the current surface, each consisting of lepton exhausts and jets which are separated by plasmoids. Volume-filling factors of reconnection sites are estimated to be as large as {<}10^{-5} per current sheet. Lepton currents inside exhausts may be strong enough to excite Buneman and, for large thermal pressure anisotropy, also Weibel instabilities. They bifurcate and break off into many small-scale current filaments and magnetic flux ropes exhibiting turbulent magnetic power spectra of very flat power-law shape W_b∝ k^{-α } in wavenumber k with power becoming as

  16. Rotationally driven magnetic reconnection in Saturn's dayside

    NASA Astrophysics Data System (ADS)

    Guo, R. L.; Yao, Z. H.; Wei, Y.; Ray, L. C.; Rae, I. J.; Arridge, C. S.; Coates, A. J.; Delamere, P. A.; Sergis, N.; Kollmann, P.; Grodent, D.; Dunn, W. R.; Waite, J. H.; Burch, J. L.; Pu, Z. Y.; Palmaerts, B.; Dougherty, M. K.

    2018-06-01

    Magnetic reconnection is a key process that explosively accelerates charged particles, generating phenomena such as nebular flares1, solar flares2 and stunning aurorae3. In planetary magnetospheres, magnetic reconnection has often been identified on the dayside magnetopause and in the nightside magnetodisc, where thin-current-sheet conditions are conducive to reconnection4. The dayside magnetodisc is usually considered thicker than the nightside due to the compression of solar wind, and is therefore not an ideal environment for reconnection. In contrast, a recent statistical study of magnetic flux circulation strongly suggests that magnetic reconnection must occur throughout Saturn's dayside magnetosphere5. Additionally, the source of energetic plasma can be present in the noon sector of giant planetary magnetospheres6. However, so far, dayside magnetic reconnection has only been identified at the magnetopause. Here, we report direct evidence of near-noon reconnection within Saturn's magnetodisc using measurements from the Cassini spacecraft. The measured energetic electrons and ions (ranging from tens to hundreds of keV) and the estimated energy flux of 2.6 mW m-2 within the reconnection region are sufficient to power aurorae. We suggest that dayside magnetodisc reconnection can explain bursty phenomena in the dayside magnetospheres of giant planets, which can potentially advance our understanding of quasi-periodic injections of relativistic electrons6 and auroral pulsations7.

  17. THE EFFECT OF RECONNECTION ON THE STRUCTURE OF THE SUN’S OPEN–CLOSED FLUX BOUNDARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pontin, D. I.; Wyper, P. F., E-mail: dpontin@maths.dundee.ac.uk, E-mail: peter.f.wyper@nasa.gov

    2015-05-20

    Global magnetic field extrapolations are now revealing the huge complexity of the Sun's corona, and in particular the structure of the boundary between open and closed magnetic flux. Moreover, recent developments indicate that magnetic reconnection in the corona likely occurs in highly fragmented current layers, and that this typically leads to a dramatic increase in the topological complexity beyond that of the equilibrium field. In this paper we use static models to investigate the consequences of reconnection at the open–closed flux boundary (“interchange reconnection”) in a fragmented current layer. We demonstrate that it leads to efficient mixing of magnetic fluxmore » (and therefore plasma) from open and closed field regions. This corresponds to an increase in the length and complexity of the open–closed boundary. Thus, whenever reconnection occurs at a null point or separator of this open–closed boundary, the associated separatrix arc of the so-called S-web in the high corona becomes not a single line but a band of finite thickness within which the open–closed boundary is highly structured. This has significant implications for the acceleration of the slow solar wind, for which the interaction of open and closed field is thought to be important, and may also explain the coronal origins of certain solar energetic particles. The topological structures examined contain magnetic null points, separatrices and separators, and include a model for a pseudo-streamer. The potential for understanding both the large scale morphology and fine structure observed in flare ribbons associated with coronal nulls is also discussed.« less

  18. Magnetic reconnection process in transient coaxial helicity injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebrahimi, F.; Hooper, E. B.; Sovinec, C. R.

    The physics of magnetic reconnection and fast flux closure in transient coaxial helicity injection experiments in NSTX is examined using resistive MHD simulations. These simulations have been performed using the NIMROD code with fixed boundary flux (including NSTX poloidal coil currents) in the NSTX experimental geometry. Simulations show that an X point is formed in the injector region, followed by formation of closed flux surfaces within 0.5 ms after the driven injector voltage and injector current begin to rapidly decrease. As the injector voltage is turned off, the field lines tend to untwist in the toroidal direction and magnetic fieldmore » compression exerts a radial J × B force and generates a bi-directional radial E{sub toroidal}×B{sub poloidal} pinch flow to bring oppositely directed field lines closer together to reconnect. At sufficiently low magnetic diffusivity (high Lundquist number), and with a sufficiently narrow injector flux footprint width, the oppositely directed field lines have sufficient time to reconnect (before dissipating), leading to the formation of closed flux surfaces. The reconnection process is shown to have transient Sweet-Parker characteristics.« less

  19. Direct measurements of flux tube inclinations in solar plages.

    NASA Astrophysics Data System (ADS)

    Bernasconi, P. N.; Keller, C. U.; Povel, H. P.; Stenflo, J. O.

    1995-10-01

    Observations of the full Stokes vector in three spectral lines indicate that flux tubes in solar plages have an average inclination in the photosphere of 14^o^ with respect to the local vertical. Most flux tubes are inclined in the eastwards direction, i.e., opposite to the solar rotation. We have recorded the Stokes vector of the FeI 5247.1A, FeI 5250.2A, and FeI 5250.7A lines in nine different plages with the polarization-free 20cm Zeiss coronagraph at the Arosa Astrophysical Observatory of ETH Zuerich. The telescope has been modified for solar disk observations. The chosen spectral lines are particularly sensitive to magnetic field strength and temperature. To determine the field strength and geometry of the flux tubes in the observed plages we use an inversion code that numerically solves the radiative transfer equations and derives the emergent Stokes profiles for one-dimensional model atmospheres consisting of a flux tube and its surrounding non-magnetic atmosphere. Our results confirm earlier indirect estimates of the inclination of the magnetic fields in plages.

  20. Mini-CME eruptions in a flux emergence event in a coronal hole environment

    NASA Astrophysics Data System (ADS)

    Galsgaard, K.; Moreno-Insertis, F.

    2016-10-01

    Small scale jets are observed to take place at the interface between the open magnetic field in coronal holes and bipolar magnetic field concentrations. A fraction of these shows an eruptive behavior, where a combination of cold dense and hot light plasma has been observed to propagate out along the jet region, combining traditional jets with what looks like the eruption of mini-CMEs. Here we discuss a simple model scenario for the explosive energy release process that leads to a mixture of hot and cold plasma being accelerated upwards simultaneously. The model explains both the typical steady state inverted-Y jet and the subsequent mini-CME eruptions found in blowout jets. The numerical experiment consists of a buoyant unstable flux rope that emerges into an overlying slanted coronal field, thereby creating a bipolar magnetic field distribution in the photosphere with coronal loops linking the polarities. Reconnection between the emerged and preexisting magnetic systems including the launching of a classical inverted-Y jet. The experiment shows that this simple model provides for a very complicated dynamical behavior in its late phases. Five independent mini-CME eruptions follow the initial near steady-state jet phase. The first one is a direct consequence of the reconnection of the emerged magnetic flux, is mediated by the formation of a strongly sheared arcade followed by a tether-cutting reconnection process, and leads to the eruption of a twisted flux rope. The final four explosive eruptions, instead, are preceded by the formation of a twisted torus-like flux rope near the strong magnetic concentrations at the photosphere. As the tube center starts emerging an internal current sheet is formed below it. This sheet experiences a tether cutting process that provides the important upwards kick of the newly formed mini-CME structure. As the fast rising cold and dense tube interacts with the overlying magnetic field, it reconnects at different spatial locations

  1. Signature of the Fragmentation of a Color Flux Tube

    DOE PAGES

    Wong, Cheuk-Yin

    2015-10-07

    The production of quark-antiquark pairs along a color flux tube precedes the fragmentation of the tube. Because of the local conservation of momentum and charge, the production of amore » $q$-$$\\bar q$$ pair will lead to correlations of adjacently produced mesons (mostly pions). Adjacently produced pions however can be signalled by the their rapidity difference $$\\Delta y$$ falling within the window of $$|\\Delta y | < 1/(dN_\\pi/dy)$$, on account of the space-time-rapidity ordering of produced pions in a flux tube fragmentation. Therefore, the local conservation of momentum will lead to a suppression of azimuthal two-pion correlation $$dN/(d\\Delta \\phi\\, d\\Delta y)$$ on the near side at $$(\\Delta \\phi, \\Delta y) \\sim 0$$, but an enhanced azimuthal correlation on the back-to-back, away side at $$(\\Delta \\phi$$$\\sim$$$ \\pi,\\Delta y$$$\\sim$$0). Similarly, in a flux tube fragmentation, the local conservation of charge will forbid the production of like charge pions within $$|\\Delta y | < 1/(dN_\\pi/dy)$$, but there is no such prohibition for $$|\\Delta y| >1/(dN_\\pi/dy)$$. These properties may be used as the signature for the fragmentation of a color flux tube.« less

  2. Interactions between vortex tubes and magnetic-flux rings at high kinetic and magnetic Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Kivotides, Demosthenes

    2018-03-01

    The interactions between vortex tubes and magnetic-flux rings in incompressible magnetohydrodynamics are investigated at high kinetic and magnetic Reynolds numbers, and over a wide range of the interaction parameter. The latter is a measure of the turnover time of the large-scale fluid motions in units of the magnetic damping time, or of the strength of the Lorentz force in units of the inertial force. The small interaction parameter results, which are related to kinematic turbulent dynamo studies, indicate the evolution of magnetic rings into flattened spirals wrapped around the vortex tubes. This process is also observed at intermediate interaction parameter values, only now the Lorentz force creates new vortical structures at the magnetic spiral edges, which have a striking solenoid vortex-line structure, and endow the flattened magnetic-spiral surfaces with a curvature. At high interaction parameter values, the decisive physical factor is Lorentz force effects. The latter create two (adjacent to the magnetic ring) vortex rings that reconnect with the vortex tube by forming an intriguing, serpentinelike, vortex-line structure, and generate, in turn, two new magnetic rings, adjacent to the initial one. In this regime, the morphologies of the vorticity and magnetic field structures are similar. The effects of these structures on kinetic and magnetic energy spectra, as well as on the direction of energy transfer between flow and magnetic fields, are also indicated.

  3. Nonlocal Ohms Law, Plasma Resistivity, and Reconnection During Collisions of Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Gekelman, W.; DeHaas, T.; Pribyl, P.; Vincena, S.; Van Compernolle, B.; Sydora, R.; Tripathi, S. K. P.

    2018-01-01

    The plasma resistivity was evaluated in an experiment on the collision of two magnetic flux ropes. Whenever the ropes collide, some magnetic energy is lost as a result of reconnection. Volumetric data, in which all the relevant time-varying quantities were recorded in detail, are presented. Ohm’s law is shown to be nonlocal and cannot be used to evaluate the plasma resistivity. The resistivity was instead calculated using the AC Kubo resistivity and shown to be anomalously high in certain regions of space.

  4. Dynamics of Magnetic Flux Tubes in an Advective Flow around a Black Hole

    NASA Astrophysics Data System (ADS)

    Deb, Arnab; Chakrabarti, Sandip Kumar; Giri, Kinsuk

    2016-07-01

    Magnetic fields cannibalized by an accretion flow would very soon have a dominant toroidal component. Without changing the topology, we study the movements of these flux tubes inside a geometrically thick advective disk which undergo centrifugal pressure supported shocks. We also consider the effects of the flux tubes on the flow. We use a finite element method (Total Variation Diminishing) for this purpose and specifically focussed whether the flux tubes contribute to changes in outflow properties in terms of its collimation and outflow rates. It is seen that depending upon the cross sectional radius of the flux tubes (which control the drag force), these field lines may move towards the central object or oscillate vertically before eventually escaping out of the funnel wall (pressure zero surface). These interesting results obtained with and without flux tubes point to the role the flux tubes play in collimation of jets and outflows.

  5. A Magnetic Reconnection Event in the Solar Atmosphere Driven by Relaxation of a Twisted Arch Filament System

    NASA Astrophysics Data System (ADS)

    Huang, Zhenghua; Mou, Chaozhou; Fu, Hui; Deng, Linhua; Li, Bo; Xia, Lidong

    2018-02-01

    We present high-resolution observations of a magnetic reconnection event in the solar atmosphere taken with the New Vacuum Solar Telescope, Atmospheric Imaging Assembly (AIA), and Helioseismic and Magnetic Imager (HMI). The reconnection event occurred between the threads of a twisted arch filament system (AFS) and coronal loops. Our observations reveal that the relaxation of the twisted AFS drives some of its threads to encounter the coronal loops, providing inflows of the reconnection. The reconnection is evidenced by flared X-shape features in the AIA images, a current-sheet-like feature apparently connecting post-reconnection loops in the Hα + 1 Å images, small-scale magnetic cancelation in the HMI magnetograms and flows with speeds of 40–80 km s‑1 along the coronal loops. The post-reconnection coronal loops seen in the AIA 94 Å passband appear to remain bright for a relatively long time, suggesting that they have been heated and/or filled up by dense plasmas previously stored in the AFS threads. Our observations suggest that the twisted magnetic system could release its free magnetic energy into the upper solar atmosphere through reconnection processes. While the plasma pressure in the reconnecting flux tubes are significantly different, the reconfiguration of field lines could result in transferring of mass among them and induce heating therein.

  6. A Rosetta Stone for in situ Observations of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.; Daughton, W. S.; Karimabadi, H.; Roytershteyn, V.

    2015-12-01

    Local conditions that constrain the physics of magnetic reconnection in space in 3D will be discussed, including those observable conditions presently used and new ones that enhance experimental closure. Three classes of tests will be discussed: i) proxies for unmeasurable theoretical properties II) observable properties satisfied by all layers that pass mass flux, including those of the reconnection layer, and (iii) observable kinetic tests that are increasingly peculiar to collisionless magnetic reconnection. A Rosetta Stone of state of the art observables will be proposed, including proxies for unmeasurable theoretical local rate of frozen flux violation and measures of the significance of frozen flux encountered. A suite of kinetic observables involving properties peculiar to electrons will also be demonstrated as promising litmus tests for certifying sites of collisionless magnetic reconnection.

  7. Genesis of Interplanetary Intermittent Turbulence: a Case Study of Rope-Rope Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.- L.; Feng, Heng Q.; Hu, Qiang; Loew, Murray H.; Miranda, Rodrigo A.; Munoz, Pablo R.; Sibeck, David G.; Wu, De J.

    2016-01-01

    In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope-rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event. The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.

  8. A RECONNECTION-DRIVEN MODEL OF THE HARD X-RAY LOOP-TOP SOURCE FROM FLARE 2004 FEBRUARY 26

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longcope, Dana; Qiu, Jiong; Brewer, Jasmine

    A compact X-class flare on 2004 February 26 showed a concentrated source of hard X-rays at the tops of the flare’s loops. This was analyzed in previous work and interpreted as plasma heated and compressed by slow magnetosonic shocks (SMSs) generated during post-reconnection retraction of the flux. That work used analytic expressions from a thin flux tube (TFT) model, which neglected many potentially important factors such as thermal conduction and chromospheric evaporation. Here we use a numerical solution of the TFT equations to produce a more comprehensive and accurate model of the same flare, including those effects previously omitted. Thesemore » simulations corroborate the prior hypothesis that slow-mode shocks persist well after the retraction has ended, thus producing a compact, loop-top source instead of an elongated jet, as steady reconnection models predict. Thermal conduction leads to densities higher than analytic estimates had predicted, and evaporation enhances the density still higher, but at lower temperatures. X-ray light curves and spectra are synthesized by convolving the results from a single TFT simulation with the rate at which flux is reconnected, as measured through motion of flare ribbons, for example. These agree well with light curves observed by RHESSI and GOES and spectra from RHESSI . An image created from a superposition of TFT model runs resembles one produced from RHESSI observations. This suggests that the HXR loop-top source, at least the one observed in this flare, could be the result of SMSs produced in fast reconnection models like Petschek’s.« less

  9. GENESIS OF INTERPLANETARY INTERMITTENT TURBULENCE: A CASE STUDY OF ROPE–ROPE MAGNETIC RECONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chian, Abraham C.-L.; Loew, Murray H.; Feng, Heng Q.

    In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad–Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope–rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event.more » The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.« less

  10. Diffusion of Magnetic Field and Removal of Magnetic Flux from Clouds Via Turbulent Reconnection

    NASA Astrophysics Data System (ADS)

    Santos-Lima, R.; Lazarian, A.; de Gouveia Dal Pino, E. M.; Cho, J.

    2010-05-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the

  11. ASYMMETRIC MAGNETIC RECONNECTION IN WEAKLY IONIZED CHROMOSPHERIC PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Nicholas A.; Lukin, Vyacheslav S., E-mail: namurphy@cfa.harvard.edu

    2015-06-01

    Realistic models of magnetic reconnection in the solar chromosphere must take into account that the plasma is partially ionized and that plasma conditions within any two magnetic flux bundles undergoing reconnection may not be the same. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present 2.5D simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, ion and neutral densities, and temperatures are different in each upstream region. The plasma and neutral components are evolved separately to allow non-equilibrium ionization. As in previous simulations of chromospheric reconnection,more » the current sheet thins to the scale of the neutral–ion mean free path and the ion and neutral outflows are strongly coupled. However, the ion and neutral inflows are asymmetrically decoupled. In cases with magnetic asymmetry, a net flow of neutrals through the current sheet from the weak-field (high-density) upstream region into the strong-field upstream region results from a neutral pressure gradient. Consequently, neutrals dragged along with the outflow are more likely to originate from the weak-field region. The Hall effect leads to the development of a characteristic quadrupole magnetic field modified by asymmetry, but the X-point geometry expected during Hall reconnection does not occur. All simulations show the development of plasmoids after an initial laminar phase.« less

  12. Near-Earth Reconnection Ejecta at Lunar Distances

    NASA Astrophysics Data System (ADS)

    Runov, A.; Angelopoulos, V.; Artemyev, A.; Lu, S.; Zhou, X.-Z.

    2018-04-01

    Near-Earth magnetotail reconnection leads to formation of earthward and tailward directed plasma outflows with an increased north-south magnetic field strength(|Bz|) at their leading edges. We refer to these regions of enhanced |Bz| and magnetic flux transport Ey as reconnection ejecta. They are composed of what have been previously referred to as earthward dipolarizing flux bundles (DFBs) and tailward rapid flux transport (RFT) events. Using two-point observations of magnetic and electric fields and particle fluxes by the Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun probes orbiting around Moon at geocentric distances R ˜ 60RE, we statistically studied plasma moments and particle energy spectra in RFTs and compared them with those observed within DFBs in the near-Earth plasma sheet by the Time History of Events and Macroscale Interactions during Substorms probes. We found that the ion average temperatures and spectral slopes in RFTs at R ˜ 60RE are close to those in DFBs observed at 15 < R < 25RE, just earthward of the probable reconnection region location. Assuming plasma sheet pressure balance, the average RFT ion temperature corresponds to a lobe field BL˜20 nT. This leads us to suggest that the ion population within the tailward ejecta originated in the midtail plasma sheet at 20≤R≤30RE and propagated to the Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun location without undergoing any further energy gain. Conversely, electron temperatures in DFBs at 15 < R < 25RE are a factor of 2.5 higher than those in RFTs at R ˜ 60RE.

  13. TETHER-CUTTING RECONNECTION BETWEEN TWO SOLAR FILAMENTS TRIGGERING OUTFLOWS AND A CORONAL MASS EJECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huadong; Zhang, Jun; Li, Leping

    Triggering mechanisms of solar eruptions have long been a challenge. A few previous case studies have indicated that preceding gentle filament merging via magnetic reconnection may launch following intense eruption, according to the tether-cutting (TC) model. However, the detailed process of TC reconnection between filaments has not been exhibited yet. In this work, we report the high-resolution observations from the Interface Region Imaging Spectrometer (IRIS) of TC reconnection between two sheared filaments in NOAA active region 12146. The TC reconnection commenced on ∼15:35 UT on 2014 August 29 and triggered an eruptive GOES C4.3-class flare ∼8 minutes later. An associatedmore » coronal mass ejection appeared in the field of view of the Solar and Heliospheric Observatory/LASCO C2 about 40 minutes later. Thanks to the high spatial resolution of IRIS data, bright plasma outflows generated by the TC reconnection are clearly observed, which moved along the subarcsecond fine-scale flux tube structures in the erupting filament. Based on the imaging and spectral observations, the mean plane-of-sky and line-of-sight velocities of the TC reconnection outflows are separately measured to be ∼79 and 86 km s{sup −1}, which derives an average real speed of ∼120 km s{sup −1}. In addition, it is found that spectral features, such as peak intensities, Doppler shifts, and line widths in the TC reconnection region are evidently enhanced compared to those in the nearby region just before the flare.« less

  14. SLIPPING MAGNETIC RECONNECTION TRIGGERING A SOLAR ERUPTION OF A TRIANGLE-SHAPED FLAG FLUX ROPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ting; Zhang, Jun, E-mail: liting@nao.cas.cn, E-mail: zjun@nao.cas.cn

    2014-08-10

    We report the first simultaneous activities of the slipping motion of flare loops and a slipping eruption of a flux rope in 131 Å and 94 Å channels on 2014 February 2. The east hook-like flare ribbon propagated with a slipping motion at a speed of about 50 km s{sup –1}, which lasted about 40 minutes and extended by more than 100 Mm, but the west flare ribbon moved in the opposite direction with a speed of 30 km s{sup –1}. At the later phase of flare activity, there was a well developed ''bi-fan'' system of flare loops. The east footpoints ofmore » the flux rope showed an apparent slipping motion along the hook of the ribbon. Simultaneously, the fine structures of the flux rope rose up rapidly at a speed of 130 km s{sup –1}, much faster than that of the whole flux rope. We infer that the east footpoints of the flux rope are successively heated by a slipping magnetic reconnection during the flare, which results in the apparent slippage of the flux rope. The slipping motion delineates a ''triangle-shaped flag surface'' of the flux rope, implying that the topology of a flux rope is more complex than anticipated.« less

  15. Colliding Magnetic Flux Ropes and Quasi-Separatrix Layers in a Laboratory Plasma

    NASA Astrophysics Data System (ADS)

    Lawrence, Eric Eugene

    An experimental study of the dynamics of colliding magnetic flux ropes and the magnetic reconnection that occurs during these collisions is presented. A magnetic flux rope is a bundle of twisted magnetic field lines that is ubiquitous in space and solar plasmas. The flux ropes are created in the Large Plasma Device (LAPD) using two heated lanthanum hexaboride (LaB6) cathodes that inject currents into the background plasma. The currents are initially parallel to the background magnetic field. The azimuthal field of each current together with the background axial field create helical twisted flux ropes. It is found that the flux ropes rotate in time (corkscrew) and collide with each other. During a collision, antiparallel magnetic fields can undergo magnetic reconnection. When these collisions occur, we observe current layers flowing in the opposite direction of the injected current, a signatuare of reconnection. Analysis of the three-dimensional magnetic field lines shows the existence of quasi-separatrix layers (QSLs). These are regions in the magnetic configuration where there are large spatial gradients in the connectivity of field line footpoints in the boundary surfaces. QSLs are thought to be favorable sites for magnetic reconnection. It is shown that the location and shape of the QSL is similar to what is seen in simulations of merging flux ropes. Furthermore, the field line structure of the QSL is similar to that of a twisted hyperbolic flux tube (HFT). An HFT is a type of QSL that has been shown to be a preferred site for current sheet formation in simulations of interacting coronal loops. The HFT in this experiment is found to be generally near the reverse current layers, although the agreement is not perfect. Looking at the time evolution of the QSL, we find that the QSL cross-sectional area grows and contracts at the same time that the flux ropes collide and that the reverse current layers appear. Analysis of the field line motion shows that, during

  16. Dynamics of magnetic flux tubes in an advective flow around a black hole

    NASA Astrophysics Data System (ADS)

    Deb, Arnab; Giri, Kinsuk; Chakrabarti, Sandip K.

    2017-12-01

    Entangled magnetic fields entering into an accretion flow would very soon be stretched into a dominant toroidal component due to strong differentially rotating motion inside the accretion disc. This is particularly true for weakly viscous, low angular momentum transonic or advective discs. We study the trajectories of toroidal flux tubes inside a geometrically thick flow that undergoes a centrifugal force supported shock. We also study effects of these flux tubes on the dynamics of the inflow and the outflow. We use a finite difference method (total variation diminishing) for this purpose and specifically focused on whether these flux tubes significantly affect the properties of the outflows such as its collimation and the rate. It is seen that depending upon the cross-sectional radius of the flux tubes that control the drag force, these field lines may move towards the central object or oscillate vertically before eventually escaping out of the funnel wall (pressure zero surfaces) along the vertical direction. A comparison of results obtained with and without flux tubes show these flux tubes could play a pivotal role in collimation and acceleration of jets and outflows.

  17. Siphon flows in isolated magnetic flux tubes. V - Radiative flows with variable ionization

    NASA Technical Reports Server (NTRS)

    Montesinos, Benjamin; Thomas, John H.

    1993-01-01

    Steady siphon flows in arched isolated magnetic flux tubes in the solar atmosphere are calculated here including radiative transfer between the flux tube and its surrounding and variable ionization of the flowing gas. It is shown that the behavior of a siphon flow is strongly determined by the degree of radiative coupling between the flux tube and its surroundings in the superadiabatic layer just below the solar surface. Critical siphon flows with adiabatic tube shocks in the downstream leg are calculated, illustrating the radiative relaxation of the temperature jump downstream of the shock. For flows in arched flux tubes reaching up to the temperature minimum, where the opacity is low, the gas inside the flux tube is much cooler than the surrounding atmosphere at the top of the arch. It is suggested that gas cooled by siphon flows contribute to the cool component of the solar atmosphere at the height of the temperature minimum implied by observations of the infrared CO bands at 4.6 and 2.3 microns.

  18. Emergence of magnetic flux from the convection zone into the corona

    NASA Astrophysics Data System (ADS)

    Archontis, V.; Moreno-Insertis, F.; Galsgaard, K.; Hood, A.; O'Shea, E.

    2004-11-01

    the direction of the tube axis and thus, given the twist of the magnetic tube, almost anti-parallel to the field lines at the upper boundary of the rising plasma ball. A thin, dome-shaped current layer is formed at the interface between the two flux systems, in which ohmic dissipation and heating are taking place. The reconnection proceeds by merging successive layers on both sides of the reconnection site; however, this occurs not only at the cusp of the interface, but, also, gradually along its sides in the direction transverse to the ambient magnetic field. The topology of the magnetic field in the atmosphere is thereby modified: the reconnected field lines typically are part of the flanks of the tube below the photosphere but then join the ambient field system in the corona and reach the boundaries of the domain as horizontal field lines.

  19. MAGNETIC FLUX TUBE INTERCHANGE AT THE HELIOPAUSE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florinski, V., E-mail: vaf0001@uah.edu

    2015-11-01

    The magnetic field measured by Voyager 1 prior to its heliocliff encounter on 2012.65 showed an unexpectedly complex transition from the primarily azimuthal inner-heliosheath field to the draped interstellar field tilted by some 20° to the nominal azimuthal direction. Most prominent were two regions of enhanced magnetic field strength depleted in energetic charged particles of heliospheric origin. These regions were interpreted as magnetic flux tubes connected to the outer heliosheath that provided a path for the particles to escape. Despite large increases in strength, the field’s direction did not change appreciably at the boundaries of these flux tubes. Rather, themore » field’s direction changed gradually over several months prior to the heliocliff crossing. It is shown theoretically that the heliopause, as a pressure equilibrium layer, can become unstable to interchange of magnetic fields between the inner and the outer heliosheaths. The curvature of magnetic field lines and the anti-sunward gradient in plasma kinetic pressure provide conditions favorable for an interchange. Magnetic shear between the heliosheath and the interstellar fields reduces the growth rates, but does not fully stabilize the heliopause against perturbations propagating in the latitudinal direction. The instability could create a transition layer permeated by magnetic flux tubes, oriented parallel to each other and alternately connected to the heliosheath or the interstellar regions.« less

  20. Dyonic Flux Tube Structure of Nonperturbative QCD Vacuum

    NASA Astrophysics Data System (ADS)

    Chandola, H. C.; Pandey, H. C.

    We study the flux tube structure of the nonperturbative QCD vacuum in terms of its dyonic excitations by using an infrared effective Lagrangian and show that the dyonic condensation of QCD vacuum has a close connection with the process of color confinement. Using the fiber bundle formulation of QCD, the magnetic symmetry condition is presented in a gauge covariant form and the gauge potential has been constructed in terms of the magnetic vectors on global sections. The dynamical breaking of the magnetic symmetry has been shown to lead the dyonic condensation of QCD vacuum in the infrared energy sector. Deriving the asymptotic solutions of the field equations in the dynamically broken phase, the dyonic flux tube structure of QCD vacuum is explored which has been shown to lead the confinement parameters in terms of the vector and scalar mass modes of the condensed vacuum. Evaluating the charge quantum numbers and energy associated with the dyonic flux tube solutions, the effect of electric excitation of monopole is analyzed using the Regge slope parameter (as an input parameter) and an enhancement in the dyonic pair correlations and the confining properties of QCD vacuum in its dyonically condensed mode has been demonstrated.

  1. Multi-scale structures of turbulent magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, T. K. M., E-mail: takuma.nakamura@oeaw.ac.at; Nakamura, R.; Narita, Y.

    2016-05-15

    We have analyzed data from a series of 3D fully kinetic simulations of turbulent magnetic reconnection with a guide field. A new concept of the guide filed reconnection process has recently been proposed, in which the secondary tearing instability and the resulting formation of oblique, small scale flux ropes largely disturb the structure of the primary reconnection layer and lead to 3D turbulent features [W. Daughton et al., Nat. Phys. 7, 539 (2011)]. In this paper, we further investigate the multi-scale physics in this turbulent, guide field reconnection process by introducing a wave number band-pass filter (k-BPF) technique in whichmore » modes for the small scale (less than ion scale) fluctuations and the background large scale (more than ion scale) variations are separately reconstructed from the wave number domain to the spatial domain in the inverse Fourier transform process. Combining with the Fourier based analyses in the wave number domain, we successfully identify spatial and temporal development of the multi-scale structures in the turbulent reconnection process. When considering a strong guide field, the small scale tearing mode and the resulting flux ropes develop over a specific range of oblique angles mainly along the edge of the primary ion scale flux ropes and reconnection separatrix. The rapid merging of these small scale modes leads to a smooth energy spectrum connecting ion and electron scales. When the guide field is sufficiently weak, the background current sheet is strongly kinked and oblique angles for the small scale modes are widely scattered at the kinked regions. Similar approaches handling both the wave number and spatial domains will be applicable to the data from multipoint, high-resolution spacecraft observations such as the NASA magnetospheric multiscale (MMS) mission.« less

  2. Multi-scale structures of turbulent magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Nakamura, T. K. M.; Nakamura, R.; Narita, Y.; Baumjohann, W.; Daughton, W.

    2016-05-01

    We have analyzed data from a series of 3D fully kinetic simulations of turbulent magnetic reconnection with a guide field. A new concept of the guide filed reconnection process has recently been proposed, in which the secondary tearing instability and the resulting formation of oblique, small scale flux ropes largely disturb the structure of the primary reconnection layer and lead to 3D turbulent features [W. Daughton et al., Nat. Phys. 7, 539 (2011)]. In this paper, we further investigate the multi-scale physics in this turbulent, guide field reconnection process by introducing a wave number band-pass filter (k-BPF) technique in which modes for the small scale (less than ion scale) fluctuations and the background large scale (more than ion scale) variations are separately reconstructed from the wave number domain to the spatial domain in the inverse Fourier transform process. Combining with the Fourier based analyses in the wave number domain, we successfully identify spatial and temporal development of the multi-scale structures in the turbulent reconnection process. When considering a strong guide field, the small scale tearing mode and the resulting flux ropes develop over a specific range of oblique angles mainly along the edge of the primary ion scale flux ropes and reconnection separatrix. The rapid merging of these small scale modes leads to a smooth energy spectrum connecting ion and electron scales. When the guide field is sufficiently weak, the background current sheet is strongly kinked and oblique angles for the small scale modes are widely scattered at the kinked regions. Similar approaches handling both the wave number and spatial domains will be applicable to the data from multipoint, high-resolution spacecraft observations such as the NASA magnetospheric multiscale (MMS) mission.

  3. 20 and 3D Numerical Simulations of Flux Cancellation

    NASA Technical Reports Server (NTRS)

    Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.

    2009-01-01

    Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta= 1 level (Le., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a lOW-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.

  4. Reconnection, Particle Acceleration, and Hard X-ray Emission in Eruptive Solar Flares

    NASA Astrophysics Data System (ADS)

    Martens, Petrus C.

    1998-11-01

    The frequent occurrence of Hard X-ray emission from the top of flaring loops was one of the discoveries by the Hard X-ray telescope on board the Japanese Yohkoh satellite. I will show how the combined effect of magnetic field convergence and pitch- angle scattering of non-thermal electrons injected at the top of the loop results in the generation of looptop sources with properties akin to those observed by Yohkoh. In addition it is shown that the injection of proton beams in the loop legs, expected from theory, reproduces the observed high temperature ``ridges" in the loop legs by mirroring and energy loss through collisions. I will interpret these numerical results as supporting the now widely accepted model of an erupting magnetic flux tube generating a reconnecting current sheet in its wake, where most of the energy release takes place. The strong similarity with the reconnection observed in the MRX experiment in Princeton will be analyzed in detail.

  5. Ion-Scale Structure in Mercury's Magnetopause Reconnection Diffusion Region

    NASA Technical Reports Server (NTRS)

    Gershman, Daniel J.; Dorelli, John C.; DiBraccio, Gina A.; Raines, Jim M.; Slavin, James A.; Poh, Gangkai; Zurbuchen, Thomas H.

    2016-01-01

    The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use approximately 150 milliseconds measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury's dayside polar cap boundary (PCB) to infer such small-scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of approximately 0.3 to 3 millivolts per meter reconnection electric fields separated by approximately 5 to10 seconds, resulting in average and peak normalized dayside reconnection rates of approximately 0.02 and approximately 0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.

  6. Calibrating MMS Electron Drift Instrument (EDI) Ambient Electron Flux Measurements and Characterizing 3D Electric Field Signatures of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Shuster, J. R.; Torbert, R. B.; Vaith, H.; Argall, M. R.; Li, G.; Chen, L. J.; Ergun, R. E.; Lindqvist, P. A.; Marklund, G. T.; Khotyaintsev, Y. V.; Russell, C. T.; Magnes, W.; Le Contel, O.; Pollock, C. J.; Giles, B. L.

    2015-12-01

    The electron drift instruments (EDIs) onboard each MMS spacecraft are designed with large geometric factors (~0.01cm2 str) to facilitate detection of weak (~100 nA) electron beams fired and received by the two gun-detector units (GDUs) when EDI is in its "electric field mode" to determine the local electric and magnetic fields. A consequence of the large geometric factor is that "ambient mode" electron flux measurements (500 eV electrons having 0°, 90°, or 180° pitch angle) can vary depending on the orientation of the EDI instrument with respect to the magnetic field, a nonphysical effect that requires a correction. Here, we present determinations of the θ- and ø-dependent correction factors for the eight EDI GDUs, where θ (ø) is the polar (azimuthal) angle between the GDU symmetry axis and the local magnetic field direction, and compare the corrected fluxes with those measured by the fast plasma instrument (FPI). Using these corrected, high time resolution (~1,000 samples per second) ambient electron fluxes, combined with the unprecedentedly high resolution 3D electric field measurements taken by the spin-plane and axial double probes (SDP and ADP), we are equipped to accurately detect electron-scale current layers and electric field waves associated with the non-Maxwellian (anisotropic and agyrotropic) particle distribution functions predicted to exist in the reconnection diffusion region. We compare initial observations of the diffusion region with distributions and wave analysis from PIC simulations of asymmetric reconnection applicable for modeling reconnection at the Earth's magnetopause, where MMS will begin Science Phase 1 as of September 1, 2015.

  7. Comparison between Magnetopause and Magnetotail Reconnection Processes

    NASA Astrophysics Data System (ADS)

    Walker, R. J.; Lapenta, G.; Berchem, J.; El-Alaoui, M.

    2017-12-01

    For the past two years the Magnetosphere Multiscale (MMS) mission has returned detailed observations of reconnection at Earth's dayside magnetopause and now apogee has moved into the magnetotail to enable investigations of reconnection in the plasma sheet. We have been using a combination of global magnetohydrodynamic (MHD) simulation and particle-in-cell (PIC) simulation to model the physics of the reconnection process in both regions. In these calculations, we first use the MHD simulation to model the overall magnetospheric configuration and then carry out a large implicit PIC simulation by using the resulting MHD state to set the initial and boundary conditions. In this presentation, we review the similarities and differences found between the physical processes involved in reconnection occurring in the two different regions. For instance, similar crescent shaped distribution functions have been both observed and found in simulations of reconnection at the magnetopause and in the tail current sheet. Likewise, kinetic simulations have shown that the agyrotropy (non-gyrotropy) of the electron distribution function is the cleanest indicator of the location of the electron diffusion region (EDR) of both regions. There are also significant differences between the two regions. These are mostly related to the fact that separatrices are different because the plasma density is asymmetric across the dayside magnetopause and that smaller electric and guide fields are present in the night side. For instance, the jetting plasmas from reconnection in the tail form dipolarization fronts where energy exchange occurs while flux transfer events (flux ropes) form on the magnetopause and then move away from the reconnection site without forming dipolarization fronts. However, many uncertainties remain. For example, strong waves associated with the reconnection are found in the EDR at both places but it is not understood whether the kinetic mechanisms leading to the waves are the

  8. Turbulent reconnection and its implications

    PubMed Central

    Lazarian, A.; Eyink, G.; Vishniac, E.; Kowal, G.

    2015-01-01

    Magnetic reconnection is a process of magnetic field topology change, which is one of the most fundamental processes happening in magnetized plasmas. In most astrophysical environments, the Reynolds numbers corresponding to plasma flows are large and therefore the transition to turbulence is inevitable. This turbulence, which can be pre-existing or driven by magnetic reconnection itself, must be taken into account for any theory of magnetic reconnection that attempts to describe the process in the aforementioned environments. This necessity is obvious as three-dimensional high-resolution numerical simulations show the transition to the turbulence state of initially laminar reconnecting magnetic fields. We discuss ideas of how turbulence can modify reconnection with the focus on the Lazarian & Vishniac (Lazarian & Vishniac 1999 Astrophys. J. 517, 700–718 ()) reconnection model. We present numerical evidence supporting the model and demonstrate that it is closely connected to the experimentally proven concept of Richardson dispersion/diffusion as well as to more recent advances in understanding of the Lagrangian dynamics of magnetized fluids. We point out that the generalized Ohm's law that accounts for turbulent motion predicts the subdominance of the microphysical plasma effects for reconnection for realistically turbulent media. We show that one of the most dramatic consequences of turbulence is the violation of the generally accepted notion of magnetic flux freezing. This notion is a cornerstone of most theories dealing with magnetized plasmas, and therefore its change induces fundamental shifts in accepted paradigms, for instance, turbulent reconnection entails reconnection diffusion process that is essential for understanding star formation. We argue that at sufficiently high Reynolds numbers the process of tearing reconnection should transfer to turbulent reconnection. We discuss flares that are predicted by turbulent reconnection and relate this process to

  9. High resolution studies of sunspots and flux tubes

    NASA Technical Reports Server (NTRS)

    Title, Alan

    1994-01-01

    This contract is for a three-year research study of sunspots and magnetic flux tubes in the solar atmosphere, using tunable filter images collected with a CCD camera during observing runs at the Canary Islands observatories in Spain. The best observations are analyzed and compared with theoretical models, to study the structure and dynamics of sunspots, their connections with surrounding magnetic fields, and the properties and evolution of smaller flux tubes in plage and quiet sun. Scientific results are reported at conferences and published in the appropriate journals. The contract is being performed by the Solar and Astrophysics Laboratory, part of the Lockheed Palo Alto Research Laboratory (LPARL) of the Research and Development Division (RDD) of Lockheed Missiles and Space Co., Inc. (LMSC). The principal investigator is Dr. Alan Title, and the research is done by him and other scientific staff at LPARL and Solar Physics Research Corporation (SPRC), often in collaboration with visiting scientists and students from other institutions. Highlights during this reporting period include completing the final version of a paper on the Evershed effect, writing a paper on magnetic diffusion, continuing work on contrast of small flux tubes, and work on the development of new models to interpret our sunspots observations.

  10. 2D and 3D Numerical Simulations of Flux Cancellation

    NASA Technical Reports Server (NTRS)

    Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.

    2009-01-01

    Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta=1 level (i.e., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a low-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.

  11. The stretching of magnetic flux tubes in the convective overshoot region

    NASA Technical Reports Server (NTRS)

    Fisher, George H.; Mcclymont, Alexander N.; Chou, Dean-Yi

    1991-01-01

    The present study examines the fate of a magnetic flux tube initially lying at the bottom of the solar convective overshoot region. Stretching of the flux tube, e.g., by differential rotation, reduces its density, causing it to rise quasi-statically (a process referred to as vertical flux drift) until it reaches the top of the overshoot region and enters the buoyantly unstable convection region, from which a portion of it may ultimately protrude to form an active region on the surface. It is suggested that vertical flux drift and flux destabilization are inevitable consequences of field amplification, and it is surmised that these phenomena should be considered in self-consistent models of solar and stellar dynamos operating in the overshoot region.

  12. Three-Dimensional Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Parnell, C. E.; Haynes, A. L.

    The importance of magnetic reconnection as an energy release mechanism in many solar, stellar, magnetospheric and astrophysical phenomena has long been recognised. Reconnection is the only mechanism by which magnetic fields can globally restructure, enabling them to access a lower energy state. Over the past decade, there have been some major advances in our understanding of three-dimensional reconnection. In particular, the key characteristics of 3D magnetohydrodynamic (MHD) reconnection have been determined. For instance, 3D reconnection (1) occurs with or without nulls, (2) occurs continuously and continually throughout a diffusion region and (3) is driven by counter rotating flows. Furthermore, analysis of resistive 3D MHD magnetic experiments have revealed some intriguing effects relating to where and how reconnection occurs. To illustrate these new features, a series of constant-resistivity experiments, involving the interaction of two opposite-polarity magnetic sources in an overlying field, are considered. Such a simple interaction represents a typical building block of the Sun's magnetic atmosphere. By following the evolution of the magnetic topology, we are able to explain where, how and at what rate the reconnection occurs. Remarkably, there can be up to five energy release sites at any one time (compared to one in the potential case) and the duration of the interaction increases (more than doubles) as the resistivity decreases (by a factor of 16). The decreased resistivity also leads to a higher peak ohmic dissipation and more energy being released in total, as a result of a greater injection of Poynting flux.

  13. Achieving Zero Current for Polar Wind Outflow on Open Flux Tubes Subjected to Large Photoelectron Fluxes

    NASA Technical Reports Server (NTRS)

    Wilson, G. R.; Khazanov, G.; Horwitz, J. L.

    1997-01-01

    In this study we investigate how the condition of zero current on open flux tubes with polar wind outflow, subjected to large photoelectron fluxes, can be achieved. We employ a steady state collisionless semikinetic model to determine the density profiles of O(+), H(+), thermal electrons and photoelectrons coming from the ionosphere along with H(+), ions and electrons coming from the magnetosphere. The model solution attains a potential distribution which both satisfies the condition of charge neutrality and zero current. For the range of parameters considered in this study we find that a 45-60 volt discontinuous potential drop may develop to reflect most of the photoelectrons back toward the ionosphere. This develops because the downward flux of electrons from the magnetosphere to the ionosphere on typical open flux tubes (e.g. the polar rain) appears to be insufficient to balance the photoelectron flux from the ionosphere.

  14. Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Ergun, R. E.; Goodrich, K. A.; Wilder, F. D.; Holmes, J. C.; Stawarz, J. E.; Eriksson, S.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Torbert, R. B.; hide

    2016-01-01

    We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E (sub parallel)) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E (sub parallel) events near the electron diffusion region have amplitudes on the order of 100 millivolts per meter, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E (sub parallel) events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E (sub parallel) events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.

  15. Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection.

    PubMed

    Ergun, R E; Goodrich, K A; Wilder, F D; Holmes, J C; Stawarz, J E; Eriksson, S; Sturner, A P; Malaspina, D M; Usanova, M E; Torbert, R B; Lindqvist, P-A; Khotyaintsev, Y; Burch, J L; Strangeway, R J; Russell, C T; Pollock, C J; Giles, B L; Hesse, M; Chen, L J; Lapenta, G; Goldman, M V; Newman, D L; Schwartz, S J; Eastwood, J P; Phan, T D; Mozer, F S; Drake, J; Shay, M A; Cassak, P A; Nakamura, R; Marklund, G

    2016-06-10

    We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E_{∥}) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E_{∥} events near the electron diffusion region have amplitudes on the order of 100  mV/m, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E_{∥} events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E_{∥} events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.

  16. RESONANT ABSORPTION OF AXISYMMETRIC MODES IN TWISTED MAGNETIC FLUX TUBES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giagkiozis, I.; Verth, G.; Goossens, M.

    2016-06-01

    It has been shown recently that magnetic twist and axisymmetric MHD modes are ubiquitous in the solar atmosphere, and therefore the study of resonant absorption for these modes has become a pressing issue because it can have important consequences for heating magnetic flux tubes in the solar atmosphere and the observed damping. In this investigation, for the first time, we calculate the damping rate for axisymmetric MHD waves in weakly twisted magnetic flux tubes. Our aim is to investigate the impact of resonant damping of these modes for solar atmospheric conditions. This analytical study is based on an idealized configurationmore » of a straight magnetic flux tube with a weak magnetic twist inside as well as outside the tube. By implementing the conservation laws derived by Sakurai et al. and the analytic solutions for weakly twisted flux tubes obtained recently by Giagkiozis et al. we derive a dispersion relation for resonantly damped axisymmetric modes in the spectrum of the Alfvén continuum. We also obtain an insightful analytical expression for the damping rate in the long wavelength limit. Furthermore, it is shown that both the longitudinal magnetic field and the density, which are allowed to vary continuously in the inhomogeneous layer, have a significant impact on the damping time. Given the conditions in the solar atmosphere, resonantly damped axisymmetric modes are highly likely to be ubiquitous and play an important role in energy dissipation. We also suggest that, given the character of these waves, it is likely that they have already been observed in the guise of Alfvén waves.« less

  17. Plasma dynamics on current-carrying magnetic flux tubes. II - Low potential simulation

    NASA Technical Reports Server (NTRS)

    Swift, Daniel W.

    1992-01-01

    The evolution of plasma in a current-carrying magnetic flux tube of variable cross section is investigated using a one-dimensional numerical simulation. The flux tube is narrow at the two ends and broad in the middle. The middle part of the flux tube is loaded with a hot, magnetically trapped population, and the two ends have a more dense, gravitationally bound population. A potential difference larger than the gravitational potential but less than the energy of the hot population is applied across the domain. The general result is that the potential change becomes distributed along the anode half of the domain, with negligible potential change on the cathode half. The potential is supported by the mirror force of magnetically trapped particles. The simulations show a steady depletion of plasma on the anode side of the flux tube. The current steadily decreases on a time scale of an ion transit time. The results may provide an explanation for the observed plasma depletions on auroral field lines carrying upward currents.

  18. Energy propagation by transverse waves in multiple flux tube systems using filling factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Doorsselaere, T.; Gijsen, S. E.; Andries, J.

    2014-11-01

    In the last few years, it has been found that transverse waves are present at all times in coronal loops or spicules. Their energy has been estimated with an expression derived for bulk Alfvén waves in homogeneous media, with correspondingly uniform wave energy density and flux. The kink mode, however, is localized in space with the energy density and flux dependent on the position in the cross-sectional plane. The more relevant quantities for the kink mode are the integrals of the energy density and flux over the cross-sectional plane. The present paper provides an approximation to the energy propagated bymore » kink modes in an ensemble of flux tubes by means of combining the analysis of single flux tube kink oscillations with a filling factor for the tube cross-sectional area. This finally allows one to compare the expressions for energy flux of Alfvén waves with an ensemble of kink waves. We find that the correction factor for the energy in kink waves, compared to the bulk Alfvén waves, is between f and 2f, where f is the density filling factor of the ensemble of flux tubes.« less

  19. Explosive instability and erupting flux tubes in a magnetized plasma

    PubMed Central

    Cowley, S. C.; Cowley, B.; Henneberg, S. A.; Wilson, H. R.

    2015-01-01

    The eruption of multiple flux tubes in a magnetized plasma is proposed as a mechanism for explosive release of energy in plasmas. A significant fraction of the linearly stable isolated flux tubes are shown to be metastable in a box model magnetized atmosphere in which ends of the field lines are embedded in conducting walls. The energy released by destabilizing such field lines can be a large proportion of the gravitational energy stored in the system. This energy can be released in a fast dynamical time. PMID:26339193

  20. Diagnosis of Acceleration, Reconnection, Turbulence, and Heating

    NASA Astrophysics Data System (ADS)

    Dufor, Mikal T.; Jemiolo, Andrew J.; Keesee, Amy; Cassak, Paul; Tu, Weichao; Scime, Earl E.

    2017-10-01

    The DARTH (Diagnosis of Acceleration, Reconnection, Turbulence, and Heating) experiment is an intermediate-scale, experimental facility designed to study magnetic reconnection at and below the kinetic scale of ions and electrons. The experiment will have non-perturbative diagnostics with high temporal and three-dimensional spatial resolution, giving it the capability to investigate kinetic-scale physics. Of specific scientific interest are particle acceleration, plasma heating, turbulence and energy dissipation during reconnection. Here we will describe the magnetic field system and the two plasma guns used to create flux ropes that then merge through magnetic reconnection. We will also describe the key diagnostic systems: laser induced fluorescence (LIF) for ion vdf measurements, a 300 GHz microwave scattering system for sub-mm wavelength fluctuation measurements and a Thomson scattering laser for electron vdf measurements. The vacuum chamber is designed to provide unparalleled access for these particle diagnostics. The scientific goals of DARTH are to examine particle acceleration and heating during, the role of three-dimensional instabilities during reconnection, how reconnection ceases, and the role of impurities and asymmetries in reconnection. This work was supported by the by the O'Brien Energy Research Fund.

  1. Equilibrium structure of solar magnetic flux tubes: Energy transport with multistream radiative transfer

    NASA Technical Reports Server (NTRS)

    Hasan, S. S.; Kalkofen, W.

    1994-01-01

    We examine the equilibrium structure of vertical intense magnetic flux tubes on the Sun. Assuming cylindrical geometry, we solve the magnetohydrostatic equations in the thin flux-tube approximation, allowing for energy transport by radiation and convection. The radiative transfer equation is solved in the six-stream approximation, assuming gray opacity and local thermodynamic equilibrium. This constitutes a significant improvement over a previous study, in which the transfer was solved using the multidimensional generalization of the Eddington approximation. Convection in the flux tube is treated using mixing-length theory, with an additional parameter alpha, characterizing the suppression of convective energy transport in the tube by the strong magnetic field. The equations are solved using the method of partial linearization. We present results for tubes with different values of the magnetic field strength and radius at a fixed depth in the atmosphere. In general, we find that, at equal geometric heights, the temperature on the tube axis, compared to the ambient medium, is higher in the photosphere and lower in the convection zone, with the difference becoming larger for thicker tubes. At equal optical depths the tubes are generally hotter than their surroundings. The results are comparatively insensitive to alpha but depend upon whether radiative and convective energy transport operate simultaneously or in separate layers. A comparison of our results with semiempirical models shows that the temperature and intensity contrast are in broad agreement. However, the field strengths of the flux-tube models are somewhat lower than the values inferred from observations.

  2. BIDIRECTIONAL OUTFLOWS AS EVIDENCE OF MAGNETIC RECONNECTION LEADING TO A SOLAR MICROFLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Jie; Ding, M. D.; Li, Ying

    2016-03-20

    Magnetic reconnection is a rapid energy release process that is believed to be responsible for flares on the Sun and stars. Nevertheless, such flare-related reconnection is mostly detected to occur in the corona, while there have been few studies concerning the reconnection in the chromosphere or photosphere. Here, we present both spectroscopic and imaging observations of magnetic reconnection in the chromosphere leading to a microflare. During the flare peak time, chromospheric line profiles show significant blueshifted/redshifted components on the two sides of the flaring site, corresponding to upflows and downflows with velocities of ±(70–80) km s{sup −1}, comparable with the localmore » Alfvén speed as expected by the reconnection in the chromosphere. The three-dimensional nonlinear force-free field configuration further discloses twisted field lines (a flux rope) at a low altitude, cospatial with the dark threads in He i 10830 Å images. The instability of the flux rope may initiate the flare-related reconnection. These observations provide clear evidence of magnetic reconnection in the chromosphere and show the similar mechanisms of a microflare to those of major flares.« less

  3. Studies of Magnetic Reconnection in Colliding Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Rosenberg, Michael

    2013-10-01

    Novel images of magnetic fields and measurements of electron and ion temperatures have been obtained in the magnetic reconnection region of high- β, laser-produced plasmas. Experiments using laser-irradiated foils produce expanding, hemispherical plasma plumes carrying MG Biermann-battery magnetic fields, which can be driven to interact and reconnect. Thomson-scattering measurements of electron and ion temperatures in the interaction region of two colliding, magnetized plasmas show no thermal enhancement due to reconnection, as expected for β ~ 8 plasmas. Two different proton radiography techniques used to image the magnetic field structures show deformation, pileup, and annihilation of magnetic flux. High-resolution images reveal unambiguously reconnection-induced jets emerging from the interaction region and show instabilities in the expanding plasma plumes and supersonic, hydrodynamic jets due to the plasma collision. Quantitative magnetic flux data show that reconnection in experiments with asymmetry in the scale size, density, temperature, and plasma flow across the reconnection region occurs less efficiently than in similar, symmetric experiments. This result is attributed to disruption of the Hall mechanism mediating collisionless reconnection. The collision of plasmas carrying parallel magnetic fields has also been probed, illustrating the deformation of magnetic field structures in high-energy-density plasmas in the absence of reconnection. These experiments are particularly relevant to high- β reconnection environments, such as the magnetopause. This work was performed in collaboration with C. Li, F. Séguin, A. Zylstra, H. Rinderknecht, H. Sio, J. Frenje, and R. Petrasso (MIT), I. Igumenshchev, V. Glebov, C. Stoeckl, and D. Froula (LLE), J. Ross and R. Town (LLNL), W. Fox (UNH), and A. Nikroo (GA), and was supported in part by the NLUF, FSC/UR, U.S. DOE, LLNL, and LLE.

  4. Evidence of Twisted Flux-Tube Emergence in Active Regions

    NASA Astrophysics Data System (ADS)

    Poisson, M.; Mandrini, C. H.; Démoulin, P.; López Fuentes, M.

    2015-03-01

    Elongated magnetic polarities are observed during the emergence phase of bipolar active regions (ARs). These extended features, called magnetic tongues, are interpreted as a consequence of the azimuthal component of the magnetic flux in the toroidal flux-tubes that form ARs. We develop a new systematic and user-independent method to identify AR tongues. Our method is based on determining and analyzing the evolution of the AR main polarity inversion line (PIL). The effect of the tongues is quantified by measuring the acute angle [ τ] between the orientation of the PIL and the direction orthogonal to the AR main bipolar axis. We apply a simple model to simulate the emergence of a bipolar AR. This model lets us interpret the effect of magnetic tongues on parameters that characterize ARs ( e.g. the PIL inclination and the tilt angles, and their evolution). In this idealized kinematic emergence model, τ is a monotonically increasing function of the twist and has the same sign as the magnetic helicity. We systematically apply our procedure to a set of bipolar ARs (41 ARs) that were observed emerging in line-of-sight magnetograms over eight years. For most of the cases studied, the tongues only have a small influence on the AR tilt angle since tongues have a much lower magnetic flux than the more concentrated main polarities. From the observed evolution of τ, corrected for the temporal evolution of the tilt angle and its final value when the AR is fully emerged, we estimate the average number of turns in the subphotospherically emerging flux-rope. These values for the 41 observed ARs are below unity, except for one. This indicates that subphotospheric flux-ropes typically have a low amount of twist, i.e. highly twisted flux-tubes are rare. Our results demonstrate that the evolution of the PIL is a robust indicator of the presence of tongues and constrains the amount of twist in emerging flux-tubes.

  5. Flux tubes in the SU(3) vacuum

    NASA Astrophysics Data System (ADS)

    Cardaci, M. S.; Cea, P.; Cosmai, L.; Falcone, R.; Papa, A.

    We analyze the distribution of the chromoelectric field generated by a static quark-antiquark pair in the SU(3) vacuum. We find that the transverse profile of the flux tube resembles the dual version of the Abrikosov vortex field distribution and give an estimate of the London penetration length in the confined vacuum.

  6. Dayside and nightside magnetic field responses at 780 km altitude to dayside reconnection.

    NASA Astrophysics Data System (ADS)

    Snekvik, Kristian; Østgaard, Nikolai; Tenfjord, Paul; Petter Reistad, Jone; Magnus Laundal, Karl; Milan, Stephen E.; Haaland, Stein E.

    2017-04-01

    During southward IMF, dayside reconnection will drive the Dungey cycle in the Earth's magnetosphere, which is manifested as a two cell convection pattern in the ionosphere. We address the response of the ionospheric convection to changes in the dayside reconnection rate. Previous studies have reported two apparently contradicting results. The first is that the ionospheric convection responds within one minute both near noon and near midnight. The second is that the response is 10-20 minutes delayed near midnight compared to near noon. To test these apparently contradicting scenarios, we have performed a statistical investigation of the response by examining the magnetic field perturbations at 780 km altitude due to dayside reconnection. The AMPERE data products derived from the Iridium constellation provide global maps of the disturbance magnetic field. The time development of the convection is modelled as the sum of an accelerating force and a decelerating force. Furthermore, the accelerating force is parametrised as a linear sum of past reconnection rates, while the decelerating force is proportional to the convection itself. This results in an asymptotic model which gradually reaches a steady-state value. By fitting the data to the model, we confirm previous reports of an almost immediate response both near noon and near midnight combined with a 10-20 minutes reconfiguration time of the two cell convection pattern. The e-folding time of the asymptotic model was found to be about 40 minutes. We present a new explanation of the response and reconfiguration times based on how MHD waves propagate in the magnetospheric lobes when newly reconnected open flux tubes are added to the lobes, and the magnetopause flaring angle increases.

  7. Magnetic Dissipation in Asymmetric Strong Guide 3D Simulations: Examples of Magnetic Diffusion and Reconnection

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.; Karimabadi, H.; Daughton, W. S.

    2013-12-01

    Interpretations of 2D simulations of magnetic reconnection are greatly simplified by using the flux function, usually the out of plane component of the vector potential. This theoretical device is no longer available when simulations are analyzed in 3-D. We illustrate the results of determining the locale rates of flux slippage in simulations by a technique based on Maxwell's equations. The technique recovers the usual results obtained for the flux function in 2D simulations, but remains viable in 3D simulations where there is no flux function. The method has also been successfully tested for full PIC simulations where reconnection is geometrically forbiddden. While such layers possess measurable flux slippages (diffusion) their level is not as strong as recorded in known 2D PIC reconnection sites using the same methodology. This approach will be used to explore the spatial incidence and strength of flux slippages across a 3D, asymmetric, strong guide field run discussed previously in the literature. Regions of diffusive behavior are illustrated where LHDI has been previously identified out on the separatrices, while much stronger flux slippages, typical of the X-regions of 2D simulations, are shown to occur elsewhere throughout the simulation. These results suggest that reconnection requires sufficiently vigorous flux slippage to be self sustaining, while non-zero flux slippage can and does occur without being at the reconnection site. A cross check of this approach is provided by the mixing ratio of tagged simulation particles of known spatial origin discussed by Daughton et al., 2013 (this meeting); they provide an integral measure of flux slippage up to the present point in the simulation. We will discuss the correlations between our Maxwell based flux slippage rates and the inferred rates of change of this mixing ratio (as recorded in the local fluid frame).

  8. MESSENGER observations of magnetic reconnection in Mercury's magnetosphere.

    PubMed

    Slavin, James A; Acuña, Mario H; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Boardsen, Scott A; Gloeckler, George; Gold, Robert E; Ho, George C; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Raines, Jim M; Sarantos, Menelaos; Schriver, David; Solomon, Sean C; Trávnícek, Pavel; Zurbuchen, Thomas H

    2009-05-01

    Solar wind energy transfer to planetary magnetospheres and ionospheres is controlled by magnetic reconnection, a process that determines the degree of connectivity between the interplanetary magnetic field (IMF) and a planet's magnetic field. During MESSENGER's second flyby of Mercury, a steady southward IMF was observed and the magnetopause was threaded by a strong magnetic field, indicating a reconnection rate ~10 times that typical at Earth. Moreover, a large flux transfer event was observed in the magnetosheath, and a plasmoid and multiple traveling compression regions were observed in Mercury's magnetotail, all products of reconnection. These observations indicate that Mercury's magnetosphere is much more responsive to IMF direction and dominated by the effects of reconnection than that of Earth or the other magnetized planets.

  9. Highly localized, fully 3-D disruptions of the reconnection layer in the Magnetic Reconnection Experiment

    NASA Astrophysics Data System (ADS)

    Dorfman, Seth

    2011-10-01

    Magnetic reconnection is a fundamental process in plasmas which converts magnetic energy to plasma kinetic and thermal energy through topological changes. One of the important goals in magnetic reconnection research is to explain the fast reconnection rate observed in real three-dimensional laboratory and astrophysical systems. In the Magnetic Reconnection Experiment (MRX), an enhancement of the reconnection electric field is often associated with a wholesale disruption of the reconnection current layer, an intrinsically 3-D phenomena observed in the presence of out-of-plane gradients of local quantities such as reconnection layer current and density. During a disruption, the out-of-plane current decreases as current carrying electrons are redirected in the outflow direction. Observed ``O-point'' signatures and density striations suggest that this redirection often occurs though the ejection of 3-D flux rope structures. Large fluctuations in the lower hybrid frequency range are also routinely seen, but the ratio of the phase speed to the diamagnetic drift speed does not match what is predicted by 3-D kinetic simulations without disruptions. A 2-D Hall MHD analysis of the out-of-plane gradients is consistent with the buildup of magnetic energy leading to the event, but variation in all three spacial dimensions is required in order to obtain results in agreement with the disruptive behavior observed. Analysis and comparison with 3-D simulations is ongoing to determine if the fluctuations and/or disruptive behavior are responsible for the corresponding discrepancies in the layer structure between the experiments and 2-D kinetic simulations,,. Supported by DOE, NASA, and NSF.

  10. The Role of Magnetic Reconnection in Solar Activity

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro; DeVore, C. R.

    2008-01-01

    The central challenge in solar/heliospheric physics is to understand how the emergence and transport of magnetic flux at the photosphere drives the structure and dynamics that we observe in the corona and heliosphere. This presentation focuses on the role of magnetic reconnection in determining solar/heliospheric activity. We demonstrate that two generic properties of the photospheric magnetic and velocity fields are responsible for the ubiquitous reconnection in the corona. First, the photospheric velocities are complex, which leads to the injection of energy and helicity into the coronal magnetic fields and to the efficient, formation of small-scale structure. Second, the flux distribution at the photosphere is multi-polar, which implies that topological discontinuities and, consequently, current sheets, must be present in the coronal magnetic field. We: present numerical simulations showing that photospherically-driven reconnection is responsible for the heating and dynamics of coronal plasma, and for the topology of the coronal/heliospheric magnetic field.

  11. Impact of Magnetic Draping, Convection, and Field Line Tying on Magnetopause Reconnection Under Northward IMF

    NASA Technical Reports Server (NTRS)

    Wendel, Deirdre E.; Reiff, Patricia H.; Goldstein, Melvyn L.

    2010-01-01

    We simulate a northward IMF cusp reconnection event at the magnetopause using the OpenGGCM resistive MHD code. The ACE input data, solar wind parameters, and dipole tilt belong to a 2002 reconnection event observed by IMAGE and Cluster. Based on a fully three-dimensional skeleton separators, nulls, and parallel electric fields, we show magnetic draping, convection, ionospheric field line tying play a role in producing a series of locally reconnecting nulls with flux ropes. The flux ropes in the cusp along the global separator line of symmetry. In 2D projection, the flux ropes the appearance of a tearing mode with a series of 'x's' and 'o's' but bearing a kind of 'guide field' that exists only within the magnetopause. The reconnecting field lines in the string of ropes involve IMF and both open and closed Earth magnetic field lines. The observed magnetic geometry reproduces the findings of a superposed epoch impact parameter study derived from the Cluster magnetometer data for the same event. The observed geometry has repercussions for spacecraft observations of cusp reconnection and for the imposed boundary conditions reconnection simulations.

  12. First CLUSTER plasma and magnetic field measurements of flux transfer events in conjunction with their ionospheric flow signatures

    NASA Astrophysics Data System (ADS)

    Rae, I. J.; Taylor, M. G.; Lavraud, B.; Cowley, S. W.; Lester, M.; Fenrich, F. R.; Fazakerley, A.; Räme, H.; Sofko, G.; Balogh, A.

    2001-12-01

    The launch of the Cluster satellite constellation allows, amongst other things, the study of the small-scale spatio-temporal structures in the near-Earth geospace. We present a case study of the high-altitude northern hemispheric cusp by the Cluster-II spacecraft constellation under southward IMF conditions. During this interval Cluster traversed the northern hemispheric dayside region and crossed the magnetopause close to the noon-midnight meridian, and observed both the plasma and magnetic field observations of transient reconnection for a number of hours. Throughout this interval, the ionospheric footprint of the spacecraft maps into the Canadian sector of the Earth's ionosphere into the Saskatoon and Kapuskasing HF radars fields-of-view. This SuperDARN HF radar pair observe the ionospheric flows generated by this transient reconnection during this interval at approximately the same magnetic latitude and local time. The calculated orientation of the reconnected flux tubes is found to be in accordance with the prevailing IMF conditions and the direction of motion of the excited ionospheric flows. We discuss these observations in terms of transient magnetic flux transfer and in terms of the size and location of the active reconnection X-line at the low-latitude magnetopause.

  13. Reconnection Diffusion in Turbulent Fluids and Its Implications for Star Formation

    NASA Astrophysics Data System (ADS)

    Lazarian, A.

    2014-05-01

    Astrophysical fluids are turbulent a fact which changes the dynamics of many key processes, including magnetic reconnection. Fast reconnection of magnetic field in turbulent fluids allows the field to change its topology and connections. As a result, the traditional concept of magnetic fields being frozen into the plasma is no longer applicable. Plasma associated with a given magnetic field line at one instant is distributed along a different set of magnetic field lines at the next instant. This diffusion of plasmas and magnetic field is enabled by reconnection and therefore is termed "reconnection diffusion". The astrophysical implications of this concept include heat transfer in plasmas, advection of heavy elements in interstellar medium, magnetic field generation etc. However, the most dramatic implications of the concept are related to the star formation process. The reason is that magnetic fields are dynamically important for most of the stages of star formation. The existing theory of star formation has been developed ignoring the possibility of reconnection diffusion. Instead, it appeals to the decoupling of mass and magnetic field arising from neutrals drifting in respect to ions entrained on magnetic field lines, i.e. through the process that is termed "ambipolar diffusion". The predictions of ambipolar diffusion and reconnection diffusion are very different. For instance, if the ionization of media is high, ambipolar diffusion predicts that the coupling of mass and magnetic field is nearly perfect. At the same time, reconnection diffusion is independent of the ionization but depends on the scale of the turbulent eddies and on the turbulent velocities. In the paper we explain the physics of reconnection diffusion both from macroscopic and microscopic points of view, i.e. appealing to the reconnection of flux tubes and to the diffusion of magnetic field lines. We make use of the Lazarian and Vishniac (Astrophys. J. 517:700, 1999) theory of magnetic

  14. Magnetic reconnection in Earth's magnetotail: Energy conversion and its earthward-tailward asymmetry

    NASA Astrophysics Data System (ADS)

    Lu, San; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A. V.

    2018-01-01

    Magnetic reconnection, a fundamental plasma process, releases magnetic energy and converts it to particle energy, by accelerating and heating ions and electrons. This energy conversion plays an important role in the Earth's magnetotail. A two-dimensional particle-in-cell simulation is performed to study such a conversion in a magnetotail topology, one with a nonzero Bz, and the energy conversion is found to be more efficient in the earthward outflow than in the tailward outflow. Such earthward-tailward asymmetry is manifested not only in j .E but also in Poynting flux, Hall electromagnetic fields, bulk kinetic energy flux, enthalpy flux, heat flux, bulk acceleration, heating, and suprathermal particle energization, all of which are more prevalent on the earthward side. Such asymmetries are consistent with spacecraft observations reported in the literature. Our study shows that in the magnetotail, most of the energy converted by reconnection flows predominantly toward the Earth and has the potential of being geoeffective, rather than being expelled to the solar wind by the tailward flow. The energy conversion asymmetry arises from the presence of the non-zero normal magnetic field, the stronger lobe magnetic field, and the stronger cross-tail current earthward of the reconnection site in the pre-reconnecting thin current sheet.

  15. Transport and reconnection in tokamak sawteeth.

    PubMed

    Gentle, K W; Austin, M E; Phillips, P E

    2003-12-19

    The core of a tokamak discharge often undergoes periodic relaxation oscillations, sawteeth, as the steepening current and temperature profiles are flattened by fast reconnection events. Careful analysis of the electron temperature evolution over this cycle gives an estimate of the energy dissipated in the electrons during reconnection and a measure of the transport characteristic (energy flux versus temperature gradient) over the range of parameters occurring over the remainder of the cycle. The energy dissipated is consistent with estimates of the loss of poloidal magnetic energy. The transport characteristics exhibit a wide range of behaviors.

  16. Coordinated Cluster/Double Star observations of dayside flux transfer events on 6 April 2004

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Pu, ZuYin; Zhou, XuZhi; Zhang, XianGuo; Dunlop, Malcolm; Fu, SuiYan; Xie, Lun; Zong, QiuGang; Xiao, ChiJie; Wang, XiaoGang; Liu, ZhenXing

    2008-10-01

    With the Double Star Program TC1 in the equatorial orbit and Cluster tetrahedron in the high latitude polar orbit, a conjunct observation of FTEs on the dayside magnetopause (MP) on April 6, 2004 is presented in this study. The FTEs observed by TC1 at low latitudes are characterized to be generated in the subsolar region and the obtained flux tube axes orientate along the predicted low latitude component magnetic reconnection X-line, indicating that these FTEs were more likely to be generated through multiple X-line reconnection or single X-line bursty reconnection. During the same period, Cluster also encountered a series of magnetosheath FTEs with their axes pointing roughly along the interplanetary magnetic field. At last, the global FTE configuration is obtained from observations in different locations, which is in good agreement with the "elbow shape" model.

  17. Energetic Particles of keV–MeV Energies Observed near Reconnecting Current Sheets at 1 au

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khabarova, Olga V.; Zank, Gary P.

    2017-07-01

    We provide evidence for particle acceleration up to ∼5 MeV at reconnecting current sheets in the solar wind based on both case studies and a statistical analysis of the energetic ion and electron flux data from the five Advanced Composition Explorer Electron, Proton, and Alpha Monitor (EPAM) detectors. The case study of a typical reconnection exhaust event reveals (i) a small-scale peak of the energetic ion flux observed in the vicinity of the reconnection exhaust and (ii) a long-timescale atypical energetic particle event (AEPE) encompassing the reconnection exhaust. AEPEs associated with reconnecting strong current sheets last for many hours, evenmore » days, as confirmed by statistical studies. The case study shows that time-intensity profiles of the ion flux may vary significantly from one EPAM detector to another partially because of the local topology of magnetic fields, but mainly because of the impact of upstream magnetospheric events; therefore, the occurrence of particle acceleration can be hidden. The finding of significant particle energization within a time interval of ±30 hr around reconnection exhausts is supported by a superposed epoch analysis of 126 reconnection exhaust events. We suggest that energetic particles initially accelerated via prolonged magnetic reconnection are trapped and reaccelerated in small- or medium-scale magnetic islands surrounding the reconnecting current sheet, as predicted by the transport theory of Zank et al. Other mechanisms of initial particle acceleration can contribute also.« less

  18. MESSENGER Observations of Rapid and Impulsive Magnetic Reconnection in Mercury's Magnetotail

    NASA Astrophysics Data System (ADS)

    Zhong, J.; Wei, Y.; Pu, Z. Y.; Wang, X. G.; Wan, W. X.; Slavin, J. A.; Cao, X.; Raines, J. M.; Zhang, H.; Xiao, C. J.; Du, A. M.; Wang, R. S.; Dewey, R. M.; Chai, L. H.; Rong, Z. J.; Li, Y.

    2018-06-01

    The nature of magnetic reconnection in planetary magnetospheres may differ between various planets. We report the first observations of a rapidly evolving magnetic reconnection process in Mercury’s magnetotail by the MESSENGER spacecraft. The reconnection process was initialized in the plasma sheet and then evolved into the lobe region during a ∼35 s period. The tailward reconnection fronts of primary and secondary flux ropes with clear Hall signatures and energetic electron bursts were observed. The reconnection timescale of a few seconds is substantially shorter than that of terrestrial magnetospheric plasmas. The normalized reconnection rate during a brief quasi-steady period is estimated to be ∼0.2 on average. The observations show the rapid and impulsive nature of the exceedingly driven reconnection in Mercury’s magnetospheric plasma that may be responsible for the much more dynamic magnetosphere of Mercury.

  19. Interchange Reconnection and Coronal Hole Dynamics

    NASA Technical Reports Server (NTRS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Lynch, B. J.; Zurbuchen, T. H.

    2011-01-01

    We investigate the effect of magnetic reconnection between open and closed field, (often referred to as "interchange" reconnection), on the dynamics and topology of coronal hole boundaries. The most important and most prevalent 3D topology of the interchange process is that of a small-scale bipolar magnetic field interacting with a large-scale background field. We determine the evolution of such a magnetic topology by numerical solution of the fully 3D MHD equations in spherical coordinates. First, we calculate the evolution of a small-scale bipole that initially is completely inside an open field region and then is driven across a coronal hole boundary by photospheric motions. Next the reverse situation is calculated in which the bipole is initially inside the closed region and driven toward the coronal hole boundary. In both cases we find that the stress imparted by the photospheric motions results in deformation of the separatrix surface between the closed field of the bipole and the background field, leading to rapid current sheet formation and to efficient reconnection. When the bipole is inside the open field region, the reconnection is of the interchange type in that it exchanges open and closed field. We examine, in detail, the topology of the field as the bipole moves across the coronal hole boundary, and find that the field remains well-connected throughout this process. Our results imply that open flux cannot penetrate deeply into the closed field region below a helmet streamer and, hence, support the quasi-steady models in which open and closed flux remain topologically distinct. Our results also support the uniqueness hypothesis for open field regions as postulated by Antiochos et al. We discuss the implications of this work for coronal observations. Subject Headings: Sun: corona Sun: magnetic fields Sun: reconnection Sun: coronal hole

  20. Cluster observations of Shear-mode surface waves diverging from Geomagnetic Tail reconnection

    NASA Astrophysics Data System (ADS)

    Dai, L.; Wygant, J. R.; Dombeck, J. P.; Cattell, C. A.; Thaller, S. A.; Mouikis, C.; Balogh, A.; Reme, H.

    2010-12-01

    We present the first Cluster spacecraft study of the intense (δB/B~0.5, δE/VAB~0.5) equatorial plane surface waves diverging from magnetic reconnection in the geomagnetic tail at ~17 Re. Using phase lag analysis with multi-spacecraft measurements, we quantitatively determine the wavelength and phase velocity of the waves with spacecraft frame frequencies from 0.03 Hz to 1 Hz and wavelengths from much larger (4Re) than to comparable to the H+ gyroradius (~300km). The phase velocities track the strong variations in the equatorial plane projection of the reconnection outflow velocity perpendicular to the magnetic field. The propagation direction and wavelength of the observed surface waves resemble those of flapping waves of the magnetotail current sheet, suggesting a same origin shared by both of these waves. The observed waves appear ubiquitous in the outflows near magnetotail reconnection. Evidence is found that the observed waves are associated with velocity shear in reconnection outflows. Analysis shows that observed waves are associated with strong field-aligned Alfvenic Poynting flux directed away from the reconnection region toward Earth. These observations present a scenario in which the observed surface waves are driven and convected through a velocity-shear type instability by high-speed (~1000km) reconnection outflows tending to slow down due to power dissipation through Poynting flux. The mapped Poynting flux (100ergs/cm2s) and longitudinal scales (10-100 km) to 100km altitude suggest that the observed waves and their motions are an important boundary condition for night-side aurora. Figure: a) The BX-GSM in the geomagnetic tail current sheet. b) The phase difference wavelet spectrum between Bz_GSM from SC2 and SC3, used to determine the wave phase velocity, is correlated with the reconnection outflow velocity (represented by H+ VX-GSM) c) The spacecraft trajectory through magnetotail reconnection. d) The observed equatorial plane surface wave

  1. Magnetic reconnection during steady magnetospheric convection and other magnetospheric modes

    NASA Astrophysics Data System (ADS)

    Hubert, Benoit; Gérard, Jean-Claude; Milan, Steve E.; Cowley, Stanley W. H.

    2017-03-01

    We use remote sensing of the proton aurora with the IMAGE-FUV SI12 (Imager for Magnetopause to Aurora Global Exploration-Far Ultraviolet-Spectrographic Imaging at 121.8 nm) instrument and radar measurements of the ionospheric convection from the SuperDARN (Super Dual Aurora Radar Network) facility to estimate the open magnetic flux in the Earth's magnetosphere and the reconnection rates at the dayside magnetopause and in the magnetotail during intervals of steady magnetospheric convection (SMC). We find that SMC intervals occur with relatively high open magnetic flux (average ˜ 0.745 GWb, standard deviation ˜ 0.16 GWb), which is often found to be nearly steady, when the magnetic flux opening and closure rates approximately balance around 55 kV on average, with a standard deviation of 21 kV. We find that the residence timescale of open magnetic flux, defined as the ratio between the open magnetospheric flux and the flux closure rate, is roughly 4 h during SMCs. Interestingly, this number is approximately what can be deduced from the discussion of the length of the tail published by Dungey (1965), assuming a solar wind speed of ˜ 450 km s-1. We also infer an enhanced convection velocity in the tail, driving open magnetic flux to the nightside reconnection site. We compare our results with previously published studies in order to identify different magnetospheric modes. These are ordered by increasing open magnetic flux and reconnection rate as quiet conditions, SMCs, substorms (with an important overlap between these last two) and sawtooth intervals.

  2. Distinguishing between pulsed and continuous reconnection at the dayside magnetopause.

    PubMed

    Trattner, K J; Onsager, T G; Petrinec, S M; Fuselier, S A

    2015-03-01

    Magnetic reconnection has been established as the dominant mechanism by which magnetic fields in different regions change topology to create open magnetic field lines that allow energy and momentum to flow into the magnetosphere. One of the persistent problems of magnetic reconnection is the question of whether the process is continuous or intermittent and what input condition(s) might favor one type of reconnection over the other. Observations from imagers that record FUV emissions caused by precipitating cusp ions demonstrate the global nature of magnetic reconnection. Those images show continuous ionospheric emissions even during changing interplanetary magnetic field conditions. On the other hand, in situ observations from polar-orbiting satellites show distinctive cusp structures in flux distributions of precipitating ions, which are interpreted as the telltale signature of intermittent reconnection. This study uses a modification of the low-velocity cutoff method, which was previously successfully used to determine the location of the reconnection site, to calculate for the cusp ion distributions the "time since reconnection occurred." The "time since reconnection" is used to determine the "reconnection time" for the cusp magnetic field lines where these distributions have been observed. The profile of the reconnection time, either continuous or stepped, is a direct measurement of the nature of magnetic reconnection at the reconnection site. This paper will discuss a continuous and pulsed reconnection event from the Polar spacecraft to illustrate the methodology.

  3. Detection of Cracks at Welds in Steel Tubing Using Flux Focusing Electromagnetic Probe

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Simpson, John; Namkung, Min

    1994-01-01

    The inspection of weldments in critical pressure vessel joints is a major concern in the nuclear power industry. Corrosive environments can speed the fatigue process and access to the critical area is often limited. Eddy current techniques have begun to be used to help overcome these obstacles [1]. As direct contact and couplants are not required, remote areas can be inspected by simply snaking an eddy current coil into the intake tube of the vessel. The drawback of the eddy current method has been the high sensitivity to small changes in the conductivity and permeability of the test piece which are known to vary at weldments [1]. The flaw detection mechanism of the flux focusing electromagnetic probe can help alleviate these difficulties and provide a unique capability for detecting longitudinal fatigue cracks in critical tube structures. The Flux Focusing Electromagnetic Flaw Detector, originally invented for the detection of fatigue and corrosion damage in aluminum plates [2-3], has been adapted for use in testing steel tubing for longitudinal fatigue cracks. The modified design allows for the probe to be placed axisymmetrically into the tubing, inducing eddy currents in the tube wall. The pickup coil of the probe is fixed slightly below the primary windings and is rotated 90 so that its axis is normal to the tube wall. The magnetic flux of the primary coil is focused through the use of ferromagnetic material so that in the absence of fatigue damage there will be no flux linkage with the pickup coil. The presence of a longitudinal fatigue crack will cause the eddy currents induced in the tube wall to flow around the flaw and directly under the pickup coil. The magnetic field associated with these currents will then link the pickup coil and an unambiguous increase in the output voltage of the probe will be measured. The use of the flux focusing electromagnetic probe is especially suited for the detection of flaws originating at or near tube welds. The probe is

  4. Combining Diffusive Shock Acceleration with Acceleration by Contracting and Reconnecting Small-scale Flux Ropes at Heliospheric Shocks

    NASA Astrophysics Data System (ADS)

    le Roux, J. A.; Zank, G. P.; Webb, G. M.; Khabarova, O. V.

    2016-08-01

    Computational and observational evidence is accruing that heliospheric shocks, as emitters of vorticity, can produce downstream magnetic flux ropes and filaments. This led Zank et al. to investigate a new paradigm whereby energetic particle acceleration near shocks is a combination of diffusive shock acceleration (DSA) with downstream acceleration by many small-scale contracting and reconnecting (merging) flux ropes. Using a model where flux-rope acceleration involves a first-order Fermi mechanism due to the mean compression of numerous contracting flux ropes, Zank et al. provide theoretical support for observations that power-law spectra of energetic particles downstream of heliospheric shocks can be harder than predicted by DSA theory and that energetic particle intensities should peak behind shocks instead of at shocks as predicted by DSA theory. In this paper, a more extended formalism of kinetic transport theory developed by le Roux et al. is used to further explore this paradigm. We describe how second-order Fermi acceleration, related to the variance in the electromagnetic fields produced by downstream small-scale flux-rope dynamics, modifies the standard DSA model. The results show that (I) this approach can qualitatively reproduce observations of particle intensities peaking behind the shock, thus providing further support for the new paradigm, and (II) stochastic acceleration by compressible flux ropes tends to be more efficient than incompressible flux ropes behind shocks in modifying the DSA spectrum of energetic particles.

  5. Quasi-periodic Oscillations in Flares and Coronal Mass Ejections Associated with Magnetic Reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Takuya; Shibata, Kazunari; Qiu, Jiong, E-mail: takahasi@kusastro.kyoto-u.ac.jp

    We propose a mechanism for quasi-periodic oscillations of both coronal mass ejections (CMEs) and flare loops as related to magnetic reconnection in eruptive solar flares. We perform two-dimensional numerical MHD simulations of magnetic flux rope eruption, with three different values of the global Lundquist number. In the low Lundquist number run, no oscillatory behavior is found. In the moderate Lundquist number run, on the other hand, quasi-periodic oscillations are excited both at the bottom of the flux rope and at the flare loop top. In the high Lundquist number run, quasi-periodic oscillations are also excited; in the meanwhile, the dynamicsmore » become turbulent owing to the formation of multiple plasmoids in the reconnection current sheet. In high and moderate Lundquist number runs, thin reconnection jets collide with the flux rope bottom or flare loop top and dig them deeply. Steep oblique shocks are formed as termination shocks where reconnection jets are bent (rather than decelerated) in the horizontal direction, resulting in supersonic backflows. The structure becomes unstable, and quasi-periodic oscillations of supersonic backflows appear at locally confined high-beta regions at both the flux rope bottom and flare loop top. We compare the observational characteristics of quasi-periodic oscillations in erupting flux ropes, post-CME current sheets, flare ribbons, and light curves with corresponding dynamical structures found in our simulation.« less

  6. Quasi-periodic Oscillations in Flares and Coronal Mass Ejections Associated with Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Takahashi, Takuya; Qiu, Jiong; Shibata, Kazunari

    2017-10-01

    We propose a mechanism for quasi-periodic oscillations of both coronal mass ejections (CMEs) and flare loops as related to magnetic reconnection in eruptive solar flares. We perform two-dimensional numerical MHD simulations of magnetic flux rope eruption, with three different values of the global Lundquist number. In the low Lundquist number run, no oscillatory behavior is found. In the moderate Lundquist number run, on the other hand, quasi-periodic oscillations are excited both at the bottom of the flux rope and at the flare loop top. In the high Lundquist number run, quasi-periodic oscillations are also excited; in the meanwhile, the dynamics become turbulent owing to the formation of multiple plasmoids in the reconnection current sheet. In high and moderate Lundquist number runs, thin reconnection jets collide with the flux rope bottom or flare loop top and dig them deeply. Steep oblique shocks are formed as termination shocks where reconnection jets are bent (rather than decelerated) in the horizontal direction, resulting in supersonic backflows. The structure becomes unstable, and quasi-periodic oscillations of supersonic backflows appear at locally confined high-beta regions at both the flux rope bottom and flare loop top. We compare the observational characteristics of quasi-periodic oscillations in erupting flux ropes, post-CME current sheets, flare ribbons, and light curves with corresponding dynamical structures found in our simulation.

  7. Vacuum Energy Induced by AN Impenetrable Flux Tube of Finite Radius

    NASA Astrophysics Data System (ADS)

    Gorkavenko, V. M.; Sitenko, Yu. A.; Stepanov, O. B.

    2011-06-01

    We consider the effect of the magnetic field background in the form of a tube of the finite transverse size on the vacuum of the quantized charged massive scalar field which is subject to the Dirichlet boundary condition at the edge of the tube. The vacuum energy is induced, being periodic in the value of the magnetic flux enclosed in the tube. The dependence of the vacuum energy density on the distance from the tube and on the coupling to the space-time curvature scalar is comprehensively analyzed.

  8. Vacuum Energy Induced by AN Impenetrable Flux Tube of Finite Radius

    NASA Astrophysics Data System (ADS)

    Gorkavenko, V. M.; Sitenko, Yu. A.; Stepanov, O. B.

    We consider the effect of the magnetic field background in the form of a tube of the finite transverse size on the vacuum of the quantized charged massive scalar field which is subject to the Dirichlet boundary condition at the edge of the tube. The vacuum energy is induced, being periodic in the value of the magnetic flux enclosed in the tube. The dependence of the vacuum energy density on the distance from the tube and on the coupling to the space-time curvature scalar is comprehensively analyzed.

  9. ON THE NATURE OF RECONNECTION AT A SOLAR CORONAL NULL POINT ABOVE A SEPARATRIX DOME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pontin, D. I.; Priest, E. R.; Galsgaard, K., E-mail: dpontin@maths.dundee.ac.uk

    2013-09-10

    Three-dimensional magnetic null points are ubiquitous in the solar corona and in any generic mixed-polarity magnetic field. We consider magnetic reconnection at an isolated coronal null point whose fan field lines form a dome structure. Using analytical and computational models, we demonstrate several features of spine-fan reconnection at such a null, including the fact that substantial magnetic flux transfer from one region of field line connectivity to another can occur. The flux transfer occurs across the current sheet that forms around the null point during spine-fan reconnection, and there is no separator present. Also, flipping of magnetic field lines takesmore » place in a manner similar to that observed in the quasi-separatrix layer or slip-running reconnection.« less

  10. Vortex reconnection in the K-type transitional channel flow

    NASA Astrophysics Data System (ADS)

    Zhao, Yaomin; Yang, Yue; Chen, Shiyi

    2016-11-01

    Vortex reconnection, as the topological change of vortex lines or surfaces, is a critical process in transitional flows, but is challenging to accurately characterize in shear flows. We apply the vortex-surface field (VSF), whose isosurface is the vortex surface consisting of vortex lines, to study vortex reconnection in the K-type temporal transition in channel flow. Based on the VSF, both qualitative visualization and quantitative analysis are used to investigate the reconnection between the hairpin-like vortical structures evolving from the opposite channel halves. The incipient vortex reconnection is characterized by the vanishing minimum distance between a pair of vortex surfaces and the reduction of vorticity flux through the region enclosed by the VSF isolines on the spanwise symmetric plane. In addition, we find that the surge of the wall friction coefficient begins at the identified reconnection time, which is discussed with the induced velocity during reconnection and the Biot-Sarvart law. This work has been supported in part by the National Natural Science Foundation of China (Grant Nos. 11522215 and 11521091), and the Thousand Young Talents Program of China.

  11. Evidence from lattice data for a new particle on the worldsheet of the QCD flux tube.

    PubMed

    Dubovsky, Sergei; Flauger, Raphael; Gorbenko, Victor

    2013-08-09

    We propose a new approach for the calculation of the spectrum of excitations of QCD flux tubes. It relies on the fact that the worldsheet theory is integrable at low energies. With this approach, energy levels can be calculated for much shorter flux tubes than was previously possible, allowing for a quantitative comparison with existing lattice data. The improved theoretical control makes it manifest that existing lattice data provides strong evidence for a new pseudoscalar particle localized on the QCD flux tube--the worldsheet axion.

  12. COMBINING DIFFUSIVE SHOCK ACCELERATION WITH ACCELERATION BY CONTRACTING AND RECONNECTING SMALL-SCALE FLUX ROPES AT HELIOSPHERIC SHOCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Roux, J. A.; Zank, G. P.; Webb, G. M.

    2016-08-10

    Computational and observational evidence is accruing that heliospheric shocks, as emitters of vorticity, can produce downstream magnetic flux ropes and filaments. This led Zank et al. to investigate a new paradigm whereby energetic particle acceleration near shocks is a combination of diffusive shock acceleration (DSA) with downstream acceleration by many small-scale contracting and reconnecting (merging) flux ropes. Using a model where flux-rope acceleration involves a first-order Fermi mechanism due to the mean compression of numerous contracting flux ropes, Zank et al. provide theoretical support for observations that power-law spectra of energetic particles downstream of heliospheric shocks can be harder thanmore » predicted by DSA theory and that energetic particle intensities should peak behind shocks instead of at shocks as predicted by DSA theory. In this paper, a more extended formalism of kinetic transport theory developed by le Roux et al. is used to further explore this paradigm. We describe how second-order Fermi acceleration, related to the variance in the electromagnetic fields produced by downstream small-scale flux-rope dynamics, modifies the standard DSA model. The results show that (i) this approach can qualitatively reproduce observations of particle intensities peaking behind the shock, thus providing further support for the new paradigm, and (ii) stochastic acceleration by compressible flux ropes tends to be more efficient than incompressible flux ropes behind shocks in modifying the DSA spectrum of energetic particles.« less

  13. RECURRENT EXPLOSIVE ERUPTIONS AND THE ''SIGMOID-TO-ARCADE'' TRANSFORMATION IN THE SUN DRIVEN BY DYNAMICAL MAGNETIC FLUX EMERGENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archontis, V.; Hood, A. W.; Tsinganos, K., E-mail: va11@st-andrews.ac.uk

    2014-05-10

    We report on three-dimensional MHD simulations of recurrent mini coronal mass ejection (CME)-like eruptions in a small active region (AR), which is formed by the dynamical emergence of a twisted (not kink unstable) flux tube from the solar interior. The eruptions develop as a result of the repeated formation and expulsion of new flux ropes due to continuous emergence and reconnection of sheared field lines along the polarity inversion line of the AR. The acceleration of the eruptions is triggered by tether-cutting reconnection at the current sheet underneath the erupting field. We find that each explosive eruption is followed bymore » reformation of a sigmoidal structure and a subsequent ''sigmoid-to-flare arcade'' transformation in the AR. These results might have implications for recurrent CMEs and eruptive sigmoids/flares observations and theoretical studies.« less

  14. Distinguishing between pulsed and continuous reconnection at the dayside magnetopause

    PubMed Central

    Onsager, T. G.; Petrinec, S. M.; Fuselier, S. A.

    2015-01-01

    Abstract Magnetic reconnection has been established as the dominant mechanism by which magnetic fields in different regions change topology to create open magnetic field lines that allow energy and momentum to flow into the magnetosphere. One of the persistent problems of magnetic reconnection is the question of whether the process is continuous or intermittent and what input condition(s) might favor one type of reconnection over the other. Observations from imagers that record FUV emissions caused by precipitating cusp ions demonstrate the global nature of magnetic reconnection. Those images show continuous ionospheric emissions even during changing interplanetary magnetic field conditions. On the other hand, in situ observations from polar‐orbiting satellites show distinctive cusp structures in flux distributions of precipitating ions, which are interpreted as the telltale signature of intermittent reconnection. This study uses a modification of the low‐velocity cutoff method, which was previously successfully used to determine the location of the reconnection site, to calculate for the cusp ion distributions the “time since reconnection occurred.” The “time since reconnection” is used to determine the “reconnection time” for the cusp magnetic field lines where these distributions have been observed. The profile of the reconnection time, either continuous or stepped, is a direct measurement of the nature of magnetic reconnection at the reconnection site. This paper will discuss a continuous and pulsed reconnection event from the Polar spacecraft to illustrate the methodology. PMID:27656333

  15. Amid the Tempest: An Observational View of Magnetic Reconnection in Explosions on the Sun

    NASA Astrophysics Data System (ADS)

    Qiu, Jiong

    2007-05-01

    Viewed through telescopes, the Sun is a restless star. Frequently, impulsive brightenings in the Sun's atmosphere, known as solar flares, are observed across a broad range of the electromagnetic spectrum. It is considered that solar flares are driven by magnetic reconnection, when anti-parallel magnetic field lines collide and reconnect with each other, efficiently converting free magnetic energy into heating plasmas and accelerating charged particles. Over the past decades, solar physicists have discovered observational signatures as indirect evidence for magnetic reconnection. Careful analyses of these observations lead to evaluation of key physical parameters of magnetic reconnection. Growing efforts have been extended to understand the process of magnetic reconnection in some of the most spectacular explosions on the Sun in the form of coronal mass ejections (CMEs). Often accompanied by flares, nearly once a day, a large bundle of plasma wrapped in magnetic field lines is violently hurled out of the Sun into interplanetary space. This is a CME. CMEs are driven magnetically, although the exact mechanisms remain in heated debate. Among many mysteries of CMEs, a fundamental question has been the origin of the specific magnetic structure of CMEs, some reaching the earth and being observed in-situ as a nested set of helical field lines, or a magnetic flux rope. Analyses of interplanetary magnetic flux ropes and their solar progenitors, including flares and CMEs, provide an observational insight into the role of magnetic reconnection at the early stage of flux rope eruption.

  16. Observations of wave-particle interactions in the flux pile-up region of asymmetric reconnection

    NASA Astrophysics Data System (ADS)

    Argall, M. R.; Paulson, K. W.; Ahmadi, N.; Matsui, H.; Torbert, R. B.; Alm, L.; Le Contel, O.; Khotyaintsev, Y. V.; Wilder, F. D.; Turner, D. L.; Strangeway, R. J.; Schwartz, S. J.; Magnes, W.; Giles, B. L.; Lindqvist, P. A.; Ergun, R.; Mauk, B.; Leonard, T. W.

    2017-12-01

    Recent observations have shown electron energization to >100keV with simultaneous whistler wave activity in the vicinity of the dayside reconnection site. We investigate one possible mechanism for producing these energetic particles. Counter-streaming electrons from the magnetosphere enter the diffusion region and are scattered to all pitch angles (PAs) by strong field-line curvature. As the electrons flow outward into the exhaust, they remagnetize and are focused toward 90° at mirror points within the flux pile-up region. This effect, combined with heating mechanisms in the EDR, produces a temperature anisotropy, while the weak magnetic field lowers the resonant energy into the bulk energy of the plasma. In the end, whistler waves are produced near 100Hz with a wave normal angle of 20°. Simultaneous with the waves, the Electron Drift Instrument observes particle flux modulations of 0° and 180° PA, 500 eV electrons. Multi-spacecraft analysis and Liouville mapping techniques allow us to determine the parallel wave current, potential, and associated energy dissipation. Bursts of 100keV electrons are observed and may interact with the whistler waves.

  17. Particle Demagnetization in Collisionless Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2006-01-01

    The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. In this presentation, we present analytical theory results, as well as 2.5 and three-dimensional PIC simulations of guide field magnetic reconnection. We will show that diffusion region scale sizes in moderate and large guide field cases are determined by electron Larmor radii, and that analytical estimates of diffusion region dimensions need to include description of the heat flux tensor. The dominant electron dissipation process appears to be based on thermal electron inertia, expressed through nongyrotropic electron pressure tensors. We will argue that this process remains viable in three dimensions by means of a detailed comparison of high resolution particle-in-cell simulations.

  18. The Transport of Plasma and Magnetic Flux in Giant Planet Magnetospheres

    NASA Astrophysics Data System (ADS)

    Russell, C. T.

    2013-05-01

    Both Jupiter and Saturn have moons that add significant quantities of neutrals and/or dust beyond geosynchronous orbit. This material becomes charged and interacts with the planetary plasma that is "orbiting" the planets at near corotational speeds, driven by the planetary ionospheres. Since this speed is greater than the keplerian orbital speed at these distances, the net force on the newly added charged mass is outward. The charged material is held in place by the magnetic field which stretches to the amount needed to balance centripetal and centrifugal forces. The currents involved in this process close in the ionosphere which is an imperfect conductor and the feet of the field lines hence slip poleward and the material near the equator moves outward. This motion allows the magnetosphere to divest itself of the added mass by transferring it to the magnetotail. The magnetotail in turn can rid itself of the newly added mass by the process of reconnection, interior to the region of added mass, freeing an island of magnetized plasma which then moves down the magnetotail no longer connected to the magnetosphere. This maintains a quasi-stationary conservation of mass in the magnetosphere with roughly constant mass and "periodic" disturbances. However, there is one other steady state the magnetosphere needs to maintain. It needs to replace the mass loaded flux tubes with emptied flux tubes. Thus the "emptied" flux tubes in the tail must move inward against the outgoing mass-loaded flux tubes. That they are buoyant is a help in this regard but it appears also to be helpful if the returning flux separates into thin flux tubes, just like air bubbles rising in a container with a leak in the bottom. In this way the magnetospheres of Jupiter and Saturn maintain their dynamic, steady-state convection patterns.

  19. On magnetic reconnection in the Venusian wake. The experimental evidences

    NASA Astrophysics Data System (ADS)

    Fedorov, A.; Volwerk, M.; Zhang, T.; Barabash, S.; Sauvaud, J.

    2009-12-01

    The Venusian magnetotail is formed by solar wind magnetic flux tubes draping around the planet and stretched antisunward. The magnetotail topology represents two magnetic lobes separated by a thin current sheet. Such a configuration is a free energy reservoir. The accumulated energy is generally released by acceleration of planetary ions antisunward. But in the case of a magnetic reconnection, hypothetically appeared somewhere in the equatorial current sheet, some part of the planetary ions filling the tail, should be accelerated toward the planet. The present paper is devoted to the study of such sunward flows observed by IMA mass spectrometer onboard of the Venus Express orbiter. The case study shows rare accidently observed precipitations of the heavy ions in the nightside of the planet. The statistical study gives us the spatial distribution of such precipitations and conditions of their appearance.

  20. The role of three-dimensional transport in driving enhanced electron acceleration during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Swisdak, M.; Dahlin, J. T.; Drake, J. F.

    2017-12-01

    Magnetic reconnection is an important driver of energetic particles in many space and astrophysical phenomena. Using kinetic particle-in-cell simulations, we explore the effects that the dynamics in three-dimensions has on reconnection and the efficiency of particle acceleration. In two-dimensional systems, Alfvenic outflows expel energetic electrons into flux ropes where they become trapped and disconnected from acceleration regions. However, in three-dimensional systems these flux ropes develop axial structure that enables particles to leak out and return to acceleration regions. This requires a finite guide field so that particles may move quickly along the flux rope axis. The greatest energetic electron production occurs when the guide field is of the same order as the reconnecting component: large enough to facilitate strong transport, but not so large as to throttle the dominant Fermi mechanism responsible for efficient electron acceleration.

  1. On a magnetic reconnection in the Venusian wake. The experimental evidences.

    NASA Astrophysics Data System (ADS)

    Fedorov, Andrei; Jarvinen, Riku; Volwerk, Martin; Barabash, Stas; Zhang, Tielong; Sauvaud, Jean-Andre

    2010-05-01

    The Venusian magnetotail is formed by solar wind magnetic flux tubes draping around the planet and stretched antisunward. The magnetotail topology represents two magnetic lobes separated by a thin current sheet. Such a configuration is a free energy reservoir. The accumulated energy is generally released by antisunward acceleration of the planetary ions. But in the case of a magnetic reconnection, hypothetically appeared somewhere in the equatorial current sheet, some part of the planetary ions filling the tail, should be accelerated toward the planet. To check this hypothesis we have performed statistical and case studies based on the data from the IMA mass-spectrometer and the magnetometer onboard ESA Venus Express mission. We found that the distribution function of the planetary ions in the equatorial plane of the wake, near the midnight, and at the distances less than 1.7Rv from the center of the planet contains the significant part moving toward the planet. At the same time the magnetic field statistics and the numerical simulation show the magnetic field minimum similar to an X-line in the current sheet at the distance about 1.7 Rv from the planet center. This could be an evidence for a quasi-permanent reconnection in the Venusian wake.

  2. Flux-tube divergence, coronal heating, and the solar wind

    NASA Technical Reports Server (NTRS)

    Wang, Y.-M.

    1993-01-01

    Using model calculations based on a self-consistent treatment of the coronal energy balance, we show how the magnetic flux-tube divergence rate controls the coronal temperature and the properties of the solar wind. For a fixed input of mechanical and Alfven-wave energy at the coronal base, we find that as the divergence rate increases, the maximum coronal temperature decreases but the mass flux leaving the sun gradually increases. As a result, the asymptotic wind speed decreases with increasing expansion factor near the sun, in agreement with empirical studies. As noted earlier by Withbroe, the calculated mass flux at the sun is remarkably insensitive to parameter variations; when combined with magnetohydrodynamic considerations, this self-regulatory property of the model explains the observed constancy of the mass flux at earth.

  3. Initiation of Coronal Mass Ejections by Tether-Cutting Reconnection

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present and interpret examples of the eruptive motion and flare brightening observed in the onset of magnetic explosions that produce coronal mass ejections. The observations are photospheric magnetograms and sequences of coronal and/or chromospheric images. In our examples, the explosion is apparently driven by the ejective eruption of a sigmoidal sheared-field flux rope from the core of an initially closed bipole. This eruption is initiated (triggered and unleashed) by reconnection located either (1) internally, low in the sheared core field, or (2) externally, at a magnetic null above the closed bipole. The internal reconnection is commonly called 'tether-cutting" reconnection, and the external reconnection is commonly called "break-out' reconnection. We point out that break-out reconnection amounts to external tether cutting. In one example, the eruptive motion of the sheared core field starts several minutes prior to any detectable brightening in the coronal images. We suggest that in this case the eruption is triggered by internal tether-cutting reconnection that at first is too slow and/or too localized to produce detectable heating in the coronal images. This work is supported by NASA's Office of Space Science through its Solar & Heliospheric Physics Supporting Research & Technology program and its Sun-Earth Connection Guest Investigator program.

  4. 3-D, Impulsive Magnetic Reconnection in a Laboratory Plasma (Invited)

    NASA Astrophysics Data System (ADS)

    Dorfman, S. E.; Ji, H.; Yamada, M.; Yoo, J.; Myers, C. E.; Roytershteyn, V.; Daughton, W. S.; Jara-Almonte, J.

    2013-12-01

    Magnetic reconnection is a fundamental plasma process involving the efficient conversion of magnetic field energy to plasma kinetic energy through changing field line topology. In many space and astrophysical systems, including the solar surface and the Earth's magnetotail, reconnection is not only fast, but also impulsive; in other words, a slow buildup phase is followed by a comparatively quick release of magnetic energy. An important question in the literature is if these examples of impulsive reconnection can be described by a two-dimensional model with no variation in the out-of-plane direction or if impulsive reconnection is fundamentally three-dimensional. Events observed on the Magnetic Reconnection Experiment (MRX) are characterized by large local gradients in the third direction and cannot be explained by 2-D models [1]. Detailed measurements show that the ejection of flux rope structures from the current sheet plays a key role in these events. By contrast, even though electromagnetic fluctuations in the lower hybrid frequency range are also observed concurrently with the impulsive behavior, they are not the key physics responsible. Furthermore, an important discrepancy in the layer width and force balance between the collisionless regime of MRX and kinetic simulations [2-4] persists when the fluctuations are small or absent, implying that they are not the cause of the wider electron layers observed in the experiment [5]. These wider layers may instead be due to the formation of flux ropes with a wide range of sizes; consistent with this hypothesis, flux rope signatures are observed down to the smallest scales resolved by the diagnostics. Finally, a qualitative, 3-D, two-fluid model is proposed to explain the observed disruptions. Many of the features observed in MRX including current disruptions [6], flux ropes [7], and electromagnetic fluctuations [8] have analogues in space observations. Thus, further detailed comparisons may enhance our understanding

  5. Fluctuation dynamo based on magnetic reconnections

    NASA Astrophysics Data System (ADS)

    Baggaley, A. W.; Shukurov, A.; Barenghi, C. F.; Subramanian, K.

    2010-01-01

    We develop a new model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multi-scale flow which models turbulence. Magnetic dissipation occurs only via reconnections of flux ropes. The model is particularly suitable for rarefied plasma, such as the solar corona or galactic halos. We investigate the kinetic energy release into heat, mediated by dynamo action, both in our model and by solving the induction equation with the same flow. We find that the flux rope dynamo is more than an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy released during reconnections has a power-law form with the slope -3, consistent with the solar corona heating by nanoflares. We also present a nonlinear extension of the model. This shows that a plausible saturation mechanism of the fluctuation dynamo is the suppression of turbulent magnetic diffusivity, due to suppression of random stretching at the location of the flux ropes. We confirm that the probability distribution function of the magnetic line curvature has a power-law form suggested by \\citet{Sheck:2002b}. We argue, however, using our results that this does not imply a persistent folded structure of magnetic field, at least in the nonlinear stage.

  6. Sunspots and the physics of magnetic flux tubes. III - Aerodynamic lift

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1979-01-01

    The aerodynamic lift exerted on a magnetic flux tube by the asymmetric flow around the two sides of the tube is calculated as part of an investigation of the physics of solar flux tubes. The general hydrodynamic forces on a rigid circular cylinder in a nonuniform flow of an ideal fluid are derived from the first derivatives of the velocity field. Aerodynamic lift in a radial nonuniform flow is found to act in the direction of the flow, toward the region of increased flow velocity, while in a shear flow, lift is perpendicular to the free stream and directed toward increasing flow velocity. For a general, three dimensional, large-scale stationary incompressible equilibrium flow, an expression is also derived relating the lift per unit length to the dynamical pressure, cylinder radius and the gradient of the free-stream velocity. Evidence from an asymmetric airfoil in a uniform flow indicates that lift is enhanced in a real fluid in the presence of turbulence.

  7. Magnetization of Cloud Cores and Envelopes and Other Observational Consequences of Reconnection Diffusion

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Esquivel, A.; Crutcher, R.

    2012-10-01

    Recent observational results for magnetic fields in molecular clouds reviewed by Crutcher seem to be inconsistent with the predictions of the ambipolar diffusion theory of star formation. These include the measured decrease in mass to flux ratio between envelopes and cores, the failure to detect any self-gravitating magnetically subcritical clouds, the determination of the flat probability distribution function (PDF) of the total magnetic field strengths implying that there are many clouds with very weak magnetic fields, and the observed scaling Bvpropρ2/3 that implies gravitational contraction with weak magnetic fields. We consider the problem of magnetic field evolution in turbulent molecular clouds and discuss the process of magnetic field diffusion mediated by magnetic reconnection. For this process that we termed "reconnection diffusion," we provide a simple physical model and explain that this process is inevitable in view of the present-day understanding of MHD turbulence. We address the issue of the expected magnetization of cores and envelopes in the process of star formation and show that reconnection diffusion provides an efficient removal of magnetic flux that depends only on the properties of MHD turbulence in the core and the envelope. We show that as the amplitude of turbulence as well as the scale of turbulent motions decrease from the envelope to the core of the cloud, the diffusion of the magnetic field is faster in the envelope. As a result, the magnetic flux trapped during the collapse in the envelope is being released faster than the flux trapped in the core, resulting in much weaker fields in envelopes than in cores, as observed. We provide simple semi-analytical model calculations which support this conclusion and qualitatively agree with the observational results. Magnetic reconnection is also consistent with the lack of subcritical self-gravitating clouds, with the observed flat PDF of field strengths, and with the scaling of field

  8. Dynamo generation of magnetic fields in three-dimensional space - Solar cycle main flux tube formation and reversals

    NASA Astrophysics Data System (ADS)

    Yoshimura, H.

    1983-08-01

    The case of the solar magnetic cycle is investigated as a prototype of the dynamo processes involved in the generation of magnetic fields in astrophysics. Magnetohydrodynamic (MHD) equations are solved using a numerical method with a prescribed velocity field in order follow the movement and deformation. It is shown that a simple combination of differential rotation and global convection, given by a linear analysis of fluid dynamics in a rotating sphere, can perpetually create and reverse great magnetic flux tubes encircling the sun. These main flux tubes of the solar cycle are the progenitors of small-scale flux ropes of the solar activity. These findings indicate that magnetic fields can be generated by fluid motions and that MHD equations have a new type of oscillatory solution. It is shown that the solar cycle can be identified with one of these oscillatory solutions. It is proposed that the formation of magnetic flux tubes by streaming plasma flows is a universal mechanism of flux tube formation in astrophysics.

  9. Suppression of Collisionless Magnetic Reconnection in Asymmetric Current Sheets

    NASA Technical Reports Server (NTRS)

    Liu, Yi-Hsin; Hesse, Michael

    2016-01-01

    Using fully kinetic simulations, we study the suppression of asymmetric reconnection in the limit where the diamagnetic drift speed >> Alfven speed and the magnetic shear angle is moderate. We demonstrate that the slippage between electrons and the magnetic flux mitigates the suppression and can even result in fast reconnection that lacks one of the outflow jets. Through comparing a case where the diamagnetic drift is supported by the temperature gradient with a companion case that has a density gradient instead, we identify a robust suppression mechanism. The drift of the x-line is slowed down locally by the asymmetric nature of the x-line, and then the x-line is run over and swallowed by the faster-moving following flux.

  10. Magnetic helicity and flux tube dynamics in the solar convection zone: Comparisons between observation and theory

    NASA Astrophysics Data System (ADS)

    Nandy, Dibyendu

    2006-12-01

    Magnetic helicity, a conserved topological parameter in ideal MHD systems, conditions close to which are realized in the solar plasma, is intimately connected to the creation and subsequent dynamics of magnetic flux tubes in the solar interior. It can therefore be used as a tool to probe such dynamics. In this paper we show how photospheric observations of magnetic helicity of isolated magnetic flux tubes, manifested as the twist and writhe of solar active regions, can constrain the creation and dynamics of flux tubes in the solar convection zone and the nature of convective turbulence itself. We analyze the observed latitudinal distribution of twists in photospheric active regions, derived from solar vector magnetograms, in the largest such sample studied till-date. We confirm and put additional constraints on the hemispheric twist helicity trend and find that the dispersion in the active region twist distribution is latitude-independent, implying that the amplitude of turbulent fluctuations does not vary with latitude in the convection zone. Our data set also shows that the amplitude and dispersion of twist decreases with increasing magnetic size of active regions, supporting the conclusion that larger flux tubes are less affected by turbulence. Among the various theoretical models that have been proposed till-date to explain the origin of twist, our observations best match the Σ effect model, which invokes helical turbulent buffeting of rising flux tubes as the mechanism for twist creation. Finally, we complement our analysis of twists with past observations of tilts in solar active regions and tie them in with theoretical modeling studies, to build up a comprehensive picture of the dynamics of twisted magnetic flux tubes throughout the solar convection zone. This general framework, binding together theory and observations, suggests that flux tubes have a wide range of twists in the solar convection zone, with some as high as to make them susceptible to the

  11. Magnetic reconnection in Saturn's magnetotail: A comprehensive magnetic field survey.

    PubMed

    Smith, A W; Jackman, C M; Thomsen, M F

    2016-04-01

    Reconnection within planetary magnetotails is responsible for locally energizing particles and changing the magnetic topology. Its role in terms of global magnetospheric dynamics can involve changing the mass and flux content of the magnetosphere. We have identified reconnection related events in spacecraft magnetometer data recorded during Cassini's exploration of Saturn's magnetotail. The events are identified from deflections in the north-south component of the magnetic field, significant above a background level. Data were selected to provide full tail coverage, encompassing the dawn and dusk flanks as well as the deepest midnight orbits. Overall 2094 reconnection related events were identified, with an average rate of 5.0 events per day. The majority of events occur in clusters (within 3 h of other events). We examine changes in this rate in terms of local time and latitude coverage, taking seasonal effects into account. The observed reconnection rate peaks postmidnight with more infrequent but steady loss seen on the dusk flank. We estimate the mass loss from the event catalog and find it to be insufficient to balance the input from the moon Enceladus. Several reasons for this discrepancy are discussed. The reconnection X line location appears to be highly variable, though a statistical separation between events tailward and planetward of the X line is observed at a radial distance of between 20 and 30 R S downtail. The small sample size at dawn prevents comprehensive statistical comparison with the dusk flank observations in terms of flux closure.

  12. Ellerman bombs and UV bursts: reconnection at different atmospheric layers?

    NASA Astrophysics Data System (ADS)

    Hansteen, V. H.; Ortiz-Carbonell, A. N.; Rouppe van der Voort, L.

    2017-12-01

    The emergence of magnetic flux through the photosphere and into the outer solar atmosphere produces, amongst many other phenomena, the appearance of Ellerman bombs (EBs) in the photosphere. EBs are observed in the wings of H(alpha) and are highly likely to be due to reconnection in the photosphere, below the chromospheric canopy. However, signs of the reconnection process are also observed in several other spectral lines, typical of the chromosphere or transition region. An example are the UV bursts observed in the transition region lines of Si IV. In this work we analyze high cadence coordinated observations between the 1-m Swedish Solar Telescope and the IRIS spacecraft in order to study the possible relationship between reconnection events at different layers in the atmosphere, and in particular, the timing history between them. High cadence, high resolution H-alpha images from the SST provide us with the positions, timings and trajectories of Ellerman bombs in an emerging flux region. Simultaneous co-aligned IRIS slit-jaw images at 1400 and 1330 A and detailed Si IV spectra from the fast spectrograph raster allow us to study the transition region counterparts of those photospheric Ellerman bombs. Our main goal is to study whether there is a temporal relationship between the appearance of an EB and the appearance of a UV burst. Eventually we would like to investigate whether reconnection happens at discrete heights, or as a reconnection sheet spanning several layers at the same time.

  13. The Emergence of Kinked Flux Tubes as the Source of Delta-Spots on the Photosphere

    NASA Astrophysics Data System (ADS)

    Knizhnik, K. J.; Linton, M.; Norton, A. A.; DeVore, C. R.

    2017-12-01

    It has been observationally well established that the magnetic configurations most favorable to producing energetic flaring events reside in so called delta-spots. These delta-spots are a subclass of sunspots, and are classified as sunspots which have umbrae (dark regions in the interior of sunspots) with opposite magnetic polarities that share a common penumbra. They are characterized by strong rotation and an extremely compact magnetic configuration, and are observed to follow an inverse-Hale law. They are also observed to have strong twist. It has been shown that over 90% of X-class flares that occurred during solar cycles 22 and 23 originated in delta-spots (Guo, Lin & Deng, 2014). Understanding the origin of delta-spots, therefore, is a crucial step towards the ultimate goal of space weather forecasting. In this work, we argue that delta-spots arise during the emergence of kinked flux tubes into the corona, and that their unique properties are due to the emergence of knots present in the kink mode of twisted flux tubes. We present numerical simulations that study the emergence of both kink-stable and unstable flux tubes into the solar corona, and demonstrate quantitatively that their photospheric signatures are drastically different, with the latter flux tubes demonstrating strong coherent rotation and a very tight flux distribution on the photosphere. We show that the coronal magnetic field resulting from the emergence of a kinked flux tube contains more free energy than the unkinked case, potentially leading to more energetic flares. We discuss the implications of our simulations for observations. This work was supported by the Chief of Naval Research through the National Research Council.

  14. Quantized Chiral Magnetic Current from Reconnections of Magnetic Flux

    DOE PAGES

    Hirono, Yuji; Kharzeev, Dmitri E.; Yin, Yi

    2016-10-20

    We introduce a new mechanism for the chiral magnetic e ect that does not require an initial chirality imbalance. The chiral magnetic current is generated by reconnections of magnetic ux that change the magnetic helicity of the system. The resulting current is entirely determined by the change of magnetic helicity, and it is quantized.

  15. Spatial Transport of Magnetic Flux Surfaces in Strongly Anisotropic Turbulence

    NASA Astrophysics Data System (ADS)

    Matthaeus, W. H.; Servidio, S.; Wan, M.; Ruffolo, D. J.; Rappazzo, A. F.; Oughton, S.

    2013-12-01

    Magnetic flux surfaces afford familiar descriptions of spatial structure, dynamics, and connectivity of magnetic fields, with particular relevance in contexts such as solar coronal flux tubes, magnetic field connectivity in the interplanetary and interstellar medium, as well as in laboratory plasmas and dynamo problems [1-4]. Typical models assume that field-lines are orderly, and flux tubes remain identifiable over macroscopic distances; however, a previous study has shown that flux tubes shred in the presence of fluctuations, typically losing identity after several correlation scales [5]. Here, the structure of magnetic flux surfaces is numerically investigated in a reduced magnetohydrodynamic (RMHD) model of homogeneous turbulence. Short and long-wavelength behavior is studied statistically by propagating magnetic surfaces along the mean field. At small scales magnetic surfaces become complex, experiencing an exponential thinning. At large scales, instead, the magnetic flux undergoes a diffusive behavior. The link between the diffusion of the coarse-grained flux and field-line random walk is established by means of a multiple scale analysis. Both large and small scales limits are controlled by the Kubo number. These results have consequences for understanding and interpreting processes such as magnetic reconnection and field-line diffusion in plasmas [6]. [1] E. N. Parker, Cosmical Magnetic Fields (Oxford Univ. Press, New York, 1979). [2] J. R. Jokipii and E. N. Parker, Phys. Rev. Lett. 21, 44 (1968). [3] R. Bruno et al., Planet. Space Sci. 49, 1201 (2001). [4] M. N. Rosenbluth et al., Nuclear Fusion 6, 297 (1966). [5] W. H. Matthaeus et al., Phys. Rev. Lett. 75, 2136 (1995). [6] S. Servidio et al., submitted (2013).

  16. Observations of Reconnection Flows in a Flare on the Solar Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Juntao; Simões, P. J. A.; Jeffrey, N. L. S.

    Magnetic reconnection is a well-accepted part of the theory of solar eruptive events, though the evidence is still circumstantial. Intrinsic to the reconnection picture of a solar eruptive event, particularly in the standard model for two-ribbon flares (CSHKP model), are an advective flow of magnetized plasma into the reconnection region, expansion of field above the reconnection region as a flux rope erupts, retraction of heated post-reconnection loops, and downflows of cooling plasma along those loops. We report on a unique set of Solar Dynamics Observatory /Atmospheric Imaging Assembly imaging and Hinode /EUV Imaging Spectrometer spectroscopic observations of the disk flaremore » SOL2016-03-23T03:54 in which all four flows are present simultaneously. This includes spectroscopic evidence for a plasma upflow in association with large-scale expanding closed inflow field. The reconnection inflows are symmetric, and consistent with fast reconnection, and the post-reconnection loops show a clear cooling and deceleration as they retract. Observations of coronal reconnection flows are still rare, and most events are observed at the solar limb, obscured by complex foregrounds, making their relationship to the flare ribbons, cusp field, and arcades formed in the lower atmosphere difficult to interpret. The disk location and favorable perspective of this event have removed these ambiguities giving a clear picture of the reconnection dynamics.« less

  17. Three-dimensional magnetic reconnection and the magnetic topology of coronal mass ejection events

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Birn, J.; Hesse, M.

    1995-01-01

    Measurements of superthermal electron fluxes in the solar wind indicate that field lines within coronal mass ejections, CMEs, near and beyond 1 AU are normally connected to the Sun at both ends. However, on occasion some field lines embedded deep within CMEs appear to be connected to the Sun at only one end. Here we propose an explanation for how such field lines arise in terms of 3-dimensional reconnection close to the Sun. Such reconnection also provides a natural explanation for the flux rope topology characteristic of many CMEs as well as the coronal loops formed during long-duration, solar X-ray events. Our consideration of the field topologies resulting from 3-dimensional reconnection indicates that field lines within and near CMEs may on occasion be connected to the outer heliosphere at both ends.

  18. Magnetic Flux Circulation During Dawn-Dusk Oriented Interplanetary Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mitchell, E. J.; Lopez, R. E.; Fok, M.-C.; Deng, Y.; Wiltberger, M.; Lyon, J.

    2010-01-01

    Magnetic flux circulation is a primary mode of energy transfer from the solar wind into the ionosphere and inner magnetosphere. For southward interplanetary magnetic field (IMF), magnetic flux circulation is described by the Dungey cycle (dayside merging, night side reconnection, and magnetospheric convection), and both the ionosphere and inner magnetosphere receive energy. For dawn-dusk oriented IMF, magnetic flux circulation is not well understood, and the inner magnetosphere does not receive energy. Several models have been suggested for possible reconnection patterns; the general pattern is: dayside merging; reconnection on the dayside or along the dawn/dusk regions; and, return flow on dayside only. These models are consistent with the lack of energy in the inner magnetosphere. We will present evidence that the Dungey cycle does not explain the energy transfer during dawn-dusk oriented IMF. We will also present evidence of how magnetic flux does circulate during dawn-dusk oriented IMF, specifically how the magnetic flux reconnects and circulates back.

  19. The role of three-dimensional transport in driving enhanced electron acceleration during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Dahlin, J. T.; Drake, J. F.; Swisdak, M.

    2017-09-01

    Magnetic reconnection is an important driver of energetic particles in many astrophysical phenomena. Using kinetic particle-in-cell simulations, we explore the impact of three-dimensional reconnection dynamics on the efficiency of particle acceleration. In two-dimensional systems, Alfvénic outflows expel energetic electrons into flux ropes where they become trapped and disconnected from acceleration regions. However, in three-dimensional systems these flux ropes develop an axial structure that enables particles to leak out and return to acceleration regions. This requires a finite guide field so that particles may move quickly along the flux rope axis. We show that greatest energetic electron production occurs when the guide field is of the same order as the reconnecting component: large enough to facilitate strong transport, but not so large as to throttle the dominant Fermi mechanism responsible for efficient electron acceleration. This suggests a natural explanation for the envelope of electron acceleration during the impulsive phase of eruptive flares.

  20. A nonlocal fluid closure for antiparallel reconnection

    NASA Astrophysics Data System (ADS)

    Ng, J.; Hakim, A.; Bhattacharjee, A.

    2016-12-01

    The integration of kinetic effects in fluid models is an important problem in global simulations of the Earth's magnetosphere and space weather modelling. In particular, it has been shown that ion kinetics play an important role in the dynamics of large reconnecting systems, and that fluid models can account of some of these effects[1,2] . Here we introduce a new fluid model and closure for collisionless magnetic reconnection and more general applications. Taking moments of the kinetic equation, we evolve the full pressure tensor for electrons and ions, which includes the off diagonal terms necessary for reconnection. Kinetic effects are recovered by using a nonlocal heat flux closure, which approximates linear Landau damping in the fluid framework [3]. Using the island coalescence problem as a test, we show how the nonlocal ion closure improves on the typical collisional closures used for ten-moment models and circumvents the need for a colllisional free parameter. Finally, we extend the closure to study guide-field reconnection and discuss the implementation of a twenty-moment model.[1] A. Stanier et al. Phys Rev Lett (2015)[2] J. Ng et al. Phys Plasmas (2015)[3] G. Hammett et al. Phys Rev Lett (1990)

  1. Low thermal flux glass-fiber tubing for cryogenic service.

    NASA Technical Reports Server (NTRS)

    Hall, C. A.; Pharo, T. J., Jr.; Phillips, J. M.

    1972-01-01

    Study of thin metallic liners which provide leak-free service in cryogenic propulsion plumbing systems and are overwrapped with a glass-fiber composite that provides strength and protection from handling damage. The composite tube is lightweight, strong, and has a very low thermal flux. The resultant reduced boiloff of stored cryogenic propellants yields a substantial weight savings for long-term missions (seven days or greater). Twelve styles of tubing ranging from 1/2 to 5 in. in diameter were fabricated and tested with excellent results for most of the concepts at operating temperatures from +70 to -423 F and operating pressures up to 3000 psi.

  2. Flux tubes in the QCD vacuum

    NASA Astrophysics Data System (ADS)

    Cea, Paolo; Cosmai, Leonardo; Cuteri, Francesca; Papa, Alessandro

    2017-06-01

    The hypothesis that the QCD vacuum can be modeled as a dual superconductor is a powerful tool to describe the distribution of the color field generated by a quark-antiquark static pair and, as such, can provide useful clues for the understanding of confinement. In this work we investigate, by lattice Monte Carlo simulations of the S U (3 ) pure gauge theory and of (2 +1 )-flavor QCD with physical mass settings, some properties of the chromoelectric flux tube at zero temperature and their dependence on the physical distance between the static sources. We draw some conclusions about the validity domain of the dual superconductor picture.

  3. Model of Reconnection of Weakly Stochastic Magnetic Field and its Implications

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Vishniac, E. T.

    2009-08-01

    We discuss the model of magnetic field reconnection in the presence of turbulence introduced by us ten years ago. The model does not require any plasma effects to be involved in order to make the reconnection fast. In fact, it shows that the degree of magnetic field stochasticity controls the reconnection. The turbulence in the model is assumed to be sub-Alfvénic, with the magnetic field only slightly perturbed. This ensures that the reconnection happens in generic astrophysical environments and the model does not appeal to any unphysical concepts, similar to the turbulent magnetic diffusivity concept, which is employed in the kinematic magnetic dynamo. The interest to that model has recently increased due to successful numerical testings of the model predictions. In view of this, we discuss implications of the model, including the first-order Fermi acceleration of cosmic rays, that the model naturally entails, bursts of reconnection, that can be associated with Solar flares, as well as, removal of magnetic flux during star-formation.

  4. Flux transfer events at the dayside magnetopause: Transient reconnection or magnetosheath dynamic pressure pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockwood, M.

    1991-04-01

    The suggestion is discussed that characteristic particle and field signatures at the dayside magnetopause, termed flux transfer events, are, in at least some cases, due to transient solar wind and/or magnetosheath dynamic pressure increases, rather than time-dependent magnetic reconnection. It is found that most individual cases of FTEs observed by a single spacecraft can, at least qualitatively, be explained by the pressure pulse model, provided a few rather unsatisfactory features of the predictions are explained in terms of measurement uncertainties. The most notable exceptions to this are some two-regime observations made by two satellites simultaneously, one on either side ofmore » the magnetopause. However, this configuration has not been frequently achieved for sufficient time, such observations are rare, and the relevant tests are still not conclusive. The strongest evidence that FTEs are produced by magnetic reconnection is the dependence of their occurence on the north-south component of the interplanetary magnetic field (IMF) or of the magnetosheath field. The pressure pulse model provides an explanation for this dependence in the case of magnetosheath FTEs, but does not apply to magnetosphere FTEs. The only surveys of magnetosphere FTEs have not employed the simultaneous IMF, but have shown that their occurence is strongly dependent on the north-south component of the magnetosheath field, as observed earlier/later on the same magnetopause crossing. This paper employs statistics on the variability of the IMF orientation to investigate the effects of IMF changes between the times of the magnetosheath and FTE observations. It is shown that the previously published results are consistent with magnetospheric FTEs being entirely absent when the magentosheath field is northward.« less

  5. Magnetic-flux-driven topological quantum phase transition and manipulation of perfect edge states in graphene tube.

    PubMed

    Lin, S; Zhang, G; Li, C; Song, Z

    2016-08-24

    We study the tight-binding model for a graphene tube with perimeter N threaded by a magnetic field. We show exactly that this model has different nontrivial topological phases as the flux changes. The winding number, as an indicator of topological quantum phase transition (QPT) fixes at N/3 if N/3 equals to its integer part [N/3], otherwise it jumps between [N/3] and [N/3] + 1 periodically as the flux varies a flux quantum. For an open tube with zigzag boundary condition, exact edge states are obtained. There exist two perfect midgap edge states, in which the particle is completely located at the boundary, even for a tube with finite length. The threading flux can be employed to control the quantum states: transferring the perfect edge state from one end to the other, or generating maximal entanglement between them.

  6. Magnetic Shocks and Substructures Excited by Torsional Alfvén Wave Interactions in Merging Expanding Flux Tubes

    NASA Astrophysics Data System (ADS)

    Snow, B.; Fedun, V.; Gent, F. A.; Verth, G.; Erdélyi, R.

    2018-04-01

    Vortex motions are frequently observed on the solar photosphere. These motions may play a key role in the transport of energy and momentum from the lower atmosphere into the upper solar atmosphere, contributing to coronal heating. The lower solar atmosphere also consists of complex networks of flux tubes that expand and merge throughout the chromosphere and upper atmosphere. We perform numerical simulations to investigate the behavior of vortex-driven waves propagating in a pair of such flux tubes in a non-force-free equilibrium with a realistically modeled solar atmosphere. The two flux tubes are independently perturbed at their footpoints by counter-rotating vortex motions. When the flux tubes merge, the vortex motions interact both linearly and nonlinearly. The linear interactions generate many small-scale transient magnetic substructures due to the magnetic stress imposed by the vortex motions. Thus, an initially monolithic tube is separated into a complex multithreaded tube due to the photospheric vortex motions. The wave interactions also drive a superposition that increases in amplitude until it exceeds the local Mach number and produces shocks that propagate upward with speeds of approximately 50 km s‑1. The shocks act as conduits transporting momentum and energy upward, and heating the local plasma by more than an order of magnitude, with a peak temperature of approximately 60,000 K. Therefore, we present a new mechanism for the generation of magnetic waveguides from the lower solar atmosphere to the solar corona. This wave guide appears as the result of interacting perturbations in neighboring flux tubes. Thus, the interactions of photospheric vortex motions is a potentially significant mechanism for energy transfer from the lower to upper solar atmosphere.

  7. Plasma Heating and Alfvénic Turbulence Enhancement During Two Steps of Energy Conversion in Magnetic Reconnection Exhaust Region of Solar Wind

    NASA Astrophysics Data System (ADS)

    Jiansen, He; Xingyu, Zhu; Yajie, Chen; Chadi, Salem; Michael, Stevens; Hui, Li; Wenzhi, Ruan; Lei, Zhang; Chuanyi, Tu

    2018-04-01

    The magnetic reconnection exhaust is a pivotal region with enormous magnetic energy being continuously released and converted. The physical processes of energy conversion involved are so complicated that an all-round understanding based on in situ measurements is still lacking. We present the evidence of plasma heating by illustrating the broadening of proton and electron velocity distributions, which are extended mainly along the magnetic field, in an exhaust of interchange reconnection between two interplanetary magnetic flux tubes of the same polarity on the Sun. The exhaust is asymmetric across an interface, with both sides being bounded by a pair of compound discontinuities consisting of rotational discontinuity and slow shock. The energized plasmas are found to be firehose unstable, and responsible for the emanation of Alfvén waves during the second step of energy conversion. It is realized that the energy conversion in the exhaust can be a two-step process involving both plasma energization and wave emission.

  8. Condensation heat transfer and pressure drop of R-410A in a 7.0 mm O.D. microfin tube at low mass fluxes

    NASA Astrophysics Data System (ADS)

    Kim, Nae-Hyun

    2016-12-01

    R-410A condensation heat transfer and pressure drop data are provided for a 7.0 mm O.D. microfin tube at low mass fluxes (50-250 kg/m2 s). The heat transfer coefficient of the microfin tube shows a minimum behavior with the mass flux. At a low mass flux, where flow pattern is stratified, condensation induced by surface tension by microfins overwhelms condensation induced by shear, and the heat transfer coefficient decreases as mass flux increases. At a high mass flux, where flow pattern is annular, condensation induced by shear governs the heat transfer, and the heat transfer coefficient increases as mass flux increases. The pressure drop of the microfin tube is larger than that of the smooth tube at the annular flow regime. On the contrary, the pressure drop of the smooth tube is larger than that of the microfin tube at the stratified flow regime.

  9. Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. A.; Poniaev, S. A.

    2015-12-01

    Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux.

  10. Flow boiling heat transfer of R134a and R404A in a microfin tube at low mass fluxes and low heat fluxes

    NASA Astrophysics Data System (ADS)

    Spindler, Klaus; Müller-Steinhagen, Hans

    2009-05-01

    An experimental investigation of flow boiling heat transfer in a commercially available microfin tube with 9.52 mm outer diameter has been carried out. The microfin tube is made of copper with a total fin number of 55 and a helix angle of 15°. The fin height is 0.24 mm and the inner tube diameter at fin root is 8.95 mm. The test tube is 1 m long and is electrically heated. The experiments have been performed at saturation temperatures between 0 and -20°C. The mass flux was varied between 25 and 150 kg/m2s, the heat flux from 15,000 W/m2 down to 1,000 W/m2. All measurements have been performed at constant inlet vapour quality ranging from 0.1 to 0.7. The measured heat transfer coefficients range from 1,300 to 15,700 W/m2K for R134a and from 912 to 11,451 W/m2K for R404A. The mean heat transfer coefficient of R134a is in average 1.5 times higher than for R404A. The mean heat transfer coefficient has been compared with the correlations by Koyama et al. and by Kandlikar. The deviations are within ±30% and ±15%, respectively. The influence of the mass flux on the heat transfer is most significant between 25 and 62.5 kg/m2s, where the flow pattern changes from stratified wavy flow to almost annular flow. This flow pattern transition is shifted to lower mass fluxes for the microfin tube compared to the smooth tube.

  11. The deformation of flux tubes in the solar wind with applications to the structure of magnetic clouds and CMEs

    NASA Technical Reports Server (NTRS)

    Cargill, Peter J.; Chen, James; Spicer, D. S.; Zalesak, S. T.

    1994-01-01

    Two dimensional magnetohydrodynamic simulations of the distortion of a magnetic flux tube, accelerated through ambient solar wind plasma, are presented. Vortices form on the trailing edge of the flux tube, and couple strongly to its interior. If the flux tube azimuthal field is weak, it deforms into an elongated banana-like shape after a few Alfven transit times. A significant azimuthal field component inhibits this distortion. In the case of magnetic clouds in the solar wind, it is suggested that the shape observed at 1 AU was determined by distortion of the cloud in the inner heliosphere. Distortion of the cloud beyond 1 AU takes many days. It is estimated that effective drag coefficients slightly greater than unity are appropriate for modeling flux tube propagation. Synthetic magnetic field profiles as would be seen by a spacecraft traversing the cloud are presented.

  12. On the formation of tilted flux ropes in the Earth's magnetotail observed with ARTEMIS

    NASA Astrophysics Data System (ADS)

    Kiehas, S. A.; Angelopoulos, V.; Runov, A.; Moldwin, M. B.; Möstl, C.

    2012-05-01

    On 21 October 2010, ARTEMIS spacecraft P2, located at about -57 REGSM in the Earth's magnetotail, observed a series of flux ropes during the course of a moderate substorm. Subsequently, ARTEMIS spacecraft P1, located about 20 RE farther downtail and farther into the lobe than P2, observed a series of TCRs, consistent with the flux ropes observed by P2. The dual-spacecraft configuration allows simultaneous examination of these phenomena, which are interpreted as an O-line, followed by a series of flux ropes/TCRs. An inter-spacecraft time of flight analysis, assuming tailward propagation of cross-tail aligned ropes, suggests propagation speeds of up to ˜2000 km/s. A principal axis investigation, however, indicates that the flux ropes were tilted between 41° and 45° in the GSM x-y-plane with respect to the noon-midnight meridional plane. Taking this into account, the tailward propagation speed of the different flux ropes is determined to be between 900 and 1400 km/s. The same timing analysis also reveals that the flux rope velocity increased progressively from one flux rope to the next. A clear correlation between the magnetic field and plasma flow components inside the flux ropes was observed. As possible mechanisms leading to the formation of tilted flux ropes we suggest (a) a progressive spreading of the reconnection line along the east-west direction, leading to a boomerang-like shape and (b) a tilting of flux ropes during their formation by non-uniform reconnection with open field lines at the ends of the flux ropes. The progressive increase in the propagation velocity from the first to the last flux rope may be evidence of impulsive reconnection: initially deep inside the plasma sheet the reconnection rate is slow but as reconnection proceeds at the plasma sheet boundary and possibly lobes, the reconnection rate increases.

  13. Observation of Three-Dimensional Magnetic Reconnection in the Terrestrial Magnetotail

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Ashour-Abdalla, Maha; Deng, Xiaohua; Pang, Ye; Fu, Huishan; Walker, Raymond; Lapenta, Giovanni; Huang, Shiyong; Xu, Xiaojun; Tang, Rongxin

    2017-09-01

    Study of magnetic reconnection has been focused on two-dimensional geometry in the past decades, whereas three-dimensional structures and dynamics of reconnection X line are poorly understood. In this paper, we report Cluster multispacecraft observations of a three-dimensional magnetic reconnection X line with a weak guide field ( 25% of the upstream magnetic field) in the Earth's magnetotail. We find that the X line not only retreated tailward but also expanded across the tail following the electron flow direction with a maximum average speed of (0.04-0.15) VA,up, where VA,up is the upstream Alfvén speed, or (0.14-0.57) Vde, where Vde is the electron flow speed in the out-of-plane direction. An ion diffusion region was observed by two spacecraft that were separated about 10 ion inertial lengths along the out-of-plane direction; however, these two spacecraft observed distinct magnetic structures associated with reconnection: one spacecraft observed dipolarization fronts, while the other one observed flux ropes. This indicates that reconnection proceeds in drastically different ways in different segments along the X line only a few ion inertial lengths apart.

  14. Helicity Transformation under the Collision and Merging of Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Dehaas, Timothy

    2016-10-01

    A magnetic flux rope is a tube-like, current carrying plasma embedded in an external magnetic field. The magnetic field lines resemble threads in a rope, which vary in pitch according to radius. Flux ropes are ubiquitous in astrophysical plasmas, and bundles of these structures play an important role in the dynamics of the space environment. They are observed in the solar atmosphere and near-earth environment where they are seen to twist, merge, tear, and writhe. In this MHD context, their global dynamics are bound by rules of magnetic helicity conservation, unless, under a non-ideal process, helicity is transformed through magnetic reconnection, turbulence, or localized instabilities. These processes are tested under experimental conditions in the Large Plasma Device (LAPD). The device is a twenty-meter long, one-meter diameter, cylindrical vacuum vessel designed to generate a highly reproducible, magnetized plasma. Reliable shot-to-shot repetition of plasma parameters and over four hundred diagnostic ports enable the collection of volumetric datasets (measurements of ne, Te, Vp, B, J, E, uflow) as two kink-unstable flux ropes form, move, collide, and merge. Similar experiments on the LAPD have utilized these volumetric datasets, visualizing magnetic reconnection through a topological quasi-separatrix layer, or QSL. This QSL is shown to be spatially coincident with the reconnection rate, ∫ E . dl , and oscillates (although out of phase) with global helicity. Magnetic helicity is observed to have a negative sign and its counterpart, cross helicity, a positive one. These quantities oscillate 8% peak-to-peak, and the changes in helicity are visualized as 1) the transport of helicity (ϕB + E × A) and 2) the dissipation of the helicity - 2 E . B . This work is supported by LANL-UC research Grant and done at the Basic Plasma Science Facility, which is funded by DOE and NSF.

  15. Self-organized criticality in a two-dimensional cellular automaton model of a magnetic flux tube with background flow

    NASA Astrophysics Data System (ADS)

    Dănilă, B.; Harko, T.; Mocanu, G.

    2015-11-01

    We investigate the transition to self-organized criticality in a two-dimensional model of a flux tube with a background flow. The magnetic induction equation, represented by a partial differential equation with a stochastic source term, is discretized and implemented on a two-dimensional cellular automaton. The energy released by the automaton during one relaxation event is the magnetic energy. As a result of the simulations, we obtain the time evolution of the energy release, of the system control parameter, of the event lifetime distribution and of the event size distribution, respectively, and we establish that a self-organized critical state is indeed reached by the system. Moreover, energetic initial impulses in the magnetohydrodynamic flow can lead to one-dimensional signatures in the magnetic two-dimensional system, once the self-organized critical regime is established. The applications of the model for the study of gamma-ray bursts (GRBs) is briefly considered, and it is shown that some astrophysical parameters of the bursts, like the light curves, the maximum released energy and the number of peaks in the light curve can be reproduced and explained, at least on a qualitative level, by working in a framework in which the systems settles in a self-organized critical state via magnetic reconnection processes in the magnetized GRB fireball.

  16. Magnetic field generation from shear flow in flux ropes

    NASA Astrophysics Data System (ADS)

    Intrator, T. P.; Sears, J.; Gao, K.; Klarenbeek, J.; Yoo, C.

    2012-10-01

    In the Reconnection Scaling Experiment (RSX) we have measured out of plane quadrupole magnetic field structure in situations where magnetic reconnection was minimal. This quadrupole out of plane magnetic signature has historically been presumed to be the smoking gun harbinger of reconnection. On the other hand, we showed that when flux ropes bounced instead of merging and reconnecting, this signature could evolve. This can follow from sheared fluid flows in the context of a generalized Ohms Law. We reconstruct a shear flow model from experimental data for flux ropes that have been experimentally well characterized in RSX as screw pinch equilibria, including plasma ion and electron flow, with self consistent profiles for magnetic field, pressure, and current density. The data can account for the quadrupole field structure.

  17. Detection of different reconnection regions from kinetic simulations during island coalescence after asymmetric magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Cazzola, Emanuele; Berchem, Jean; Innocenti, Maria Elena; Goldman, Martin V.; Newman, David L.; Zhou, Meng; Lapenta, Giovanni

    2017-04-01

    In this work we present new results from fully kinetic simulations of the magnetic islands coalescence dynamics after asymmetric magnetic reconnection. In a previous work, we have shown that three different reconnection regions can be identified when a new frame of reference based on the local magnetic field is set. These regions were marked as X, D and M whether they describe, respectively, a traditional X-line event, an event between two diverging islands or an event between two merging islands [1, 2]. The results shown here extend the previous analysis to a more realistic regime, including a remarkable temperature transition across the current sheet. In particular, regions X, D, and M are also observed within this new regime, featuring yet new interesting characteristics. Special attention is given to the particles agyrotropic and anisotropic behavior as fundamental signatures for the detection of these regions with satellites. These results are timely for the ongoing MMS mission, whose data from the magnetopause crossing are presently being analyzed. In fact, data revealed that an intense flux-ropes activity takes place in this region of the magnetosphere, which makes the presence of this set of reconnection regions highly expected. [1] Cazzola, E., et al. "On the electron dynamics during island coalescence in asymmetric magnetic reconnection." Physics of Plasmas (1994-present) 22.9 (2015): 092901. [2] Cazzola, E., et al. "On the electron agyrotropy during rapid asymmetric magnetic island coalescence in presence of a guide field." Geophysical Research Letters 43.15 (2016): 7840-7849.

  18. Particle propagation, wave growth and energy dissipation in a flaring flux tube

    NASA Technical Reports Server (NTRS)

    White, S. M.; Melrose, D. B.; Dulk, G. A.

    1986-01-01

    Wave amplification by downgoing particles in a common flare model is investigated. The flare is assumed to occur at the top of a coronal magnetic flux loop, and results in the heating of plasma in the flaring region. The hot electrons propagate down the legs of the flux tube towards increasing magnetic field. It is simple to demonstrate that the velocity distributions which result in this model are unstable to both beam instabilities and cyclotron maser action. An explanation is presented for the propagation effects on the distribution, and the properties of the resulting amplified waves are explored, concentrating on cyclotron maser action, which has properties (emission in the z mode below the local gyrofrequency) quite different from maser action by other distributions considered in the context of solar flares. The z mode waves will be damped in the coronal plasma surrounding the flaring flux tube and lead to heating there. This process may be important in the overall energy budget of the flare. The downgoing maser is compared with the loss cone maser, which is more likely to produce observable bursts.

  19. Remote Sensing of the Reconnection Electric Field From In Situ Multipoint Observations of the Separatrix Boundary

    NASA Astrophysics Data System (ADS)

    Nakamura, T. K. M.; Nakamura, R.; Varsani, A.; Genestreti, K. J.; Baumjohann, W.; Liu, Y.-H.

    2018-05-01

    A remote sensing technique to infer the local reconnection electric field based on in situ multipoint spacecraft observation at the reconnection separatrix is proposed. In this technique, the increment of the reconnected magnetic flux is estimated by integrating the in-plane magnetic field during the sequential observation of the separatrix boundary by multipoint measurements. We tested this technique by applying it to virtual observations in a two-dimensional fully kinetic particle-in-cell simulation of magnetic reconnection without a guide field and confirmed that the estimated reconnection electric field indeed agrees well with the exact value computed at the X-line. We then applied this technique to an event observed by the Magnetospheric Multiscale mission when crossing an energetic plasma sheet boundary layer during an intense substorm. The estimated reconnection electric field for this event is nearly 1 order of magnitude higher than a typical value of magnetotail reconnection.

  20. Width and string tension of the flux tube in SU(2) lattice gauge theory at high temperature

    NASA Astrophysics Data System (ADS)

    Chagdaa, S.; Galsandorj, E.; Laermann, E.; Purev, B.

    2018-02-01

    We study the profiles of the flux tube between a static quark and an antiquark in quenched SU(2) lattice gauge theory at temperatures around the deconfinement phase transition. The physical width of the flux tube and the string tension have been determined from the transverse profiles and the q\\bar{q} potential, respectively. Exploiting the computational power of a GPU accelerator in our flux tube investigation, we achieve much higher statistics through which we can increase the signal to noise ratio of our observables in the simulation. This has allowed the investigation of larger lattices as well as larger separations between the quarks than in our previous work. The improved accuracy gives us better results for the width and the string tension. The physical width of the flux tube increases with the temperature up to around T c while keeping its increasing dependence on the q\\bar{q} separation. The string tension results are compared for two different sizes of the lattice. As the lattice becomes larger and finer together with the improved precision, the temperature dependent string tension tends to have a smaller value than the previous one.

  1. Fast magnetic reconnection with large guide fields

    DOE PAGES

    Stanier, A.; Simakov, Andrei N.; Chacón, L.; ...

    2015-01-09

    We domonstrate, using two-fluid simulations, that low-βmagnetic reconnection remains fast, regardless of the presence of fast dispersive waves, which have been previously suggested to play a critical role. In order to understand these results, a discrete model is constructed that offers scaling relationships for the reconnection rate and dissipation region (DR) thickness in terms of the upstream magnetic field and DR length. Moreover, we verify these scalings numerically and show how the DR self-adjusts to process magnetic flux at the same rate that it is supplied to a larger region where two-fluid effects become important. The rate is therefore independentmore » of the DR physics and is in good agreement with kinetic results.« less

  2. Fast Solar Wind from Slowly Expanding Magnetic Flux Tubes (P54)

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; Dwivedi, B. N.

    2006-11-01

    aks.astro.itbhu@gmail.com We present an empirical model of the fast solar wind, emanating from radially oriented slowly expanding magnetic flux tubes. We consider a single-fluid, steady state model in which the flow is driven by thermal and non-thermal pressure gradients. We apply a non-Alfvénic energy correction at the coronal base and find that specific relations correlate solar wind speed and non-thermal energy flux with the aerial expansion factor. The results are compared with the previously reported ones.

  3. The role of guide field on magnetic reconnection during island coalescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanier, Adam John; Daughton, William Scott; Simakov, Andrei Nikolaevich

    A number of studies have considered how the rate of magnetic reconnection scales in large and weakly collisional systems by the modelling of long reconnecting current sheets. However, this set-up neglects both the formation of the current sheet and the coupling between the diffusion region and a larger system that supplies the magnetic flux. Recent studies of magnetic island merging, which naturally include these features, have found that ion kinetic physics is crucial to describe the reconnection rate and global evolution of such systems. In this paper, the effect of a guide field on reconnection during island merging is considered.more » In contrast to the earlier current sheet studies, we identify a limited range of guide fields for which the reconnection rate, outflow velocity, and pile-up magnetic field increase in magnitude as the guide field increases. The Hall-MHD fluid model is found to reproduce kinetic reconnection rates only for a sufficiently strong guide field, for which ion inertia breaks the frozen-in condition and the outflow becomes Alfvénic in the kinetic system. The merging of large islands occurs on a longer timescale in the zero guide field limit, which may in part be due to a mirror-like instability that occurs upstream of the reconnection region.« less

  4. The role of guide field on magnetic reconnection during island coalescence

    DOE PAGES

    Stanier, Adam John; Daughton, William Scott; Simakov, Andrei Nikolaevich; ...

    2017-02-01

    A number of studies have considered how the rate of magnetic reconnection scales in large and weakly collisional systems by the modelling of long reconnecting current sheets. However, this set-up neglects both the formation of the current sheet and the coupling between the diffusion region and a larger system that supplies the magnetic flux. Recent studies of magnetic island merging, which naturally include these features, have found that ion kinetic physics is crucial to describe the reconnection rate and global evolution of such systems. In this paper, the effect of a guide field on reconnection during island merging is considered.more » In contrast to the earlier current sheet studies, we identify a limited range of guide fields for which the reconnection rate, outflow velocity, and pile-up magnetic field increase in magnitude as the guide field increases. The Hall-MHD fluid model is found to reproduce kinetic reconnection rates only for a sufficiently strong guide field, for which ion inertia breaks the frozen-in condition and the outflow becomes Alfvénic in the kinetic system. The merging of large islands occurs on a longer timescale in the zero guide field limit, which may in part be due to a mirror-like instability that occurs upstream of the reconnection region.« less

  5. A Simple, Analytical Model of Collisionless Magnetic Reconnection in a Pair Plasma

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Zenitani, Seiji; Kuznetova, Masha; Klimas, Alex

    2011-01-01

    A set of conservation equations is utilized to derive balance equations in the reconnection diffusion region of a symmetric pair plasma. The reconnection electric field is assumed to have the function to maintain the current density in the diffusion region, and to impart thermal energy to the plasma by means of quasi-viscous dissipation. Using these assumptions it is possible to derive a simple set of equations for diffusion region parameters in dependence on inflow conditions and on plasma compressibility. These equations are solved by means of a simple, iterative, procedure. The solutions show expected features such as dominance of enthalpy flux in the reconnection outflow, as well as combination of adiabatic and quasi-viscous heating. Furthermore, the model predicts a maximum reconnection electric field of E(sup *)=0.4, normalized to the parameters at the inflow edge of the diffusion region.

  6. A comparison of critical heat flux in tubes and bilaterally heated annuli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerffer, S.; Groeneveld, D.C.; Cheng, S.C.

    1995-09-01

    This paper examines the critical heat flux (CHF) behaviour for annular flow in bilaterally heated annuli and compares it to that in tubes and unilaterally heated annuli. It was found that the differences in CHF between bilaterally and unilaterally heated annuli or tubes strongly depend on pressure and quality. the CHF in bilaterally heated annuli can be predicted by tube CHF prediction methods for the simultaneous CHF occurrence at both surfaces, and the following flow conditions: pressure 7-10 MPa, mass flux 0.5-4.0 Mg/m{sup 2}s and critical quality 0.23-0.9. The effect on CHF of the outer-to-inner surface heat flux ratio, wasmore » also examined. The prediction of CHF for bilaterally heated annuli was based on the droplet-diffusion model proposed by Kirillov and Smogalev. While their model refers only to CHF occurrence at the inner surface, we extended it to cases where CHF occurs at the outer surface, and simultaneously at both surfaces, thus covering all cases of CHF occurrence in bilaterally heated annuli. From the annuli CHF data of Becker and Letzter, we derived empirical functions required by the model. the proposed equations provide good accuracy for the CHF data used in this study. Moreover, the equations can predict conditions at which CHF occurs simultaneously at both surfaces. Also, this method can be used for cases with only one heated surface.« less

  7. Transition in Electron Physics of Magnetic Reconnection in Weakly Collisional Plasma

    NASA Astrophysics Data System (ADS)

    Le, A.; Roytershteyn, V.; Karimabadi, H.; Daughton, W. S.; Egedal, J.; Forest, C.

    2013-12-01

    Using self-consistent fully kinetic simulations with a Monte-Carlo treatment of the Coulomb collision operator, we explore the transition between collisional and kinetic regimes of magnetic reconnection in high-Lundquist-number current sheets. Recent research in collisionless reconnection has shown that electron kinetic physics plays a key role in the evolution. Large-scale electron current sheets may form, leading to secondary island formation and turbulent flux rope interactions in 3D. The new collisional simulations demonstrate how increasing collisionality modifies or eliminates these electron structures in the kinetic regimes. Additional basic questions that are addressed include how the reconnection rate and the release of magnetic energy into electrons and ions vary with collisionality. The numerical study provides insight into reconnection in dense regions of the solar corona, the solar wind, and upcoming laboratory experiments at MRX (Princeton) and MPDX (UW-Madison). The implications of these results for studies of turbulence dissipation in weakly collisional plasmas are discussed.

  8. Recent progress of magnetic reconnection research in the MAST spherical tokamak

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi

    2016-10-01

    In the last three years, magnetic reconnection research in the MAST spherical tokamak achieved major progress by use of new 32 chord ion Doppler tomography, 130 channel YAG- and 300 channel Ruby-Thomson scattering diagnostics. In addition to the significant plasma heating up to 1 keV, detailed full temperature profile measurements including the diffusion region have been achieved for the first time. 2D imaging measurements of Ti and Te profiles have revealed that magnetic reconnection mostly heats ions globally in the downstream region of outflow jet and electrons locally at the X-point. The higher toroidal field in MAST (Bt > 0.3 T) strongly inhibits cross-field thermal transport scaling as 1 /Bt2 and the characteristic peaked Te profile at the X point is sustained on a millisecond time scale. In contrast, ions are mostly heated in the downstream region of outflow acceleration inside the current sheet width (c /ωpi 0.1 m) and around the stagnation point formed by reconnected flux mostly by viscosity dissipation and shock-like compressional damping of the outflow jet. Toroidal confinement also contributes to the characteristic Ti profile, forming a ring structure aligned with the closed flux surface. There is an effective confinement of the downstream thermal energy due to a thick layer of reconnected flux. The characteristic structure is sustained for longer than an ion-electron energy relaxation time (τeiE 4 - 11 ms) and the energy exchange between ions and electrons contributes to the bulk electron heating in the downstream region. The toroidal guide field mostly contributes to the formation of a localized electron heating structure at the X-point but not to bulk ion heating downstream. This work was supported by Grant-in-Aid for Scientific Research 15H05750, 15K14279 and 15K20921.

  9. Reconnection in Compressible Plasmas: Extended Conversion Region

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, M.; Zenitani, S.

    2011-01-01

    The classical Sweet-Parker approach to steady-state magnetic reconnection is extended into the regime of large resistivity (small magnetic Reynolds or Lundquist number) when the aspect ratio between the outflow and inflow scale, delta = d/L, approaches unity. In a previous paper the vicinity of the dissipation site ("diffusion region") was investigated. In this paper, the approach is extended to cover larger sites, in which the energy transfer and conversion is not confined to the diffusion region. Consistent with the results of Paper I, we find that increasing aspect ratio delta is associated with increasing compression, increasing reconnect ion rate for low Beta, but slightly decreasing rate for higher Beta, decreasing outflow speed, and increasing outflow magnetic field. These trends are stronger for lower Beta. Deviations from the traditional Sweet-Parker limit delta approaches 0 become significant for R(sub m) approx < 10, where R(sub m) is the magnetic Reynolds number (Lundquist number) based on the half-thickness of the current layer responsible for the Ohmic dissipation. They are also more significant for small gamma, that is, for increasing compressibility. In contrast to the results of Paper I, but consistent with earlier results for delta much < 1,nu(sub A) we find that in this limit the outflow speed is given by the Alfven speed nu(sub A) in the inflow region and the energy conversion is given by an even split of Poynting flux into enthalpy flux and bulk kinetic energy flux. However, with increasing delta the conversion to enthalpy flux becomes more and more dominant.

  10. Magnetosheath quasi-trapped distributions and ion flows associated with reconnection

    NASA Technical Reports Server (NTRS)

    Neff, J. E.; Speiser, T. W.; Williams, D. J.

    1987-01-01

    Using a sample of ISEE 1 and 2 magnetopause crossings previously identified as times of quasi-steady reconnection, flows of medium energy ions in the magnetosheath are identified. The paper then investigates the particle pitch angle distribution immediately before and after each of these events for the signature of quasi-trapped distributions of energetic ions. Several of the ion flows identified were observed simultaneously with previously identified flux transfer events (FTEs). While FTEs identified from the magnetometer tracings typically show evidence of ion flows, the converse is not necessarily true. However, all properties of the magnetosheath ion flows are the same regardless of whether an FTE can be identified from the magnetometer data. Evidence is found for small-scale reconnection processes (FTEs, ion flows) embedded within a larger region of interconnected field, which is traced out by the quasi-trapped particles. Quasi-trapped distributions of medium-energy ions are seen to sandwich reconnection-associated ion flows in the magnetosheath. The results of this survey have been used to suggest a morphology for reconnection events that incorporates both large- and small-scale features.

  11. Super-Alfvenic Propagation and Damping of Reconnection Onset Signatures

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Shay, M. A.; Haggerty, C. C.; Parashar, T.; Drake, J. F.; Gary, S. P.

    2016-12-01

    The onset of magnetic reconnection in the magnetotail has far reaching consequences for the dynamics of the magnetosphere. However, our understanding of the dynamics of onset as well as when and where it occurs in the magnetosphere is incomplete. One of the fastest propagating signatures of reconnection onset is the quadrupolar Hall magnetic field that has been shown to be a Kinetic Alfven Wave (KAW) . These KAW propagate extremely fast away from the reconnection site, carry substantial amounts of energy in the form of Poynting flux and electron flows, and may be responsible for electron acceleration and the generation of aurora[1]. However, to date there has not been a study of how reconnection generated KAWs will damp and disperse as they propagate. Using large scale kinetic particle-in-cell (PIC) simulations of reconnection we investigate the damping of the KAWs as they propagate away from the x-line. We show that the hall quadrupolar structure dissipates according to linear Landau damping determined from a numerical solution of the linear Vlasov equation. Extending results to magnetotail parameters, we find that only the part of the wave with k c/wpi 1 will damp weakly enough to propagate from the mid-tail to the inner magnetosphere. [1] M. A. Shay et al., PRL, 107, 065001, 2011, DOI: 10.1103/PhysRevLett.107.065001

  12. A simple, analytical model of collisionless magnetic reconnection in a pair plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha

    2009-10-15

    A set of conservation equations is utilized to derive balance equations in the reconnection diffusion region of a symmetric pair plasma. The reconnection electric field is assumed to have the function to maintain the current density in the diffusion region and to impart thermal energy to the plasma by means of quasiviscous dissipation. Using these assumptions it is possible to derive a simple set of equations for diffusion region parameters in dependence on inflow conditions and on plasma compressibility. These equations are solved by means of a simple, iterative procedure. The solutions show expected features such as dominance of enthalpymore » flux in the reconnection outflow, as well as combination of adiabatic and quasiviscous heating. Furthermore, the model predicts a maximum reconnection electric field of E{sup *}=0.4, normalized to the parameters at the inflow edge of the diffusion region.« less

  13. Assembly and Delivery of Rabbit Capsules for Irradiation of Silicon Carbide Cladding Tube Specimens in the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyanagi, Takaaki; Petrie, Christian M.

    Neutron irradiation of silicon carbide (SiC)-based fuel cladding under a high radial heat flux presents a critical challenge for SiC cladding concepts in light water reactors (LWRs). Fission heating in the fuel provides a high heat flux through the cladding, which, combined with the degraded thermal conductivity of SiC under irradiation, results in a large temperature gradient through the thickness of the cladding. The strong temperature dependence of swelling in SiC creates a complex stress profile in SiCbased cladding tubes as a result of differential swelling. The Nuclear Science User Facilities (NSUF) Program within the US Department of Energy Officemore » of Nuclear Energy is supporting research efforts to improve the scientific understanding of the effects of irradiation on SiC cladding tubes. Ultimately, the results of this project will provide experimental validation of multi-physics models for SiC-based fuel cladding during LWR operation. The first objective of this project is to irradiate tube specimens using a previously developed design that allows for irradiation testing of miniature SiC tube specimens subjected to a high radial heat flux. The previous “rabbit” capsule design uses the gamma heating in the core of the High Flux Isotope Reactor (HFIR) to drive a high heat flux through the cladding tube specimens. A compressible aluminum foil allows for a constant thermal contact conductance between the cladding tubes and the rabbit housing despite swelling of the SiC tubes. To allow separation of the effects of irradiation from those due to differential swelling under a high heat flux, a new design was developed under the NSUF program. This design allows for irradiation of similar SiC cladding tube specimens without a high radial heat flux. This report briefly describes the irradiation experiment design concepts, summarizes the irradiation test matrix, and reports on the successful delivery of six rabbit capsules to the HFIR. Rabbits of both low

  14. Two-fluid and magnetohydrodynamic modelling of magnetic reconnection in the MAST spherical tokamak and the solar corona

    NASA Astrophysics Data System (ADS)

    Browning, P. K.; Cardnell, S.; Evans, M.; Arese Lucini, F.; Lukin, V. S.; McClements, K. G.; Stanier, A.

    2016-01-01

    Twisted magnetic flux ropes are ubiquitous in laboratory and astrophysical plasmas, and the merging of such flux ropes through magnetic reconnection is an important mechanism for restructuring magnetic fields and releasing free magnetic energy. The merging-compression scenario is one possible start-up scheme for spherical tokamaks, which has been used on the Mega Amp Spherical Tokamak (MAST). Two current-carrying plasma rings or flux ropes approach each due to mutual attraction, forming a current sheet and subsequently merge through magnetic reconnection into a single plasma torus, with substantial plasma heating. Two-dimensional resistive and Hall-magnetohydrodynamic simulations of this process are reported, including a strong guide field. A model of the merging based on helicity-conserving relaxation to a minimum energy state is also presented, extending previous work to tight-aspect-ratio toroidal geometry. This model leads to a prediction of the final state of the merging, in good agreement with simulations and experiment, as well as the average temperature rise. A relaxation model of reconnection between two or more flux ropes in the solar corona is also described, allowing for different senses of twist, and the implications for heating of the solar corona are discussed.

  15. Magnetic flux ropes at the high-latitude magnetopause

    NASA Technical Reports Server (NTRS)

    Berchem, Jean; Raeder, Joachim; Ashour-Abdalla, Maha

    1995-01-01

    We examine the consequences of magnetic reconnection at the high-latitude magnetopause using a three-dimensional global magnetohydrodynamic simulation of the solar wind interaction with the Earth's magnetosphere. Magnetic field lines from the simulation reveal the formation of magnetic flux ropes during periods with northward interplanetary magnetic field. These flux ropes result from multiple reconnection processes between the lobes field lines and draped magnetosheath field lines that are convected around the flank of the magnetosphere. The flux ropes identified in the simulation are consistent with features observed in the magnetic field measured by Hawkeye-1 during some high-latitude magnetopause crossings.

  16. Magnetotail Reconnection

    NASA Astrophysics Data System (ADS)

    Petrukovich, A.; Artemyev, A.; Nakamura, R.

    Reconnection is the key process responsible for the magnetotail dynamics. Driven reconnection in the distant tail is not sufficient to support global magnetospheric convection and the near Earth neutral line spontaneously forms to restore the balance. Mechanisms of initiation of such near-Earth magnetotail reconnection still represent one of major unresolved issues in space physics. We review the progress in this topic during the last decade. Recent theoretical advances suggest several variants of overcoming the famous tearing stability problem. Multipoint spacecraft observations reveal detailed structure of pre-onset current sheet of and reconnection zone down to ion larmor scale, supporting the importance of unstable state development through internal magnetotail reconfiguration.

  17. The Role of Compressibility in Energy Release by Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Birn, J.; Borovosky, J. E.; Hesse, M.

    2012-01-01

    Using resistive compressible magnetohydrodynamics, we investigate the energy release and transfer by magnetic reconnection in finite (closed or periodic) systems. The emphasis is on the magnitude of energy released and transferred to plasma heating in configurations that range from highly compressible to incompressible, based on the magnitude of the background beta (ratio of plasma pressure over magnetic pressure) and of a guide field in two-dimensional reconnection. As expected, the system becomes more incompressible, and the role of compressional heating diminishes, with increasing beta or increasing guide field. Nevertheless, compressional heating may dominate over Joule heating for values of the guide field of 2 or 3 (in relation to the reconnecting magnetic field component) and beta of 5-10. This result stems from the strong localization of the dissipation near the reconnection site, which is modeled based on particle simulation results. Imposing uniform resistivity, corresponding to a Lundquist number of 10(exp 3) to 10(exp 4), leads to significantly larger Ohmic heating. Increasing incompressibility greatly reduces the magnetic flux transfer and the amount of energy released, from approx. 10% of the energy associated with the reconnecting field component, for zero guide field and low beta, to approx. 0.2%-0.4% for large values of the guide field B(sub y0) > 5 or large beta. The results demonstrate the importance of taking into account plasma compressibility and localization of dissipation in investigations of heating by turbulent reconnection, possibly relevant for solar wind or coronal heating.

  18. Reconnection Scaling Experiment (RSX): Magnetic Reconnection in Linear Geometry

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Sovinec, C.; Begay, D.; Wurden, G.; Furno, I.; Werley, C.; Fisher, M.; Vermare, L.; Fienup, W.

    2001-10-01

    The linear Reconnection Scaling Experiment (RSX) at LANL is a qualitatively different way of creating MHD relevant plasmas to look at the physics of magnetic reconnection. We show here an overview of the experiment and initial electrostatic and magnetic probe data. Plasma creation using plasma guns is independent of equilibrium or force balance, so we can scale many relevant parameters. As the magnetic reconnection region between two parallel current channels sweeps down a long plasma column we can generate 3D movies of magnetic reconnection from many repetitive shots. If two current channels were to move because of kink instabilities instead of mutual J x B forces and reconnection effects, each shot would less reproducible. Our data show the kink stability boundary for a single current channel. We compare this with MHD 2 fluid NIMROD simulations of the single current channel kink stability boundary for a variety of experimental conditions.

  19. Magnetic swirls and associated fast magnetoacoustic kink waves in a solar chromospheric flux tube

    NASA Astrophysics Data System (ADS)

    Murawski, K.; Kayshap, P.; Srivastava, A. K.; Pascoe, D. J.; Jelínek, P.; Kuźma, B.; Fedun, V.

    2018-02-01

    We perform numerical simulations of impulsively generated magnetic swirls in an isolated flux tube that is rooted in the solar photosphere. These swirls are triggered by an initial pulse in a horizontal component of the velocity. The initial pulse is launched either (a) centrally, within the localized magnetic flux tube or (b) off-central, in the ambient medium. The evolution and dynamics of the flux tube are described by three-dimensional, ideal magnetohydrodynamic equations. These equations are numerically solved to reveal that in case (a) dipole-like swirls associated with the fast magnetoacoustic kink and m = 1 Alfvén waves are generated. In case (b), the fast magnetoacoustic kink and m = 0 Alfvén modes are excited. In both these cases, the excited fast magnetoacoustic kink and Alfvén waves consist of a similar flow pattern and magnetic shells are also generated with clockwise and counter-clockwise rotating plasma within them, which can be the proxy of dipole-shaped chromospheric swirls. The complex dynamics of vortices and wave perturbations reveals the channelling of sufficient amount of energy to fulfil energy losses in the chromosphere (˜104 W m-1) and in the corona (˜102 W m-1). Some of these numerical findings are reminiscent of signatures in recent observational data.

  20. Numerical simulation of filling a magnetic flux tube with a cold plasma: Anomalous plasma effects

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Leung, W. C.

    1995-01-01

    Large-scale models of plasmaspheric refilling have revealed that during the early stage of the refilling counterstreaming ion beams are a common feature. However, the instability of such ion beams and its effect on refilling remain unexplored. In order to learn the basic effects of ion beam instabilities on refilling, we have performed numerical simulations of the refilling of an artificial magnetic flux tube. (The shape and size of the tube are assumed so that the essential features of the refilling problem are kept in the simulation and at the same time the small scale processes driven by the ion beams are sufficiently resolved.) We have also studied the effect of commonly found equatorially trapped warm and/or hot plasma on the filling of a flux tube with a cold plasma. Three types of simulation runs have been performed.

  1. Magnetic reconnection launcher

    DOEpatents

    Cowan, Maynard

    1989-01-01

    An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in synchrony with the passage of a projectile. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile by magnetic reconnection as the gap portion of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile at both the rear vertical surface of the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils and fit loosely within the gap between the opposing coils.

  2. Internal and External Reconnection Series Homologous Solar Flares

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2001-01-01

    Using data from the extreme ultraviolet imaging telescope (EIT) on SOHO and the soft X-ray telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in National Oceanic and Atmospheric Administration (NOAA) active region 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X rays. In EIT each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approx. 20 km/ s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions but are modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a coronal mass ejection (CME). External reconnection, first occurring between the escaping CME and the coronal hole field and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively

  3. Oxygen Ions in Magnetotail Reconnection

    NASA Astrophysics Data System (ADS)

    Liang, H.; Walker, R. J.; Lapenta, G.; Schriver, D.; El-Alaoui, M.; Berchem, J.

    2016-12-01

    Spacecraft have observed a significant fraction of oxygen ions (O+) in Earth's magnetotail X-line during the periods of enhanced geomagnetic activity. It is important to understand how such O+ influences the reconnection process and how the O+ ions are heated due to reconnection. To this end we have used a 2.5D implicit Particle-in-Cell simulation (iPic3D) in a 2D Harris current sheet in the presence of H+ and O+. By comparing the simulation runs for oxygen concentrations of 50%, 5% and 0% (i.e. latter run only H+ ions), we found that (1) the dipolarization front (DF) propagation is encumbered by the current sheet O+ inertia, which reduces the DF speed and delays the fast reconnection phase; (2) the reconnection rate in the 50% O+ Run is much less than the 0% O+ Run, which can be attributed to the O+ drag on the convective magnetic flux via an ambipolar electric field in the O+ diffusion region; (3) without entering the exhaust, the lobe O+ can be accelerated near the separatrices away from the X-point by the Hall electric field and form the hot population downstream of the DFs; (4) the pre-existing current sheet O+ ions are reflected by the DFs and form a hook-shaped distribution in phase space, from which the DF speed history can be deduced; (5) the DF thickness is proportional to the O+ concentration in the pre-existing current sheet. These results illustrate the differences between storm-time and non-storm substorms due to a significant concentration of oxygen ions. The oxygen heating results are expected to be observable by the Magnetospheric Multiscale (MMS) mission in the magnetotail.

  4. Generation of Magnetohydrodynamic Waves in Low Solar Atmospheric Flux Tubes by Photospheric Motions

    NASA Astrophysics Data System (ADS)

    Mumford, S. J.; Fedun, V.; Erdélyi, R.

    2015-01-01

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  5. Plasma Transport and Magnetic Flux Circulation in Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Neupane, B. R.; Delamere, P. A.; Ma, X.; Wilson, R. J.

    2017-12-01

    Radial transport of plasma in the rapidly rotating magnetospheres is an important dynamical process. Radial transport is due to the centrifugally driven interchange instability and magnetodisc reconnection, allowing net mass to be transported outward while conserving magnetic flux. Using Cassini Plasma Spectrometer instrument (CAPS) data products (e.g., Thomsen et al., [2010]; Wilson et al., [2017]) we estimate plasma mass and magnetic flux transport rates as functions of radial distance and local time. The physical requirement for zero net magnetic flux transport provides a key benchmark for assessing the validity of our mass transport estimate. We also evaluate magnetodisc stability using a two-dimensional axisymmetric equilibrium model [Caudal, 1986]. Observed local properties (e.g., specific entropy and estimates of flux tube mass and entropy content) are compared with modeled equilibrium conditions such that departures from equilibrium can be correlated with radial flows and local magnetic field structure. Finally, observations of specific entropy indicate that plasma is non-adiabatic heated during transport. However, the values of specific entropy are well organized in inner magnetosphere (i.e. L<10), and become widely scattered in the middle magnetosphere, suggesting that the transport dynamics of the inner and middle magnetosphere are different.

  6. Evolution of flux ropes in the magnetotail: A three-dimensional global hybrid simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S.; State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing; Lin, Y.

    2015-05-15

    Flux ropes in the Earth's magnetotail are widely believed to play a crucial role in energy transport during substorms and the generation of energetic particles. Previous kinetic simulations are limited to the local-scale regime, and thus cannot be used to study the structure associated with the geomagnetic field and the global-scale evolution of the flux ropes. Here, the evolution of flux ropes in the magnetotail under a steady southward interplanetary magnetic field are studied with a newly developed three-dimensional global hybrid simulation model for dynamics ranging from the ion Larmor radius to the global convection time scales. Magnetic reconnection withmore » multiple X-lines is found to take place in the near-tail current sheet at geocentric solar magnetospheric distances x=−30R{sub E}∼−15R{sub E} around the equatorial plane (z=0). The magnetotail reconnection layer is turbulent, with a nonuniform structure and unsteady evolution, and exhibits properties of typical collisionless fast reconnection with the Hall effect. A number of small-scale flux ropes are generated through the multiple X-line reconnection. The diameter of the flux ropes is several R{sub E}, and the spatial scale of the flux ropes in the dawn-dusk direction is on the order of several R{sub E} and does not extend across the entire section of the magnetotail, contrary to previous models and MHD simulation results and showing the importance of the three-dimensional effects. The nonuniform and unsteady multiple X-line reconnection with particle kinetic effects leads to various kinds of flux rope evolution: The small-scale flux ropes propagate earthward or tailward after formation, and eventually merge into the near-Earth region or the mid-/distant-tail plasmoid, respectively. During the propagation, some of the flux ropes can be tilted in the geocentric solar magnetospheric (x,y) plane with respect to the y (dawn-dusk) axis. Coalescence between flux ropes is also observed. At the same

  7. Event-by-Event Study of Space-Time Dynamics in Flux-Tube Fragmentation

    DOE PAGES

    Wong, Cheuk-Yin

    2017-05-25

    In the semi-classical description of the flux-tube fragmentation process for hadron production and hadronization in high-energymore » $e^+e^-$ annihilations and $pp$ collisions, the rapidity-space-time ordering and the local conservation laws of charge, flavor, and momentum provide a set of powerful tools that may allow the reconstruction of the space-time dynamics of quarks and mesons in exclusive measurements of produced hadrons, on an event-by-event basis. We propose procedures to reconstruct the space-time dynamics from event-by-event exclusive hadron data to exhibit explicitly the ordered chain of hadrons produced in a flux tube fragmentation. As a supplementary tool, we infer the average space-time coordinates of the $q$-$$\\bar q$$ pair production vertices from the $$\\pi^-$$ rapidity distribution data obtained by the NA61/SHINE Collaboration in $pp$ collisions at $$\\sqrt{s}$$ = 6.3 to 17.3 GeV.« less

  8. Event-by-Event Study of Space-Time Dynamics in Flux-Tube Fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Cheuk-Yin

    In the semi-classical description of the flux-tube fragmentation process for hadron production and hadronization in high-energymore » $e^+e^-$ annihilations and $pp$ collisions, the rapidity-space-time ordering and the local conservation laws of charge, flavor, and momentum provide a set of powerful tools that may allow the reconstruction of the space-time dynamics of quarks and mesons in exclusive measurements of produced hadrons, on an event-by-event basis. We propose procedures to reconstruct the space-time dynamics from event-by-event exclusive hadron data to exhibit explicitly the ordered chain of hadrons produced in a flux tube fragmentation. As a supplementary tool, we infer the average space-time coordinates of the $q$-$$\\bar q$$ pair production vertices from the $$\\pi^-$$ rapidity distribution data obtained by the NA61/SHINE Collaboration in $pp$ collisions at $$\\sqrt{s}$$ = 6.3 to 17.3 GeV.« less

  9. THE ROLE OF A FLUX ROPE EJECTION IN A THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATION OF A SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishida, Keisuke; Shibata, Kazunari; Nishizuka, Naoto, E-mail: nishida@kwasan.kyoto-u.ac.jp

    2013-10-01

    We investigated the dynamic evolution of a three-dimensional (3D) flux rope eruption and magnetic reconnection process in a solar flare by simply extending the two-dimensional (2D) resistive magnetohydrodynamic simulation model of solar flares with low β plasma to a 3D model. We succeeded in reproducing a current sheet and bi-directional reconnection outflows just below the flux rope during the eruption in our 3D simulations. We calculated four cases of a strongly twisted flux rope and a weakly twisted flux rope in 2D and 3D simulations. The time evolution of a weakly twisted flux rope in the 3D simulation shows behaviorsmore » similar to those of the 2D simulation, while a strongly twisted flux rope in the 3D simulation clearly shows a different time evolution from the 2D simulation except for the initial phase evolution. The ejection speeds of both strongly and weakly twisted flux ropes in 3D simulations are larger than in the 2D simulations, and the reconnection rates in 3D cases are also larger than in the 2D cases. This indicates positive feedback between the ejection speed of a flux rope and the reconnection rate even in the 3D simulation, and we conclude that the plasmoid-induced reconnection model can be applied to 3D. We also found that small-scale plasmoids are formed inside a current sheet and make it turbulent. These small-scale plasmoid ejections have a role in locally increasing the reconnection rate intermittently as observed in solar flares, coupled with a global eruption of a flux rope.« less

  10. Onset of 2D magnetic reconnection in the solar photosphere, chromosphere, and corona

    NASA Astrophysics Data System (ADS)

    Snow, B.; Botha, G. J. J.; McLaughlin, J. A.; Hillier, A.

    2018-01-01

    Aims: We aim to investigate the onset of 2D time-dependent magnetic reconnection that is triggered using an external (non-local) velocity driver located away from, and perpendicular to, an equilibrium Harris current sheet. Previous studies have typically utilised an internal trigger to initiate reconnection, for example initial conditions centred on the current sheet. Here, an external driver allows for a more naturalistic trigger as well as the study of the earlier stages of the reconnection start-up process. Methods: Numerical simulations solving the compressible, resistive magnetohydrodynamic (MHD) equations were performed to investigate the reconnection onset within different atmospheric layers of the Sun, namely the corona, chromosphere and photosphere. Results: A reconnecting state is reached for all atmospheric heights considered, with the dominant physics being highly dependent on atmospheric conditions. The coronal case achieves a sharp rise in electric field (indicative of reconnection) for a range of velocity drivers. For the chromosphere, we find a larger velocity amplitude is required to trigger reconnection (compared to the corona). For the photospheric environment, the electric field is highly dependent on the inflow speed; a sharp increase in electric field is obtained only as the velocity entering the reconnection region approaches the Alfvén speed. Additionally, the role of ambipolar diffusion is investigated for the chromospheric case and we find that the ambipolar diffusion alters the structure of the current density in the inflow region. Conclusions: The rate at which flux enters the reconnection region is controlled by the inflow velocity. This determines all aspects of the reconnection start-up process, that is, the early onset of reconnection is dominated by the advection term in Ohm's law in all atmospheric layers. A lower plasma-β enhances reconnection and creates a large change in the electric field. A high plasma-β hinders the

  11. Measurements and computations of mass flow and momentum flux through short tubes in rarefied gases

    NASA Astrophysics Data System (ADS)

    Lilly, T. C.; Gimelshein, S. F.; Ketsdever, A. D.; Markelov, G. N.

    2006-09-01

    Gas flows through orifices and short tubes have been extensively studied from the 1960s through the 1980s for both fundamental and practical reasons. These flows are a basic and often important element of various modern gas driven instruments. Recent advances in micro- and nanoscale technologies have paved the way for a generation of miniaturized devices in various application areas, from clinical analyses to biochemical detection to aerospace propulsion. The latter is the main area of interest of this study, where rarefied gas flow into a vacuum through short tubes with thickness-to-diameter ratios varying from 0.015 to 1.2 is investigated both experimentally and numerically with kinetic and continuum approaches. Helium and nitrogen gases are used in the range of Reynolds numbers from 0.02 to 770 (based on the tube diameter), corresponding to Knudsen numbers from 40 down to about 0.001. Propulsion properties of relatively thin and thick tubes are examined. Good agreement between experimental and numerical results is observed for mass flow rate and momentum flux, the latter being corrected for the experimental facility background pressure. For thick-to-thin tube ratios of mass flow and momentum flux versus pressure, a minimum is observed at a Knudsen number of about 0.5. A short tube propulsion efficiency is shown to be much higher than that of a thin orifice. The effect of surface specularity on a thicker tube specific impulse was found to be relatively small.

  12. Observing the release of twist by magnetic reconnection in a solar filament eruption

    PubMed Central

    Xue, Zhike; Yan, Xiaoli; Cheng, Xin; Yang, Liheng; Su, Yingna; Kliem, Bernhard; Zhang, Jun; Liu, Zhong; Bi, Yi; Xiang, Yongyuan; Yang, Kai; Zhao, Li

    2016-01-01

    Magnetic reconnection is a fundamental process of topology change and energy release, taking place in plasmas on the Sun, in space, in astrophysical objects and in the laboratory. However, observational evidence has been relatively rare and typically only partial. Here we present evidence of fast reconnection in a solar filament eruption using high-resolution H-alpha images from the New Vacuum Solar Telescope, supplemented by extreme ultraviolet observations. The reconnection is seen to occur between a set of ambient chromospheric fibrils and the filament itself. This allows for the relaxation of magnetic tension in the filament by an untwisting motion, demonstrating a flux rope structure. The topology change and untwisting are also found through nonlinear force-free field modelling of the active region in combination with magnetohydrodynamic simulation. These results demonstrate a new role for reconnection in solar eruptions: the release of magnetic twist. PMID:27306479

  13. Sunspot rotation. II. Effects of varying the field strength and twist of an emerging flux tube

    NASA Astrophysics Data System (ADS)

    Sturrock, Z.; Hood, A. W.

    2016-09-01

    Context. Observations of flux emergence indicate that rotational velocities may develop within sunspots. However, the dependence of this rotation on sub-photospheric field strength and twist remains largely unknown. Aims: We investigate the effects of varying the initial field strength and twist of an emerging sub-photospheric magnetic flux tube on the rotation of the sunspots at the photosphere. Methods: We consider a simple model of a stratified domain with a sub-photospheric interior layer and three overlying atmospheric layers. A twisted arched flux tube is inserted in the interior and is allowed to rise into the atmosphere. To achieve this, the magnetohydrodynamic equations are solved using the Lagrangian-remap code, Lare3d. We perform a parameter study by independently varying the sub-photospheric magnetic field strength and twist. Results: Altering the initial magnetic field strength and twist of the flux tube significantly affects the tube's evolution and the rotational motions that develop at the photosphere. The rotation angle, vorticity, and current show a direct dependence on the initial field strength. We find that an increase in field strength increases the angle through which the fieldlines rotate, the length of the fieldlines extending into the atmosphere, and the magnetic energy transported to the atmosphere. This also affects the amount of residual twist in the interior. The length of the fieldlines is crucial as we predict the twist per unit length equilibrates to a lower value on longer fieldlines. No such direct dependence is found when we modify the twist of the magnetic field owing to the complex effect this has on the tension force acting on the tube. However, there is still a clear ordering in quantities such as the rotation angle, helicity, and free energy with higher initial twist cases being related to sunspots that rotate more rapidly, transporting more helicity and magnetic energy to the atmosphere.

  14. Power-Law Statistics of Driven Reconnection in the Magnetically Closed Corona

    NASA Technical Reports Server (NTRS)

    Klimchuk, J. A.; DeVore, C. R.; Knizhnik, K. J.; Uritskiy, V. M.

    2018-01-01

    Numerous observations have revealed that power-law distributions are ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme ultraviolet radiation, and radio waves all display power-law frequency distributions. Since magnetic reconnection is the driving mechanism for many energetic solar phenomena, it is likely that reconnection events themselves display such power-law distributions. In this work, we perform numerical simulations of the solar corona driven by simple convective motions at the photospheric level. Using temperature changes, current distributions, and Poynting fluxes as proxies for heating, we demonstrate that energetic events occurring in our simulation display power-law frequency distributions, with slopes in good agreement with observations. We suggest that the braiding-associated reconnection in the corona can be understood in terms of a self-organized criticality model driven by convective rotational motions similar to those observed at the photosphere.

  15. Electromechanical coupling of the solar atmosphere; Proceedings of the OSL Workshop, Capri, Italy, May 27-31, 1991

    NASA Technical Reports Server (NTRS)

    Spicer, Daniel S. (Editor); Macneice, Peter (Editor)

    1992-01-01

    The present conference discusses the role of magnetic flux tubes as communication channels, flux tube sizes and their temporal evolution, magnetic field line topology in the solar active regions, weak solar magnetic fields, explosive events and magnetic reconnection in the solar atmosphere, and 3D kinematic reconnection of plasmoids with nulls. Also discussed are coronal heating mechanisms, coronal heating through a lack of MHD equilibrium, Alfven waves in current-carrying inhomogeneous plasmas, hydrostatic models of X-ray coronal loops, MHD turbulence in an expanding atmosphere, and hot mass transport in the solar active prominence.

  16. OBSERVATION OF MAGNETIC RECONNECTION DRIVEN BY GRANULAR SCALE ADVECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng Zhicheng; Cao Wenda; Ji Haisheng

    2013-06-01

    We report the first evidence of magnetic reconnection driven by advection in a rapidly developing large granule using high spatial resolution observations of a small surge event (base size {approx} 4'' Multiplication-Sign 4'') with the 1.6 m aperture New Solar Telescope at the Big Bear Solar Observatory. The observations were carried out in narrowband (0.5 A) He I 10830 A and broadband (10 A) TiO 7057 A. Since He I 10830 A triplet has a very high excitation level and is optically thin, its filtergrams enable us to investigate the surge from the photosphere through the chromosphere into the lowermore » corona. Simultaneous space data from the Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory were used in the analysis. It is shown that the surge is spatio-temporally associated with magnetic flux emergence in the rapidly developing large granule. During the development of the granule, its advecting flow ({approx}2 km s{sup -1}) squeezed the magnetic flux into an intergranular lane area, where a magnetic flux concentration was formed and the neighboring flux with opposite magnetic polarity was canceled. During the cancellation, the surge was produced as absorption in He I 10830 A filtergrams while simultaneous EUV brightening occurred at its base. The observations clearly indicate evidence of a finest-scale reconnection process driven by the granule's motion.« less

  17. Reconnection Remnants in the Magnetic Cloud of October 18-19, 1995: A Shock, Monochromatic Wave, Heat Flux Dropout and Energetic Ion Beam

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Szabo, A.; Farrell, W.; Slavin, J. A.; Lepping, R. P.; Fitzenreiter, R.; Thompson, B.; Hamilton, D. C.; Gloeckler, G.; Ho, G. C.

    2000-01-01

    Evidence is presented that the WIND spacecraft observed particle and field signatures on October 18-19, 1995 due to reconnection near the footpoints of a magnetic cloud (i.e., between 1 and 5 solar radii). These signatures include: (1) an internal shock traveling approximately along the axis of the magnetic cloud, (2) a simple compression of the magnetic field consistent with the footpoint magnetic fields being thrust outwards at speeds much greater than the solar wind speed, (3) an electron heat flux dropout occurring within minutes of the shock indicating a topological change resulting from disconnection from the solar surface, (4) a very cold 5 keV proton beam and (5) an associated monochromatic wave. We expect that, given observations of enough magnetic clouds, Wind and other spacecraft will see signatures similar to the ones reported here indicating reconnection. However, these observations require the spacecraft to be fortuitously positioned to observe the passing shock and other signatures and will therefore be associated with only a small fraction of magnetic clouds. Consistent with this, a few magnetic clouds observed by Wind have been found to possess internal shock waves.

  18. Modeling the Self-organized Critical Behavior of Earth's Plasma Sheet Reconnection Dynamics

    NASA Technical Reports Server (NTRS)

    Klimas, Alexander J.

    2006-01-01

    Analyses of Polar UVI auroral image data show that bright night-side high-latitude W emissions exhibit so many of the key properties of systems in self-organized criticality that an alternate interpretation has become virtually impossible. These analyses will be reviewed. It is now necessary to find and model the source of this behavior. We note that the most common models of self-organized criticality are numerical sandpiles. These are, at root, models that govern the transport of some quantity from a region where it is loaded to another where it is unloaded. Transport is enabled by the excitation of a local threshold instability; it is intermittent and bursty, and it exhibits a number of scale-free statistical properties. Searching for a system in the magnetosphere that is analogous and that, in addition, is known to produce auroral signatures, we focus on the reconnection dynamics of the magnetotail plasma sheet. In our previous work, a driven reconnection model has been constructed and has been under study. The transport of electromagnetic (primarily magnetic) energy carried by the Poynting flux into the reconnection region of the model has been examined. All of the analysis techniques (and more) that have been applied to the auroral image data have also been applied to this Poynting flux. New results will be presented showing that this model also exhibits so many of the key properties of systems in self-organized criticality that an alternate interpretation is implausible. A strong correlation between these key properties of the model and those of the auroral UV emissions will be demonstrated. We suggest that, in general, the driven reconnection model is an important step toward a realistic plasma physical model of self-organized criticality and we conclude, more specifically, that it is also a step in the right direction toward modeling the multiscale reconnection dynamics of the magnetotail.

  19. A MODEL FOR THE ORIGIN OF HIGH DENSITY IN LOOPTOP X-RAY SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longcope, D. W.; Guidoni, S. E.

    Super-hot (SH) looptop sources, detected in some large solar flares, are compact sources of HXR emission with spectra matching thermal electron populations exceeding 30 MK. High observed emission measure (EM) and inference of electron thermalization within the small source region both provide evidence of high densities at the looptop, typically more than an order of magnitude above ambient. Where some investigators have suggested such density enhancement results from a rapid enhancement in the magnetic field strength, we propose an alternative model, based on Petschek reconnection, whereby looptop plasma is heated and compressed by slow magnetosonic shocks generated self-consistently through fluxmore » retraction following reconnection. Under steady conditions such shocks can enhance density by no more than a factor of four. These steady shock relations (Rankine-Hugoniot relations) turn out to be inapplicable to Petschek's model owing to transient effects of thermal conduction. The actual density enhancement can in fact exceed a factor of 10 over the entire reconnection outflow. An ensemble of flux tubes retracting following reconnection at an ensemble of distinct sites will have a collective EM proportional to the rate of flux tube production. This rate, distinct from the local reconnection rate within a single tube, can be measured separately through flare ribbon motion. Typical flux transfer rates and loop parameters yield EMs comparable to those observed in SH sources.« less

  20. Final Scientific Report: Experimental Investigation of Reconnection in a Line-tied Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forest, Cary

    This grant used funding from the NSF/DoE Partnership on Plasma Science to investigate magnetic reconnection phenomena in a line-tied pinch experiment. The experiment was upgraded from a previous device intended to study fusion plasma-related instabilities to a new configuration capable of studying a number of new, previously unstudied configurations. A high spatial and time resolution array of magnetic probes was constructed to measure time evolving structures present as instability and turbulence developed. The most important new equilibrium made possible by this grant was a Zero-Net-Current equilibrium that models the footpoint twisting of solar flux tubes that occurs prior to solarmore » eruptions (flares and coronal mass ejections). This new equilibrium was successfully created in the lab, and it exhibited a host of instabilities. In particular, at low current when the equilibrium was not overly stressed, a saturated internal kink mode oscillation was observed. At high current, 2 D magnetic turbulence developed which we attribute to the lack of a equilibrium brought about by a subcritical transition to turbulence. A second set of experiments involved the turbulent interactions of a collection of flux tubes all being twisted independently, a problem known as the Parker Problem. Current profiles consisting of 2, 3 and 4 guns were used to impose a fine scale drive, and resulted in a new experimental platform in which the injection scale of the magnetic turbulence could be controlled. First experiments in this configuration support the conclusion that an inverse cascade of magnetic energy occurred which self-organized the plasma into a nearly axisymmetric current distribution.« less

  1. Forced Reconnection in the Near Magnetotail: Onset and Energy Conversion in PIC and MHD Simulations

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, Michael

    2014-01-01

    Using two-dimensional particle-in-cell (PIC) together with magnetohydrodynamic (MHD) Q1 simulations of magnetotail dynamics, we investigate the evolution toward onset of reconnection and the subsequent energy transfer and conversion. In either case, reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. The boundary deformation leads to the formation of thin embedded current sheets, which are bifurcated in the near tail, converging to a single sheet farther out in the MHD simulations. The thin current sheets in the PIC simulation are carried by electrons and are associated with a strong perpendicular electrostatic field, which may provide a connection to parallel potentials and auroral arcs and an ionospheric signal even prior to the onset of reconnection. The PIC simulation very well satisfies integral entropy conservation (intrinsic to ideal MHD) during this phase, supporting ideal ballooning stability. Eventually, the current intensification leads to the onset of reconnection, the formation and ejection of a plasmoid, and a collapse of the inner tail. The earthward flow shows the characteristics of a dipolarization front: enhancement of Bz, associated with a thin vertical electron current sheet in the PIC simulation. Both MHD and PIC simulations show a dominance of energy conversion from incoming Poynting flux to outgoing enthalpy flux, resulting in heating of the inner tail. Localized Joule dissipation plays only a minor role.

  2. FORMATION AND ERUPTION OF A SMALL FLUX ROPE IN THE CHROMOSPHERE OBSERVED BY NST, IRIS, AND SDO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pankaj; Yurchyshyn, Vasyl; Cho, Kyung-Suk

    Using high-resolution images from the 1.6 m New Solar Telescope at Big Bear Solar Observatory, we report the direct evidence of chromospheric reconnection at the polarity inversion line between two small opposite polarity sunspots. Small jetlike structures (with velocities of ∼20–55 km s{sup −1}) were observed at the reconnection site before the onset of the first M1.0 flare. The slow rise of untwisting jets was followed by the onset of cool plasma inflow (∼10 km s{sup −1}) at the reconnection site, causing the onset of a two-ribbon flare. The reconnection between two sheared J-shaped cool Hα loops causes the formationmore » of a small twisted (S-shaped) flux rope in the chromosphere. In addition, Helioseismic and Magnetic Imager magnetograms show the flux cancellation (both positive and negative) during the first M1.0 flare. The emergence of negative flux and the cancellation of positive flux (with shear flows) continue until the successful eruption of the flux rope. The newly formed chromospheric flux rope becomes unstable and rises slowly with a speed of ∼108 km s{sup −1} during a second C8.5 flare that occurred after ∼3 hr of the first M1.0 flare. The flux rope was destroyed by repeated magnetic reconnection induced by its interaction with the ambient field (fan–spine topology) and looks like an untwisting surge (∼170 km s{sup −1}) in the coronal images recorded by the Solar Dynamics Observatory/Atmospheric Imaging Assembly. These observations suggest the formation of a chromospheric flux rope (by magnetic reconnection associated with flux cancellation) during the first M1.0 flare and its subsequent eruption/disruption during the second C8.5 flare.« less

  3. Diffusion of magnetic field via turbulent reconnection

    NASA Astrophysics Data System (ADS)

    Santos de Lima, Reinaldo; Lazarian, Alexander; de Gouveia Dal Pino, Elisabete M.; Cho, Jungyeon

    2010-05-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our 3D MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e. without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our 3D simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the

  4. On flares, substorms, and the theory of impulsive flux transfer events

    NASA Technical Reports Server (NTRS)

    Bratenahl, A.; Baum, P. J.

    1976-01-01

    Solar flares and magnetospheric substorms are discussed in the context of a general theory of impulsive flux transfer events (IFTE). IFTE theory, derived from laboratory observations in the Double Inverse Pinch Device (DIPD), provides a quantitative extension of 'neutral sheet' theories to include nonsteady field line reconnection. Current flow along the reconnection line increases with magnetic flux storage. When flux build-up exceeds the level corresponding to a critical limit on the current, instabilities induce a sudden transition in the mode of conduction. The resulting IFTE, indifferent to the specific modes and instabilities involved, is the more energetic, the lower the initial resistivity. It is the more violent, the greater the resulting resistivity increase and the faster its growth. Violent events can develop very large voltage transients along the reconnection line. Persistent build-up promoting conditions produce relaxation oscillations in the quantity of flux and energy stored (build-up-IFTE cycles). It is difficult to avoid the conclusion: flares and substorms are examples of IFTE.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    A generalized, intuitive two-fluid picture of 2D non-driven collisionless magnetic reconnection is described using results from a full-3D numerical simulation. The relevant two-fluid equations simplify to the condition that the flux associated with canonical circulation Q=m e∇×u e+q eB is perfectly frozen into the electron fluid. In the reconnection geometry, flux tubes defined by Q are convected with the central electron current, effectively stretching the tubes and increasing the magnitude of Q exponentially. This, coupled with the fact that Q is a sum of two quantities, explains how the magnetic fields in the reconnection region reconnect and give rise tomore » strong electron acceleration. The Q motion provides an interpretation for other phenomena as well, such as spiked central electron current filaments. The simulated reconnection rate was found to agree with a previous analytical calculation having the same geometry. Energy analysis shows that the magnetic energy is converted and propagated mainly in the form of the Poynting flux, and helicity analysis shows that the canonical helicity ∫P·Q dV as a whole must be considered when analyzing reconnection. A mechanism for whistler wave generation and propagation is also described, with comparisons to recent spacecraft observations.« less

  6. Theory and Simulations of Incomplete Reconnection During Sawteeth Due to Diamagnetic Effects

    NASA Astrophysics Data System (ADS)

    Beidler, Matthew Thomas

    Tokamaks use magnetic fields to confine plasmas to achieve fusion; they are the leading approach proposed for the widespread production of fusion energy. The sawtooth crash in tokamaks limits the core temperature, adversely impacts confinement, and seeds disruptions. Adequate knowledge of the physics governing the sawtooth crash and a predictive capability of its ramifications has been elusive, including an understanding of incomplete reconnection, i.e., why sawteeth often cease prematurely before processing all available magnetic flux. In this dissertation, we introduce a model for incomplete reconnection in sawtooth crashes resulting from increasing diamagnetic effects in the nonlinear phase of magnetic reconnection. Physically, the reconnection inflow self-consistently convects the high pressure core of a tokamak toward the q=1 rational surface, thereby increasing the pressure gradient at the reconnection site. If the pressure gradient at the rational surface becomes large enough due to the self-consistent evolution, incomplete reconnection will occur due to diamagnetic effects becoming large enough to suppress reconnection. Predictions of this model are borne out in large-scale proof-of-principle two-fluid simulations of reconnection in a 2D slab geometry and are also consistent with data from the Mega Ampere Spherical Tokamak (MAST). Additionally, we present simulations from the 3D extended-MHD code M3D-C1 used to study the sawtooth crash in a 3D toroidal geometry for resistive-MHD and two-fluid models. This is the first study in a 3D tokamak geometry to show that the inclusion of two-fluid physics in the model equations is essential for recovering timescales more closely in line with experimental results compared to resistive-MHD and contrast the dynamics in the two models. We use a novel approach to sample the data in the plane of reconnection perpendicular to the (m,n)=(1,1) mode to carefully assess the reconnection physics. Using local measures of

  7. Redistribution of fast ions during sawtooth reconnection

    NASA Astrophysics Data System (ADS)

    Jaulmes, F.; Westerhof, E.; de Blank, H. J.

    2014-10-01

    In a tokamak-based fusion power plant, possible scenarios may include regulated sawtooth oscillations to remove thermalized helium from the core of the plasma. During a sawtooth crash, the helium ash and other impurities trapped in the core are driven by the instability to an outer region. However, in a fusion plasma, high energy ions will represent a significant population. We thus study the behaviour of these energetic particles during a sawtooth. This paper presents the modelling of the redistribution of fast ions during a sawtooth reconnection event in a tokamak plasma. Along the lines of the model for the evolution of the flux surfaces during a sawtooth collapse described in Ya.I. Kolesnichenko and Yu.V. Yakovenko 1996 Nucl. Fusion 36 159, we have built a time-dependent electromagnetic model of a sawtooth reconnection. The trajectories of the ions are described by a complete gyro-orbit integration. The fast particles were evolved from specific initial parameters (given energy and uniform spread in pitch) or distributed initially according to a slowing-down distribution created by fusion reactions. Our modelling is used to understand the main equilibrium parameters driving the motions during the collapse and to determine the evolution of the distribution function of energetic ions when different geometries of reconnection are considered.

  8. Does the Hall Effect Solve the Flux Pileup Saturation Problem?

    NASA Technical Reports Server (NTRS)

    Dorelli, John C.

    2010-01-01

    It is well known that magnetic flux pileup can significantly speed up the rate of magnetic reconnection in high Lundquist number resistive MHD,allowing reconnection to proceed at a rate which is insensitive to the plasma resistivity over a wide range of Lundquist number. Hence, pileup is a possible solution to the Sweet-Parker time scale problem. Unfortunately, pileup tends to saturate above a critical value of the Lundquist number, S_c, where the value ofS_c depends on initial and boundary conditions, with Sweet-Parker scaling returning above S_c. It has been argued (see Dorelli and Bim [2003] and Dorelli [2003]) that the Hall effect can allow flux pileup to saturate (when the scale of the current sheet approaches ion inertial scale, di) before the reconnection rate begins to stall. However, the resulting saturated reconnection rate, while insensitive to the plasma resistivity, was found to depend strongly on the di. In this presentation, we revisit the problem of magnetic island coalescence (which is a well known example of flux pileup reconnection), addressing the dependence of the maximum coalescence rate on the ratio of di in the "large island" limit in which the following inequality is always satisfied: l_eta di lambda, where I_eta is the resistive diffusion length and lambda is the island wavelength.

  9. Reconnection in Planetary Magnetospheres

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    2000-01-01

    Current sheets in planetary magnetospheres that lie between regions of "oppositely-directed" magnetic field are either magnetopause-like, separating plasmas with different properties, or tail-like, separating plasmas of rather similar properties. The magnetopause current sheets generally have a nearly limitless supply of magnetized plasma that can reconnect, possibly setting up steady-state reconnection. In contrast, the plasma on either side of a tail current sheet is stratified so that, as reconnection occurs, the plasma properties, in particular the Alfven velocity, change. If the density drops and the magnetic field increases markedly perpendicular to the sheet, explosive reconnection can occur. Even though steady state reconnection can take place at magnetopause current sheets, the process often appears to be periodic as if a certain low average rate was demanded by the conditions but only a rapid rate was available. Reconnection of sheared fields has been postulated to create magnetic ropes in the solar corona, at the Earth's magnetopause, and in the magnetotail. However, this is not the only way to produce magnetic ropes as the Venus ionosphere shows. The geometry of the reconnecting regions and the plasma conditions both can affect the rate of reconnection. Sorting out the various controlling factors can be assisted through the examination of reconnection in planetary settings. In particular we observe similar small-scale tearing in the magnetopause current layers of the Earth, Saturn. Uranus and Neptune and the magnetodisk current sheet at Jupiter. These sites may be seeds for rapid reconnection if the reconnection site reaches a high Alfven velocity region. In the Jupiter magnetosphere this appears to be achieved with resultant substorm activity. Similar seeds may be present in the Earth's magnetotail with the first one to reach explosive growth dominating the dynamics of the tail.

  10. Statistical Properties of Ribbon Evolution and Reconnection Electric Fields in Eruptive and Confined Flares

    NASA Astrophysics Data System (ADS)

    Hinterreiter, J.; Veronig, A. M.; Thalmann, J. K.; Tschernitz, J.; Pötzi, W.

    2018-03-01

    A statistical study of the chromospheric ribbon evolution in Hα two-ribbon flares was performed. The data set consists of 50 confined (62%) and eruptive (38%) flares that occurred from June 2000 to June 2015. The flares were selected homogeneously over the Hα and Geostationary Operational Environmental Satellite (GOES) classes, with an emphasis on including powerful confined flares and weak eruptive flares. Hα filtergrams from the Kanzelhöhe Observatory in combination with Michelson Doppler Imager (MDI) and Helioseismic and Magnetic Imager (HMI) magnetograms were used to derive the ribbon separation, the ribbon-separation velocity, the magnetic-field strength, and the reconnection electric field. We find that eruptive flares reveal statistically larger ribbon separation and higher ribbon-separation velocities than confined flares. In addition, the ribbon separation of eruptive flares correlates with the GOES SXR flux, whereas no clear dependence was found for confined flares. The maximum ribbon-separation velocity is not correlated with the GOES flux, but eruptive flares reveal on average a higher ribbon-separation velocity (by ≈ 10 km s-1). The local reconnection electric field of confined (cc=0.50 ±0.02) and eruptive (cc=0.77 ±0.03) flares correlates with the GOES flux, indicating that more powerful flares involve stronger reconnection electric fields. In addition, eruptive flares with higher electric-field strengths tend to be accompanied by faster coronal mass ejections.

  11. Exploration of a possible cause of magnetic reconfiguration/reconnection due to generation, rather than annihilation, of magnetic field in a nun-uniform thin current sheet

    NASA Astrophysics Data System (ADS)

    Huang, Y. C.; Lyu, L. H.

    2014-12-01

    Magnetic reconfiguration/reconnection plays an important role on energy and plasma transport in the space plasma. It is known that magnetic field lines on two sides of a tangential discontinuity can connect to each other only at a neutral point, where the strength of the magnetic field is equal to zero. Thus, the standard reconnection picture with magnetic field lines intersecting at the neutral point is not applicable to the component reconnection events observed at the magnetopause and in the solar corona. In our early study (Yu, Lyu, & Wu, 2011), we have shown that annihilation of magnetic field near a thin current sheet can lead to the formation of normal magnetic field component (normal to the current sheet) to break the frozen-in condition and to accelerate the reconnected plasma flux, even without the presence of a neutral point. In this study, we examine whether or not a generation, rather than annihilation, of magnetic field in a nun-uniform thin current sheet can also lead to reconnection of plasma flux. Our results indicate that a non-uniform enhancement of electric current can yield formation of field-aligned currents. The normal-component magnetic field generated by the field-aligned currents can yield reconnection of plasma flux just outside the current-enhancement region. The particle motion that can lead to non-uniform enhancement of electric currents will be discussed.

  12. ERUPTING FILAMENTS WITH LARGE ENCLOSING FLUX TUBES AS SOURCES OF HIGH-MASS THREE-PART CMEs, AND ERUPTING FILAMENTS IN THE ABSENCE OF ENCLOSING FLUX TUBES AS SOURCES OF LOW-MASS UNSTRUCTURED CMEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, Joe; Morgan, Huw, E-mail: joh9@aber.ac.uk

    2015-11-01

    The 3-part appearance of many coronal mass ejections (CMEs) arising from erupting filaments emerges from a large magnetic flux tube structure, consistent with the form of the erupting filament system. Other CMEs arising from erupting filaments lack a clear 3-part structure and reasons for this have not been researched in detail. This paper aims to further establish the link between CME structure and the structure of the erupting filament system and to investigate whether CMEs which lack a 3-part structure have different eruption characteristics. A survey is made of 221 near-limb filament eruptions observed from 2013 May 03 to 2014more » June 30 by Extreme UltraViolet (EUV) imagers and coronagraphs. Ninety-two filament eruptions are associated with 3-part structured CMEs, 41 eruptions are associated with unstructured CMEs. The remaining 88 are categorized as failed eruptions. For 34% of the 3-part CMEs, processing applied to EUV images reveals the erupting front edge is a pre-existing loop structure surrounding the filament, which subsequently erupts with the filament to form the leading bright front edge of the CME. This connection is confirmed by a flux-rope density model. Furthermore, the unstructured CMEs have a narrower distribution of mass compared to structured CMEs, with total mass comparable to the mass of 3-part CME cores. This study supports the interpretation of 3-part CME leading fronts as the outer boundaries of a large pre-existing flux tube. Unstructured (non 3-part) CMEs are a different family to structured CMEs, arising from the eruption of filaments which are compact flux tubes in the absence of a large system of enclosing closed field.« less

  13. Statistical Behavior of Quasi-Steady Balanced Reconnection in Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Kissinger, Jennifer Eileen

    Magnetic reconnection between Earth's magnetosphere and the solar wind results in several modes of response, including the impulsive substorm and the quasi-steady mode known as steady magnetospheric convection (SMC). SMC events are theorized to result from balancing the dayside and nightside reconnection rates. The reasons the magnetosphere responds with different modes are not fully known. This dissertation comprises statistical data analysis of the SMC mode to investigate the solar wind conditions and magnetospheric properties during these events. A comprehensive list of SMC events is selected from 1997-2011. In the first of three studies, an association between SMCs and solar wind stream interfaces (SI) is identified in the declining phase of Solar Cycle 23. SMC occurrence peaks 12-24 hours after an SI if the solar wind is geoeffective. The subset of SI-associated SMCs occurs during fast solar wind velocity, in contrast to previous results, but the driving electric field imposed on the magnetosphere (Ey) is the same for SI-associated and unassociated SMC events. Therefore the magnitude and steadiness of E y is the most important solar wind parameter for an SMC to occur. The second study shows that magnetotail convection is significantly different for SMC events, compared to quiet intervals and isolated substorms. Fast flows transporting enhanced magnetic flux are deflected toward the dawn and dusk flanks during SMC. Flow diversion is due to a broad high pressure region in the inner magnetosphere. The interval preceding SMC events is found to set up the magnetotail conditions that assist balanced reconnection. In particular inner magnetosphere pressure before SMCs is enhanced from substorm levels but not as high as SMC levels. The final study shows that nearly all SMCs are preceded by a substorm expansion. In rare cases when an SMC occurs without a preceding substorm, we hypothesize that the distant x-line is able to balance a weak solar wind driver. These

  14. Externally-Driven Onset of Localized Magnetic Reconnection in a Magnetotail Configuration

    NASA Astrophysics Data System (ADS)

    Pritchett, P. L.; Lu, S.

    2017-12-01

    In observations of the nightside auroral arcs and ionospheric currents, the onset or breakup phase of a substorm is sharply defined in time and is highly localized in space. Attempts to understand this localization in terms of the onset of localized magnetic reconnection have generally been unsuccessful. Thus, a y-localized driving convection electric field Ey applied at the lobe boundaries spreads out before it reaches the equatorial plane and results only in 2-D reconnection. In this work, the response of a magnetotail equilibrium containing a dipole magnetic field and plasma sheet regions to the imposition of a longitudinally-limited, high-latitude driving electric field is investigated using 3-D particle-in-cell simulations. The initial response involves a reduction in the equatorial Bz field that is then followed by the development of a dawn-dusk asymmetric current sheet relative to the meridian plane of the driving field. The key feature is the presence of a dusk-side Hall electric field Ez that drives magnetic flux dawnward and thus further reduces the Bz field on the duskward side. The net result is that Bz is driven through zero in a localized region on the duskward side, leading to the onset of localized reconnection and the emergence of magnetic flux ropes. The cross-tail extent of the reconnection expands but remains limited to ˜30di, where di is the ion inertia length. The dissipation E' \\cdot J is peaked along the finite X line, with a load region (negative E' \\cdot J) forming tailward of this region. The particle energy spectra in the downtail region show shoulders for the ions in the energy range ˜3-8Eth (Eth is the initial thermal energy) and extended tails for the electrons in the range ˜10-20Eth. These results demonstrate the ability of a high-latitude disturbance that may be connected to dayside flow channels [Nishimura et al., 2014] to initiate localized magnetic reconnection in the magnetotail.

  15. Magnetopause reconnection rate estimates for Jupiter's magnetosphere based on interplanetary measurements at ~5AU

    NASA Astrophysics Data System (ADS)

    Nichols, J. D.; Cowley, S. W. H.; McComas, D. J.

    2006-03-01

    We make the first quantitative estimates of the magnetopause reconnection rate at Jupiter using extended in situ data sets, building on simple order of magnitude estimates made some thirty years ago by Brice and Ionannidis (1970) and Kennel and Coroniti (1975, 1977). The jovian low-latitude magnetopause (open flux production) reconnection voltage is estimated using the Jackman et al. (2004) algorithm, validated at Earth, previously applied to Saturn, and here adapted to Jupiter. The high-latitude (lobe) magnetopause reconnection voltage is similarly calculated using the related Gérard et al. (2005) algorithm, also previously used for Saturn. We employ data from the Ulysses spacecraft obtained during periods when it was located near 5AU and within 5° of the ecliptic plane (January to June 1992, January to August 1998, and April to October 2004), along with data from the Cassini spacecraft obtained during the Jupiter flyby in 2000/2001. We include the effect of magnetospheric compression through dynamic pressure modulation, and also examine the effect of variations in the direction of Jupiter's magnetic axis throughout the jovian day and year. The intervals of data considered represent different phases in the solar cycle, such that we are also able to examine solar cycle dependency. The overall average low-latitude reconnection voltage is estimated to be ~230 kV, such that the average amount of open flux created over one solar rotation is ~500 GWb. We thus estimate the average time to replenish Jupiter's magnetotail, which contains ~300-500 GWb of open flux, to be ~15-25 days, corresponding to a tail length of ~3.8-6.5 AU. The average high-latitude reconnection voltage is estimated to be ~130 kV, associated with lobe "stirring". Within these averages, however, the estimated voltages undergo considerable variation. Generally, the low-latitude reconnection voltage exhibits a "background" of ~100 kV that is punctuated by one or two significant enhancement events

  16. Evidence for magnetic field reconnection at the Earth's magnetopause

    NASA Technical Reports Server (NTRS)

    Sonnerup, B. U. O.; Paschmann, G.; Papamastorakis, I.; Sckopke, N.; Haerendel, G.; Bame, S. J.; Asbridge, J. R.; Gosling, J. T.; Russell, C. T.

    1981-01-01

    Eleven passes of the ISEE satellites through the frontside terrestrial magnetopause were identified, where the plasma velocity in the magnetopause and boundary layer was substantially larger than in the magnetosheath. The nature of the plasma flow, magnetic field, and energetic particle fluxes in these regions were examined, with a view to determining whether the velocity enhancements can be explained by magnetic field reconnection.

  17. RECONNECTION PROPERTIES OF LARGE-SCALE CURRENT SHEETS DURING CORONAL MASS EJECTION ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, B. J.; Kazachenko, M. D.; Edmondson, J. K.

    2016-07-20

    We present a detailed analysis of the properties of magnetic reconnection at large-scale current sheets (CSs) in a high cadence version of the Lynch and Edmondson 2.5D MHD simulation of sympathetic magnetic breakout eruptions from a pseudostreamer source region. We examine the resistive tearing and break-up of the three main CSs into chains of X- and O-type null points and follow the dynamics of magnetic island growth, their merging, transit, and ejection with the reconnection exhaust. For each CS, we quantify the evolution of the length-to-width aspect ratio (up to ∼100:1), Lundquist number (∼10{sup 3}), and reconnection rate (inflow-to-outflow ratiosmore » reaching ∼0.40). We examine the statistical and spectral properties of the fluctuations in the CSs resulting from the plasmoid instability, including the distribution of magnetic island area, mass, and flux content. We show that the temporal evolution of the spectral index of the reconnection-generated magnetic energy density fluctuations appear to reflect global properties of the CS evolution. Our results are in excellent agreement with recent, high-resolution reconnection-in-a-box simulations even though our CSs’ formation, growth, and dynamics are intrinsically coupled to the global evolution of sequential sympathetic coronal mass ejection eruptions.« less

  18. Super-Alfvénic Propagation and Damping of Reconnection Onset Signatures

    NASA Astrophysics Data System (ADS)

    Sharma Pyakurel, P.; Shay, M. A.; Haggerty, C. C.; Parashar, T. N.; Drake, J. F.; Cassak, P. A.; Gary, S. Peter

    2018-01-01

    The quadrupolar out-of-plane Hall magnetic field generated during collisionless reconnection propagates away from the x line as a kinetic Alfvén wave (KAW). While it has been shown that this KAW carries substantial Poynting flux and propagates super-Alfvenically, how this KAW damps as it propagates away from the x line is not well understood. In this study, this damping is examined using kinetic particle-in-cell simulations of antiparallel symmetric magnetic reconnection in a one-dimensional current sheet equilibrium. In the reconnection simulations, the KAW wave vector has a typical magnitude comparable to an inverse fluid Larmor radius (effectively an inverse ion Larmor radius) and a direction of 85-89° relative to the local magnetic field. We find that the damping of the reconnection KAW is consistent with linear Landau damping results from a numerical Vlasov dispersion solver. This knowledge allows us to generalize our damping predictions to regions in the magnetotail and solar corona where the magnetic geometry can be approximated as a current sheet. For the magnetotail, the KAW from reconnection will not damp away before propagating the approximately 20 Earth radii associated with global magnetotail distances. For the solar corona, on the other hand, these KAWs will completely damp before reaching the distances comparable to the flare loop length.

  19. The Onset of Magnetic Reconnection in Tail-Like Equilibria

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim; Kuznetsova, Masha

    1999-01-01

    Magnetic reconnection is a fundamental mode of dynamics in the magnetotail, and is recognized as the basic mechanisms converting stored magnetic energy into kinetic energy of plasma particles. The effects of the reconnection process are well documented by spacecraft observations of plasmoids in the distant magnetotail, or bursty bulk flows, and magnetic field dipolarizations in the near Earth region. Theoretical and numerical analyses have, in recent years, shed new light on the way reconnection operates, and, in particular, which microscopic mechanism supports the dissipative electric field in the associated diffusion region. Despite this progress, however. the question of how magnetic reconnection initiates in a tail-like magnetic field with finite flux threading the current i.sheet remains unanswered. Instead, theoretical studies supported by numerical simulations support the point-of-view that such plasma and current sheets are stable with respect to collisionless tearing mode. In this paper, we will further investigate this conclusion, with emphasis on the question whether it remains valid in plasma sheets with embedded thin current sheets. For this purpose, we perform particle-in-cell simulations of the driven formation of thin current sheets, and their subsequent evolution either to equilibrium or to instability of a tearing-type mode. In the latter case we will pay particular attention to the nature of the electric field contribution which unmagnetizes the electrons.

  20. Heat transfer experiments with a central receiver tube subjected to unsteady and non-uniform heat flux

    NASA Astrophysics Data System (ADS)

    Fernández-Torrijos, María; Marugán-Cruz, Carolina; Sobrino, Celia; Santana, Domingo

    2017-06-01

    In this work, a molten salt test loop to study the heat transfer process in external molten salt receivers is described. The experimental installation is formed by a cylindrical molten salt tank, a pump, a flow meter, and an induction heater to generate the heat flux, which is applied in a small rectangular region of the tube surface. In central tower plants, the external receiver pipe is considered to be under unilateral concentrated solar radiation, because only one side of the pipe receives high heat flux. The main advantage of using an induction heater is the control of heating in different areas of the tube. In order to measure the effects of a non-homogenous and unsteady heat flux on the wall temperature distribution a series of experiments have been carried out. 4 K-type thermocouples have been welded at different axial and azimuthal positions of the pipe to obtain the wall temperature distribution. Different temperature measurements have been made varying the heat flux and water velocity to study their effects on the heat transfer process.

  1. Ion heating and magnetic flux pile-up in a magnetic reconnection experiment with super-Alfvénic plasma inflows

    NASA Astrophysics Data System (ADS)

    Suttle, L. G.; Hare, J. D.; Lebedev, S. V.; Ciardi, A.; Loureiro, N. F.; Burdiak, G. C.; Chittenden, J. P.; Clayson, T.; Halliday, J. W. D.; Niasse, N.; Russell, D.; Suzuki-Vidal, F.; Tubman, E.; Lane, T.; Ma, J.; Robinson, T.; Smith, R. A.; Stuart, N.

    2018-04-01

    This work presents a magnetic reconnection experiment in which the kinetic, magnetic, and thermal properties of the plasma each play an important role in the overall energy balance and structure of the generated reconnection layer. Magnetic reconnection occurs during the interaction of continuous and steady flows of super-Alfvénic, magnetized, aluminum plasma, which collide in a geometry with two-dimensional symmetry, producing a stable and long-lasting reconnection layer. Optical Thomson scattering measurements show that when the layer forms, ions inside the layer are more strongly heated than electrons, reaching temperatures of Ti˜Z ¯ Te≳300 eV—much greater than can be expected from strong shock and viscous heating alone. Later in time, as the plasma density in the layer increases, the electron and ion temperatures are found to equilibrate, and a constant plasma temperature is achieved through a balance of the heating mechanisms and radiative losses of the plasma. Measurements from Faraday rotation polarimetry also indicate the presence of significant magnetic field pile-up occurring at the boundary of the reconnection region, which is consistent with the super-Alfvénic velocity of the inflows.

  2. Effects of the Canopy and Flux Tube Anchoring on Evaporation Flow of a Solar Flare

    NASA Astrophysics Data System (ADS)

    Unverferth, John; Longcope, Dana

    2018-06-01

    Spectroscopic observations of flare ribbons typically show chromospheric evaporation flows, which are subsonic for their high temperatures. This contrasts with many numerical simulations where evaporation is typically supersonic. These simulations typically assume flow along a flux tube with a uniform cross-sectional area. A simple model of the magnetic canopy, however, includes many regions of low magnetic field strength, where flux tubes achieve local maxima in their cross-sectional area. These are analgous to a chamber in a flow tube. We find that one-third of all field lines in a model have some form of chamber through which evaporation flow must pass. Using a one-dimensional isothermal hydrodynamic code, we simulated supersonic flow through an assortment of chambers and found that a subset of solutions exhibit a stationary standing shock within the chamber. These shocked solutions have slower and denser upflows than a flow through a uniform tube would. We use our solution to construct synthetic spectral lines and find that the shocked solutions show higher emission and lower Doppler shifts. When these synthetic lines are combined into an ensemble representing a single canopy cell, the composite line appears slower, even subsonic, than expected due to the outsized contribution from shocked solutions.

  3. Reconnection in Three Dimensions

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    1999-01-01

    Analyzing the qualitative three-dimensional magnetic structure of a plasmoid, we were led to reconsider the concept of magnetic reconnection from a general point of view. The properties of relatively simple magnetic field models provide a strong preference for one of two definitions of magnetic reconnection that exist in the literature. Any concept of magnetic reconnection defined in terms of magnetic topology seems naturally restricted to cases where the magnetic field vanishes somewhere in the nonideal (diffusion) region. The main part of this paper is concerned with magnetic reconnection in nonvanishing magnetic fields (finite-B reconnection), which has attracted less attention in the past. We show that the electric field component parallel to the magnetic field plays a crucial physical role in finite-B reconnection, and we present two theorems involving the former. The first states a necessary and sufficient condition on the parallel electric field for global reconnection to occur. Here the term "global" means the generic case where the breakdown of magnetic connection occurs for plasma elements that stay outside the nonideal region. The second theorem relates the change of magnetic helicity to the parallel electric field for cases where the electric field vanishes at large distances. That these results provide new insight into three-dimensional reconnection processes is illustrated in terms of the plasmoid configuration, which was our starting point.

  4. Non-Gaussianity and cross-scale coupling in interplanetary magnetic field turbulence during a rope-rope magnetic reconnection event

    NASA Astrophysics Data System (ADS)

    Miranda, Rodrigo A.; Schelin, Adriane B.; Chian, Abraham C.-L.; Ferreira, José L.

    2018-03-01

    In a recent paper (Chian et al., 2016) it was shown that magnetic reconnection at the interface region between two magnetic flux ropes is responsible for the genesis of interplanetary intermittent turbulence. The normalized third-order moment (skewness) and the normalized fourth-order moment (kurtosis) display a quadratic relation with a parabolic shape that is commonly observed in observational data from turbulence in fluids and plasmas, and is linked to non-Gaussian fluctuations due to coherent structures. In this paper we perform a detailed study of the relation between the skewness and the kurtosis of the modulus of the magnetic field |B| during a triple interplanetary magnetic flux rope event. In addition, we investigate the skewness-kurtosis relation of two-point differences of |B| for the same event. The parabolic relation displays scale dependence and is found to be enhanced during magnetic reconnection, rendering support for the generation of non-Gaussian coherent structures via rope-rope magnetic reconnection. Our results also indicate that a direct coupling between the scales of magnetic flux ropes and the scales within the inertial subrange occurs in the solar wind.

  5. The Foggy EUV Corona and Coronal Heating by MHD Waves from Explosive Reconnection Events

    NASA Technical Reports Server (NTRS)

    Moore, Ron L.; Cirtain, Jonathan W.; Falconer, David A.

    2008-01-01

    In 0.5 arcsec/pixel TRACE coronal EUV images, the corona rooted in active regions that are at the limb and are not flaring is seen to consist of (1) a complex array of discrete loops and plumes embedded in (2) a diffuse ambient component that shows no fine structure and gradually fades with height. For each of two not-flaring active regions, found that the diffuse component is (1) approximately isothermal and hydrostatic and (2) emits well over half of the total EUV luminosity of the active-region corona. Here, from a TRACE Fe XII coronal image of another not-flaring active region, the large sunspot active region AR 10652 when it was at the west limb on 30 July 2004, we separate the diffuse component from the discrete loop component by spatial filtering, and find that the diffuse component has about 60% of the total luminosity. If under much higher spatial resolution than that of TRACE (e. g., the 0.1 arcsec/pixel resolution of the Hi-C sounding-rocket experiment proposed by J. W. Cirtain et al), most of the diffuse component remains diffuse rather being resolved into very narrow loops and plumes, this will raise the possibility that the EUV corona in active regions consists of two basically different but comparably luminous components: one being the set of discrete bright loops and plumes and the other being a truly diffuse component filling the space between the discrete loops and plumes. This dichotomy would imply that there are two different but comparably powerful coronal heating mechanisms operating in active regions, one for the distinct loops and plumes and another for the diffuse component. We present a scenario in which (1) each discrete bright loop or plume is a flux tube that was recently reconnected in a burst of reconnection, and (2) the diffuse component is heated by MHD waves that are generated by these reconnection events and by other fine-scale explosive reconnection events, most of which occur in and below the base of the corona where they are

  6. A study of flux transfer events at different planets

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1995-01-01

    Flux transfer events (FTEs) are disturbances in and near the magnetopause current layer that cause a characteristic signature in the component of the magnetic field parallel to the average boundary normal. These disturbances have been observed at Mercury, Earth and Jupiter but not at Saturn, Uranus or Neptune. At Earth, FTEs last about 1 minute and repeat about every 8 but at Mercury, a much smaller magnetosphere, the events last seconds and are tens of seconds apart. These features have been interpreted in terms of magnetospheric flux ropes connected to the interplanetary magnetic field, arising as the result of reconnection. An analogous phenomenon occurs at Venus where magnetic flux ropes arise at the ionosphere, a boundary between a very strongly magnetized one. However, here the flux ropes do not appear to be due to reconnection.

  7. Magnetic Reconnection and the Kelvin-Helmholtz Instability

    NASA Astrophysics Data System (ADS)

    Knoll, D. A.; Chacon, L.; Brackbill, J. U.; Lapenta, G.

    2002-11-01

    Results are presented from a continuing study of magnetic reconnection caused by the evolution of a Kelvin-Helmholtz instability. To date we have studied 3-D compressible, subsonic and and sub-Alfvenic flow, with differential rotation (a gradient in vorticity parallel to the initial magnetic field) [1,2], as well as 2-D incompressible super-Alfvenic flow [3]. In both cases localized transient reconnection is observed on the Kelvin-Helmholtz time scale, and results indicate that the observed reconnection rate is insensitive to resistivity. In the present study we extend both the 2-D and the 3-D results found in [1,2,3]. In the extension of the 2-D work we focus on the fundamental differences in the nonlinear evolution of a low S simulation (S = 200) and a higher S simulation (S = 10,000). In the 3-D work we study the effects of a density discontinuity (present in [1] and not in [2]), along with study the effects of initial curved field lines in the absence of differential rotation. This basic plasma physics problem has possible application to dayside magnetosphere reconnection as a theoretical model for flux transfer events [1]. The general problem also has possible application to solar physics as it could provide a trigger mechanism for some class of coronal mass ejections. Both applications will be briefly discussed. [1] J.U. Brackbill and D.A. Knoll, Phys. Rev. Lett., vol. 86 (2001). [2] D.A. Knoll and J.U. Brackbill, Physics of Plasmas, to appear (2002) [3] D.A. Knoll and L. Chacon, Phys. Rev. Lett., vol. 88 (2002).

  8. SLIPPING MAGNETIC RECONNECTIONS WITH MULTIPLE FLARE RIBBONS DURING AN X-CLASS SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing, E-mail: ruishengzheng@sdu.edu.cn

    2016-06-01

    With the observations of the Solar Dynamics Observatory , we present the slipping magnetic reconnections with multiple flare ribbons (FRs) during an X1.2 eruptive flare on 2014 January 7. A center negative polarity was surrounded by several positive ones, and three FRs appeared. The three FRs showed apparent slipping motions, and hook structures formed at their ends. Due to the moving footpoints of the erupting structures, one tight semi-circular hook disappeared after the slippage along its inner and outer edges, and coronal dimmings formed within the hook. The east hook also faded as a result of the magnetic reconnection betweenmore » the arcades of a remote filament and a hot loop that was impulsively heated by the under flare loops. Our results are accordant with the slipping magnetic reconnection regime in three-dimensional standard model for eruptive flares. We suggest that the complex structures of the flare are likely a consequence of the more complex flux distribution in the photosphere, and the eruption involves at least two magnetic reconnections.« less

  9. Magnetic field, reconnection, and particle acceleration in extragalactic jets

    NASA Technical Reports Server (NTRS)

    Romanova, M. M.; Lovelace, R. V. E.

    1992-01-01

    Extra-galactic radio jets are investigated theoretically taking into account that the jet magnetic field is dragged out from the central rotating source by the jet flow. Thus, magnetohydrodynamic models of jets are considered with zero net poloidal current and flux, and consequently a predominantly toroidal magnetic field. The magnetic field naturally has a cylindrical neutral layer. Collisionless reconnection of the magnetic field in the vicinity of the neutral layer acts to generate a non-axisymmetric radial magnetic field. In turn, axial shear-stretching of reconnected toroidal field gives rise to a significant axial magnetic field if the flow energy-density is larger than the energy-density of the magnetic field. This can lead to jets with an apparent longitudinal magnetic field as observed in the Fanaroff-Riley class II jets. In the opposite limit, where the field energy-density is large, the field remains mainly toroidal as observed in Fanaroff-Riley class I jets. Driven collisionless reconnection at neutral layers may lead to acceleration of electrons to relativistic energies in the weak electrostatic field of the neutral layer. A simple model is discussed for particle acceleration at neutral layers in electron/positron and electron/proton plasmas.

  10. STEREOSCOPIC OBSERVATION OF SLIPPING RECONNECTION IN A DOUBLE CANDLE-FLAME-SHAPED SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, Tingyu; Liu, Rui; Wang, Yuming

    2016-04-20

    The 2011 January 28 M1.4 flare exhibits two side-by-side candle-flame-shaped flare loop systems underneath a larger cusp-shaped structure during the decay phase, as observed at the northwestern solar limb by the Solar Dynamics Observatory . The northern loop system brightens following the initiation of the flare within the southern loop system, but all three cusp-shaped structures are characterized by ∼10 MK temperatures, hotter than the arch-shaped loops underneath. The “Ahead” satellite of the Solar Terrestrial Relations Observatory provides a top view, in which the post-flare loops brighten sequentially, with one end fixed while the other apparently slipping eastward. By performingmore » stereoscopic reconstruction of the post-flare loops in EUV and mapping out magnetic connectivities, we found that the footpoints of the post-flare loops are slipping along the footprint of a hyperbolic flux tube (HFT) separating the two loop systems and that the reconstructed loops share similarity with the magnetic field lines that are traced starting from the same HFT footprint, where the field lines are relatively flexible. These results argue strongly in favor of slipping magnetic reconnection at the HFT. The slipping reconnection was likely triggered by the flare and manifested as propagative dimmings before the loop slippage is observed. It may contribute to the late-phase peak in Fe xvi 33.5 nm, which is even higher than its main-phase counterpart, and may also play a role in the density and temperature asymmetry observed in the northern loop system through heat conduction.« less

  11. Modeling the Self-Organized Critical Behavior of Earth's Plasma Sheet Reconnection Dynamics

    NASA Astrophysics Data System (ADS)

    Klimas, A.; Uritsky, V.; Baker, D.

    2006-05-01

    Analyses of Polar UVI auroral image data (Uritsky et al. JGR, 2002; GRL, 2003, 2006) show that bright night- side high-latitude UV emissions exhibit so many of the key properties of systems in self-organized criticality that an alternate interpretation has become virtually impossible. It is now necessary to find and model the source of this behavior. We note that the most common models of self-organized criticality are numerical sandpiles. These are, at root, models that govern the transport of some quantity from a region where it is loaded to another where it is unloaded. Transport is enabled by the excitation of a local threshold instability; it is intermittent and bursty, and it exhibits a number of scale-free statistical properties. Searching for a system in the magnetosphere that is analogous and that, in addition, is known to produce auroral signatures, we focus on the reconnection dynamics of the plasma sheet. In our previous work, a driven reconnection model has been constructed and has been under study (Klimas et al. JGR, 2004; GRL 2005). The transport of electromagnetic (primarily magnetic) energy carried by the Poynting flux into the reconnection region of the model has been examined. All of the analysis techniques, and more, that have been applied to the auroral image data have also been applied to this Poynting flux. Here, we report new results showing that this model also exhibits so many of the key properties of systems in self-organized criticality that an alternate interpretation is implausible. Further, we find a strong correlation between these key properties of the model and those of the auroral UV emissions. We suggest that, in general, the driven reconnection model is an important step toward a realistic plasma physical model of self-organized criticality and we conclude, more specifically, that it is also a step in the right direction toward modeling the multiscale reconnection dynamics of the magnetotail.

  12. Modeling the Self-organized Critical Behavior of the Plasma Sheet Reconnection Dynamics

    NASA Technical Reports Server (NTRS)

    Klimas, Alex; Uritsky, Vadim; Baker, Daniel

    2006-01-01

    Analyses of Polar UVI auroral image data reviewed in our other presentation at this meeting (V. Uritsky, A. Klimas) show that bright night-side high-latitude UV emissions exhibit so many of the key properties of systems in self-organized criticality (SOC) that an alternate interpretation has become virtually impossible. It is now necessary to find and model the source of this behavior. We note that the most common models of self-organized criticality are numerical sandpiles. These are, at root, models that govern the transport of some quantity from a region where it is loaded to another where it is unloaded. Transport is enabled by the excitation of a local threshold instability; it is intermittent and bursty, and it exhibits a number of scale-free statistical properties. Searching for a system in the magnetosphere that is analogous and that, in addition, is known to produce auroral signatures, we focus on the reconnection dynamics of the plasma sheet. In our previous work, a driven reconnection model has been constructed and has been under study. The transport of electromagnetic (primarily magnetic) energy carried by the Poynting flux into the reconnection region of the model has been examined. All of the analysis techniques, and more, that have been applied to the auroral image data have also been applied to this Poynting flux. Here, we report new results showing that this model also exhibits so many of the key properties of systems in self-organized criticality that an alternate interpretation is implausible. Further, we find a strong correlation between these key properties of the model and those of the auroral UV emissions. We suggest that, in general, the driven reconnection model is an important step toward a realistic plasma physical model of self-organized criticality and we conclude, more specifically, that it is also a step in the right direction toward modeling the multiscale reconnection dynamics of the magnetotail.

  13. MHD and Reconnection Activity During Local Helicity Injection

    NASA Astrophysics Data System (ADS)

    Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Reusch, J. A.; Richner, N. J.

    2016-10-01

    Scaling local helicity injection (LHI) to larger devices requires a validated, predictive model of its current drive mechanism. NIMROD simulations predict the injected helical current streams persist in the edge and periodically reconnect to form axisymmetric current rings that travel into the bulk plasma to grow Ip and poloidal flux. In simulation, these events result in discrete bursts of Alfvénic-frequency MHD activity and jumps in Ip of order ΔIp Iinj , in qualitative agreement with large n = 1 activity found in experiment. Fast imaging prior to tokamak formation supports the instability of, and apparent reconnection between, adjacent helical streams. The bursts exhibit toroidal amplitude asymmetries consistent with a kink structure singly line-tied to the injectors. Internal measurements localize this activity to the injector radial location. Pairwise correlations of poloidal Mirnov coil amplitude and phase match expectations of an edge-localized current stream carrying Iinj. Prior to tokamak formation, reconnection from both adjacent helical windings and co-injected current streams are shown to strongly heat impurity ions. After tokamak formation, strong anomalous ion heating in the plasma edge is attributed to continuous reconnection between colinear streams. The n = 1 bursts occur less frequently as Ip rises, likely caused by increased stream stability as Bv rises and qedge drops. This evidence supports the general NIMROD model of LHI, confirms the persistence and role of the edge current streams, and motivates experiments at higher Iinj and BT. Supported by US DOE Grants DE-FG02-96ER54375, DE-SC0006928.

  14. Flux tubes and coherence length in the SU(3) vacuum

    NASA Astrophysics Data System (ADS)

    Cea, P.; Cosmai, L.; Cuteri, F.; Papa, A.

    An estimate of the London penetration and coherence lengths in the vacuum of the SU(3) pure gauge theory is given downstream an analysis of the transverse profile of the chromoelectric flux tubes. Within ordinary superconductivity, a simple variational model for the magnitude of the normalized order parameter of an isolated vortex produces an analytic expression for magnetic field and supercurrent density. In the picture of SU(3) vacuum as dual superconductor, this expression provides us with the function that fits the chromoelectric field data. The smearing procedure is used in order to reduce noise.

  15. Assessing the Time Dependence of Reconnection With Poynting's Theorem: MMS Observations

    NASA Astrophysics Data System (ADS)

    Genestreti, K. J.; Cassak, P. A.; Varsani, A.; Burch, J. L.; Nakamura, R.; Wang, S.

    2018-04-01

    We investigate the time dependence of electromagnetic-field-to-plasma energy conversion in the electron diffusion region of asymmetric magnetic reconnection. To do so, we consider the terms in Poynting's theorem. In a steady state there is a perfect balance between the divergence of the electromagnetic energy flux ∇·S→ and the conversion between electromagnetic field and particle energy J→·E→. This energy balance is demonstrated with a particle-in-cell simulation of reconnection. We also evaluate each of the terms in Poynting's theorem during an observation of a magnetopause reconnection region by Magnetospheric Multiscale (MMS). We take the equivalence of both sides of Poynting's theorem as an indication that the errors associated with the approximation of each term with MMS data are small. We find that, for this event, balance between J→·E→=-∇·S→ is only achieved for a small fraction of the energy conversion region at/near the X-point. Magnetic energy was rapidly accumulating on either side of the current sheet at roughly 3 times the predicted energy conversion rate. Furthermore, we find that while J→·E→>0 and ∇·S→<0 are observed, as is expected for reconnection, the energy accumulation is driven by the overcompensation for J→·E→ by -∇·S→>J→·E→. We note that due to the assumptions necessary to do this calculation, the accurate evaluation of ∇·S→ may not be possible for every MMS-observed reconnection event; but, if possible, this is a simple approach to determine if reconnection is or is not in a steady state.

  16. Cluster observations of quasi-periodic impulsive signatures in the dayside northern lobe: High-latitude flux transfer events?

    NASA Technical Reports Server (NTRS)

    Thompson, S. M.; Kivelson, M. G.; Khurana, K. K.; Balogh, A.; Reme, H.; Fazakerley, A. N.; Kistler, L. M.

    2004-01-01

    We report on a series of quasi-periodic reversals in GSM B(sub Z) observed by the four Cluster spacecraft in the northern dayside lobe poleward of the cusp on 23 February 2001. During an interval of about 35 min, multiple reversals (negative to positive) in B(sub Z) of approximately 1-min duration with an approximate 8-min recurrence time were observed. The individual structures do not resemble low-latitude flux transfer events (FTE) [Russell and Elphic, 1979] but the 8-min recurrence frequency suggests that intermittent reconnection may be occurring .Measurements (appropriately lagged) of the solar wind at ACE show that the IMF was southward-oriented with a strong B(sub X) and that a modest dynamic pressure increased as the events started. The multi-point observations afforded by the Cluster spacecraft were used to infer the motion (direction and speed) of the observed magnetic field reversals. The associated currents were also calculated and they are consistent with the spatial confinement of the observed magnetic field reversals. We propose that the observed reversals are due to flux tubes reconnecting with closed field lines on the dayside. Ancillary data from the Cluster Ion Spectrometry (CIS) and Plasma Electron And Current Experiment (PEACE) instruments were used to develop a physical picture of the reversals.

  17. Comments on QCD confinement, DTU model, and hadron-nucleus collisions. [Flux tube model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, C.B.

    1981-04-01

    Complementary discussions on the QCD flux tube model and the DTU model in connection with our previous work are given. It is also shown that the recent hadron-nucleus collision model has two important suppression mechanisms for particle production. Within the projectile cascade approximation, the model leads to the prediction of approximate anti ..nu.. universality.

  18. The Triggering Mechanism of Quiet-Region Coronal Jet Eruptions: Flux Cancelation

    NASA Technical Reports Server (NTRS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2017-01-01

    Coronal jets are frequent transient features on the Sun, observed in EUV and X-ray emissions. They occur in active regions, quiet Sun and coronal holes, and appear as a bright spire with base brightenings. Recent studies show that many coronal jets are driven by the eruption of a minifilament. Here we investigate the magnetic cause of jet-driving minifilament eruptions. We study ten randomly-found on-disk quiet-region coronal jets using SDO/AIA intensity images and SDO/HMI magnetograms. For all ten events, we track the evolution of photospheric magnetic flux in the jet-base region in EUV images and find that (a) a cool (transition-region temperature) minifilament is present prior to each jet eruption; (b) the pre-eruption minifilament resides above the polarity-inversion line between majority-polarity and minority-polarity magnetic flux patches; (c) the opposite-polarity flux patches converge and cancel with each other; (d) the cancelation between the majority-polarity and minority-polarity flux patches eventually destabilizes the field holding the minifilament to erupt outwards; (e) the envelope of the erupting field barges into ambient oppositely-directed far-reaching field and undergoes external reconnection (interchange reconnection); (f) the external reconnection opens the envelope field and the minifilament field inside, allowing reconnected-heated hot material and cool minifilament material to escape along the far-reaching field, producing the jet spire. In summary, we found that each of our ten jets resulted from a minifilament eruption following flux cancelation at the magnetic neutral line under the pre-eruption minifilament. These observations show that flux cancelation is usually the trigger of quiet-region coronal jet eruptions.

  19. In situ measurements of the plasma bulk velocity near the Io flux tube

    NASA Technical Reports Server (NTRS)

    Barnett, A.

    1985-01-01

    The flow around the Io flux tube was studied by analyzing the eleven spectra taken by the Voyager 1 Plasma Science (PLS) experiment in its vicinity. The bulk plasma parameters were determined using a procedure that uses the full response function of the instrument and the data in all four PLS sensors. The mass density of the plasma in the vicinity of Io is found to be 22,500 + or - 2,500 amu/cu cm and its electron density is found to be 1500 + or - 200/cu cm. The Alfven speed was determined using three independent methods; the values obtained are consistent and taken together yield V sub A = 300 + or - 50 km/sec, corresponding to an Alfven Mach number of 0.19 + or - 0.02. For the flow pattern, good agreement was found with the model of Neubauer (1980), and it was concluded that the plasma flows around the flux tube with a pattern similar to the flow of an incompressible fluid around a long cylinder obstacle of radius 1.26 + or - 0.1 R sub Io.

  20. Simulation study of solar plasma eruptions caused by interactions between emerging flux and coronal arcade fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Takafumi; Yokoyama, Takaaki, E-mail: kaneko@eps.s.u-tokyo.ac.jp

    2014-11-20

    We investigate the triggering mechanisms of plasma eruptions in the solar atmosphere due to interactions between emerging flux and coronal arcade fields by using two-dimensional MHD simulations. We perform parameter surveys with respect to arcade field height, magnetic field strength, and emerging flux location. Our results show that two possible mechanisms exist, and which mechanism is dominant depends mostly on emerging flux location. One mechanism appears when the location of emerging flux is close to the polarity inversion line (PIL) of an arcade field. This mechanism requires reconnection between the emerging flux and the arcade field, as pointed out bymore » previous studies. The other mechanism appears when the location of emerging flux is around the edge of an arcade field. This mechanism does not require reconnection between the emerging flux and the arcade field but does demand reconnection in the arcade field above the PIL. Furthermore, we found that the eruptive condition for this mechanism can be represented by a simple formula.« less

  1. Numerical Study of the Cascading Energy Conversion of the Reconnecting Current Sheet in Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Ye, J.; Lin, J.; Raymond, J. C.; Shen, C.

    2017-12-01

    In this paper, we present a resistive magnetohydrodynamical study (2D) of the CME eruption based on the Lin & Forbes model (2000) regarding the cascading reconnection by a high-order Godunov scheme code, to better understand the physical mechanisms responsible for the internal structure of the current sheet (CS) and the high reconnection rate. The main improvements of this work include: 1) large enough spatial scale consistent with the stereo LASCO data that yields an observable current sheet 2) A realistic plasma environment (S&G, 1999) adopted rather than an isothermal atmosphere and higher resolution inside CS 3) The upper boundary condition set to be open. The simulation shows a typical acceleration below 2 R⊙, then its speed slightly fluctuated, and the flux rope velocity is estimated to be 100 km/s-250 km/s for a slow CME. The reconnection rates are around 0.02 estimated from inflow and outflow velocities. The dynamic features show a great consistence with the LASCO observations. Looking into the fine structure of CS, magnetic reconnection initializes with a Sweet-Parker stage, and undergoes the time-dependent Petschek/fractural patterns. While the CME continues climbing up, the outflow region becomes turbulent which enhances the reconnection rates furthermore. The local reconnection rates present a simple linear dependence with the length-width ratio of multiple small-scale CSs. The principal X-point is close to the Sun's surface during the entire eruption, causing the energy partition to be unequal. Energy conversion in the vicinity of the principal X-point has also been addressed by simply employing energy equations. And we demonstrate that the dominant energy transfer consists of a conversion of the incoming Poynting flux to enthalpy flux in the sunward direction and bulk kinetic energy in the CME direction. The spectrum of magnetic energy doesn't follow a simple power law after secondary islands appear, and the spectrum index varies from 1.5 to 2

  2. MAGNETOHYDRODYNAMIC SIMULATION OF THE X2.2 SOLAR FLARE ON 2011 FEBRUARY 15. II. DYNAMICS CONNECTING THE SOLAR FLARE AND THE CORONAL MASS EJECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, S.; Magara, T.; Choe, G. S.

    2015-04-20

    We clarify a relationship between the dynamics of a solar flare and a growing coronal mass ejection (CME) by investigating the dynamics of magnetic fields during the X2.2-class flare taking place in the solar active region 11158 on 2011 February 15, based on simulation results obtained from Inoue et al. We found that the strongly twisted lines formed through tether-cutting reconnection in the twisted lines of a nonlinear force-free field can break the force balance within the magnetic field, resulting in their launch from the solar surface. We further discover that a large-scale flux tube is formed during the eruptionmore » as a result of the tether-cutting reconnection between the eruptive strongly twisted lines and these ambient weakly twisted lines. The newly formed large flux tube exceeds the critical height of the torus instability. Tether-cutting reconnection thus plays an important role in the triggering of a CME. Furthermore, we found that the tangential fields at the solar surface illustrate different phases in the formation of the flux tube and its ascending phase over the threshold of the torus instability. We will discuss these dynamics in detail.« less

  3. Mapping Ion and Electron Remagnetization Distance in the Reconnection Outflow Exhaust Region with MMS

    NASA Astrophysics Data System (ADS)

    Sturner, A. P.; Eriksson, S.; Gershman, D. J.; Plaschke, F.; Burch, J.

    2017-12-01

    Magnetopause current sheets have been fertile ground for understanding kinetic-scale physics of magnetic reconnection, but can also be used to study more macroscopic scale phenomena statistically. Post-reconnection, magnetic flux and plasma are accelerated away from the x-line into exhaust regions. As the exhausting plasma exits the electron diffusion region, electrons become remagnetized and are accelerated by the magnetic field into an E x B jet while the ions remain unmagnetized. Further along the exhaust, at the edge of the ion diffusion region, the ions become frozen into the magnetic field, and are accelerated to join the electrons in the exhaust jet. By assuming a constant reconnection rate of 0.1, we can infer the distance to the x-line from the normal width of the exhaust. We present a statistical study using the Magnetospheric Multiscale Mission (MMS) to map out the electron and ion remagnetization distances that define the edge of the electron and ion diffusion regions for magnetopause reconnection, and explore the effects of a guide magnetic field.

  4. Plasma dynamics on current-carrying magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Swift, Daniel W.

    1992-01-01

    A 1D numerical simulation is used to investigate the evolution of a plasma in a current-carrying magnetic flux tube of variable cross section. A large potential difference, parallel to the magnetic field, is applied across the domain. The result is that density minimum tends to deepen, primarily in the cathode end, and the entire potential drop becomes concentrated across the region of density minimum. The evolution of the simulation shows some sensitivity to particle boundary conditions, but the simulations inevitably evolve into a final state with a nearly stationary double layer near the cathode end. The simulation results are at sufficient variance with observations that it appears unlikely that auroral electrons can be explained by a simple process of acceleration through a field-aligned potential drop.

  5. Perspectives on magnetic reconnection

    PubMed Central

    Yamada, Masaaki

    2016-01-01

    Magnetic reconnection is a topological rearrangement of magnetic field that occurs on time scales much faster than the global magnetic diffusion time. Since the field lines break on microscopic scales but energy is stored and the field is driven on macroscopic scales, reconnection is an inherently multi-scale process that often involves both magnetohydrodynamic (MHD) and kinetic phenomena. In this article, we begin with the MHD point of view and then describe the dynamics and energetics of reconnection using a two-fluid formulation. We also focus on the respective roles of global and local processes and how they are coupled. We conclude that the triggers for reconnection are mostly global, that the key energy conversion and dissipation processes are either local or global, and that the presence of a continuum of scales coupled from microscopic to macroscopic may be the most likely path to fast reconnection. PMID:28119547

  6. Chromospheric polarimetry through multiline observations of the 850-nm spectral region - II. A magnetic flux tube scenario

    NASA Astrophysics Data System (ADS)

    Quintero Noda, C.; Kato, Y.; Katsukawa, Y.; Oba, T.; de la Cruz Rodríguez, J.; Carlsson, M.; Shimizu, T.; Orozco Suárez, D.; Ruiz Cobo, B.; Kubo, M.; Anan, T.; Ichimoto, K.; Suematsu, Y.

    2017-11-01

    In this publication, we continue the work started in Quintero Noda et al., examining this time a numerical simulation of a magnetic flux tube concentration. Our goal is to study if the physical phenomena that take place in it, in particular, the magnetic pumping, leaves a specific imprint on the examined spectral lines. We find that the profiles from the interior of the flux tube are periodically doppler shifted following an oscillation pattern that is also reflected in the amplitude of the circular polarization signals. In addition, we analyse the properties of the Stokes profiles at the edges of the flux tube discovering the presence of linear polarization signals for the Ca II lines, although they are weak with an amplitude around 0.5 per cent of the continuum intensity. Finally, we compute the response functions to perturbations in the longitudinal field, and we estimate the field strength using the weak-field approximation. Our results indicate that the height of formation of the spectral lines changes during the magnetic pumping process, which makes the interpretation of the inferred magnetic field strength and its evolution more difficult. These results complement those from previous works, demonstrating the capabilities and limitations of the 850-nm spectrum for chromospheric Zeeman polarimetry in a very dynamic and complex atmosphere.

  7. Statistical Properties of Ribbon Evolution and Reconnection Electric Fields in Eruptive and Confined Flares.

    PubMed

    Hinterreiter, J; Veronig, A M; Thalmann, J K; Tschernitz, J; Pötzi, W

    2018-01-01

    A statistical study of the chromospheric ribbon evolution in H[Formula: see text] two-ribbon flares was performed. The data set consists of 50 confined (62%) and eruptive (38%) flares that occurred from June 2000 to June 2015. The flares were selected homogeneously over the H[Formula: see text] and Geostationary Operational Environmental Satellite (GOES) classes, with an emphasis on including powerful confined flares and weak eruptive flares. H[Formula: see text] filtergrams from the Kanzelhöhe Observatory in combination with Michelson Doppler Imager (MDI) and Helioseismic and Magnetic Imager (HMI) magnetograms were used to derive the ribbon separation, the ribbon-separation velocity, the magnetic-field strength, and the reconnection electric field. We find that eruptive flares reveal statistically larger ribbon separation and higher ribbon-separation velocities than confined flares. In addition, the ribbon separation of eruptive flares correlates with the GOES SXR flux, whereas no clear dependence was found for confined flares. The maximum ribbon-separation velocity is not correlated with the GOES flux, but eruptive flares reveal on average a higher ribbon-separation velocity (by ≈ 10 km s -1 ). The local reconnection electric field of confined ([Formula: see text]) and eruptive ([Formula: see text]) flares correlates with the GOES flux, indicating that more powerful flares involve stronger reconnection electric fields. In addition, eruptive flares with higher electric-field strengths tend to be accompanied by faster coronal mass ejections. The online version of this article (10.1007/s11207-018-1253-1) contains supplementary material, which is available to authorized users.

  8. Coronal and Heliospheric Impacts of Reconnection-driven Coronal-Hole Jets, and Implications for Plume Formation

    NASA Astrophysics Data System (ADS)

    Karpen, J. T.; DeVore, C. R.; Antiochos, S. K.

    2016-12-01

    Jets from coronal holes on the Sun have been observed for decades, but the physical mechanism responsible for these events is still debated. An important clue about their origin lies in their association with small intrusions of minority polarity within the large-scale open magnetic field, strongly suggesting that these jets are powered by interchange reconnection between embedded bipoles (closed flux) and the surrounding open flux (Antiochos 1996). Through computational investigations of this embedded-bipole paradigm, we have demonstrated that energetic, collimated, Alfvénic flows can be driven by explosive reconnection between twisted closed flux of the minority polarity and the unstressed external field (e.g., Pariat et al. 2009, 2010, 2015, 2016). Our recent numerical study (Karpen et al. 2016) explored the dynamics and energetics of this process under the more realistic conditions of spherical geometry, solar gravity, and an isothermal solar wind out to 9 Rsun. We present results of an extension of this simulation to 30 Rsun, which allows us to predict observable signatures within the orbit of Solar Probe Plus (see Roberts et al. 2016, this meeting). Coronal-hole jets also have been implicated in the formation and maintenance of plumes (e.g., Raouafi & Stenborg 2014), but the physical relationship between the transient, narrow jets and the diffuse, longer-lived plumes is far from understood. To address this question, we analyze the mass density enhancements and fluctuations from the Sun to the inner heliosphere, driven by both slow and explosive reconnection in the embedded-bipole scenario and the associated nonlinear Alfvén wave. Our preliminary results indicate that a substantial ( 20%) density increase over background appears at the moving location of the wave front as far as 12 Rsun. We present the full spatial extent and temporal evolution of mass and momentum after reconnection onset, as well as synthetic coronagraph images of the perturbed corona and

  9. Internal and External reconnection in a Series of Homologous Solar Flares

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Using data from the Extreme Ultraviolet Telescope (EIT) on SOHO and the Soft X-ray Telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in NOAA AR 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X-rays. In EIT, each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approximately 20 km/s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the. time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions, but modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a CME. External reconnection, first occurring between the escaping CME and the coronal hole field, and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions [Antiochos, 1998], although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively, are released primarily by the internal reconnection.

  10. Forced Convection Boiling and Critical Heat Flux of Ethanol in Electrically Heated Tube Tests

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Linne, Diane L.; Rousar, Donald C.

    1998-01-01

    Electrically heated tube tests were conducted to characterize the critical heat flux (transition from nucleate to film boiling) of subcritical ethanol flowing at conditions relevant to the design of a regeneratively cooled rocket engine thrust chamber. The coolant was SDA-3C alcohol (95% ethyl alcohol, 5% isopropyl alcohol by weight), and tests were conducted over the following ranges of conditions: pressure from 144 to 703 psia, flow velocities from 9.7 to 77 ft/s, coolant subcooling from 33 to 362 F, and critical heat fluxes up to 8.7 BTU/in(exp 2)/sec. For the data taken near 200 psia, critical heat flux was correlated as a function of the product of velocity and fluid subcooling to within +/- 20%. For data taken at higher pressures, an additional pressure term is needed to correlate the critical heat flux. It was also shown that at the higher test pressures and/or flow rates, exceeding the critical heat flux did not result in wall burnout. This result may significantly increase the engine heat flux design envelope for higher pressure conditions.

  11. SLIPPING MAGNETIC RECONNECTION, CHROMOSPHERIC EVAPORATION, IMPLOSION, AND PRECURSORS IN THE 2014 SEPTEMBER 10 X1.6-CLASS SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudík, Jaroslav; Karlický, Marian; Dzifčáková, Elena

    2016-05-20

    We investigate the occurrence of slipping magnetic reconnection, chromospheric evaporation, and coronal loop dynamics in the 2014 September 10 X-class flare. Slipping reconnection is found to be present throughout the flare from its early phase. Flare loops are seen to slip in opposite directions toward both ends of the ribbons. Velocities of 20–40 km s{sup −1} are found within time windows where the slipping is well resolved. The warm coronal loops exhibit expanding and contracting motions that are interpreted as displacements due to the growing flux rope that subsequently erupts. This flux rope existed and erupted before the onset ofmore » apparent coronal implosion. This indicates that the energy release proceeds by slipping reconnection and not via coronal implosion. The slipping reconnection leads to changes in the geometry of the observed structures at the Interface Region Imaging Spectrograph slit position, from flare loop top to the footpoints in the ribbons. This results in variations of the observed velocities of chromospheric evaporation in the early flare phase. Finally, it is found that the precursor signatures, including localized EUV brightenings as well as nonthermal X-ray emission, are signatures of the flare itself, progressing from the early phase toward the impulsive phase, with the tether-cutting being provided by the slipping reconnection. The dynamics of both the flare and outlying coronal loops is found to be consistent with the predictions of the standard solar flare model in three dimensions.« less

  12. Perspectives on magnetic reconnection

    DOE PAGES

    Zweibel, Ellen G.; Yamada, Masaaki

    2016-12-07

    Magnetic reconnection is a topological rearrangement of magnetic field that occurs on time scales much faster than the global magnetic diffusion time. Since the field lines break on microscopic scales but energy is stored and the field is driven on macroscopic scales, reconnection is an inherently multi-scale process that often involves both magnetohydrodynamic (MHD) and kinetic phenomena. In this article, we begin with the MHD point of view and then describe the dynamics and energetics of reconnection using a two-fluid formulation. We also focus on the respective roles of global and local processes and how they are coupled. Here, wemore » conclude that the triggers for reconnection are mostly global, that the key energy conversion and dissipation processes are either local or global, and that the presence of a continuum of scales coupled from microscopic to macroscopic may be the most likely path to fast reconnection.« less

  13. Length and time for development of laminar flow in tubes following a step increase of volume flux

    NASA Astrophysics Data System (ADS)

    Chaudhury, Rafeed A.; Herrmann, Marcus; Frakes, David H.; Adrian, Ronald J.

    2015-01-01

    Laminar flows starting up from rest in round tubes are relevant to numerous industrial and biomedical applications. The two most common types are flows driven by an abruptly imposed constant pressure gradient or by an abruptly imposed constant volume flux. Analytical solutions are available for transient, fully developed flows, wherein streamwise development over the entrance length is absent (Szymanski in J de Mathématiques Pures et Appliquées 11:67-107, 1932; Andersson and Tiseth in Chem Eng Commun 112(1):121-133, 1992, respectively). They represent the transient responses of flows in tubes that are very long compared with the entrance length, a condition that is seldom satisfied in biomedical tube networks. This study establishes the entrance (development) length and development time of starting laminar flow in a round tube of finite length driven by a piston pump that produces a step change from zero flow to a constant volume flux for Reynolds numbers between 500 and 3,000. The flows are examined experimentally, using stereographic particle image velocimetry and computationally using computational fluid dynamics, and are then compared with the known analytical solutions for fully developed flow conditions in infinitely long tubes. Results show that step function volume flux start-up flows reach steady state and fully developed flow five times more quickly than those driven by a step function pressure gradient, a 500 % change when compared with existing estimates. Based on these results, we present new, simple guidelines for achieving experimental flows that are fully developed in space and time in realistic (finite) tube geometries. To a first approximation, the time to achieve steady spatially developing flow is nearly equal to the time needed to achieve steady, fully developed flow. Conversely, the entrance length needed to achieve fully developed transient flow is approximately equal to the length needed to achieve fully developed steady flow. Beyond this

  14. Role of Magnetic Diffusion Induced by Turbulent Magnetic Reconnection for Star Formation

    NASA Astrophysics Data System (ADS)

    Lazarian, Alex; Santos de Lima, R.; de Gouveia Dal Pino, E.

    2010-01-01

    The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology or reconnect in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in the computer simulations and turbulent astrophysical environments is similar, as far as the magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our study of magnetic field diffusion reveals important propertie s of the process. First of all, our 3D MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a decorrelation of the magnetic field and density, which corresponds well to the observations of the interstellar media. In the presence of gravity, our 3D simulations show the decrease of the flux to mass ratio with density concentration when turbulence is present. We observe this effect both in the situations when we start with the equilibrium distributions of gas and magnetic field and when we start with collapsing dynamically unstable configurations. Thus the process of turbulent magnetic field removal should be applicable both to quasistatic subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and flux in the saturated final state of simulations, supporting the notion that turbulent diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. At the same time, turbulence of high level may get the system unbound making the flux to mass ratio more uniform through the simulation box.

  15. Reconnection Scaling Experiment (RSX): Magnetic Reconnection in Linear Geometry

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Sovinec, C.; Begay, D.; Wurden, G.; Furno, I.; Werley, C.; Fisher, M.; Vermare, L.; Fienup, W.

    2001-10-01

    The linear Reconnection Scaling Experiment (RSX) at LANL is a new experiment that can create MHD relevant plasmas to look at the physics of magnetic reconnection. This experiment can scale many relevant parameters because the guns that generate the plasma and current channels do not depend on equilibrium or force balance for startup. We describe the experiment and initial electrostatic and magnetic probe data. Two parallel current channels sweep down a long plasma column and probe data accumulated over many shots gives 3D movies of magnetic reconnection. Our first data tries to define an operating regime free from kink instabilities that might otherwise confuse the data and shot repeatability. We compare this with MHD 2 fluid NIMROD simulations of the single current channel kink stability boundary for a variety of experimental conditions.

  16. Flux rope evolution in interplanetary coronal mass ejections: the 13 May 2005 event

    NASA Astrophysics Data System (ADS)

    Manchester, W. B., IV; van der Holst, B.; Lavraud, B.

    2014-06-01

    Coronal mass ejections (CMEs) are a dramatic manifestation of solar activity that release vast amounts of plasma into the heliosphere, and have many effects on the interplanetary medium and on planetary atmospheres, and are the major driver of space weather. CMEs occur with the formation and expulsion of large-scale magnetic flux ropes from the solar corona, which are routinely observed in interplanetary space. Simulating and predicting the structure and dynamics of these interplanetary CME magnetic fields are essential to the progress of heliospheric science and space weather prediction. We discuss the simulation of the 13 May 2005 CME event in which we follow the propagation of a flux rope from the solar corona to beyond Earth orbit. In simulating this event, we find that the magnetic flux rope reconnects with the interplanetary magnetic field, to evolve to an open configuration and later reconnects to reform a twisted structure sunward of the original rope. Observations of the 13 May 2005 CME magnetic field near Earth suggest that such a rearrangement of magnetic flux by reconnection may have occurred.

  17. Dynamic Instability Leading to Increased Interchange Reconnection Rates

    NASA Astrophysics Data System (ADS)

    Edmondson, J. K.; Antiochos, S. K.; Zurbuchen, T. H.

    2008-12-01

    Interchange reconnection is widely believed to play an important role in coronal magnetic field dynamics. In this investigation we investigate the 3D dynamics of interchange reconnection by extending the concept of a magnetic null-point to a null-volume, the so-called "acute-cusp field" configuration. The acute-cusp field geometry is characterized by high-beta plasma confined with favorable curvature, surrounded by a low-beta environment. First, we construct an initial translationally-symmetric potential field configuration. This configuration contains the required topological characteristics of four separate flux systems in the perpendicular plane. We then drive the system by a slow, incompressible, uniform flow at the boundary. The resulting evolution is calculated by solving numerically the MHD equations in full 3D Cartesian coordinates using the Adaptively Refined MHD Solver developed at the U.S. Naval Research Laboratory. Field shearing along the topological boundaries changes the shape of the acute-cusp field surface separating the high and low plasma beta regions. An extended, 2D current sheet is generated by the photospheric driving. We discuss the effect of 3D perturbations on the current sheet dynamics and on the rate of the resulting interchange reconnection. Finally, we discuss the implications of our simulations for coronal observations. This work has been supported, in part, by the NASA HTP and SR&T programs.

  18. Prediction of forced convective heat transfer and critical heat flux for subcooled water flowing in miniature tubes

    NASA Astrophysics Data System (ADS)

    Shibahara, Makoto; Fukuda, Katsuya; Liu, Qiusheng; Hata, Koichi

    2018-02-01

    The heat transfer characteristics of forced convection for subcooled water in small tubes were clarified using the commercial computational fluid dynamic (CFD) code, PHENICS ver. 2013. The analytical model consists of a platinum tube (the heated section) and a stainless tube (the non-heated section). Since the platinum tube was heated by direct current in the authors' previous experiments, a uniform heat flux with the exponential function was given as a boundary condition in the numerical simulation. Two inner diameters of the tubes were considered: 1.0 and 2.0 mm. The upward flow velocities ranged from 2 to 16 m/s and the inlet temperature ranged from 298 to 343 K. The numerical results showed that the difference between the surface temperature and the bulk temperature was in good agreement with the experimental data at each heat flux. The numerical model was extended to the liquid sublayer analysis for the CHF prediction and was evaluated by comparing its results with the experimental data. It was postulated that the CHF occurs when the fluid temperature near the heated wall exceeds the saturated temperature, based on Celata et al.'s superheated layer vapor replenishment (SLVR) model. The suggested prediction method was in good agreement with the experimental data and with other CHF data in literature within ±25%.

  19. Structure of Exhausts in Magnetic Reconnection with an X-line of Finite Extent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepherd, L. S.; Cassak, P. A.; Drake, J. F.

    2017-10-20

    We present quantitative predictions of the structure of reconnection exhausts in three-dimensional magnetic reconnection with an X-line of finite extent in the out-of-plane direction. Sasunov et al. showed that they have a tilted ribbon-like shape bounded by rotational discontinuities and tangential discontinuities. We show analytically and numerically that this prediction is largely correct. When there is an out-of-plane (guide) magnetic field, the presence of the upstream field that does not reconnect acts as a boundary condition in the normal direction, which forces the normal magnetic field to be zero outside the exhaust. This condition constrains the normal magnetic field insidemore » the exhaust to be small. Thus, rather than the ribbon tilting in the inflow direction, the exhaust remains collimated in the normal direction and is forced to expand nearly completely in the out-of-plane direction. This exhaust structure is in stark contrast to the two-dimensional picture of reconnection, where reconnected flux expands in the normal direction. We present analytical predictions for the structure of the exhausts in terms of upstream conditions. The predictions are confirmed using three-dimensional resistive-magnetohydrodynamic simulations with a finite-length X-line achieved using a localized (anomalous) resistivity. Implications to reconnection in the solar wind are discussed. In particular, the results can be used to estimate a lower bound for the extent of the X-line in the out-of-plane direction solely using single-spacecraft data taken downstream in the exhausts.« less

  20. Nonlinear waves and instabilities leading to secondary reconnection in reconnection outflows

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Pucci, Francesco; Olshevsky, Vyacheslav; Servidio, Sergio; Sorriso-Valvo, Luca; Newman, David L.; Goldman, Martin V.

    2018-02-01

    Reconnection outflows have been under intense recent scrutiny, from in situ observations and from simulations. These regions are host to a variety of instabilities and intense energy exchanges, often even superior to the main reconnection site. We report here a number of results drawn from an investigation of simulations. First, the outflows are observed to become unstable to drift instabilities. Second, these instabilities lead to the formation of secondary reconnection sites. Third, the secondary processes are responsible for large energy exchanges and particle energization. Finally, the particle distribution function are modified to become non-Maxwellian and include multiple interpenetrating populations.

  1. Particle distributions in collisionless magnetic reconnection: An implicit Particle-In-Cell (PIC) description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, D.W.; Francis, G.E.; Max, C.E.

    1990-06-29

    Evidence from magnetospheric and solar flare research supports the belief that collisionless magnetic reconnection can proceed on the Alfven-wave crossing timescale. Reconnection behavior that occurs this rapidly in collisionless plasmas is not well understood because underlying mechanisms depend on the details of the ion and electron distributions in the vicinity of the emerging X-points. We use the direct implicit Particle-In-Cell (PIC) code AVANTI to study the details of these distributions as they evolve in the self-consistent E and B fields of magnetic reconnection. We first consider a simple neutral sheet model. We observe rapid movement of the current-carrying electrons awaymore » from the emerging X-point. Later in time an oscillation of the trapped magnetic flux is found, superimposed upon continued linear growth due to plasma inflow at the ion sound speed. The addition of a current-aligned and a normal B field widen the scope of our studies.« less

  2. Toward laboratory torsional spine magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Chesny, David L.; Orange, N. Brice; Oluseyi, Hakeem M.; Valletta, David R.

    2017-12-01

    Magnetic reconnection is a fundamental energy conversion mechanism in nature. Major attempts to study this process in controlled settings on Earth have largely been limited to reproducing approximately two-dimensional (2-D) reconnection dynamics. Other experiments describing reconnection near three-dimensional null points are non-driven, and do not induce any of the 3-D modes of spine fan, torsional fan or torsional spine reconnection. In order to study these important 3-D modes observed in astrophysical plasmas (e.g. the solar atmosphere), laboratory set-ups must be designed to induce driven reconnection about an isolated magnetic null point. As such, we consider the limited range of fundamental resistive magnetohydrodynamic (MHD) and kinetic parameters of dynamic laboratory plasmas that are necessary to induce the torsional spine reconnection (TSR) mode characterized by a driven rotational slippage of field lines - a feature that has yet to be achieved in operational laboratory magnetic reconnection experiments. Leveraging existing reconnection models, we show that within a 3$ apparatus, TSR can be achieved in dense plasma regimes ( 24~\\text{m}-3$ ) in magnetic fields of -1~\\text{T}$ . We find that MHD and kinetic parameters predict reconnection in thin current sheets on time scales of . While these plasma regimes may not explicitly replicate the plasma parameters of observed astrophysical phenomena, studying the dynamics of the TSR mode within achievable set-ups signifies an important step in understanding the fundamentals of driven 3-D magnetic reconnection and the self-organization of current sheets. Explicit control of this reconnection mode may have implications for understanding particle acceleration in astrophysical environments, and may even have practical applications to fields such as spacecraft propulsion.

  3. High fidelity kinetic modeling of magnetic reconnection in laboratory plasma

    NASA Astrophysics Data System (ADS)

    Stanier, A.; Daughton, W. S.

    2017-12-01

    Over the past decade, a great deal of progress has been made towards understanding the physics of magnetic reconnection in weakly collisional regimes of relevance to both fusion devices, and to space and astrophysical plasmas. However, there remain some outstanding unsolved problems in reconnection physics, such as the generation and influence of plasmoids (flux ropes) within reconnection layers, the development of magnetic turbulence, the role of current driven and streaming instabilities, and the influence of electron pressure anisotropy on the layer structure. Due to the importance of these questions, new laboratory reconnection experiments are being built to allow controlled and reproducible study of such questions with the simultaneous acquisition of high time resolution measurements at a large number of spatial points. These experiments include the FLARE facility at Princeton University and the T-REX experiment at the University of Wisconsin. To guide and interpret these new experiments, and to extrapolate the results to space applications, new investments in kinetic modeling tools are required. We have recently developed a cylindrical version of the VPIC Particle-In-Cell code with the capability to perform first-principles kinetic simulations that approach experimental device size with more realistic geometry and drive coils. This cylindrical version inherits much of the optimization work that has been done recently for the next generation many-cores architectures with wider vector registers, and achieves comparable conservation properties as the Cartesian code. Namely it features exact discrete charge conservation, and a so-called "energy-conserving" scheme where the energy is conserved in the limit of continuous time, i.e. without contribution from spatial discretization (Lewis, 1970). We will present initial results of modeling magnetic reconnection in the experiments mentioned above. Since the VPIC code is open source (https

  4. In-situ observations of flux ropes formed in association with a pair of spiral nulls in magnetotail plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Ruilong; Xie, Lun; He, Jiansen

    Signatures of secondary islands are frequently observed in the magnetic reconnection regions of magnetotail plasmas. In this paper, magnetic structures with the secondary-island signatures observed by Cluster are reassembled by a fitting-reconstruction method. The results show three-dimensionally that a secondary island event can manifest the flux rope formed with an A{sub s}-type null and a B{sub s}-type null paired via their spines. We call this A{sub s}-spine-B{sub s}-like configuration the helically wrapped spine model. The reconstructed field lines wrap around the spine to form the flux rope, and an O-type topology is therefore seen on the plane perpendicular to themore » spine. Magnetized electrons are found to rotate on and cross the fan surface, suggesting that both the torsional-spine and the spine-fan reconnection take place in the configuration. Furthermore, detailed analysis implies that the spiral nulls and flux ropes were locally generated nearby the spacecraft in the reconnection outflow region, indicating that secondary reconnection may occur in the exhaust away from the primary reconnection site.« less

  5. Dynamic balance in turbulent reconnection

    NASA Astrophysics Data System (ADS)

    Yokoi, N.; Higashimori, K.; Hoshino, M.

    2012-12-01

    Dynamic balance between the enhancement and suppression of transports due to turbulence in magnetic reconnection is discussed analytically and numerically by considering the interaction of the large-scale field structures with the small-scale turbulence in a consistent manner. Turbulence is expected to play an important role in bridging small and large scales related to magnetic reconnection. The configurations of the mean-field structure are determined by turbulence through the effective transport. At the same time, statistical properties of turbulence are determined by the mean-field structure through the production mechanisms of turbulence. This suggests that turbulence and mean fields should be considered simultaneously in a self-consistent manner. Following the theoretical prediction on the interaction between the mean-fields and turbulence in magnetic reconnection presented by Yokoi and Hoshino (2011), a self-consistent model for the turbulent reconnection is constructed. In the model, the mean-field equations for compressible magnetohydrodynamics are treated with the turbulence effects incorporated through the turbulence correlation such as the Reynolds stress and turbulent electromotive force. Transport coefficients appearing in the expression for these correlations are not adjustable parameters but are determined through the transport equations of the turbulent statistical quantities such as the turbulent MHD energy, the turbulent cross helicity. One of the prominent features of this reconnection model lies in the point that turbulence is not implemented as a prescribed one, but the generation and sustainment of turbulence through the mean-field inhomogeneities are treated. The theoretical predictions are confirmed by the numerical simulation of the model equations. These predictions include the quadrupole cross helicity distribution around the reconnection region, enhancement of reconnection rate due to turbulence, localization of the reconnection region

  6. On the Role of Interchange Reconnection in the Generation of the Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    Edmondson, J. K.

    2012-11-01

    The heating of the solar corona and therefore the generation of the solar wind, remain an active area of solar and heliophysics research. Several decades of in situ solar wind plasma observations have revealed a rich bimodal solar wind structure, well correlated with coronal magnetic field activity. Therefore, the reconnection processes associated with the large-scale dynamics of the corona likely play a major role in the generation of the slow solar wind flow regime. In order to elucidate the relationship between reconnection-driven coronal magnetic field structure and dynamics and the generation of the slow solar wind, this paper reviews the observations and phenomenology of the solar wind and coronal magnetic field structure. The geometry and topology of nested flux systems, and the (interchange) reconnection process, in the context of coronal physics is then explained. Once these foundations are laid out, the paper summarizes several fully dynamic, 3D MHD calculations of the global coronal system. Finally, the results of these calculations justify a number of important implications and conclusions on the role of reconnection in the structural dynamics of the coronal magnetic field and the generation of the solar wind.

  7. Sabots, Obturator and Gas-In-Launch Tube Techniques for Heat Flux Models in Ballistic Ranges

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Wilder, Michael C.

    2013-01-01

    For thermal protection system (heat shield) design for space vehicle entry into earth and other planetary atmospheres, it is essential to know the augmentation of the heat flux due to vehicle surface roughness. At the NASA Ames Hypervelocity Free Flight Aerodynamic Facility (HFFAF) ballistic range, a campaign of heat flux studies on rough models, using infrared camera techniques, has been initiated. Several phenomena can interfere with obtaining good heat flux data when using this measuring technique. These include leakage of the hot drive gas in the gun barrel through joints in the sabot (model carrier) to create spurious thermal imprints on the model forebody, deposition of sabot material on the model forebody, thereby changing the thermal properties of the model surface and unknown in-barrel heating of the model. This report presents developments in launch techniques to greatly reduce or eliminate these problems. The techniques include the use of obturator cups behind the launch package, enclosed versus open front sabot designs and the use of hydrogen gas in the launch tube. Attention also had to be paid to the problem of the obturator drafting behind the model and impacting the model. Of the techniques presented, the obturator cups and hydrogen in the launch tube were successful when properly implemented

  8. TIME-DEPENDENT TURBULENT HEATING OF OPEN FLUX TUBES IN THE CHROMOSPHERE, CORONA, AND SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolsey, L. N.; Cranmer, S. R., E-mail: lwoolsey@cfa.harvard.edu

    We investigate several key questions of plasma heating in open-field regions of the corona that connect to the solar wind. We present results for a model of Alfvén-wave-driven turbulence for three typical open magnetic field structures: a polar coronal hole, an open flux tube neighboring an equatorial streamer, and an open flux tube near a strong-field active region. We compare time-steady, one-dimensional turbulent heating models against fully time-dependent three-dimensional reduced-magnetohydrodynamic modeling of BRAID. We find that the time-steady results agree well with time-averaged results from BRAID. The time dependence allows us to investigate the variability of the magnetic fluctuations andmore » of the heating in the corona. The high-frequency tail of the power spectrum of fluctuations forms a power law whose exponent varies with height, and we discuss the possible physical explanation for this behavior. The variability in the heating rate is bursty and nanoflare-like in nature, and we analyze the amount of energy lost via dissipative heating in transient events throughout the simulation. The average energy in these events is 10{sup 21.91} erg, within the “picoflare” range, and many events reach classical “nanoflare” energies. We also estimated the multithermal distribution of temperatures that would result from the heating-rate variability, and found good agreement with observed widths of coronal differential emission measure distributions. The results of the modeling presented in this paper provide compelling evidence that turbulent heating in the solar atmosphere by Alfvén waves accelerates the solar wind in open flux tubes.« less

  9. On the Support of Solar Prominence Material by the Dips of a Coronal Flux Tube

    NASA Astrophysics Data System (ADS)

    Hillier, Andrew; van Ballegooijen, Adriaan

    2013-04-01

    The dense prominence material is believed to be supported against gravity through the magnetic tension of dipped coronal magnetic field. For quiescent prominences, which exhibit many gravity-driven flows, hydrodynamic forces are likely to play an important role in the determination of both the large- and small-scale magnetic field distributions. In this study, we present the first steps toward creating a three-dimensional magneto-hydrostatic prominence model where the prominence is formed in the dips of a coronal flux tube. Here 2.5D equilibria are created by adding mass to an initially force-free magnetic field, then performing a secondary magnetohydrodynamic relaxation. Two inverse polarity magnetic field configurations are studied in detail, a simple o-point configuration with a ratio of the horizontal field (Bx ) to the axial field (By ) of 1:2 and a more complex model that also has an x-point with a ratio of 1:11. The models show that support against gravity is either by total pressure or tension, with only tension support resembling observed quiescent prominences. The o-point of the coronal flux tube was pulled down by the prominence material, leading to compression of the magnetic field at the base of the prominence. Therefore, tension support comes from the small curvature of the compressed magnetic field at the bottom and the larger curvature of the stretched magnetic field at the top of the prominence. It was found that this method does not guarantee convergence to a prominence-like equilibrium in the case where an x-point exists below the prominence flux tube. The results imply that a plasma β of ~0.1 is necessary to support prominences through magnetic tension.

  10. Resonant behavior of MHD waves on magnetic flux tubes. IV - Total resonant absorption and MHD radiating eigenmodes

    NASA Technical Reports Server (NTRS)

    Goossens, Marcel; Hollweg, Joseph V.

    1993-01-01

    Resonant absorption of MHD waves on a nonuniform flux tube is investigated as a driven problem for a 1D cylindrical equilibrium. The variation of the fractional absorption is studied as a function of the frequency and its relation to the eigenvalue problem of the MHD radiating eigenmodes of the nonuniform flux tube is established. The optimal frequencies producing maximal fractional absorption are determined and the condition for total absorption is obtained. This condition defines an impedance matching and is fulfilled for an equilibrium that is fine tuned with respect to the incoming wave. The variation of the spatial wave solutions with respect to the frequency is explained as due to the variation of the real and imaginary parts of the dispersion relation of the MHD radiating eigenmodes with respect to the real driving frequency.

  11. Vacuum Polarization by a Magnetic Flux Tube at Finite Temperature in the Cosmic String Space-Time

    NASA Astrophysics Data System (ADS)

    Spinelly, J.; Bezerra de Mello, E. R.

    In this paper, we analyze the effect produced by the temperature in the vacuum polarization associated with a charged massless scalar field in the presence of a magnetic flux tube in the cosmic string space-time. Three different configurations of magnetic fields are taken into account: (i) a homogeneous field inside the tube, (ii) a field proportional to 1/r, and (iii) a cylindrical shell with δ-function. In these three cases, the axis of the infinitely long tube of radius R coincides with the cosmic string. Because of the complexity of this analysis in the region inside the tube, we consider the thermal effect in the region outside. In order to develop this analysis, we construct the thermal Green function associated with this system for the three above-mentioned situations considering points in the region outside the tube. We explicitly calculate, in the high-temperature limit, the thermal average of the field square and the energy-momentum tensor.

  12. On the occurrence of magnetic reconnection equatorward of the cusps at the Earth's magnetopause during northward IMF conditions

    NASA Astrophysics Data System (ADS)

    Trattner, K. J.; Thresher, S.; Trenchi, L.; Fuselier, S. A.; Petrinec, S. M.; Peterson, W. K.; Marcucci, M. F.

    2017-01-01

    Magnetic reconnection changes the topology of magnetic field lines. This process is most readily observable with in situ instrumentation at the Earth's magnetopause as it creates open magnetic field lines to allow energy and momentum flux to flow from the solar wind to the magnetosphere. Most models use the direction of the interplanetary magnetic field (IMF) to determine the location of these magnetopause entry points, known as reconnection lines. Dayside locations of magnetic reconnection equatorward of the cusps are generally found during sustained intervals of southward IMF, while high-latitude region regions poleward of the cusps are observed for northward IMF conditions. In this study we discuss Double Star magnetopause crossings and a conjunction with a Polar cusp crossing during northward IMF conditions with a dominant IMF BY component. During all seven dayside magnetopause crossings, Double Star detected switching ion beams, a known signature for the presence of reconnection lines. In addition, Polar observed a cusp ion-energy dispersion profile typical for a dayside equatorial reconnection line. Using the cutoff velocities for the precipitating and mirrored ion beams in the cusp, the distance to the reconnection site is calculated, and this distance is traced back to the magnetopause, to the vicinity of the Double Star satellite locations. Our analysis shows that, for this case, the predicted line of maximum magnetic shear also coincides with that dayside reconnection location.

  13. Supersymmetric quantum mechanics of the flux tube

    NASA Astrophysics Data System (ADS)

    Belitsky, A. V.

    2016-12-01

    The Operator Product Expansion approach to scattering amplitudes in maximally supersymmetric gauge theory operates in terms of pentagon transitions for excitations propagating on a color flux tube. These obey a set of axioms which allow one to determine them to all orders in 't Hooft coupling and confront against explicit calculations. One of the simplifying features of the formalism is the factorizability of multiparticle transitions in terms of single-particle ones. In this paper we extend an earlier consideration of a sector populated by one kind of excitations to the case of a system with fermionic as well as bosonic degrees of freedom to address the origin of the factorization. While the purely bosonic case was analyzed within an integrable noncompact open-spin chain model, the current case is solved in the framework of a supersymmetric sl (2 | 1) magnet. We find the eigenfunctions for the multiparticle system making use of the R-matrix approach. Constructing resulting pentagon transitions, we prove their factorized form. The discussion corresponds to leading order of perturbation theory.

  14. Laboratory reconnection experiments

    NASA Astrophysics Data System (ADS)

    Grulke, Olaf

    Laboratory experiments dedicated for the study of magnetic reconnection have been contributed considerably to a more detailed understanding of the involved processes. Their strength is to disentangle parameter dependencies, to diagnose in detail the plasma and field response, and to form an excellent testbed for the validation of numerical simulations. In the present paper recent results obtained from the new cylindrical reconnection experiment VINETA II are presented. The experimental setup allows to independently vary plasma parameters, reconnection drive strength/timescale, and current sheet amplitude. Current research objectives focus on two major scientific issues: Guide field effects on magnetic reconnection and the evolution of electromagnetic fluctuations. The superimposed homogeneous magnetic guide field has a strong influence on the spatiotemporal evolution of the current sheet, predominantly due to magnetic pitch angle effects, which leads to a strong elongation of the sheet along the separatrices and results in axial gradients of the reconnection rates. Within the current sheet, incoherent electromagnetic fluctuations are observed. Their magnetic signature is characterized by a broad spectrum somewhat centered around the lower-hybrid frequency and extremely short spatial correlation lengths being typically smaller than the local ion sound radius. The fluctuation amplitude correlates with the local current density and, thus, for low guide fields, displays also axial gradients. Despite the quantitatively different parameter regime and geometry the basic fluctuation properties are in good agreement with studies conducted at the MRX experiment (PPPL).

  15. Magnetic islands produced by reconnection in large current layers: A statistical approach to modeling at global scales

    NASA Astrophysics Data System (ADS)

    Fermo, Raymond Luis Lachica

    2011-12-01

    Magnetic reconnection is a process responsible for the conversion of magnetic energy into plasma flows in laboratory, space, and astrophysical plasmas. A product of reconnection, magnetic islands have been observed in long current layers for various space plasmas, including the magnetopause, the magnetotail, and the solar corona. In this thesis, a statistical model is developed for the dynamics of magnetic islands in very large current layers, for which conventional plasma simulations prove inadequate. An island distribution function f characterizes islands by the flux they contain psi and the area they enclose A. An integro-differential evolution equation for f describes their creation at small scales, growth due to quasi-steady reconnection, convection along the current sheet, and their coalescence with one another. The steady-state solution of the evolution equation predicts a distribution of islands in which the signature of island merging is an asymmetry in psi-- r phase space. A Hall MHD (magnetohydrodynamic) simulation of a very long current sheet with large numbers of magnetic islands is used to explore their dynamics, specifically their growth via two distinct mechanisms: quasi-steady reconnection and merging. The results of the simulation enable validation of the statistical model and benchmarking of its parameters. A PIC (particle-in-cell) simulation investigates how secondary islands form in guide field reconnection, revealing that they are born at electron skin depth scales not as islands from the tearing instability but as vortices from a flow instability. A database of 1,098 flux transfer events (FTEs) observed by Cluster between 2001 and 2003 compares favorably with the model's predictions, and also suggests island merging plays a significant role in the magnetopause. Consequently, the magnetopause is likely populated by many FTEs too small to be recognized by spacecraft instrumentation. The results of this research suggest that a complete theory of

  16. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  17. Quantifying three dimensional reconnection in fragmented current layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyper, P. F., E-mail: peter.f.wyper@nasa.gov; Hesse, M., E-mail: michael.hesse-1@nasa.gov

    There is growing evidence that when magnetic reconnection occurs in high Lundquist number plasmas such as in the Solar Corona or the Earth's Magnetosphere it does so within a fragmented, rather than a smooth current layer. Within the extent of these fragmented current regions, the associated magnetic flux transfer and energy release occur simultaneously in many different places. This investigation focusses on how best to quantify the rate at which reconnection occurs in such layers. An analytical theory is developed which describes the manner in which new connections form within fragmented current layers in the absence of magnetic nulls. Itmore » is shown that the collective rate at which new connections form can be characterized by two measures; a total rate which measures the true rate at which new connections are formed and a net rate which measures the net change of connection associated with the largest value of the integral of E{sub ||} through all of the non-ideal regions. Two simple analytical models are presented which demonstrate how each should be applied and what they quantify.« less

  18. Accessing the Asymmetric Collisionless Reconnection Regime in the Terrestrial Reconnection Experiment (TREX)

    NASA Astrophysics Data System (ADS)

    Greess, S.; Egedal, J.; Olson, J.; Millet-Ayala, A.; Myers, R.; Wallace, J.; Clark, M.; Forest, C.

    2017-12-01

    Kinetic effects are expected to dominate the collisionless reconnection regime, where the mean free path is large enough that the anisotropic electron pressure can develop without being damped away by collisional pitch angle scattering. In simulations, the anisotropic pressure drives the formation of outflow jets [1]. These jets are expected to play a role in the reconnection layer at the Earth's magnetopause, which is currently being explored by Magnetospheric Multiscale Mission (MMS) [2]. Until recently, this regime of anisotropic pressure was inaccessible by laboratory experiments, but new data from the Terrestrial Reconnection Experiment (TREX) shows that fully collisionless reconnection can now be achieved in the laboratory. Future runs at TREX will delve deeper into this collisionless regime in both the antiparallel and guide-field cases. [1] Le, A. et al. JPP, 81(1). doi: 10.1017/S0022377814000907. [2] Burch, J. L. et al. Space Sci. Rev. 199,5. doi: 10.1007/s11214-015-0164-9 Supported in part by NSF/DOE award DE-SC0013032.

  19. Investigations of plasmoid reconnection in the presence of strong guide fields in CHI plasma start-up on HIST

    NASA Astrophysics Data System (ADS)

    Nagata, Masayoshi; Fujita, Akihiro; Ibragi, Youhei; Matsui, Takahiro; Kikuchi, Yusuke; Fukumoto, Naoyuki; Kanki, Takashi

    2017-10-01

    Plasmoid magnetic reconnections have been examined in the Coaxial Helicity Injection (CHI) experiments on HIST. Magnetic reconnections are required for the formation of closed flux surfaces in the transient-CHI start-up plasmas. So far, we have observed formation of plasmoids inside an elongated current layer to create the multiple X-points during the CHI process. According to the MHD simulation by F. Ebrahimi and R. Raman, the reconnection rate based on the plasmoid instability is faster than that by Sweet-Parker (S-P) model. To estimate the Lundquist number S number, we have measured spatial profiles of magnetic field strength, electron density and temperature in the current layer. In this meeting, we will present the effect of the guide (toroidal) magnetic field and mass (H, D and He) on the current layer thickness and reconnection rates of plasmoids. It is found that behavior of plasmoids is synchronized with Ion Doppler temperature, leading to ion heating.

  20. Multiple-Scale Physics During Magnetic Reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jara-Almonte, Jonathan

    Magnetic reconnection is a key fundamental process in magnetized plasmas wherein the global magnetic topology is modified and stored energy is transferred from fields to particles. Reconnection is an inherently local process, and mechanisms to couple global-scale dynamics are not well understood. This dissertation explores two different mechanisms for cross-scale coupling during magnetic reconnection. As one example, we theoretically examine reconnection in a collisionless plasma using particle-in-cell simulations and demonstrate that large scale reconnection physics can couple to and drive microscopic instabilities, even in two-dimensional systems if significant scale separation exists between the Debye length and the electron skin depth.more » The physics underlying these instabilities is explained using simple theoretical models, and their potential connection to existing discrepancies between laboratory experiments and numerical simulations is explored. In three-dimensional systems, these instabilities are shown to generate anomalous resistivity that balances a substantial fraction of the electric field. In contrast, we also use experiments to investigate cross-scale couplings during reconnection in a collisional plasma. A leading candidate for coupling global and local scales is the hierarchical breakdown of elongated, reconnecting current sheets into numerous smaller current sheets -– the plasmoid instability. In the Magnetic Reconnection Experiment (MRX), recent hardware improvements have extended the accessible parameter space allowing for the study of long-lived, elongated current sheets. Moreover, by using Argon, reproducible and collisional plasmas are produced, which allow for a detailed statistical study of collisional reconnection. As a result, we have conclusively measured the onset of sub-ion-scale plasmoids during resistive, anti-parallel reconnection for the first time. The current sheet thickness is intermediate between ion and electron

  1. Lava tube shatter rings and their correlation with lava flux increases at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Orr, T.R.

    2011-01-01

    Shatter rings are circular to elliptical volcanic features, typically tens of meters in diameter, which form over active lava tubes. They are typified by an upraised rim of blocky rubble and a central depression. Prior to this study, shatter rings had not been observed forming, and, thus, were interpreted in many ways. This paper describes the process of formation for shatter rings observed at Kīlauea Volcano during November 2005–July 2006. During this period, tilt data, time-lapse images, and field observations showed that episodic tilt changes at the nearby Pu‘u ‘Ō‘ō cone, the shallow magmatic source reservoir, were directly related to fluctuations in the level of lava in the active lava tube, with periods of deflation at Pu‘u ‘Ō‘ō correlating with increases in the level of the lava stream surface. Increases in lava level are interpreted as increases in lava flux, and were coincident with lava breakouts from shatter rings constructed over the lava tube. The repetitive behavior of the lava flux changes, inferred from the nearly continuous tilt oscillations, suggests that shatter rings form from the repeated rise and fall of a portion of a lava tube roof. The locations of shatter rings along the active lava tube suggest that they form where there is an abrupt decrease in flow velocity through the tube, e.g., large increase in tube width, abrupt decrease in tube slope, and (or) sudden change in tube direction. To conserve volume, this necessitates an abrupt increase in lava stream depth and causes over-pressurization of the tube. More than a hundred shatter rings have been identified on volcanoes on Hawai‘i and Maui, and dozens have been reported from basaltic lava fields in Iceland, Australia, Italy, Samoa, and the mainland United States. A quick study of other basaltic lava fields worldwide, using freely available satellite imagery, suggests that they might be even more common than previously thought. If so, this confirms that episodic

  2. The Plasmaspheric Plume and Magnetopause Reconnection

    NASA Technical Reports Server (NTRS)

    Walsh, B. M.; Phan, T. D.; Sibeck, D. G.; Souza, V. M.

    2014-01-01

    We present near-simultaneous measurements from two THEMIS spacecraft at the dayside magnetopause with a 1.5 h separation in local time. One spacecraft observes a high-density plasmaspheric plume while the other does not. Both spacecraft observe signatures of magnetic reconnection, providing a test for the changes to reconnection in local time along the magnetopause as well as the impact of high densities on the reconnection process. When the plume is present and the magnetospheric density exceeds that in the magnetosheath, the reconnection jet velocity decreases, the density within the jet increases, and the location of the faster jet is primarily on field lines with magnetosheath orientation. Slower jet velocities indicate that reconnection is occurring less efficiently. In the localized region where the plume contacts the magnetopause, the high-density plume may impede the solar wind-magnetosphere coupling by mass loading the reconnection site.

  3. Effects of the reconnection electric field on crescent electron distribution functions in asymmetric guide field reconnection

    NASA Astrophysics Data System (ADS)

    Bessho, N.; Chen, L. J.; Hesse, M.; Wang, S.

    2017-12-01

    In asymmetric reconnection with a guide field in the Earth's magnetopause, electron motion in the electron diffusion region (EDR) is largely affected by the guide field, the Hall electric field, and the reconnection electric field. The electron motion in the EDR is neither simple gyration around the guide field nor simple meandering motion across the current sheet. The combined meandering motion and gyration has essential effects on particle acceleration by the in-plane Hall electric field (existing only in the magnetospheric side) and the out-of-plane reconnection electric field. We analyze electron motion and crescent-shaped electron distribution functions in the EDR in asymmetric guide field reconnection, and perform 2-D particle-in-cell (PIC) simulations to elucidate the effect of reconnection electric field on electron distribution functions. Recently, we have analytically expressed the acceleration effect due to the reconnection electric field on electron crescent distribution functions in asymmetric reconnection without a guide field (Bessho et al., Phys. Plasmas, 24, 072903, 2017). We extend the theory to asymmetric guide field reconnection, and predict the crescent bulge in distribution functions. Assuming 1D approximation of field variations in the EDR, we derive the time period of oscillatory electron motion (meandering + gyration) in the EDR. The time period is expressed as a hybrid of the meandering period and the gyro period. Due to the guide field, electrons not only oscillate along crescent-shaped trajectories in the velocity plane perpendicular to the antiparallel magnetic fields, but also move along parabolic trajectories in the velocity plane coplanar with magnetic field. The trajectory in the velocity space gradually shifts to the acceleration direction by the reconnection electric field as multiple bounces continue. Due to the guide field, electron distributions for meandering particles are bounded by two paraboloids (or hyperboloids) in the

  4. FLARE (Facility for Laboratory Reconnection Experiments): A Major Next-Step for Laboratory Studies of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ji, Hantao; Bhattacharjee, A.; Prager, S.; Daughton, W.; Bale, Stuart D.; Carter, T.; Crocker, N.; Drake, J.; Egedal, J.; Sarff, J.; Fox, W.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-04-01

    A new intermediate-scale plasma experiment, called the Facility for Laboratory Reconnection Experiments or FLARE (flare.pppl.gov), is under construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to heliophysical and astrophysical plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, both of which are typically very large in natural plasmas. These new regimes involve multiple X-lines as guided by a reconnection "phase diagram", in which different coupling mechanisms from the global system scale to the local dissipation scale are classified into different reconnection phases [H. Ji & W. Daughton, Phys. Plasmas 18, 111207 (2011)]. The design of the FLARE device is based on the existing Magnetic Reconnection Experiment (MRX) (mrx.pppl.gov) and is to provide experimental access to the new phases involving multiple X-lines at large effective sizes and high Lundquist numbers, directly relevant to magnetospheric, solar wind, and solar coronal plasmas. After a brief summary of recent laboratory results on the topic of magnetic reconnection, the motivating major physics questions, the construction status, and the planned collaborative research especially with heliophysics communities will be discussed.

  5. Simulations of fully deformed oscillating flux tubes

    NASA Astrophysics Data System (ADS)

    Karampelas, K.; Van Doorsselaere, T.

    2018-02-01

    Context. In recent years, a number of numerical studies have been focusing on the significance of the Kelvin-Helmholtz instability in the dynamics of oscillating coronal loops. This process enhances the transfer of energy into smaller scales, and has been connected with heating of coronal loops, when dissipation mechanisms, such as resistivity, are considered. However, the turbulent layer is expected near the outer regions of the loops. Therefore, the effects of wave heating are expected to be confined to the loop's external layers, leaving their denser inner parts without a heating mechanism. Aim. In the current work we aim to study the spatial evolution of wave heating effects from a footpoint driven standing kink wave in a coronal loop. Methods: Using the MPI-AMRVAC code, we performed ideal, three dimensional magnetohydrodynamic simulations of footpoint driven transverse oscillations of a cold, straight coronal flux tube, embedded in a hotter environment. We have also constructed forward models for our simulation using the FoMo code. Results: The developed transverse wave induced Kelvin-Helmholtz (TWIKH) rolls expand throughout the tube cross-section, and cover it entirely. This turbulence significantly alters the initial density profile, leading to a fully deformed cross section. As a consequence, the resistive and viscous heating rate both increase over the entire loop cross section. The resistive heating rate takes its maximum values near the footpoints, while the viscous heating rate at the apex. Conclusions: We conclude that even a monoperiodic driver can spread wave heating over the whole loop cross section, potentially providing a heating source in the inner loop region. Despite the loop's fully deformed structure, forward modelling still shows the structure appearing as a loop. A movie attached to Fig. 1 is available at http://https://www.aanda.org

  6. Scientific Visualization to Study Flux Transfer Events at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Rastatter, Lutz; Kuznetsova, Maria M.; Sibeck, David G.; Berrios, David H.

    2011-01-01

    In this paper we present results of modeling of reconnection at the dayside magnetopause with subsequent development of flux transfer event signatures. The tools used include new methods that have been added to the suite of visualization methods that are used at the Community Coordinated Modeling Center (CCMC). Flux transfer events result from localized reconnection that connect magnetosheath magnetic field and plasma with magnetospheric fields and plasma and results in flux rope structures that span the dayside magnetopause. The onset of flux rope formation and the three-dimensional structure of flux ropes are studied as they have been modeled by high-resolution magnetohydrodynamic simulations of the dayside magnetosphere of the Earth. We show that flux transfer events are complex three-dimensional structures that require modern visualization and analysis techniques. Two suites of visualization methods are presented and we demonstrate the usefulness of those methods through the CCMC web site to the general science user.

  7. Evidence in Magnetic Clouds for Systematic Open Flux Transport on the Sun

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Kahler, S. W.; Gosling, J. T.; Lepping, R. P.

    2008-01-01

    Most magnetic clouds encountered by spacecraft at 1 AU display a mix of unidirectional suprathermal electrons signaling open field lines and counterstreaming electrons signaling loops connected to the Sun at both ends. Assuming the open fields were originally loops that underwent interchange reconnection with open fields at the Sun, we determine the sense of connectedness of the open fields found in 72 of 97 magnetic clouds identified by the Wind spacecraft in order to obtain information on the location and sense of the reconnection and resulting flux transport at the Sun. The true polarity of the open fields in each magnetic cloud was determined from the direction of the suprathermal electron flow relative to the magnetic field direction. Results indicate that the polarity of all open fields within a given magnetic cloud is the same 89% of the time, implying that interchange reconnection at the Sun most often occurs in only one leg of a flux rope loop, thus transporting open flux in a single direction, from a coronal hole near that leg to the foot point of the opposite leg. This pattern is consistent with the view that interchange reconnection in coronal mass ejections systematically transports an amount of open flux sufficient to reverse the polarity of the heliospheric field through the course of the solar cycle. Using the same electron data, we also find that the fields encountered in magnetic clouds are only a third as likely to be locally inverted as not. While one might expect inversions to be equally as common as not in flux rope coils, consideration of the geometry of spacecraft trajectories relative to the modeled magnetic cloud axes leads us to conclude that the result is reasonable.

  8. Spatial characteristics of magnetotail reconnection

    NASA Astrophysics Data System (ADS)

    Genestreti, Kevin J.

    We examine the properties of magnetic reconnection as it occurs in the Earth's magnetosphere, first focusing on the spatial characteristics of the near-Earth magnetotail reconnection site, then analyzing the properties of cold plasma that may affect reconnection at the dayside magnetopause. Two models are developed that empirically map the position and occurrence rate of the nightside ion diffusion region, which are based upon Geotail data (first model) and a combination of Geotail and Cluster data (second model). We use these empirical models to estimate that NASA's MMS mission will encounter the ion-scale reconnection site 11+/-4 times during its upcoming magnetotail survey phase. We also find that the occurrence of magnetotail reconnection is localized and asymmetric, with reconnection occurring most frequently at the duskside magnetotail neutral sheet near YGSM* = 5 RE. To determine the physics that governs this asymmetry and localization, we analyze the time history of the solar wind, the instantaneous properties of the magnetotail lobes and current sheet, as well as the geomagnetic activity levels, all for a larger set of Geotail and Cluster reconnection site observations. We find evidence in our own results and in the preexisting literature that localized (small DeltaY) reconnection sites initially form near YGSM* = 5 RE due to an asymmetry in the current sheet thickness. If the solar wind driving remains strong, then localized reconnection sites may expand in the +/-Y direction. The DeltaY extent of the reconnection site ap- pears to be positively correlated with the geomagnetic activity level, which is to be expected for a simplified "energy in equals energy out"-type picture of 3D reconnection. We develop two new methods for determining the temperatures of plasmas that are largely below the energy detection range of electrostatic analyzer instruments. The first method involves the direct application of a theoretical fit to the visible, high-energy portion

  9. Reconnection on the Sun

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Because the Sun is so close, it makes an excellent laboratory to study processes we cant examinein distant stars. One openquestion is that of how solar magnetic fields rearrange themselves, producing the tremendous releases of energy we observe as solar flares and coronal mass ejections (CMEs).What is Magnetic Reconnection?Magnetic reconnection occurs when a magnetic field rearranges itself to move to a lower-energy state. As field lines of opposite polarity reconnect, magnetic energy is suddenly converted into thermal and kinetic energy.This processis believed to be behind the sudden releases of energy from the solar surface in the form of solar flares and CMEs. But there are many different models for how magnetic reconnection could occur in the magnetic field at the Suns surface, and we arent sure which one of these reconnection types is responsible for the events we see.Recently, however, several studies have been published presenting some of the first observational support of specific reconnection models. Taken together, these observations suggest that there are likely several different types of reconnection happening on the solar surface. Heres a closer look at two of these recent publications:A pre-eruption SDO image of a flaring region (b) looks remarkably similar to a 3D cartoon for typical breakout configuration (a). Click for a closer look! [Adapted from Chen et al. 2016]Study 1:Magnetic BreakoutLed by Yao Chen (Shandong University in China), a team of scientists has presented observations made by the Solar Dynamics Observatory (SDO) of a flare and CME event that appears to have been caused by magnetic breakout.In the magnetic breakout model, a series of loops in the Suns lower corona are confined by a surrounding larger loop structure called an arcade higher in the corona. As the lower loops push upward, reconnection occurs in the upper corona, removing the overlying, confining arcade. Without that extra confinement, the lower coronal loops expand upward

  10. Hooked Flare Ribbons and Flux-rope-related QSL Footprints

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Gilchrist, Stuart A.; Aulanier, Guillaume; Schmieder, Brigitte; Pariat, Etienne; Li, Hui

    2016-05-01

    We studied the magnetic topology of active region 12158 on 2014 September 10 and compared it with the observations before and early in the flare that begins at 17:21 UT (SOL2014-09-10T17:45:00). Our results show that the sigmoidal structure and flare ribbons of this active region observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly can be well reproduced from a Grad-Rubin nonlinear force-free field extrapolation method. Various inverse-S- and inverse-J-shaped magnetic field lines, which surround a coronal flux rope, coincide with the sigmoid as observed in different extreme-ultraviolet wavelengths, including its multithreaded curved ends. Also, the observed distribution of surface currents in the magnetic polarity where it was not prescribed is well reproduced. This validates our numerical implementation and setup of the Grad-Rubin method. The modeled double inverse-J-shaped quasi-separatrix layer (QSL) footprints match the observed flare ribbons during the rising phase of the flare, including their hooked parts. The spiral-like shape of the latter may be related to a complex pre-eruptive flux rope with more than one turn of twist, as obtained in the model. These ribbon-associated flux-rope QSL footprints are consistent with the new standard flare model in 3D, with the presence of a hyperbolic flux tube located below an inverse-teardrop-shaped coronal QSL. This is a new step forward forecasting the locations of reconnection and ribbons in solar flares and the geometrical properties of eruptive flux ropes.

  11. HOOKED FLARE RIBBONS AND FLUX-ROPE-RELATED QSL FOOTPRINTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jie; Li, Hui; Gilchrist, Stuart A.

    2016-05-20

    We studied the magnetic topology of active region 12158 on 2014 September 10 and compared it with the observations before and early in the flare that begins at 17:21 UT (SOL2014-09-10T17:45:00). Our results show that the sigmoidal structure and flare ribbons of this active region observed by the Solar Dynamics Observatory /Atmospheric Imaging Assembly can be well reproduced from a Grad–Rubin nonlinear force-free field extrapolation method. Various inverse-S- and inverse-J-shaped magnetic field lines, which surround a coronal flux rope, coincide with the sigmoid as observed in different extreme-ultraviolet wavelengths, including its multithreaded curved ends. Also, the observed distribution of surfacemore » currents in the magnetic polarity where it was not prescribed is well reproduced. This validates our numerical implementation and setup of the Grad–Rubin method. The modeled double inverse-J-shaped quasi-separatrix layer (QSL) footprints match the observed flare ribbons during the rising phase of the flare, including their hooked parts. The spiral-like shape of the latter may be related to a complex pre-eruptive flux rope with more than one turn of twist, as obtained in the model. These ribbon-associated flux-rope QSL footprints are consistent with the new standard flare model in 3D, with the presence of a hyperbolic flux tube located below an inverse-teardrop-shaped coronal QSL. This is a new step forward forecasting the locations of reconnection and ribbons in solar flares and the geometrical properties of eruptive flux ropes.« less

  12. Source of Quasi-Periodic Brightenings of Solar Coronal Bright Points: Waves or Repeated Reconnections

    NASA Astrophysics Data System (ADS)

    Samanta, Tanmoy; Tian, Hui; Banerjee, Dipankar

    2016-07-01

    Coronal bright points (BPs) are small-scale luminous features seen in the solar corona. Quasi-periodic brightenings are frequently observed in the BPs and are generally linked with underlying magnetic flux changes. We study the dynamics of a BP seen in the coronal hole using the Atmospheric Imaging Assembly images, the Helioseismic and Magnetic Imager magnetogram on board the Solar Dynamics Observatory, and spectroscopic data from the newly launched Interface Region Imaging Spectrograph (IRIS). The detailed analysis shows that the BP evolves throughout our observing period along with changes in underlying photospheric magnetic flux and shows periodic brightenings in different EUV and far-UV images. With the highest possible spectral and spatial resolution of IRIS, we attempted to identify the sources of these oscillations. IRIS sit-and-stare observation provided a unique opportunity to study the time evolution of one footpoint of the BP as the slit position crossed it. We noticed enhanced line profile asymmetry, enhanced line width, intensity enhancements, and large deviation from the average Doppler shift in the line profiles at specific instances, which indicate the presence of sudden flows along the line-of-sight direction. We propose that transition region explosive events originating from small-scale reconnections and the reconnection outflows are affecting the line profiles. The correlation between all these parameters is consistent with the repetitive reconnection scenario and could explain the quasi-periodic nature of the brightening.

  13. Investigation of merging/reconnection heating during solenoid-free startup of plasmas in the MAST Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    Tanabe, H.; Yamada, T.; Watanabe, T.; Gi, K.; Inomoto, M.; Imazawa, R.; Gryaznevich, M.; Scannell, R.; Conway, N. J.; Michael, C.; Crowley, B.; Fitzgerald, I.; Meakins, A.; Hawkes, N.; McClements, K. G.; Harrison, J.; O'Gorman, T.; Cheng, C. Z.; Ono, Y.; The MAST Team

    2017-05-01

    We present results of recent studies of merging/reconnection heating during central solenoid (CS)-free plasma startup in the Mega Amp Spherical Tokamak (MAST). During this process, ions are heated globally in the downstream region of an outflow jet, and electrons locally around the X-point produced by the magnetic field of two internal P3 coils and of two plasma rings formed around these coils, the final temperature being proportional to the reconnecting field energy. There is an effective confinement of the downstream thermal energy, due to a thick layer of reconnected flux. The characteristic structure is sustained for longer than an ion-electron energy relaxation time, and the energy exchange between ions and electrons contributes to the bulk electron heating in the downstream region. The peak electron temperature around the X-point increases with toroidal field, but the downstream electron and ion temperatures do not change.

  14. Magnetic Reconnection in Different Environments: Similarities and Differences

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha; Zenitani, Seiji; Birn, Joachim

    2014-01-01

    Depending on the specific situation, magnetic reconnection may involve symmetric or asymmetric inflow regions. Asymmetric reconnection applies, for example, to reconnection at the Earth's magnetopause, whereas reconnection in the nightside magnetotail tends to involve more symmetric geometries. A combination of review and new results pertaining to magnetic reconnection is being presented. The focus is on three aspects: A basic, MHD-based, analysis of the role magnetic reconnection plays in the transport of energy, followed by an analysis of a kinetic model of time dependent reconnection in a symmetric current sheet, similar to what is typically being encountered in the magnetotail of the Earth. The third element is a review of recent results pertaining to the orientation of the reconnection line in asymmetric geometries, which are typical for the magnetopause of the Earth, as well as likely to occur at other planets.

  15. SELF-ORGANIZATION OF RECONNECTING PLASMAS TO MARGINAL COLLISIONALITY IN THE SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imada, S.; Zweibel, E. G.

    We explore the suggestions by Uzdensky and Cassak et al. that coronal loops heated by magnetic reconnection should self-organize to a state of marginal collisionality. We discuss their model of coronal loop dynamics with a one-dimensional hydrodynamic calculation. We assume that many current sheets are present, with a distribution of thicknesses, but that only current sheets thinner than the ion skin depth can rapidly reconnect. This assumption naturally causes a density-dependent heating rate which is actively regulated by the plasma. We report nine numerical simulation results of coronal loop hydrodynamics in which the absolute values of the heating rates aremore » different but their density dependences are the same. We find two regimes of behavior, depending on the amplitude of the heating rate. In the case that the amplitude of heating is below a threshold value, the loop is in stable equilibrium. Typically, the upper and less dense part of a coronal loop is collisionlessly heated and conductively cooled. When the amplitude of heating is above the threshold, the conductive flux to the lower atmosphere required to balance collisionless heating drives an evaporative flow which quenches fast reconnection, ultimately cooling and draining the loop until the cycle begins again. The key elements of this cycle are gravity and the density dependence of the heating function. Some additional factors are present, including pressure-driven flows from the loop top, which carry a large enthalpy flux and play an important role in reducing the density. We find that on average the density of the system is close to the marginally collisionless value.« less

  16. Origin of resistivity in reconnection

    NASA Astrophysics Data System (ADS)

    Treumann, Rudolf A.

    2001-06-01

    Resistivity is believed to play an important role in reconnection leading to the distinction between resistive and collisionless reconnection. The former is treated in the Sweet-Parker model of long current sheets, and the Petschek model of a small resistive region. Both models in spite of their different dynamics attribute to the violation of the frozen-in condition in their diffusion regions due to the action of resistivity. In collisionless reconnection there is little consensus about the processes breaking the frozen-in condition. The question is whether anomalous processes generate sufficient resistivity or whether other processes free the particles from slavery by the magnetic field. In the present paper we review processes that may cause anomalous resistivity in collisionless current sheets. Our general conclusion is that in space plasma boundaries accessible to in situ spacecraft, wave levels have always been found to be high enough to explain the existence of large enough local diffusivity for igniting local reconnection. However, other processes might take place as well. Non-resistive reconnection can be caused by inertia or diamagnetism.

  17. Magnetic reconnection in terms of catastrophe theory

    NASA Astrophysics Data System (ADS)

    Echkina, E. Y.; Inovenkov, I. N.; Nefedov, V. V.

    2017-12-01

    Magnetic field line reconnection (magnetic reconnection) is a phenomenon that occurs in space and laboratory plasma. Magnetic reconnection allows both the change the magnetic topology and the conversion of the magnetic energy into energy of fast particles. The critical point (critical line or plane in higher dimensional cases) of the magnetic field play an important role in process of magnetic reconnection, as in its neighborhood occurs a change of its topology of a magnetic field and redistribution of magnetic field energy. A lot of literature is devoted to the analytical and numerical investigation of the reconnection process. The main result of these investigations as the result of magnetic reconnection the current sheet is formed and the magnetic topology is changed. While the studies of magnetic reconnection in 2D and 3D configurations have a led to several important results, many questions remain open, including the behavior of a magnetic field in the neighborhood of a critical point of high order. The magnetic reconnection problem is closely related to the problem of the structural stability of vector fields. Since the magnetic field topology changes during both spontaneous and induced magnetic reconnection, it is natural to expect that the magnetic field should evolve from a structurally unstable into a structurally stable configuration. Note that, in this case, the phenomenon under analysis is more complicated since, during magnetic reconnection in a highly conducting plasma, we deal with the non-linear interaction between two vector fields: the magnetic field and the field of the plasma velocities. The aim of our article is to consider the process of magnetic reconnection and transformation of the magnetic topology from the viewpoint of catastrophe theory. Bifurcations in similar configurations (2D magnetic configuration with null high order point) with varying parameters were thoroughly discussed in a monograph by Poston and Stewart.

  18. Electron heating and acceleration during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Dahlin, Joel

    2017-10-01

    Magnetic reconnection is thought to be an important driver of energetic particles in a variety of astrophysical phenomena such as solar flares and magnetospheric storms. However, the observed fraction of energy imparted to a nonthermal component can vary widely in different regimes. We use kinetic particle-in-cell (PIC) simulations to demonstrate the important role of the non-reversing (guide) field in controlling the efficiency of electron acceleration in collisionless reconnection. In reconnection where the guide field is smaller than the reconnecting component, the dominant electron accelerator is a Fermi-type mechanism that preferentially energizes the most energetic particles. In strong guide field reconnection, the field-line contraction that drives the Fermi mechanism becomes weak. Instead, parallel electric fields are primarily responsible for driving electron heating but are ineffective in driving the energetic component of the spectrum. Three-dimensional simulations reveal that the stochastic magnetic field that develops during 3D guide field reconnection plays a vital role in particle acceleration and transport. The reconnection outflows that drive Fermi acceleration also expel accelerating particles from energization regions. In 2D reconnection, electrons are trapped in island cores and acceleration ceases, whereas in 3D the stochastic magnetic field enables energetic electrons to leak out of islands and freely sample regions of energy release. A finite guide field is required to break initial 2D symmetry and facilitate escape from island structures. We show that reconnection with a guide field comparable to the reconnecting field generates the greatest number of energetic electrons, a regime where both (a) the Fermi mechanism is an efficient driver and (b) energetic electrons may freely access acceleration sites. These results have important implications for electron acceleration in solar flares and reconnection-driven dissipation in turbulence.

  19. Magnetic Reconnection in the Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Lukin, Vyacheslav S.; Ni, Lei; Murphy, Nicholas Arnold

    2017-08-01

    We report on the most recent efforts to accurately and self-consistently model magnetic reconnection processes in the context of the solar chromosphere. The solar chromosphere is a notoriously complex and highly dynamic boundary layer of the solar atmosphere where local variations in the plasma parameters can be of the order of the mean values. At the same time, the interdependence of the physical processes such as magnetic field evolution, local and global energy transfer between internal and electromagnetic plasma energy, radiation transport, plasma reactivity, and dissipation mechanisms make it a particularly difficult system to self-consistently model and understand. Several recent studies have focused on the micro-physics of multi-fluid magnetic reconnection at magnetic nulls in the weakly ionized plasma environment of the lower chromosphere[1-3]. Here, we extend the previous work by considering a range of spatial scales and magnetic field strengths in a configuration with component magnetic reconnection, i.e., for magnetic reconnection with a guide field. We show that in all cases the non-equilibrium reactivity of the plasma and the dynamic interaction among the plasma processes play important roles in determining the structure of the reconnection region. We also speculate as to the possible observables of chromospheric magnetic reconnection and the likely plasma conditions required for generation of Ellerman and IRIS bombs.[1] Leake, Lukin, Linton, and Meier, “Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” ApJ 760 (2012).[2] Leake, Lukin, and Linton, “Magnetic reconnection in a weakly ionized plasma,” PoP 20 (2013).[3] Murphy and Lukin, “Asymmetric magnetic reconnection in weakly ionized chromospheric plasmas,” ApJ 805 (2015).[*Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National

  20. The Link Between Shocks, Turbulence, and Magnetic Reconnection in Collisionless Plasmas

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Roytershteyn, V.; Vu, H. X.; Omelchenko, Y. A.; Scudder, J.; Daughton, W.; Dimmock, A.; Nykyri, K.; Wan, M.; Sibeck, D.; hide

    2014-01-01

    Global hybrid (electron fluid, kinetic ions) and fully kinetic simulations of the magnetosphere have been used to show surprising interconnection between shocks, turbulence and magnetic reconnection. In particular collisionless shocks with their reflected ions that can get upstream before retransmission can generate previously unforeseen phenomena in the post shocked flows: (i) formation of reconnecting current sheets and magnetic islands with sizes up to tens of ion inertial length. (ii) Generation of large scale low frequency electromagnetic waves that are compressed and amplified as they cross the shock. These 'wavefronts' maintain their integrity for tens of ion cyclotron times but eventually disrupt and dissipate their energy. (iii) Rippling of the shock front, which can in turn lead to formation of fast collimated jets extending to hundreds of ion inertial lengths downstream of the shock. The jets, which have high dynamical pressure, 'stir' the downstream region, creating large scale disturbances such as vortices, sunward flows, and can trigger flux ropes along the magnetopause. This phenomenology closes the loop between shocks, turbulence and magnetic reconnection in ways previously unrealized. These interconnections appear generic for the collisionless plasmas typical of space, and are expected even at planar shocks, although they will also occur at curved shocks as occur at planets or around ejecta.

  1. Flux cutting in high- T c superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasko-Vlasov, V.; Koshelev, A.; Glatz, A.

    We performed magneto-optical study of flux distributions in a YBCO crystal under various applied crossed- field orientations to elucidate the complex nature of magnetic flux cutting in superconductors. Our study reveals unusual vortex patterns induced by the interplay between flux-cutting and vortex pinning. We observe strong flux penetration anisotropy of the normal flux B⊥ in the presence of an in-plane field H|| and associate the modified flux dynamics with staircase structure of tilted vortices in YBCO and the flux-cutting process. We demonstrate that flux-cutting can effectively delay vortex entry in the direction transverse to H||. Finally, we elucidate details ofmore » the vortex-cutting and reconnection process using time-dependent Ginzburg-Landau simulations.« less

  2. Homologous Circular-ribbon Flares Driven by Twisted Flux Emergence

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Yang, K.; Guo, Y.; Zhao, J.; Zhao, Z. J.; Kashapova, L.

    2017-12-01

    In this paper, we report two homologous circular-ribbon flares associated with two filament eruptions. They were well observed by the New Vacuum Solar Telescope and the Solar Dynamics Observatory on 2014 March 5. Prior to the flare, two small-scale filaments enclosed by a circular pre-flare brightening lie along the circular polarity inversion line around the parasitic polarity, which has shown a continuous rotation since its first appearance. Two filaments eventually erupt in sequence associated with two homologous circular-ribbon flares and display an apparent writhing signature. Supplemented by the nonlinear force-free field extrapolation and the magnetic field squashing factor investigation, the following are revealed. (1) This event involves the emergence of magnetic flux ropes into a pre-existing polarity area, which yields the formation of a 3D null-point topology in the corona. (2) Continuous input of the free energy in the form of a flux rope from beneath the photosphere may drive a breakout-type reconnection occurring high in the corona, supported by the pre-flare brightening. (3) This initiation reconnection could release the constraint on the flux rope and trigger the MHD instability to first make filament F1 lose equilibrium. The subsequent more violent magnetic reconnection with the overlying flux is driven during the filament rising. In return, the eruption of filament F2 is further facilitated by the reduction of the magnetic tension force above. These two processes form a positive feedback to each other to cause the energetic mass eruption and flare.

  3. Stochastic Reconnection for Large Magnetic Prandtl Numbers

    NASA Astrophysics Data System (ADS)

    Jafari, Amir; Vishniac, Ethan T.; Kowal, Grzegorz; Lazarian, Alex

    2018-06-01

    We consider stochastic magnetic reconnection in high-β plasmas with large magnetic Prandtl numbers, Pr m > 1. For large Pr m , field line stochasticity is suppressed at very small scales, impeding diffusion. In addition, viscosity suppresses very small-scale differential motions and therefore also the local reconnection. Here we consider the effect of high magnetic Prandtl numbers on the global reconnection rate in a turbulent medium and provide a diffusion equation for the magnetic field lines considering both resistive and viscous dissipation. We find that the width of the outflow region is unaffected unless Pr m is exponentially larger than the Reynolds number Re. The ejection velocity of matter from the reconnection region is also unaffected by viscosity unless Re ∼ 1. By these criteria the reconnection rate in typical astrophysical systems is almost independent of viscosity. This remains true for reconnection in quiet environments where current sheet instabilities drive reconnection. However, if Pr m > 1, viscosity can suppress small-scale reconnection events near and below the Kolmogorov or viscous damping scale. This will produce a threshold for the suppression of large-scale reconnection by viscosity when {\\Pr }m> \\sqrt{Re}}. In any case, for Pr m > 1 this leads to a flattening of the magnetic fluctuation power spectrum, so that its spectral index is ∼‑4/3 for length scales between the viscous dissipation scale and eddies larger by roughly {{\\Pr }}m3/2. Current numerical simulations are insensitive to this effect. We suggest that the dependence of reconnection on viscosity in these simulations may be due to insufficient resolution for the turbulent inertial range rather than a guide to the large Re limit.

  4. The Characteristics of Thin Magnetic Flux Tubes in the Lower Solar Atmosphere Observed by Hinode/SOT in the G band and in Ca II H Bright Points

    NASA Astrophysics Data System (ADS)

    Xiong, Jianping; Yang, Yunfei; Jin, Chunlan; Ji, Kaifan; Feng, Song; Wang, Feng; Deng, Hui; Hu, Yu

    2017-12-01

    Photospheric bright points (PBPs) and chromospheric bright points (CBPs) reflect the cross sections of magnetic flux tubes at different heights of the lower solar atmosphere. We aim to study the fine 3D structures and transportation dynamics of the magnetic flux tubes using G-band and simultaneous Ca II H image-series from the Solar Optical Telescope (SOT) on board Hinode. A 3D track-while-detect method is proposed to detect and track PBPs and CBPs. The mean values of equivalent diameters, maximum intensity contrasts, transverse velocities, motion ranges, motion types, and diffusion indices of PBPs and CBPs are 180 ± 20 and 210 ± 30 km, 1.0+/- 0.1< {I}{QS\\_G}> and 1.2+/- 0.1< {I}{QS\\Ca}> , 1.6 ± 0.8 and 2.7 ± 1.4 km s‑1, 1.5 ± 0.6 and 1.7 ± 0.8, 0.8 ± 0.2 and 0.6 ± 0.2, and 1.7 ± 0.7 and 1.3 ± 0.7, respectively. Moreover, the ratios of each CBP characteristics to its corresponding PBP are derived to explore the change rates of the flux tubes. The corresponding ratios are 1.2 ± 0.2, 1.2 ± 0.1, 1.9 ± 0.1, 1.4 ± 0.3, 0.7 ± 0.2, and 0.9 ± 0.4, respectively. The statistical results imply that the majority magnetic flux tubes expand slightly with increasing solar height, look brighter than their surroundings, show a higher transverse velocity, a wider motion range, and a more erratic path, but the majority of the flux tubes diffuse slightly slower. The phenomenon might be explained by the conservation of momentum combined with a decrease in density. The more erratic path leads to a swing or twist of the flux tubes and therefore guides magnetohydrodynamic waves.

  5. Turbulent magnetic fluctuations in laboratory reconnection

    NASA Astrophysics Data System (ADS)

    Von Stechow, Adrian; Grulke, Olaf; Klinger, Thomas

    2016-07-01

    The role of fluctuations and turbulence is an important question in astrophysics. While direct observations in space are rare and difficult dedicated laboratory experiments provide a versatile environment for the investigation of magnetic reconnection due to their good diagnostic access and wide range of accessible plasma parameters. As such, they also provide an ideal chance for the validation of space plasma reconnection theories and numerical simulation results. In particular, we studied magnetic fluctuations within reconnecting current sheets for various reconnection parameters such as the reconnection rate, guide field, as well as plasma density and temperature. These fluctuations have been previously interpreted as signatures of current sheet plasma instabilities in space and laboratory systems. Especially in low collisionality plasmas these may provide a source of anomalous resistivity and thereby contribute a significant fraction of the reconnection rate. We present fluctuation measurements from two complementary reconnection experiments and compare them to numerical simulation results. VINETA.II (Greifswald, Germany) is a cylindrical, high guide field reconnection experiment with an open field line geometry. The reconnecting current sheet has a three-dimensional structure that is predominantly set by the magnetic pitch angle which results from the superposition of the guide field and the in-plane reconnecting field. Within this current sheet, high frequency magnetic fluctuations are observed that correlate well with the local current density and show a power law spectrum with a spectral break at the lower hybrid frequency. Their correlation lengths are found to be extremely short, but propagation is nonetheless observed with high phase velocities that match the Whistler dispersion. To date, the experiment has been run with an external driving field at frequencies higher than the ion cyclotron frequency f_{ci}, which implies that the EMHD framework applies

  6. Systematic study of Zc+ family from a multiquark color flux-tube model

    NASA Astrophysics Data System (ADS)

    Deng, Chengrong; Ping, Jialun; Huang, Hongxia; Wang, Fan

    2015-08-01

    Inspired by the present experimental results of charged charmonium-like states Zc+, we present a systematic study of the tetraquark states [c u ][c ¯ d ¯ ] in a color flux-tube model with a multibody confinement potential. Our investigation indicates that charged charmonium-like states Zc+(3900 ) or Zc+(3885 ), Zc+(3930 ) , Zc+(4020 ) or Zc+(4025 ), Z1+(4050 ), Z2+(4250 ), and Zc+(4200 ) can be described as a family of tetraquark [c u ][c ¯d ¯] states with the quantum numbers n 2SL+1 J and JP of 1 3S1 and 1+, 2 3S1 and 1+, 1 5S2 and 2+, 1 3P1 and 1-, 1 5D1 and 1+, and 1 3D1 and 1+, respectively. The predicted lowest mass charged tetraquark state [c u ][c ¯ d ¯ ] with 0+ and 1 1S0 lies at 3780 ±10 MeV /c2 in the model. These tetraquark states have compact three-dimensional spatial configurations similar to a rugby ball with higher orbital angular momentum L between the diquark [c u ] and antidiquark [c ¯d ¯] corresponding to a more prolate spatial distribution. The multibody color flux tube, a collective degree of freedom, plays an important role in the formation of those charged tetraquark states. However, the two heavier charged states Zc+(4430 ) and Zc+(4475 ) cannot be explained as tetraquark states [c u ][c ¯d ¯] in this model approach.

  7. FLARE (Facility for Laboratory Reconnection Experiments): A Major Next-Step for Laboratory Studies of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W. S.; Bale, S. D.; Carter, T. A.; Crocker, N.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.; Belova, E.; Ellis, R.; Fox, W. R., II; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C. E.; Que, W.; Ren, Y.; Titus, P.; Yamada, M.; Yoo, J.

    2014-12-01

    A new intermediate-scale plasma experiment, called the Facility for Laboratory Reconnection Experiments or FLARE, is under construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to space, solar and astrophysical plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, both of which are typically very large in natural plasmas. These new regimes involve multiple X-lines as guided by a reconnection "phase diagram", in which different coupling mechanisms from the global system scale to the local dissipation scale are classified into different reconnection phases [H. Ji & W. Daughton, Phys. Plasmas 18, 111207 (2011)]. The design of the FLARE device is based on the existing Magnetic Reconnection Experiment (MRX) at Princeton (http://mrx.pppl.gov) and is to provide experimental access to the new phases involving multiple X-lines at large effective sizes and high Lundquist numbers, directly relevant to space and solar plasmas. The motivating major physics questions, the construction status, and the planned collaborative research especially with space and solar research communities will be discussed.

  8. A review of astrophysical reconnection

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    Magnetic reconnection is a basic plasma process involving rapid rearrangement of magnetic field topology. It often leads to violent release of magnetic energy and its conversion to the plasma thermal and kinetic energy as well as nonthermal particle acceleration. It is thus believed to power numerous types of explosive phenomena both inside and outside the Solar system, including various kinds of high-energy flares. In this talk I will first give an overview of astrophysical systems where reconnection is believed to play an important role. Examples include pulsed high-energy emission in pulsar magnetospheres; gamma-ray flares in pulsar wind nebulae and AGN/blazar jets; Gamma-Ray Bursts; and giant flares in magnetar systems. I will also analyze the physical conditions of the plasma in some of these astrophysical systems and will discuss the fundamental physical differences between various astrophysical instances of magnetic reconnection and the more familiar solar and space examples of reconnection. In particular, I will demonstrate the importance of including radiative effects in order to understand astrophysical magnetic reconnection and in order to connect our theoretical models with the observed radiation signatures.

  9. Colour Reconnection in WW Events

    NASA Astrophysics Data System (ADS)

    D'Hondt, J.

    2003-07-01

    Preliminary results are presented for a measurement of the κ parameter used in the JETSET SK-I model of Colour Reconnection in {W}+{W}^- -> qbar {q}'bar {q}q^' events at LEP2. An update on the investigation of Colour Reconnection effects in hadronic decays of W pairs, using the particle flow in DELPHI is presented. A second method is based on the observation that two different mW estimators have different sensitivity to the parametrised Colour Reconnection effect. Hence the difference between them is an observable with information content about κ.

  10. Estimates of magnetic flux, and energy balance in the plasma sheet during substorm expansion

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim; Pulkkinen, Tuija

    1996-01-01

    The energy and magnetic flux budgets of the magnetotail plasma sheet during substorm expansion are investigated. The possible mechanisms that change the energy content of the closed field line region which contains all the major dissipation mechanisms of relevance during substorms, are considered. The compression of the plasma sheet mechanism and the diffusion mechanism are considered and excluded. It is concluded that the magnetic reconnection mechanism can accomplish the required transport. Data-based empirical magnetic field models are used to investigate the magnetic flux transport required to account for the observed magnetic field dipolarizations in the inner magnetosphere. It is found that the magnetic flux permeating the current sheet is typically insufficient to supply the required magnetic flux. It is concluded that no major substorm-type magnetospheric reconfiguration is possible in the absence of magnetic reconnection.

  11. Flux tube gyrokinetic simulations of the edge pedestal

    NASA Astrophysics Data System (ADS)

    Parker, Scott; Wan, Weigang; Chen, Yang

    2011-10-01

    The linear instabilities of DIII-D H-mode pedestal are studied with gyrokinetic micro-turbulence simulations. The simulation code GEM is an electromagnetic δf code with global tokamak geometry in the form of Miller equilibrium. Local flux tube simulations are carried out for multiple positions of two DIII-D profiles: shot #98889 and shot #131997. Near the top of the pedestal, the instability is clearly ITG. The dominant instability of the pedestal appears at the steep gradient region, and it is identified as a low frequency mode mostly driven by electron temperature gradient. The mode propagates along the electron diamagnetic direction for low n and may propagate along the ion direction for high n. At some positions near the steep gradient region, an ion instability is found which shows some characteristics of kinetic ballooning mode (KBM). These results will be compared to the results of E. Wang et al. and D. Fulton et al. in the same session. We thank R. Groebner and P. Snyder for providing experimental profiles and helpful discussions.

  12. Observational Evidence of Magnetic Reconnection for Brightenings and Transition Region Arcades in IRIS Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jie; Li, Hui; Feng, Li

    By using a new method of forced-field extrapolation, we study the emerging flux region AR11850 observed by the Interface Region Imaging Spectrograph and Solar Dynamical Observatory . Our results suggest that the bright points (BPs) in this emerging region exhibit responses in lines formed from the upper photosphere to the transition region, which have relatively similar morphologies. They have an oscillation of several minutes according to the Atmospheric Imaging Assembly data at 1600 and 1700 Å. The ratio between the BP intensities measured in 1600 and 1700 Å filtergrams reveals that these BPs are heated differently. Our analysis of themore » Helioseismic and Magnetic Imager vector magnetic field and the corresponding topology in AR11850 indicates that the BPs are located at the polarity inversion line and most of them are related to magnetic reconnection or cancelation. The heating of the BPs might be different due to different magnetic topology. We find that the heating due to the magnetic cancelation would be stronger than the case of bald patch reconnection. The plasma density rather than the magnetic field strength could play a dominant role in this process. Based on physical conditions in the lower atmosphere, our forced-field extrapolation shows consistent results between the bright arcades visible in slit-jaw image 1400 Å and the extrapolated field lines that pass through the bald patches. It provides reliable observational evidence for testing the mechanism of magnetic reconnection for the BPs and arcades in the emerging flux region, as proposed in simulation studies.« less

  13. Hyper-resistive forced magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vekstein, G., E-mail: g.vekstein@manchester.ac.uk

    We study Taylor's model of forced magnetic reconnection mediated by plasma hyper-resistivity. This includes both linear and nonlinear regimes of the process. It is shown how the onset of plasmoid instability occurs in the strongly nonlinear regime of forced reconnection.

  14. Global Three-Dimensional Simulation of Earth's Dayside Reconnection Using a Two-Way Coupled Magnetohydrodynamics With Embedded Particle-in-Cell Model: Initial Results

    NASA Astrophysics Data System (ADS)

    Chen, Yuxi; Tóth, Gábor; Cassak, Paul; Jia, Xianzhe; Gombosi, Tamas I.; Slavin, James A.; Markidis, Stefano; Peng, Ivy Bo; Jordanova, Vania K.; Henderson, Michael G.

    2017-10-01

    We perform a three-dimensional (3-D) global simulation of Earth's magnetosphere with kinetic reconnection physics to study the flux transfer events (FTEs) and dayside magnetic reconnection with the recently developed magnetohydrodynamics with embedded particle-in-cell model. During the 1 h long simulation, the FTEs are generated quasi-periodically near the subsolar point and move toward the poles. We find that the magnetic field signature of FTEs at their early formation stage is similar to a "crater FTE," which is characterized by a magnetic field strength dip at the FTE center. After the FTE core field grows to a significant value, it becomes an FTE with typical flux rope structure. When an FTE moves across the cusp, reconnection between the FTE field lines and the cusp field lines can dissipate the FTE. The kinetic features are also captured by our model. A crescent electron phase space distribution is found near the reconnection site. A similar distribution is found for ions at the location where the Larmor electric field appears. The lower hybrid drift instability (LHDI) along the current sheet direction also arises at the interface of magnetosheath and magnetosphere plasma. The LHDI electric field is about 8 mV/m, and its dominant wavelength relative to the electron gyroradius agrees reasonably with Magnetospheric Multiscale (MMS) observations.

  15. On the Collisionless Asymmetric Magnetic Reconnection Rate

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Hsin; Hesse, M.; Cassak, P. A.; Shay, M. A.; Wang, S.; Chen, L.-J.

    2018-04-01

    A prediction of the steady state reconnection electric field in asymmetric reconnection is obtained by maximizing the reconnection rate as a function of the opening angle made by the upstream magnetic field on the weak magnetic field (magnetosheath) side. The prediction is within a factor of 2 of the widely examined asymmetric reconnection model (Cassak & Shay, 2007, https://doi.org/10.1063/1.2795630) in the collisionless limit, and they scale the same over a wide parameter regime. The previous model had the effective aspect ratio of the diffusion region as a free parameter, which simulations and observations suggest is on the order of 0.1, but the present model has no free parameters. In conjunction with the symmetric case (Liu et al., 2017, https://doi.org/10.1103/PhysRevLett.118.085101), this work further suggests that this nearly universal number 0.1, essentially the normalized fast-reconnection rate, is a geometrical factor arising from maximizing the reconnection rate within magnetohydrodynamic-scale constraints.

  16. Plasma Waves and Structures Associated with Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ergun, R.; Wilder, F. D.; Ahmadi, N.; Goodrich, K.; Holmes, J.; Newman, D. L.; Burch, J.; Torbert, R. B.; Le Contel, O.; Giles, B. L.; Strangeway, R. J.; Lindqvist, P. A.

    2017-12-01

    Space observations of magnetic reconnection indicate a variety of plasma wave modes and structures in the vicinity of the electron diffusion region including electromagnetic whistler waves, quasi-electrostatic whistler waves, electron phase-space holes, double layers, electron acoustic waves, lower hybrid waves, upper hybrid waves, and electromagnetic drift waves. These waves and plasma structures are seen in magnetotail reconnection and subsolar reconnection. The MMS mission has the unique ability to unequivocally identify the electron diffusion region and distinguish waves in the EDR from those in the extended separatrix. Such a distinction is critical since some of the observed waves may be involved the reconnection process while others may result from subsequent or associated events and do not directly influence the reconnection process. For example, some of the largest amplitude (> 100 mV/m) electrostatic waves have been identified as electron acoustic waves and upper hybrid waves. These waves are likely generated as a result of reconnection and do not appear to strongly influence the reconnection process. On the other hand, large-amplitude electrostatic whistler waves have been observed very near the X-line, are seen in simulations, and may be participating in reconnection physics. Electromagnetic drift waves almost always appear in cases of asymmetric reconnection and may lead to a more turbulent process. We summarize wave observations by MMS and discuss the relative their possible role in magnetic reconnection physics, concentrating on recent magnetotail observations.

  17. MESSENGER Observations of Reconnection and Its Effects on Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Imber, Suzanne M.; Korth, Haje; hide

    2010-01-01

    During MESSENGER's second and third flybys of Mercury on October 6, 2008 and September 29, 2009, respectively, southward interplanetary magnetic fields produced very intense reconnection signatures in the dayside and nightside magnetosphere and very different systemlevel responses. The IMF during the second flyby was continuously southward and the magnetosphere appeared very active with very large magnetic fields normal to the magnetopause and the generation of flux transfer events at the magnetopause and plasmoids in the tail current sheet every 30 s to 90 s. However, the strength and direction of the tail magnetic field was very stable. In contrast the third flyby experienced a variable IMF with it varying from north to south on timescales of minutes. Although the MESSENGER measurements were limited this time to the nightside magnetosphere, numerous examples of plasmoid release in the tail were detected, but they were not periodic. Rather, plasmoid release was highly correlated with the four large enhancements of the tail magnetic field (i.e. by factors > 2) with durations of approx. 2 - 3 min. The increased flaring of the magnetic field during these intervals indicates that the enhancements were caused by loading of the tail with magnetic flux transferred from the dayside magnetosphere. New analyses of the second and third flyby observations of reconnection and its system-level effects will be presented. The results will be examined in light of what is known about the response of the Earth's magnetosphere to variable versus steady southward IMF.

  18. Electron acceleration by turbulent plasmoid reconnection

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Büchner, J.; Widmer, F.; Muñoz, P. A.

    2018-04-01

    In space and astrophysical plasmas, like in planetary magnetospheres, as that of Mercury, energetic electrons are often found near current sheets, which hint at electron acceleration by magnetic reconnection. Unfortunately, electron acceleration by reconnection is not well understood yet, in particular, acceleration by turbulent plasmoid reconnection. We have investigated electron acceleration by turbulent plasmoid reconnection, described by MHD simulations, via test particle calculations. In order to avoid resolving all relevant turbulence scales down to the dissipation scales, a mean-field turbulence model is used to describe the turbulence of sub-grid scales and their effects via a turbulent electromotive force (EMF). The mean-field model describes the turbulent EMF as a function of the mean values of current density, vorticity, magnetic field as well as of the energy, cross-helicity, and residual helicity of the turbulence. We found that, mainly around X-points of turbulent reconnection, strongly enhanced localized EMFs most efficiently accelerated electrons and caused the formation of power-law spectra. Magnetic-field-aligned EMFs, caused by the turbulence, dominate the electron acceleration process. Scaling the acceleration processes to parameters of the Hermean magnetotail, electron energies up to 60 keV can be reached by turbulent plasmoid reconnection through the thermal plasma.

  19. Aspects of Collisionless Magnetic Reconnection in Asymmetric Systems

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Aunai, Nicolas; Zenitani, Seiji; Kuznetsova, Masha; Birn, Joachim

    2013-01-01

    Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: The direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.

  20. Aspects of Collisionless Magnetic Reconnection in Asymmetric Systems

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Aunai, Nicolas; Zeitani, Seiji; Kuznetsova, Masha; Birn, Joachim

    2013-01-01

    Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with non-vanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement for particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.

  1. Corotating Magnetic Reconnection Site in Saturn’s Magnetosphere

    NASA Astrophysics Data System (ADS)

    Yao, Z. H.; Coates, A. J.; Ray, L. C.; Rae, I. J.; Grodent, D.; Jones, G. H.; Dougherty, M. K.; Owen, C. J.; Guo, R. L.; Dunn, W. R.; Radioti, A.; Pu, Z. Y.; Lewis, G. R.; Waite, J. H.; Gérard, J.-C.

    2017-09-01

    Using measurements from the Cassini spacecraft in Saturn’s magnetosphere, we propose a 3D physical picture of a corotating reconnection site, which can only be driven by an internally generated source. Our results demonstrate that the corotating magnetic reconnection can drive an expansion of the current sheet in Saturn’s magnetosphere and, consequently, can produce Fermi acceleration of electrons. This reconnection site lasted for longer than one of Saturn’s rotation period. The long-lasting and corotating natures of the magnetic reconnection site at Saturn suggest fundamentally different roles of magnetic reconnection in driving magnetospheric dynamics (e.g., the auroral precipitation) from the Earth. Our corotating reconnection picture could also potentially shed light on the fast rotating magnetized plasma environments in the solar system and beyond.

  2. Aspects of collisionless magnetic reconnection in asymmetric systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha

    2013-06-15

    Asymmetric reconnection is being investigated by means of particle-in-cell simulations. The research has two foci: the direction of the reconnection line in configurations with nonvanishing magnetic fields; and the question why reconnection can be faster if a guide field is added to an otherwise unchanged asymmetric configuration. We find that reconnection prefers a direction, which maximizes the available magnetic energy, and show that this direction coincides with the bisection of the angle between the asymptotic magnetic fields. Regarding the difference in reconnection rates between planar and guide field models, we demonstrate that a guide field can provide essential confinement formore » particles in the reconnection region, which the weaker magnetic field in one of the inflow directions cannot necessarily provide.« less

  3. Thermal Evolution of a Failed Flux Rope Eruption Revealed by Temperature Maps

    NASA Astrophysics Data System (ADS)

    Song, H.; Zhang, J.; CHEN, Y.

    2013-12-01

    Flux rope is generally considered to be the fundamental magnetic configuration of a coronal mass ejection (CME). Recent observations suggest that hot channel or blob structures during the eruptions be the direct observational manifestation of flux ropes. In this study, we report our analysis of thermal evolution of a failed solar eruption with an apparent flux rope embedded. The thermal structure of the eruption is revealed through differential emission measure (DEM) analysis technique, which shows detailed temperature maps in both high spatial resolution and high temperature resolution based on SDO/AIA observations. Our results show that the flux rope exists in the corona before the eruption, and its temperature can quickly rise to over 10 MK within one minute of the eruption. The correlation study between the flux rope temperature and the soft x-ray flux suggests that the flux rope should be heated through the direct thermal energy release of magnetic reconnection. Further, we study the kinematic evolution process of the flux rope, in an effort to find the physical mechanism that prevents the magnetic rope eruption to become a full coronal mass ejection. This kind of study using temperature maps might reveal where and when magnetic reconnection takes place during solar eruptions.

  4. Understanding the dynamics and energetics of magnetic reconnection in a laboratory plasma: Review of recent progress on selected fronts

    DOE PAGES

    Yamada, Masaaki; Yoo, Jongsoo; Myers, Clayton E.

    2016-05-11

    solar flare eruptions, including “storage and release” mechanisms of magnetic energy. We show that toroidalmagnetic flux generated by magnetic relaxation (reconnection) processes generates a new stabilizing force which prevents plasma eruption. This result has led us to discover a new stabilizing force for solar flares [Myers et al., Nature 528, 526 (2015)].« less

  5. Multispacecraft observations of the electron current sheet, neighboring magnetic islands, and electron acceleration during magnetotail reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Lijen; Bessho, Naoki; Bhattacharjee, Amitava

    Open questions concerning structures and dynamics of diffusion regions and electron acceleration in collisionless magnetic reconnection are addressed based on data from the four-spacecraft mission Cluster and particle-in-cell simulations. Using time series of electron distribution functions measured by the four spacecraft, distinct electron regions around a reconnection layer are mapped out to set the framework for studying diffusion regions. A spatially extended electron current sheet (ecs), a series of magnetic islands, and bursts of energetic electrons within islands are identified during magnetotail reconnection with no appreciable guide field. The ecs is collocated with a layer of electron-scale electric fields normalmore » to the ecs and pointing toward the ecs center plane. Both the observed electron and ion densities vary by more than a factor of 2 within one ion skin depth north and south of the ecs, and from the ecs into magnetic islands. Within each of the identified islands, there is a burst of suprathermal electrons whose fluxes peak at density compression sites [L.-J. Chen et al., Nat. Phys. 4, 19 (2008)] and whose energy spectra exhibit power laws with indices ranging from 6 to 7.3. These results indicate that the in-plane electric field normal to the ecs can be of the electron scale at certain phases of reconnection, electrons and ions are highly compressible within the ion diffusion region, and for reconnection involving magnetic islands, primary electron acceleration occurs within the islands.« less

  6. Global Hybrid Simulation of Alfvenic Waves Associated with Magnetotail Reconnection and Fast Flows

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Lin, Y.; Wang, X.; Perez, J. D.

    2017-12-01

    Alfvenic fluctuations have been observed near the magnetotail plasma sheet boundary layer associated with fast flows. In this presentation, we use the Auburn 3-D Global Hybrid code (ANGIE3D) to investigate the generation and propagation of Alfvenic waves in the magnetotail. Shear Alfven waves and kinetic Alfven waves (KAWs) are found to be generated in magnetic reconnection in the plasma sheet as well as in the dipole-like field region of the magnetosphere, carrying Poynting flux along magnetic field lines toward the ionosphere, and the wave structure is strongly altered by the flow braking in the tail. The 3-D structure of the wave electromagnetic field and the associated parallel currents in reconnection and the dipole-like field region is presented. The Alfvenic waves exhibit a turbulence spectrum. The roles of these Alfvenic waves in ion heating is discussed.

  7. Scaling of Electron Heating During Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ohia, O.; Le, A.; Daughton, W. S.; Egedal, J.

    2016-12-01

    While magnetic reconnection plays a major role in accelerating and heating magnetospheric plasma, it remains poorly understood how the level of particle energization depends on the plasma conditions. Meanwhile, a recent survey of THEMIS magnetopause reconnection observations [Phan et al. GRL 2013] and a numerical study [Shay et al. PoP 2014] found empirically that the electron heating scales with the square of the upstream Alfven speed. Equivalently for weak guide fields, the fractional electron temperature increase is inversely proportional to the upstream electron beta (ratio of electron to magnetic pressure). We present models for symmetric reconnection with moderate [Ohia et al., GRL 2015] or zero guide field that predict the electron bulk heating. In the models, adiabatically trapped electrons gain energy from parallel electric fields in the inflowing region. For purely anti-parallel reconnection, meandering electrons receive additional energy from the reconnection electric field. The predicted scalings are in quantitative agreement with fluid and kinetic simulations, as well as spacecraft observations. Using kinetic simulations, we extend this work to explore how the layer dynamics and electron bulk heating vary as functions of the magnetic shear and plasma and magnetic pressure asymmetry across the reconnection layer. These results are pertinent to recent Magnetospheric Multiscale (MMS) Mission measurements of electron dynamics during dayside magnetopause reconnection.

  8. Magnetic Reconnection in Extreme Astrophysical Environments

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    Magnetic reconnection is a fundamental plasma physics process of breaking ideal-MHD's frozen-in constraints on magnetic field connectivity and of dramatic rearranging of the magnetic topol-ogy, which often leads to a violent release of the free magnetic energy. Reconnection has long been acknowledged to be of great importance in laboratory plasma physics (magnetic fusion) and in space and solar physics (responsible for solar flares and magnetospheric substorms). In addition, its importance in Astrophysics has been increasingly recognized in recent years. However, due to a great diversity of astrophysical environments, the fundamental physics of astrophysical magnetic reconnection can be quite different from that of the traditional recon-nection encountered in the solar system. In particular, environments like the solar corona and the magnetosphere are characterized by relatively low energy densities, where the plasma is ad-equately described as a mixture of electrons and ions whose numbers are conserved and where the dissipated magnetic energy basically stays with the plasma. In contrast, in many high-energy astrophysical phenomena the energy density is so large that photons play as important a role as electrons and ions and, in particular, radiation pressure and radiative cooling become dominant. In this talk I focus on the most extreme case of high-energy-density astrophysical reconnec-tionreconnection of magnetar-strength (1014 - 1015 Gauss) magnetic fields, important for giant flares in soft-gamma repeaters (SGRs), and for rapid magnetic energy release in either the central engines or in the relativistic jets of Gamma Ray Bursts (GRBs). I outline the key relevant physical processes and present a new theoretical picture of magnetic reconnection in these environments. The corresponding magnetic energy density is so enormous that, when suddenly released, it inevitably heats the plasma to relativistic temperatures, resulting in co-pious production of electron

  9. Comparison of reconnection in magnetosphere and solar corona

    NASA Astrophysics Data System (ADS)

    Imada, Shinsuke; Hirai, Mariko; Isobe, Hiroaki; Oka, Mitsuo; Watanabe, Kyoko; Minoshima, Takashi

    One of the most famous rapid energy conversion mechanisms in space is a magnetic reconnec-tion. The general concept of a magnetic reconnection is that the rapid energy conversion from magnetic field energy to thermal energy, kinetic energy or non-thermal particle energy. The understanding of rapid energy conversion rates from magnetic field energy to other energy is the fundamental and essential problem in the space physics. One of the important goals for studying magnetic reconnection is to answer what plasma condition/parameter controls the energy conversion rates. Earth's magnetotail has been paid much attention to discuss a mag-netic reconnection, because we can discuss magnetic reconnection characteristics in detail with direct in-situ observation. Recently, solar atmosphere has been focused as a space laboratory for magnetic reconnection because of its variety in plasma condition. So far considerable effort has been devoted toward understanding the energy conversion rates of magnetic reconnection, and various typical features associated with magnetic reconnection have been observed in the Earth's magnetotail and the solar corona. In this talk, we first introduce the variety of plasma condition/parameter in solar corona and Earth's magnetotail. Later, we discuss what plasma condition/parameter controls the energy conversion from magnetic field to especially non-thermal particle. To compare non-thermal electron and ion acceleration in magnetic reconnection, we used Hard X-ray (electron) /Neu-tron monitor (ion) for solar corona and Geotail in-situ measurement (electron and ion) for magnetoatil. We found both of electron and ion accelerations are roughly controlled by re-connection electric field (reconnection rate). However, some detail points are different in ion and electron acceleration. Further, we will discuss what is the major difference between solar corona and Earth's magnetotail for particle acceleration.

  10. Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.

    1993-01-01

    A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.

  11. On magnetohydrodynamic thermal instabilities in magnetic flux tubes. [in plane parallel stellar atmosphere in LTE and hydrostatic equilibrium

    NASA Technical Reports Server (NTRS)

    Massaglia, S.; Ferrari, A.; Bodo, G.; Kalkofen, W.; Rosner, R.

    1985-01-01

    The stability of current-driven filamentary modes in magnetic flux tubes embedded in a plane-parallel atmosphere in LTE and in hydrostatic equilibrium is discussed. Within the tube, energy transport by radiation only is considered. The dominant contribution to the opacity is due to H- ions and H atoms (in the Paschen continuum). A region in the parameter space of the equilibrium configuration in which the instability is effective is delimited, and the relevance of this process for the formation of structured coronae in late-type stars and accretion disks is discussed.

  12. Helicity transformation under the collision and merging of two magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    DeHaas, Timothy; Gekelman, Walter

    2017-07-01

    Magnetic helicity has become a useful tool in the analysis of astrophysical plasmas. Its conservation in the magnetohydrodynamic limit (and other fluid approaches) constrains the global behavior of large plasma structures. One such astrophysical structure is a magnetic flux rope: a tube-like, current-carrying plasma embedded in an external magnetic field. Bundles of these ropes are commonly observed in the near-earth environment and solar atmosphere. In this well-diagnosed experiment (three-dimensional measurements of ne, Te, Vp, B, J, E, and uflow), two magnetic flux ropes are generated in the Large Plasma Device at UCLA. These ropes are driven kink-unstable to trigger complex motion. As they interact, helicity conservation is examined in regions of reconnection. We examine (1) the transport of helicity and (2) the dissipation of the helicity. As the ropes move and the topology of the field lines diverge, a quasi-separatrix layer (QSL) is formed. As the QSL forms, magnetic helicity is dissipated within this region. At the same time, there is an influx of canonical helicity into the region such that the temporal derivative of magnetic helicity is zero.

  13. Reconnections of Wave Vortex Lines

    ERIC Educational Resources Information Center

    Berry, M. V.; Dennis, M. R.

    2012-01-01

    When wave vortices, that is nodal lines of a complex scalar wavefunction in space, approach transversely, their typical crossing and reconnection is a two-stage process incorporating two well-understood elementary events in which locally coplanar hyperbolas switch branches. The explicit description of this reconnection is a pedagogically useful…

  14. Fluctuation dynamics in reconnecting current sheets

    NASA Astrophysics Data System (ADS)

    von Stechow, Adrian; Grulke, Olaf; Ji, Hantao; Yamada, Masaaki; Klinger, Thomas

    2015-11-01

    During magnetic reconnection, a highly localized current sheet forms at the boundary between opposed magnetic fields. Its steep perpendicular gradients and fast parallel drifts can give rise to a range of instabilities which can contribute to the overall reconnection dynamics. In two complementary laboratory reconnection experiments, MRX (PPPL, Princeton) and VINETA.II (IPP, Greifswald, Germany), magnetic fluctuations are observed within the current sheet. Despite the large differences in geometries (toroidal vs. linear), plasma parameters (high vs. low beta) and magnetic configuration (low vs. high magnetic guide field), similar broadband fluctuation characteristics are observed in both experiments. These are identified as Whistler-like fluctuations in the lower hybrid frequency range that propagate along the current sheet in the electron drift direction. They are intrinsic to the localized current sheet and largely independent of the slower reconnection dynamics. This contribution characterizes these magnetic fluctuations within the wide parameter range accessible by both experiments. Specifically, the fluctuation spectra and wave dispersion are characterized with respect to the magnetic topology and plasma parameters of the reconnecting current sheet.

  15. Turbulent Reconnection Rates from Cluster Observations in the Magnetosheath

    NASA Technical Reports Server (NTRS)

    Wendel, Deirdre

    2011-01-01

    The role of turbulence in producing fast reconnection rates is an important unresolved question. Scant in situ analyses exist. We apply multiple spacecraft techniques to a case of nonlinear turbulent reconnection in the magnetosheath to test various theoretical results for turbulent reconnection rates. To date, in situ estimates of the contribution of turbulence to reconnection rates have been calculated from an effective electric field derived through linear wave theory. However, estimates of reconnection rates based on fully nonlinear turbulence theories and simulations exist that are amenable to multiple spacecraft analyses. Here we present the linear and nonlinear theories and apply some of the nonlinear rates to Cluster observations of reconnecting, turbulent current sheets in the magnetosheath. We compare the results to the net reconnection rate found from the inflow speed. Ultimately, we intend to test and compare linear and nonlinear estimates of the turbulent contribution to reconnection rates and to measure the relative contributions of turbulence and the Hall effect.

  16. Observational Signatures of Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2014-01-01

    Magnetic reconnection is often referred to as the primary source of energy release during solar flares. Directly observing reconnection occurring in the solar atmosphere, however, is not trivial considering that the scale size of the diffusion region is magnitudes smaller than the observational capabilities of current instrumentation, and coronal magnetic field measurements are not currently sufficient to capture the process. Therefore, predicting and studying observationally feasible signatures of the precursors and consequences of reconnection is necessary for guiding and verifying the simulations that dominate our understanding. I will present a set of such observations, particularly in connection with long-duration solar events, and compare them with recent simulations and theoretical predictions.

  17. What controls the local time extent of flux transfer events?

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Imber, S. M.; Carter, J. A.; Walach, M.-T.; Hubert, B.

    2016-02-01

    Flux transfer events (FTEs) are the manifestation of bursty and/or patchy magnetic reconnection at the magnetopause. We compare two sequences of the ionospheric signatures of flux transfer events observed in global auroral imagery and coherent ionospheric radar measurements. Both sequences were observed during very similar seasonal and interplanetary magnetic field (IMF) conditions, though with differing solar wind speed. A key observation is that the signatures differed considerably in their local time extent. The two periods are 26 August 1998, when the IMF had components BZ≈-10 nT and BY≈9 nT and the solar wind speed was VX≈650 km s-1, and 31 August 2005, IMF BZ≈-7 nT, BY≈17 nT, and VX≈380 km s-1. In the first case, the reconnection rate was estimated to be near 160 kV, and the FTE signatures extended across at least 7 h of magnetic local time (MLT) of the dayside polar cap boundary. In the second, a reconnection rate close to 80 kV was estimated, and the FTEs had a MLT extent of roughly 2 h. We discuss the ramifications of these differences for solar wind-magnetosphere coupling.

  18. Fast Magnetotail Reconnection: Challenge to Global MHD Modeling

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.; Hesse, M.; Rastaetter, L.; Toth, G.; de Zeeuw, D.; Gombosi, T.

    2005-05-01

    Representation of fast magnetotail reconnection rates during substorm onset is one of the major challenges to global MHD modeling. Our previous comparative study of collisionless magnetic reconnection in GEM Challenge geometry demonstrated that the reconnection rate is controlled by ion nongyrotropic behavior near the reconnection site and that it can be described in terms of nongyrotropic corrections to the magnetic induction equation. To further test the approach we performed MHD simulations with nongyrotropic corrections of forced reconnection for the Newton Challenge setup. As a next step we employ the global MHD code BATSRUS and test different methods to model fast magnetotail reconnection rates by introducing non-ideal corrections to the induction equation in terms of nongyrotropic corrections, spatially localized resistivity, or current dependent resistivity. The BATSRUS adaptive grid structure allows to perform global simulations with spatial resolution near the reconnection site comparable with spatial resolution of local MHD simulations for the Newton Challenge. We select solar wind conditions which drive the accumulation of magnetic field in the tail lobes and subsequent magnetic reconnection and energy release. Testing the ability of global MHD models to describe magnetotail evolution during substroms is one of the elements of science based validation efforts at the Community Coordinated Modeling Center.

  19. Velocity Space Evolution of Dayside Reconnection Outflow

    NASA Astrophysics Data System (ADS)

    Broll, J. M.; Fuselier, S. A.; Trattner, K. J.

    2015-12-01

    Magnetic reconnection is a universal phenomenon occurring when energy stored in a complicated magnetic field topology is released into the surrounding plasma as the field simplifies its configuration. At Earth's dayside magnetopause, reconnection is responsible for mass and energy input from the solar wind into the magnetosphere. We describe the evolution of the velocity-space evolution of plasma outflow from a dayside magnetic reconnection region. We analyze Cluster magnetopause crossings between 1 and 10 Earth radii from the reconnection X-line predicted by the maximum magnetic shear model. The effects of nonadiabatic processes, such as deformation of the profile due to finite-gyroradius-induced pitch-angle scattering and wave-particle interactions, are described. We compare observations and simulation results to describe the outflow evolution and infer the field-aligned distance between an observation and the reconnection site producing it.

  20. Breakout Reconnection Observed by the TESIS EUV Telescope

    NASA Astrophysics Data System (ADS)

    Reva, A. A.; Ulyanov, A. S.; Shestov, S. V.; Kuzin, S. V.

    2016-01-01

    We present experimental evidence of the coronal mass ejection (CME) breakout reconnection, observed by the TESIS EUV telescope. The telescope could observe solar corona up to 2 R⊙ from the Sun center in the Fe 171 Å line. Starting from 2009 April 8, TESIS observed an active region (AR) that had a quadrupolar structure with an X-point 0.5 R⊙ above photosphere. A magnetic field reconstructed from the Michelson Doppler Imager data also has a multipolar structure with an X-point above the AR. At 21:45 UT on April 9, the loops near the X-point started to move away from each other with a velocity of ≈7 km s-1. At 01:15 UT on April 10, a bright stripe appeared between the loops, and the flux in the GOES 0.5-4 Å channel increased. We interpret the loops’ sideways motion and the bright stripe as evidence of the breakout reconnection. At 01:45 UT, the loops below the X-point started to slowly move up. At 15:10 UT, the CME started to accelerate impulsively, while at the same time a flare arcade formed below the CME. After 15:50 UT, the CME moved with constant velocity. The CME evolution precisely followed the breakout model scenario.

  1. Scaling of Asymmetric Magnetic Reconnection Rate with Guide Field

    NASA Astrophysics Data System (ADS)

    Liang, H.; Cassak, P.; Swisdak, M.; Hartke, T.; Oieroset, M.; Phan, T.; Liu, Y. H.; Hesse, M.; Shay, M.; Beidler, M.

    2017-12-01

    An out-of-plane (guide) magnetic field in asymmetric magnetic reconnection with an in-plane gas pressure gradient can lead to diamagnetic effects in the plane of reconnection. Simulations showed that such effects can make the X-line convect in the outflow direction and reduce the reconnection rate. They can even suppress the reconnection completely under certain upstream conditions. The complete suppression of reconnection due to these effects has been observed in the solar wind and Earth's magnetopause, and it has also been discussed as being important in the outer heliosphere, the magnetospheres of Jupiter, Saturn, and Mercury, and in magnetically confined fusion devices. Recent studies showed that diamagnetic effects set up by a density gradient are different from those set up by a temperature gradient. Although it is known that reconnection can be significantly slowed down and even suppressed by diamagnetic effects, there is neither a comprehensive understanding of the impact of the guide field and the diamagnetic effects on asymmetric reconnection nor quantitative scaling prediction for the reconnection rate as a function of arbitrary upstream conditions including guide fields. The purpose of this work is a first step towards these goals. We investigate the scaling of the reconnection rate using two-dimensional particle-in-cell simulations. This study will be important for asymmetric reconnections in many settings, including those in the solar wind and those at planetary magnetospheres in reference to solar wind-magnetospheric coupling at the dayside magnetopause. It will also be useful for gaining perspective and making comparisons to Magnetospheric Multiscale (MMS) observations of dayside reconnection.

  2. Magnetospheric Multiscale Mission Observations of Magnetic Flux Ropes in the Earth's Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Slavin, J. A.; Akhavan-Tafti, M.; Poh, G.; Le, G.; Russell, C. T.; Nakamura, R.; Baumjohann, W.; Torbert, R. B.; Gershman, D. J.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Burch, J. L.

    2017-12-01

    A major discovery by the Cluster mission and the previous generation of science missions is the presence of earthward and tailward moving magnetic flux ropes in the Earth's plasma sheet. However, the lack of high-time resolution plasma measurements severely limited progress concerning the formation and evolution of these reconnection generated structures. We use high-time resolution magnetic and electric field and plasma measurements from the Magnetospheric Multiscale mission's first tail season to investigate: 1) the distribution of flux rope diameters relative to the local ion and electron inertial lengths; 2) the internal force balance sustaining these structures; and 3) the magnetic connectivity of the flux ropes to the Earth and/or the interplanetary medium; 4) the specific entropy of earthward moving flux ropes and the possible effect of "buoyancy" on how deep they penetrate into the inner magnetosphere; and 5) evidence for coalescence of adjacent flux ropes and/or the division of existing flux ropes through the formation of secondary X-lines. The results of these initial analyses will be discussed in terms of their implications for reconnection-driven magnetospheric dynamics and substorms.

  3. FLARE: a New User Facility to Study Multiple-Scale Physics of Magnetic Reconnection Through in-situ Measurements

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W. S.; Chen, Y.; Cutler, R.; Fox, W.; Hoffmann, F.; Kalish, M.; Jara-Almonte, J.; Myers, C. E.; Ren, Y.; Yamada, M.; Yoo, J.; Bale, S. D.; Carter, T.; Dorfman, S. E.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.

    2016-12-01

    The FLARE device (Facility for Laboratory Reconnection Experiments; http://flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton for the studies of magnetic reconnection in the multiple X-line regimes directly relevant to space, solar, astrophysical, and fusion plasmas, as guided by a reconnection phase diagram [Ji & Daughton, Physics of Plasmas 18, 111207 (2011)]. Most of major components either have been already fabricated or are near their completion, including the two most crucial magnets called flux cores. The hardware assembly and installation begin in this summer, followed by commissioning in 2017. Initial comprehensive set of research diagnostics will be constructed and installed also in 2017. The main diagnostics is an extensive set of magnetic probe arrays, covering multiple scales from local electron scales ( ˜ 2 mm) , to intermediate ion scales ( ˜10 cm), and global MHD scales ( ˜ 1 m). The main advantage for the magnetospheric community to use this facility is the ability to simultaneously provide in-situ measurements over all of these relevant scales. By using these laboratory data, not only the detailed spatial profiles around each reconnecting X-line are available for direct comparisons with spacecraft data, but also the global conditions and consequences of magnetic reconnection, which are often difficult to quantify in space, can be controlled or studied systematically. The planned procedures and example topics as a user facility will be discussed in details.

  4. Lava Tube Seismicity at Kilauea

    NASA Astrophysics Data System (ADS)

    Hoblitt, R. P.; Battaglia, J.; Kauahikaua, J. P.; Okubo, P. G.

    2002-12-01

    We have begun to collect seismic data on lava tubes at Kilauea volcano in an effort to develop a real-time method for monitoring lava tube flux. Utilizing seismometers whose responses collectively vary from about 1 Hz to 1000 Hz, we find that most tube signals range between about 1 to 150 Hz, though some sites exhibit transient signals that range upward to several hundred Hz or more. Part of the lower frequency band--perhaps 1-10 Hz--may be volcanic tremor from Pu`u `O`o, the source of the lava flowing in the tubes. We attribute the higher frequencies to flowing lava, though wind noise and helicopter noise complicate interpretation. At a given site, both the amplitude and frequency spectrum change with time. We strongly suspect that at least some of the changes are related to changes in lava velocity and/or lava flux. Our strongest evidence that the part of the spectrum greater than 10 Hz contains velocity/flux information is that the signal amplitude of this band decreased by about 90 percent when the independently measured VLF (Very Low Frequency) tube flux decreased from about 300,000 m3/day in early February, 2002 to less than 5,000 m3/day in late August. Qualitative field observations of this tube system are in agreement with the VLF measurements.

  5. Particle acceleration at a reconnecting magnetic separator

    NASA Astrophysics Data System (ADS)

    Threlfall, J.; Neukirch, T.; Parnell, C. E.; Eradat Oskoui, S.

    2015-02-01

    Context. While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. Aims: We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. Methods: We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. Results: The effect upon particle behaviour of initial position, pitch angle, and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains several free parameters, and we study the effect of changing these parameters upon particle acceleration, in particular in view of the final particle energy ranges that agree with observed energy spectra.

  6. Cross-Scale Observational Signatures of Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina; Malaspina, David

    2014-01-01

    Magnetic reconnection is a significant mechanism for energy release across many astrophysical applications. In the solar atmosphere, reconnection is considered a primary contributor of flare evolution and coronal heating. Directly observing reconnection occurring in the solar atmosphere, however, is not trivial considering that the scale size of the diffusion region is magnitudes smaller than the observational capabilities of current instrumentation, and coronal magnetic field measurements are not currently sufficient to capture the process. Meanwhile, reconnection occurring in the Earth's magnetosphere transfers energy from the solar wind through a comparable process, although on vastly different scales. Magnetospheric measurements are made in situ rather than remotely; ergo, comparison of observations between the two regimes allows for potentially significant insight into reconnection as a stochastic and possibly turbulent process. We will present a set of observations from long-duration solar events and compare them to in situ measurements from the magnetosphere.

  7. Cross-scale Observational Signatures of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Savage, S. L.; Malaspina, D.

    2014-12-01

    Magnetic reconnection is a significant mechanism for energy release across many astrophysical applications. In the solar atmosphere, reconnection is considered a primary contributor of flare evolution and coronal heating. Directly observing reconnection occurring in the solar atmosphere, however, is not trivial considering that the scale size of the diffusion region is magnitudes smaller than the observational capabilities of current instrumentation, and coronal magnetic field measurements are not currently sufficient to capture the process. Meanwhile, reconnection occurring in the Earth's magnetosphere transfers energy from the solar wind through a comparable process, although on vastly different scales. Magnetospheric measurements are made in situ rather than remotely; ergo, comparison of observations between the two regimes allows for potentially significant insight into reconnection as a stochastic and possibly turbulent process. We will present a set of observations from long-duration solar events and compare them to in situ measurements from the magnetosphere.

  8. The Importance of Reconnection at Sector Boundaries: Another Space Weather Hazard?

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Lai, H.; Russell, C. T.

    2017-12-01

    Sector Boundaries are interfaces between nearly oppositely directed magnetic flux in the solar wind. When the leading solar wind stream is moving more slowly than the following stream a high-pressure ridge appears at the interface, that compresses the plasma sometimes leading to a forward and reverse shock pair that slows the fast stream and accelerate the slow stream. If reconnection at the interface between the streams occurs part of the magnetic flux will be annihilated but the plasma once associated with that magnetic flux remains near the interface causing a sometimes significant short-lived dynamic pressure increase. The declining phase of solar cycle 24 exhibits several examples of the phenomenon with densities reaching over 80 protons cm-3 at speed of about 400 km sec-1. We examine the solar wind context of the phenomenon and the consequences at the magnetosphere using space-based and ground-based observations and comment on their possible generation of geomagnetically-induced currents.

  9. Ulysses Observations of Tripolar Guide-Magnetic Field Perturbations Across Solar Wind Reconnection Exhausts

    NASA Astrophysics Data System (ADS)

    Eriksson, S.; Peng, B.; Markidis, S.; Gosling, J. T.; McComas, D. J.; Lapenta, G.; Newman, D. L.

    2014-12-01

    We report observations from 15 solar wind reconnection exhausts encountered along the Ulysses orbit beyond 4 AU in 1996-1999 and 2002-2005. The events, which lasted between 17 and 45 min, were found at heliospheric latitudes between -36o and 21o with one event detected as high as 58o. All events shared a common characteristic of a tripolar guide-magnetic field perturbation being detected across the observed exhausts. The signature consists of an enhanced guide field magnitude within the exhaust center and two regions of significantly depressed guide-fields adjacent to the center region. The events displayed magnetic field shear angles as low as 37o with a mean of 89o. This corresponds to a strong external guide field relative to the anti-parallel reconnecting component of the magnetic field with a mean ratio of 1.3 and a maximum ratio of 3.1. A 2-D kinetic reconnection simulation for realistic solar wind conditions reveals that tripolar guide fields form at current sheets in the presence of multiple X-lines as two magnetic islands interact with one another for such strong guide fields. The Ulysses observations are also compared with the results of a 3-D kinetic simulation of multiple flux ropes in a strong guide field.

  10. MAGNETIC FLUX CANCELATION AS THE TRIGGER OF SOLAR QUIET-REGION CORONAL JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    We report observations of 10 random on-disk solar quiet-region coronal jets found in high-resolution extreme ultraviolet (EUV) images from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly and having good coverage in magnetograms from the SDO /Helioseismic and Magnetic Imager (HMI). Recent studies show that coronal jets are driven by the eruption of a small-scale filament (called a minifilament ). However, the trigger of these eruptions is still unknown. In the present study, we address the question: what leads to the jet-driving minifilament eruptions? The EUV observations show that there is a cool-transition-region-plasma minifilament present prior to each jetmore » event and the minifilament eruption drives the jet. By examining pre-jet evolutionary changes in the line of sight photospheric magnetic field, we observe that each pre-jet minifilament resides over the neutral line between majority-polarity and minority-polarity patches of magnetic flux. In each of the 10 cases, the opposite-polarity patches approach and merge with each other (flux reduction between 21% and 57%). After several hours, continuous flux cancelation at the neutral line apparently destabilizes the field holding the cool-plasma minifilament to erupt and undergo internal reconnection, and external reconnection with the surrounding coronal field. The external reconnection opens the minifilament field allowing the minifilament material to escape outward, forming part of the jet spire. Thus, we found that each of the 10 jets resulted from eruption of a minifilament following flux cancelation at the neutral line under the minifilament. These observations establish that magnetic flux cancelation is usually the trigger of quiet-region coronal jet eruptions.« less

  11. Microphysics of Magnetic Reconnection: Experiments on RSX and Simulation

    NASA Astrophysics Data System (ADS)

    Intrator, T. P.; Furno, I. G.; Hsu, S. C.; Lapenta, G.; Ricci, P.

    2003-12-01

    Using a unique LANL laboratory facility, the Reconnection Scaling Experiment (RSX), and a state-of-the-art LANL numerical code, CELESTE3D, we are beginning an experimental and numerical study of the microphysics of 2D and 3D "fast magnetic reconnection". RSX at Los Alamos National Laboratory is already operational and producing research plasmas. In RSX, the radial boundaries and thus the reconnection geometry are not constrained to two dimensions. It is capable of investigating 3D magnetic reconnection occurring in a free-boundary 3D linear geometry during the coalescence of two parallel current plasma channels, which are produced by using plasma gun technology. RSX can also scale the guide field (ion gyroradius) independently of other reconnection parameters. Frontier reconnection research invokes (1) `anomalous' microinstability-induced resistivity, which enhances dissipation rates inside the reconnection layer and (2) terms of the two-fluid generalized Ohm's law which introduce whistler and kinetic Alfvén wave dynamics. The two-fluid approach predicts (a) a two-spatial-scale spatial structure of the reconnection layer, with outer (inner) thickness equal to the ion (electron) skin depth and (b) Hall currents in the reconnection plane and out-of-plane magnetic field on the electron scale. We will show spatially resolved RSX experimental measurements of the dynamics of the reconnection layer, and take advantage of our scaling capabilities to address the applicability of the two-fluid approach.

  12. Transient, Small-Scale Field-Aligned Currents in the Plasma Sheet Boundary Layer During Storm Time Substorms

    NASA Technical Reports Server (NTRS)

    Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Plaschke, F.; Magnes, W.; Fischer, D.; Varsani, A.; Schmid, D.; Nakamura, T. K. M.; Russell, C. T.; hide

    2016-01-01

    We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the Separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward earth ward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

  13. Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms.

    PubMed

    Nakamura, R; Sergeev, V A; Baumjohann, W; Plaschke, F; Magnes, W; Fischer, D; Varsani, A; Schmid, D; Nakamura, T K M; Russell, C T; Strangeway, R J; Leinweber, H K; Le, G; Bromund, K R; Pollock, C J; Giles, B L; Dorelli, J C; Gershman, D J; Paterson, W; Avanov, L A; Fuselier, S A; Genestreti, K; Burch, J L; Torbert, R B; Chutter, M; Argall, M R; Anderson, B J; Lindqvist, P-A; Marklund, G T; Khotyaintsev, Y V; Mauk, B H; Cohen, I J; Baker, D N; Jaynes, A N; Ergun, R E; Singer, H J; Slavin, J A; Kepko, E L; Moore, T E; Lavraud, B; Coffey, V; Saito, Y

    2016-05-28

    We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

  14. Open and disconnected magnetic field lines within coronal mass ejections in the solar wind: Evidence for 3-dimensional reconnection

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Birn, J.; McComas, D. J.; Phillips, J. L.; Hesse, M.

    1995-01-01

    Measurements of suprathermal electron fluxes in the solar wind at energies greater than approximatley 80 eV indicate that magnetic field lines within coronal mass ejections. CMEs, near and beyond 1 AU are normally connected to the Sun at both ends. However, a preliminary reexamination of events previously identified as CMEs in the ISEE 3 data reveals that about 1/4 of all such events contain limited regions where field lines appear to be either connected to the Sun at only one end or connected to the outer heliosphere at both ends. Similar intervals of open and disconnected field lines within CMEs have been identified in the Ulysses observations. We believe that these anomalous field topologies within CMEs are most naturally interpreted in terms of 3-dimensional reconnection behind CMEs close to the Sun. Such reconnection also provides a natural explanation both for the flux rope topology of many CMEs as well as the coronal loops formed during long-duration solar soft X ray events. Although detailed numerical simulations of 3-dimensional reconnection behind CMEs are not yet available, such simulations have been done for the qualitatively similar geometry that prevails within the geomagnetic tail. Those simulations of plasmoid formation in the geomagnetic tail do produce the mixture of field topologies within plasmoids discussed here for CMEs.

  15. Simulations of Magnetic Reconnection - Kinetic Mechanisms Underlying the Fluid Description of Ions

    NASA Technical Reports Server (NTRS)

    Aunai, icolas; Belmont, Gerard; Smets, Roch

    2012-01-01

    Because of its ability to transfer the energy stored in magnetic field together with the breaking of the flux freezing constraint, magnetic reconnection is considered as one of the most important phenomena in plasma physics. When it happens in a collision less environment such as the terrestrial magnetosphere, it should a priori be modelled with in the framework of kinetic physics. The evidence of kinetic features has incidentally for a long time, been shown by researchers with the help of both numerical simulations and satellite observations. However, most of our understanding of the process comes from the more intuitive fluid interpretation with simple closure hypothesis which do not include kinetic effects. To what extent are these two separate descriptions of the same phenomenon related? What is the role of kinetic effects in the averaged/fluid dynamics of reconnection? This thesis addresses these questions for the proton population in the particular case of anti parallel merging with the help of 2D Hybrid simulations. We show that one can not assume, as is usually done, that the acceleration of the proton flow is only due to the Laplace force. Our results show, for symmetric and asymmetric connection, the importance of the pressure force, opposed to the electric one on the separatrices, in the decoupling region. In the symmetric case, we emphasize the kinetic origin of this force by analyzing the proton distribution functions and explain their structure by studying the underlying particle dynamics. Protons, as individual particles, are shown to bounce in the electric potential well created by the Hall effect. The spatial divergence of this well results in a mixing in phase space responsible for the observed structure of the pressure tensor. A detailed energy budget analysis confirms the role of the pressure force for the acceleration; but, contrary to what is sometimes assumed, it also reveals that the major part of the incoming Poynting flux is transferred to

  16. Magnetic Reconnection in Extreme Astrophysical Environments

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri A.

    2011-10-01

    Magnetic reconnection is a fundamental plasma physics process in which ideal-MHD's frozen-in constraints are broken and the magnetic field topology is dramatically re-arranged, which often leads to a violent release of the free magnetic energy. Most of the magnetic reconnection research done to date has been motivated by the applications to systems such as the solar corona, Earth's magnetosphere, and magnetic confinement devices for thermonuclear fusion. These environments have relatively low energy densities and the plasma is adequately described as a mixture of equal numbers of electrons and ions and where the dissipated magnetic energy always stays with the plasma. In contrast, in this paper I would like to introduce a different, new direction of research—reconnection in high energy density radiative plasmas, in which photons play as important a role as electrons and ions; in particular, in which radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. This research is motivated in part by rapid theoretical and experimental advances in High Energy Density Physics, and in part by several important problems in modern high-energy astrophysics. I first discuss some astrophysical examples of high-energy-density reconnection and then identify the key physical processes that distinguish them from traditional reconnection. Among the most important of these processes are: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and radiative resistivity); and, at the most extreme end—QED effects, including pair creation. The most notable among the astrophysical applications are situations involving magnetar-strength fields (1014-1015 G, exceeding the quantum critical field B ∗≃4×1013 G). The most important examples are giant flares in soft gamma repeaters (SGRs) and magnetic models of the central engines and relativistic jets of Gamma Ray Bursts (GRBs). The magnetic energy density in

  17. Anti-parallel versus Component Reconnection at the Earth Magnetopause

    NASA Astrophysics Data System (ADS)

    Trattner, K. J.; Burch, J. L.; Ergun, R.; Eriksson, S.; Fuselier, S. A.; Gomez, R. G.; Giles, B. L.; Steven, P. M.; Strangeway, R. J.; Wilder, F. D.

    2017-12-01

    Magnetic reconnection at the Earth's magnetopause is discussed and has been observed as anti-parallel and component reconnection. While anti-parallel reconnection occurs between magnetic field lines of (ideally) exactly opposite polarity, component reconnection (also known as the tilted X-line model) predicts the location of the reconnection line to be anchored at the sub-solar point and extend continuously along the dayside magnetopause, while the ratio of the IMF By/Bz component determines the tilt of the X-line relative to the equatorial plane.A reconnection location prediction model known as the Maximum Magnetic Shear Model combines these two scenarios. The model predicts that during dominant IMF By conditions, magnetic reconnection occurs along an extended line across the dayside magnetopause but generally not through the sub-solar point (as predicted in the original tilted X-line model). Rather, the line follows the ridge of maximum magnetic shear across the dayside magnetopause. In contrast, for dominant IMF Bz (155° < tan-1(By/Bz) < 205°) or dominant Bx (|Bx|/B > 0.7) conditions, the reconnection location bifurcates and traces to high-latitudes, in close agreement with the anti-parallel reconnection scenario, and does not cross the dayside magnetopause as a single tilted reconnection line. Using observations from the Magnetospheric MultiScale missions during a magnetopause crossing when the IMF rotated from an dominate IMF BZ to a dominant IMF BY field we will investigate when the transition between the anti-parallel and tilted X-line scenarios occurs.

  18. On random pressure pulses in the turbine draft tube

    NASA Astrophysics Data System (ADS)

    Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Tsoy, M. A.

    2017-04-01

    The flow in the conical part of the hydroturbine draft tube undergoes various instabilities due to deceleration and flow swirling at off-design operation points. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope induces periodical low-frequency pressure oscillations in the draft tube. Interaction of rotational (asynchronous) mode of disturbances with the elbow can bring to strong oscillations in the whole hydrodynamical system. Recent researches on flow structure in the discharge cone in a regime of free runner had revealed that helical-like vortex rope can be unstable itself. Some coils of helix close to each other and reconnection appears with generation of a vortex ring. The vortex ring moves toward the draft tube wall and downstream. The present research is focused on interaction of vortex ring with wall and generation of pressure pulses.

  19. Remote sensing of reconnection via ARTEMIS dual-spacecraft observations

    NASA Astrophysics Data System (ADS)

    Kiehas, Stefan; Angelopoulos, Vassilis; Runov, Andrei; Li, Shan-Shan

    2013-04-01

    Each month the two ARTEMIS probes spend about four days in the Earth's magnetotail near lunar orbit. Due to the near-equatorial orbit, the probes spend a considerable time near and inside the plasma sheet. This allows us to investigate large-scale effects of reconnection, such as flux ropes and high-speed flows, utilizing dual-probe observations on a regular basis. On August 31, 2012 around 03:00 UT, the ARTEMIS probes were separated by only 350 km in X_GSW and 0.6 (1) RE in Y_GSW (Z_GSW), where GSW denotes the Geocentric Solar Wind coordinate system, which x-axis is antiparallel to the solar wind flow direction. The two probes observe several TCRs and flux ropes. The inter-spacecraft separation allows us to determine the size of these structures to be not more than 6 RE in z. Counterstreaming beams observed by both probes indicate the simultaneous activity of two X-lines, earthward and tailward of the probes, respectively.

  20. Reconnection Processes in the Chromosphere and Corona

    NASA Astrophysics Data System (ADS)

    Shibata, Kazunari

    2012-07-01

    Magnetic reconnection is a fundamental key physical process in magnetized plasmas. Recent space solar observations revealed that magnetic reconnection is ubiquitous in the solar chromospheres and corona. Especially recent Hinode observations has found various types of tiny chromospheric jets, such as chromospheric anemone jets (Shibata et al. 2007), penumbral microjets (Katsukawa et al. 2007), light bridge jets from sunspot umbra (Shimizu et al. 2009), etc. It was also found that the corona is full of tiny X-ray jets (Cirtain et al. 2007). Often they are seen as helical spinning jets (Shimojo et al. 2007, Patsourakos et al. 2008, Pariat et al. 2009, Filippov et al. 2009, Kamio et al. 2010) with Alfvenic waves (Nishizuka et al. 2008, Liu et al. 2009) and there are increasing evidence of magnetic reconnection in these tiny jets. We can now say that as spatial resolution of observations become better and better, smaller and smaller flares and jets have been discovered, which implies that the magnetized solar atmosphere consist of fractal structure and dynamics, i.e., fractal reconnection. Bursty radio and hard X-ray emissions from flares also suggest the fractal reconnection and associated particle acceleration. Since magnetohydrodynamics (MHD) does not contain any characteristic length and time scale, it is natural that MHD structure, dynamics, and reconnection, tend to become fractal in ideal MHD plasmas with large magnetic Reynolds number such as in the solar atmosphere. We would discuss recent observations and theories related to fractal reconnection in the chromospheres and corona, and discuss possible implication to chromospheric and coronal heating.

  1. Turbulent Reconnection Rates from Cluster Observations in the Magneto sheath

    NASA Technical Reports Server (NTRS)

    Wendel, Deirdre

    2011-01-01

    The role of turbulence in producing fast reconnection rates is an important unresolved question. Scant in situ analyses exist. We apply multiple spacecraft techniques to a case of nonlinear turbulent reconnection in the magnetosheath to test various theoretical results for turbulent reconnection rates. To date, in situ estimates of the contribution of turbulence to reconnection rates have been calculated from an effective electric field derived through linear wave theory. However, estimates of reconnection rates based on fully nonlinear turbulence theories and simulations exist that are amenable to multiple spacecraft analyses. Here we present the linear and nonlinear theories and apply some of the nonlinear rates to Cluster observations of reconnecting, turbulent current sheets in the magnetos heath. We compare the results to the net reconnection rate found from the inflow speed. Ultimately, we intend to test and compare linear and nonlinear estimates of the turbulent contribution to reconnection rates and to measure the relative contributions of turbulence and the Hall effect.

  2. PLASMOID EJECTIONS AND LOOP CONTRACTIONS IN AN ERUPTIVE M7.7 SOLAR FLARE: EVIDENCE OF PARTICLE ACCELERATION AND HEATING IN MAGNETIC RECONNECTION OUTFLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Wei; Chen Qingrong; Petrosian, Vahe

    2013-04-20

    Where particle acceleration and plasma heating take place in relation to magnetic reconnection is a fundamental question for solar flares. We report analysis of an M7.7 flare on 2012 July 19 observed by SDO/AIA and RHESSI. Bi-directional outflows in forms of plasmoid ejections and contracting cusp-shaped loops originate between an erupting flux rope and underlying flare loops at speeds of typically 200-300 km s{sup -1} up to 1050 km s{sup -1}. These outflows are associated with spatially separated double coronal X-ray sources with centroid separation decreasing with energy. The highest temperature is located near the nonthermal X-ray loop-top source wellmore » below the original heights of contracting cusps near the inferred reconnection site. These observations suggest that the primary loci of particle acceleration and plasma heating are in the reconnection outflow regions, rather than the reconnection site itself. In addition, there is an initial ascent of the X-ray and EUV loop-top source prior to its recently recognized descent, which we ascribe to the interplay among multiple processes including the upward development of reconnection and the downward contractions of reconnected loops. The impulsive phase onset is delayed by 10 minutes from the start of the descent, but coincides with the rapid speed increases of the upward plasmoids, the individual loop shrinkages, and the overall loop-top descent, suggestive of an intimate relation of the energy release rate and reconnection outflow speed.« less

  3. The Role of Nongyrotropy in Balancing the Reconnection Diffusion Region

    NASA Astrophysics Data System (ADS)

    Hesse, M.; Liu, Y. H.; Chen, L. J.; Bessho, N.; Wang, S.; Burch, J. L.; Moretto, T.; Genestreti, K.; Phan, T.; Tenfjord, P.

    2017-12-01

    The structure of the reconnection diffusion region is, to a large degree, determined by the requirement to balance both the current flow and its dissipation processes, and the forces exerted onto the current layer by the inflow magnetic pressure. These balances are critical: without resupply processes, the transport of accelerated and current-carrying particles away from the diffusion region would generate a current density depletion, which, in principle, could lead to a mismatch with the curl of the magnetic field. Similarly, without heating processes, the convection of hot plasma away from the diffusion region would generate a force imbalance with the ambient magnetic field. The fact that neither of these imbalances occur is a consequence of the reconnection electric field, which is therefore not only required to facilitate magnetic flux transport, but also to provide the energization required to maintain balance in the diffusion region. In this presentation, we will use particle-in-cell simulations to analyze these balance conditions. We will furthermore show that nongyrotropic particle dynamics plays a key role both as current dissipation mechanism, and as overall heating mechanism in the diffusion region current layer.

  4. Catastrophic onset of fast magnetic reconnection with a guide field

    NASA Astrophysics Data System (ADS)

    Cassak, P. A.; Drake, J. F.; Shay, M. A.

    2007-05-01

    It was recently shown that the slow (collisional) Sweet-Parker and the fast (collisionless) Hall magnetic reconnection solutions simultaneously exist for a wide range of resistivities; reconnection is bistable [Cassak, Shay, and Drake, Phys. Rev. Lett., 95, 235002 (2005)]. When the thickness of the dissipation region becomes smaller than a critical value, the Sweet-Parker solution disappears and fast reconnection ensues, potentially explaining how large amounts of magnetic free energy can accrue without significant release before the onset of fast reconnection. Two-fluid numerical simulations extending the previous results for anti-parallel reconnection (where the critical thickness is the ion skin depth) to component reconnection with a large guide field (where the critical thickness is the thermal ion Larmor radius) are presented. Applications to laboratory experiments of magnetic reconnection and the sawtooth crash are discussed.

  5. Double Magnetic Reconnection Driven by Kelvin-Helmholtz Vortices

    NASA Astrophysics Data System (ADS)

    Horton, W., Jr.; Faganello, M.; Califano, F.; Pegoraro, F.

    2017-12-01

    Simulations and theory for the solar wind driven magnetic reconnection in the flanks of the magnetopause is shown to be intrinsically 3D with the secular growth of couple pairs of reconnection regions off the equatorial plane. We call the process double mid-latitude reconnection and show supporting 3D simulations and theory descripting the secular growth of the magnetic reconnection with the resulting mixing of the solar wind plasma with the magnetosphere plasma. The initial phase develops Kelvin-Helmholtz vortices at low-latitude and, through the propagation of Alfven waves far from the region where the stresses are generated, creates a standard quasi-2D low latitude boundary layer magnetic reconnection but off the equatorial plane and with a weak guide field component. The reconnection exponential growth is followed by a secularly growing nonlinear phase that gradually closes the solar wind field lines on the Earth. The nonlinear field line structure provides a channel for penetration of the SW plasma into the MS as observed by spacecraft [THEMIS and Cluster]. The simulations show the amount of solar wind plasma brought into the magnetosphere by tracing the time evolution of the areas corresponding to double reconnected field lines with Poincare maps. The results for the solar wind plasma brought into the magnetosphere seems consistent with the observed plasma transport. Finally, we have shown how the intrinsic 3D nature of the doubly reconnected magnetic field lines leads to the generation of twisted magnetic spatial structures that differ from the quasi-2D magnetic islands structures.

  6. Analysis of Magnetic Flux Rope Chains Embedded in Martian Current Sheets Using MAVEN Data

    NASA Astrophysics Data System (ADS)

    Bowers, C. F.; DiBraccio, G. A.; Brain, D.; Hara, T.; Gruesbeck, J.; Espley, J. R.; Connerney, J. E. P.; Halekas, J. S.

    2017-12-01

    The magnetotail of Mars is formed as the interplanetary magnetic field (IMF) drapes around the planet's conducting ionosphere and localized crustal magnetic fields. In this scenario, a cross-tail current sheet separates the sunward and anti-sunward tail lobes. This tail current sheet is a highly dynamic region where magnetic reconnection is able to occur between the oppositely oriented fields. Magnetic flux ropes, a by-product of magnetic reconnection in the tail or in the ionosphere characterized by their helical outer wraps and strong axial core field, are commonly observed in the Martian magnetotail. An initial study using Mars Global Surveyor measurements reported a chain of flux ropes in the tail. During this event, 3 flux ropes were observed during a single traversal of the tail current sheet with a duration of 4 minutes. Here, we perform a statistical survey of these chain-of-flux-rope events to characterize their occurrence in the tail current sheet using Mars Atmosphere and Volatile EvolutioN (MAVEN) data. We implement the well-established technique of Minimum Variance Analysis to confirm the helical structure of the flux ropes and also determine local current sheet orientation. Thorough visual examination of more than 1600 orbits has resulted in the identification of 784 tail current sheet traversals. We determine the current sheet thickness to be on the order of 100-1000 km. From these current sheet observations, a subset of 30 events include embedded chain of flux ropes within the current sheet structure. We find that 87% of these flux rope chain events are identified in the southern latitude regions of Mars, associated with crustal fields. Their location suggests that magnetic reconnection occurring near crustal fields may be the source of these flux ropes. These statistical measurements of both current sheets and associated flux rope chains provide information about the complex magnetospheric dynamics at Mars, and how these dynamics affect atmospheric

  7. Theory of magnetic reconnection in solar and astrophysical plasmas.

    PubMed

    Pontin, David I

    2012-07-13

    Magnetic reconnection is a fundamental process in a plasma that facilitates the release of energy stored in the magnetic field by permitting a change in the magnetic topology. In this paper, we present a review of the current state of understanding of magnetic reconnection. We discuss theoretical results regarding the formation of current sheets in complex three-dimensional magnetic fields and describe the fundamental differences between reconnection in two and three dimensions. We go on to outline recent developments in modelling of reconnection with kinetic theory, as well as in the magnetohydrodynamic framework where a number of new three-dimensional reconnection regimes have been identified. We discuss evidence from observations and simulations of Solar System plasmas that support this theory and summarize some prominent locations in which this new reconnection theory is relevant in astrophysical plasmas.

  8. Development of a sub-cm high resolution ion Doppler tomography diagnostics for fine structure measurement of guide field reconnection in TS-U

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; Koike, Hideya; Hatano, Hironori; Hayashi, Takumi; Cao, Qinghong; Himeno, Shunichi; Kaneda, Taishi; Akimitsu, Moe; Sawada, Asuka; Ono, Yasushi

    2017-10-01

    A new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics has been developed using ``multi-slit'' spectroscopy technique for detailed investigation of fine structure formation during high guide field magnetic reconnection. In the last three years, high field merging experiment in MAST pioneered new frontiers of reconnection heating: formation of highly peaked structure around X-point in high guide field condition (Bt > 0.3 T), outflow dissipation under the influence of better plasma confinement to form high temperature ring structure which aligns with closed flux surface of toroidal plasma, and interaction between ion and electron temperature profile during transport/confinement phase to form triple peak structure (τeiE 4 ms). To investigate more detailed mechanism with in-situ magnetic measurement, the university of Tokyo starts the upgrade of plasma parameters and spatial resolution of optical diagnostics as in MAST. Now, a new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics system construction has been completed and it successfully resolved fine structure of ion heating downstream, aligned with closed flux surface formed by reconnected field. This work was supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.

  9. Flux tubes in the SU(3) vacuum: London penetration depth and coherence length

    NASA Astrophysics Data System (ADS)

    Cea, Paolo; Cosmai, Leonardo; Cuteri, Francesca; Papa, Alessandro

    2014-05-01

    Within the dual superconductor scenario for the QCD confining vacuum, the chromoelectric field generated by a static qq¯ pair can be fitted by a function derived, by dual analogy, from a simple variational model for the magnitude of the normalized order parameter of an isolated Abrikosov vortex. Previous results for the SU(3) vacuum are revisited, but here the transverse chromoelectric field is measured by means of the connected correlator of two Polyakov loops and, in order to reduce noise, the smearing procedure is used instead of cooling. The penetration and coherence lengths of the flux tube are then extracted from the fit and compared with previous results.

  10. Study of Multiple Scale Physics of Magnetic Reconnection on the FLARE (Facility for Laboratory Reconnection Experiments)

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W. S.; Bale, S. D.; Carter, T. A.; Crocker, N.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.; Chen, Y.; Cutler, R.; Fox, W. R., II; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C. E.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-12-01

    The FLARE device (flare.pppl.gov) is a new intermediate-scale plasma experiment under construction at Princeton to study magnetic reconnection in regimes directly relevant to space, solar and astrophysical plasmas. The existing small-scale experiments have been focusing on the single X-line reconnection process either with small effective sizes or at low Lundquist numbers, but both of which are typically very large in natural plasmas. The configuration of the FLARE device is designed to provide experimental access to the new regimes involving multiple X-lines, as guided by a reconnection "phase diagram" [Ji & Daughton, PoP (2011)]. Most of major components of the FLARE device have been designed and are under construction. The device will be assembled and installed in 2016, followed by commissioning and operation in 2017. The planned research on FLARE as a user facility will be discussed on topics including the multiple scale nature of magnetic reconnection from global fluid scales to ion and electron kinetic scales. Results from scoping simulations based on particle and fluid codes and possible comparative research with space measurements will be presented.

  11. Low-Altitude Reconnection Inflow-Outflow Observations During a 2010 November 3 Solar Eruption

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina L.a; Holman, Gordon; Reeves, Katharine K.; Seaton, Daniel B.; McKenzie, David E.; Su, Yang

    2012-01-01

    For a solar flare occurring on 2010 November 3, we present observations us- ing several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope followed by inflows sweeping into a current sheet region. The inflows are soon followed by outflows appearing to originate from near the termination point of the inflowing motion an observation in line with standard magnetic reconnection models. We measure average inflow plane-of-sky speeds to range from approximately 150 - 690 km s-1 with the initial, high-temperature inflows being the fastest. Using the inflow speeds and a range of Alfven speeds, we estimate the Alfvenic Mach number which appears to decrease with time. We also provide inflow and outflow times with respect to RHESSI count rates and find that the fast, high- temperature inflows occur simultaneously with a peak in the RHESSI thermal light curve. Five candidate inflow-outflow pairs are identified with no more than a minute delay between detections. The inflow speeds of these pairs are measured to be approximately 10(exp 2) km s-1 with outflow speeds ranging from approximately 10(exp 2) - 10(exp 33 km s-1 indicating acceleration during the reconnection process. The fastest of these outflows are in the form of apparently traveling density enhancements along the legs of the loops rather than the loop apexes themselves. These flows could possibly either be accelerated plasma, shocks, or waves prompted by reconnection. The measurements presented here show an order of magnitude difference between the retraction speeds of the loops and the speed of the density enhancements within the loops presumably exiting the reconnection site.

  12. LOW-ALTITUDE RECONNECTION INFLOW-OUTFLOW OBSERVATIONS DURING A 2010 NOVEMBER 3 SOLAR ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Sabrina L.; Holman, Gordon; Su, Yang

    For a solar flare occurring on 2010 November 3, we present observations using several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope followed by inflows sweeping into a current sheet region. The inflows are soon followed by outflows appearing to originate from near the termination point of the inflowing motion-an observation in line with standard magnetic reconnection models. We measure average inflow plane-of-sky speeds to range from {approx}150 to 690 km s{sup -1} with the initial, high-temperature inflows being the fastest. Using the inflow speeds and a range of Alfven speeds, we estimate the Alfvenic Mach number which appearsmore » to decrease with time. We also provide inflow and outflow times with respect to RHESSI count rates and find that the fast, high-temperature inflows occur simultaneously with a peak in the RHESSI thermal light curve. Five candidate inflow-outflow pairs are identified with no more than a minute delay between detections. The inflow speeds of these pairs are measured to be {approx}10{sup 2} km s{sup -1} with outflow speeds ranging from {approx}10{sup 2} to 10{sup 3} km s{sup -1}-indicating acceleration during the reconnection process. The fastest of these outflows are in the form of apparently traveling density enhancements along the legs of the loops rather than the loop apexes themselves. These flows could possibly either be accelerated plasma, shocks, or waves prompted by reconnection. The measurements presented here show an order of magnitude difference between the retraction speeds of the loops and the speed of the density enhancements within the loops-presumably exiting the reconnection site.« less

  13. Slipping magnetic reconnection during an X-class solar flare observed by SDO/AIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudík, J.; Del Zanna, G.; Mason, H. E.

    2014-04-01

    We present SDO/AIA observations of an eruptive X-class flare of 2012 July 12, and compare its evolution with the predictions of a three-dimensional (3D) numerical simulation. We focus on the dynamics of flare loops that are seen to undergo slipping reconnection during the flare. In the Atmospheric Imaging Assembly (AIA) 131 Å observations, lower parts of 10 MK flare loops exhibit an apparent motion with velocities of several tens of km s{sup –1} along the developing flare ribbons. In the early stages of the flare, flare ribbons consist of compact, localized bright transition-region emission from the footpoints of the flaremore » loops. A differential emission measure analysis shows that the flare loops have temperatures up to the formation of Fe XXIV. A series of very long, S-shaped loops erupt, leading to a coronal mass ejection observed by STEREO. The observed dynamics are compared with the evolution of magnetic structures in the 'standard solar flare model in 3D.' This model matches the observations well, reproducing the apparently slipping flare loops, S-shaped erupting loops, and the evolution of flare ribbons. All of these processes are explained via 3D reconnection mechanisms resulting from the expansion of a torus-unstable flux rope. The AIA observations and the numerical model are complemented by radio observations showing a noise storm in the metric range. Dm-drifting pulsation structures occurring during the eruption indicate plasmoid ejection and enhancement of the reconnection rate. The bursty nature of radio emission shows that the slipping reconnection is still intermittent, although it is observed to persist for more than an hour.« less

  14. Locating dayside magnetopause reconnection with exhaust ion distributions

    NASA Astrophysics Data System (ADS)

    Broll, J. M.; Fuselier, S. A.; Trattner, K. J.

    2017-05-01

    Magnetic reconnection at Earth's dayside magnetopause is essential to magnetospheric dynamics. Determining where reconnection takes place is important to understanding the processes involved, and many questions about reconnection location remain unanswered. We present a method for locating the magnetic reconnection X line at Earth's dayside magnetopause under southward interplanetary magnetic field conditions using only ion velocity distribution measurements. Particle-in-cell simulations based on Cluster magnetopause crossings produce ion velocity distributions that we propagate through a model magnetosphere, allowing us to calculate the field-aligned distance between an exhaust observation and its associated reconnection line. We demonstrate this procedure for two events and compare our results with those of the Maximum Magnetic Shear Model; we find good agreement with its results and show that when our method is applicable, it produces more precise locations than the Maximum Shear Model.

  15. Low thermal flux glass-fiber tubing for cryogenic service

    NASA Technical Reports Server (NTRS)

    Hall, C. A.; Spond, D. E.

    1977-01-01

    This paper describes analytical techniques, fabrication development, and test results for composite tubing that has many applications in aerospace and commercial cryogenic installations. Metal liner fabrication is discussed in detail with attention given to resistance-welded liners, fusion-welded liners, chem-milled tubing liners, joining tube liners and end fittings, heat treatment and leak checks. Composite overwrapping, a second method of tubing fabrication, is also discussed. Test programs and analytical correlation are considered along with composite tubing advantages such as minimum weight, thermal efficiency and safety and reliability.

  16. New Expression for Collisionless Magnetic Reconnection Rate

    NASA Technical Reports Server (NTRS)

    Klimas, Alexander J.

    2014-01-01

    For 2D, symmetric, anti-parallel, collisionless magnetic reconnection, a new expression for the reconnection rate in the electron diffusion region is introduced. It is shown that this expression can be derived in just a few simple steps from a physically intuitive starting point; the derivation is given in its entirety and the validity of each step is confirmed. The predictions of this expression are compared to the results of several long-duration, open-boundary PIC reconnection simulations to demonstrate excellent agreement.

  17. Gluon correlations from a glasma flux-tube model compared to measured hadron correlations on transverse momentum (p t,p t) and angular differences (η Δ,φ Δ)

    DOE PAGES

    Trainor, Thomas A.; Ray, R. L.

    2011-09-09

    A glasma flux-tube model has been proposed to explain strong elongation on pseudorapidity η of the same-side two-dimensional (2D) peak in minimum-bias angular correlations from √( sNN)=200 GeV Au-Au collisions. The same-side peak or “soft ridge” is said to arise from coupling of flux tubes to radial flow whereby gluons radiated transversely from flux tubes are boosted by radial flow to form a narrow structure or ridge on azimuth. In this study we test the theory conjecture by comparing measurements to predictions for particle production, spectra, and correlations from the glasma model and from conventional fragmentation processes. We conclude thatmore » the glasma model is contradicted by measured hadron yields, spectra, and correlations, whereas a two-component model of hadron production, including minimum-bias parton fragmentation, provides a quantitative description of most features of the data, although η elongation of the same-side 2D peak remains undescribed.« less

  18. Direct evidence for kinetic effects associated with solar wind reconnection.

    PubMed

    Xu, Xiaojun; Wang, Yi; Wei, Fengsi; Feng, Xueshang; Deng, Xiaohua; Ma, Yonghui; Zhou, Meng; Pang, Ye; Wong, Hon-Cheng

    2015-01-28

    Kinetic effects resulting from the two-fluid physics play a crucial role in the fast collisionless reconnection, which is a process to explosively release massive energy stored in magnetic fields in space and astrophysical plasmas. In-situ observations in the Earth's magnetosphere provide solid consistence with theoretical models on the point that kinetic effects are required in the collisionless reconnection. However, all the observations associated with solar wind reconnection have been analyzed in the context of magnetohydrodynamics (MHD) although a lot of solar wind reconnection exhausts have been reported. Because of the absence of kinetic effects and substantial heating, whether the reconnections are still ongoing when they are detected in the solar wind remains unknown. Here, by dual-spacecraft observations, we report a solar wind reconnection with clear Hall magnetic fields. Its corresponding Alfvenic electron outflow jet, derived from the decouple between ions and electrons, is identified, showing direct evidence for kinetic effects that dominate the collisionless reconnection. The turbulence associated with the exhaust is a kind of background solar wind turbulence, implying that the reconnection generated turbulence has not much developed.

  19. Endogenous Magnetic Reconnection in Solar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Asgari-Targhi, M.; Coppi, B.; Basu, B.; Fletcher, A.; Golub, L.

    2017-12-01

    We propose that a magneto-thermal reconnection process occurring in coronal loops be the source of the heating of the Solar Corona [1]. In the adopted model, magnetic reconnection is associated with electron temperature gradients, anisotropic electron temperature fluctuations and plasma current density gradients [2]. The input parameters for our theoretical model are derived from the most recent observations of the Solar Corona. In addition, the relevant (endogenous) collective modes can produce high energy particle populations. An endogenous reconnection process is defined as being driven by factors internal to the region where reconnection takes place. *Sponsored in part by the U.S. D.O.E. and the Kavli Foundation* [1] Beafume, P., Coppi, B. and Golub, L., (1992) Ap. J. 393, 396. [2] Coppi, B. and Basu, B. (2017) MIT-LNS Report HEP 17/01.

  20. Why dayside reconnection is rare at Saturn

    NASA Astrophysics Data System (ADS)

    Masters, A.; Eastwood, J. P.; Swisdak, M. M.; Russell, C. T.; Thomsen, M. F.; Sergis, N.; Crary, F. J.; Dougherty, M. K.; Coates, A. J.; Krimigis, S. M.

    2011-12-01

    The interaction between the flow of solar wind plasma from the Sun and a magnetized planet produces a cavity in the flow known as a magnetosphere. Magnetic reconnection is a fundamental process that disrupts this shielding of the planet by allowing solar wind into the magnetosphere and releasing magnetic energy. Evidence for dayside reconnection at Saturn is very limited compared to Earth and other planets, representing one of the major open issues in Saturnian magnetospheric science. By combining theory, observations, and simulations we show that this is due to the pressure conditions in the vicinity of Saturn's magnetopause, which largely suppress reconnection. Our results demonstrate that solar wind-magnetosphere coupling via reconnection can vary between planets, and we cannot assume that the nature of this coupling is always Earth-like.

  1. On fast reconnection in pair plasmas

    NASA Astrophysics Data System (ADS)

    Zocco, A.; Chacon, L.; Simakov, A.; Lukin, V.

    2008-11-01

    The relevance of two-fluid effects to fast magnetic reconnection in standard electron-proton plasmas is well-known. The currently accepted view is that such fast reconnection is enabled by fast dispersive waves, which originate in the ion-electron mass difference. However, electron-positron (pair) plasmas do not feature such mass difference, and thus do not support fast dispersive waves. Nevertheless, recent kinetic and fluid pair-plasmas simulations have demonstrated that fast magnetic reconnection is indeed possible, thus casting doubt on the accepted view. In this study, we develop an analytical fluid model for 2D reconnection in non-relativistic, large-guide-field, low-β pair plasmas, including inertia, resistivity, and parallel viscosity.^4 We conclude that fast reconnection is possible in the collisionless (viscosity-dominated) regime, but not in the collisional (resistivity-dominated) one. J. Birn et al., J. Geophys. Res. 106 (A3), pp. 3715--3719 (2001) M. A. Shay et al., Geophys. Res. Lett. 26, 2163 (1999); B. N. Rogers et al., Phys. Rev. Lett. 87, 195004 (2001) See e.g. S. Zenitani and M. Hoshino, Astrophys. J. 562, L63 (2001); N. Bessho and A. Bhattacharjee, Phys. Rev. Lett. 95, 245001 (2005); W. Daughton and H. Karimabadi, Phys. Plasmas 14, 72303 (2007). L. Chac'on, A. N. Simakov, V. S. Lukin, A. Zocco, Phys. Rev. Lett., 025003 (2008)

  2. Magnetic Reconnection during Turbulence: Statistics of X-Points and Heating

    NASA Astrophysics Data System (ADS)

    Shay, M. A.; Haggerty, C. C.; Parashar, T.; Matthaeus, W. H.; Phan, T.; Drake, J. F.; Servidio, S.; Wan, M.

    2017-12-01

    Magnetic reconnection is a ubiquitous plasma phenomenon that has been observed in turbulent plasma systems. It is an important part of the turbulent dynamics and heating of space, laboratory and astrophysical plasmas. Recent simulation and observational studies have detailed how magnetic reconnection heats plasma and this work has developed to the point where it can be applied to larger and more complex plasma systems. In this context, we examine the statistics of magnetic reconnection in fully kinetic PIC simulations to quantify the role of magnetic reconnection on energy dissipation and plasma heating. Most notably, we study the time evolution of these x-line statistics in decaying turbulence. First, we examine the distribution of reconnection rates at the x-points found in the simulation and find that their distribution is broader than the MHD counterpart, and the average value is approximately 0.1. Second, we study the time evolution of the x-points to determine when reconnection is most active in the turbulence. Finally, using our findings on these statistics, reconnection heating predictions are applied to the regions surrounding the identified x-points and this is used to study the role of magnetic reconnection in turbulent heating of plasma. The ratio of ion to electron heating rates is found to be consistent with magnetic reconnection predictions.

  3. Investigation of Magnetic Reconnection Suppression at Saturn's Magnetopause

    NASA Astrophysics Data System (ADS)

    Sawyer, R.; Fuselier, S. A.; Mukherjee, J.; Steven, P. M.; Masters, A.

    2017-12-01

    At Earth, one of the fundamental processes that govern the interaction between the solar wind and the magnetosphere is magnetic reconnection. It remains to be seen how significant a role magnetic reconnection plays in the magnetospheric dynamics of the outer planets. In particular, there may be conditions that cause suppression of reconnection. For fast rotators, like Saturn, the strong co-rotation may be dominant throughout the magnetosphere, out to the magnetopause. These strong internal co-rotational flows may create a shear flow across the magnetopause that may act to suppress reconnection, especially on the dawn flank. Cassini has given us an extraordinary insight into the plasma environment around Saturn. The electron spectrometer (ELS) on the Cassini plasma spectrometer (CAPS) instrument provides data on the plasma density and temperatures as well as electron pitch angle distributions and their associated energies. In this study we examine magnetopause crossing events where heated electrons were observed in the magnetosheath. We use a modified empirical model for the location of the reconnection X-line to show where reconnection may be taking place at Saturn's magnetopause. From these results, we determine if any events considered fall in the predicted suppression region along the dawn flanks.

  4. MAGNETAR GIANT FLARES AND THEIR PRECURSORS-FLUX ROPE ERUPTIONS WITH CURRENT SHEETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Cong; Huang Lei, E-mail: cyu@ynao.ac.cn, E-mail: muduri@shao.ac.cn

    2013-07-10

    We propose a catastrophic magnetospheric model for magnetar precursors and their successive giant flares. Axisymmetric models of the magnetosphere, which contain both a helically twisted flux rope and a current sheet, are established based on force-free field configurations. In this model, the helically twisted flux rope would lose its equilibrium and erupt abruptly in response to the slow and quasi-static variations at the ultra-strongly magnetized neutron star's surface. In a previous model without current sheets, only one critical point exists in the flux rope equilibrium curve. New features show up in the equilibrium curves for the flux rope when currentmore » sheets appear in the magnetosphere. The causal connection between the precursor and the giant flare, as well as the temporary re-entry of the quiescent state between the precursor and the giant flare, can be naturally explained. Magnetic energy would be released during the catastrophic state transitions. The detailed energetics of the model are also discussed. The current sheet created by the catastrophic loss of equilibrium of the flux rope provides an ideal place for magnetic reconnection. We point out the importance of magnetic reconnection for further enhancement of the energy release during eruptions.« less

  5. Acceleration during magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beresnyak, Andrey; Li, Hui

    2015-07-16

    The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipationmore » in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.« less

  6. MMS Observation of Magnetic Reconnection in the Turbulent Magnetosheath

    NASA Astrophysics Data System (ADS)

    Vörös, Z.; Yordanova, E.; Varsani, A.; Genestreti, K. J.; Khotyaintsev, Yu. V.; Li, W.; Graham, D. B.; Norgren, C.; Nakamura, R.; Narita, Y.; Plaschke, F.; Magnes, W.; Baumjohann, W.; Fischer, D.; Vaivads, A.; Eriksson, E.; Lindqvist, P.-A.; Marklund, G.; Ergun, R. E.; Leitner, M.; Leubner, M. P.; Strangeway, R. J.; Le Contel, O.; Pollock, C.; Giles, B. J.; Torbert, R. B.; Burch, J. L.; Avanov, L. A.; Dorelli, J. C.; Gershman, D. J.; Paterson, W. R.; Lavraud, B.; Saito, Y.

    2017-11-01

    In this paper we use the full armament of the MMS (Magnetospheric Multiscale) spacecraft to study magnetic reconnection in the turbulent magnetosheath downstream of a quasi-parallel bow shock. Contrarily to the magnetopause and magnetotail cases, only a few observations of reconnection in the magnetosheath have been reported. The case study in this paper presents, for the first time, both fluid-scale and kinetic-scale signatures of an ongoing reconnection in the turbulent magnetosheath. The spacecraft are crossing the reconnection inflow and outflow regions and the ion diffusion region (IDR). Inside the reconnection outflows D shape ion distributions are observed. Inside the IDR mixing of ion populations, crescent-like velocity distributions and ion accelerations are observed. One of the spacecraft skims the outer region of the electron diffusion region, where parallel electric fields, energy dissipation/conversion, electron pressure tensor agyrotropy, electron temperature anisotropy, and electron accelerations are observed. Some of the difficulties of the observations of magnetic reconnection in turbulent plasma are also outlined.

  7. Dual-spacecraft reconstruction of a three-dimensional magnetic flux rope at the Earth's magnetopause

    DOE PAGES

    Hasegawa, H.; Sonnerup, B. U. Ö.; Eriksson, S.; ...

    2015-02-03

    We present the first results of a data analysis method, developed by Sonnerup and Hasegawa (2011), for reconstructing three-dimensional (3-D), magnetohydrostatic structures from data taken as two closely spaced satellites traverse the structures. The method is applied to a magnetic flux transfer event (FTE), which was encountered on 27 June 2007 by at least three (TH-C, TH-D, and TH-E) of the five THEMIS probes near the subsolar magnetopause. The FTE was sandwiched between two oppositely directed reconnection jets under a southward interplanetary magnetic field condition, consistent with its generation by multiple X-line reconnection. The recovered 3-D field indicates that amore » magnetic flux rope with a diameter of ~ 3000 km was embedded in the magnetopause. The FTE flux rope had a significant 3-D structure, because the 3-D field reconstructed from the data from TH-C and TH-D (separated by ~ 390 km) better predicts magnetic field variations actually measured along the TH-E path than does the 2-D Grad–Shafranov reconstruction using the data from TH-C (which was closer to TH-E than TH-D and was at ~ 1250 km from TH-E). Such a 3-D nature suggests that the field lines reconnected at the two X-lines on both sides of the flux rope are entangled in a complicated way through their interaction with each other. The generation process of the observed 3-D flux rope is discussed on the basis of the reconstruction results and the pitch-angle distribution of electrons observed in and around the FTE.« less

  8. Formation of Large-scale Coronal Loops Interconnecting Two Active Regions through Gradual Magnetic Reconnection and an Associated Heating Process

    NASA Astrophysics Data System (ADS)

    Du, Guohui; Chen, Yao; Zhu, Chunming; Liu, Chang; Ge, Lili; Wang, Bing; Li, Chuanyang; Wang, Haimin

    2018-06-01

    Coronal loops interconnecting two active regions (ARs), called interconnecting loops (ILs), are prominent large-scale structures in the solar atmosphere. They carry a significant amount of magnetic flux and therefore are considered to be an important element of the solar dynamo process. Earlier observations showed that eruptions of ILs are an important source of CMEs. It is generally believed that ILs are formed through magnetic reconnection in the high corona (>150″–200″), and several scenarios have been proposed to explain their brightening in soft X-rays (SXRs). However, the detailed IL formation process has not been fully explored, and the associated energy release in the corona still remains unresolved. Here, we report the complete formation process of a set of ILs connecting two nearby ARs, with successive observations by STEREO-A on the far side of the Sun and by SDO and Hinode on the Earth side. We conclude that ILs are formed by gradual reconnection high in the corona, in line with earlier postulations. In addition, we show evidence that ILs brighten in SXRs and EUVs through heating at or close to the reconnection site in the corona (i.e., through the direct heating process of reconnection), a process that has been largely overlooked in earlier studies of ILs.

  9. A new magnetic reconnection paradigm: Stochastic plasmoid chains

    NASA Astrophysics Data System (ADS)

    Loureiro, Nuno

    2015-11-01

    Recent analytical and numerical research in magnetic reconnection has converged on the notion that reconnection sites (current sheets) are unstable to the formation of multiple magnetic islands (plasmoids), provided that the system is sufficiently large (or, in other words, that the Lundquist number of the plasma is high). Nonlinearly, plasmoids come to define the reconnection geometry. Their nonlinear dynamics is rather complex and best thought of as new form of turbulence whose properties are determined by continuous plasmoid formation and their subsequent ejection from the sheet, as well as the interaction (coalescence) between plasmoids of different sizes. The existence of these stochastic plasmoid chains has powerful implications for several aspects of the reconnection process, from determining the reconnection rate to the details and efficiency of the energy conversion and dissipation. In addition, the plasmoid instability may also directly bear on the little understood problem of the reconnection trigger, or onset, i.e., the abrupt transition from a slow stage of energy accumulation to a fast (explosive) stage of energy release. This talk will first provide a brief overview of these recent developments in the reconnection field. I will then discuss recent work addressing the onset problem in the context of a forming current sheet which becomes progressively more unstable to the plasmoid instability. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.

  10. "Ideal" tearing and the transition to fast reconnection in the weakly collisional MHD and EMHD regimes

    NASA Astrophysics Data System (ADS)

    Del Sarto, Daniele; Pucci, Fulvia; Tenerani, Anna; Velli, Marco

    2016-03-01

    This paper discusses the transition to fast growth of the tearing instability in thin current sheets in the collisionless limit where electron inertia drives the reconnection process. It has been previously suggested that in resistive MHD there is a natural maximum aspect ratio (ratio of sheet length and breadth to thickness) which may be reached for current sheets with a macroscopic length L, the limit being provided by the fact that the tearing mode growth time becomes of the same order as the Alfvén time calculated on the macroscopic scale. For current sheets with a smaller aspect ratio than critical the normalized growth rate tends to zero with increasing Lundquist number S, while for current sheets with an aspect ratio greater than critical the growth rate diverges with S. Here we carry out a similar analysis but with electron inertia as the term violating magnetic flux conservation: previously found scalings of critical current sheet aspect ratios with the Lundquist number are generalized to include the dependence on the ratio de2/L2, where de is the electron skin depth, and it is shown that there are limiting scalings which, as in the resistive case, result in reconnecting modes growing on ideal time scales. Finite Larmor radius effects are then included, and the rescaling argument at the basis of "ideal" reconnection is proposed to explain secondary fast reconnection regimes naturally appearing in numerical simulations of current sheet evolution.

  11. Magnetic reconnection in collisionless plasmas - Prescribed fields

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Drake, J. F.; Chen, J.

    1990-01-01

    The structure of the dissipation region during magnetic reconnection in collisionless plasma is investigated by examining a prescribed two-dimensional magnetic x line configuration with an imposed inductive electric field E(y). The calculations represent an extension of recent MHD simulations of steady state reconnection (Biskamp, 1986; Lee and Fu, 1986) to the collisionless kinetic regime. It is shown that the structure of the x line reconnection configuration depends on only two parameters: a normalized inductive field and a parameter R which represents the opening angle of the magnetic x lines.

  12. Tail reconnection in the global magnetospheric context: Vlasiator first results

    NASA Astrophysics Data System (ADS)

    Palmroth, Minna; Hoilijoki, Sanni; Juusola, Liisa; Pulkkinen, Tuija I.; Hietala, Heli; Pfau-Kempf, Yann; Ganse, Urs; von Alfthan, Sebastian; Vainio, Rami; Hesse, Michael

    2017-11-01

    The key dynamics of the magnetotail have been researched for decades and have been associated with either three-dimensional (3-D) plasma instabilities and/or magnetic reconnection. We apply a global hybrid-Vlasov code, Vlasiator, to simulate reconnection self-consistently in the ion kinetic scales in the noon-midnight meridional plane, including both dayside and nightside reconnection regions within the same simulation box. Our simulation represents a numerical experiment, which turns off the 3-D instabilities but models ion-scale reconnection physically accurately in 2-D. We demonstrate that many known tail dynamics are present in the simulation without a full description of 3-D instabilities or without the detailed description of the electrons. While multiple reconnection sites can coexist in the plasma sheet, one reconnection point can start a global reconfiguration process, in which magnetic field lines become detached and a plasmoid is released. As the simulation run features temporally steady solar wind input, this global reconfiguration is not associated with sudden changes in the solar wind. Further, we show that lobe density variations originating from dayside reconnection may play an important role in stabilising tail reconnection.

  13. Direct evidence for kinetic effects associated with solar wind reconnection

    PubMed Central

    Xu, Xiaojun; Wang, Yi; Wei, Fengsi; Feng, Xueshang; Deng, Xiaohua; Ma, Yonghui; Zhou, Meng; Pang, Ye; Wong, Hon-Cheng

    2015-01-01

    Kinetic effects resulting from the two-fluid physics play a crucial role in the fast collisionless reconnection, which is a process to explosively release massive energy stored in magnetic fields in space and astrophysical plasmas. In-situ observations in the Earth's magnetosphere provide solid consistence with theoretical models on the point that kinetic effects are required in the collisionless reconnection. However, all the observations associated with solar wind reconnection have been analyzed in the context of magnetohydrodynamics (MHD) although a lot of solar wind reconnection exhausts have been reported. Because of the absence of kinetic effects and substantial heating, whether the reconnections are still ongoing when they are detected in the solar wind remains unknown. Here, by dual-spacecraft observations, we report a solar wind reconnection with clear Hall magnetic fields. Its corresponding Alfvenic electron outflow jet, derived from the decouple between ions and electrons, is identified, showing direct evidence for kinetic effects that dominate the collisionless reconnection. The turbulence associated with the exhaust is a kind of background solar wind turbulence, implying that the reconnection generated turbulence has not much developed. PMID:25628139

  14. Cut-and-connect of two antiparallel vortex tubes

    NASA Technical Reports Server (NTRS)

    Melander, Mogens V.; Hussain, Fazle

    1988-01-01

    Motivated by an early conjecture that vortex cut-and-connect plays a key role in mixing and production of turbulence, helicity and aerodynamic noise, the cross-linking of two antiparallel viscous vortex tubes via direct numerical simulation is studied. The Navier-Stokes equations are solved by a dealiased pseudo-spectral method with 64 cubed grid points in a periodic domain for initial Reynolds numbers Re up to 1000. The vortex tubes are given an initial sinusoidal perturbation to induce a collision and keep the two tubes pressed against each other as annihilation continues. Cross-sectional and wire plots of various properties depict three stages of evolution: (1) Inviscid induction causing vortex cores to first approach and form a contact zone with a dipole cross-section, and then to flatten and stretch; (2) Vorticity annihilation in the contact zone accompanied by bridging between the two vortices at both ends of the contact zone due to a collection of cross-linked vortex lines, now orthogonal to the initial vortex tubes. The direction of dipole advection in the contact zone reverses; and (3) Threading of the remnants of the original vortices in between the bridges as they pull apart. The crucial stage 2 is shown to be a simple consequence of vorticity annihilation in the contact zone, link-up of the un-annihilated parts of vortex lines, and stretching and advection by the vortex tube swirl of the cross-linked lines, which accumulate at stagnation points in front of the annihilating vortex dipole. It is claimed that bridging is the essence of any vorticity cross-linking and that annihilation is sustained by stretching of the dipole by the bridges. Vortex reconnection details are found to be insensitive to asymmetry. Modeling of the reconnection process is briefly examined. The 3D spatial details of scalar transport (at unity Schmidt number), enstrophy production, dissipation and helicity are also examined.

  15. Electron scale magnetic reconnection in the turbulent magnetosheath: Kinetic PIC simulation study

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Shay, M. A.; Drake, J. F.; Phan, T.; Haggerty, C. C.; TenBarge, J. M.; Cassak, P.; Swisdak, M.

    2017-12-01

    Recent MMS observations have revealed electron scale reconnection in the turbulent magnetosheath. Surprisingly, although one of the reconnection events is associated with a very strong guide field, the ions show no coupling to the reconnection dynamics. We first review the MMS observations. Then, using kinetic PIC simulations with similar plasma conditions, we study reconnection at electron scales and show that the reconnection exhibits whistler-like dynamics similar to the case of anti-parallel reconnection rather than the kinetic Alfven wave dynamics that is often associated with reconnection with a strong guide field. We study the factors controlling this behavior and discuss the implications for reconnection and turbulence at electron scales in both the magnetosheath and solar wind.

  16. Magnetic reconnection physics in the solar wind with Voyager 2

    NASA Astrophysics Data System (ADS)

    Stevens, Michael L.

    2009-08-01

    Magnetic reconnection is the process by which the magnetic topology evolves in collisionless plasmas. This phenomenon is fundamental to a broad range of astrophysical processes such as stellar flares, magnetospheric substorms, and plasma accretion, yet it is poorly understood and difficult to observe in situ . In this thesis, the solar wind plasma permeating interplanetary space is treated as a laboratory for reconnection physics. I present an exhaustive statistical approach to the identification of reconnection outflow jets in turbulent plasma and magnetic field time series data. This approach has been automated and characterized so that the resulting reconnection survey can be put in context with other related studies. The algorithm is shown to perform similarly to ad hoc studies in the inner heliosphere. Based on this technique, I present a survey of 138 outflow jets for the Voyager 2 spacecraft mission, including the most distant in situ evidence of reconnection discovered to date. Reconnection in the solar wind is shown to be strongly correlated with stream interactions and with solar activity. The solar wind magnetic field is found to be reconnecting via large, quasi-steady slow- mode magnetohydrodynamic structures as far out as the orbit of Neptune. The role of slow-mode shocks is explored and, in one instance, a well-developed reconnection structure is shown to be in good agreement with the Petschek theory for fast reconnection. This is the first reported example of a reconnection exhaust that satisfies the full jump conditions for a stationary slow-mode shock pair. A complete investigation into corotating stream interactions over the Voyager 2 mission has revealed that detectable reconnection structure occurs in about 23% of forced, global-scale current sheets. Contrary to previous studies, I find that signatures of this kind are most likely to be observed for current sheets where the magnetic field shear and the plasma-b are high. Evidence has been found

  17. The effect of guide-field and boundary conditions on collisionless magnetic reconnection in a stressed X-point collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf von der Pahlen, J.; Tsiklauri, D.

    2014-01-15

    Works of Tsiklauri and Haruki [Phys. Plasmas 15, 102902 (2008); 14, 112905 (2007)] are extended by inclusion of the out-of-plane magnetic (guide) field. In particular, magnetic reconnection during collisionless, stressed X-point collapse for varying out-of-plane guide-fields is studied using a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code. For zero guide-field, cases for both open and closed boundary conditions are investigated, where magnetic flux and particles are lost and conserved, respectively. It is found that reconnection rates, out-of-plane currents and density in the X-point increase more rapidly and peak sooner in the closed boundary case, but higher values are reachedmore » in the open boundary case. The normalized reconnection rate is fast: 0.10-0.25. In the open boundary case it is shown that an increase of guide-field yields later onsets in the reconnection peak rates, while in the closed boundary case initial peak rates occur sooner but are suppressed. The reconnection current changes similarly with increasing guide-field; however for low guide-fields the reconnection current increases, giving an optimal value for the guide-field between 0.1 and 0.2 times the in-plane field in both cases. Also, in the open boundary case, it is found that for guide-fields of the order of the in-plane magnetic field, the generation of electron vortices occurs. Possible causes of the vortex generation, based on the flow of decoupled particles in the diffusion region and localized plasma heating, are discussed. Before peak reconnection onset, oscillations in the out-of-plane electric field at the X-point are found, ranging in frequency from approximately 1 to 2 ω{sub pe} and coinciding with oscillatory reconnection. These oscillations are found to be part of a larger wave pattern in the simulation domain. Mapping the out-of-plane electric field along the central lines of the domain over time and applying a 2D Fourier transform

  18. The Evolution of Open Magnetic Flux Driven by Photospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.; Lionello, Roberto; Mikic, Zoran; Titov, Viacheslav S.; Antiochos, Spiro K.

    2010-01-01

    The coronal magnetic field is of paramount importance in solar and heliospheric physics. Two profoundly different views of the coronal magnetic field have emerged. In quasi-steady models, the predominant source of open magnetic field is in coronal holes. In contrast, in the interchange model, the open magnetic flux is conserved, and the coronal magnetic field can only respond to the photospheric evolution via interchange reconnection. In this view the open magnetic flux diffuses through the closed, streamer belt fields, and substantial open flux is present in the streamer belt during solar minimum. However, Antiochos and co-workers, in the form of a conjecture, argued that truly isolated open flux cannot exist in a configuration with one heliospheric current sheet (HCS) - it will connect via narrow corridors to the polar coronal hole of the same polarity. This contradicts the requirements of the interchange model. We have performed an MHD simulation of the solar corona up to 20R solar to test both the interchange model and the Antiochos conjecture. We use a synoptic map for Carrington Rotation 1913 as the boundary condition for the model, with two small bipoles introduced into the region where a positive polarity extended coronal hole forms. We introduce flows at the photospheric boundary surface to see if open flux associated with the bipoles can be moved into the closed-field region. Interchange reconnection does occur in response to these motions. However, we find that the open magnetic flux cannot be simply injected into closed-field regions - the flux eventually closes down and disconnected flux is created. Flux either opens or closes, as required, to maintain topologically distinct open and closed field regions, with no indiscriminate mixing of the two. The early evolution conforms to the Antiochos conjecture in that a narrow corridor of open flux connects the portion of the coronal hole that is nearly detached by one of the bipoles. In the later evolution, a

  19. The Evolution of Open Magnetic Flux Driven by Photospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Linker, Jon A.; Lionello, Roberto; Mikić, Zoran; Titov, Viacheslav S.; Antiochos, Spiro K.

    2011-04-01

    The coronal magnetic field is of paramount importance in solar and heliospheric physics. Two profoundly different views of the coronal magnetic field have emerged. In quasi-steady models, the predominant source of open magnetic field is in coronal holes. In contrast, in the interchange model, the open magnetic flux is conserved, and the coronal magnetic field can only respond to the photospheric evolution via interchange reconnection. In this view, the open magnetic flux diffuses through the closed, streamer belt fields, and substantial open flux is present in the streamer belt during solar minimum. However, Antiochos and coworkers, in the form of a conjecture, argued that truly isolated open flux cannot exist in a configuration with one heliospheric current sheet—it will connect via narrow corridors to the polar coronal hole of the same polarity. This contradicts the requirements of the interchange model. We have performed an MHD simulation of the solar corona up to 20 R sun to test both the interchange model and the Antiochos conjecture. We use a synoptic map for Carrington rotation 1913 as the boundary condition for the model, with two small bipoles introduced into the region where a positive polarity extended coronal hole forms. We introduce flows at the photospheric boundary surface to see if open flux associated with the bipoles can be moved into the closed-field region. Interchange reconnection does occur in response to these motions. However, we find that the open magnetic flux cannot be simply injected into closed-field regions—the flux eventually closes down and disconnected flux is created. Flux either opens or closes, as required, to maintain topologically distinct open- and closed-field regions, with no indiscriminate mixing of the two. The early evolution conforms to the Antiochos conjecture in that a narrow corridor of open flux connects the portion of the coronal hole that is nearly detached by one of the bipoles. In the later evolution, a

  20. Frequently Occurring Reconnection Jets from Sunspot Light Bridges

    NASA Astrophysics Data System (ADS)

    Tian, Hui; Yurchyshyn, Vasyl; Peter, Hardi; Solanki, Sami K.; Young, Peter R.; Ni, Lei; Cao, Wenda; Ji, Kaifan; Zhu, Yingjie; Zhang, Jingwen; Samanta, Tanmoy; Song, Yongliang; He, Jiansen; Wang, Linghua; Chen, Yajie

    2018-02-01

    Solid evidence of magnetic reconnection is rarely reported within sunspots, the darkest regions with the strongest magnetic fields and lowest temperatures in the solar atmosphere. Using the world’s largest solar telescope, the 1.6 m Goode Solar Telescope, we detect prevalent reconnection through frequently occurring fine-scale jets in the Hα line wings at light bridges, the bright lanes that may divide the dark sunspot core into multiple parts. Many jets have an inverted Y-shape, shown by models to be typical of reconnection in a unipolar field environment. Simultaneous spectral imaging data from the Interface Region Imaging Spectrograph show that the reconnection drives bidirectional flows up to 200 km s‑1, and that the weakly ionized plasma is heated by at least an order of magnitude up to ∼80,000 K. Such highly dynamic reconnection jets and efficient heating should be properly accounted for in future modeling efforts of sunspots. Our observations also reveal that the surge-like activity previously reported above light bridges in some chromospheric passbands such as the Hα core has two components: the ever-present short surges likely to be related to the upward leakage of magnetoacoustic waves from the photosphere, and the occasionally occurring long and fast surges that are obviously caused by the intermittent reconnection jets.

  1. Resonance suppression from color reconnection

    NASA Astrophysics Data System (ADS)

    Acconcia, R.; Chinellato, D. D.; de Souza, R. Derradi; Takahashi, J.; Torrieri, G.; Markert, C.

    2018-02-01

    We present studies that show how multi-parton interaction and color reconnection affect the hadro-chemistry in proton-proton (pp) collisions with special focus on the production of resonances using the pythia8 event generator. We find that color reconnection suppresses the relative production of meson resonances such as ρ0 and K* , providing an alternative explanation for the K*/K decrease observed in proton-proton collisions as a function of multiplicity by the ALICE collaboration. Detailed studies of the underlying mechanism causing meson resonance suppression indicate that color reconnection leads to shorter, less energetic strings whose fragmentation is less likely to produce more massive hadrons for a given quark content, therefore reducing ratios such as K*/K and ρ0/π in high-multiplicity pp collisions. In addition, we have also studied the effects of allowing string junctions to form and found that these may also contribute to resonance suppression.

  2. SCALING LAW OF RELATIVISTIC SWEET-PARKER-TYPE MAGNETIC RECONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Hiroyuki R.; Kudoh, Takahiro; Masada, Youhei

    2011-10-01

    Relativistic Sweet-Parker-type magnetic reconnection is investigated by relativistic resistive magnetohydrodynamic (RRMHD) simulations. As an initial setting, we assume anti-parallel magnetic fields and a spatially uniform resistivity. A perturbation imposed on the magnetic fields triggers magnetic reconnection around a current sheet, and the plasma inflows into the reconnection region. The inflows are then heated due to ohmic dissipation in the diffusion region and finally become relativistically hot outflows. The outflows are not accelerated to ultrarelativistic speeds (i.e., Lorentz factor {approx_equal} 1), even when the magnetic energy dominates the thermal and rest mass energies in the inflow region. Most of the magneticmore » energy in the inflow region is converted into the thermal energy of the outflow during the reconnection process. The energy conversion from magnetic to thermal energy in the diffusion region results in an increase in the plasma inertia. This prevents the outflows from being accelerated to ultrarelativistic speeds. We find that the reconnection rate R obeys the scaling relation R{approx_equal}S{sup -0.5}, where S is the Lundquist number. This feature is the same as that of non-relativistic reconnection. Our results are consistent with the theoretical predictions of Lyubarsky for Sweet-Parker-type magnetic reconnection.« less

  3. X(1835), X(2120), and X(2370) in flux tube models

    NASA Astrophysics Data System (ADS)

    Deng, Chengrong; Ping, Jialun; Yang, Youchang; Wang, Fan

    2012-07-01

    Nonstrange hexaquark state q3q¯3 spectrum is systematically studied by using the Gaussian expansion method in flux tube models with a six-body confinement potential. All the model parameters are fixed by baryon properties, so the calculation of hexaquark state q3q¯3 is parameter-free. It is found that some ground states of q3q¯3 are stable against disintegrating into a baryon and an anti-baryon. The main components of X(1835) and X(2370), which are observed in the radiative decay of J/ψ by BES collaboration, can be described as compact hexaquark states N8N¯8 and Δ8Δ¯8 with quantum numbers IGJPC=0+0-+, respectively. These bound states should be color confinement resonances with three-dimensional configurations similar to a rugby ball, however, X(2120) can not be accommodated in this model approach.

  4. How Much Flux does a Flux Transfer Event Transfer?

    NASA Astrophysics Data System (ADS)

    Fear, R. C.; Trenchi, L.; Coxon, J.; Milan, S. E.

    2016-12-01

    Flux transfer events are bursts of reconnection at the dayside magnetopause, which give rise to characteristic signatures that are observed by a range of magnetospheric/ionospheric instrumentation. Spacecraft situated near the magnetopause observe a bipolar variation in the component of the magnetic field normal to the magnetopause (BN); auroral instrumentation (either ground- or space-based) observe poleward moving auroral forms which indicate the convection of newly-opened flux into the polar cap, and ionospheric radars similarly observe pulsed ionospheric flows or poleward moving radar auroral forms. One outstanding problem is the fact that there is a fundamental mismatch between the estimates of the flux that is opened by each flux transfer event - in other words, their overall significance in the Dungey cycle. Spacecraft-based estimates of the flux content of individual FTEs correspond to each event transferring flux equivalent to approximately 1% of the open flux in the magnetosphere, whereas studies based on global-scale radar and auroral observations suggest this figure could be more like 10%. In the former case, flux transfer events would be a minor detail in the Dungey cycle, but in the latter they could be its main driver. We present observations of a conjunction between flux transfer event signatures observed by the Cluster spacecraft, and pulsed ionospheric flows observed by the SuperDARN network on the 8th February 2002. Over the course of an hour, a similar number of FTE signatures were observed by Cluster (at 13 MLT) and the Prince George radar (at 7 MLT). We argue that the reason for the existing mismatch in flux estimates is that implicit assumptions about flux transfer event structure lead to a major underestimate of the flux content based on spacecraft observations. If these assumptions are removed, a much better match is found.

  5. Structured Slow Solar Wind Variability: Streamer-blob Flux Ropes and Torsional Alfvén Waves

    NASA Astrophysics Data System (ADS)

    Higginson, A. K.; Lynch, B. J.

    2018-05-01

    The slow solar wind exhibits strong variability on timescales from minutes to days, likely related to magnetic reconnection processes in the extended solar corona. Higginson et al. presented a numerical magnetohydrodynamic simulation that showed interchange magnetic reconnection is ubiquitous and most likely responsible for releasing much of the slow solar wind, in particular along topological features known as the Separatrix-Web (S-Web). Here, we continue our analysis, focusing on two specific aspects of structured slow solar wind variability. The first type is present in the slow solar wind found near the heliospheric current sheet (HCS), and the second we predict should be present everywhere S-Web slow solar wind is observed. For the first type, we examine the evolution of three-dimensional magnetic flux ropes formed at the top of the helmet streamer belt by reconnection in the HCS. For the second, we examine the simulated remote and in situ signatures of the large-scale torsional Alfvén wave (TAW), which propagates along an S-Web arc to high latitudes. We describe the similarities and differences between the reconnection-generated flux ropes in the HCS, which resemble the well-known “streamer blob” observations, and the similarly structured TAW. We discuss the implications of our results for the complexity of the HCS and surrounding plasma sheet and the potential for particle acceleration, as well as the interchange reconnection scenarios that may generate TAWs in the solar corona. We discuss predictions from our simulation results for the dynamic slow solar wind in the extended corona and inner heliosphere.

  6. Dynamics of a reconnection-driven runaway ion tail in a reversed field pinch plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J. K., E-mail: jkanders@wisc.edu; Kim, J.; Bonofiglo, P. J.

    2016-05-15

    While reconnection-driven ion heating is common in laboratory and astrophysical plasmas, the underlying mechanisms for converting magnetic to kinetic energy remain not fully understood. Reversed field pinch discharges are often characterized by rapid ion heating during impulsive reconnection, generating an ion distribution with an enhanced bulk temperature, mainly perpendicular to magnetic field. In the Madison Symmetric Torus, a subset of discharges with the strongest reconnection events develop a very anisotropic, high energy tail parallel to magnetic field in addition to bulk perpendicular heating, which produces a fusion neutron flux orders of magnitude higher than that expected from a Maxwellian distribution.more » Here, we demonstrate that two factors in addition to a perpendicular bulk heating mechanism must be considered to explain this distribution. First, ion runaway can occur in the strong parallel-to-B electric field induced by a rapid equilibrium change triggered by reconnection-based relaxation; this effect is particularly strong on perpendicularly heated ions which experience a reduced frictional drag relative to bulk ions. Second, the confinement of ions varies dramatically as a function of velocity. Whereas thermal ions are governed by stochastic diffusion along tearing-altered field lines (and radial diffusion increases with parallel speed), sufficiently energetic ions are well confined, only weakly affected by a stochastic magnetic field. High energy ions traveling mainly in the direction of toroidal plasma current are nearly classically confined, while counter-propagating ions experience an intermediate confinement, greater than that of thermal ions but significantly less than classical expectations. The details of ion confinement tend to reinforce the asymmetric drive of the parallel electric field, resulting in a very asymmetric, anisotropic distribution.« less

  7. Disruption of Alfvénic Turbulence by Magnetic Reconnection in a Collisionless Plasma

    NASA Astrophysics Data System (ADS)

    Mallet, A.; Schekochihin, A. A.; Chandran, B. D. G.

    2017-12-01

    We propose a mechanism whereby the intense, sheet-like structures naturally formed by dynamically aligning Alfvénic turbulence are destroyed by the onset of magnetic reconnection at a scale λD, which we term the "disruption scale". The scaling of λD depends on the order of the statistics being considered, with more intense structures being disrupted at larger scales, and on the physical mechanism which effects the reconnection. In a low-β collisionless plasma, the disruption scale for the structures which dominate the energy spectrum is λD˜L⊥(deρs)4/9, where de is the electron inertial scale, ρs is the ion sound scale, and L⊥ is the outer scale of the turbulence. When βe and ρs/L⊥ are sufficiently small, λD is larger than ρs and there is a break in the energy spectrum at λD, rather than at ρs. We predict that the energy spectrum in the short range of scales between λD and ρs is steeper than k⊥-3, when this range exists. Such a "transition range" is sometimes observed in the solar wind turbulence. We further propose that the structures produced by the disruption process are circularised flux ropes, which may have already been observed in the solar wind. We make predictions for the amplitude and radius of these structures, and quantify the importance of the reconnection process by estimating the fraction of the remaining undisrupted structures at the ion scale. We show that at low enough βe, the disruption process significantly alters the nature of the fluctuations present at the ion scale, which provide the starting point for the sub-ion-scale kinetic-Alfvén-wave cascade. Thus, magnetic reconnection is shown to be crucially important to the turbulent cascade.

  8. Reconnection Outflows in the Extended Corona and Magnetotail

    NASA Astrophysics Data System (ADS)

    Savage, Sabrina; Kobelski, Adam

    2017-08-01

    Observational signatures of reconnection have been studied extensively in the lower corona for decades, successfully providing insight into energy release mechanisms in the region above post-flare arcade loops and below 1.5 solar radii. During large eruptive events, however, energy release continues to occur well beyond the presence of reconnection signatures at these low heights. Supra-arcade downflows (SADs) and downflowing loops (SADLs) are particularly useful measures of continual reconnection in the corona as they may indicate the presence and path of retracting post-reconnection loops. SADs and SADLs have been observed for days beyond the passage of corona mass ejections through the SOHO/LASCO field of view and for nearly a week after an eruption on 14 October 2014. The association of these features with magnetic reconnection increases the significance of understanding their genesis. SADs have been interpreted as wakes behind newly reconnected and outflowing loops (SADLs). Models have shown the plausibility of this interpretation, though this interpretation has not yet been fully accepted. We will present a preliminary study of complementary observations of magnetic reconnection detected via in situ instruments in the magnetosphere. These observations, provided by five THEMIS spacecraft, reveal similar structures and conditions to those related to SADs. We compare data from multiple SADs and dipolarization fronts to test the similarity between these plasma regimes, strongly favoring the interpretation of SADs as instabilities trailing retracting loops. We will also use these observations to strengthen the case for the development of an EUV wide-field coronal imager.

  9. Electron-Scale Measurements of Magnetic Reconnection in Space

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Torbert, R. B.; Phan, T. D.; Chen, L.-J.; Moore, T. E.; Ergun, R. E.; Eastwood, J. P.; Gershman, D. J.; Cassak, P. A.; Argall, M. R.; hide

    2016-01-01

    Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.

  10. Three-dimensional prominence-hosting magnetic configurations: Creating a helical magnetic flux rope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, C.; Keppens, R.; Guo, Y.

    2014-01-10

    The magnetic configuration hosting prominences and their surrounding coronal structure is a key research topic in solar physics. Recent theoretical and observational studies strongly suggest that a helical magnetic flux rope is an essential ingredient to fulfill most of the theoretical and observational requirements for hosting prominences. To understand flux rope formation details and obtain magnetic configurations suitable for future prominence formation studies, we here report on three-dimensional isothermal magnetohydrodynamic simulations including finite gas pressure and gravity. Starting from a magnetohydrostatic corona with a linear force-free bipolar magnetic field, we follow its evolution when introducing vortex flows around the mainmore » polarities and converging flows toward the polarity inversion line near the bottom of the corona. The converging flows bring the feet of different loops together at the polarity inversion line, where magnetic reconnection and flux cancellation happen. Inflow and outflow signatures of the magnetic reconnection process are identified, and thereby the newly formed helical loops wind around preexisting ones so that a complete flux rope grows and ascends. When a macroscopic flux rope is formed, we switch off the driving flows and find that the system relaxes to a stable state containing a helical magnetic flux rope embedded in an overlying arcade structure. A major part of the formed flux rope is threaded by dipped field lines that can stably support prominence matter, while the total mass of the flux rope is in the order of 4-5× 10{sup 14} g.« less

  11. Electron Jet of Asymmetric Reconnection

    NASA Technical Reports Server (NTRS)

    Khotyaintsev, Yu. V.; Graham, D. B.; Norgren, C.; Eriksson, E.; Li, W.; Johlander, A.; Vaivads, A.; Andre, M.; Pritchett, P. L.; Retino, A.; hide

    2016-01-01

    We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E(sub parallel lines) amplitudes reaching up to 300 mV/m and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.

  12. Global three-dimensional simulation of Earth's dayside reconnection using a two-way coupled magnetohydrodynamics with embedded particle-in-cell model: initial results: 3D MHD-EPIC simulation of magnetosphere

    DOE PAGES

    Chen, Yuxi; Tóth, Gábor; Cassak, Paul; ...

    2017-09-18

    Here, we perform a three-dimensional (3D) global simulation of Earth's magnetosphere with kinetic reconnection physics to study the flux transfer events (FTEs) and dayside magnetic reconnection with the recently developed magnetohydrodynamics with embedded particle-in-cell model (MHD-EPIC). During the one-hour long simulation, the FTEs are generated quasi-periodically near the subsolar point and move toward the poles. We also find the magnetic field signature of FTEs at their early formation stage is similar to a ‘crater FTE’, which is characterized by a magnetic field strength dip at the FTE center. After the FTE core field grows to a significant value, it becomesmore » an FTE with typical flux rope structure. When an FTE moves across the cusp, reconnection between the FTE field lines and the cusp field lines can dissipate the FTE. The kinetic features are also captured by our model. A crescent electron phase space distribution is found near the reconnection site. A similar distribution is found for ions at the location where the Larmor electric field appears. The lower hybrid drift instability (LHDI) along the current sheet direction also arises at the interface of magnetosheath and magnetosphere plasma. Finally, the LHDI electric field is about 8 mV/m and its dominant wavelength relative to the electron gyroradius agrees reasonably with MMS observations.« less

  13. Global three-dimensional simulation of Earth's dayside reconnection using a two-way coupled magnetohydrodynamics with embedded particle-in-cell model: initial results: 3D MHD-EPIC simulation of magnetosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yuxi; Tóth, Gábor; Cassak, Paul

    Here, we perform a three-dimensional (3D) global simulation of Earth's magnetosphere with kinetic reconnection physics to study the flux transfer events (FTEs) and dayside magnetic reconnection with the recently developed magnetohydrodynamics with embedded particle-in-cell model (MHD-EPIC). During the one-hour long simulation, the FTEs are generated quasi-periodically near the subsolar point and move toward the poles. We also find the magnetic field signature of FTEs at their early formation stage is similar to a ‘crater FTE’, which is characterized by a magnetic field strength dip at the FTE center. After the FTE core field grows to a significant value, it becomesmore » an FTE with typical flux rope structure. When an FTE moves across the cusp, reconnection between the FTE field lines and the cusp field lines can dissipate the FTE. The kinetic features are also captured by our model. A crescent electron phase space distribution is found near the reconnection site. A similar distribution is found for ions at the location where the Larmor electric field appears. The lower hybrid drift instability (LHDI) along the current sheet direction also arises at the interface of magnetosheath and magnetosphere plasma. Finally, the LHDI electric field is about 8 mV/m and its dominant wavelength relative to the electron gyroradius agrees reasonably with MMS observations.« less

  14. Sub-grid-scale description of turbulent magnetic reconnection in magnetohydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widmer, F., E-mail: widmer@mps.mpg.de; Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen; Büchner, J.

    Magnetic reconnection requires, at least locally, a non-ideal plasma response. In collisionless space and astrophysical plasmas, turbulence could transport energy from large to small scales where binary particle collisions are rare. We have investigated the influence of small scale magnetohydrodynamics (MHD) turbulence on the reconnection rate in the framework of a compressible MHD approach including sub-grid-scale (SGS) turbulence. For this sake, we considered Harris-type and force-free current sheets with finite guide magnetic fields directed out of the reconnection plane. The goal is to find out whether unresolved by conventional simulations MHD turbulence can enhance the reconnection process in high-Reynolds-number astrophysicalmore » plasmas. Together with the MHD equations, we solve evolution equations for the SGS energy and cross-helicity due to turbulence according to a Reynolds-averaged turbulence model. The SGS turbulence is self-generated and -sustained through the inhomogeneities of the mean fields. By this way, the feedback of the unresolved turbulence into the MHD reconnection process is taken into account. It is shown that the turbulence controls the regimes of reconnection by its characteristic timescale τ{sub t}. The dependence on resistivity was investigated for large-Reynolds-number plasmas for Harris-type as well as force-free current sheets with guide field. We found that magnetic reconnection depends on the relation between the molecular and apparent effective turbulent resistivity. We found that the turbulence timescale τ{sub t} decides whether fast reconnection takes place or whether the stored energy is just diffused away to small scale turbulence. If the amount of energy transferred from large to small scales is enhanced, fast reconnection can take place. Energy spectra allowed us to characterize the different regimes of reconnection. It was found that reconnection is even faster for larger Reynolds numbers controlled by the molecular

  15. Inner Plasma Structure of the Low-Latitude Reconnection Layer

    NASA Technical Reports Server (NTRS)

    Zhang, Q.-H.; Dunlop, M. W.; Lockwood, M.; Lavraud, B.; Bogdanova, Y. V.; Hasegawa, H.; Yang, H. -G.; Liu, R. -Y.; Hu, H. -Q.; Zhang, B. -C.; hide

    2012-01-01

    We report a clear transition through a reconnection layer at the low-latitude magnetopause which shows a complete traversal across all reconnected field lines during northwestward interplanetary magnetic field (IMF) conditions. The associated plasma populations confirm details of the electron and ion mixing and the time history and acceleration through the current layer. This case has low magnetic shear with a strong guide field and the reconnection layer contains a single density depletion layer on the magnetosheath side which we suggest results from nearly field-aligned magnetosheath flows. Within the reconnection boundary layer, there are two plasma boundaries, close to the inferred separatrices on the magnetosphere and magnetosheath sides (Ssp and Ssh) and two boundaries associated with the Alfvén waves (or Rotational Discontinuities, RDsp and RDsh). The data are consistent with these being launched from the reconnection site and the plasma distributions are well ordered and suggestive of the time elapsed since reconnection of the field lines observed. In each sub-layer between the boundaries the plasma distribution is different and is centered around the current sheet, responsible for magnetosheath acceleration. We show evidence for a velocity dispersion effect in the electron anisotropy that is consistent with the time elapsed since reconnection. In addition, new evidence is presented for the occurrence of partial reflection of magnetosheath electrons at the magnetopause current layer.

  16. Numerical investigation of heat transfer in annulus laminar flow of multi tubes-in-tube helical coil

    NASA Astrophysics Data System (ADS)

    Nada, S. A.; Elattar, H. F.; Fouda, A.; Refaey, H. A.

    2018-03-01

    In the present study, a CFD analysis using ANSYS-FLUENT 14.5 CFD package is used to investigate the characteristics of heat transfer of laminar flow in annulus formed by multi tubes in tube helically coiled heat exchanger. The numerical results are validated by comparison with previous experimental data and fair agreements were existed. The influences of the design and operation parameters such as heat flux, Reynolds numbers and annulus geometry on the heat transfer characteristics are investigated. Different annulus of different numbers of inner tubes, specifically 1, 2, 3, 4 and 5 tubes, are tested. The Results showed that for all the studied annulus, the heat flux has no effect on the Nusselt number and compactness parameter. The annulus formed by using five inner tubes showed the best heat transfer performance and compactness parameter. Correlation of predicting Nusselt number in terms of Reynolds number and number of inner tubes are presented.

  17. High power heating of magnetic reconnection in merging tokamak experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Y.; Tanabe, H.; Gi, K.

    2015-05-15

    Significant ion/electron heating of magnetic reconnection up to 1.2 keV was documented in two spherical tokamak plasma merging experiment on MAST with the significantly large Reynolds number R∼10{sup 5}. Measured 1D/2D contours of ion and electron temperatures reveal clearly energy-conversion mechanisms of magnetic reconnection: huge outflow heating of ions in the downstream and localized heating of electrons at the X-point. Ions are accelerated up to the order of poloidal Alfven speed in the reconnection outflow region and are thermalized by fast shock-like density pileups formed in the downstreams, in agreement with recent solar satellite observations and PIC simulation results. The magneticmore » reconnection efficiently converts the reconnecting (poloidal) magnetic energy mostly into ion thermal energy through the outflow, causing the reconnection heating energy proportional to square of the reconnecting (poloidal) magnetic field B{sub rec}{sup 2}  ∼  B{sub p}{sup 2}. The guide toroidal field B{sub t} does not affect the bulk heating of ions and electrons, probably because the reconnection/outflow speeds are determined mostly by the external driven inflow by the help of another fast reconnection mechanism: intermittent sheet ejection. The localized electron heating at the X-point increases sharply with the guide toroidal field B{sub t}, probably because the toroidal field increases electron confinement and acceleration length along the X-line. 2D measurements of magnetic field and temperatures in the TS-3 tokamak merging experiment also reveal the detailed reconnection heating mechanisms mentioned above. The high-power heating of tokamak merging is useful not only for laboratory study of reconnection but also for economical startup and heating of tokamak plasmas. The MAST/TS-3 tokamak merging with B{sub p} > 0.4 T will enables us to heat the plasma to the alpha heating regime: T{sub i} > 5 keV without using any additional heating

  18. Influence of pinches on magnetic reconnection in turbulent space plasmas

    NASA Astrophysics Data System (ADS)

    Olshevsky, Vyacheslav; Lapenta, Giovanni; Markidis, Stefano; Divin, Andrey

    A generally accepted scenario of magnetic reconnection in space plasmas is the breakage of magnetic field lines in X-points. In laboratory, reconnection is widely studied in pinches, current channels embedded into twisted magnetic fields. No model of magnetic reconnection in space plasmas considers both null-points and pinches as peers. We have performed a particle-in-cell simulation of magnetic reconnection in a three-dimensional configuration where null-points are present nitially, and Z-pinches are formed during the simulation. The X-points are relatively stable, and no substantial energy dissipation is associated with them. On contrary, turbulent magnetic reconnection in the pinches causes the magnetic energy to decay at a rate of approximately 1.5 percent per ion gyro period. Current channels and twisted magnetic fields are ubiquitous in turbulent space plasmas, so pinches can be responsible for the observed high magnetic reconnection rates.

  19. Topology and convection of a northward interplanetary magnetic field reconnection event

    NASA Astrophysics Data System (ADS)

    Wendel, Deirdre E.

    >From observations and global MHD simulations, we deduce the local and global magnetic topology and current structure of a northward IMF reconnection event in the dayside magnetopause. The ESA four-satellite Cluster suite crossed the magnetopause at a location mapping along field lines to an ionospheric H-alpha emission observed by the IMAGE spacecraft. Therefore, we seek reconnection signatures in the Cluster data. From the four-point Cluster observations, we develop a superposed epoch method to find the instantaneous x-line, its associated current sheet, and the nature of the reconnecting particle flows. This method is unique in that it removes the motion of the hyperbolic structure and the magnetopause relative to the spacecraft. We detect singular field line reconnection--planar hyperbolic reconnecting fields superposed on an out-of- plane field. We also detect the non-ideal electric field that is required to certify reconnection at locations where the magnetic field does not vanish, and estimate a reconnection electric field of - 4 mV/m. The current sheet appears bifurcated, embedding a 30 km current sheet of opposite polarity within a broader current sheet about 130 km thick. Using a resistive MHD simulation and ionospheric satellite data, we examine the same event at global length scales. This gives a 3D picture of where reconnection occurs on the magnetopause for northward IMF with B x and B y components and a tilted dipole field. It also demonstrates that northward IMF 3D reconnection couples the reconnection electric field and field-aligned currents to the ionosphere, driving sunward convection in a manner that agrees with satellite measurements of sunward flows. We find singular field line reconnection of the IMF with both open and closed field lines near nulls in both hemispheres. The reconnection in turn produces both open and closed field lines. We discuss for the first time how line-tying in the ionosphere and draping of open and IMF field lines

  20. Experimental Study of Current-Driven Turbulence During Magnetic Reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porkolab, Miklos; Egedal-Pedersen, Jan; Fox, William

    CMPD Final Report Experimental Study of Current-Driven Turbulence During Magnetic Reconnection Miklos Porkolab, PI, Jan Egedal, co-PI, William Fox, graduate student. This is the final report for Grant DE-FC02-04ER54786, MIT Participation in the Center for Multiscale Plasma Dynamics, which was active from 8/1/2004 to 7/31/2010. This Grant supported the thesis work of one MIT graduate student, William Fox, The thesis research consisted of an experimental study of the fluctuations arising during magnetic reconnection in plasmas on the Versatile Toroidal Facility (VTF) at MIT Plasma Science and Fusion Center (PSFC). The thesis was submitted and accepted by the MIT physics Department,.more » Fox, Experimental Study of Current-Driven Turbulence During Magnetic Reconnection, Ph.D. Thesis, MIT (2009). In the VTF experiment reconnection and current-sheet formation is driven by quickly changing currents in a specially arranged set of internal conductors. Previous work on this device [Egedal, et al, PRL 98, 015003, (2007)] identified a spontaneous reconnection regime. In this work fluctuations were studied using impedance-matched, high-bandwidth Langmuir probes. Strong, broadband fluctuations, with frequencies extending from near the lower-hybrid frequency [fLH = (fcefci)1/2] to the electron cyclotron frequency fce were found to arise during the reconnection events. Based on frequency and wavelength measurements, lower-hybrid waves and Trivelpiece-Gould waves were identified. The lower-hybrid waves are easiest to drive with strong perpendicular drifts or gradients which arise due to the reconnection events; an appealing possibility is strong temperature gradients. The Trivelpiece-Gould modes can result from kinetic, bump-on-tail instability of a runaway electron population energized by the reconnection events. We also observed that the turbulence is often spiky, consisting of discrete positive-potential spikes, which were identified as electron phase-space holes, a class of