Sample records for reconstruct 3d objects

  1. Real time 3D scanner: investigations and results

    NASA Astrophysics Data System (ADS)

    Nouri, Taoufik; Pflug, Leopold

    1993-12-01

    This article presents a concept of reconstruction of 3-D objects using non-invasive and touch loss techniques. The principle of this method is to display parallel interference optical fringes on an object and then to record the object under two angles of view. According to an appropriated treatment one reconstructs the 3-D object even when the object has no symmetrical plan. The 3-D surface data is available immediately in digital form for computer- visualization and for analysis software tools. The optical set-up for recording the 3-D object, the 3-D data extraction and treatment, as well as the reconstruction of the 3-D object are reported and commented on. This application is dedicated for reconstructive/cosmetic surgery, CAD, animation and research purposes.

  2. Combinatorial clustering and Its Application to 3D Polygonal Traffic Sign Reconstruction From Multiple Images

    NASA Astrophysics Data System (ADS)

    Vallet, B.; Soheilian, B.; Brédif, M.

    2014-08-01

    The 3D reconstruction of similar 3D objects detected in 2D faces a major issue when it comes to grouping the 2D detections into clusters to be used to reconstruct the individual 3D objects. Simple clustering heuristics fail as soon as similar objects are close. This paper formulates a framework to use the geometric quality of the reconstruction as a hint to do a proper clustering. We present a methodology to solve the resulting combinatorial optimization problem with some simplifications and approximations in order to make it tractable. The proposed method is applied to the reconstruction of 3D traffic signs from their 2D detections to demonstrate its capacity to solve ambiguities.

  3. Refocusing-range and image-quality enhanced optical reconstruction of 3-D objects from integral images using a principal periodic δ-function array

    NASA Astrophysics Data System (ADS)

    Ai, Lingyu; Kim, Eun-Soo

    2018-03-01

    We propose a method for refocusing-range and image-quality enhanced optical reconstruction of three-dimensional (3-D) objects from integral images only by using a 3 × 3 periodic δ-function array (PDFA), which is called a principal PDFA (P-PDFA). By directly convolving the elemental image array (EIA) captured from 3-D objects with the P-PDFAs whose spatial periods correspond to each object's depth, a set of spatially-filtered EIAs (SF-EIAs) are extracted, and from which 3-D objects can be reconstructed to be refocused on their real depth. convolutional operations are performed directly on each of the minimum 3 × 3 EIs of the picked-up EIA, the capturing and refocused-depth ranges of 3-D objects can be greatly enhanced, as well as 3-D objects much improved in image quality can be reconstructed without any preprocessing operations. Through ray-optical analysis and optical experiments with actual 3-D objects, the feasibility of the proposed method has been confirmed.

  4. Photogrammetry for rapid prototyping: development of noncontact 3D reconstruction technologies

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.

    2002-04-01

    An important stage of rapid prototyping technology is generating computer 3D model of an object to be reproduced. Wide variety of techniques for 3D model generation exists beginning with manual 3D models generation and finishing with full-automated reverse engineering system. The progress in CCD sensors and computers provides the background for integration of photogrammetry as an accurate 3D data source with CAD/CAM. The paper presents the results of developing photogrammetric methods for non-contact spatial coordinates measurements and generation of computer 3D model of real objects. The technology is based on object convergent images processing for calculating its 3D coordinates and surface reconstruction. The hardware used for spatial coordinates measurements is based on PC as central processing unit and video camera as image acquisition device. The original software for Windows 9X realizes the complete technology of 3D reconstruction for rapid input of geometry data in CAD/CAM systems. Technical characteristics of developed systems are given along with the results of applying for various tasks of 3D reconstruction. The paper describes the techniques used for non-contact measurements and the methods providing metric characteristics of reconstructed 3D model. Also the results of system application for 3D reconstruction of complex industrial objects are presented.

  5. 3D morphology reconstruction using linear array CCD binocular stereo vision imaging system

    NASA Astrophysics Data System (ADS)

    Pan, Yu; Wang, Jinjiang

    2018-01-01

    Binocular vision imaging system, which has a small field of view, cannot reconstruct the 3-D shape of the dynamic object. We found a linear array CCD binocular vision imaging system, which uses different calibration and reconstruct methods. On the basis of the binocular vision imaging system, the linear array CCD binocular vision imaging systems which has a wider field of view can reconstruct the 3-D morphology of objects in continuous motion, and the results are accurate. This research mainly introduces the composition and principle of linear array CCD binocular vision imaging system, including the calibration, capture, matching and reconstruction of the imaging system. The system consists of two linear array cameras which were placed in special arrangements and a horizontal moving platform that can pick up objects. The internal and external parameters of the camera are obtained by calibrating in advance. And then using the camera to capture images of moving objects, the results are then matched and 3-D reconstructed. The linear array CCD binocular vision imaging systems can accurately measure the 3-D appearance of moving objects, this essay is of great significance to measure the 3-D morphology of moving objects.

  6. 3D reconstruction of SEM images by use of optical photogrammetry software.

    PubMed

    Eulitz, Mona; Reiss, Gebhard

    2015-08-01

    Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Design and experimental validation of novel 3D optical scanner with zoom lens unit

    NASA Astrophysics Data System (ADS)

    Huang, Jyun-Cheng; Liu, Chien-Sheng; Chiang, Pei-Ju; Hsu, Wei-Yan; Liu, Jian-Liang; Huang, Bai-Hao; Lin, Shao-Ru

    2017-10-01

    Optical scanners play a key role in many three-dimensional (3D) printing and CAD/CAM applications. However, existing optical scanners are generally designed to provide either a wide scanning area or a high 3D reconstruction accuracy from a lens with a fixed focal length. In the former case, the scanning area is increased at the expense of the reconstruction accuracy, while in the latter case, the reconstruction performance is improved at the expense of a more limited scanning range. In other words, existing optical scanners compromise between the scanning area and the reconstruction accuracy. Accordingly, the present study proposes a new scanning system including a zoom-lens unit, which combines both a wide scanning area and a high 3D reconstruction accuracy. In the proposed approach, the object is scanned initially under a suitable low-magnification setting for the object size (setting 1), resulting in a wide scanning area but a poor reconstruction resolution in complicated regions of the object. The complicated regions of the object are then rescanned under a high-magnification setting (setting 2) in order to improve the accuracy of the original reconstruction results. Finally, the models reconstructed after each scanning pass are combined to obtain the final reconstructed 3D shape of the object. The feasibility of the proposed method is demonstrated experimentally using a laboratory-built prototype. It is shown that the scanner has a high reconstruction accuracy over a large scanning area. In other words, the proposed optical scanner has significant potential for 3D engineering applications.

  8. Limited angle C-arm tomosynthesis reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Malalla, Nuhad A. Y.; Xu, Shiyu; Chen, Ying

    2015-03-01

    In this paper, C-arm tomosynthesis with digital detector was investigated as a novel three dimensional (3D) imaging technique. Digital tomosythses is an imaging technique to provide 3D information of the object by reconstructing slices passing through the object, based on a series of angular projection views with respect to the object. C-arm tomosynthesis provides two dimensional (2D) X-ray projection images with rotation (-/+20 angular range) of both X-ray source and detector. In this paper, four representative reconstruction algorithms including point by point back projection (BP), filtered back projection (FBP), simultaneous algebraic reconstruction technique (SART) and maximum likelihood expectation maximization (MLEM) were investigated. Dataset of 25 projection views of 3D spherical object that located at center of C-arm imaging space was simulated from 25 angular locations over a total view angle of 40 degrees. With reconstructed images, 3D mesh plot and 2D line profile of normalized pixel intensities on focus reconstruction plane crossing the center of the object were studied with each reconstruction algorithm. Results demonstrated the capability to generate 3D information from limited angle C-arm tomosynthesis. Since C-arm tomosynthesis is relatively compact, portable and can avoid moving patients, it has been investigated for different clinical applications ranging from tumor surgery to interventional radiology. It is very important to evaluate C-arm tomosynthesis for valuable applications.

  9. Three-dimensional monochromatic x-ray computed tomography using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Katsuyuki; Uyama, Chikao

    1998-08-01

    We describe a technique of 3D computed tomography (3D CT) using monochromatic x rays generated by synchrotron radiation, which performs a direct reconstruction of a 3D volume image of an object from its cone-beam projections. For the development, we propose a practical scanning orbit of the x-ray source to obtain complete 3D information on an object, and its corresponding 3D image reconstruction algorithm. The validity and usefulness of the proposed scanning orbit and reconstruction algorithm were confirmed by computer simulation studies. Based on these investigations, we have developed a prototype 3D monochromatic x-ray CT using synchrotron radiation, which provides exact 3D reconstruction and material-selective imaging by using the K-edge energy subtraction technique.

  10. Full-color digitized holography for large-scale holographic 3D imaging of physical and nonphysical objects.

    PubMed

    Matsushima, Kyoji; Sonobe, Noriaki

    2018-01-01

    Digitized holography techniques are used to reconstruct three-dimensional (3D) images of physical objects using large-scale computer-generated holograms (CGHs). The object field is captured at three wavelengths over a wide area at high densities. Synthetic aperture techniques using single sensors are used for image capture in phase-shifting digital holography. The captured object field is incorporated into a virtual 3D scene that includes nonphysical objects, e.g., polygon-meshed CG models. The synthetic object field is optically reconstructed as a large-scale full-color CGH using red-green-blue color filters. The CGH has a wide full-parallax viewing zone and reconstructs a deep 3D scene with natural motion parallax.

  11. Multiview 3D sensing and analysis for high quality point cloud reconstruction

    NASA Astrophysics Data System (ADS)

    Satnik, Andrej; Izquierdo, Ebroul; Orjesek, Richard

    2018-04-01

    Multiview 3D reconstruction techniques enable digital reconstruction of 3D objects from the real world by fusing different viewpoints of the same object into a single 3D representation. This process is by no means trivial and the acquisition of high quality point cloud representations of dynamic 3D objects is still an open problem. In this paper, an approach for high fidelity 3D point cloud generation using low cost 3D sensing hardware is presented. The proposed approach runs in an efficient low-cost hardware setting based on several Kinect v2 scanners connected to a single PC. It performs autocalibration and runs in real-time exploiting an efficient composition of several filtering methods including Radius Outlier Removal (ROR), Weighted Median filter (WM) and Weighted Inter-Frame Average filtering (WIFA). The performance of the proposed method has been demonstrated through efficient acquisition of dense 3D point clouds of moving objects.

  12. Three-dimensional scanner based on fringe projection

    NASA Astrophysics Data System (ADS)

    Nouri, Taoufik

    1995-07-01

    This article presents a way of scanning 3D objects using noninvasive and contact loss techniques. The principle is to project parallel fringes on an object and then to record the object at two viewing angles. With an appropriate treatment one can reconstruct the 3D object even when it has no symmetry planes. The 3D surface data are available immediately in digital form for computer visualization and for analysis software tools. The optical setup for recording the object, the data extraction and treatment, and the reconstruction of the object are reported and commented on. Application is proposed for reconstructive/cosmetic surgery, CAD, animation, and research.

  13. Three-dimensional monochromatic x-ray CT

    NASA Astrophysics Data System (ADS)

    Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Ktsuyuki; Uyama, Chikao

    1995-08-01

    In this paper, we describe a 3D computed tomography (3D CT) using monochromatic x-rays generated by synchrotron radiation, which performs a direct reconstruction of 3D volume image of an object from its cone-beam projections. For the develpment of 3D CT, scanning orbit of x-ray source to obtain complete 3D information about an object and corresponding 3D image reconstruction algorithm are considered. Computer simulation studies demonstrate the validities of proposed scanning method and reconstruction algorithm. A prototype experimental system of 3D CT was constructed. Basic phantom examinations and specific material CT image by energy subtraction obtained in this experimental system are shown.

  14. [Application of Fourier transform profilometry in 3D-surface reconstruction].

    PubMed

    Shi, Bi'er; Lu, Kuan; Wang, Yingting; Li, Zhen'an; Bai, Jing

    2011-08-01

    With the improvement of system frame and reconstruction methods in fluorescent molecules tomography (FMT), the FMT technology has been widely used as an important experimental tool in biomedical research. It is necessary to get the 3D-surface profile of the experimental object as the boundary constraints of FMT reconstruction algorithms. We proposed a new 3D-surface reconstruction method based on Fourier transform profilometry (FTP) method under the blue-purple light condition. The slice images were reconstructed using proper image processing methods, frequency spectrum analysis and filtering. The results of experiment showed that the method properly reconstructed the 3D-surface of objects and has the mm-level accuracy. Compared to other methods, this one is simple and fast. Besides its well-reconstructed, the proposed method could help monitor the behavior of the object during the experiment to ensure the correspondence of the imaging process. Furthermore, the method chooses blue-purple light section as its light source to avoid the interference towards fluorescence imaging.

  15. Objective and subjective quality assessment of geometry compression of reconstructed 3D humans in a 3D virtual room

    NASA Astrophysics Data System (ADS)

    Mekuria, Rufael; Cesar, Pablo; Doumanis, Ioannis; Frisiello, Antonella

    2015-09-01

    Compression of 3D object based video is relevant for 3D Immersive applications. Nevertheless, the perceptual aspects of the degradation introduced by codecs for meshes and point clouds are not well understood. In this paper we evaluate the subjective and objective degradations introduced by such codecs in a state of art 3D immersive virtual room. In the 3D immersive virtual room, users are captured with multiple cameras, and their surfaces are reconstructed as photorealistic colored/textured 3D meshes or point clouds. To test the perceptual effect of compression and transmission, we render degraded versions with different frame rates in different contexts (near/far) in the scene. A quantitative subjective study with 16 users shows that negligible distortion of decoded surfaces compared to the original reconstructions can be achieved in the 3D virtual room. In addition, a qualitative task based analysis in a full prototype field trial shows increased presence, emotion, user and state recognition of the reconstructed 3D Human representation compared to animated computer avatars.

  16. Challenges in Flying Quadrotor Unmanned Aerial Vehicle for 3d Indoor Reconstruction

    NASA Astrophysics Data System (ADS)

    Yan, J.; Grasso, N.; Zlatanova, S.; Braggaar, R. C.; Marx, D. B.

    2017-09-01

    Three-dimensional modelling plays a vital role in indoor 3D tracking, navigation, guidance and emergency evacuation. Reconstruction of indoor 3D models is still problematic, in part, because indoor spaces provide challenges less-documented than their outdoor counterparts. Challenges include obstacles curtailing image and point cloud capture, restricted accessibility and a wide array of indoor objects, each with unique semantics. Reconstruction of indoor environments can be achieved through a photogrammetric approach, e.g. by using image frames, aligned using recurring corresponding image points (CIP) to build coloured point clouds. Our experiments were conducted by flying a QUAV in three indoor environments and later reconstructing 3D models which were analysed under different conditions. Point clouds and meshes were created using Agisoft PhotoScan Professional. We concentrated on flight paths from two vantage points: 1) safety and security while flying indoors and 2) data collection needed for reconstruction of 3D models. We surmised that the main challenges in providing safe flight paths are related to the physical configuration of indoor environments, privacy issues, the presence of people and light conditions. We observed that the quality of recorded video used for 3D reconstruction has a high dependency on surface materials, wall textures and object types being reconstructed. Our results show that 3D indoor reconstruction predicated on video capture using a QUAV is indeed feasible, but close attention should be paid to flight paths and conditions ultimately influencing the quality of 3D models. Moreover, it should be decided in advance which objects need to be reconstructed, e.g. bare rooms or detailed furniture.

  17. Identification of geometric faces in hand-sketched 3D objects containing curved lines

    NASA Astrophysics Data System (ADS)

    El-Sayed, Ahmed M.; Wahdan, A. A.; Youssif, Aliaa A. A.

    2017-07-01

    The reconstruction of 3D objects from 2D line drawings is regarded as one of the key topics in the field of computer vision. The ongoing research is mainly focusing on the reconstruction of 3D objects that are mapped only from 2D straight lines, and that are symmetric in nature. Commonly, this approach only produces basic and simple shapes that are mostly flat or rather polygonized in nature, which is normally attributed to inability to handle curves. To overcome the above-mentioned limitations, a technique capable of handling non-symmetric drawings that encompass curves is considered. This paper discusses a novel technique that can be used to reconstruct 3D objects containing curved lines. In addition, it highlights an application that has been developed in accordance with the suggested technique that can convert a freehand sketch to a 3D shape using a mobile phone.

  18. Integration of real-time 3D capture, reconstruction, and light-field display

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao

    2015-03-01

    Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.

  19. Three-dimensional reconstruction from serial sections in PC-Windows platform by using 3D_Viewer.

    PubMed

    Xu, Yi-Hua; Lahvis, Garet; Edwards, Harlene; Pitot, Henry C

    2004-11-01

    Three-dimensional (3D) reconstruction from serial sections allows identification of objects of interest in 3D and clarifies the relationship among these objects. 3D_Viewer, developed in our laboratory for this purpose, has four major functions: image alignment, movie frame production, movie viewing, and shift-overlay image generation. Color images captured from serial sections were aligned; then the contours of objects of interest were highlighted in a semi-automatic manner. These 2D images were then automatically stacked at different viewing angles, and their composite images on a projected plane were recorded by an image transform-shift-overlay technique. These composition images are used in the object-rotation movie show. The design considerations of the program and the procedures used for 3D reconstruction from serial sections are described. This program, with a digital image-capture system, a semi-automatic contours highlight method, and an automatic image transform-shift-overlay technique, greatly speeds up the reconstruction process. Since images generated by 3D_Viewer are in a general graphic format, data sharing with others is easy. 3D_Viewer is written in MS Visual Basic 6, obtainable from our laboratory on request.

  20. Identification of superficial defects in reconstructed 3D objects using phase-shifting fringe projection

    NASA Astrophysics Data System (ADS)

    Madrigal, Carlos A.; Restrepo, Alejandro; Branch, John W.

    2016-09-01

    3D reconstruction of small objects is used in applications of surface analysis, forensic analysis and tissue reconstruction in medicine. In this paper, we propose a strategy for the 3D reconstruction of small objects and the identification of some superficial defects. We applied a technique of projection of structured light patterns, specifically sinusoidal fringes and an algorithm of phase unwrapping. A CMOS camera was used to capture images and a DLP digital light projector for synchronous projection of the sinusoidal pattern onto the objects. We implemented a technique based on a 2D flat pattern as calibration process, so the intrinsic and extrinsic parameters of the camera and the DLP were defined. Experimental tests were performed in samples of artificial teeth, coal particles, welding defects and surfaces tested with Vickers indentation. Areas less than 5cm were studied. The objects were reconstructed in 3D with densities of about one million points per sample. In addition, the steps of 3D description, identification of primitive, training and classification were implemented to recognize defects, such as: holes, cracks, roughness textures and bumps. We found that pattern recognition strategies are useful, when quality supervision of surfaces has enough quantities of points to evaluate the defective region, because the identification of defects in small objects is a demanding activity of the visual inspection.

  1. Full-color large-scaled computer-generated holograms for physical and non-physical objects

    NASA Astrophysics Data System (ADS)

    Matsushima, Kyoji; Tsuchiyama, Yasuhiro; Sonobe, Noriaki; Masuji, Shoya; Yamaguchi, Masahiro; Sakamoto, Yuji

    2017-05-01

    Several full-color high-definition CGHs are created for reconstructing 3D scenes including real-existing physical objects. The field of the physical objects are generated or captured by employing three techniques; 3D scanner, synthetic aperture digital holography, and multi-viewpoint images. Full-color reconstruction of high-definition CGHs is realized by RGB color filters. The optical reconstructions are presented for verifying these techniques.

  2. True 3D digital holographic tomography for virtual reality applications

    NASA Astrophysics Data System (ADS)

    Downham, A.; Abeywickrema, U.; Banerjee, P. P.

    2017-09-01

    Previously, a single CCD camera has been used to record holograms of an object while the object is rotated about a single axis to reconstruct a pseudo-3D image, which does not show detailed depth information from all perspectives. To generate a true 3D image, the object has to be rotated through multiple angles and along multiple axes. In this work, to reconstruct a true 3D image including depth information, a die is rotated along two orthogonal axes, and holograms are recorded using a Mach-Zehnder setup, which are subsequently numerically reconstructed. This allows for the generation of multiple images containing phase (i.e., depth) information. These images, when combined, create a true 3D image with depth information which can be exported to a Microsoft® HoloLens for true 3D virtual reality.

  3. Optimization of compressive 4D-spatio-spectral snapshot imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Feng, Weiyi; Lin, Lihua; Su, Wu; Xu, Guoqing

    2017-10-01

    In this paper, a modified 3D computational reconstruction method in the compressive 4D-spectro-volumetric snapshot imaging system is proposed for better sensing spectral information of 3D objects. In the design of the imaging system, a microlens array (MLA) is used to obtain a set of multi-view elemental images (EIs) of the 3D scenes. Then, these elemental images with one dimensional spectral information and different perspectives are captured by the coded aperture snapshot spectral imager (CASSI) which can sense the spectral data cube onto a compressive 2D measurement image. Finally, the depth images of 3D objects at arbitrary depths, like a focal stack, are computed by inversely mapping the elemental images according to geometrical optics. With the spectral estimation algorithm, the spectral information of 3D objects is also reconstructed. Using a shifted translation matrix, the contrast of the reconstruction result is further enhanced. Numerical simulation results verify the performance of the proposed method. The system can obtain both 3D spatial information and spectral data on 3D objects using only one single snapshot, which is valuable in the agricultural harvesting robots and other 3D dynamic scenes.

  4. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    PubMed

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.

  5. An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System

    PubMed Central

    Cengiz, Kubra

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values. PMID:24371468

  6. A novel three-dimensional image reconstruction method for near-field coded aperture single photon emission computerized tomography

    PubMed Central

    Mu, Zhiping; Hong, Baoming; Li, Shimin; Liu, Yi-Hwa

    2009-01-01

    Coded aperture imaging for two-dimensional (2D) planar objects has been investigated extensively in the past, whereas little success has been achieved in imaging 3D objects using this technique. In this article, the authors present a novel method of 3D single photon emission computerized tomography (SPECT) reconstruction for near-field coded aperture imaging. Multiangular coded aperture projections are acquired and a stack of 2D images is reconstructed separately from each of the projections. Secondary projections are subsequently generated from the reconstructed image stacks based on the geometry of parallel-hole collimation and the variable magnification of near-field coded aperture imaging. Sinograms of cross-sectional slices of 3D objects are assembled from the secondary projections, and the ordered subset expectation and maximization algorithm is employed to reconstruct the cross-sectional image slices from the sinograms. Experiments were conducted using a customized capillary tube phantom and a micro hot rod phantom. Imaged at approximately 50 cm from the detector, hot rods in the phantom with diameters as small as 2.4 mm could be discerned in the reconstructed SPECT images. These results have demonstrated the feasibility of the authors’ 3D coded aperture image reconstruction algorithm for SPECT, representing an important step in their effort to develop a high sensitivity and high resolution SPECT imaging system. PMID:19544769

  7. Three-dimensional computed tomography reconstruction for operative planning in robotic segmentectomy: a pilot study

    PubMed Central

    Le Moal, Julien; Peillon, Christophe; Dacher, Jean-Nicolas

    2018-01-01

    Background The objective of our pilot study was to assess if three-dimensional (3D) reconstruction performed by Visible Patient™ could be helpful for the operative planning, efficiency and safety of robot-assisted segmentectomy. Methods Between 2014 and 2015, 3D reconstructions were provided by the Visible Patient™ online service and used for the operative planning of robotic segmentectomy. To obtain 3D reconstruction, the surgeon uploaded the anonymized computed tomography (CT) image of the patient to the secured Visible Patient™ server and then downloaded the model after completion. Results Nine segmentectomies were performed between 2014 and 2015 using a pre-operative 3D model. All 3D reconstructions met our expectations: anatomical accuracy (bronchi, arteries, veins, tumor, and the thoracic wall with intercostal spaces), accurate delimitation of each segment in the lobe of interest, margin resection, free space rotation, portability (smartphone, tablet) and time saving technique. Conclusions We have shown that operative planning by 3D CT using Visible Patient™ reconstruction is useful in our practice of robot-assisted segmentectomy. The main disadvantage is the high cost. Its impact on reducing complications and improving surgical efficiency is the object of an ongoing study. PMID:29600049

  8. Three-dimensional computed tomography reconstruction for operative planning in robotic segmentectomy: a pilot study.

    PubMed

    Le Moal, Julien; Peillon, Christophe; Dacher, Jean-Nicolas; Baste, Jean-Marc

    2018-01-01

    The objective of our pilot study was to assess if three-dimensional (3D) reconstruction performed by Visible Patient™ could be helpful for the operative planning, efficiency and safety of robot-assisted segmentectomy. Between 2014 and 2015, 3D reconstructions were provided by the Visible Patient™ online service and used for the operative planning of robotic segmentectomy. To obtain 3D reconstruction, the surgeon uploaded the anonymized computed tomography (CT) image of the patient to the secured Visible Patient™ server and then downloaded the model after completion. Nine segmentectomies were performed between 2014 and 2015 using a pre-operative 3D model. All 3D reconstructions met our expectations: anatomical accuracy (bronchi, arteries, veins, tumor, and the thoracic wall with intercostal spaces), accurate delimitation of each segment in the lobe of interest, margin resection, free space rotation, portability (smartphone, tablet) and time saving technique. We have shown that operative planning by 3D CT using Visible Patient™ reconstruction is useful in our practice of robot-assisted segmentectomy. The main disadvantage is the high cost. Its impact on reducing complications and improving surgical efficiency is the object of an ongoing study.

  9. High-accuracy 3D measurement system based on multi-view and structured light

    NASA Astrophysics Data System (ADS)

    Li, Mingyue; Weng, Dongdong; Li, Yufeng; Zhang, Longbin; Zhou, Haiyun

    2013-12-01

    3D surface reconstruction is one of the most important topics in Spatial Augmented Reality (SAR). Using structured light is a simple and rapid method to reconstruct the objects. In order to improve the precision of 3D reconstruction, we present a high-accuracy multi-view 3D measurement system based on Gray-code and Phase-shift. We use a camera and a light projector that casts structured light patterns on the objects. In this system, we use only one camera to take photos on the left and right sides of the object respectively. In addition, we use VisualSFM to process the relationships between each perspective, so the camera calibration can be omitted and the positions to place the camera are no longer limited. We also set appropriate exposure time to make the scenes covered by gray-code patterns more recognizable. All of the points above make the reconstruction more precise. We took experiments on different kinds of objects, and a large number of experimental results verify the feasibility and high accuracy of the system.

  10. The 3D scanner prototype utilize object profile imaging using line laser and octave software

    NASA Astrophysics Data System (ADS)

    Nurdini, Mugi; Manunggal, Trikarsa Tirtadwipa; Samsi, Agus

    2016-11-01

    Three-dimensional scanner or 3D Scanner is a device to reconstruct the real object into digital form on a computer. 3D Scanner is a technology that is being developed, especially in developed countries, where the current 3D Scanner devices is the advanced version with a very expensive prices. This study is basically a simple prototype of 3D Scanner with a very low investment costs. 3D Scanner prototype device consists of a webcam, a rotating desk system controlled by a stepper motor and Arduino UNO, and a line laser. Objects that limit the research is the object with same radius from its center point (object pivot). Scanning is performed by using object profile imaging by line laser which is then captured by the camera and processed by a computer (image processing) using Octave software. On each image acquisition, the scanned object on a rotating desk rotated by a certain degree, so for one full turn multiple images of a number of existing side are finally obtained. Then, the profile of the entire images is extracted in order to obtain digital object dimension. Digital dimension is calibrated by length standard, called gage block. Overall dimensions are then digitally reconstructed into a three-dimensional object. Validation of the scanned object reconstruction of the original object dimensions expressed as a percentage error. Based on the results of data validation, horizontal dimension error is about 5% to 23% and vertical dimension error is about +/- 3%.

  11. Shape-from-silhouette for three-dimensional reconstruction from x-ray radiography

    NASA Astrophysics Data System (ADS)

    Simioni, E.; Ratti, F.; Poletto, L.

    2011-06-01

    We present the application of the shape-from-silhouette algorithm to reconstruct the 3D profile of handworks from a set of X-ray absorption images taken at different angles around the object. The acquisition technique is similar to tomography, but the number of images that are required to reconstruct the 3D appearance is very low compared to tomography, therefore the acquisition time is substantially reduced. Some reference points are placed on a structure corotating with the object and are acquired on the images for calibration and registration. The shape-from-silhouette algorithm gives finally the 3D appearance of the object. We present the analysis of a tin pendant from the Venetic area, VI century b.C., that was completely hidden by corrosion products and solid ground at the moment of the retrieval. The 3D reconstruction shows that the pendant is a very elaborated piece, with two embraced figures that were completely invisible before restoration.

  12. Three-dimensional reconstruction with x-ray shape-from-silhouette

    NASA Astrophysics Data System (ADS)

    Simioni, E.; Ratti, F.; Calliari, I.; Poletto, L.

    2010-09-01

    In the field of restoration of ancient handworks, X-ray tomography is a powerful method to reconstruct the internal structure of the object in non-invasive way. In some cases, such as small objects fully realized with hard metals and completely hidden by clay or products of oxidation, the tomography, although necessary to obtain the 3D appearance of the object, does not give any additional information on its internal monolithic structure. We present here the application of the shape-from-silhouette technique on X-ray images to reconstruct the 3D profile of handworks. The acquisition technique is similar to tomography, since several X-ray images are taken while the object is rotated. Some reference points are placed on a structure co-rotating with the object and are acquired on the images for calibration and registration. The shape-from-silhouette algorithm gives finally the 3D appearance of the handwork. We present the analysis of a tin pendant of VI-VIII century b.C. (Venetian area) completely hidden by solid ground. The 3D reconstruction shows surprisingly that the pendant is a very elaborated piece, with two embraced figures that were completely invisible before restoration.

  13. 3D reconstruction of hollow parts analyzing images acquired by a fiberscope

    NASA Astrophysics Data System (ADS)

    Icasio-Hernández, Octavio; Gonzalez-Barbosa, José-Joel; Hurtado-Ramos, Juan B.; Viliesid-Alonso, Miguel

    2014-07-01

    A modified fiberscope used to reconstruct difficult-to-reach inner structures is presented. By substituting the fiberscope’s original illumination system, we can project a profile-revealing light line inside the object of study. The light line is obtained using a sandwiched power light-emitting diode (LED) attached to an extension arm on the tip of the fiberscope. Profile images from the interior of the object are then captured by a camera attached to the fiberscope’s eyepiece. Using a series of those images at different positions, the system is capable of generating a 3D reconstruction of the object with submillimeter accuracy. Also proposed is the use of a combination of known filters to remove the honeycomb structures produced by the fiberscope and the use of ring gages to obtain the extrinsic parameters of the camera attached to the fiberscope and the metrological traceability of the system. Several standard ring diameter measurements were compared against their certified values to improve the accuracy of the system. To exemplify an application, a 3D reconstruction of the interior of a refrigerator duct was conducted. This reconstruction includes accuracy assessment by comparing the measurements of the system to a coordinate measuring machine. The system, as described, is capable of 3D reconstruction of the interior of objects with uniform and non-uniform profiles from 10 to 60 mm in transversal dimensions and a depth of 1000 mm if the material of the walls of the object is translucent and allows the detection of the power LED light from the exterior through the wall. If this is not possible, we propose the use of a magnetic scale which reduces the working depth to 170 mm. The assessed accuracy is around ±0.15 mm in 2D cross-section reconstructions and ±1.3 mm in 1D position using a magnetic scale, and ±0.5 mm using a CCD camera.

  14. Electronic holography using binary phase modulation

    NASA Astrophysics Data System (ADS)

    Matoba, Osamu

    2014-06-01

    A 3D display system by using a phase-only distribution is presented. Especially, binary phase distribution is used to reconstruct a 3D object for wide viewing zone angle. To obtain the phase distribution to be displayed on a phase-mode spatial light modulator, both of experimental and numerical processes are available. In this paper, we present a numerical process by using a computer graphics data. A random phase distribution is attached to all polygons of an input 3D object to reconstruct a 3D object well from the binary phase distribution. Numerical and experimental results are presented to show the effectiveness of the proposed system.

  15. Off-axis phase-only holograms of 3D objects using accelerated point-based Fresnel diffraction algorithm

    NASA Astrophysics Data System (ADS)

    Zeng, Zhenxiang; Zheng, Huadong; Yu, Yingjie; Asundi, Anand K.

    2017-06-01

    A method for calculating off-axis phase-only holograms of three-dimensional (3D) object using accelerated point-based Fresnel diffraction algorithm (PB-FDA) is proposed. The complex amplitude of the object points on the z-axis in hologram plane is calculated using Fresnel diffraction formula, called principal complex amplitudes (PCAs). The complex amplitudes of those off-axis object points of the same depth can be obtained by 2D shifting of PCAs. In order to improve the calculating speed of the PB-FDA, the convolution operation based on fast Fourier transform (FFT) is used to calculate the holograms rather than using the point-by-point spatial 2D shifting of the PCAs. The shortest recording distance of the PB-FDA is analyzed in order to remove the influence of multiple-order images in reconstructed images. The optimal recording distance of the PB-FDA is also analyzed to improve the quality of reconstructed images. Numerical reconstructions and optical reconstructions with a phase-only spatial light modulator (SLM) show that holographic 3D display is feasible with the proposed algorithm. The proposed PB-FDA can also avoid the influence of the zero-order image introduced by SLM in optical reconstructed images.

  16. Three Dimentional Reconstruction of Large Cultural Heritage Objects Based on Uav Video and Tls Data

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Wu, T. H.; Shen, Y.; Wu, L.

    2016-06-01

    This paper investigates the synergetic use of unmanned aerial vehicle (UAV) and terrestrial laser scanner (TLS) in 3D reconstruction of cultural heritage objects. Rather than capturing still images, the UAV that equips a consumer digital camera is used to collect dynamic videos to overcome its limited endurance capacity. Then, a set of 3D point-cloud is generated from video image sequences using the automated structure-from-motion (SfM) and patch-based multi-view stereo (PMVS) methods. The TLS is used to collect the information that beyond the reachability of UAV imaging e.g., partial building facades. A coarse to fine method is introduced to integrate the two sets of point clouds UAV image-reconstruction and TLS scanning for completed 3D reconstruction. For increased reliability, a variant of ICP algorithm is introduced using local terrain invariant regions in the combined designation. The experimental study is conducted in the Tulou culture heritage building in Fujian province, China, which is focused on one of the TuLou clusters built several hundred years ago. Results show a digital 3D model of the Tulou cluster with complete coverage and textural information. This paper demonstrates the usability of the proposed method for efficient 3D reconstruction of heritage object based on UAV video and TLS data.

  17. Simultaneous reconstruction of multiple depth images without off-focus points in integral imaging using a graphics processing unit.

    PubMed

    Yi, Faliu; Lee, Jieun; Moon, Inkyu

    2014-05-01

    The reconstruction of multiple depth images with a ray back-propagation algorithm in three-dimensional (3D) computational integral imaging is computationally burdensome. Further, a reconstructed depth image consists of a focus and an off-focus area. Focus areas are 3D points on the surface of an object that are located at the reconstructed depth, while off-focus areas include 3D points in free-space that do not belong to any object surface in 3D space. Generally, without being removed, the presence of an off-focus area would adversely affect the high-level analysis of a 3D object, including its classification, recognition, and tracking. Here, we use a graphics processing unit (GPU) that supports parallel processing with multiple processors to simultaneously reconstruct multiple depth images using a lookup table containing the shifted values along the x and y directions for each elemental image in a given depth range. Moreover, each 3D point on a depth image can be measured by analyzing its statistical variance with its corresponding samples, which are captured by the two-dimensional (2D) elemental images. These statistical variances can be used to classify depth image pixels as either focus or off-focus points. At this stage, the measurement of focus and off-focus points in multiple depth images is also implemented in parallel on a GPU. Our proposed method is conducted based on the assumption that there is no occlusion of the 3D object during the capture stage of the integral imaging process. Experimental results have demonstrated that this method is capable of removing off-focus points in the reconstructed depth image. The results also showed that using a GPU to remove the off-focus points could greatly improve the overall computational speed compared with using a CPU.

  18. D Reconstruction of Ancient Egyptian Rock-Cut Tombs: the Case of M.I.D.A.N.05.

    NASA Astrophysics Data System (ADS)

    Nabil, M.; Betrò, M.; Metwally, M. N.

    2013-07-01

    In this paper we present an on-going work to reconstruct a 3D model of M.I.D.A.N.05., an ancient Egyptian tomb located in Luxor. The reconstruction aims at producing a high quality 3D model of the tomb to help in archaeological investigation and other scientific uses. We present details about the different stages of the used reconstruction pipeline, the results so far, and the evaluation of the results in view of the project objectives.

  19. A photogrammetry-based system for 3D surface reconstruction of prosthetics and orthotics.

    PubMed

    Li, Guang-kun; Gao, Fan; Wang, Zhi-gang

    2011-01-01

    The objective of this study is to develop an innovative close range digital photogrammetry (CRDP) system using the commercial digital SLR cameras to measure and reconstruct the 3D surface of prosthetics and orthotics. This paper describes the instrumentation, techniques and preliminary results of the proposed system. The technique works by taking pictures of the object from multiple view angles. The series of pictures were post-processed via feature point extraction, point match and 3D surface reconstruction. In comparison with the traditional method such as laser scanning, the major advantages of our instrument include the lower cost, compact and easy-to-use hardware, satisfactory measurement accuracy, and significantly less measurement time. Besides its potential applications in prosthetics and orthotics surface measurement, the simple setup and its ease of use will make it suitable for various 3D surface reconstructions.

  20. Exploiting Mirrors in 3d Reconstruction of Small Artefacts

    NASA Astrophysics Data System (ADS)

    Kontogianni, G.; Thomaidis, A. T.; Chliverou, R.; Georgopoulos, A.

    2018-05-01

    3D reconstruction of small artefacts is very significant in order to capture the details of the whole object irrespective of the documentation method which is used (Ranged Based or Image Based). Sometimes it is very difficult to achieve it because of hidden parts, occlusions, and obstructions which the object has. Hence, more data are necessary in order to 3D digitise the whole of the artefact leading to increased time for collecting and consequently processing the data. A methodology is necessary in order to reduce the collection of the data and therefore their processing time especially in cases of mass digitisation. So in this paper, the use of mirrors in particular high-quality mirrors in the data acquisition phase for the 3D reconstruction of small artefacts is investigated. Two case studies of 3D reconstruction are presented: the first one concerns Range-Based modelling especially a Time of Flight laser scanner is utilised and in the second one Image-Based modelling technique is implemented.

  1. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    PubMed Central

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454

  2. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    PubMed

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-12-12

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  3. Three-dimensional scene reconstruction from a two-dimensional image

    NASA Astrophysics Data System (ADS)

    Parkins, Franz; Jacobs, Eddie

    2017-05-01

    We propose and simulate a method of reconstructing a three-dimensional scene from a two-dimensional image for developing and augmenting world models for autonomous navigation. This is an extension of the Perspective-n-Point (PnP) method which uses a sampling of the 3D scene, 2D image point parings, and Random Sampling Consensus (RANSAC) to infer the pose of the object and produce a 3D mesh of the original scene. Using object recognition and segmentation, we simulate the implementation on a scene of 3D objects with an eye to implementation on embeddable hardware. The final solution will be deployed on the NVIDIA Tegra platform.

  4. 3D and 4D magnetic susceptibility tomography based on complex MR images

    DOEpatents

    Chen, Zikuan; Calhoun, Vince D

    2014-11-11

    Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

  5. Augmented reality three-dimensional object visualization and recognition with axially distributed sensing.

    PubMed

    Markman, Adam; Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-01-15

    An augmented reality (AR) smartglass display combines real-world scenes with digital information enabling the rapid growth of AR-based applications. We present an augmented reality-based approach for three-dimensional (3D) optical visualization and object recognition using axially distributed sensing (ADS). For object recognition, the 3D scene is reconstructed, and feature extraction is performed by calculating the histogram of oriented gradients (HOG) of a sliding window. A support vector machine (SVM) is then used for classification. Once an object has been identified, the 3D reconstructed scene with the detected object is optically displayed in the smartglasses allowing the user to see the object, remove partial occlusions of the object, and provide critical information about the object such as 3D coordinates, which are not possible with conventional AR devices. To the best of our knowledge, this is the first report on combining axially distributed sensing with 3D object visualization and recognition for applications to augmented reality. The proposed approach can have benefits for many applications, including medical, military, transportation, and manufacturing.

  6. Photogrammetry in 3d Modelling of Human Bone Structures from Radiographs

    NASA Astrophysics Data System (ADS)

    Hosseinian, S.; Arefi, H.

    2017-05-01

    Photogrammetry can have great impact on the success of medical processes for diagnosis, treatment and surgeries. Precise 3D models which can be achieved by photogrammetry improve considerably the results of orthopedic surgeries and processes. Usual 3D imaging techniques, computed tomography (CT) and magnetic resonance imaging (MRI), have some limitations such as being used only in non-weight-bearing positions, costs and high radiation dose(for CT) and limitations of MRI for patients with ferromagnetic implants or objects in their bodies. 3D reconstruction of bony structures from biplanar X-ray images is a reliable and accepted alternative for achieving accurate 3D information with low dose radiation in weight-bearing positions. The information can be obtained from multi-view radiographs by using photogrammetry. The primary step for 3D reconstruction of human bone structure from medical X-ray images is calibration which is done by applying principles of photogrammetry. After the calibration step, 3D reconstruction can be done using efficient methods with different levels of automation. Because of the different nature of X-ray images from optical images, there are distinct challenges in medical applications for calibration step of stereoradiography. In this paper, after demonstrating the general steps and principles of 3D reconstruction from X-ray images, a comparison will be done on calibration methods for 3D reconstruction from radiographs and they are assessed from photogrammetry point of view by considering various metrics such as their camera models, calibration objects, accuracy, availability, patient-friendly and cost.

  7. Automatic 3D power line reconstruction of multi-angular imaging power line inspection system

    NASA Astrophysics Data System (ADS)

    Zhang, Wuming; Yan, Guangjian; Wang, Ning; Li, Qiaozhi; Zhao, Wei

    2007-06-01

    We develop a multi-angular imaging power line inspection system. Its main objective is to monitor the relative distance between high voltage power line and around objects, and alert if the warning threshold is exceeded. Our multi-angular imaging power line inspection system generates DSM of the power line passage, which comprises ground surface and ground objects, for example trees and houses, etc. For the purpose of revealing the dangerous regions, where ground objects are too close to the power line, 3D power line information should be extracted at the same time. In order to improve the automation level of extraction, reduce labour costs and human errors, an automatic 3D power line reconstruction method is proposed and implemented. It can be achieved by using epipolar constraint and prior knowledge of pole tower's height. After that, the proper 3D power line information can be obtained by space intersection using found homologous projections. The flight experiment result shows that the proposed method can successfully reconstruct 3D power line, and the measurement accuracy of the relative distance satisfies the user requirement of 0.5m.

  8. 3D motion picture of transparent gas flow by parallel phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Awatsuji, Yasuhiro; Fukuda, Takahito; Wang, Yexin; Xia, Peng; Kakue, Takashi; Nishio, Kenzo; Matoba, Osamu

    2018-03-01

    Parallel phase-shifting digital holography is a technique capable of recording three-dimensional (3D) motion picture of dynamic object, quantitatively. This technique can record single hologram of an object with an image sensor having a phase-shift array device and reconstructs the instantaneous 3D image of the object with a computer. In this technique, a single hologram in which the multiple holograms required for phase-shifting digital holography are multiplexed by using space-division multiplexing technique pixel by pixel. We demonstrate 3D motion picture of dynamic and transparent gas flow recorded and reconstructed by the technique. A compressed air duster was used to generate the gas flow. A motion picture of the hologram of the gas flow was recorded at 180,000 frames/s by parallel phase-shifting digital holography. The phase motion picture of the gas flow was reconstructed from the motion picture of the hologram. The Abel inversion was applied to the phase motion picture and then the 3D motion picture of the gas flow was obtained.

  9. A new SPECT/CT reconstruction algorithm: reliability and accuracy in clinical routine for non-oncologic bone diseases.

    PubMed

    Delcroix, Olivier; Robin, Philippe; Gouillou, Maelenn; Le Duc-Pennec, Alexandra; Alavi, Zarrin; Le Roux, Pierre-Yves; Abgral, Ronan; Salaun, Pierre-Yves; Bourhis, David; Querellou, Solène

    2018-02-12

    xSPECT Bone® (xB) is a new reconstruction algorithm developed by Siemens® in bone hybrid imaging (SPECT/CT). A CT-based tissue segmentation is incorporated into SPECT reconstruction to provide SPECT images with bone anatomy appearance. The objectives of this study were to assess xB/CT reconstruction diagnostic reliability and accuracy in comparison with Flash 3D® (F3D)/CT in clinical routine. Two hundred thirteen consecutive patients referred to the Brest Nuclear Medicine Department for non-oncological bone diseases were evaluated retrospectively. Two hundred seven SPECT/CT were included. All SPECT/CT were independently interpreted by two nuclear medicine physicians (a junior and a senior expert) with xB/CT then with F3D/CT three months later. Inter-observer agreement (IOA) and diagnostic confidence were determined using McNemar test, and unweighted Kappa coefficient. The study objectives were then re-assessed for validation through > 18 months of clinical and paraclinical follow-up. No statistically significant differences between IOA xB and IOA F3D were found (p = 0.532). Agreement for xB after categorical classification of the diagnoses was high (κ xB = 0.89 [95% CI 0.84 -0.93]) but without statistically significant difference F3D (κ F3D = 0.90 [95% CI 0.86 - 0.94]). Thirty-one (14.9%) inter-reconstruction diagnostic discrepancies were observed of which 21 (10.1%) were classified as major. The follow-up confirmed the diagnosis of F3D in 10 cases, xB in 6 cases and was non-contributory in 5 cases. xB reconstruction algorithm was found reliable, providing high interobserver agreement and similar diagnostic confidence to F3D reconstruction in clinical routine.

  10. Electrically tunable lens speeds up 3D orbital tracking

    PubMed Central

    Annibale, Paolo; Dvornikov, Alexander; Gratton, Enrico

    2015-01-01

    3D orbital particle tracking is a versatile and effective microscopy technique that allows following fast moving fluorescent objects within living cells and reconstructing complex 3D shapes using laser scanning microscopes. We demonstrated notable improvements in the range, speed and accuracy of 3D orbital particle tracking by replacing commonly used piezoelectric stages with Electrically Tunable Lens (ETL) that eliminates mechanical movement of objective lenses. This allowed tracking and reconstructing shape of structures extending 500 microns in the axial direction. Using the ETL, we tracked at high speed fluorescently labeled genomic loci within the nucleus of living cells with unprecedented temporal resolution of 8ms using a 1.42NA oil-immersion objective. The presented technology is cost effective and allows easy upgrade of scanning microscopes for fast 3D orbital tracking. PMID:26114037

  11. Topology reconstruction for B-Rep modeling from 3D mesh in reverse engineering applications

    NASA Astrophysics Data System (ADS)

    Bénière, Roseline; Subsol, Gérard; Gesquière, Gilles; Le Breton, François; Puech, William

    2012-03-01

    Nowadays, most of the manufactured objects are designed using CAD (Computer-Aided Design) software. Nevertheless, for visualization, data exchange or manufacturing applications, the geometric model has to be discretized into a 3D mesh composed of a finite number of vertices and edges. But, in some cases, the initial model may be lost or unavailable. In other cases, the 3D discrete representation may be modified, for example after a numerical simulation, and does not correspond anymore to the initial model. A reverse engineering method is then required to reconstruct a 3D continuous representation from the discrete one. In previous work, we have presented a new approach for 3D geometric primitive extraction. In this paper, to complete our automatic and comprehensive reverse engineering process, we propose a method to construct the topology of the retrieved object. To reconstruct a B-Rep model, a new formalism is now introduced to define the adjacency relations. Then a new process is used to construct the boundaries of the object. The whole process is tested on 3D industrial meshes and bring a solution to recover B-Rep models.

  12. 3D TEM reconstruction and segmentation process of laminar bio-nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iturrondobeitia, M., E-mail: maider.iturrondobeitia@ehu.es; Okariz, A.; Fernandez-Martinez, R.

    2015-03-30

    The microstructure of laminar bio-nanocomposites (Poly (lactic acid)(PLA)/clay) depends on the amount of clay platelet opening after integration with the polymer matrix and determines the final properties of the material. Transmission electron microscopy (TEM) technique is the only one that can provide a direct observation of the layer dispersion and the degree of exfoliation. However, the orientation of the clay platelets, which affects the final properties, is practically immeasurable from a single 2D TEM image. This issue can be overcome using transmission electron tomography (ET), a technique that allows the complete 3D characterization of the structure, including the measurement ofmore » the orientation of clay platelets, their morphology and their 3D distribution. ET involves a 3D reconstruction of the study volume and a subsequent segmentation of the study object. Currently, accurate segmentation is performed manually, which is inefficient and tedious. The aim of this work is to propose an objective/automated segmentation methodology process of a 3D TEM tomography reconstruction. In this method the segmentation threshold is optimized by minimizing the variation of the dimensions of the segmented objects and matching the segmented V{sub clay} (%) and the actual one. The method is first validated using a fictitious set of objects, and then applied on a nanocomposite.« less

  13. Silhouette-based approach of 3D image reconstruction for automated image acquisition using robotic arm

    NASA Astrophysics Data System (ADS)

    Azhar, N.; Saad, W. H. M.; Manap, N. A.; Saad, N. M.; Syafeeza, A. R.

    2017-06-01

    This study presents the approach of 3D image reconstruction using an autonomous robotic arm for the image acquisition process. A low cost of the automated imaging platform is created using a pair of G15 servo motor connected in series to an Arduino UNO as a main microcontroller. Two sets of sequential images were obtained using different projection angle of the camera. The silhouette-based approach is used in this study for 3D reconstruction from the sequential images captured from several different angles of the object. Other than that, an analysis based on the effect of different number of sequential images on the accuracy of 3D model reconstruction was also carried out with a fixed projection angle of the camera. The effecting elements in the 3D reconstruction are discussed and the overall result of the analysis is concluded according to the prototype of imaging platform.

  14. Improving automated 3D reconstruction methods via vision metrology

    NASA Astrophysics Data System (ADS)

    Toschi, Isabella; Nocerino, Erica; Hess, Mona; Menna, Fabio; Sargeant, Ben; MacDonald, Lindsay; Remondino, Fabio; Robson, Stuart

    2015-05-01

    This paper aims to provide a procedure for improving automated 3D reconstruction methods via vision metrology. The 3D reconstruction problem is generally addressed using two different approaches. On the one hand, vision metrology (VM) systems try to accurately derive 3D coordinates of few sparse object points for industrial measurement and inspection applications; on the other, recent dense image matching (DIM) algorithms are designed to produce dense point clouds for surface representations and analyses. This paper strives to demonstrate a step towards narrowing the gap between traditional VM and DIM approaches. Efforts are therefore intended to (i) test the metric performance of the automated photogrammetric 3D reconstruction procedure, (ii) enhance the accuracy of the final results and (iii) obtain statistical indicators of the quality achieved in the orientation step. VM tools are exploited to integrate their main functionalities (centroid measurement, photogrammetric network adjustment, precision assessment, etc.) into the pipeline of 3D dense reconstruction. Finally, geometric analyses and accuracy evaluations are performed on the raw output of the matching (i.e. the point clouds) by adopting a metrological approach. The latter is based on the use of known geometric shapes and quality parameters derived from VDI/VDE guidelines. Tests are carried out by imaging the calibrated Portable Metric Test Object, designed and built at University College London (UCL), UK. It allows assessment of the performance of the image orientation and matching procedures within a typical industrial scenario, characterised by poor texture and known 3D/2D shapes.

  15. Detecting Planar Surfaces in Outdoor Urban Environments

    DTIC Science & Technology

    2008-09-01

    coplanar or parallel scene points and lines. Sturm and Maybank (18) perform 3D reconstruction given user-provided coplanarity, perpendicularity, and... Maybank , S. J. A method for intactive 3d reconstruction of piercewise planar objects from single images. in BMVC, 1999, 265–274 [19] Schaffalitzky, F

  16. Workflows and the Role of Images for Virtual 3d Reconstruction of no Longer Extant Historic Objects

    NASA Astrophysics Data System (ADS)

    Münster, S.

    2013-07-01

    3D reconstruction technologies have gained importance as tools for the research and visualization of no longer extant historic objects during the last decade. Within such reconstruction processes, visual media assumes several important roles: as the most important sources especially for a reconstruction of no longer extant objects, as a tool for communication and cooperation within the production process, as well as for a communication and visualization of results. While there are many discourses about theoretical issues of depiction as sources and as visualization outcomes of such projects, there is no systematic research about the importance of depiction during a 3D reconstruction process and based on empirical findings. Moreover, from a methodological perspective, it would be necessary to understand which role visual media plays during the production process and how it is affected by disciplinary boundaries and challenges specific to historic topics. Research includes an analysis of published work and case studies investigating reconstruction projects. This study uses methods taken from social sciences to gain a grounded view of how production processes would take place in practice and which functions and roles images would play within them. For the investigation of these topics, a content analysis of 452 conference proceedings and journal articles related to 3D reconstruction modeling in the field of humanities has been completed. Most of the projects described in those publications dealt with data acquisition and model building for existing objects. Only a small number of projects focused on structures that no longer or never existed physically. Especially that type of project seems to be interesting for a study of the importance of pictures as sources and as tools for interdisciplinary cooperation during the production process. In the course of the examination the authors of this paper applied a qualitative content analysis for a sample of 26 previously published project reports to depict strategies and types and three case studies of 3D reconstruction projects to evaluate evolutionary processes during such projects. The research showed that reconstructions of no longer existing historic structures are most commonly used for presentation or research purposes of large buildings or city models. Additionally, they are often realized by interdisciplinary workgroups using images as the most important source for reconstruction as far as important media for communication and quality control during the reconstruction process.

  17. Single-shot three-dimensional reconstruction based on structured light line pattern

    NASA Astrophysics Data System (ADS)

    Wang, ZhenZhou; Yang, YongMing

    2018-07-01

    Reconstruction of the object by single-shot is of great importance in many applications, in which the object is moving or its shape is non-rigid and changes irregularly. In this paper, we propose a single-shot structured light 3D imaging technique that calculates the phase map from the distorted line pattern. This technique makes use of the image processing techniques to segment and cluster the projected structured light line pattern from one single captured image. The coordinates of the clustered lines are extracted to form a low-resolution phase matrix which is then transformed to full-resolution phase map by spline interpolation. The 3D shape of the object is computed from the full-resolution phase map and the 2D camera coordinates. Experimental results show that the proposed method was able to reconstruct the three-dimensional shape of the object robustly from one single image.

  18. Reconstruction of quadratic curves in 3D using two or more perspective views: simulation studies

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Sukavanam, N.; Balasubramanian, R.

    2006-01-01

    The shapes of many natural and man-made objects have planar and curvilinear surfaces. The images of such curves usually do not have sufficient distinctive features to apply conventional feature-based reconstruction algorithms. In this paper, we describe a method of reconstruction of a quadratic curve in 3-D space as an intersection of two cones containing the respective projected curve images. The correspondence between this pair of projections of the curve is assumed to be established in this work. Using least-square curve fitting, the parameters of a curve in 2-D space are found. From this we are reconstructing the 3-D quadratic curve. Relevant mathematical formulations and analytical solutions for obtaining the equation of reconstructed curve are given. The result of the described reconstruction methodology are studied by simulation studies. This reconstruction methodology is applicable to LBW decision in cricket, path of the missile, Robotic Vision, path lanning etc.

  19. Reconstruction of shapes of near symmetric and asymmetric objects

    DOEpatents

    Pizlo, Zygmunt; Sawada, Tadamasa; Li, Yunfeng

    2013-03-26

    A system processes 2D images of 2D or 3D objects, creating a model of the object that is consistent with the image and as veridical as the perception of the 2D image by humans. Vertices of the object that are hidden in the image are recovered by using planarity and symmetry constraints. The 3D shape is recovered by maximizing 3D compactness of the recovered object and minimizing its surface area. In some embodiments, these two criteria are weighted by using the geometric mean.

  20. The interactive presentation of 3D information obtained from reconstructed datasets and 3D placement of single histological sections with the 3D portable document format.

    PubMed

    de Boer, Bouke A; Soufan, Alexandre T; Hagoort, Jaco; Mohun, Timothy J; van den Hoff, Maurice J B; Hasman, Arie; Voorbraak, Frans P J M; Moorman, Antoon F M; Ruijter, Jan M

    2011-01-01

    Interpretation of the results of anatomical and embryological studies relies heavily on proper visualization of complex morphogenetic processes and patterns of gene expression in a three-dimensional (3D) context. However, reconstruction of complete 3D datasets is time consuming and often researchers study only a few sections. To help in understanding the resulting 2D data we developed a program (TRACTS) that places such arbitrary histological sections into a high-resolution 3D model of the developing heart. The program places sections correctly, robustly and as precisely as the best of the fits achieved by five morphology experts. Dissemination of 3D data is severely hampered by the 2D medium of print publication. Many insights gained from studying the 3D object are very hard to convey using 2D images and are consequently lost or cannot be verified independently. It is possible to embed 3D objects into a pdf document, which is a format widely used for the distribution of scientific papers. Using the freeware program Adobe Reader to interact with these 3D objects is reasonably straightforward; creating such objects is not. We have developed a protocol that describes, step by step, how 3D objects can be embedded into a pdf document. Both the use of TRACTS and the inclusion of 3D objects in pdf documents can help in the interpretation of 2D and 3D data, and will thus optimize communication on morphological issues in developmental biology.

  1. Estimation of 3D reconstruction errors in a stereo-vision system

    NASA Astrophysics Data System (ADS)

    Belhaoua, A.; Kohler, S.; Hirsch, E.

    2009-06-01

    The paper presents an approach for error estimation for the various steps of an automated 3D vision-based reconstruction procedure of manufactured workpieces. The process is based on a priori planning of the task and built around a cognitive intelligent sensory system using so-called Situation Graph Trees (SGT) as a planning tool. Such an automated quality control system requires the coordination of a set of complex processes performing sequentially data acquisition, its quantitative evaluation and the comparison with a reference model (e.g., CAD object model) in order to evaluate quantitatively the object. To ensure efficient quality control, the aim is to be able to state if reconstruction results fulfill tolerance rules or not. Thus, the goal is to evaluate independently the error for each step of the stereo-vision based 3D reconstruction (e.g., for calibration, contour segmentation, matching and reconstruction) and then to estimate the error for the whole system. In this contribution, we analyze particularly the segmentation error due to localization errors for extracted edge points supposed to belong to lines and curves composing the outline of the workpiece under evaluation. The fitting parameters describing these geometric features are used as quality measure to determine confidence intervals and finally to estimate the segmentation errors. These errors are then propagated through the whole reconstruction procedure, enabling to evaluate their effect on the final 3D reconstruction result, specifically on position uncertainties. Lastly, analysis of these error estimates enables to evaluate the quality of the 3D reconstruction, as illustrated by the shown experimental results.

  2. A comparative study of multi-sensor data fusion methods for highly accurate assessment of manufactured parts

    NASA Astrophysics Data System (ADS)

    Hannachi, Ammar; Kohler, Sophie; Lallement, Alex; Hirsch, Ernest

    2015-04-01

    3D modeling of scene contents takes an increasing importance for many computer vision based applications. In particular, industrial applications of computer vision require efficient tools for the computation of this 3D information. Routinely, stereo-vision is a powerful technique to obtain the 3D outline of imaged objects from the corresponding 2D images. As a consequence, this approach provides only a poor and partial description of the scene contents. On another hand, for structured light based reconstruction techniques, 3D surfaces of imaged objects can often be computed with high accuracy. However, the resulting active range data in this case lacks to provide data enabling to characterize the object edges. Thus, in order to benefit from the positive points of various acquisition techniques, we introduce in this paper promising approaches, enabling to compute complete 3D reconstruction based on the cooperation of two complementary acquisition and processing techniques, in our case stereoscopic and structured light based methods, providing two 3D data sets describing respectively the outlines and surfaces of the imaged objects. We present, accordingly, the principles of three fusion techniques and their comparison based on evaluation criterions related to the nature of the workpiece and also the type of the tackled application. The proposed fusion methods are relying on geometric characteristics of the workpiece, which favour the quality of the registration. Further, the results obtained demonstrate that the developed approaches are well adapted for 3D modeling of manufactured parts including free-form surfaces and, consequently quality control applications using these 3D reconstructions.

  3. Subpixel based defocused points removal in photon-limited volumetric dataset

    NASA Astrophysics Data System (ADS)

    Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Maraka, Harsha Vardhan R.; Ryle, James P.; Sheridan, John T.

    2017-03-01

    The asymptotic property of the maximum likelihood estimator (MLE) has been utilized to reconstruct three-dimensional (3D) sectional images in the photon counting imaging (PCI) regime. At first, multiple 2D intensity images, known as Elemental images (EI), are captured. Then the geometric ray-tracing method is employed to reconstruct the 3D sectional images at various depth cues. We note that a 3D sectional image consists of both focused and defocused regions, depending on the reconstructed depth position. The defocused portion is redundant and should be removed in order to facilitate image analysis e.g., 3D object tracking, recognition, classification and navigation. In this paper, we present a subpixel level three-step based technique (i.e. involving adaptive thresholding, boundary detection and entropy based segmentation) to discard the defocused sparse-samples from the reconstructed photon-limited 3D sectional images. Simulation results are presented demonstrating the feasibility and efficiency of the proposed method.

  4. Railway clearance intrusion detection method with binocular stereo vision

    NASA Astrophysics Data System (ADS)

    Zhou, Xingfang; Guo, Baoqing; Wei, Wei

    2018-03-01

    In the stage of railway construction and operation, objects intruding railway clearance greatly threaten the safety of railway operation. Real-time intrusion detection is of great importance. For the shortcomings of depth insensitive and shadow interference of single image method, an intrusion detection method with binocular stereo vision is proposed to reconstruct the 3D scene for locating the objects and judging clearance intrusion. The binocular cameras are calibrated with Zhang Zhengyou's method. In order to improve the 3D reconstruction speed, a suspicious region is firstly determined by background difference method of a single camera's image sequences. The image rectification, stereo matching and 3D reconstruction process are only executed when there is a suspicious region. A transformation matrix from Camera Coordinate System(CCS) to Track Coordinate System(TCS) is computed with gauge constant and used to transfer the 3D point clouds into the TCS, then the 3D point clouds are used to calculate the object position and intrusion in TCS. The experiments in railway scene show that the position precision is better than 10mm. It is an effective way for clearance intrusion detection and can satisfy the requirement of railway application.

  5. 3D skin surface reconstruction from a single image by merging global curvature and local texture using the guided filtering for 3D haptic palpation.

    PubMed

    Lee, K; Kim, M; Kim, K

    2018-05-11

    Skin surface evaluation has been studied using various imaging techniques. However, all these studies had limited impact because they were performed using visual exam only. To improve on this scenario with haptic feedback, we propose 3D reconstruction of the skin surface using a single image. Unlike extant 3D skin surface reconstruction algorithms, we utilize the local texture and global curvature regions, combining the results for reconstruction. The first entails the reconstruction of global curvature, achieved by bilateral filtering that removes noise on the surface while maintaining the edge (ie, furrow) to obtain the overall curvature. The second entails the reconstruction of local texture, representing the fine wrinkles of the skin, using an advanced form of bilateral filtering. The final image is then composed by merging the two reconstructed images. We tested the curvature reconstruction part by comparing the resulting curvatures with measured values from real phantom objects while local texture reconstruction was verified by measuring skin surface roughness. Then, we showed the reconstructed result of our proposed algorithm via the reconstruction of various real skin surfaces. The experimental results demonstrate that our approach is a promising technology to reconstruct an accurate skin surface with a single skin image. We proposed 3D skin surface reconstruction using only a single camera. We highlighted the utility of global curvature, which has not been considered important in the past. Thus, we proposed a new method for 3D reconstruction that can be used for 3D haptic palpation, dividing the concepts of local and global regions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. 3D image reconstruction algorithms for cryo-electron-microscopy images of virus particles

    NASA Astrophysics Data System (ADS)

    Doerschuk, Peter C.; Johnson, John E.

    2000-11-01

    A statistical model for the object and the complete image formation process in cryo electron microscopy of viruses is presented. Using this model, maximum likelihood reconstructions of the 3D structure of viruses are computed using the expectation maximization algorithm and an example based on Cowpea mosaic virus is provided.

  7. 3D Reconstruction of Space Objects from Multi-Views by a Visible Sensor

    PubMed Central

    Zhang, Haopeng; Wei, Quanmao; Jiang, Zhiguo

    2017-01-01

    In this paper, a novel 3D reconstruction framework is proposed to recover the 3D structural model of a space object from its multi-view images captured by a visible sensor. Given an image sequence, this framework first estimates the relative camera poses and recovers the depths of the surface points by the structure from motion (SFM) method, then the patch-based multi-view stereo (PMVS) algorithm is utilized to generate a dense 3D point cloud. To resolve the wrong matches arising from the symmetric structure and repeated textures of space objects, a new strategy is introduced, in which images are added to SFM in imaging order. Meanwhile, a refining process exploiting the structural prior knowledge that most sub-components of artificial space objects are composed of basic geometric shapes is proposed and applied to the recovered point cloud. The proposed reconstruction framework is tested on both simulated image datasets and real image datasets. Experimental results illustrate that the recovered point cloud models of space objects are accurate and have a complete coverage of the surface. Moreover, outliers and points with severe noise are effectively filtered out by the refinement, resulting in an distinct improvement of the structure and visualization of the recovered points. PMID:28737675

  8. D Reconstruction of AN Underwater Archaelogical Site: Comparison Between Low Cost Cameras

    NASA Astrophysics Data System (ADS)

    Capra, A.; Dubbini, M.; Bertacchini, E.; Castagnetti, C.; Mancini, F.

    2015-04-01

    The 3D reconstruction with a metric content of a submerged area, where objects and structures of archaeological interest are found, could play an important role in the research and study activities and even in the digitization of the cultural heritage. The reconstruction of 3D object, of interest for archaeologists, constitutes a starting point in the classification and description of object in digital format and for successive fruition by user after delivering through several media. The starting point is a metric evaluation of the site obtained with photogrammetric surveying and appropriate 3D restitution. The authors have been applying the underwater photogrammetric technique since several years using underwater digital cameras and, in this paper, digital low cost cameras (off-the-shelf). Results of tests made on submerged objects with three cameras are presented: Canon Power Shot G12, Intova Sport HD e GoPro HERO 2. The experimentation had the goal to evaluate the precision in self-calibration procedures, essential for multimedia underwater photogrammetry, and to analyze the quality of 3D restitution. Precisions obtained in the calibration and orientation procedures was assessed by using three cameras, and an homogeneous set control points. Data were processed with Agisoft Photoscan. Successively, 3D models were created and the comparison of the models derived from the use of different cameras was performed. Different potentialities of the used cameras are reported in the discussion section. The 3D restitution of objects and structures was integrated with sea bottom floor morphology in order to achieve a comprehensive description of the site. A possible methodology of survey and representation of submerged objects is therefore illustrated, considering an automatic and a semi-automatic approach.

  9. Comparison of 3d Reconstruction Services and Terrestrial Laser Scanning for Cultural Heritage Documentation

    NASA Astrophysics Data System (ADS)

    Rasztovits, S.; Dorninger, P.

    2013-07-01

    Terrestrial Laser Scanning (TLS) is an established method to reconstruct the geometrical surface of given objects. Current systems allow for fast and efficient determination of 3D models with high accuracy and richness in detail. Alternatively, 3D reconstruction services are using images to reconstruct the surface of an object. While the instrumental expenses for laser scanning systems are high, upcoming free software services as well as open source software packages enable the generation of 3D models using digital consumer cameras. In addition, processing TLS data still requires an experienced user while recent web-services operate completely automatically. An indisputable advantage of image based 3D modeling is its implicit capability for model texturing. However, the achievable accuracy and resolution of the 3D models is lower than those of laser scanning data. Within this contribution, we investigate the results of automated web-services for image based 3D model generation with respect to a TLS reference model. For this, a copper sculpture was acquired using a laser scanner and using image series of different digital cameras. Two different webservices, namely Arc3D and AutoDesk 123D Catch were used to process the image data. The geometric accuracy was compared for the entire model and for some highly structured details. The results are presented and interpreted based on difference models. Finally, an economical comparison of the generation of the models is given considering the interactive and processing time costs.

  10. 3D Reconstruction in the Presence of Glass and Mirrors by Acoustic and Visual Fusion.

    PubMed

    Zhang, Yu; Ye, Mao; Manocha, Dinesh; Yang, Ruigang

    2017-07-06

    We present a practical and inexpensive method to reconstruct 3D scenes that include transparent and mirror objects. Our work is motivated by the need for automatically generating 3D models of interior scenes, which commonly include glass. These large structures are often invisible to cameras. Existing 3D reconstruction methods for transparent objects are usually not applicable in such a room-sized reconstruction setting. Our simple hardware setup augments a regular depth camera with a single ultrasonic sensor, which is able to measure the distance to any object, including transparent surfaces. The key technical challenge is the sparse sampling rate from the acoustic sensor, which only takes one point measurement per frame. To address this challenge, we take advantage of the fact that the large scale glass structures in indoor environments are usually either piece-wise planar or simple parametric surfaces. Based on these assumptions, we have developed a novel sensor fusion algorithm that first segments the (hybrid) depth map into different categories such as opaque/transparent/infinity (e.g., too far to measure) and then updates the depth map based on the segmentation outcome. We validated our algorithms with a number of challenging cases, including multiple panes of glass, mirrors, and even a curved glass cabinet.

  11. The Impact of Different Levels of Adaptive Iterative Dose Reduction 3D on Image Quality of 320-Row Coronary CT Angiography: A Clinical Trial

    PubMed Central

    Feger, Sarah; Rief, Matthias; Zimmermann, Elke; Martus, Peter; Schuijf, Joanne Désirée; Blobel, Jörg; Richter, Felicitas; Dewey, Marc

    2015-01-01

    Purpose The aim of this study was the systematic image quality evaluation of coronary CT angiography (CTA), reconstructed with the 3 different levels of adaptive iterative dose reduction (AIDR 3D) and compared to filtered back projection (FBP) with quantum denoising software (QDS). Methods Standard-dose CTA raw data of 30 patients with mean radiation dose of 3.2 ± 2.6 mSv were reconstructed using AIDR 3D mild, standard, strong and compared to FBP/QDS. Objective image quality comparison (signal, noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), contour sharpness) was performed using 21 measurement points per patient, including measurements in each coronary artery from proximal to distal. Results Objective image quality parameters improved with increasing levels of AIDR 3D. Noise was lowest in AIDR 3D strong (p≤0.001 at 20/21 measurement points; compared with FBP/QDS). Signal and contour sharpness analysis showed no significant difference between the reconstruction algorithms for most measurement points. Best coronary SNR and CNR were achieved with AIDR 3D strong. No loss of SNR or CNR in distal segments was seen with AIDR 3D as compared to FBP. Conclusions On standard-dose coronary CTA images, AIDR 3D strong showed higher objective image quality than FBP/QDS without reducing contour sharpness. Trial Registration Clinicaltrials.gov NCT00967876 PMID:25945924

  12. Optical 3D watermark based digital image watermarking for telemedicine

    NASA Astrophysics Data System (ADS)

    Li, Xiao Wei; Kim, Seok Tae

    2013-12-01

    Region of interest (ROI) of a medical image is an area including important diagnostic information and must be stored without any distortion. This algorithm for application of watermarking technique for non-ROI of the medical image preserving ROI. The paper presents a 3D watermark based medical image watermarking scheme. In this paper, a 3D watermark object is first decomposed into 2D elemental image array (EIA) by a lenslet array, and then the 2D elemental image array data is embedded into the host image. The watermark extraction process is an inverse process of embedding. The extracted EIA through the computational integral imaging reconstruction (CIIR) technique, the 3D watermark can be reconstructed. Because the EIA is composed of a number of elemental images possesses their own perspectives of a 3D watermark object. Even though the embedded watermark data badly damaged, the 3D virtual watermark can be successfully reconstructed. Furthermore, using CAT with various rule number parameters, it is possible to get many channels for embedding. So our method can recover the weak point having only one transform plane in traditional watermarking methods. The effectiveness of the proposed watermarking scheme is demonstrated with the aid of experimental results.

  13. Reconstructing White Walls: Multi-View Multi-Shot 3d Reconstruction of Textureless Surfaces

    NASA Astrophysics Data System (ADS)

    Ley, Andreas; Hänsch, Ronny; Hellwich, Olaf

    2016-06-01

    The reconstruction of the 3D geometry of a scene based on image sequences has been a very active field of research for decades. Nevertheless, there are still existing challenges in particular for homogeneous parts of objects. This paper proposes a solution to enhance the 3D reconstruction of weakly-textured surfaces by using standard cameras as well as a standard multi-view stereo pipeline. The underlying idea of the proposed method is based on improving the signal-to-noise ratio in weakly-textured regions while adaptively amplifying the local contrast to make better use of the limited numerical range in 8-bit images. Based on this premise, multiple shots per viewpoint are used to suppress statistically uncorrelated noise and enhance low-contrast texture. By only changing the image acquisition and adding a preprocessing step, a tremendous increase of up to 300% in completeness of the 3D reconstruction is achieved.

  14. Parallelizable 3D statistical reconstruction for C-arm tomosynthesis system

    NASA Astrophysics Data System (ADS)

    Wang, Beilei; Barner, Kenneth; Lee, Denny

    2005-04-01

    Clinical diagnosis and security detection tasks increasingly require 3D information which is difficult or impossible to obtain from 2D (two dimensional) radiographs. As a 3D (three dimensional) radiographic and non-destructive imaging technique, digital tomosynthesis is especially fit for cases where 3D information is required while a complete projection data is not available. Nowadays, FBP (filtered back projection) is extensively used in industry for its fast speed and simplicity. However, it is hard to deal with situations where only a limited number of projections from constrained directions are available, or the SNR (signal to noises ratio) of the projections is low. In order to deal with noise and take into account a priori information of the object, a statistical image reconstruction method is described based on the acquisition model of X-ray projections. We formulate a ML (maximum likelihood) function for this model and develop an ordered-subsets iterative algorithm to estimate the unknown attenuation of the object. Simulations show that satisfied results can be obtained after 1 to 2 iterations, and after that there is no significant improvement of the image quality. An adaptive wiener filter is also applied to the reconstructed image to remove its noise. Some approximations to speed up the reconstruction computation are also considered. Applying this method to computer generated projections of a revised Shepp phantom and true projections from diagnostic radiographs of a patient"s hand and mammography images yields reconstructions with impressive quality. Parallel programming is also implemented and tested. The quality of the reconstructed object is conserved, while the computation time is considerably reduced by almost the number of threads used.

  15. Geo-Referenced Dynamic Pushbroom Stereo Mosaics for 3D and Moving Target Extraction - A New Geometric Approach

    DTIC Science & Technology

    2009-12-01

    facilitating reliable stereo matching, occlusion handling, accurate 3D reconstruction and robust moving target detection . We use the fact that all the...a moving platform, we will have to naturally and effectively handle obvious motion parallax and object occlusions in order to be able to detect ...facilitating reliable stereo matching, occlusion handling, accurate 3D reconstruction and robust moving target detection . Based on the above two

  16. GENFIRE: A generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging

    DOE PAGES

    Pryor, Alan; Yang, Yongsoo; Rana, Arjun; ...

    2017-09-05

    Tomography has made a radical impact on diverse fields ranging from the study of 3D atomic arrangements in matter to the study of human health in medicine. Despite its very diverse applications, the core of tomography remains the same, that is, a mathematical method must be implemented to reconstruct the 3D structure of an object from a number of 2D projections. Here, we present the mathematical implementation of a tomographic algorithm, termed GENeralized Fourier Iterative REconstruction (GENFIRE), for high-resolution 3D reconstruction from a limited number of 2D projections. GENFIRE first assembles a 3D Fourier grid with oversampling and then iteratesmore » between real and reciprocal space to search for a global solution that is concurrently consistent with the measured data and general physical constraints. The algorithm requires minimal human intervention and also incorporates angular refinement to reduce the tilt angle error. We demonstrate that GENFIRE can produce superior results relative to several other popular tomographic reconstruction techniques through numerical simulations and by experimentally reconstructing the 3D structure of a porous material and a frozen-hydrated marine cyanobacterium. As a result, equipped with a graphical user interface, GENFIRE is freely available from our website and is expected to find broad applications across different disciplines.« less

  17. GENFIRE: A generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryor, Alan; Yang, Yongsoo; Rana, Arjun

    Tomography has made a radical impact on diverse fields ranging from the study of 3D atomic arrangements in matter to the study of human health in medicine. Despite its very diverse applications, the core of tomography remains the same, that is, a mathematical method must be implemented to reconstruct the 3D structure of an object from a number of 2D projections. Here, we present the mathematical implementation of a tomographic algorithm, termed GENeralized Fourier Iterative REconstruction (GENFIRE), for high-resolution 3D reconstruction from a limited number of 2D projections. GENFIRE first assembles a 3D Fourier grid with oversampling and then iteratesmore » between real and reciprocal space to search for a global solution that is concurrently consistent with the measured data and general physical constraints. The algorithm requires minimal human intervention and also incorporates angular refinement to reduce the tilt angle error. We demonstrate that GENFIRE can produce superior results relative to several other popular tomographic reconstruction techniques through numerical simulations and by experimentally reconstructing the 3D structure of a porous material and a frozen-hydrated marine cyanobacterium. As a result, equipped with a graphical user interface, GENFIRE is freely available from our website and is expected to find broad applications across different disciplines.« less

  18. D Reconstruction of Cultural Tourism Attractions from Indoor to Outdoor Based on Portable Four-Camera Stereo Vision System

    NASA Astrophysics Data System (ADS)

    Shao, Z.; Li, C.; Zhong, S.; Liu, B.; Jiang, H.; Wen, X.

    2015-05-01

    Building the fine 3D model from outdoor to indoor is becoming a necessity for protecting the cultural tourism resources. However, the existing 3D modelling technologies mainly focus on outdoor areas. Actually, a 3D model should contain detailed descriptions of both its appearance and its internal structure, including architectural components. In this paper, a portable four-camera stereo photographic measurement system is developed, which can provide a professional solution for fast 3D data acquisition, processing, integration, reconstruction and visualization. Given a specific scene or object, it can directly collect physical geometric information such as positions, sizes and shapes of an object or a scene, as well as physical property information such as the materials and textures. On the basis of the information, 3D model can be automatically constructed. The system has been applied to the indooroutdoor seamless modelling of distinctive architecture existing in two typical cultural tourism zones, that is, Tibetan and Qiang ethnic minority villages in Sichuan Jiuzhaigou Scenic Area and Tujia ethnic minority villages in Hubei Shennongjia Nature Reserve, providing a new method and platform for protection of minority cultural characteristics, 3D reconstruction and cultural tourism.

  19. [The use of open source software in graphic anatomic reconstructions and in biomechanic simulations].

    PubMed

    Ciobanu, O

    2009-01-01

    The objective of this study was to obtain three-dimensional (3D) images and to perform biomechanical simulations starting from DICOM images obtained by computed tomography (CT). Open source software were used to prepare digitized 2D images of tissue sections and to create 3D reconstruction from the segmented structures. Finally, 3D images were used in open source software in order to perform biomechanic simulations. This study demonstrates the applicability and feasibility of open source software developed in our days for the 3D reconstruction and biomechanic simulation. The use of open source software may improve the efficiency of investments in imaging technologies and in CAD/CAM technologies for implants and prosthesis fabrication which need expensive specialized software.

  20. Reconstruction of three-dimensional ultrasound images based on cyclic Savitzky-Golay filters

    NASA Astrophysics Data System (ADS)

    Toonkum, Pollakrit; Suwanwela, Nijasri C.; Chinrungrueng, Chedsada

    2011-01-01

    We present a new algorithm for reconstructing a three-dimensional (3-D) ultrasound image from a series of two-dimensional B-scan ultrasound slices acquired in the mechanical linear scanning framework. Unlike most existing 3-D ultrasound reconstruction algorithms, which have been developed and evaluated in the freehand scanning framework, the new algorithm has been designed to capitalize the regularity pattern of the mechanical linear scanning, where all the B-scan slices are precisely parallel and evenly spaced. The new reconstruction algorithm, referred to as the cyclic Savitzky-Golay (CSG) reconstruction filter, is an improvement on the original Savitzky-Golay filter in two respects: First, it is extended to accept a 3-D array of data as the filter input instead of a one-dimensional data sequence. Second, it incorporates the cyclic indicator function in its least-squares objective function so that the CSG algorithm can simultaneously perform both smoothing and interpolating tasks. The performance of the CSG reconstruction filter compared to that of most existing reconstruction algorithms in generating a 3-D synthetic test image and a clinical 3-D carotid artery bifurcation in the mechanical linear scanning framework are also reported.

  1. Toward a virtual reconstruction of an antique three-dimensional marble puzzle

    NASA Astrophysics Data System (ADS)

    Benamar, Fatima Zahra; Fauvet, Eric; Hostein, Antony; Laligant, Olivier; Truchetet, Frederic

    2017-01-01

    The reconstruction of broken objects is an important field of research for many applications, such as art restoration, surgery, forensics, and solving puzzles. In archaeology, the reconstruction of broken artifacts is a very time-consuming task due to the handling of fractured objects, which are generally fragile. However, it can now be supported by three-dimensional (3-D) data acquisition devices and computer processing. Those techniques are very useful in this domain because they allow the remote handling of very accurate models of fragile parts, they permit the extensive testing of reconstruction solutions, and they provide access to the parts for the entire research community. An interesting problem has recently been proposed by archaeologists in the form of a huge puzzle composed of a thousand fragments of Pentelic marble of different sizes found in Autun (France), and all attempts to reconstruct the puzzle during the last two centuries have failed. Archaeologists are sure that some fragments are missing and that some of the ones we have come from different slabs. We propose an inexpensive transportable system for 3-D acquisition setup and a 3-D reconstruction method that is applied to this Roman inscription but is also relevant to other applications.

  2. Approximation of a foreign object using x-rays, reference photographs and 3D reconstruction techniques.

    PubMed

    Briggs, Matt; Shanmugam, Mohan

    2013-12-01

    This case study describes how a 3D animation was created to approximate the depth and angle of a foreign object (metal bar) that had become embedded into a patient's head. A pre-operative CT scan was not available as the patient could not fit though the CT scanner, therefore a post surgical CT scan, x-ray and photographic images were used. A surface render was made of the skull and imported into Blender (a 3D animation application). The metal bar was not available, however images of a similar object that was retrieved from the scene by the ambulance crew were used to recreate a 3D model. The x-ray images were then imported into Blender and used as background images in order to align the skull reconstruction and metal bar at the correct depth/angle. A 3D animation was then created to fully illustrate the angle and depth of the iron bar in the skull.

  3. Fourier transform magnetic resonance current density imaging (FT-MRCDI) from one component of magnetic flux density.

    PubMed

    Ider, Yusuf Ziya; Birgul, Ozlem; Oran, Omer Faruk; Arikan, Orhan; Hamamura, Mark J; Muftuler, L Tugan

    2010-06-07

    Fourier transform (FT)-based algorithms for magnetic resonance current density imaging (MRCDI) from one component of magnetic flux density have been developed for 2D and 3D problems. For 2D problems, where current is confined to the xy-plane and z-component of the magnetic flux density is measured also on the xy-plane inside the object, an iterative FT-MRCDI algorithm is developed by which both the current distribution inside the object and the z-component of the magnetic flux density on the xy-plane outside the object are reconstructed. The method is applied to simulated as well as actual data from phantoms. The effect of measurement error on the spatial resolution of the current density reconstruction is also investigated. For 3D objects an iterative FT-based algorithm is developed whereby the projected current is reconstructed on any slice using as data the Laplacian of the z-component of magnetic flux density measured for that slice. In an injected current MRCDI scenario, the current is not divergence free on the boundary of the object. The method developed in this study also handles this situation.

  4. Cervical vertebrae maturation index estimates on cone beam CT: 3D reconstructions vs sagittal sections

    PubMed Central

    Bonfim, Marco A E; Costa, André L F; Ximenez, Michel E L; Cotrim-Ferreira, Flávio A; Ferreira-Santos, Rívea I

    2016-01-01

    Objectives: The aim of this study was to evaluate the performance of CBCT three-dimensional (3D) reconstructions and sagittal sections for estimates of cervical vertebrae maturation index (CVMI). Methods: The sample consisted of 72 CBCT examinations from patients aged 8–16 years (45 females and 27 males) selected from the archives of two private clinics. Two calibrated observers (kappa scores: ≥0.901) interpreted the CBCT settings twice. Intra- and interobserver agreement for both imaging exhibition modes was analyzed by kappa statistics, which was also used to analyze the agreement between 3D reconstructions and sagittal sections. Correlations between cervical vertebrae maturation estimates and chronological age, as well as between the assessments by 3D reconstructions and sagittal sections, were analyzed using gamma Goodman–Kruskal coefficients (α = 0.05). Results: The kappa scores evidenced almost perfect agreement between the first and second assessments of the cervical vertebrae by 3D reconstructions (0.933–0.983) and sagittal sections (0.983–1.000). Similarly, the agreement between 3D reconstructions and sagittal sections was almost perfect (kappa index: 0.983). In most divergent cases, the difference between 3D reconstructions and sagittal sections was one stage of CVMI. Strongly positive correlations (>0.8, p < 0.001) were found not only between chronological age and CVMI but also between the estimates by 3D reconstructions and sagittal sections (p < 0.001). Conclusions: Although CBCT imaging must not be used exclusively for this purpose, it may be suitable for skeletal maturity assessments. PMID:26509559

  5. 3DNOW: Image-Based 3d Reconstruction and Modeling via Web

    NASA Astrophysics Data System (ADS)

    Tefera, Y.; Poiesi, F.; Morabito, D.; Remondino, F.; Nocerino, E.; Chippendale, P.

    2018-05-01

    This paper presents a web-based 3D imaging pipeline, namely 3Dnow, that can be used by anyone without the need of installing additional software other than a browser. By uploading a set of images through the web interface, 3Dnow can generate sparse and dense point clouds as well as mesh models. 3D reconstructed models can be downloaded with standard formats or previewed directly on the web browser through an embedded visualisation interface. In addition to reconstructing objects, 3Dnow offers the possibility to evaluate and georeference point clouds. Reconstruction statistics, such as minimum, maximum and average intersection angles, point redundancy and density can also be accessed. The paper describes all features available in the web service and provides an analysis of the computational performance using servers with different GPU configurations.

  6. Interactive High-Relief Reconstruction for Organic and Double-Sided Objects from a Photo.

    PubMed

    Yeh, Chih-Kuo; Huang, Shi-Yang; Jayaraman, Pradeep Kumar; Fu, Chi-Wing; Lee, Tong-Yee

    2017-07-01

    We introduce an interactive user-driven method to reconstruct high-relief 3D geometry from a single photo. Particularly, we consider two novel but challenging reconstruction issues: i) common non-rigid objects whose shapes are organic rather than polyhedral/symmetric, and ii) double-sided structures, where front and back sides of some curvy object parts are revealed simultaneously on image. To address these issues, we develop a three-stage computational pipeline. First, we construct a 2.5D model from the input image by user-driven segmentation, automatic layering, and region completion, handling three common types of occlusion. Second, users can interactively mark-up slope and curvature cues on the image to guide our constrained optimization model to inflate and lift up the image layers. We provide real-time preview of the inflated geometry to allow interactive editing. Third, we stitch and optimize the inflated layers to produce a high-relief 3D model. Compared to previous work, we can generate high-relief geometry with large viewing angles, handle complex organic objects with multiple occluded regions and varying shape profiles, and reconstruct objects with double-sided structures. Lastly, we demonstrate the applicability of our method on a wide variety of input images with human, animals, flowers, etc.

  7. Three-channel dynamic photometric stereo: a new method for 4D surface reconstruction and volume recovery

    NASA Astrophysics Data System (ADS)

    Schroeder, Walter; Schulze, Wolfram; Wetter, Thomas; Chen, Chi-Hsien

    2008-08-01

    Three-dimensional (3D) body surface reconstruction is an important field in health care. A popular method for this purpose is laser scanning. However, using Photometric Stereo (PS) to record lumbar lordosis and the surface contour of the back poses a viable alternative due to its lower costs and higher flexibility compared to laser techniques and other methods of three-dimensional body surface reconstruction. In this work, we extended the traditional PS method and proposed a new method for obtaining surface and volume data of a moving object. The principle of traditional Photometric Stereo uses at least three images of a static object taken under different light sources to obtain 3D information of the object. Instead of using normal light, the light sources in the proposed method consist of the RGB-Color-Model's three colors: red, green and blue. A series of pictures taken with a video camera can now be separated into the different color channels. Each set of the three images can then be used to calculate the surface normals as a traditional PS. This method waives the requirement that the object imaged must be kept still as in almost all the other body surface reconstruction methods. By putting two cameras opposite to a moving object and lighting the object with the colored light, the time-varying surface (4D) data can easily be calculated. The obtained information can be used in many medical fields such as rehabilitation, diabetes screening or orthopedics.

  8. Total variation iterative constraint algorithm for limited-angle tomographic reconstruction of non-piecewise-constant structures

    NASA Astrophysics Data System (ADS)

    Krauze, W.; Makowski, P.; Kujawińska, M.

    2015-06-01

    Standard tomographic algorithms applied to optical limited-angle tomography result in the reconstructions that have highly anisotropic resolution and thus special algorithms are developed. State of the art approaches utilize the Total Variation (TV) minimization technique. These methods give very good results but are applicable to piecewise constant structures only. In this paper, we propose a novel algorithm for 3D limited-angle tomography - Total Variation Iterative Constraint method (TVIC) which enhances the applicability of the TV regularization to non-piecewise constant samples, like biological cells. This approach consists of two parts. First, the TV minimization is used as a strong regularizer to create a sharp-edged image converted to a 3D binary mask which is then iteratively applied in the tomographic reconstruction as a constraint in the object domain. In the present work we test the method on a synthetic object designed to mimic basic structures of a living cell. For simplicity, the test reconstructions were performed within the straight-line propagation model (SIRT3D solver from the ASTRA Tomography Toolbox), but the strategy is general enough to supplement any algorithm for tomographic reconstruction that supports arbitrary geometries of plane-wave projection acquisition. This includes optical diffraction tomography solvers. The obtained reconstructions present resolution uniformity and general shape accuracy expected from the TV regularization based solvers, but keeping the smooth internal structures of the object at the same time. Comparison between three different patterns of object illumination arrangement show very small impact of the projection acquisition geometry on the image quality.

  9. Subjective and objective appearance of head and neck cancer patients following microsurgical reconstruction and associated quality of life─A cross-sectional study.

    PubMed

    Kansy, Katinka; Hoffmann, Jürgen; Alhalabi, Obada; Mistele, Nicole; Freier, Kolja; Mertens, Christian; Freudlsperger, Christian; Engel, Michael

    2018-06-01

    Depending on the site and size of head and neck cancer, the disease affects patients' appearance and subsequently their quality of life. The aim of this study was to correlate subjective and objective evaluation of facial appearance and associated quality of life following ablative tumor surgery and microsurgical reconstruction. A total of 99 patients with combined ablative and reconstructive microsurgical procedure for head and neck malignancy and seven patients with non-malignant disease were examined by three-dimensional (3D) (photogrammetry at least 6 months post-surgery and were evaluated by two-dimensional (2D) and 3D means for symmetry and facial proportions. Measurements were correlated with subjective reporting from the University of Washington Quality of Life Questionnaire and observer ratings. Of the 106 patients, three patients scored themselves as significantly disfigured (2.8%), 19 were bothered by their appearance (17.9%), 27 (25.5%) reported no change, and 57 (53.8%) reported minor changes in their appearance. On 2D evaluation, 10 patients (9.4%) showed severely abnormal facial proportions. On 3D analysis, 17 patients showed major asymmetry. There was a high correlation (0.67) between patient and observer subjective rating (p < 0.05). While 2D evaluation alone showed no significant correlation with subjective rating, 3D evaluation showed a moderate correlation (0.37; p < 0.05). The best results were achieved by combining 2D and 3D measurements (0.5; p < 0.05). Young female patients were most critical about their appearance. Following combined ablative and microsurgical reconstructive procedures, patients have a realistic perception of their appearance compared with observer ratings and a combination of 2D and 3D objective evaluation. Copyright © 2018 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Shading of a computer-generated hologram by zone plate modulation.

    PubMed

    Kurihara, Takayuki; Takaki, Yasuhiro

    2012-02-13

    We propose a hologram calculation technique that enables reconstructing a shaded three-dimensional (3D) image. The amplitude distributions of zone plates, which generate the object points that constitute a 3D object, were two-dimensionally modulated. Two-dimensional (2D) amplitude modulation was determined on the basis of the Phong reflection model developed for computer graphics, which considers the specular, diffuse, and ambient reflection light components. The 2D amplitude modulation added variable and constant modulations: the former controlled the specular light component and the latter controlled the diffuse and ambient components. The proposed calculation technique was experimentally verified. The reconstructed image showed specular reflection that varied depending on the viewing position.

  11. Hip2Norm: an object-oriented cross-platform program for 3D analysis of hip joint morphology using 2D pelvic radiographs.

    PubMed

    Zheng, G; Tannast, M; Anderegg, C; Siebenrock, K A; Langlotz, F

    2007-07-01

    We developed an object-oriented cross-platform program to perform three-dimensional (3D) analysis of hip joint morphology using two-dimensional (2D) anteroposterior (AP) pelvic radiographs. Landmarks extracted from 2D AP pelvic radiographs and optionally an additional lateral pelvic X-ray were combined with a cone beam projection model to reconstruct 3D hip joints. Since individual pelvic orientation can vary considerably, a method for standardizing pelvic orientation was implemented to determine the absolute tilt/rotation. The evaluation of anatomically morphologic differences was achieved by reconstructing the projected acetabular rim and the measured hip parameters as if obtained in a standardized neutral orientation. The program had been successfully used to interactively objectify acetabular version in hips with femoro-acetabular impingement or developmental dysplasia. Hip(2)Norm is written in object-oriented programming language C++ using cross-platform software Qt (TrollTech, Oslo, Norway) for graphical user interface (GUI) and is transportable to any platform.

  12. Femur Model Reconstruction Based on Reverse Engineering and Rapid Prototyping

    NASA Astrophysics Data System (ADS)

    Tang, Tongming; Zhang, Zheng; Ni, Hongjun; Deng, Jiawen; Huang, Mingyu

    Precise reconstruction of 3D models is fundamental and crucial to the researches of human femur. In this paper we present our approach towards tackling this problem. The surface of a human femur was scanned using a hand-held 3D laser scanner. The data obtained, in the form of point cloud, was then processed using the reverse engineering software Geomagic and the CAD/CAM software CimatronE to reconstruct a digital 3D model. The digital model was then used by the rapid prototyping machine to build a physical model of human femur using 3D printing. The geometric characteristics of the obtained physical model matched that of the original femur. The process of "physical object - 3D data - digital 3D model - physical model" presented in this paper provides a foundation of precise modeling for the digital manufacturing, virtual assembly, stress analysis, and simulated surgery of artificial bionic femurs.

  13. Real-Time 3D Tracking and Reconstruction on Mobile Phones.

    PubMed

    Prisacariu, Victor Adrian; Kähler, Olaf; Murray, David W; Reid, Ian D

    2015-05-01

    We present a novel framework for jointly tracking a camera in 3D and reconstructing the 3D model of an observed object. Due to the region based approach, our formulation can handle untextured objects, partial occlusions, motion blur, dynamic backgrounds and imperfect lighting. Our formulation also allows for a very efficient implementation which achieves real-time performance on a mobile phone, by running the pose estimation and the shape optimisation in parallel. We use a level set based pose estimation but completely avoid the, typically required, explicit computation of a global distance. This leads to tracking rates of more than 100 Hz on a desktop PC and 30 Hz on a mobile phone. Further, we incorporate additional orientation information from the phone's inertial sensor which helps us resolve the tracking ambiguities inherent to region based formulations. The reconstruction step first probabilistically integrates 2D image statistics from selected keyframes into a 3D volume, and then imposes coherency and compactness using a total variational regularisation term. The global optimum of the overall energy function is found using a continuous max-flow algorithm and we show that, similar to tracking, the integration of per voxel posteriors instead of likelihoods improves the precision and accuracy of the reconstruction.

  14. Objective evaluation of the latissimus dorsi flap for breast reconstruction using three-dimensional imaging.

    PubMed

    Henseler, Helga; Smith, Joanna; Bowman, Adrian; Khambay, Balvinder S; Ju, Xiangyang; Ayoub, Ashraf; Ray, Arup K

    2012-09-01

    The latissimus dorsi muscle flap is a common method for the reconstruction of the breast following mastectomy. The study aimed to assess the quality of this reconstruction using a three-dimensional (3D) imaging method. The null hypothesis was that there was no difference in volume between the reconstructed breast and the opposite side. This study was conducted in forty-four patients who had had immediate unilateral breast reconstruction by latissimus dorsi muscle flap. The breast was captured using the 3D imaging system. Ten landmarks were digitised on the 3D images. The volume of each breast was measured by the application of Breast Analysis Tool software. The symmetry of the breast was measured using Procrustes analysis. The impact of breast position, orientation, size and intrinsic shape on the overall breast asymmetry was investigated. The null hypothesis was rejected. The reconstructed breast showed a significantly smaller volume when compared to the opposite side, p < 0.0001, a mean difference of 176.8 cc and 95% CI (103.5, 250.0). The shape and the position of the reconstructed breast were the main contributing factors to the measured asymmetry score. 3D imaging was efficient in evaluating the outcome of breast surgery. The latissimus dorsi muscle flap on its own for breast reconstruction did not restore the volume and shape of the breast fully lost due to complete mastectomy. The modification of this method and the selection of other or additional surgical techniques for breast reconstruction should be considered. The asymmetry analysis through reflection and Procrustes matching was a useful method for the objective shape analysis of the female breast and presented a new approach for breast shape assessment. The intrinsic breast shape and the positioning of the breast were major components of postoperative breast asymmetry. The reconstructed breast was smaller overall than the un-operated breast at a significant level when assessing the breast volume using the surface area. 3D imaging by multiple stereophotogrammetry was a useful tool for volume measurements, shape analysis and the evaluation of symmetry. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Automated Inspection of Power Line Corridors to Measure Vegetation Undercut Using Uav-Based Images

    NASA Astrophysics Data System (ADS)

    Maurer, M.; Hofer, M.; Fraundorfer, F.; Bischof, H.

    2017-08-01

    Power line corridor inspection is a time consuming task that is performed mostly manually. As the development of UAVs made huge progress in recent years, and photogrammetric computer vision systems became well established, it is time to further automate inspection tasks. In this paper we present an automated processing pipeline to inspect vegetation undercuts of power line corridors. For this, the area of inspection is reconstructed, geo-referenced, semantically segmented and inter class distance measurements are calculated. The presented pipeline performs an automated selection of the proper 3D reconstruction method for on the one hand wiry (power line), and on the other hand solid objects (surrounding). The automated selection is realized by performing pixel-wise semantic segmentation of the input images using a Fully Convolutional Neural Network. Due to the geo-referenced semantic 3D reconstructions a documentation of areas where maintenance work has to be performed is inherently included in the distance measurements and can be extracted easily. We evaluate the influence of the semantic segmentation according to the 3D reconstruction and show that the automated semantic separation in wiry and dense objects of the 3D reconstruction routine improves the quality of the vegetation undercut inspection. We show the generalization of the semantic segmentation to datasets acquired using different acquisition routines and to varied seasons in time.

  16. Tradeoff between noise reduction and inartificial visualization in a model-based iterative reconstruction algorithm on coronary computed tomography angiography.

    PubMed

    Hirata, Kenichiro; Utsunomiya, Daisuke; Kidoh, Masafumi; Funama, Yoshinori; Oda, Seitaro; Yuki, Hideaki; Nagayama, Yasunori; Iyama, Yuji; Nakaura, Takeshi; Sakabe, Daisuke; Tsujita, Kenichi; Yamashita, Yasuyuki

    2018-05-01

    We aimed to evaluate the image quality performance of coronary CT angiography (CTA) under the different settings of forward-projected model-based iterative reconstruction solutions (FIRST).Thirty patients undergoing coronary CTA were included. Each image was reconstructed using filtered back projection (FBP), adaptive iterative dose reduction 3D (AIDR-3D), and 2 model-based iterative reconstructions including FIRST-body and FIRST-cardiac sharp (CS). CT number and noise were measured in the coronary vessels and plaque. Subjective image-quality scores were obtained for noise and structure visibility.In the objective image analysis, FIRST-body produced the significantly highest contrast-to-noise ratio. Regarding subjective image quality, FIRST-CS had the highest score for structure visibility, although the image noise score was inferior to that of FIRST-body.In conclusion, FIRST provides significant improvements in objective and subjective image quality compared with FBP and AIDR-3D. FIRST-body effectively reduces image noise, but the structure visibility with FIRST-CS was superior to FIRST-body.

  17. Reconstruction of 3d Objects of Assets and Facilities by Using Benchmark Points

    NASA Astrophysics Data System (ADS)

    Baig, S. U.; Rahman, A. A.

    2013-08-01

    Acquiring and modeling 3D geo-data of building assets and facility objects is one of the challenges. A number of methods and technologies are being utilized for this purpose. Total station, GPS, photogrammetric and terrestrial laser scanning are few of these technologies. In this paper, points commonly shared by potential facades of assets and facilities modeled from point clouds are identified. These points are useful for modeling process to reconstruct 3D models of assets and facilities stored to be used for management purposes. These models are segmented through different planes to produce accurate 2D plans. This novel method improves the efficiency and quality of construction of models of assets and facilities with the aim utilize in 3D management projects such as maintenance of buildings or group of items that need to be replaced, or renovated for new services.

  18. Quantitative 3D high resolution transmission ultrasound tomography: creating clinically relevant images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wiskin, James; Klock, John; Iuanow, Elaine; Borup, Dave T.; Terry, Robin; Malik, Bilal H.; Lenox, Mark

    2017-03-01

    There has been a great deal of research into ultrasound tomography for breast imaging over the past 35 years. Few successful attempts have been made to reconstruct high-resolution images using transmission ultrasound. To this end, advances have been made in 2D and 3D algorithms that utilize either time of arrival or full wave data to reconstruct images with high spatial and contrast resolution suitable for clinical interpretation. The highest resolution and quantitative accuracy result from inverse scattering applied to full wave data in 3D. However, this has been prohibitively computationally expensive, meaning that full inverse scattering ultrasound tomography has not been considered clinically viable. Here we show the results of applying a nonlinear inverse scattering algorithm to 3D data in a clinically useful time frame. This method yields Quantitative Transmission (QT) ultrasound images with high spatial and contrast resolution. We reconstruct sound speeds for various 2D and 3D phantoms and verify these values with independent measurements. The data are fully 3D as is the reconstruction algorithm, with no 2D approximations. We show that 2D reconstruction algorithms can introduce artifacts into the QT breast image which are avoided by using a full 3D algorithm and data. We show high resolution gross and microscopic anatomic correlations comparing cadaveric breast QT images with MRI to establish imaging capability and accuracy. Finally, we show reconstructions of data from volunteers, as well as an objective visual grading analysis to confirm clinical imaging capability and accuracy.

  19. Real-Time 3d Reconstruction from Images Taken from AN Uav

    NASA Astrophysics Data System (ADS)

    Zingoni, A.; Diani, M.; Corsini, G.; Masini, A.

    2015-08-01

    We designed a method for creating 3D models of objects and areas from two aerial images acquired from an UAV. The models are generated automatically and in real-time, and consist in dense and true-colour reconstructions of the considered areas, which give the impression to the operator to be physically present within the scene. The proposed method only needs a cheap compact camera, mounted on a small UAV. No additional instrumentation is necessary, so that the costs are very limited. The method consists of two main parts: the design of the acquisition system and the 3D reconstruction algorithm. In the first part, the choices for the acquisition geometry and for the camera parameters are optimized, in order to yield the best performance. In the second part, a reconstruction algorithm extracts the 3D model from the two acquired images, maximizing the accuracy under the real-time constraint. A test was performed in monitoring a construction yard, obtaining very promising results. Highly realistic and easy-to-interpret 3D models of objects and areas of interest were produced in less than one second, with an accuracy of about 0.5m. For its characteristics, the designed method is suitable for video-surveillance, remote sensing and monitoring, especially in those applications that require intuitive and reliable information quickly, as disasters monitoring, search and rescue and area surveillance.

  20. Structured Light-Based 3D Reconstruction System for Plants.

    PubMed

    Nguyen, Thuy Tuong; Slaughter, David C; Max, Nelson; Maloof, Julin N; Sinha, Neelima

    2015-07-29

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.

  1. Surface imaging microscope

    NASA Astrophysics Data System (ADS)

    Rogala, Eric W.; Bankman, Isaac N.

    2008-04-01

    The three-dimensional shapes of microscopic objects are becoming increasingly important for battlespace CBRNE sensing. Potential applications of microscopic 3D shape observations include characterization of biological weapon particles and manufacturing of micromechanical components. Aerosol signatures of stand-off lidar systems, using elastic backscatter or polarization, are dictated by the aerosol particle shapes and sizes that must be well characterized in the lab. A low-cost, fast instrument for 3D surface shape microscopy will be a valuable point sensor for biological particle sensing applications. Both the cost and imaging durations of traditional techniques such as confocal microscopes, atomic force microscopes, and electron scanning microscopes are too high. We investigated the feasibility of a low-cost, fast interferometric technique for imaging the 3D surface shape of microscopic objects at frame rates limited only by the camera in the system. The system operates at two laser wavelengths producing two fringe images collected simultaneously by a digital camera, and a specialized algorithm we developed reconstructs the surface map of the microscopic object. The current implementation assembled to test the concept and develop the new 3D reconstruction algorithm has 0.25 micron resolution in the x and y directions, and about 0.1 micron accuracy in the z direction, as tested on a microscopic glass test object manufactured with etching techniques. We describe the interferometric instrument, present the reconstruction algorithm, and discuss further development.

  2. Self-expressive Dictionary Learning for Dynamic 3D Reconstruction.

    PubMed

    Zheng, Enliang; Ji, Dinghuang; Dunn, Enrique; Frahm, Jan-Michael

    2017-08-22

    We target the problem of sparse 3D reconstruction of dynamic objects observed by multiple unsynchronized video cameras with unknown temporal overlap. To this end, we develop a framework to recover the unknown structure without sequencing information across video sequences. Our proposed compressed sensing framework poses the estimation of 3D structure as the problem of dictionary learning, where the dictionary is defined as an aggregation of the temporally varying 3D structures. Given the smooth motion of dynamic objects, we observe any element in the dictionary can be well approximated by a sparse linear combination of other elements in the same dictionary (i.e. self-expression). Our formulation optimizes a biconvex cost function that leverages a compressed sensing formulation and enforces both structural dependency coherence across video streams, as well as motion smoothness across estimates from common video sources. We further analyze the reconstructability of our approach under different capture scenarios, and its comparison and relation to existing methods. Experimental results on large amounts of synthetic data as well as real imagery demonstrate the effectiveness of our approach.

  3. On the use of orientation filters for 3D reconstruction in event-driven stereo vision

    PubMed Central

    Camuñas-Mesa, Luis A.; Serrano-Gotarredona, Teresa; Ieng, Sio H.; Benosman, Ryad B.; Linares-Barranco, Bernabe

    2014-01-01

    The recently developed Dynamic Vision Sensors (DVS) sense visual information asynchronously and code it into trains of events with sub-micro second temporal resolution. This high temporal precision makes the output of these sensors especially suited for dynamic 3D visual reconstruction, by matching corresponding events generated by two different sensors in a stereo setup. This paper explores the use of Gabor filters to extract information about the orientation of the object edges that produce the events, therefore increasing the number of constraints applied to the matching algorithm. This strategy provides more reliably matched pairs of events, improving the final 3D reconstruction. PMID:24744694

  4. Three-dimensional ghost imaging using acoustic transducer

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Guo, Shuxu; Guan, Jian; Cao, Junsheng; Gao, Fengli

    2016-06-01

    We propose a novel three-dimensional (3D) ghost imaging method using unfocused ultrasonic transducer, where the transducer is used as the bucket detector to collect the total photoacoustic signal intensity from spherical surfaces with different radius circling the transducer. This collected signal is a time sequence corresponding to the optic absorption information on the spherical surfaces, and the values at the same moments in all the sequences are used as the bucket signals to restore the corresponding spherical images, which are assembled as the object 3D reconstruction. Numerical experiments show this method can effectively accomplish the 3D reconstruction and by adding up each sequence on time domain as a bucket signal it can also realize two dimensional (2D) ghost imaging. The influence of the measurement times on the 3D and 2D reconstruction is analyzed with Peak Signal to Noise Ratio (PSNR) as the yardstick, and the transducer as a bucket detector is also discussed.

  5. Structured light optical microscopy for three-dimensional reconstruction of technical surfaces

    NASA Astrophysics Data System (ADS)

    Kettel, Johannes; Reinecke, Holger; Müller, Claas

    2016-04-01

    In microsystems technology quality control of micro structured surfaces with different surface properties is playing an ever more important role. The process of quality control incorporates three-dimensional (3D) reconstruction of specularand diffusive reflecting technical surfaces. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution to solve this problem providing high vertical and lateral resolution. However, 3D reconstruction of specular reflecting technical surfaces still remains a challenge to optical measurement principles. In this paper we present a measurement principle based on structured light optical microscopy which enables 3D reconstruction of specular- and diffusive reflecting technical surfaces. It is realized using two light paths of a stereo microscope equipped with different magnification levels. The right optical path of the stereo microscope is used to project structured light onto the object surface. The left optical path is used to capture the structured illuminated object surface with a camera. Structured light patterns are generated by a Digital Light Processing (DLP) device in combination with a high power Light Emitting Diode (LED). Structured light patterns are realized as a matrix of discrete light spots to illuminate defined areas on the object surface. The introduced measurement principle is based on multiple and parallel processed point measurements. Analysis of the measured Point Spread Function (PSF) by pattern recognition and model fitting algorithms enables the precise calculation of 3D coordinates. Using exemplary technical surfaces we demonstrate the successful application of our measurement principle.

  6. Manipulating Digital Holograms to Modify Phase of Reconstructed Wavefronts

    NASA Astrophysics Data System (ADS)

    Ferraro, Pietro; Paturzo, Melania; Memmolo, Pasquale; Finizio, Andrea

    2010-04-01

    We show that through an adaptive deformation of digital holograms it is possible to manage the depth of focus in the numerical reconstruction. Deformation is applied to the original hologram with the aim to put simultaneously in-focus, and in one reconstructed image plane, different objects lying at different distance from the hologram plane (i.e. CCD sensor), but in the same field of view. In the same way it is possible to extend the depth of field for 3D object having a tilted object whole in-focus.

  7. A neural network technique for remeshing of bone microstructure.

    PubMed

    Fischer, Anath; Holdstein, Yaron

    2012-01-01

    Today, there is major interest within the biomedical community in developing accurate noninvasive means for the evaluation of bone microstructure and bone quality. Recent improvements in 3D imaging technology, among them development of micro-CT and micro-MRI scanners, allow in-vivo 3D high-resolution scanning and reconstruction of large specimens or even whole bone models. Thus, the tendency today is to evaluate bone features using 3D assessment techniques rather than traditional 2D methods. For this purpose, high-quality meshing methods are required. However, the 3D meshes produced from current commercial systems usually are of low quality with respect to analysis and rapid prototyping. 3D model reconstruction of bone is difficult due to the complexity of bone microstructure. The small bone features lead to a great deal of neighborhood ambiguity near each vertex. The relatively new neural network method for mesh reconstruction has the potential to create or remesh 3D models accurately and quickly. A neural network (NN), which resembles an artificial intelligence (AI) algorithm, is a set of interconnected neurons, where each neuron is capable of making an autonomous arithmetic calculation. Moreover, each neuron is affected by its surrounding neurons through the structure of the network. This paper proposes an extension of the growing neural gas (GNN) neural network technique for remeshing a triangular manifold mesh that represents bone microstructure. This method has the advantage of reconstructing the surface of a genus-n freeform object without a priori knowledge regarding the original object, its topology, or its shape.

  8. The study of early human embryos using interactive 3-dimensional computer reconstructions.

    PubMed

    Scarborough, J; Aiton, J F; McLachlan, J C; Smart, S D; Whiten, S C

    1997-07-01

    Tracings of serial histological sections from 4 human embryos at different Carnegie stages were used to create 3-dimensional (3D) computer models of the developing heart. The models were constructed using commercially available software developed for graphic design and the production of computer generated virtual reality environments. They are available as interactive objects which can be downloaded via the World Wide Web. This simple method of 3D reconstruction offers significant advantages for understanding important events in morphological sciences.

  9. Template-Based 3D Reconstruction of Non-rigid Deformable Object from Monocular Video

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Peng, Xiaodong; Zhou, Wugen; Liu, Bo; Gerndt, Andreas

    2018-06-01

    In this paper, we propose a template-based 3D surface reconstruction system of non-rigid deformable objects from monocular video sequence. Firstly, we generate a semi-dense template of the target object with structure from motion method using a subsequence video. This video can be captured by rigid moving camera orienting the static target object or by a static camera observing the rigid moving target object. Then, with the reference template mesh as input and based on the framework of classical template-based methods, we solve an energy minimization problem to get the correspondence between the template and every frame to get the time-varying mesh to present the deformation of objects. The energy terms combine photometric cost, temporal and spatial smoothness cost as well as as-rigid-as-possible cost which can enable elastic deformation. In this paper, an easy and controllable solution to generate the semi-dense template for complex objects is presented. Besides, we use an effective iterative Schur based linear solver for the energy minimization problem. The experimental evaluation presents qualitative deformation objects reconstruction results with real sequences. Compare against the results with other templates as input, the reconstructions based on our template have more accurate and detailed results for certain regions. The experimental results show that the linear solver we used performs better efficiency compared to traditional conjugate gradient based solver.

  10. Low-cost structured-light based 3D capture system design

    NASA Astrophysics Data System (ADS)

    Dong, Jing; Bengtson, Kurt R.; Robinson, Barrett F.; Allebach, Jan P.

    2014-03-01

    Most of the 3D capture products currently in the market are high-end and pricey. They are not targeted for consumers, but rather for research, medical, or industrial usage. Very few aim to provide a solution for home and small business applications. Our goal is to fill in this gap by only using low-cost components to build a 3D capture system that can satisfy the needs of this market segment. In this paper, we present a low-cost 3D capture system based on the structured-light method. The system is built around the HP TopShot LaserJet Pro M275. For our capture device, we use the 8.0 Mpixel camera that is part of the M275. We augment this hardware with two 3M MPro 150 VGA (640 × 480) pocket projectors. We also describe an analytical approach to predicting the achievable resolution of the reconstructed 3D object based on differentials and small signal theory, and an experimental procedure for validating that the system under test meets the specifications for reconstructed object resolution that are predicted by our analytical model. By comparing our experimental measurements from the camera-projector system with the simulation results based on the model for this system, we conclude that our prototype system has been correctly configured and calibrated. We also conclude that with the analytical models, we have an effective means for specifying system parameters to achieve a given target resolution for the reconstructed object.

  11. 3D Surface Reconstruction for Lower Limb Prosthetic Model using Radon Transform

    NASA Astrophysics Data System (ADS)

    Sobani, S. S. Mohd; Mahmood, N. H.; Zakaria, N. A.; Razak, M. A. Abdul

    2018-03-01

    This paper describes the idea to realize three-dimensional surfaces of objects with cylinder-based shapes where the techniques adopted and the strategy developed for a non-rigid three-dimensional surface reconstruction of an object from uncalibrated two-dimensional image sequences using multiple-view digital camera and turntable setup. The surface of an object is reconstructed based on the concept of tomography with the aid of performing several digital image processing algorithms on the two-dimensional images captured by a digital camera in thirty-six different projections and the three-dimensional structure of the surface is analysed. Four different objects are used as experimental models in the reconstructions and each object is placed on a manually rotated turntable. The results shown that the proposed method has successfully reconstruct the three-dimensional surface of the objects and practicable. The shape and size of the reconstructed three-dimensional objects are recognizable and distinguishable. The reconstructions of objects involved in the test are strengthened with the analysis where the maximum percent error obtained from the computation is approximately 1.4 % for the height whilst 4.0%, 4.79% and 4.7% for the diameters at three specific heights of the objects.

  12. 2D virtual texture on 3D real object with coded structured light

    NASA Astrophysics Data System (ADS)

    Molinier, Thierry; Fofi, David; Salvi, Joaquim; Gorria, Patrick

    2008-02-01

    Augmented reality is used to improve color segmentation on human body or on precious no touch artifacts. We propose a technique to project a synthesized texture on real object without contact. Our technique can be used in medical or archaeological application. By projecting a suitable set of light patterns onto the surface of a 3D real object and by capturing images with a camera, a large number of correspondences can be found and the 3D points can be reconstructed. We aim to determine these points of correspondence between cameras and projector from a scene without explicit points and normals. We then project an adjusted texture onto the real object surface. We propose a global and automatic method to virtually texture a 3D real object.

  13. Rigorous accuracy assessment for 3D reconstruction using time-series Dual Fluoroscopy (DF) image pairs

    NASA Astrophysics Data System (ADS)

    Al-Durgham, Kaleel; Lichti, Derek D.; Kuntze, Gregor; Ronsky, Janet

    2017-06-01

    High-speed biplanar videoradiography, or clinically referred to as dual fluoroscopy (DF), imaging systems are being used increasingly for skeletal kinematics analysis. Typically, a DF system comprises two X-ray sources, two image intensifiers and two high-speed video cameras. The combination of these elements provides time-series image pairs of articulating bones of a joint, which permits the measurement of bony rotation and translation in 3D at high temporal resolution (e.g., 120-250 Hz). Assessment of the accuracy of 3D measurements derived from DF imaging has been the subject of recent research efforts by several groups, however with methodological limitations. This paper presents a novel and simple accuracy assessment procedure based on using precise photogrammetric tools. We address the fundamental photogrammetry principles for the accuracy evaluation of an imaging system. Bundle adjustment with selfcalibration is used for the estimation of the system parameters. The bundle adjustment calibration uses an appropriate sensor model and applies free-network constraints and relative orientation stability constraints for a precise estimation of the system parameters. A photogrammetric intersection of time-series image pairs is used for the 3D reconstruction of a rotating planar object. A point-based registration method is used to combine the 3D coordinates from the intersection and independently surveyed coordinates. The final DF accuracy measure is reported as the distance between 3D coordinates from image intersection and the independently surveyed coordinates. The accuracy assessment procedure is designed to evaluate the accuracy over the full DF image format and a wide range of object rotation. Experiment of reconstruction of a rotating planar object reported an average positional error of 0.44 +/- 0.2 mm in the derived 3D coordinates (minimum 0.05 and maximum 1.2 mm).

  14. Single-image-based Modelling Architecture from a Historical Photograph

    NASA Astrophysics Data System (ADS)

    Dzwierzynska, Jolanta

    2017-10-01

    Historical photographs are proved to be very useful to provide a dimensional and geometrical analysis of buildings as well as to generate 3D reconstruction of the whole structure. The paper addresses the problem of single historical photograph analysis and modelling of an architectural object from it. Especially, it focuses on reconstruction of the original look of New-Town synagogue from the single historic photograph, when camera calibration is completely unknown. Due to the fact that the photograph faithfully followed the geometric rules of perspective, it was possible to develop and apply the method to obtain a correct 3D reconstruction of the building. The modelling process consisted of a series of familiar steps: feature extraction, determination of base elements of perspective, dimensional analyses and 3D reconstruction. Simple formulas were proposed in order to estimate location of characteristic points of the building in 3D Cartesian system of axes on the base of their location in 2D Cartesian system of axes. The reconstruction process proceeded well, although slight corrections were necessary. It was possible to reconstruct the shape of the building in general, and two of its facades in detail. The reconstruction of the other two facades requires some additional information or the additional picture. The success of the presented reconstruction method depends on the geometrical content of the photograph as well as quality of the picture, which ensures the legibility of building edges. The presented method of reconstruction is a combination of the descriptive method of reconstruction and computer aid; therefore, it seems to be universal. It can prove useful for single-image-based modelling architecture.

  15. Method for self reconstruction of holograms for secure communication

    NASA Astrophysics Data System (ADS)

    Babcock, Craig; Donkor, Eric

    2017-05-01

    We present the theory and experimental results behind using a 3D holographic signal for secure communications. A hologram of a complex 3D object is recorded to be used as a hard key for data encryption and decryption. The hologram is cut in half to be used at each end of the system. One piece is used for data encryption, while the other is used for data decryption. The first piece of hologram is modulated with the data to be encrypted. The hologram has an extremely complex phase distribution which encodes the data signal incident on the first piece of hologram. In order to extract the data from the modulated holographic carrier, the signal must be passed through the second hologram, removing the complex phase contributions of the first hologram. The signal beam from the first piece of hologram is used to illuminate the second piece of the same hologram, creating a self-reconstructing system. The 3D hologram's interference pattern is highly specific to the 3D object and conditions during the holographic writing process. With a sufficiently complex 3D object used to generate the holographic hard key, the data will be nearly impossible to recover without using the second piece of the same hologram. This method of producing a self-reconstructing hologram ensures that the pieces in use are from the same original hologram, providing a system hard key, making it an extremely difficult system to counterfeit.

  16. The dynamic system corresponding to LOD and AAM.

    NASA Astrophysics Data System (ADS)

    Liu, Shida; Liu, Shikuo; Chen, Jiong

    2000-02-01

    Using wavelet transform, the authors can reconstruct the 1-D map of a multifractal object. The wavelet transform of LOD and AAM shows that at 20 years scale, annual scale and 2 - 3 years scale, the jump points of LOD and AAM accord with each other very well, and their reconstructing 1-D mapping dynamic system are also very similar.

  17. High quality 3D shape reconstruction via digital refocusing and pupil apodization in multi-wavelength holographic interferometry

    NASA Astrophysics Data System (ADS)

    Xu, Li

    Multi-wavelength holographic interferometry (MWHI) has good potential for evolving into a high quality 3D shape reconstruction technique. There are several remaining challenges, including I) depth-of-field limitation, leading to axial dimension inaccuracy of out-of-focus objects; and 2) smearing from shiny smooth objects to their dark dull neighbors, generating fake measurements within the dark area. This research is motivated by the goal of developing an advanced optical metrology system that provides accurate 3D profiles for target object or objects of axial dimension larger than the depth-of-field, and for objects with dramatically different surface conditions. The idea of employing digital refocusing in MWHI has been proposed as a solution to the depth-of-field limitation. One the one hand, traditional single wavelength refocusing formula is revised to reduce sensitivity to wavelength error. Investigation over real example demonstrates promising accuracy and repeatability of reconstructed 3D profiles. On the other hand, a phase contrast based focus detection criterion is developed especially for MWHI, which overcomes the problem of phase unwrapping. The combination for these two innovations gives birth to a systematic strategy of acquiring high quality 3D profiles. Following the first phase contrast based focus detection step, interferometric distance measurement by MWHI is implemented as a next step to conduct relative focus detection with high accuracy. This strategy results in +/-100mm 3D profile with micron level axial accuracy, which is not available in traditional extended focus image (EFI) solutions. Pupil apodization has been implemented to address the second challenge of smearing. The process of reflective rough surface inspection has been mathematically modeled, which explains the origin of stray light and the necessity of replacing hard-edged pupil with one of gradually attenuating transmission (apodization). Metrics to optimize pupil types and parameters have been chosen especially for MWHI. A Gaussian apodized pupil has been installed and tested. A reduction of smearing in measurement result has been experimentally demonstrated.

  18. Structured Light-Based 3D Reconstruction System for Plants

    PubMed Central

    Nguyen, Thuy Tuong; Slaughter, David C.; Max, Nelson; Maloof, Julin N.; Sinha, Neelima

    2015-01-01

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants.This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance. PMID:26230701

  19. Efficient workflows for 3D building full-color model reconstruction using LIDAR long-range laser and image-based modeling techniques

    NASA Astrophysics Data System (ADS)

    Shih, Chihhsiong

    2005-01-01

    Two efficient workflow are developed for the reconstruction of a 3D full color building model. One uses a point wise sensing device to sample an unknown object densely and attach color textures from a digital camera separately. The other uses an image based approach to reconstruct the model with color texture automatically attached. The point wise sensing device reconstructs the CAD model using a modified best view algorithm that collects the maximum number of construction faces in one view. The partial views of the point clouds data are then glued together using a common face between two consecutive views. Typical overlapping mesh removal and coarsening procedures are adapted to generate a unified 3D mesh shell structure. A post processing step is then taken to combine the digital image content from a separate camera with the 3D mesh shell surfaces. An indirect uv mapping procedure first divide the model faces into groups within which every face share the same normal direction. The corresponding images of these faces in a group is then adjusted using the uv map as a guidance. The final assembled image is then glued back to the 3D mesh to present a full colored building model. The result is a virtual building that can reflect the true dimension and surface material conditions of a real world campus building. The image based modeling procedure uses a commercial photogrammetry package to reconstruct the 3D model. A novel view planning algorithm is developed to guide the photos taking procedure. This algorithm successfully generate a minimum set of view angles. The set of pictures taken at these view angles can guarantee that each model face shows up at least in two of the pictures set and no more than three. The 3D model can then be reconstructed with minimum amount of labor spent in correlating picture pairs. The finished model is compared with the original object in both the topological and dimensional aspects. All the test cases show exact same topology and reasonably low dimension error ratio. Again proving the applicability of the algorithm.

  20. Directional MTF measurement using sphere phantoms for a digital breast tomosynthesis system

    NASA Astrophysics Data System (ADS)

    Lee, Changwoo; Baek, Jongduk

    2015-03-01

    The digital breast tomosynthesis (DBT) has been widely used as a diagnosis imaging modality of breast cancer because of potential for structure noise reduction, better detectability, and less breast compression. Since 3D modulation transfer function (MTF) is one of the quantitative metrics to assess the spatial resolution of medical imaging systems, it is very important to measure 3D MTF of the DBT system to evaluate the resolution performance. In order to do that, Samei et al. used sphere phantoms and applied Thornton's method to the DBT system. However, due to the limitation of Thornton's method, the low frequency drop, caused by the limited data acquisition angle and reconstruction filters, was not measured correctly. To overcome this limitation, we propose a Richardson-Lucy (RL) deconvolution based estimation method to measure the directional MTF. We reconstructed point and sphere objects using FDK algorithm within a 40⁰ data acquisition angle. The ideal 3D MTF is obtained by taking Fourier transform of the reconstructed point object, and three directions (i.e., fx-direction, fy-direction, and fxy-direction) of the ideal 3D MTF are used as a reference. To estimate the directional MTF, the plane integrals of the reconstructed and ideal sphere object were calculated and used to estimate the directional PSF using RL deconvolution technique. Finally, the directional MTF was calculated by taking Fourier transform of the estimated PSF. Compared to the previous method, the proposed method showed a good agreement with the ideal directional MTF, especially at low frequency regions.

  1. 3D widefield light microscope image reconstruction without dyes

    NASA Astrophysics Data System (ADS)

    Larkin, S.; Larson, J.; Holmes, C.; Vaicik, M.; Turturro, M.; Jurkevich, A.; Sinha, S.; Ezashi, T.; Papavasiliou, G.; Brey, E.; Holmes, T.

    2015-03-01

    3D image reconstruction using light microscope modalities without exogenous contrast agents is proposed and investigated as an approach to produce 3D images of biological samples for live imaging applications. Multimodality and multispectral imaging, used in concert with this 3D optical sectioning approach is also proposed as a way to further produce contrast that could be specific to components in the sample. The methods avoid usage of contrast agents. Contrast agents, such as fluorescent or absorbing dyes, can be toxic to cells or alter cell behavior. Current modes of producing 3D image sets from a light microscope, such as 3D deconvolution algorithms and confocal microscopy generally require contrast agents. Zernike phase contrast (ZPC), transmitted light brightfield (TLB), darkfield microscopy and others can produce contrast without dyes. Some of these modalities have not previously benefitted from 3D image reconstruction algorithms, however. The 3D image reconstruction algorithm is based on an underlying physical model of scattering potential, expressed as the sample's 3D absorption and phase quantities. The algorithm is based upon optimizing an objective function - the I-divergence - while solving for the 3D absorption and phase quantities. Unlike typical deconvolution algorithms, each microscope modality, such as ZPC or TLB, produces two output image sets instead of one. Contrast in the displayed image and 3D renderings is further enabled by treating the multispectral/multimodal data as a feature set in a mathematical formulation that uses the principal component method of statistics.

  2. TomoPhantom, a software package to generate 2D-4D analytical phantoms for CT image reconstruction algorithm benchmarks

    NASA Astrophysics Data System (ADS)

    Kazantsev, Daniil; Pickalov, Valery; Nagella, Srikanth; Pasca, Edoardo; Withers, Philip J.

    2018-01-01

    In the field of computerized tomographic imaging, many novel reconstruction techniques are routinely tested using simplistic numerical phantoms, e.g. the well-known Shepp-Logan phantom. These phantoms cannot sufficiently cover the broad spectrum of applications in CT imaging where, for instance, smooth or piecewise-smooth 3D objects are common. TomoPhantom provides quick access to an external library of modular analytical 2D/3D phantoms with temporal extensions. In TomoPhantom, quite complex phantoms can be built using additive combinations of geometrical objects, such as, Gaussians, parabolas, cones, ellipses, rectangles and volumetric extensions of them. Newly designed phantoms are better suited for benchmarking and testing of different image processing techniques. Specifically, tomographic reconstruction algorithms which employ 2D and 3D scanning geometries, can be rigorously analyzed using the software. TomoPhantom also provides a capability of obtaining analytical tomographic projections which further extends the applicability of software towards more realistic, free from the "inverse crime" testing. All core modules of the package are written in the C-OpenMP language and wrappers for Python and MATLAB are provided to enable easy access. Due to C-based multi-threaded implementation, volumetric phantoms of high spatial resolution can be obtained with computational efficiency.

  3. 3D thermography in non-destructive testing of composite structures

    NASA Astrophysics Data System (ADS)

    Hellstein, Piotr; Szwedo, Mariusz

    2016-12-01

    The combination of 3D scanners and infrared cameras has lead to the introduction of 3D thermography. Such analysis produces results in the form of three-dimensional thermograms, where the temperatures are mapped on a 3D model reconstruction of the inspected object. All work in the field of 3D thermography focused on its utility in passive thermography inspections. The authors propose a new real-time 3D temperature mapping method, which for the first time can be applied to active thermography analyses. All steps required to utilise 3D thermography are discussed, starting from acquisition of three-dimensional and infrared data, going through image processing and scene reconstruction, finishing with thermal projection and ray-tracing visualisation techniques. The application of the developed method was tested during diagnosis of several industrial composite structures—boats, planes and wind turbine blades.

  4. Hybrid-coded 3D structured illumination imaging with Bayesian estimation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Hsun; Luo, Yuan; Singh, Vijay R.

    2016-03-01

    Light induced fluorescent microscopy has long been developed to observe and understand the object at microscale, such as cellular sample. However, the transfer function of lense-based imaging system limits the resolution so that the fine and detailed structure of sample cannot be identified clearly. The techniques of resolution enhancement are fascinated to break the limit of resolution for objective given. In the past decades, the resolution enhancement imaging has been investigated through variety of strategies, including photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), stimulated emission depletion (STED), and structure illuminated microscopy (SIM). In those methods, only SIM can intrinsically improve the resolution limit for a system without taking the structure properties of object into account. In this paper, we develop a SIM associated with Bayesian estimation, furthermore, with optical sectioning capability rendered from HiLo processing, resulting the high resolution through 3D volume. This 3D SIM can provide the optical sectioning and resolution enhancement performance, and be robust to noise owing to the Data driven Bayesian estimation reconstruction proposed. For validating the 3D SIM, we show our simulation result of algorithm, and the experimental result demonstrating the 3D resolution enhancement.

  5. Motion-oriented high speed 3-D measurements by binocular fringe projection using binary aperiodic patterns.

    PubMed

    Feng, Shijie; Chen, Qian; Zuo, Chao; Tao, Tianyang; Hu, Yan; Asundi, Anand

    2017-01-23

    Fringe projection is an extensively used technique for high speed three-dimensional (3-D) measurements of dynamic objects. To precisely retrieve a moving object at pixel level, researchers prefer to project a sequence of fringe images onto its surface. However, the motion often leads to artifacts in reconstructions due to the sequential recording of the set of patterns. In order to reduce the adverse impact of the movement, we present a novel high speed 3-D scanning technique combining the fringe projection and stereo. Firstly, promising measuring speed is achieved by modifying the traditional aperiodic sinusoidal patterns so that the fringe images can be cast at kilohertz with the widely used defocusing strategy. Next, a temporal intensity tracing algorithm is developed to further alleviate the influence of motion by accurately tracing the ideal intensity for stereo matching. Then, a combined cost measure is suggested to robustly estimate the cost for each pixel and lastly a three-step framework of refinement follows not only to eliminate outliers caused by the motion but also to obtain sub-pixel disparity results for 3-D reconstructions. In comparison with the traditional method where the effect of motion is not considered, experimental results show that the reconstruction accuracy for dynamic objects can be improved by an order of magnitude with the proposed method.

  6. Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method.

    PubMed

    Matsushima, Kyoji; Nakahara, Sumio

    2009-12-01

    A large-scale full-parallax computer-generated hologram (CGH) with four billion (2(16) x 2(16)) pixels is created to reconstruct a fine true 3D image of a scene, with occlusions. The polygon-based method numerically generates the object field of a surface object, whose shape is provided by a set of vertex data of polygonal facets, while the silhouette method makes it possible to reconstruct the occluded scene. A novel technique using the segmented frame buffer is presented for handling and propagating large wave fields even in the case where the whole wave field cannot be stored in memory. We demonstrate that the full-parallax CGH, calculated by the proposed method and fabricated by a laser lithography system, reconstructs a fine 3D image accompanied by a strong sensation of depth.

  7. A Novel Image Compression Algorithm for High Resolution 3D Reconstruction

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2014-06-01

    This research presents a novel algorithm to compress high-resolution images for accurate structured light 3D reconstruction. Structured light images contain a pattern of light and shadows projected on the surface of the object, which are captured by the sensor at very high resolutions. Our algorithm is concerned with compressing such images to a high degree with minimum loss without adversely affecting 3D reconstruction. The Compression Algorithm starts with a single level discrete wavelet transform (DWT) for decomposing an image into four sub-bands. The sub-band LL is transformed by DCT yielding a DC-matrix and an AC-matrix. The Minimize-Matrix-Size Algorithm is used to compress the AC-matrix while a DWT is applied again to the DC-matrix resulting in LL2, HL2, LH2 and HH2 sub-bands. The LL2 sub-band is transformed by DCT, while the Minimize-Matrix-Size Algorithm is applied to the other sub-bands. The proposed algorithm has been tested with images of different sizes within a 3D reconstruction scenario. The algorithm is demonstrated to be more effective than JPEG2000 and JPEG concerning higher compression rates with equivalent perceived quality and the ability to more accurately reconstruct the 3D models.

  8. Geometrical characterization of fluorescently labelled surfaces from noisy 3D microscopy data.

    PubMed

    Shelton, Elijah; Serwane, Friedhelm; Campàs, Otger

    2018-03-01

    Modern fluorescence microscopy enables fast 3D imaging of biological and inert systems alike. In many studies, it is important to detect the surface of objects and quantitatively characterize its local geometry, including its mean curvature. We present a fully automated algorithm to determine the location and curvatures of an object from 3D fluorescence images, such as those obtained using confocal or light-sheet microscopy. The algorithm aims at reconstructing surface labelled objects with spherical topology and mild deformations from the spherical geometry with high accuracy, rather than reconstructing arbitrarily deformed objects with lower fidelity. Using both synthetic data with known geometrical characteristics and experimental data of spherical objects, we characterize the algorithm's accuracy over the range of conditions and parameters typically encountered in 3D fluorescence imaging. We show that the algorithm can detect the location of the surface and obtain a map of local mean curvatures with relative errors typically below 2% and 20%, respectively, even in the presence of substantial levels of noise. Finally, we apply this algorithm to analyse the shape and curvature map of fluorescently labelled oil droplets embedded within multicellular aggregates and deformed by cellular forces. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  9. The Application of Three-Dimensional Surface Imaging System in Plastic and Reconstructive Surgery.

    PubMed

    Li, Yanqi; Yang, Xin; Li, Dong

    2016-02-01

    Three-dimensional (3D) surface imaging system has gained popularity worldwide in clinical application. Unlike computed tomography and magnetic resonance imaging, it has the ability to capture 3D images with both shape and texture information. This feature has made it quite useful for plastic surgeons. This review article is mainly focusing on demonstrating the current status and analyzing the future of the application of 3D surface imaging systems in plastic and reconstructive surgery.Currently, 3D surface imaging system is mainly used in plastic and reconstructive surgery to help improve the reliability of surgical planning and assessing surgical outcome objectively. There have already been reports of its using on plastic and reconstructive surgery from head to toe. Studies on facial aging process, online applications development, and so on, have also been done through the use of 3D surface imaging system.Because different types of 3D surface imaging devices have their own advantages and disadvantages, a basic knowledge of their features is required and careful thought should be taken to choose the one that best fits a surgeon's demand.In the future, by integrating with other imaging tools and the 3D printing technology, 3D surface imaging system will play an important role in individualized surgical planning, implants production, meticulous surgical simulation, operative techniques training, and patient education.

  10. Matching tire tracks on the head using forensic photogrammetry.

    PubMed

    Thali, M J; Braun, M; Brüschweiler, W; Dirnhofer, R

    2000-09-11

    In the field of the documentation of forensics-relevant injuries, from the reconstructive point of view, the forensic, CAD-supported photogrammetry plays an important role; particularly so when a detailed 3-D reconstruction is vital. This is demonstrated with a soft-tissue injury to the face caused by being run over by a car tire. Since the objects (injury and surface of the tire) to be investigated will be evaluated in virtual space, they must be series photographed. These photo sequences are then evaluated with the RolleiMetric multi-image evaluation system. This system measures and calculates the spatial location of points shown in the photo sequences, and creates 3-D data models of the objects. In a 3-D CAD program, the model of the injury is then compared against the model of the possible injury-causing instrument. The validation of the forensic, CAD-supported photogrammetry, as shown by the perfect 3-D match between the tire tread and the facial injury, demonstrates how greatly this 3-D method surpasses the classic 2-D overlay method (one-to-one photography).

  11. Reconstructing photorealistic 3D models from image sequence using domain decomposition method

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Pan, Ming; Zhang, Xiangwei

    2009-11-01

    In the fields of industrial design, artistic design and heritage conservation, physical objects are usually digitalized by reverse engineering through some 3D scanning methods. Structured light and photogrammetry are two main methods to acquire 3D information, and both are expensive. Even if these expensive instruments are used, photorealistic 3D models are seldom available. In this paper, a new method to reconstruction photorealistic 3D models using a single camera is proposed. A square plate glued with coded marks is used to place the objects, and a sequence of about 20 images is taken. From the coded marks, the images are calibrated, and a snake algorithm is used to segment object from the background. A rough 3d model is obtained using shape from silhouettes algorithm. The silhouettes are decomposed into a combination of convex curves, which are used to partition the rough 3d model into some convex mesh patches. For each patch, the multi-view photo consistency constraints and smooth regulations are expressed as a finite element formulation, which can be resolved locally, and the information can be exchanged along the patches boundaries. The rough model is deformed into a fine 3d model through such a domain decomposition finite element method. The textures are assigned to each element mesh, and a photorealistic 3D model is got finally. A toy pig is used to verify the algorithm, and the result is exciting.

  12. Data-Driven Neural Network Model for Robust Reconstruction of Automobile Casting

    NASA Astrophysics Data System (ADS)

    Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Lu

    2017-09-01

    In computer vision system, it is a challenging task to robustly reconstruct complex 3D geometries of automobile castings. However, 3D scanning data is usually interfered by noises, the scanning resolution is low, these effects normally lead to incomplete matching and drift phenomenon. In order to solve these problems, a data-driven local geometric learning model is proposed to achieve robust reconstruction of automobile casting. In order to relieve the interference of sensor noise and to be compatible with incomplete scanning data, a 3D convolution neural network is established to match the local geometric features of automobile casting. The proposed neural network combines the geometric feature representation with the correlation metric function to robustly match the local correspondence. We use the truncated distance field(TDF) around the key point to represent the 3D surface of casting geometry, so that the model can be directly embedded into the 3D space to learn the geometric feature representation; Finally, the training labels is automatically generated for depth learning based on the existing RGB-D reconstruction algorithm, which accesses to the same global key matching descriptor. The experimental results show that the matching accuracy of our network is 92.2% for automobile castings, the closed loop rate is about 74.0% when the matching tolerance threshold τ is 0.2. The matching descriptors performed well and retained 81.6% matching accuracy at 95% closed loop. For the sparse geometric castings with initial matching failure, the 3D matching object can be reconstructed robustly by training the key descriptors. Our method performs 3D reconstruction robustly for complex automobile castings.

  13. An elementary research on wireless transmission of holographic 3D moving pictures

    NASA Astrophysics Data System (ADS)

    Takano, Kunihiko; Sato, Koki; Endo, Takaya; Asano, Hiroaki; Fukuzawa, Atsuo; Asai, Kikuo

    2009-05-01

    In this paper, a transmitting process of a sequence of holograms describing 3D moving objects over the communicating wireless-network system is presented. A sequence of holograms involves holograms is transformed into a bit stream data, and then it is transmitted over the wireless LAN and Bluetooth. It is shown that applying this technique, holographic data of 3D moving object is transmitted in high quality and a relatively good reconstruction of holographic images is performed.

  14. Three-dimensional scanning transmission electron microscopy of biological specimens.

    PubMed

    de Jonge, Niels; Sougrat, Rachid; Northan, Brian M; Pennycook, Stephen J

    2010-02-01

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2-3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset.

  15. Three-Dimensional Scanning Transmission Electron Microscopy of Biological Specimens

    PubMed Central

    de Jonge, Niels; Sougrat, Rachid; Northan, Brian M.; Pennycook, Stephen J.

    2010-01-01

    A three-dimensional (3D) reconstruction of the cytoskeleton and a clathrin-coated pit in mammalian cells has been achieved from a focal-series of images recorded in an aberration-corrected scanning transmission electron microscope (STEM). The specimen was a metallic replica of the biological structure comprising Pt nanoparticles 2–3 nm in diameter, with a high stability under electron beam radiation. The 3D dataset was processed by an automated deconvolution procedure. The lateral resolution was 1.1 nm, set by pixel size. Particles differing by only 10 nm in vertical position were identified as separate objects with greater than 20% dip in contrast between them. We refer to this value as the axial resolution of the deconvolution or reconstruction, the ability to recognize two objects, which were unresolved in the original dataset. The resolution of the reconstruction is comparable to that achieved by tilt-series transmission electron microscopy. However, the focal-series method does not require mechanical tilting and is therefore much faster. 3D STEM images were also recorded of the Golgi ribbon in conventional thin sections containing 3T3 cells with a comparable axial resolution in the deconvolved dataset. PMID:20082729

  16. A resource from 3D electron microscopy of hippocampal neuropil for user training and tool development

    PubMed Central

    Harris, Kristen M.; Spacek, Josef; Bell, Maria Elizabeth; Parker, Patrick H.; Lindsey, Laurence F.; Baden, Alexander D.; Vogelstein, Joshua T.; Burns, Randal

    2015-01-01

    Resurgent interest in synaptic circuitry and plasticity has emphasized the importance of 3D reconstruction from serial section electron microscopy (3DEM). Three volumes of hippocampal CA1 neuropil from adult rat were imaged at X-Y resolution of ~2 nm on serial sections of ~50–60 nm thickness. These are the first densely reconstructed hippocampal volumes. All axons, dendrites, glia, and synapses were reconstructed in a cube (~10 μm3) surrounding a large dendritic spine, a cylinder (~43 μm3) surrounding an oblique dendritic segment (3.4 μm long), and a parallelepiped (~178 μm3) surrounding an apical dendritic segment (4.9 μm long). The data provide standards for identifying ultrastructural objects in 3DEM, realistic reconstructions for modeling biophysical properties of synaptic transmission, and a test bed for enhancing reconstruction tools. Representative synapses are quantified from varying section planes, and microtubules, polyribosomes, smooth endoplasmic reticulum, and endosomes are identified and reconstructed in a subset of dendrites. The original images, traces, and Reconstruct software and files are freely available and visualized at the Open Connectome Project (Data Citation 1). PMID:26347348

  17. Online C-arm calibration using a marked guide wire for 3D reconstruction of pulmonary arteries

    NASA Astrophysics Data System (ADS)

    Vachon, Étienne; Miró, Joaquim; Duong, Luc

    2017-03-01

    3D reconstruction of vessels from 2D X-ray angiography is highly relevant to improve the visualization and the assessment of vascular structures such as pulmonary arteries by interventional cardiologists. However, to ensure a robust and accurate reconstruction, C-arm gantry parameters must be properly calibrated to provide clinically acceptable results. Calibration procedures often rely on calibration objects and complex protocol which is not adapted to an intervention context. In this study, a novel calibration algorithm for C-arm gantry is presented using the instrumentation such as catheters and guide wire. This ensures the availability of a minimum set of correspondences and implies minimal changes to the clinical workflow. The method was evaluated on simulated data and on retrospective patient datasets. Experimental results on simulated datasets demonstrate a calibration that allows a 3D reconstruction of the guide wire up to a geometric transformation. Experiments with patients datasets show a significant decrease of the retro projection error to 0.17 mm 2D RMS. Consequently, such procedure might contribute to identify any calibration drift during the intervention.

  18. Three-dimensional multiexcitation magnetoacoustic tomography with magnetic induction

    PubMed Central

    Li, Xu; Mariappan, Leo; He, Bin

    2010-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is a hybrid imaging modality proposed to image electrical conductivity contrast of biological tissue with high spatial resolution. This modality combines magnetic excitations with ultrasound detection through the Lorentz force based coupling mechanism. However, previous studies have shown that MAT-MI method with single type of magnetic excitation can only reconstruct the conductivity boundaries of a sample. In order to achieve more complete conductivity contrast reconstruction, we proposed a multiexcitation MAT-MI approach. In this approach, multiple magnetic excitations using different coil configurations are applied to the object sequentially and ultrasonic signals corresponding to each excitation are collected for conductivity image reconstruction. In this study, we validate the new multiexcitation MAT-MI method for three-dimensional (3D) conductivity imaging through both computer simulations and phantom experiments. 3D volume data are obtained by utilizing acoustic focusing and cylindrical scanning under each magnetic excitation. It is shown in our simulation and experiment results that with a common ultrasound probe that has limited bandwidth we are able to correctly reconstruct the 3D relative conductivity contrast of the imaging object. As compared to those conductivity boundary images generated by previous single-excitation MAT-MI, the new multiexcitation MAT-MI method provides more complete conductivity contrast reconstruction, and therefore, more valuable information in possible clinical and research applications. PMID:21267084

  19. D Data Acquisition Based on Opencv for Close-Range Photogrammetry Applications

    NASA Astrophysics Data System (ADS)

    Jurjević, L.; Gašparović, M.

    2017-05-01

    Development of the technology in the area of the cameras, computers and algorithms for 3D the reconstruction of the objects from the images resulted in the increased popularity of the photogrammetry. Algorithms for the 3D model reconstruction are so advanced that almost anyone can make a 3D model of photographed object. The main goal of this paper is to examine the possibility of obtaining 3D data for the purposes of the close-range photogrammetry applications, based on the open source technologies. All steps of obtaining 3D point cloud are covered in this paper. Special attention is given to the camera calibration, for which two-step process of calibration is used. Both, presented algorithm and accuracy of the point cloud are tested by calculating the spatial difference between referent and produced point clouds. During algorithm testing, robustness and swiftness of obtaining 3D data is noted, and certainly usage of this and similar algorithms has a lot of potential in the real-time application. That is the reason why this research can find its application in the architecture, spatial planning, protection of cultural heritage, forensic, mechanical engineering, traffic management, medicine and other sciences.

  20. MO-C-18A-01: Advances in Model-Based 3D Image Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G; Pan, X; Stayman, J

    2014-06-15

    Recent years have seen the emergence of CT image reconstruction techniques that exploit physical models of the imaging system, photon statistics, and even the patient to achieve improved 3D image quality and/or reduction of radiation dose. With numerous advantages in comparison to conventional 3D filtered backprojection, such techniques bring a variety of challenges as well, including: a demanding computational load associated with sophisticated forward models and iterative optimization methods; nonlinearity and nonstationarity in image quality characteristics; a complex dependency on multiple free parameters; and the need to understand how best to incorporate prior information (including patient-specific prior images) within themore » reconstruction process. The advantages, however, are even greater – for example: improved image quality; reduced dose; robustness to noise and artifacts; task-specific reconstruction protocols; suitability to novel CT imaging platforms and noncircular orbits; and incorporation of known characteristics of the imager and patient that are conventionally discarded. This symposium features experts in 3D image reconstruction, image quality assessment, and the translation of such methods to emerging clinical applications. Dr. Chen will address novel methods for the incorporation of prior information in 3D and 4D CT reconstruction techniques. Dr. Pan will show recent advances in optimization-based reconstruction that enable potential reduction of dose and sampling requirements. Dr. Stayman will describe a “task-based imaging” approach that leverages models of the imaging system and patient in combination with a specification of the imaging task to optimize both the acquisition and reconstruction process. Dr. Samei will describe the development of methods for image quality assessment in such nonlinear reconstruction techniques and the use of these methods to characterize and optimize image quality and dose in a spectrum of clinical applications. Learning Objectives: Learn the general methodologies associated with model-based 3D image reconstruction. Learn the potential advantages in image quality and dose associated with model-based image reconstruction. Learn the challenges associated with computational load and image quality assessment for such reconstruction methods. Learn how imaging task can be incorporated as a means to drive optimal image acquisition and reconstruction techniques. Learn how model-based reconstruction methods can incorporate prior information to improve image quality, ease sampling requirements, and reduce dose.« less

  1. Influence of the light propagation models on a linearized photoacoustic image reconstruction of the light absorption coefficient

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Kushibiki, Toshihiro; Ishihara, Miya

    2015-03-01

    Quantification of the optical properties of the tissues and blood by noninvasive photoacoustic (PA) imaging may provide useful information for screening and early diagnosis of diseases. Linearized 2D image reconstruction algorithm based on PA wave equation and the photon diffusion equation (PDE) can reconstruct the image with computational cost smaller than a method based on 3D radiative transfer equation. However, the reconstructed image is affected by the differences between the actual and assumed light propagations. A quantitative capability of a linearized 2D image reconstruction was investigated and discussed by the numerical simulations and the phantom experiment in this study. The numerical simulations with the 3D Monte Carlo (MC) simulation and the 2D finite element calculation of the PDE were carried out. The phantom experiment was also conducted. In the phantom experiment, the PA pressures were acquired by a probe which had an optical fiber for illumination and the ring shaped P(VDF-TrFE) ultrasound transducer. The measured object was made of Intralipid and Indocyanine green. In the numerical simulations, it was shown that the linearized image reconstruction method recovered the absorption coefficients with alleviating the dependency of the PA amplitude on the depth of the photon absorber. The linearized image reconstruction method worked effectively under the light propagation calculated by 3D MC simulation, although some errors occurred. The phantom experiments validated the result of the numerical simulations.

  2. Application of 3D reconstruction system in diabetic foot ulcer injury assessment

    NASA Astrophysics Data System (ADS)

    Li, Jun; Jiang, Li; Li, Tianjian; Liang, Xiaoyao

    2018-04-01

    To deal with the considerable deviation of transparency tracing method and digital planimetry method used in current clinical diabetic foot ulcer injury assessment, this paper proposes a 3D reconstruction system which can be used to get foot model with good quality texture, then injury assessment is done by measuring the reconstructed model. The system uses the Intel RealSense SR300 depth camera which is based on infrared structured-light as input device, the required data from different view is collected by moving the camera around the scanned object. The geometry model is reconstructed by fusing the collected data, then the mesh is sub-divided to increase the number of mesh vertices and the color of each vertex is determined using a non-linear optimization, all colored vertices compose the surface texture of the reconstructed model. Experimental results indicate that the reconstructed model has millimeter-level geometric accuracy and texture with few artificial effect.

  3. A GUI visualization system for airborne lidar image data to reconstruct 3D city model

    NASA Astrophysics Data System (ADS)

    Kawata, Yoshiyuki; Koizumi, Kohei

    2015-10-01

    A visualization toolbox system with graphical user interfaces (GUIs) was developed for the analysis of LiDAR point cloud data, as a compound object oriented widget application in IDL (Interractive Data Language). The main features in our system include file input and output abilities, data conversion capability from ascii formatted LiDAR point cloud data to LiDAR image data whose pixel value corresponds the altitude measured by LiDAR, visualization of 2D/3D images in various processing steps and automatic reconstruction ability of 3D city model. The performance and advantages of our graphical user interface (GUI) visualization system for LiDAR data are demonstrated.

  4. 3D Modeling from Multi-views Images for Cultural Heritage in Wat-Pho, Thailand

    NASA Astrophysics Data System (ADS)

    Soontranon, N.; Srestasathiern, P.; Lawawirojwong, S.

    2015-08-01

    In Thailand, there are several types of (tangible) cultural heritages. This work focuses on 3D modeling of the heritage objects from multi-views images. The images are acquired by using a DSLR camera which costs around 1,500 (camera and lens). Comparing with a 3D laser scanner, the camera is cheaper and lighter than the 3D scanner. Hence, the camera is available for public users and convenient for accessing narrow areas. The acquired images consist of various sculptures and architectures in Wat-Pho which is a Buddhist temple located behind the Grand Palace (Bangkok, Thailand). Wat-Pho is known as temple of the reclining Buddha and the birthplace of traditional Thai massage. To compute the 3D models, a diagram is separated into following steps; Data acquisition, Image matching, Image calibration and orientation, Dense matching and Point cloud processing. For the initial work, small heritages less than 3 meters height are considered for the experimental results. A set of multi-views images of an interested object is used as input data for 3D modeling. In our experiments, 3D models are obtained from MICMAC (open source) software developed by IGN, France. The output of 3D models will be represented by using standard formats of 3D point clouds and triangulated surfaces such as .ply, .off, .obj, etc. To compute for the efficient 3D models, post-processing techniques are required for the final results e.g. noise reduction, surface simplification and reconstruction. The reconstructed 3D models can be provided for public access such as website, DVD, printed materials. The high accurate 3D models can also be used as reference data of the heritage objects that must be restored due to deterioration of a lifetime, natural disasters, etc.

  5. Three-dimensional rotational micro-angiography

    NASA Astrophysics Data System (ADS)

    Patel, Vikas

    Computed tomography (CT) is state-of-the-art for 3D imaging in which images are acquired about the patient and are used to reconstruct the data. But the commercial CT systems suffer from low spatial resolution (0.5-2 lp/mm). Micro-CT (microCT) systems have high resolution 3D reconstruction (>10 lp/mm), but are currently limited to small objects, e.g., small animals. To achieve artifact free reconstructions, geometric calibration of the rotating-object cone-beam microCT (CBmicroCT) system is performed using new techniques that use only the projection images of the object, i.e., no calibration objects are required. Translations (up to 0.2 mm) occurring during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The parameters describing the physical axis of rotation determined using our image-based method (aligning anti-posed images) agree well (within 0.1 mm and 0.3 degrees) with those determined using other techniques that use calibration objects. Geometric calibrations of the rotational angiography (RA) systems (clinical cone-beam CT systems with fluoroscopic capabilities provided by flat-panel detectors (FPD)) are performed using a simple single projection technique (SPT), which aligns a known 3D model of a calibration phantom with the projection data. The calibration parameters obtained by the SPT are found to be reproducible (angles within 0.2° and x- and y-translations less than 2 mm) for over 7 months. The spatial resolution of the RA systems is found to be virtually unaffected by such small geometric variations. Finally, using our understanding of the geometric calibrations, we have developed methods to combine relatively low-resolution RA acquisitions (2-3 lp/mm) with high resolution microCT acquisitions (using a high-resolution micro-angiographic fluoroscope (MAF) attached to the RA gantry) to produce the first-ever 3D rotational micro-angiography (3D-RmicroA) system on a clinical gantry. Images of a rabbit with a coronary stent placed in an artery were obtained and reconstructed. To eliminate artifacts due to image truncation, lower-dose (compared to the MAF acquisition) full-FOV (FFOV) FPD RA sequences are also obtained. To ensure high-quality high-resolution reconstruction, the high-resolution images from the MAF are aligned spatially with the lower-dose FPD images (average correlation coefficient before and after alignment: 0.65 and 0.97 respectively), and the pixel values in the FPD image data are scaled (using linear regression) to match those of the MAF. Greater details without any visible truncation artifacts are seen in 3D RmicroA (MAF-FPD) images than in those of the FPD alone. The FWHM of line profiles of stent struts (100 micron diameter) are approximately 192 +/- 21 and 313 +/- 38 microns for the 3D RmicroA and FPD data, respectively. Thus, with the RmicroA system, we have essentially developed a high resolution CBmicroCT system for clinical use.

  6. 3D tomographic reconstruction using geometrical models

    NASA Astrophysics Data System (ADS)

    Battle, Xavier L.; Cunningham, Gregory S.; Hanson, Kenneth M.

    1997-04-01

    We address the issue of reconstructing an object of constant interior density in the context of 3D tomography where there is prior knowledge about the unknown shape. We explore the direct estimation of the parameters of a chosen geometrical model from a set of radiographic measurements, rather than performing operations (segmentation for example) on a reconstructed volume. The inverse problem is posed in the Bayesian framework. A triangulated surface describes the unknown shape and the reconstruction is computed with a maximum a posteriori (MAP) estimate. The adjoint differentiation technique computes the derivatives needed for the optimization of the model parameters. We demonstrate the usefulness of the approach and emphasize the techniques of designing forward and adjoint codes. We use the system response of the University of Arizona Fast SPECT imager to illustrate this method by reconstructing the shape of a heart phantom.

  7. Terahertz imaging and tomography as efficient instruments for testing polymer additive manufacturing objects.

    PubMed

    Perraud, J B; Obaton, A F; Bou-Sleiman, J; Recur, B; Balacey, H; Darracq, F; Guillet, J P; Mounaix, P

    2016-05-01

    Additive manufacturing (AM) technology is not only used to make 3D objects but also for rapid prototyping. In industry and laboratories, quality controls for these objects are necessary though difficult to implement compared to classical methods of fabrication because the layer-by-layer printing allows for very complex object manufacturing that is unachievable with standard tools. Furthermore, AM can induce unknown or unexpected defects. Consequently, we demonstrate terahertz (THz) imaging as an innovative method for 2D inspection of polymer materials. Moreover, THz tomography may be considered as an alternative to x-ray tomography and cheaper 3D imaging for routine control. This paper proposes an experimental study of 3D polymer objects obtained by additive manufacturing techniques. This approach allows us to characterize defects and to control dimensions by volumetric measurements on 3D data reconstructed by tomography.

  8. Full-color high-definition CGH reconstructing hybrid scenes of physical and virtual objects

    NASA Astrophysics Data System (ADS)

    Tsuchiyama, Yasuhiro; Matsushima, Kyoji; Nakahara, Sumio; Yamaguchi, Masahiro; Sakamoto, Yuji

    2017-03-01

    High-definition CGHs can reconstruct high-quality 3D images that are comparable to that in conventional optical holography. However, it was difficult to exhibit full-color images reconstructed by these high-definition CGHs, because three CGHs for RGB colors and a bulky image combiner were needed to produce full-color images. Recently, we reported a novel technique for full-color reconstruction using RGB color filters, which are similar to that used for liquid-crystal panels. This technique allows us to produce full-color high-definition CGHs composed of a single plate and place them on exhibition. By using the technique, we demonstrate full-color CGHs that reconstruct hybrid scenes comprised of real-existing physical objects and CG-modeled virtual objects in this paper. Here, the wave field of the physical object are obtained from dense multi-viewpoint images by employing the ray-sampling (RS) plane technique. In addition to the technique for full-color capturing and reconstruction of real object fields, the principle and simulation technique for full- color CGHs using RGB color filters are presented.

  9. Surface-Plasmon Holography with White-Light Illumination

    NASA Astrophysics Data System (ADS)

    Ozaki, Miyu; Kato, Jun-ichi; Kawata, Satoshi

    2011-04-01

    The recently emerging three-dimensional (3D) displays in the electronic shops imitate depth illusion by overlapping two parallax 2D images through either polarized glasses that viewers are required to wear or lenticular lenses fixed directly on the display. Holography, on the other hand, provides real 3D imaging, although usually limiting colors to monochrome. The so-called rainbow holograms—mounted, for example, on credit cards—are also produced from parallax images that change color with viewing angle. We report on a holographic technique based on surface plasmons that can reconstruct true 3D color images, where the colors are reconstructed by satisfying resonance conditions of surface plasmon polaritons for individual wavelengths. Such real 3D color images can be viewed from any angle, just like the original object.

  10. EIT image reconstruction with four dimensional regularization.

    PubMed

    Dai, Tao; Soleimani, Manuchehr; Adler, Andy

    2008-09-01

    Electrical impedance tomography (EIT) reconstructs internal impedance images of the body from electrical measurements on body surface. The temporal resolution of EIT data can be very high, although the spatial resolution of the images is relatively low. Most EIT reconstruction algorithms calculate images from data frames independently, although data are actually highly correlated especially in high speed EIT systems. This paper proposes a 4-D EIT image reconstruction for functional EIT. The new approach is developed to directly use prior models of the temporal correlations among images and 3-D spatial correlations among image elements. A fast algorithm is also developed to reconstruct the regularized images. Image reconstruction is posed in terms of an augmented image and measurement vector which are concatenated from a specific number of previous and future frames. The reconstruction is then based on an augmented regularization matrix which reflects the a priori constraints on temporal and 3-D spatial correlations of image elements. A temporal factor reflecting the relative strength of the image correlation is objectively calculated from measurement data. Results show that image reconstruction models which account for inter-element correlations, in both space and time, show improved resolution and noise performance, in comparison to simpler image models.

  11. Towards Robust Self-Calibration for Handheld 3d Line Laser Scanning

    NASA Astrophysics Data System (ADS)

    Bleier, M.; Nüchter, A.

    2017-11-01

    This paper studies self-calibration of a structured light system, which reconstructs 3D information using video from a static consumer camera and a handheld cross line laser projector. Intersections between the individual laser curves and geometric constraints on the relative position of the laser planes are exploited to achieve dense 3D reconstruction. This is possible without any prior knowledge of the movement of the projector. However, inaccurrately extracted laser lines introduce noise in the detected intersection positions and therefore distort the reconstruction result. Furthermore, when scanning objects with specular reflections, such as glossy painted or metalic surfaces, the reflections are often extracted from the camera image as erroneous laser curves. In this paper we investiagte how robust estimates of the parameters of the laser planes can be obtained despite of noisy detections.

  12. 3D digitization methods based on laser excitation and active triangulation: a comparison

    NASA Astrophysics Data System (ADS)

    Aubreton, Olivier; Mériaudeau, Fabrice; Truchetet, Frédéric

    2016-04-01

    3D reconstruction of surfaces is an important topic in computer vision and corresponds to a large field of applications: industrial inspection, reverse engineering, object recognition, biometry, archeology… Because of the large varieties of applications, one can find in the literature a lot of approaches which can be classified into two families: passive and active [1]. Certainly because of their reliability, active approaches, using imaging system with an additional controlled light source, seem to be the most commonly used in the industrial field. In this domain, the 3D digitization approach based on active 3D triangulation has had important developments during the last ten years [2] and seems to be mature today if considering the important number of systems proposed by manufacturers. Unfortunately, the performances of active 3D scanners depend on the optical properties of the surface to digitize. As an example, on Fig 1.a, a 3D shape with a diffuse surface has been digitized with Comet V scanner (Steinbichler). The 3D reconstruction is presented on Fig 1.b. The same experiment was carried out on a similar object (same shape) but presenting a specular surface (Fig 1.c and Fig 1.d) ; it can clearly be observed, that the specularity influences of the performance of the digitization.

  13. Resliced image space construction for coronary artery collagen fibers.

    PubMed

    Luo, Tong; Chen, Huan; Kassab, Ghassan S

    2017-01-01

    Collagen fibers play an important role in the biomechanics of the blood vessel wall. The objective of this study was to determine the 3D microstructure of collagen fibers in the media and adventitia of coronary arteries. We present a novel optimal angle consistence algorithm to reform image slices in the visualization and analysis of 3D collagen images. 3D geometry was reconstructed from resliced image space where the 3D skeleton was extracted as the primary feature for accurate reconstruction of geometrical parameters. Collagen fibers (range 80-200) were reconstructed from the porcine coronary artery wall for the measurement of various morphological parameters. Collagen waviness and diameters were 1.37 ± 0.19 and 2.61 ± 0.89 μm, respectively. The biaxial distributions of orientation had two different peaks at 110.7 ± 25.2° and 18.4 ± 19.3°. Results for width, waviness, and orientation were found to be in good agreement with manual measurements. In addition to accurately measuring 2D features more efficiently than the manual approach, the present method produced 3D features that could not be measured in the 2D manual approach. These additional parameters included the tilt angle (5.10 ± 2.95°) and cross-sectional area (CSA; 5.98 ± 3.79 μm2) of collagen fibers. These 3D collagen reconstructions provide accurate and reliable microstructure for biomechanical modeling of vessel wall mechanics.

  14. Magnetically guided left ventricular lead implantation based on a virtual three-dimensional reconstructed image of the coronary sinus

    PubMed Central

    Rivero-Ayerza, Máximo; Jessurun, Emil; Ramcharitar, Steve; van Belle, Yves; Serruys, Patrick W.; Jordaens, Luc

    2008-01-01

    Aims Left ventricular (LV) lead implantation is feasible using remote magnetic navigation of a guidewire (Stereotaxis, St Louis, MO, USA). A novel software that performs a three-dimensional (3D) reconstruction of vessels based on two or more angiographic views has been developed recently (CardiOp-B system™, Paeion Inc., Haifa, Israel). The objective of this paper is to evaluate: (i) the performance of the 3D reconstruction software which reproduce the anatomy of the coronary sinus (CS) and (ii) the efficacy of remotely navigating a magnetic guidewire within the CS based on this reconstruction. Methods and results In patients undergoing cardiac resynchronization therapy implantation, a 3D reconstruction of the CS was performed using the CardiOp-B™ system. Accuracy of the reconstruction was evaluated by comparing with the CS angiogram. This reconstruction was imported into the Stereotaxis system. On the basis of the reconstruction, magnetic vectors were automatically selected to navigate within the CS and manually adjusted if required. Feasibility of deploying the guidewire and LV lead into the selected side branch (SB), fluoroscopy time (FT) required for cannulation of the target SB, and total FT were also evaluated. Sixteen patients were included. In one case, the software could not reconstruct the CS. The quality of the reconstruction was graded as good in 13 and poor in 2. In 10 cases, manual adjustments to the traced edges of the CS were required to perform the 3D reconstruction, and in 5, no adjustments were required. In 13 patients, the target SB was engaged on the basis of the automatically selected vectors. In two cases, manual modification of the vector was required. Mean total FT was 23 ± 14 min and the FT required to cannulate the target SB was 1.7 ± 1.3 min. Conclusion A 3D reconstruction of the CS can be accurately performed using two angiographic views. This reconstruction allows precise magnetic navigation of a guidewire within the CS. PMID:18587136

  15. Real-time three-dimensional soft tissue reconstruction for laparoscopic surgery.

    PubMed

    Kowalczuk, Jędrzej; Meyer, Avishai; Carlson, Jay; Psota, Eric T; Buettner, Shelby; Pérez, Lance C; Farritor, Shane M; Oleynikov, Dmitry

    2012-12-01

    Accurate real-time 3D models of the operating field have the potential to enable augmented reality for endoscopic surgery. A new system is proposed to create real-time 3D models of the operating field that uses a custom miniaturized stereoscopic video camera attached to a laparoscope and an image-based reconstruction algorithm implemented on a graphics processing unit (GPU). The proposed system was evaluated in a porcine model that approximates the viewing conditions of in vivo surgery. To assess the quality of the models, a synthetic view of the operating field was produced by overlaying a color image on the reconstructed 3D model, and an image rendered from the 3D model was compared with a 2D image captured from the same view. Experiments conducted with an object of known geometry demonstrate that the system produces 3D models accurate to within 1.5 mm. The ability to produce accurate real-time 3D models of the operating field is a significant advancement toward augmented reality in minimally invasive surgery. An imaging system with this capability will potentially transform surgery by helping novice and expert surgeons alike to delineate variance in internal anatomy accurately.

  16. 3D reconstruction of bony elements of the knee joint and finite element analysis of total knee prosthesis obtained from the reconstructed model.

    PubMed

    Djoudi, Farid

    2013-01-01

    Two separate themes are presented in this paper. The first theme is to present a graphical modeling approach of human anatomical structures namely, the femur and the tibia. The second theme involves making a finite element analysis of stresses, displacements and deformations in prosthetic implants (the femoral implant and the polyethylene insert). The graphical modeling approach comes in two parts. The first is the segmentation of MRI scanned images, retrieved in DICOM format for edge detection. In the second part, 3D-CAD models are generated from the results of the segmentation stage. The finite element analysis is done by first extracting the prosthetic implants from the reconstructed 3D-CAD model, then do a finite element analysis of these implants under objectively determined conditions such as; forces, allowed displacements, the materials composing implant, and the coefficient of friction. The objective of this work is to implement an interface for exchanging data between 2D MRI images obtained from a medical diagnosis of a patient and the 3D-CAD model used in various applications, such as; the extraction of the implants, stress analysis at the knee joint and can serve as an aid to surgery, also predict the behavior of the prosthetic implants vis-a-vis the forces acting on the knee joints.

  17. Evaluation of a 3D point cloud tetrahedral tomographic reconstruction method

    PubMed Central

    Pereira, N F; Sitek, A

    2011-01-01

    Tomographic reconstruction on an irregular grid may be superior to reconstruction on a regular grid. This is achieved through an appropriate choice of the image space model, the selection of an optimal set of points and the use of any available prior information during the reconstruction process. Accordingly, a number of reconstruction-related parameters must be optimized for best performance. In this work, a 3D point cloud tetrahedral mesh reconstruction method is evaluated for quantitative tasks. A linear image model is employed to obtain the reconstruction system matrix and five point generation strategies are studied. The evaluation is performed using the recovery coefficient, as well as voxel- and template-based estimates of bias and variance measures, computed over specific regions in the reconstructed image. A similar analysis is performed for regular grid reconstructions that use voxel basis functions. The maximum likelihood expectation maximization reconstruction algorithm is used. For the tetrahedral reconstructions, of the five point generation methods that are evaluated, three use image priors. For evaluation purposes, an object consisting of overlapping spheres with varying activity is simulated. The exact parallel projection data of this object are obtained analytically using a parallel projector, and multiple Poisson noise realizations of these exact data are generated and reconstructed using the different point generation strategies. The unconstrained nature of point placement in some of the irregular mesh-based reconstruction strategies has superior activity recovery for small, low-contrast image regions. The results show that, with an appropriately generated set of mesh points, the irregular grid reconstruction methods can out-perform reconstructions on a regular grid for mathematical phantoms, in terms of the performance measures evaluated. PMID:20736496

  18. Evaluation of a 3D point cloud tetrahedral tomographic reconstruction method

    NASA Astrophysics Data System (ADS)

    Pereira, N. F.; Sitek, A.

    2010-09-01

    Tomographic reconstruction on an irregular grid may be superior to reconstruction on a regular grid. This is achieved through an appropriate choice of the image space model, the selection of an optimal set of points and the use of any available prior information during the reconstruction process. Accordingly, a number of reconstruction-related parameters must be optimized for best performance. In this work, a 3D point cloud tetrahedral mesh reconstruction method is evaluated for quantitative tasks. A linear image model is employed to obtain the reconstruction system matrix and five point generation strategies are studied. The evaluation is performed using the recovery coefficient, as well as voxel- and template-based estimates of bias and variance measures, computed over specific regions in the reconstructed image. A similar analysis is performed for regular grid reconstructions that use voxel basis functions. The maximum likelihood expectation maximization reconstruction algorithm is used. For the tetrahedral reconstructions, of the five point generation methods that are evaluated, three use image priors. For evaluation purposes, an object consisting of overlapping spheres with varying activity is simulated. The exact parallel projection data of this object are obtained analytically using a parallel projector, and multiple Poisson noise realizations of these exact data are generated and reconstructed using the different point generation strategies. The unconstrained nature of point placement in some of the irregular mesh-based reconstruction strategies has superior activity recovery for small, low-contrast image regions. The results show that, with an appropriately generated set of mesh points, the irregular grid reconstruction methods can out-perform reconstructions on a regular grid for mathematical phantoms, in terms of the performance measures evaluated.

  19. 3DSEM++: Adaptive and intelligent 3D SEM surface reconstruction.

    PubMed

    Tafti, Ahmad P; Holz, Jessica D; Baghaie, Ahmadreza; Owen, Heather A; He, Max M; Yu, Zeyun

    2016-08-01

    Structural analysis of microscopic objects is a longstanding topic in several scientific disciplines, such as biological, mechanical, and materials sciences. The scanning electron microscope (SEM), as a promising imaging equipment has been around for decades to determine the surface properties (e.g., compositions or geometries) of specimens by achieving increased magnification, contrast, and resolution greater than one nanometer. Whereas SEM micrographs still remain two-dimensional (2D), many research and educational questions truly require knowledge and facts about their three-dimensional (3D) structures. 3D surface reconstruction from SEM images leads to remarkable understanding of microscopic surfaces, allowing informative and qualitative visualization of the samples being investigated. In this contribution, we integrate several computational technologies including machine learning, contrario methodology, and epipolar geometry to design and develop a novel and efficient method called 3DSEM++ for multi-view 3D SEM surface reconstruction in an adaptive and intelligent fashion. The experiments which have been performed on real and synthetic data assert the approach is able to reach a significant precision to both SEM extrinsic calibration and its 3D surface modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Capturing method for integral three-dimensional imaging using multiviewpoint robotic cameras

    NASA Astrophysics Data System (ADS)

    Ikeya, Kensuke; Arai, Jun; Mishina, Tomoyuki; Yamaguchi, Masahiro

    2018-03-01

    Integral three-dimensional (3-D) technology for next-generation 3-D television must be able to capture dynamic moving subjects with pan, tilt, and zoom camerawork as good as in current TV program production. We propose a capturing method for integral 3-D imaging using multiviewpoint robotic cameras. The cameras are controlled through a cooperative synchronous system composed of a master camera controlled by a camera operator and other reference cameras that are utilized for 3-D reconstruction. When the operator captures a subject using the master camera, the region reproduced by the integral 3-D display is regulated in real space according to the subject's position and view angle of the master camera. Using the cooperative control function, the reference cameras can capture images at the narrowest view angle that does not lose any part of the object region, thereby maximizing the resolution of the image. 3-D models are reconstructed by estimating the depth from complementary multiviewpoint images captured by robotic cameras arranged in a two-dimensional array. The model is converted into elemental images to generate the integral 3-D images. In experiments, we reconstructed integral 3-D images of karate players and confirmed that the proposed method satisfied the above requirements.

  1. Wave optics theory and 3-D deconvolution for the light field microscope

    PubMed Central

    Broxton, Michael; Grosenick, Logan; Yang, Samuel; Cohen, Noy; Andalman, Aaron; Deisseroth, Karl; Levoy, Marc

    2013-01-01

    Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens. It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning. The recorded light field can then be used to computationally reconstruct a full volume. In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models. We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported. To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane. This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information. We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm. Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived. We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target. Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method. PMID:24150383

  2. 3D Reconstruction of Irregular Buildings and Buddha Statues

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Li, M.-j.

    2014-04-01

    Three-dimensional laser scanning could acquire object's surface data quickly and accurately. However, the post-processing of point cloud is not perfect and could be improved. Based on the study of 3D laser scanning technology, this paper describes the details of solutions to modelling irregular ancient buildings and Buddha statues in Jinshan Temple, which aiming at data acquisition, modelling and texture mapping, etc. In order to modelling irregular ancient buildings effectively, the structure of each building is extracted manually by point cloud and the textures are mapped by the software of 3ds Max. The methods clearly combine 3D laser scanning technology with traditional modelling methods, and greatly improves the efficiency and accuracy of the ancient buildings restored. On the other hand, the main idea of modelling statues is regarded as modelling objects in reverse engineering. The digital model of statues obtained is not just vivid, but also accurate in the field of surveying and mapping. On this basis, a 3D scene of Jinshan Temple is reconstructed, which proves the validity of the solutions.

  3. Objective and subjective comparison of standard 2-D and fully 3-D reconstructed data on a PET/CT system.

    PubMed

    Strobel, Klaus; Rüdy, Matthias; Treyer, Valerie; Veit-Haibach, Patrick; Burger, Cyrill; Hany, Thomas F

    2007-07-01

    The relative advantage of fully 3-D versus 2-D mode for whole-body imaging is currently the focus of considerable expert debate. The nature of 3-D PET acquisition for FDG PET/CT theoretically allows a shorter scan time and improved efficiency of FDG use than in the standard 2-D acquisition. We therefore objectively and subjectively compared standard 2-D and fully 3-D reconstructed data for FDG PET/CT on a research PET/CT system. In a total of 36 patients (mean 58.9 years, range 17.3-78.9 years; 21 male, 15 female) referred for known or suspected malignancy, FDG PET/CT was performed using a research PET/CT system with advanced detector technology with improved sensitivity and spatial resolution. After 45 min uptake, a low-dose CT (40 mAs) from head to thigh was performed followed by 2-D PET (emission 3 min per field) and 3-D PET (emission 1.5 min per field) with both seven slices overlap to cover the identical anatomical region. Acquisition time was therefore 50% less (seven fields; 21 min vs. 10.5 min). PET data was acquired in a randomized fashion, so in 50% of the cases 2-D data was acquired first. CT data was used for attenuation correction. 2-D (OSEM) and 3-D PET images were iteratively reconstructed. Subjective analysis of 2-D and 3-D images was performed by two readers in a blinded, randomized fashion evaluating the following criteria: sharpness of organs (liver, chest wall/lung), overall image quality and detectability and dignity of each identified lesion. Objective analysis of PET data was investigated measuring maximum standard uptake value with lean body mass (SUV(max,LBM)) of identified lesions. On average, per patient, the SUV(max) was 7.86 (SD 7.79) for 2-D and 6.96 (SD 5.19) for 3-D. On a lesion basis, the average SUV(max) was 7.65 (SD 7.79) for 2-D and 6.75 (SD 5.89) for 3-D. The absolute difference on a paired t-test of SUV 3-D-2-D based on each measured lesion was significant with an average of -0.956 (P=0.002) and an average of -0.884 on a patient base (P<0.05). With 3-D the SUV(max) decreased by an average of 5.2% for each lesion, and an average of 6.0% for each patient. Subjective analysis showed fair inter-observer agreement regarding detectability (kappa=0.24 for 3-D; 0.36 for 3-D) and dignity (kappa=0.44 for 3-D and 0.4 for 2-D) of the lesions. There was no significant diagnostic difference between 3-D and 2-D. Only in one patient, a satellite liver metastasis of a colon cancer was missed in 3-D and detected only in 2-D. On average, the overall image quality for 3-D images was equal (in 24%) or inferior (in 76%) compared to 2-D. A possible major advantage of 3-D data acquisition is the faster patient throughput with a 50% reduction in scan time. The fully 3-D reconstruction technique has overcome the technical drawbacks of current 3-D imaging technique. In our limited number of patients there was no significant diagnostic difference between 2-D and fully 3-D.

  4. Interior tomographic imaging for x-ray coherent scattering (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pang, Sean; Zhu, Zheyuan

    2017-05-01

    Conventional computed tomography reconstructs the attenuation only high-dimensional images. Coherent scatter computed tomography, which reconstructs the angular dependent scattering profiles of 3D objects, can provide molecular signatures that improves the accuracy of material identification and classification. Coherent scatter tomography are traditionally acquired by setups similar to x-ray powder diffraction machine; a collimated source in combination with 2D or 1D detector collimation in order to localize the scattering point. In addition, the coherent scatter cross-section is often 3 orders of magnitude lower than that of the absorption cross-section for the same material. Coded aperture and structured illumination approaches has been shown to greatly improve the collection efficiency. In many applications, especially in security imaging and medical diagnosis, fast and accurate identification of the material composition of a small volume within the whole object would lead to an accelerated imaging procedure and reduced radiation dose. Here, we report an imaging method to reconstruct the material coherent scatter profile within a small volume. The reconstruction along one radial direction can reconstruct a scalar coherent scattering tomographic image. Our methods takes advantage of the finite support of the scattering profile in small angle regime. Our system uses a pencil beam setup without using any detector side collimation. Coherent scatter profile of a 10 mm scattering sample embedded in a 30 mm diameter phantom was reconstructed. The setup has small form factor and is suitable for various portable non-destructive detection applications.

  5. 3D documenatation of the petalaindera: digital heritage preservation methods using 3D laser scanner and photogrammetry

    NASA Astrophysics Data System (ADS)

    Sharif, Harlina Md; Hazumi, Hazman; Hafizuddin Meli, Rafiq

    2018-01-01

    3D imaging technologies have undergone massive revolution in recent years. Despite this rapid development, documentation of 3D cultural assets in Malaysia is still very much reliant upon conventional techniques such as measured drawings and manual photogrammetry. There is very little progress towards exploring new methods or advanced technologies to convert 3D cultural assets into 3D visual representation and visualization models that are easily accessible for information sharing. In recent years, however, the advent of computer vision (CV) algorithms make it possible to reconstruct 3D geometry of objects by using image sequences from digital cameras, which are then processed by web services and freeware applications. This paper presents a completed stage of an exploratory study that investigates the potentials of using CV automated image-based open-source software and web services to reconstruct and replicate cultural assets. By selecting an intricate wooden boat, Petalaindera, this study attempts to evaluate the efficiency of CV systems and compare it with the application of 3D laser scanning, which is known for its accuracy, efficiency and high cost. The final aim of this study is to compare the visual accuracy of 3D models generated by CV system, and 3D models produced by 3D scanning and manual photogrammetry for an intricate subject such as the Petalaindera. The final objective is to explore cost-effective methods that could provide fundamental guidelines on the best practice approach for digital heritage in Malaysia.

  6. Investigation of BPF algorithm in cone-beam CT with 2D general trajectories.

    PubMed

    Zou, Jing; Gui, Jianbao; Rong, Junyan; Hu, Zhanli; Zhang, Qiyang; Xia, Dan

    2012-01-01

    A mathematical derivation was conducted to illustrate that exact 3D image reconstruction could be achieved for z-homogeneous phantoms from data acquired with 2D general trajectories using the back projection filtration (BPF) algorithm. The conclusion was verified by computer simulation and experimental result with a circular scanning trajectory. Furthermore, the effect of the non-uniform degree along z-axis of the phantoms on the accuracy of the 3D reconstruction by BPF algorithm was investigated by numerical simulation with a gradual-phantom and a disk-phantom. The preliminary result showed that the performance of BPF algorithm improved with the z-axis homogeneity of the scanned object.

  7. Ultralow-dose CT of the craniofacial bone for navigated surgery using adaptive statistical iterative reconstruction and model-based iterative reconstruction: 2D and 3D image quality.

    PubMed

    Widmann, Gerlig; Schullian, Peter; Gassner, Eva-Maria; Hoermann, Romed; Bale, Reto; Puelacher, Wolfgang

    2015-03-01

    OBJECTIVE. The purpose of this article is to evaluate 2D and 3D image quality of high-resolution ultralow-dose CT images of the craniofacial bone for navigated surgery using adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR) in comparison with standard filtered backprojection (FBP). MATERIALS AND METHODS. A formalin-fixed human cadaver head was scanned using a clinical reference protocol at a CT dose index volume of 30.48 mGy and a series of five ultralow-dose protocols at 3.48, 2.19, 0.82, 0.44, and 0.22 mGy using FBP and ASIR at 50% (ASIR-50), ASIR at 100% (ASIR-100), and MBIR. Blinded 2D axial and 3D volume-rendered images were compared with each other by three readers using top-down scoring. Scores were analyzed per protocol or dose and reconstruction. All images were compared with the FBP reference at 30.48 mGy. A nonparametric Mann-Whitney U test was used. Statistical significance was set at p < 0.05. RESULTS. For 2D images, the FBP reference at 30.48 mGy did not statistically significantly differ from ASIR-100 at 3.48 mGy, ASIR-100 at 2.19 mGy, and MBIR at 0.82 mGy. MBIR at 2.19 and 3.48 mGy scored statistically significantly better than the FBP reference (p = 0.032 and 0.001, respectively). For 3D images, the FBP reference at 30.48 mGy did not statistically significantly differ from all reconstructions at 3.48 mGy; FBP and ASIR-100 at 2.19 mGy; FBP, ASIR-100, and MBIR at 0.82 mGy; MBIR at 0.44 mGy; and MBIR at 0.22 mGy. CONCLUSION. MBIR (2D and 3D) and ASIR-100 (2D) may significantly improve subjective image quality of ultralow-dose images and may allow more than 90% dose reductions.

  8. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.

    PubMed

    Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa

    2013-12-01

    The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime scene.

  9. A reflection TIE system for 3D inspection of wafer structures

    NASA Astrophysics Data System (ADS)

    Yan, Yizhen; Qu, Weijuan; Yan, Lei; Wang, Zhaomin; Zhao, Hongying

    2017-10-01

    A reflection TIE system consisting of a reflecting microscope and a 4f relay system is presented in this paper, with which the transport of intensity equation (TIE) is applied to reconstruct the three-dimensional (3D) profile of opaque micro objects like wafer structures for 3D inspection. As the shape of an object can affect the phases of waves, the 3D information of the object can be easily acquired with the multiple phases at different refocusing planes. By electronically controlled refocusing, multi-focal images can be captured and used in solving TIE to obtain the phase and depth of the object. In order to validate the accuracy and efficiency of the proposed system, the phase and depth values of several samples are calculated, and the experimental results is presented to demonstrate the performance of the system.

  10. Three-dimensional slum urban reconstruction in Envisat and Google Earth Egypt

    NASA Astrophysics Data System (ADS)

    Marghany, M.; Genderen, J. v.

    2014-02-01

    This study aims to aim to investigate the capability of ENVISAT ASAR satellite and Google Earth data for three-dimensional (3-D) slum urban reconstruction in developed country such as Egypt. The main objective of this work is to utilize 3-D automatic detection algorithm for urban slum in ENVISAT ASAR and Google Erath images were acquired in Cairo, Egypt using Fuzzy B-spline algorithm. The results show that fuzzy algorithm is the best indicator for chaotic urban slum as it can discriminate them from its surrounding environment. The combination of Fuzzy and B-spline then used to reconstruct 3-D of urban slam. The results show that urban slums, road network, and infrastructures are perfectly discriminated. It can therefore be concluded that fuzzy algorithm is an appropriate algorithm for chaotic urban slum automatic detection in ENVSIAT ASAR and Google Earth data.

  11. Adaptive iterative dose reduction (AIDR) 3D in low dose CT abdomen-pelvis: Effects on image quality and radiation exposure

    NASA Astrophysics Data System (ADS)

    Ang, W. C.; Hashim, S.; Karim, M. K. A.; Bahruddin, N. A.; Salehhon, N.; Musa, Y.

    2017-05-01

    The widespread use of computed tomography (CT) has increased the medical radiation exposure and cancer risk. We aimed to evaluate the impact of AIDR 3D in CT abdomen-pelvic examinations based on image quality and radiation dose in low dose (LD) setting compared to standard dose (STD) with filtered back projection (FBP) reconstruction. We retrospectively reviewed the images of 40 patients who underwent CT abdomen-pelvic using a 80 slice CT scanner. Group 1 patients (n=20, mean age 41 ± 17 years) were performed at LD with AIDR 3D reconstruction and Group 2 patients (n=20, mean age 52 ± 21 years) were scanned with STD using FBP reconstruction. Objective image noise was assessed by region of interest (ROI) measurements in the liver and aorta as standard deviation (SD) of the attenuation value (Hounsfield Unit, HU) while subjective image quality was evaluated by two radiologists. Statistical analysis was used to compare the scan length, CT dose index volume (CTDIvol) and image quality of both patient groups. Although both groups have similar mean scan length, the CTDIvol significantly decreased by 38% in LD CT compared to STD CT (p<0.05). Objective and subjective image quality were statistically improved with AIDR 3D (p<0.05). In conclusion, AIDR 3D enables significant dose reduction of 38% with superior image quality in LD CT abdomen-pelvis.

  12. Real object-based 360-degree integral-floating display using multiple depth camera

    NASA Astrophysics Data System (ADS)

    Erdenebat, Munkh-Uchral; Dashdavaa, Erkhembaatar; Kwon, Ki-Chul; Wu, Hui-Ying; Yoo, Kwan-Hee; Kim, Young-Seok; Kim, Nam

    2015-03-01

    A novel 360-degree integral-floating display based on the real object is proposed. The general procedure of the display system is similar with conventional 360-degree integral-floating displays. Unlike previously presented 360-degree displays, the proposed system displays the 3D image generated from the real object in 360-degree viewing zone. In order to display real object in 360-degree viewing zone, multiple depth camera have been utilized to acquire the depth information around the object. Then, the 3D point cloud representations of the real object are reconstructed according to the acquired depth information. By using a special point cloud registration method, the multiple virtual 3D point cloud representations captured by each depth camera are combined as single synthetic 3D point cloud model, and the elemental image arrays are generated for the newly synthesized 3D point cloud model from the given anamorphic optic system's angular step. The theory has been verified experimentally, and it shows that the proposed 360-degree integral-floating display can be an excellent way to display real object in the 360-degree viewing zone.

  13. Three-dimensional reconstruction of indoor whole elements based on mobile LiDAR point cloud data

    NASA Astrophysics Data System (ADS)

    Gong, Yuejian; Mao, Wenbo; Bi, Jiantao; Ji, Wei; He, Zhanjun

    2014-11-01

    Ground-based LiDAR is one of the most effective city modeling tools at present, which has been widely used for three-dimensional reconstruction of outdoor objects. However, as for indoor objects, there are some technical bottlenecks due to lack of GPS signal. In this paper, based on the high-precision indoor point cloud data which was obtained by LiDAR, an international advanced indoor mobile measuring equipment, high -precision model was fulfilled for all indoor ancillary facilities. The point cloud data we employed also contain color feature, which is extracted by fusion with CCD images. Thus, it has both space geometric feature and spectral information which can be used for constructing objects' surface and restoring color and texture of the geometric model. Based on Autodesk CAD platform and with help of PointSence plug, three-dimensional reconstruction of indoor whole elements was realized. Specifically, Pointools Edit Pro was adopted to edit the point cloud, then different types of indoor point cloud data was processed, including data format conversion, outline extracting and texture mapping of the point cloud model. Finally, three-dimensional visualization of the real-world indoor was completed. Experiment results showed that high-precision 3D point cloud data obtained by indoor mobile measuring equipment can be used for indoor whole elements' 3-d reconstruction and that methods proposed in this paper can efficiently realize the 3 -d construction of indoor whole elements. Moreover, the modeling precision could be controlled within 5 cm, which was proved to be a satisfactory result.

  14. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT.

    PubMed

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-05-21

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  15. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies

    DOE PAGES

    Streubel, Robert; Kronast, Florian; Fischer, Peter; ...

    2015-07-03

    X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue—magnetic X-ray tomography—is yet to be developed. We demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. In the 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. By using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomenamore » between windings of azimuthally and radially magnetized tubular objects. In conclusion, the present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape.« less

  16. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streubel, Robert; Kronast, Florian; Fischer, Peter

    X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue—magnetic X-ray tomography—is yet to be developed. We demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. In the 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. By using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomenamore » between windings of azimuthally and radially magnetized tubular objects. In conclusion, the present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape.« less

  17. An iterative algorithm for soft tissue reconstruction from truncated flat panel projections

    NASA Astrophysics Data System (ADS)

    Langan, D.; Claus, B.; Edic, P.; Vaillant, R.; De Man, B.; Basu, S.; Iatrou, M.

    2006-03-01

    The capabilities of flat panel interventional x-ray systems continue to expand, enabling a broader array of medical applications to be performed in a minimally invasive manner. Although CT is providing pre-operative 3D information, there is a need for 3D imaging of low contrast soft tissue during interventions in a number of areas including neurology, cardiac electro-physiology, and oncology. Unlike CT systems, interventional angiographic x-ray systems provide real-time large field of view 2D imaging, patient access, and flexible gantry positioning enabling interventional procedures. However, relative to CT, these C-arm flat panel systems have additional technical challenges in 3D soft tissue imaging including slower rotation speed, gantry vibration, reduced lateral patient field of view (FOV), and increased scatter. The reduced patient FOV often results in significant data truncation. Reconstruction of truncated (incomplete) data is known an "interior problem", and it is mathematically impossible to obtain an exact reconstruction. Nevertheless, it is an important problem in 3D imaging on a C-arm to address the need to generate a 3D reconstruction representative of the object being imaged with minimal artifacts. In this work we investigate the application of an iterative Maximum Likelihood Transmission (MLTR) algorithm to truncated data. We also consider truncated data with limited views for cardiac imaging where the views are gated by the electrocardiogram(ECG) to combat motion artifacts.

  18. Use of 3D reconstruction cloacagrams and 3D printing in cloacal malformations.

    PubMed

    Ahn, Jennifer J; Shnorhavorian, Margarett; Amies Oelschlager, Anne-Marie E; Ripley, Beth; Shivaram, Giridhar M; Avansino, Jeffrey R; Merguerian, Paul A

    2017-08-01

    Cloacal anomalies are complex to manage, and the anatomy affects prognosis and management. Assessment historically includes examination under anesthesia, and genitography is often performed, but these do not consistently capture three-dimensional (3D) detail or spatial relationships of the anatomic structures. Three-dimensional reconstruction cloacagrams can provide a high level of detail including channel measurements and the level of the cloaca (<3 cm vs. >3 cm), which typically determines the approach for surgical reconstruction and can impact long-term prognosis. Yet this imaging modality has not yet been directly compared with intra-operative or endoscopic findings. Our objective was to compare 3D reconstruction cloacagrams with endoscopic and intraoperative findings, as well as to describe the use of 3D printing to create models for surgical planning and education. An IRB-approved retrospective review of all cloaca patients seen by our multi-disciplinary program from 2014 to 2016 was performed. All patients underwent examination under anesthesia, endoscopy, 3D reconstruction cloacagram, and subsequent reconstructive surgery at a later date. Patient characteristics, intraoperative details, and measurements from endoscopy and cloacagram were reviewed and compared. One of the 3D cloacagrams was reformatted for 3D printing to create a model for surgical planning. Four patients were included for review, with the Figure illustrating 3D cloacagram results. Measurements of common channel length and urethral length were similar between modalities, particularly with confirming the level of cloaca. No patient experienced any complications or adverse effects from cloacagram or endoscopy. A model was successfully created from cloacagram images with the use of 3D printing technology. Accurate preoperative assessment for cloacal anomalies is important for counseling and surgical planning. Three-dimensional cloacagrams have been shown to yield a high level of anatomic detail. Here, cloacagram measurements are shown to correlate well with endoscopic and intraoperative findings with regards to level of cloaca and Müllerian development. Measurement discrepancies may be due to technical variation indicating a need for further evaluation. The translation of the cloacagram images into a 3D printed model demonstrates potential applications of these models for pre-operative planning and education of both families and trainees. In our series, 3D reconstruction cloacagrams yielded accurate measurements of urethral length and level of cloaca common channel and urethral length, similar to those found on endoscopy. Three-dimensional models can be printed from using cloacagram images, and may be useful for surgical planning and education. Copyright © 2017 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  19. D Tracking Based Augmented Reality for Cultural Heritage Data Management

    NASA Astrophysics Data System (ADS)

    Battini, C.; Landi, G.

    2015-02-01

    The development of contactless documentation techniques is allowing researchers to collect high volumes of three-dimensional data in a short time but with high levels of accuracy. The digitalisation of cultural heritage opens up the possibility of using image processing and analysis, and computer graphics techniques, to preserve this heritage for future generations; augmenting it with additional information or with new possibilities for its enjoyment and use. The collection of precise datasets about cultural heritage status is crucial for its interpretation, its conservation and during the restoration processes. The application of digital-imaging solutions for various feature extraction, image data-analysis techniques, and three-dimensional reconstruction of ancient artworks, allows the creation of multidimensional models that can incorporate information coming from heterogeneous data sets, research results and historical sources. Real objects can be scanned and reconstructed virtually, with high levels of data accuracy and resolution. Real-time visualisation software and hardware is rapidly evolving and complex three-dimensional models can be interactively visualised and explored on applications developed for mobile devices. This paper will show how a 3D reconstruction of an object, with multiple layers of information, can be stored and visualised through a mobile application that will allow interaction with a physical object for its study and analysis, using 3D Tracking based Augmented Reality techniques.

  20. Digital tomosynthesis mammography: intra- and interplane artifact reduction for high-contrast objects on reconstructed slices using a priori 3D geometrical information

    NASA Astrophysics Data System (ADS)

    Ge, Jun; Chan, Heang-Ping; Sahiner, Berkman; Zhang, Yiheng; Wei, Jun; Hadjiiski, Lubomir M.; Zhou, Chuan

    2007-03-01

    We are developing a computerized technique to reduce intra- and interplane ghosting artifacts caused by high-contrast objects such as dense microcalcifications (MCs) or metal markers on the reconstructed slices of digital tomosynthesis mammography (DTM). In this study, we designed a constrained iterative artifact reduction method based on a priori 3D information of individual MCs. We first segmented individual MCs on projection views (PVs) using an automated MC detection system. The centroid and the contrast profile of the individual MCs in the 3D breast volume were estimated from the backprojection of the segmented individual MCs on high-resolution (0.1 mm isotropic voxel size) reconstructed DTM slices. An isolated volume of interest (VOI) containing one or a few MCs is then modeled as a high-contrast object embedded in a local homogeneous background. A shift-variant 3D impulse response matrix (IRM) of the projection-reconstruction (PR) system for the extracted VOI was calculated using the DTM geometry and the reconstruction algorithm. The PR system for this VOI is characterized by a system of linear equations. A constrained iterative method was used to solve these equations for the effective linear attenuation coefficients (eLACs) within the isolated VOI. Spatial constraint and positivity constraint were used in this method. Finally, the intra- and interplane artifacts on the whole breast volume resulting from the MC were calculated using the corresponding impulse responses and subsequently subtracted from the original reconstructed slices. The performance of our artifact-reduction method was evaluated using a computer-simulated MC phantom, as well as phantom images and patient DTMs obtained with IRB approval. A GE prototype DTM system that acquires 21 PVs in 3º increments over a +/-30º range was used for image acquisition in this study. For the computer-simulated MC phantom, the eLACs can be estimated accurately, thus the interplane artifacts were effectively removed. For MCs in phantom and patient DTMs, our method reduced the artifacts but also created small over-corrected areas in some cases. Potential reasons for this may include: the simplified mathematical modeling of the forward projection process, and the amplified noise in the solution of the system of linear equations.

  1. Is Unilateral Implant or Autologous Breast Reconstruction Better in Obtaining Breast Symmetry?

    PubMed

    Cohen, Oriana; Small, Kevin; Lee, Christina; Petruolo, Oriana; Karp, Nolan; Choi, Mihye

    2016-01-01

    Unilateral breast reconstruction poses a special set of challenges to the reconstructive breast surgeon compared to bilateral reconstructions. No studies to date provide an objective comparison between autologous and implant based reconstructions in matching the contralateral breast. This study compares the quantitative postoperative results between unilateral implant and autologous flap reconstructions in matching the native breast in shape, size, and projection using three-dimensional (3D) imaging. Sixty-four patients who underwent unilateral mastectomy with tissue expander (TE)-implant (n = 34) or autologous microvascular free transverse rectus abdominus myocutaneous (TRAM; n = 18) or deep inferior epigastric artery perforator (DIEP; n = 12) flap (n = 30) reconstruction from 2007 to 2010 were analyzed. Key patient demographics and risk factors were collected. Using 3D scans of patients obtained during pre and postoperative visits including over 1 year follow-ups for both groups, 3D models were constructed and analyzed for total breast volume, anterior-posterior projection from the chest wall, and 3D comparison. No significant differences in mean age, body mass index, or total number of reconstructive surgeries were observed between the two groups (TE-implant: 52.2 ± 10, 23.9 ± 3.7, 3 ± 0.9; autologous: 50.7 ± 9.4, 25.4 ± 3.9, 2.9 ± 1.3; p > 0.05). The total volume difference between the reconstructed and contralateral breasts in the TE-implant group was insignificant: 27.1 ± 22.2 cc, similar to the autologous group: 29.5 ± 24.7 cc, as was the variance of breast volume from the mean. In both groups, the reconstructed breast had a larger volume. A-P projections were similar between the contralateral and the reconstructed breasts in the TE-implant group: 72.5 ± 3.21 mm versus 71.7 ± 3.5 mm (p > 0.05). The autologous reconstructed breast had statistically insignificant but less A-P projection compared to the contralateral breast (81.9 ± 16.1 mm versus 61.5 ± 9.5 mm; p > 0.05). Variance of A-P projection from the mean was additionally insignificant between the contralateral and reconstructed breasts. Both groups produced similar asymmetry scores based on global 3D comparison (TE-implant: 2.24 ± 0.3 mm; autologous: 1.96 ± 0.2 mm; p > 0.05). Lastly, when the autologous group was further subdivided into TRAM and DIEP cohorts, no significant differences in breast volume, A-P projection or symmetry existed. Using 3D imaging, we demonstrate that both TE-implant and autologous reconstruction can achieve symmetrical surgical results with the same number of operations. This study demonstrates that breast symmetry, while an important consideration in the breast reconstruction algorithm, should not be the sole consideration in a patient' decision to proceed with autologous versus TE-implant reconstruction. © 2015 Wiley Periodicals, Inc.

  2. A real-time 3D end-to-end augmented reality system (and its representation transformations)

    NASA Astrophysics Data System (ADS)

    Tytgat, Donny; Aerts, Maarten; De Busser, Jeroen; Lievens, Sammy; Rondao Alface, Patrice; Macq, Jean-Francois

    2016-09-01

    The new generation of HMDs coming to the market is expected to enable many new applications that allow free viewpoint experiences with captured video objects. Current applications usually rely on 3D content that is manually created or captured in an offline manner. In contrast, this paper focuses on augmented reality applications that use live captured 3D objects while maintaining free viewpoint interaction. We present a system that allows live dynamic 3D objects (e.g. a person who is talking) to be captured in real-time. Real-time performance is achieved by traversing a number of representation formats and exploiting their specific benefits. For instance, depth images are maintained for fast neighborhood retrieval and occlusion determination, while implicit surfaces are used to facilitate multi-source aggregation for both geometry and texture. The result is a 3D reconstruction system that outputs multi-textured triangle meshes at real-time rates. An end-to-end system is presented that captures and reconstructs live 3D data and allows for this data to be used on a networked (AR) device. For allocating the different functional blocks onto the available physical devices, a number of alternatives are proposed considering the available computational power and bandwidth for each of the components. As we will show, the representation format can play an important role in this functional allocation and allows for a flexible system that can support a highly heterogeneous infrastructure.

  3. Accuracy assessment of 3D bone reconstructions using CT: an intro comparison.

    PubMed

    Lalone, Emily A; Willing, Ryan T; Shannon, Hannah L; King, Graham J W; Johnson, James A

    2015-08-01

    Computed tomography provides high contrast imaging of the joint anatomy and is used routinely to reconstruct 3D models of the osseous and cartilage geometry (CT arthrography) for use in the design of orthopedic implants, for computer assisted surgeries and computational dynamic and structural analysis. The objective of this study was to assess the accuracy of bone and cartilage surface model reconstructions by comparing reconstructed geometries with bone digitizations obtained using an optical tracking system. Bone surface digitizations obtained in this study determined the ground truth measure for the underlying geometry. We evaluated the use of a commercially available reconstruction technique using clinical CT scanning protocols using the elbow joint as an example of a surface with complex geometry. To assess the accuracies of the reconstructed models (8 fresh frozen cadaveric specimens) against the ground truth bony digitization-as defined by this study-proximity mapping was used to calculate residual error. The overall mean error was less than 0.4 mm in the cortical region and 0.3 mm in the subchondral region of the bone. Similarly creating 3D cartilage surface models from CT scans using air contrast had a mean error of less than 0.3 mm. Results from this study indicate that clinical CT scanning protocols and commonly used and commercially available reconstruction algorithms can create models which accurately represent the true geometry. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser.

    PubMed

    Ekeberg, Tomas; Svenda, Martin; Seibert, M Marvin; Abergel, Chantal; Maia, Filipe R N C; Seltzer, Virginie; DePonte, Daniel P; Aquila, Andrew; Andreasson, Jakob; Iwan, Bianca; Jönsson, Olof; Westphal, Daniel; Odić, Duško; Andersson, Inger; Barty, Anton; Liang, Meng; Martin, Andrew V; Gumprecht, Lars; Fleckenstein, Holger; Bajt, Saša; Barthelmess, Miriam; Coppola, Nicola; Claverie, Jean-Michel; Loh, N Duane; Bostedt, Christoph; Bozek, John D; Krzywinski, Jacek; Messerschmidt, Marc; Bogan, Michael J; Hampton, Christina Y; Sierra, Raymond G; Frank, Matthias; Shoeman, Robert L; Lomb, Lukas; Foucar, Lutz; Epp, Sascha W; Rolles, Daniel; Rudenko, Artem; Hartmann, Robert; Hartmann, Andreas; Kimmel, Nils; Holl, Peter; Weidenspointner, Georg; Rudek, Benedikt; Erk, Benjamin; Kassemeyer, Stephan; Schlichting, Ilme; Strüder, Lothar; Ullrich, Joachim; Schmidt, Carlo; Krasniqi, Faton; Hauser, Günter; Reich, Christian; Soltau, Heike; Schorb, Sebastian; Hirsemann, Helmut; Wunderer, Cornelia; Graafsma, Heinz; Chapman, Henry; Hajdu, Janos

    2016-08-01

    Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms.

  5. Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Ekeberg, Tomas; Svenda, Martin; Seibert, M. Marvin; Abergel, Chantal; Maia, Filipe R. N. C.; Seltzer, Virginie; Deponte, Daniel P.; Aquila, Andrew; Andreasson, Jakob; Iwan, Bianca; Jönsson, Olof; Westphal, Daniel; Odić, Duško; Andersson, Inger; Barty, Anton; Liang, Meng; Martin, Andrew V.; Gumprecht, Lars; Fleckenstein, Holger; Bajt, Saša; Barthelmess, Miriam; Coppola, Nicola; Claverie, Jean-Michel; Loh, N. Duane; Bostedt, Christoph; Bozek, John D.; Krzywinski, Jacek; Messerschmidt, Marc; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond G.; Frank, Matthias; Shoeman, Robert L.; Lomb, Lukas; Foucar, Lutz; Epp, Sascha W.; Rolles, Daniel; Rudenko, Artem; Hartmann, Robert; Hartmann, Andreas; Kimmel, Nils; Holl, Peter; Weidenspointner, Georg; Rudek, Benedikt; Erk, Benjamin; Kassemeyer, Stephan; Schlichting, Ilme; Strüder, Lothar; Ullrich, Joachim; Schmidt, Carlo; Krasniqi, Faton; Hauser, Günter; Reich, Christian; Soltau, Heike; Schorb, Sebastian; Hirsemann, Helmut; Wunderer, Cornelia; Graafsma, Heinz; Chapman, Henry; Hajdu, Janos

    2016-08-01

    Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms.

  6. Joint Simultaneous Reconstruction of Regularized Building Superstructures from Low-Density LIDAR Data Using Icp

    NASA Astrophysics Data System (ADS)

    Wichmann, Andreas; Kada, Martin

    2016-06-01

    There are many applications for 3D city models, e.g., in visualizations, analysis, and simulations; each one requiring a certain level of detail to be effective. The overall trend goes towards including various kinds of anthropogenic and natural objects therein with ever increasing geometric and semantic details. A few years back, the featured 3D building models had only coarse roof geometry. But nowadays, they are expected to include detailed roof superstructures like dormers and chimneys. Several methods have been proposed for the automatic reconstruction of 3D building models from airborne based point clouds. However, they are usually unable to reliably recognize and reconstruct small roof superstructures as these objects are often represented by only few point measurements, especially in low-density point clouds. In this paper, we propose a recognition and reconstruction approach that overcomes this problem by identifying and simultaneously reconstructing regularized superstructures of similar shape. For this purpose, candidate areas for superstructures are detected by taking into account virtual sub-surface points that are assumed to lie on the main roof faces below the measured points. The areas with similar superstructures are detected, extracted, grouped together, and registered to one another with the Iterative Closest Point (ICP) algorithm. As an outcome, the joint point density of each detected group is increased, which helps to recognize the shape of the superstructure more reliably and in more detail. Finally, all instances of each group of superstructures are modeled at once and transformed back to their original position. Because superstructures are reconstructed in groups, symmetries, alignments, and regularities can be enforced in a straight-forward way. The validity of the approach is presented on a number of example buildings from the Vaihingen test data set.

  7. Quality Analysis on 3d Buidling Models Reconstructed from Uav Imagery

    NASA Astrophysics Data System (ADS)

    Jarzabek-Rychard, M.; Karpina, M.

    2016-06-01

    Recent developments in UAV technology and structure from motion techniques have effected that UAVs are becoming standard platforms for 3D data collection. Because of their flexibility and ability to reach inaccessible urban parts, drones appear as optimal solution for urban applications. Building reconstruction from the data collected with UAV has the important potential to reduce labour cost for fast update of already reconstructed 3D cities. However, especially for updating of existing scenes derived from different sensors (e.g. airborne laser scanning), a proper quality assessment is necessary. The objective of this paper is thus to evaluate the potential of UAV imagery as an information source for automatic 3D building modeling at LOD2. The investigation process is conducted threefold: (1) comparing generated SfM point cloud to ALS data; (2) computing internal consistency measures of the reconstruction process; (3) analysing the deviation of Check Points identified on building roofs and measured with a tacheometer. In order to gain deep insight in the modeling performance, various quality indicators are computed and analysed. The assessment performed according to the ground truth shows that the building models acquired with UAV-photogrammetry have the accuracy of less than 18 cm for the plannimetric position and about 15 cm for the height component.

  8. Compressive self-interference Fresnel digital holography with faithful reconstruction

    NASA Astrophysics Data System (ADS)

    Wan, Yuhong; Man, Tianlong; Han, Ying; Zhou, Hongqiang; Wang, Dayong

    2017-05-01

    We developed compressive self-interference digital holographic approach that allows retrieving three-dimensional information of the spatially incoherent objects from single-shot captured hologram. The Fresnel incoherent correlation holography is combined with parallel phase-shifting technique to instantaneously obtain spatial-multiplexed phase-shifting holograms. The recording scheme is regarded as compressive forward sensing model, thus the compressive-sensing-based reconstruction algorithm is implemented to reconstruct the original object from the under sampled demultiplexed sub-holograms. The concept was verified by simulations and experiments with simulating use of the polarizer array. The proposed technique has great potential to be applied in 3D tracking of spatially incoherent samples.

  9. Tensor body: real-time reconstruction of the human body and avatar synthesis from RGB-D.

    PubMed

    Barmpoutis, Angelos

    2013-10-01

    Real-time 3-D reconstruction of the human body has many applications in anthropometry, telecommunications, gaming, fashion, and other areas of human-computer interaction. In this paper, a novel framework is presented for reconstructing the 3-D model of the human body from a sequence of RGB-D frames. The reconstruction is performed in real time while the human subject moves arbitrarily in front of the camera. The method employs a novel parameterization of cylindrical-type objects using Cartesian tensor and b-spline bases along the radial and longitudinal dimension respectively. The proposed model, dubbed tensor body, is fitted to the input data using a multistep framework that involves segmentation of the different body regions, robust filtering of the data via a dynamic histogram, and energy-based optimization with positive-definite constraints. A Riemannian metric on the space of positive-definite tensor splines is analytically defined and employed in this framework. The efficacy of the presented methods is demonstrated in several real-data experiments using the Microsoft Kinect sensor.

  10. Soft x-ray holographic tomography for biological specimens

    NASA Astrophysics Data System (ADS)

    Gao, Hongyi; Chen, Jianwen; Xie, Honglan; Li, Ruxin; Xu, Zhizhan; Jiang, Shiping; Zhang, Yuxuan

    2003-10-01

    In this paper, we present some experimental results on X -ray holography, holographic tomography, and a new holographic tomography method called pre-amplified holographic tomography is proposed. Due to the shorter wavelength and the larger penetration depths, X-rays provide the potential of higher resolution in imaging techniques, and have the ability to image intact, living, hydrated cells w ithout slicing, dehydration, chemical fixation or stain. Recently, using X-ray source in National Synchrotron Radiation Laboratory in Hefei, we have successfully performed some soft X-ray holography experiments on biological specimen. The specimens used in the experiments was the garlic clove epidermis, we got their X-ray hologram, and then reconstructed them by computer programs, the feature of the cell walls, the nuclei and some cytoplasm were clearly resolved. However, there still exist some problems in realization of practical 3D microscopic imaging due to the near-unity refractive index of the matter. There is no X-ray optics having a sufficient high numerical aperture to achieve a depth resolution that is comparable to the transverse resolution. On the other hand, computer tomography needs a record of hundreds of views of the test object at different angles for high resolution. This is because the number of views required for a densely packed object is equal to the object radius divided by the desired depth resolution. Clearly, it is impractical for a radiation-sensitive biological specimen. Moreover, the X-ray diffraction effect makes projection data blur, this badly degrades the resolution of the reconstructed image. In order to observe 3D structure of the biological specimens, McNulty proposed a new method for 3D imaging called "holographic tomography (HT)" in which several holograms of the specimen are recorded from various illumination directions and combined in the reconstruction step. This permits the specimens to be sampled over a wide range of spatial frequencies to improve the depth resolution. In NSRL, we performed soft X-ray holographic tomography experiments. The specimen was the spider filaments and PM M A as recording medium. By 3D CT reconstruction of the projection data, three dimensional density distribution of the specimen was obtained. Also, we developed a new X-ray holographic tomography m ethod called pre-amplified holographic tomography. The method permits a digital real-time 3D reconstruction with high-resolution and a simple and compact experimental setup as well.

  11. Multiview photometric stereo.

    PubMed

    Hernández Esteban, Carlos; Vogiatzis, George; Cipolla, Roberto

    2008-03-01

    This paper addresses the problem of obtaining complete, detailed reconstructions of textureless shiny objects. We present an algorithm which uses silhouettes of the object, as well as images obtained under changing illumination conditions. In contrast with previous photometric stereo techniques, ours is not limited to a single viewpoint but produces accurate reconstructions in full 3D. A number of images of the object are obtained from multiple viewpoints, under varying lighting conditions. Starting from the silhouettes, the algorithm recovers camera motion and constructs the object's visual hull. This is then used to recover the illumination and initialise a multi-view photometric stereo scheme to obtain a closed surface reconstruction. There are two main contributions in this paper: Firstly we describe a robust technique to estimate light directions and intensities and secondly, we introduce a novel formulation of photometric stereo which combines multiple viewpoints and hence allows closed surface reconstructions. The algorithm has been implemented as a practical model acquisition system. Here, a quantitative evaluation of the algorithm on synthetic data is presented together with complete reconstructions of challenging real objects. Finally, we show experimentally how even in the case of highly textured objects, this technique can greatly improve on correspondence-based multi-view stereo results.

  12. Optical rotation compensation for a holographic 3D display with a 360 degree horizontal viewing zone.

    PubMed

    Sando, Yusuke; Barada, Daisuke; Yatagai, Toyohiko

    2016-10-20

    A method for a continuous optical rotation compensation in a time-division-based holographic three-dimensional (3D) display with a rotating mirror is presented. Since the coordinate system of wavefronts after the mirror reflection rotates about the optical axis along with the rotation angle, compensation or cancellation is absolutely necessary to fix the reconstructed 3D object. In this study, we address this problem by introducing an optical image rotator based on a right-angle prism that rotates synchronously with the rotating mirror. The optical and continuous compensation reduces the occurrence of duplicate images, which leads to the improvement of the quality of reconstructed images. The effect of the optical rotation compensation is experimentally verified and a demonstration of holographic 3D display with the optical rotation compensation is presented.

  13. Fast 3D shape measurements with reduced motion artifacts

    NASA Astrophysics Data System (ADS)

    Feng, Shijie; Zuo, Chao; Chen, Qian; Gu, Guohua

    2017-10-01

    Fringe projection is an extensively used technique for high speed three-dimensional (3D) measurements of dynamic objects. However, the motion often leads to artifacts in reconstructions due to the sequential recording of the set of patterns. In order to reduce the adverse impact of the movement, we present a novel high speed 3D scanning technique combining the fringe projection and stereo. Firstly, promising measuring speed is achieved by modifying the traditional aperiodic sinusoidal patterns so that the fringe images can be cast at kilohertz with the widely used defocusing strategy. Next, a temporal intensity tracing algorithm is developed to further alleviate the influence of motion by accurately tracing the ideal intensity for stereo matching. Then, a combined cost measure is suggested to robustly estimate the cost for each pixel. In comparison with the traditional method where the effect of motion is not considered, experimental results show that the reconstruction accuracy for dynamic objects can be improved by an order of magnitude with the proposed method.

  14. Application of multislice spiral CT for guidance of insertion of thoracic spine pedicle screws: an in vitro study.

    PubMed

    Wang, Juan; Zhou, Yicheng; Hu, Ning; Wang, Renfa

    2006-01-01

    To investigate the value of the guidance of three dimensional (3-D) reconstruction of multi-slice spiral CT (MSCT) for the placement of pedicle screws, the 3-D anatomical data of the thoracic pedicles were measured by MSCT in two embalmed human cadaveric thoracic pedicles spines (T1-T10) to guide the insertion of pedicle screws. After pulling the screws out, the pathways were filled with contrast media. The PW, PH, TSA and SSA of developed pathways were measured on the CT images and they were also measured on the real objects by caliper and goniometer. Analysis of variance demonstrated that the difference between the CT scans and real objects had no statistical significance (P > 0.05). Moreover, the difference between pedicle axis and developed pathway also had no statistical significance (P > 0.05). The data obtained from 3-D reconstruction of MSCT demonstrated that individualized standards, are not only accurate but also helpful for the successful placement of pedicle screws.

  15. Optical scanning holography based on compressive sensing using a digital micro-mirror device

    NASA Astrophysics Data System (ADS)

    A-qian, Sun; Ding-fu, Zhou; Sheng, Yuan; You-jun, Hu; Peng, Zhang; Jian-ming, Yue; xin, Zhou

    2017-02-01

    Optical scanning holography (OSH) is a distinct digital holography technique, which uses a single two-dimensional (2D) scanning process to record the hologram of a three-dimensional (3D) object. Usually, these 2D scanning processes are in the form of mechanical scanning, and the quality of recorded hologram may be affected due to the limitation of mechanical scanning accuracy and unavoidable vibration of stepper motor's start-stop. In this paper, we propose a new framework, which replaces the 2D mechanical scanning mirrors with a Digital Micro-mirror Device (DMD) to modulate the scanning light field, and we call it OSH based on Compressive Sensing (CS) using a digital micro-mirror device (CS-OSH). CS-OSH can reconstruct the hologram of an object through the use of compressive sensing theory, and then restore the image of object itself. Numerical simulation results confirm this new type OSH can get a reconstructed image with favorable visual quality even under the condition of a low sample rate.

  16. Automated 3D architecture reconstruction from photogrammetric structure-and-motion: A case study of the One Pilla pagoda, Hanoi, Vienam

    NASA Astrophysics Data System (ADS)

    To, T.; Nguyen, D.; Tran, G.

    2015-04-01

    Heritage system of Vietnam has decline because of poor-conventional condition. For sustainable development, it is required a firmly control, space planning organization, and reasonable investment. Moreover, in the field of Cultural Heritage, the use of automated photogrammetric systems, based on Structure from Motion techniques (SfM), is widely used. With the potential of high-resolution, low-cost, large field of view, easiness, rapidity and completeness, the derivation of 3D metric information from Structure-and- Motion images is receiving great attention. In addition, heritage objects in form of 3D physical models are recorded not only for documentation issues, but also for historical interpretation, restoration, cultural and educational purposes. The study suggests the archaeological documentation of the "One Pilla" pagoda placed in Hanoi capital, Vietnam. The data acquired through digital camera Cannon EOS 550D, CMOS APS-C sensor 22.3 x 14.9 mm. Camera calibration and orientation were carried out by VisualSFM, CMPMVS (Multi-View Reconstruction) and SURE (Photogrammetric Surface Reconstruction from Imagery) software. The final result represents a scaled 3D model of the One Pilla Pagoda and displayed different views in MeshLab software.

  17. Feature-based three-dimensional registration for repetitive geometry in machine vision

    PubMed Central

    Gong, Yuanzheng; Seibel, Eric J.

    2016-01-01

    As an important step in three-dimensional (3D) machine vision, 3D registration is a process of aligning two or multiple 3D point clouds that are collected from different perspectives together into a complete one. The most popular approach to register point clouds is to minimize the difference between these point clouds iteratively by Iterative Closest Point (ICP) algorithm. However, ICP does not work well for repetitive geometries. To solve this problem, a feature-based 3D registration algorithm is proposed to align the point clouds that are generated by vision-based 3D reconstruction. By utilizing texture information of the object and the robustness of image features, 3D correspondences can be retrieved so that the 3D registration of two point clouds is to solve a rigid transformation. The comparison of our method and different ICP algorithms demonstrates that our proposed algorithm is more accurate, efficient and robust for repetitive geometry registration. Moreover, this method can also be used to solve high depth uncertainty problem caused by little camera baseline in vision-based 3D reconstruction. PMID:28286703

  18. An objective algorithm for reconstructing the three-dimensional ocean temperature field based on Argo profiles and SST data

    NASA Astrophysics Data System (ADS)

    Zhou, Chaojie; Ding, Xiaohua; Zhang, Jie; Yang, Jungang; Ma, Qiang

    2017-12-01

    While global oceanic surface information with large-scale, real-time, high-resolution data is collected by satellite remote sensing instrumentation, three-dimensional (3D) observations are usually obtained from in situ measurements, but with minimal coverage and spatial resolution. To meet the needs of 3D ocean investigations, we have developed a new algorithm to reconstruct the 3D ocean temperature field based on the Array for Real-time Geostrophic Oceanography (Argo) profiles and sea surface temperature (SST) data. The Argo temperature profiles are first optimally fitted to generate a series of temperature functions of depth, with the vertical temperature structure represented continuously. By calculating the derivatives of the fitted functions, the calculation of the vertical temperature gradient of the Argo profiles at an arbitrary depth is accomplished. A gridded 3D temperature gradient field is then found by applying inverse distance weighting interpolation in the horizontal direction. Combined with the processed SST, the 3D temperature field reconstruction is realized below the surface using the gridded temperature gradient. Finally, to confirm the effectiveness of the algorithm, an experiment in the Pacific Ocean south of Japan is conducted, for which a 3D temperature field is generated. Compared with other similar gridded products, the reconstructed 3D temperature field derived by the proposed algorithm achieves satisfactory accuracy, with correlation coefficients of 0.99 obtained, including a higher spatial resolution (0.25° × 0.25°), resulting in the capture of smaller-scale characteristics. Finally, both the accuracy and the superiority of the algorithm are validated.

  19. Value of 3D printing for the comprehension of surgical anatomy.

    PubMed

    Marconi, Stefania; Pugliese, Luigi; Botti, Marta; Peri, Andrea; Cavazzi, Emma; Latteri, Saverio; Auricchio, Ferdinando; Pietrabissa, Andrea

    2017-10-01

    In a preliminary experience, we claimed the potential value of 3D printing technology for pre-operative counseling and surgical planning. However, no objective analysis has ever assessed its additional benefit in transferring anatomical information from radiology to final users. We decided to validate the pre-operative use of 3D-printed anatomical models in patients with solid organs' diseases as a new tool to deliver morphological information. Fifteen patients scheduled for laparoscopic splenectomy, nephrectomy, or pancreatectomy were selected and, for each, a full-size 3D virtual anatomical object was reconstructed from a contrast-enhanced MDCT (Multiple Detector Computed Tomography) and then prototyped using a 3D printer. After having carefully evaluated-in a random sequence-conventional contrast MDCT scans, virtual 3D reconstructions on a flat monitor, and 3D-printed models of the same anatomy for each selected case, thirty subjects with different expertise in radiological imaging (10 medical students, 10 surgeons and 10 radiologists) were administered a multiple-item questionnaire. Crucial issues for the anatomical understanding and the pre-operative planning of the scheduled procedure were addressed. The visual and tactile inspection of 3D models allowed the best anatomical understanding, with faster and clearer comprehension of the surgical anatomy. As expected, less experienced medical students perceived the highest benefit (53.9% ± 4.14 of correct answers with 3D-printed models, compared to 53.4 % ± 4.6 with virtual models and 45.5% ± 4.6 with MDCT), followed by surgeons and radiologists. The average time spent by participants in 3D model assessing was shorter (60.67 ± 25.5 s) than the one of the corresponding virtual 3D reconstruction (70.8 ± 28.18 s) or conventional MDCT scan (127.04 ± 35.91 s). 3D-printed models help to transfer complex anatomical information to clinicians, resulting useful in the pre-operative planning, for intra-operative navigation and for surgical training purposes.

  20. Automatic cable artifact removal for cardiac C-arm CT imaging

    NASA Astrophysics Data System (ADS)

    Haase, C.; Schäfer, D.; Kim, M.; Chen, S. J.; Carroll, J.; Eshuis, P.; Dössel, O.; Grass, M.

    2014-03-01

    Cardiac C-arm computed tomography (CT) imaging using interventional C-arm systems can be applied in various areas of interventional cardiology ranging from structural heart disease and electrophysiology interventions to valve procedures in hybrid operating rooms. In contrast to conventional CT systems, the reconstruction field of view (FOV) of C-arm systems is limited to a region of interest in cone-beam (along the patient axis) and fan-beam (in the transaxial plane) direction. Hence, highly X-ray opaque objects (e.g. cables from the interventional setup) outside the reconstruction field of view, yield streak artifacts in the reconstruction volume. To decrease the impact of these streaks a cable tracking approach on the 2D projection sequences with subsequent interpolation is applied. The proposed approach uses the fact that the projected position of objects outside the reconstruction volume depends strongly on the projection perspective. By tracking candidate points over multiple projections only objects outside the reconstruction volume are segmented in the projections. The method is quantitatively evaluated based on 30 simulated CT data sets. The 3D root mean square deviation to a reference image could be reduced for all cases by an average of 50 % (min 16 %, max 76 %). Image quality improvement is shown for clinical whole heart data sets acquired on an interventional C-arm system.

  1. ANGIOCARE: an automated system for fast three-dimensional coronary reconstruction by integrating angiographic and intracoronary ultrasound data.

    PubMed

    Bourantas, Christos V; Kalatzis, Fanis G; Papafaklis, Michail I; Fotiadis, Dimitrios I; Tweddel, Ann C; Kourtis, Iraklis C; Katsouras, Christos S; Michalis, Lampros K

    2008-08-01

    The development of an automated, user-friendly system (ANGIOCARE), for rapid three-dimensional (3D) coronary reconstruction, integrating angiographic and, intracoronary ultrasound (ICUS) data. Biplane angiographic and ICUS sequence images are imported into the system where a prevalidated method is used for coronary reconstruction. This incorporates extraction of the catheter path from two end-diastolic X-ray images and detection of regions of interest (lumen, outer vessel wall) in the ICUS sequence by an automated border detection algorithm. The detected borders are placed perpendicular to the catheter path and established algorithms used to estimate their absolute orientation. The resulting 3D object is imported into an advanced visualization module with which the operator can interact, examine plaque distribution (depicted as a color coded map) and assess plaque burden by virtual endoscopy. Data from 19 patients (27 vessels) undergoing biplane angiography and ICUS were examined. The reconstructed vessels were 21.3-80.2 mm long. The mean difference was 0.9 +/- 2.9% between the plaque volumes measured using linear 3D ICUS analysis and the volumes, estimated by taking into account the curvature of the vessel. The time required to reconstruct a luminal narrowing of 25 mm was approximately 10 min. The ANGIOCARE system provides rapid coronary reconstruction allowing the operator accurately to estimate the length of the lesion and determine plaque distribution and volume. (c) 2008 Wiley-Liss, Inc.

  2. Recovering the 3d Pose and Shape of Vehicles from Stereo Images

    NASA Astrophysics Data System (ADS)

    Coenen, M.; Rottensteiner, F.; Heipke, C.

    2018-05-01

    The precise reconstruction and pose estimation of vehicles plays an important role, e.g. for autonomous driving. We tackle this problem on the basis of street level stereo images obtained from a moving vehicle. Starting from initial vehicle detections, we use a deformable vehicle shape prior learned from CAD vehicle data to fully reconstruct the vehicles in 3D and to recover their 3D pose and shape. To fit a deformable vehicle model to each detection by inferring the optimal parameters for pose and shape, we define an energy function leveraging reconstructed 3D data, image information, the vehicle model and derived scene knowledge. To minimise the energy function, we apply a robust model fitting procedure based on iterative Monte Carlo model particle sampling. We evaluate our approach using the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012). Our approach can deal with very coarse pose initialisations and we achieve encouraging results with up to 82 % correct pose estimations. Moreover, we are able to deliver very precise orientation estimation results with an average absolute error smaller than 4°.

  3. Embedded, real-time UAV control for improved, image-based 3D scene reconstruction

    Treesearch

    Jean Liénard; Andre Vogs; Demetrios Gatziolis; Nikolay Strigul

    2016-01-01

    Unmanned Aerial Vehicles (UAVs) are already broadly employed for 3D modeling of large objects such as trees and monuments via photogrammetry. The usual workflow includes two distinct steps: image acquisition with UAV and computationally demanding postflight image processing. Insufficient feature overlaps across images is a common shortcoming in post-flight image...

  4. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Gu, Xuejun

    2013-10-15

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstructionmore » to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion-blurring artifacts are present, leading to a 24.4% relative reconstruction error in the NACT phantom. View aliasing artifacts are present in 4D-CBCT reconstructed by FDK from 20 projections, with a relative error of 32.1%. When total variation minimization is used to reconstruct 4D-CBCT, the relative error is 18.9%. Image quality of 4D-CBCT is substantially improved by using the SMEIR algorithm and relative error is reduced to 7.6%. The maximum error (MaxE) of tumor motion determined from the DVF obtained by demons registration on a FDK-reconstructed 4D-CBCT is 3.0, 2.3, and 7.1 mm along left–right (L-R), anterior–posterior (A-P), and superior–inferior (S-I) directions, respectively. From the DVF obtained by demons registration on 4D-CBCT reconstructed by total variation minimization, the MaxE of tumor motion is reduced to 1.5, 0.5, and 5.5 mm along L-R, A-P, and S-I directions. From the DVF estimated by SMEIR algorithm, the MaxE of tumor motion is further reduced to 0.8, 0.4, and 1.5 mm along L-R, A-P, and S-I directions, respectively.Conclusions: The proposed SMEIR algorithm is able to estimate a motion model and reconstruct motion-compensated 4D-CBCT. The SMEIR algorithm improves image reconstruction accuracy of 4D-CBCT and tumor motion trajectory estimation accuracy as compared to conventional sequential 4D-CBCT reconstruction and motion estimation.« less

  5. DIEP Flap Breast Reconstruction in Patients with Breast Ptosis: 2-Stage Reconstruction Using 3-Dimensional Surface Imaging and a Printed Mold

    PubMed Central

    Yano, Kenji; Taminato, Mifue; Nomori, Michiko; Hosokawa, Ko

    2017-01-01

    Background: Autologous breast reconstruction can be performed for breasts with ptosis to a certain extent, but if patients desire to correct ptosis, mastopexy of the contralateral breast is indicated. However, accurate prediction of post-mastopexy breast shape is difficult to make, and symmetrical breast reconstruction requires certain experience. We have previously reported the use of three-dimensional (3D) imaging and printing technologies in deep inferior epigastric artery perforator (DIEP) flap breast reconstruction. In the present study, these technologies were applied to the reconstruction of breasts with ptosis. Methods: Eight breast cancer patients with ptotic breasts underwent two-stage unilateral DIEP flap breast reconstruction. In the initial surgery, tissue expander (TE) placement and contralateral mastopexy are performed simultaneously. Four to six months later, 3D bilateral breast imaging is performed after confirming that the shape of the contralateral breast (post-mastopexy) is somewhat stabilized, and a 3D-printed breast mold is created based on the mirror image of the shape of the contralateral breast acquired using analytical software. Then, DIEP flap surgery is performed, where the breast mold is used to determine the required flap volume and to shape the breast mound. Results: All flaps were engrafted without any major perioperative complications during both the initial and DIEP flap surgeries. Objective assessment of cosmetic outcome revealed that good breast symmetry was achieved in all cases. Conclusions: The method described here may allow even inexperienced surgeons to achieve reconstruction of symmetrical, non-ptotic breasts with ease and in a short time. While the requirement of two surgeries is a potential disadvantage, our method will be particularly useful in cases involving TEs, i.e., delayed reconstruction or immediate reconstruction involving significant skin resection. PMID:29184728

  6. Cross-talk free selective reconstruction of individual objects from multiplexed optical field data

    NASA Astrophysics Data System (ADS)

    Zea, Alejandro Velez; Barrera, John Fredy; Torroba, Roberto

    2018-01-01

    In this paper we present a data multiplexing method for simultaneous storage in a single package composed by several optical fields of tridimensional (3D) objects, and their individual cross-talk free retrieval. Optical field data are extracted from off axis Fourier holograms, and then sampled by multiplying them with random binary masks. The resulting sampled optical fields can be used to reconstruct the original objects. Sampling causes a loss of quality that can be controlled by the number of white pixels in the binary masks and by applying a padding procedure on the optical field data. This process can be performed using a different binary mask for each optical field, and then added to form a multiplexed package. With the adequate choice of sampling and padding, we can achieve a volume reduction in the multiplexed package over the addition of all individual optical fields. Moreover, the package can be multiplied by a binary mask to select a specific optical field, and after the reconstruction procedure, the corresponding 3D object is recovered without any cross-talk. We demonstrate the effectiveness of our proposal for data compression with a comparison with discrete cosine transform filtering. Experimental results confirm the validity of our proposal.

  7. A high resolution and high speed 3D imaging system and its application on ATR

    NASA Astrophysics Data System (ADS)

    Lu, Thomas T.; Chao, Tien-Hsin

    2006-04-01

    The paper presents an advanced 3D imaging system based on a combination of stereo vision and light projection methods. A single digital camera is used to take only one shot of the object and reconstruct the 3D model of an object. The stereo vision is achieved by employing a prism and mirror setup to split the views and combine them side by side in the camera. The advantage of this setup is its simple system architecture, easy synchronization, fast 3D imaging speed and high accuracy. The 3D imaging algorithms and potential applications are discussed. For ATR applications, it is critically important to extract maximum information for the potential targets and to separate the targets from the background and clutter noise. The added dimension of a 3D model provides additional features of surface profile, range information of the target. It is capable of removing the false shadow from camouflage and reveal the 3D profile of the object. It also provides arbitrary viewing angles and distances for training the filter bank for invariant ATR. The system architecture can be scaled to take large objects and to perform area 3D modeling onboard a UAV.

  8. 3D Reconstruction of human bones based on dictionary learning.

    PubMed

    Zhang, Binkai; Wang, Xiang; Liang, Xiao; Zheng, Jinjin

    2017-11-01

    An effective method for reconstructing a 3D model of human bones from computed tomography (CT) image data based on dictionary learning is proposed. In this study, the dictionary comprises the vertices of triangular meshes, and the sparse coefficient matrix indicates the connectivity information. For better reconstruction performance, we proposed a balance coefficient between the approximation and regularisation terms and a method for optimisation. Moreover, we applied a local updating strategy and a mesh-optimisation method to update the dictionary and the sparse matrix, respectively. The two updating steps are iterated alternately until the objective function converges. Thus, a reconstructed mesh could be obtained with high accuracy and regularisation. The experimental results show that the proposed method has the potential to obtain high precision and high-quality triangular meshes for rapid prototyping, medical diagnosis, and tissue engineering. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Recent advances in the application of electron tomography to materials chemistry.

    PubMed

    Leary, Rowan; Midgley, Paul A; Thomas, John Meurig

    2012-10-16

    Nowadays, tomography plays a central role in pureand applied science, in medicine, and in many branches of engineering and technology. It entails reconstructing the three-dimensional (3D) structure of an object from a tilt series of two-dimensional (2D) images. Its origin goes back to 1917, when Radon showed mathematically how a series of 2D projection images could be converted to the 3D structural one. Tomographic X-ray and positron scanning for 3D medical imaging, with a resolution of ∼1 mm, is now ubiquitous in major hospitals. Electron tomography, a relatively new chemical tool, with a resolution of ∼1 nm, has been recently adopted by materials chemists as an invaluable aid for the 3D study of the morphologies, spatially-discriminating chemical compositions, and defect properties of nanostructured materials. In this Account, we review the advances that have been made in facilitating the recording of the required series of 2D electron microscopic images and the subsequent process of 3D reconstruction of specimens that are vulnerable, to a greater or lesser degree, to electron beam damage. We describe how high-fidelity 3D tomograms may be obtained from relatively few 2D images by incorporating prior structural knowledge into the reconstruction process. In particular, we highlight the vital role of compressed sensing, a recently developed procedure well-known to information theorists that exploits ideas of image compression and "sparsity" (that the important image information can be captured in a reduced data set). We also touch upon another promising approach, "discrete" tomography, which builds into the reconstruction process a prior assumption that the object can be described in discrete terms, such as the number of constituent materials and their expected densities. Other advances made recently that we outline, such as the availability of aberration-corrected electron microscopes, electron wavelength monochromators, and sophisticated specimen goniometers, have all contributed significantly to the further development of quantitative 3D studies of nanostructured materials, including nanoparticle-heterogeneous catalysts, fuel-cell components, and drug-delivery systems, as well as photovoltaic and plasmonic devices, and are likely to enhance our knowledge of many other facets of materials chemistry, such as organic-inorganic composites, solar-energy devices, bionanotechnology, biomineralization, and energy-storage systems composed of high-permittivity metal oxides.

  10. a Comparison Between Active and Passive Techniques for Underwater 3d Applications

    NASA Astrophysics Data System (ADS)

    Bianco, G.; Gallo, A.; Bruno, F.; Muzzupappa, M.

    2011-09-01

    In the field of 3D scanning, there is an increasing need for more accurate technologies to acquire 3D models of close range objects. Underwater exploration, for example, is very hard to perform due to the hostile conditions and the bad visibility of the environment. Some application fields, like underwater archaeology, require to recover tridimensional data of objects that cannot be moved from their site or touched in order to avoid possible damages. Photogrammetry is widely used for underwater 3D acquisition, because it requires just one or two digital still or video cameras to acquire a sequence of images taken from different viewpoints. Stereo systems composed by a pair of cameras are often employed on underwater robots (i.e. ROVs, Remotely Operated Vehicles) and used by scuba divers, in order to survey archaeological sites, reconstruct complex 3D structures in aquatic environment, estimate in situ the length of marine organisms, etc. The stereo 3D reconstruction is based on the triangulation of corresponding points on the two views. This requires to find in both images common points and to match them (correspondence problem), determining a plane that contains the 3D point on the object. Another 3D technique, frequently used in air acquisition, solves this point-matching problem by projecting structured lighting patterns to codify the acquired scene. The corresponding points are identified associating a binary code in both images. In this work we have tested and compared two whole-field 3D imaging techniques (active and passive) based on stereo vision, in underwater environment. A 3D system has been designed, composed by a digital projector and two still cameras mounted in waterproof housing, so that it can perform the various acquisitions without changing the configuration of optical devices. The tests were conducted in a water tank in different turbidity conditions, on objects with different surface properties. In order to simulate a typical seafloor, we used various concentrations of clay. The performances of the two techniques are described and discussed. In particular, the point clouds obtained are compared in terms of number of acquired 3D points and geometrical deviation.

  11. Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography

    PubMed Central

    Liang, Jinyang; Gao, Liang; Hai, Pengfei; Li, Chiye; Wang, Lihong V.

    2015-01-01

    Compressed ultrafast photography (CUP), a computational imaging technique, is synchronized with short-pulsed laser illumination to enable dynamic three-dimensional (3D) imaging. By leveraging the time-of-flight (ToF) information of pulsed light backscattered by the object, ToF-CUP can reconstruct a volumetric image from a single camera snapshot. In addition, the approach unites the encryption of depth data with the compressed acquisition of 3D data in a single snapshot measurement, thereby allowing efficient and secure data storage and transmission. We demonstrated high-speed 3D videography of moving objects at up to 75 volumes per second. The ToF-CUP camera was applied to track the 3D position of a live comet goldfish. We have also imaged a moving object obscured by a scattering medium. PMID:26503834

  12. 360° Fourier transform profilometry in surface reconstruction for fluorescence molecular tomography.

    PubMed

    Shi, Bi'er; Zhang, Bin; Liu, Fei; Luo, Jianwen; Bai, Jing

    2013-05-01

    Fluorescence molecular tomography (FMT) is an emerging tool in the observation of diseases. A fast and accurate surface reconstruction of the experimental object is needed as a boundary constraint for FMT reconstruction. In this paper, an automatic, noncontact, and 3-D surface reconstruction method named 360◦ Fourier transform profilometry (FTP) is proposed to reconstruct 3-D surface profiles for FMT system. This method can reconstruct 360◦ integrated surface profiles utilizing the single-frame FTP at different angles. Results show that the relative mean error of the surface reconstruction of this method is less than 1.4% in phantom experiments, and is no more than 2.9% in mouse experiments in vivo. Compared with the Radon transform method, the proposed method reduces the computation time by more than 90% with a minimal error increase. At last, a combined 360◦ FTP/FMT experiment is conducted on a nude mouse. Not only can the 360◦ FTP system operate with the FMT system simultaneously, but it can also help to monitor the status of animals. Moreover, the 360◦ FTP system is independent of FMT system and can be performed to reconstruct the surface by itself.

  13. Weapon identification using antemortem CT with 3D reconstruction, is it always possible?--A report in a case of facial blunt and sharp injuries using an ashtray.

    PubMed

    Aromatario, Mariarosaria; Cappelletti, Simone; Bottoni, Edoardo; Fiore, Paola Antonella; Ciallella, Costantino

    2016-01-01

    An interesting case of homicide involving the use of a heavy glass ashtray is described. The victim, a 81-years-old woman, has survived for few days and died in hospital. The external examination of the victim showed extensive blunt and sharp facial injuries and defense injuries on both the hands. The autopsy examination showed numerous tears on the face, as well as multiple fractures of the facial bones. Computer tomography scan, with 3D reconstruction, performed in hospital before death, was used to identify the weapon used for the crime. In recent years new diagnostics tools such as computer tomography has been widely used, especially in cases involving sharp and blunt forces. Computer tomography has proven to be very valuable in analyzing fractures of the cranial teca for forensic purpose, in particular antemortem computer tomography with 3D reconstruction is becoming an important tool in the process of weapon identification, thanks to the possibility to identify and make comparison between the shape of the object used to commit the crime, the injury and the objects found during the investigations. No previous reports on the use of this technique, for the weapon identification process, in cases of isolated facial fractures were described. We report a case in which, despite the correct use of this technique, it was not possible for the forensic pathologist to identify the weapon used to commit the crime. Authors wants to highlight the limits encountered in the use of computer tomography with 3D reconstruction as a tool for weapon identification when facial fractures occurred. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. An automatic panoramic image reconstruction scheme from dental computed tomography images

    PubMed Central

    Papakosta, Thekla K; Savva, Antonis D; Economopoulos, Theodore L; Gröhndal, H G

    2017-01-01

    Objectives: Panoramic images of the jaws are extensively used for dental examinations and/or surgical planning because they provide a general overview of the patient's maxillary and mandibular regions. Panoramic images are two-dimensional projections of three-dimensional (3D) objects. Therefore, it should be possible to reconstruct them from 3D radiographic representations of the jaws, produced by CBCT scanning, obviating the need for additional exposure to X-rays, should there be a need of panoramic views. The aim of this article is to present an automated method for reconstructing panoramic dental images from CBCT data. Methods: The proposed methodology consists of a series of sequential processing stages for detecting a fitting dental arch which is used for projecting the 3D information of the CBCT data to the two-dimensional plane of the panoramic image. The detection is based on a template polynomial which is constructed from a training data set. Results: A total of 42 CBCT data sets of real clinical pre-operative and post-operative representations from 21 patients were used. Eight data sets were used for training the system and the rest for testing. Conclusions: The proposed methodology was successfully applied to CBCT data sets, producing corresponding panoramic images, suitable for examining pre-operatively and post-operatively the patients' maxillary and mandibular regions. PMID:28112548

  15. Tubular Crystals and Helical Arrays: Structural Determination of HIV-1 Capsid Assemblies Using Iterative Helical Real-Space Reconstruction

    PubMed Central

    Zhang, Peijun; Meng, Xin; Zhao, Gongpu

    2013-01-01

    Helical structures are important in many different life forms and are well-suited for structural studies by cryo-EM. A unique feature of helical objects is that a single projection image contains all the views needed to perform a three-dimensional (3D) crystallographic reconstruction. Here, we use HIV-1 capsid assemblies to illustrate the detailed approaches to obtain 3D density maps from helical objects. Mature HIV-1 particles contain a conical- or tubular-shaped capsid that encloses the viral RNA genome and performs essential functions in the virus life cycle. The capsid is composed of capsid protein (CA) oligomers which are helically arranged on the surface. The N-terminal domain (NTD) of CA is connected to its C-terminal domain (CTD) through a flexible hinge. Structural analysis of two- and three-dimensional crystals provided molecular models of the capsid protein (CA) and its oligomer forms. We determined the 3D density map of helically assembled HIV-1 CA hexamers at 16 Å resolution using an iterative helical real-space reconstruction method. Docking of atomic models of CA-NTD and CA-CTD dimer into the electron density map indicated that the CTD dimer interface is retained in the assembled CA. Furthermore, molecular docking revealed an additional, novel CTD trimer interface. PMID:23132072

  16. Shape: A 3D Modeling Tool for Astrophysics.

    PubMed

    Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus

    2011-04-01

    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.

  17. Preprocessing of region of interest localization based on local surface curvature analysis for three-dimensional reconstruction with multiresolution

    NASA Astrophysics Data System (ADS)

    Li, Wanjing; Schütze, Rainer; Böhler, Martin; Boochs, Frank; Marzani, Franck S.; Voisin, Yvon

    2009-06-01

    We present an approach to integrate a preprocessing step of the region of interest (ROI) localization into 3-D scanners (laser or stereoscopic). The definite objective is to make the 3-D scanner intelligent enough to localize rapidly in the scene, during the preprocessing phase, the regions with high surface curvature, so that precise scanning will be done only in these regions instead of in the whole scene. In this way, the scanning time can be largely reduced, and the results contain only pertinent data. To test its feasibility and efficiency, we simulated the preprocessing process under an active stereoscopic system composed of two cameras and a video projector. The ROI localization is done in an iterative way. First, the video projector projects a regular point pattern in the scene, and then the pattern is modified iteratively according to the local surface curvature of each reconstructed 3-D point. Finally, the last pattern is used to determine the ROI. Our experiments showed that with this approach, the system is capable to localize all types of objects, including small objects with small depth.

  18. Non-isotropic noise correlation in PET data reconstructed by FBP but not by OSEM demonstrated using auto-correlation function.

    PubMed

    Razifar, Pasha; Lubberink, Mark; Schneider, Harald; Långström, Bengt; Bengtsson, Ewert; Bergström, Mats

    2005-05-13

    BACKGROUND: Positron emission tomography (PET) is a powerful imaging technique with the potential of obtaining functional or biochemical information by measuring distribution and kinetics of radiolabelled molecules in a biological system, both in vitro and in vivo. PET images can be used directly or after kinetic modelling to extract quantitative values of a desired physiological, biochemical or pharmacological entity. Because such images are generally noisy, it is essential to understand how noise affects the derived quantitative values. A pre-requisite for this understanding is that the properties of noise such as variance (magnitude) and texture (correlation) are known. METHODS: In this paper we explored the pattern of noise correlation in experimentally generated PET images, with emphasis on the angular dependence of correlation, using the autocorrelation function (ACF). Experimental PET data were acquired in 2D and 3D acquisition mode and reconstructed by analytical filtered back projection (FBP) and iterative ordered subsets expectation maximisation (OSEM) methods. The 3D data was rebinned to a 2D dataset using FOurier REbinning (FORE) followed by 2D reconstruction using either FBP or OSEM. In synthetic images we compared the ACF results with those from covariance matrix. The results were illustrated as 1D profiles and also visualized as 2D ACF images. RESULTS: We found that the autocorrelation images from PET data obtained after FBP were not fully rotationally symmetric or isotropic if the object deviated from a uniform cylindrical radioactivity distribution. In contrast, similar autocorrelation images obtained after OSEM reconstruction were isotropic even when the phantom was not circular. Simulations indicated that the noise autocorrelation is non-isotropic in images created by FBP when the level of noise in projections is angularly variable. Comparison between 1D cross profiles on autocorrelation images obtained by FBP reconstruction and covariance matrices produced almost identical results in a simulation study. CONCLUSION: With asymmetric radioactivity distribution in PET, reconstruction using FBP, in contrast to OSEM, generates images in which the noise correlation is non-isotropic when the noise magnitude is angular dependent, such as in objects with asymmetric radioactivity distribution. In this respect, iterative reconstruction is superior since it creates isotropic noise correlations in the images.

  19. Iterative metal artifact reduction: evaluation and optimization of technique.

    PubMed

    Subhas, Naveen; Primak, Andrew N; Obuchowski, Nancy A; Gupta, Amit; Polster, Joshua M; Krauss, Andreas; Iannotti, Joseph P

    2014-12-01

    Iterative metal artifact reduction (IMAR) is a sinogram inpainting technique that incorporates high-frequency data from standard weighted filtered back projection (WFBP) reconstructions to reduce metal artifact on computed tomography (CT). This study was designed to compare the image quality of IMAR and WFBP in total shoulder arthroplasties (TSA); determine the optimal amount of WFBP high-frequency data needed for IMAR; and compare image quality of the standard 3D technique with that of a faster 2D technique. Eight patients with nine TSA underwent CT with standardized parameters: 140 kVp, 300 mAs, 0.6 mm collimation and slice thickness, and B30 kernel. WFBP, three 3D IMAR algorithms with different amounts of WFBP high-frequency data (IMARlo, lowest; IMARmod, moderate; IMARhi, highest), and one 2D IMAR algorithm were reconstructed. Differences in attenuation near hardware and away from hardware were measured and compared using repeated measures ANOVA. Five readers independently graded image quality; scores were compared using Friedman's test. Attenuation differences were smaller with all 3D IMAR techniques than with WFBP (p < 0.0063). With increasing high-frequency data, the attenuation difference increased slightly (differences not statistically significant). All readers ranked IMARmod and IMARhi more favorably than WFBP (p < 0.05), with IMARmod ranked highest for most structures. The attenuation difference was slightly higher with 2D than with 3D IMAR, with no significant reader preference for 3D over 2D. IMAR significantly decreases metal artifact compared to WFBP both objectively and subjectively in TSA. The incorporation of a moderate amount of WFBP high-frequency data and use of a 2D reconstruction technique optimize image quality and allow for relatively short reconstruction times.

  20. The holographic display of three-dimensional medical objects through the usage of a shiftable cylindrical lens

    NASA Astrophysics Data System (ADS)

    Teng, Dongdong; Liu, Lilin; Zhang, Yueli; Pang, Zhiyong; Wang, Biao

    2014-09-01

    Through the creative usage of a shiftable cylindrical lens, a wide-view-angle holographic display system is developed for medical object display in real three-dimensional (3D) space based on a time-multiplexing method. The two-dimensional (2D) source images for all computer generated holograms (CGHs) needed by the display system are only one group of computerized tomography (CT) or magnetic resonance imaging (MRI) slices from the scanning device. Complicated 3D message reconstruction on the computer is not necessary. A pelvis is taken as the target medical object to demonstrate this method and the obtained horizontal viewing angle reaches 28°.

  1. Format preferences of district attorneys for post-mortem medical imaging reports: understandability, cost effectiveness, and suitability for the courtroom: a questionnaire based study.

    PubMed

    Ampanozi, Garyfalia; Zimmermann, David; Hatch, Gary M; Ruder, Thomas D; Ross, Steffen; Flach, Patricia M; Thali, Michael J; Ebert, Lars C

    2012-05-01

    The objective of this study was to explore the perception of the legal authorities regarding different report types and visualization techniques for post-mortem radiological findings. A standardized digital questionnaire was developed and the district attorneys in the catchment area of the affiliated Forensic Institute were requested to evaluate four different types of forensic imaging reports based on four cases examples. Each case was described in four different report types (short written report only, gray-scale CT image with figure caption, color-coded CT image with figure caption, 3D-reconstruction with figure caption). The survey participants were asked to evaluate those types of reports regarding understandability, cost effectiveness and overall appropriateness for the courtroom. 3D reconstructions and color-coded CT images accompanied by written report were preferred regarding understandability and cost/effectiveness. 3D reconstructions of the forensic findings reviewed as most adequate for court. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Historical Photogrammetry and Terrestrial Laser Scanning for the 3d Virtual Reconstruction of Destroyed Structures: a Case Study in Italy

    NASA Astrophysics Data System (ADS)

    Bitelli, G.; Dellapasqua, M.; Girelli, V. A.; Sbaraglia, S.; Tinia, M. A.

    2017-05-01

    The current dramatic episodes of destruction of archaeological sites have again highlighted the problem of the safeguarding the threatened heritage and, if possible, recovering those damaged by all the armed conflicts of the past. The historical photogrammetry offers the possibility to recover a posteriori the geometrical and material properties of destroyed structures, reconstructing their 3D model to document, study and maintain their memory, until to support their real anastylosis. The presented work is about the 3D reconstruction of the civic tower of the little town of Sant'Alberto, near the city of Ravenna, Italy. The tower, as a symbol of resistance and pride of the town's population, was destroyed in December 1944 by German troops in retaliation, when they were forced to leave the area. A city committee has subsequently collected all the historical evidence concerning the tower, including a series of photographic images that can be used for the photogrammetric reconstruction; the images calibration and orientation have been solved using the geometric information derived by a terrestrial laser scanner survey realized in the area where the tower was originally located. Despite the scarcity and very poor quality of the available images, the conducted photogrammetric procedure has allowed a complete and qualitatively satisfying object reconstruction, also thanks to the use of geometric constraint tools offered by the chosen software. The integration between the obtained model of the old tower and the 3D TLS survey of the square made it possible to reconstruct the ancient situation of the area.

  3. Muon tomography imaging algorithms for nuclear threat detection inside large volume containers with the Muon Portal detector

    NASA Astrophysics Data System (ADS)

    Riggi, S.; Antonuccio-Delogu, V.; Bandieramonte, M.; Becciani, U.; Costa, A.; La Rocca, P.; Massimino, P.; Petta, C.; Pistagna, C.; Riggi, F.; Sciacca, E.; Vitello, F.

    2013-11-01

    Muon tomographic visualization techniques try to reconstruct a 3D image as close as possible to the real localization of the objects being probed. Statistical algorithms under test for the reconstruction of muon tomographic images in the Muon Portal Project are discussed here. Autocorrelation analysis and clustering algorithms have been employed within the context of methods based on the Point Of Closest Approach (POCA) reconstruction tool. An iterative method based on the log-likelihood approach was also implemented. Relative merits of all such methods are discussed, with reference to full GEANT4 simulations of different scenarios, incorporating medium and high-Z objects inside a container.

  4. Tomographic and analog 3-D simulations using NORA. [Non-Overlapping Redundant Image Array formed by multiple pinholes

    NASA Technical Reports Server (NTRS)

    Yin, L. I.; Trombka, J. I.; Bielefeld, M. J.; Seltzer, S. M.

    1984-01-01

    The results of two computer simulations demonstrate the feasibility of using the nonoverlapping redundant array (NORA) to form three-dimensional images of objects with X-rays. Pinholes admit the X-rays to nonoverlapping points on a detector. The object is reconstructed in the analog mode by optical correlation and in the digital mode by tomographic computations. Trials were run with a stick-figure pyramid and extended objects with out-of-focus backgrounds. Substitution of spherical optical lenses for the pinholes increased the light transmission sufficiently that objects could be easily viewed in a dark room. Out-of-focus aberrations in tomographic reconstruction could be eliminated using Chang's (1976) algorithm.

  5. A New 3D Object Pose Detection Method Using LIDAR Shape Set

    PubMed Central

    Kim, Jung-Un

    2018-01-01

    In object detection systems for autonomous driving, LIDAR sensors provide very useful information. However, problems occur because the object representation is greatly distorted by changes in distance. To solve this problem, we propose a LIDAR shape set that reconstructs the shape surrounding the object more clearly by using the LIDAR point information projected on the object. The LIDAR shape set restores object shape edges from a bird’s eye view by filtering LIDAR points projected on a 2D pixel-based front view. In this study, we use this shape set for two purposes. The first is to supplement the shape set with a LIDAR Feature map, and the second is to divide the entire shape set according to the gradient of the depth and density to create a 2D and 3D bounding box proposal for each object. We present a multimodal fusion framework that classifies objects and restores the 3D pose of each object using enhanced feature maps and shape-based proposals. The network structure consists of a VGG -based object classifier that receives multiple inputs and a LIDAR-based Region Proposal Networks (RPN) that identifies object poses. It works in a very intuitive and efficient manner and can be extended to other classes other than vehicles. Our research has outperformed object classification accuracy (Average Precision, AP) and 3D pose restoration accuracy (3D bounding box recall rate) based on the latest studies conducted with KITTI data sets. PMID:29547551

  6. A New 3D Object Pose Detection Method Using LIDAR Shape Set.

    PubMed

    Kim, Jung-Un; Kang, Hang-Bong

    2018-03-16

    In object detection systems for autonomous driving, LIDAR sensors provide very useful information. However, problems occur because the object representation is greatly distorted by changes in distance. To solve this problem, we propose a LIDAR shape set that reconstructs the shape surrounding the object more clearly by using the LIDAR point information projected on the object. The LIDAR shape set restores object shape edges from a bird's eye view by filtering LIDAR points projected on a 2D pixel-based front view. In this study, we use this shape set for two purposes. The first is to supplement the shape set with a LIDAR Feature map, and the second is to divide the entire shape set according to the gradient of the depth and density to create a 2D and 3D bounding box proposal for each object. We present a multimodal fusion framework that classifies objects and restores the 3D pose of each object using enhanced feature maps and shape-based proposals. The network structure consists of a VGG -based object classifier that receives multiple inputs and a LIDAR-based Region Proposal Networks (RPN) that identifies object poses. It works in a very intuitive and efficient manner and can be extended to other classes other than vehicles. Our research has outperformed object classification accuracy (Average Precision, AP) and 3D pose restoration accuracy (3D bounding box recall rate) based on the latest studies conducted with KITTI data sets.

  7. 3D Observations techniques for the solar corona

    NASA Astrophysics Data System (ADS)

    Portier-Fozzani, F.; Papadopoulo, T.; Fermin, I.; Bijaoui, A.; Stereo/Secchi 3D Team; et al.

    In this talk, we will present a review of the different 3D techniques concerning observations of the solar corona made by EUV imageur (such as SOHO/EIT and STEREO/SECCHI) and by coronagraphs (SOHO/LASCO and STEREO/SECCHI). Tomographic reconstructions need magnetic extrapolation to constraint the model (classical triangle mash reconstruction, or more evoluated pixon method). For 3D reconstruction the other approach is stereovision. Stereoscopic techniques are built in a specific way to take into account the optical thin medium of the solar corona, which makes most of the classical stereo method not directly applicable. To improve such method we need to take into account how to describe an image by computer vision : an image is not only a set of intensities but its descriptions/representations in term of sub-objects is needed for the structures extractions and matching. We will describe optical flow methods to follow the structures, and decomposition in sub-areas depending of the solar cycle. After recalling results obtained with geometric loops reconstructions and their consequences for twist measurement and helicity evaluation, we will describe how we can mix pixel and conceptual recontruction for stereovision. We could then include epipolar geometry and Multiscale Vision Model (MVM) to enhance the reconstruction. These concepts are under development for STEREO/SECCHI.

  8. Influence of target reflection on three-dimensional range gated reconstruction.

    PubMed

    Chua, Sing Yee; Wang, Xin; Guo, Ningqun; Tan, Ching Seong

    2016-08-20

    The range gated technique is a promising laser ranging method that is widely used in different fields such as surveillance, industry, and military. In a range gated system, a reflected laser pulse returned from the target scene contains key information for range reconstruction, which directly affects the system performance. Therefore, it is necessary to study the characteristics and effects of the target reflection factor. In this paper, theoretical and experimental analyses are performed to investigate the influence of target reflection on three-dimensional (3D) range gated reconstruction. Based on laser detection and ranging (LADAR) and bidirectional reflection distribution function (BRDF) theory, a 3D range gated reconstruction model is derived and the effect on range accuracy is analyzed from the perspectives of target surface reflectivity and angle of laser incidence. Our theoretical and experimental study shows that the range accuracy is proportional to the target surface reflectivity, but it decreases when the angle of incidence increases to adhere to the BRDF model. The presented findings establish a comprehensive understanding of target reflection in 3D range gated reconstruction, which is of interest to various applications such as target recognition and object modeling. This paper provides a reference for future improvement to perform accurate range compensation or correction.

  9. [Reconstruction of Vehicle-human Crash Accident and Injury Analysis Based on 3D Laser Scanning, Multi-rigid-body Reconstruction and Optimized Genetic Algorithm].

    PubMed

    Sun, J; Wang, T; Li, Z D; Shao, Y; Zhang, Z Y; Feng, H; Zou, D H; Chen, Y J

    2017-12-01

    To reconstruct a vehicle-bicycle-cyclist crash accident and analyse the injuries using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, and to provide biomechanical basis for the forensic identification of death cause. The vehicle was measured by 3D laser scanning technology. The multi-rigid-body models of cyclist, bicycle and vehicle were developed based on the measurements. The value range of optimal variables was set. A multi-objective genetic algorithm and the nondominated sorting genetic algorithm were used to find the optimal solutions, which were compared to the record of the surveillance video around the accident scene. The reconstruction result of laser scanning on vehicle was satisfactory. In the optimal solutions found by optimization method of genetic algorithm, the dynamical behaviours of dummy, bicycle and vehicle corresponded to that recorded by the surveillance video. The injury parameters of dummy were consistent with the situation and position of the real injuries on the cyclist in accident. The motion status before accident, damage process by crash and mechanical analysis on the injury of the victim can be reconstructed using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, which have application value in the identification of injury manner and analysis of death cause in traffic accidents. Copyright© by the Editorial Department of Journal of Forensic Medicine

  10. Reconstruction and 3D visualisation based on objective real 3D based documentation.

    PubMed

    Bolliger, Michael J; Buck, Ursula; Thali, Michael J; Bolliger, Stephan A

    2012-09-01

    Reconstructions based directly upon forensic evidence alone are called primary information. Historically this consists of documentation of findings by verbal protocols, photographs and other visual means. Currently modern imaging techniques such as 3D surface scanning and radiological methods (computer tomography, magnetic resonance imaging) are also applied. Secondary interpretation is based on facts and the examiner's experience. Usually such reconstructive expertises are given in written form, and are often enhanced by sketches. However, narrative interpretations can, especially in complex courses of action, be difficult to present and can be misunderstood. In this report we demonstrate the use of graphic reconstruction of secondary interpretation with supporting pictorial evidence, applying digital visualisation (using 'Poser') or scientific animation (using '3D Studio Max', 'Maya') and present methods of clearly distinguishing between factual documentation and examiners' interpretation based on three cases. The first case involved a pedestrian who was initially struck by a car on a motorway and was then run over by a second car. The second case involved a suicidal gunshot to the head with a rifle, in which the trigger was pushed with a rod. The third case dealt with a collision between two motorcycles. Pictorial reconstruction of the secondary interpretation of these cases has several advantages. The images enable an immediate overview, give rise to enhanced clarity, and compel the examiner to look at all details if he or she is to create a complete image.

  11. Automated Recovery of Three-Dimensional Models of Plant Shoots from Multiple Color Images1[C][W][OPEN

    PubMed Central

    Pound, Michael P.; French, Andrew P.; Murchie, Erik H.; Pridmore, Tony P.

    2014-01-01

    Increased adoption of the systems approach to biological research has focused attention on the use of quantitative models of biological objects. This includes a need for realistic three-dimensional (3D) representations of plant shoots for quantification and modeling. Previous limitations in single-view or multiple-view stereo algorithms have led to a reliance on volumetric methods or expensive hardware to record plant structure. We present a fully automatic approach to image-based 3D plant reconstruction that can be achieved using a single low-cost camera. The reconstructed plants are represented as a series of small planar sections that together model the more complex architecture of the leaf surfaces. The boundary of each leaf patch is refined using the level-set method, optimizing the model based on image information, curvature constraints, and the position of neighboring surfaces. The reconstruction process makes few assumptions about the nature of the plant material being reconstructed and, as such, is applicable to a wide variety of plant species and topologies and can be extended to canopy-scale imaging. We demonstrate the effectiveness of our approach on data sets of wheat (Triticum aestivum) and rice (Oryza sativa) plants as well as a unique virtual data set that allows us to compute quantitative measures of reconstruction accuracy. The output is a 3D mesh structure that is suitable for modeling applications in a format that can be imported in the majority of 3D graphics and software packages. PMID:25332504

  12. Ultrafast holographic technique for 3D in situ documentation of cultural heritage

    NASA Astrophysics Data System (ADS)

    Frey, Susanne; Bongartz, Jens; Giel, Dominik M.; Thelen, Andrea; Hering, Peter

    2003-10-01

    A novel 3d reconstruction method for medical application has been applied for the examination and documentation of a 2000-year-old bog body. An ultra-fast pulsed holographic camera has been modified to allow imaging of the bog body from different views. Full-scale daylight copies of the master holograms give a detailed impressive three-dimensional view of the mummy and can be exhibited instead of the object. In combination with a rapid prototyping model (built by the Rapid Prototyping group of the Stiftung caesar, Bonn, Germany) derived from computer tomography (CT) data our results are an ideal basis for a future facial reconstruction.

  13. Three-dimensional imaging from a unidirectional hologram: wide-viewing-zone projection type.

    PubMed

    Okoshi, T; Oshima, K

    1976-04-01

    In ordinary holography reconstructing a virtual image, the hologram must be wider than either the visual field or the viewing zone. In this paper, an economical method of recording a wide-viewing-zone wide-visual-field 3-D holographic image is proposed. In this method, many mirrors are used to collect object waves onto a small hologram. In the reconstruction, a real image from the hologram is projected onto a horizontally direction-selective stereoscreen through the same mirrors. In the experiment, satisfactory 3-D images have been observed from a wide viewing zone. The optimum design and information reduction techniques are also discussed.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naseri, M; Rajabi, H; Wang, J

    Purpose: Respiration causes lesion smearing, image blurring and quality degradation, affecting lesion contrast and the ability to define correct lesion size. The spatial resolution of current multi pinhole SPECT (MPHS) scanners is sub-millimeter. Therefore, the effect of motion is more noticeable in comparison to conventional SPECT scanner. Gated imaging aims to reduce motion artifacts. A major issue in gating is the lack of statistics and individual reconstructed frames are noisy. The increased noise in each frame, deteriorates the quantitative accuracy of the MPHS Images. The objective of this work, is to enhance the image quality in 4D-MPHS imaging, by 4Dmore » image reconstruction. Methods: The new algorithm requires deformation vector fields (DVFs) that are calculated by non-rigid Demons registration. The algorithm is based on the motion-incorporated version of ordered subset expectation maximization (OSEM) algorithm. This iterative algorithm is capable to make full use of all projections to reconstruct each individual frame. To evaluate the performance of the proposed algorithm a simulation study was conducted. A fast ray tracing method was used to generate MPHS projections of a 4D digital mouse phantom with a small tumor in liver in eight different respiratory phases. To evaluate the 4D-OSEM algorithm potential, tumor to liver activity ratio was compared with other image reconstruction methods including 3D-MPHS and post reconstruction registered with Demons-derived DVFs. Results: Image quality of 4D-MPHS is greatly improved by the 4D-OSEM algorithm. When all projections are used to reconstruct a 3D-MPHS, motion blurring artifacts are present, leading to overestimation of the tumor size and 24% tumor contrast underestimation. This error reduced to 16% and 10% for post reconstruction registration methods and 4D-OSEM respectively. Conclusion: 4D-OSEM method can be used for motion correction in 4D-MPHS. The statistics and quantification are improved since all projection data are combined together to update the image.« less

  15. Dual-camera design for coded aperture snapshot spectral imaging.

    PubMed

    Wang, Lizhi; Xiong, Zhiwei; Gao, Dahua; Shi, Guangming; Wu, Feng

    2015-02-01

    Coded aperture snapshot spectral imaging (CASSI) provides an efficient mechanism for recovering 3D spectral data from a single 2D measurement. However, since the reconstruction problem is severely underdetermined, the quality of recovered spectral data is usually limited. In this paper we propose a novel dual-camera design to improve the performance of CASSI while maintaining its snapshot advantage. Specifically, a beam splitter is placed in front of the objective lens of CASSI, which allows the same scene to be simultaneously captured by a grayscale camera. This uncoded grayscale measurement, in conjunction with the coded CASSI measurement, greatly eases the reconstruction problem and yields high-quality 3D spectral data. Both simulation and experimental results demonstrate the effectiveness of the proposed method.

  16. [Three-dimensional 3D modeling: First applications in radioanatomy and interventional radiology under CT guidance].

    PubMed

    Aubry, S; Pousse, A; Sarliève, P; Laborie, L; Delabrousse, E; Kastler, B

    2006-11-01

    To model vertebrae in 3D to improve radioanatomic knowledge of the spine with the vascular and nerve environment and simulate CT-guided interventions. Vertebra acquisitions were made with multidetector CT. We developed segmentation software and specific viewer software using the Delphi programming environment. This segmentation software makes it possible to model 3D high-resolution segments of vertebrae and their environment from multidetector CT acquisitions. Then the specific viewer software provides multiplanar reconstructions of the CT volume and the possibility to select different 3D objects of interest. This software package improves radiologists' radioanatomic knowledge through a new 3D anatomy presentation. Furthermore, the possibility of inserting virtual 3D objects in the volume can simulate CT-guided intervention. The first volumetric radioanatomic software has been born. Furthermore, it simulates CT-guided intervention and consequently has the potential to facilitate learning interventions using CT guidance.

  17. 3D-Modeling of deformed halite hopper crystals: Object based image analysis and support vector machine, a first evaluation

    NASA Astrophysics Data System (ADS)

    Leitner, Christoph; Hofmann, Peter; Marschallinger, Robert

    2014-05-01

    Halite hopper crystals are thought to develop by displacive growth in unconsolidated mud (Gornitz & Schreiber, 1984). The Alpine Haselgebirge, but also e.g. the salt deposits of the Rhine graben (mined at the beginning of the 20th century), comprise hopper crystals with shapes of cuboids, parallelepipeds and rhombohedrons (Görgey, 1912). Obviously, they deformed under oriented stress, which had been tried to reconstruct with respect to the sedimentary layering (Leitner et al., 2013). In the present work, deformed halite hopper crystals embedded in mudrock were automated reconstructed. Object based image analysis (OBIA) has been used successfully in remote sensing for 2D images before. The present study represents the first time that the method was used for reconstruction of three dimensional geological objects. First, manually a reference (gold standard) was created by redrawing contours of the halite crystals on each HRXCT scanning slice. Then, for OBIA, the computer program eCognition was used. For the automated reconstruction a rule set was developed. Thereby, the strength of OBIA was to recognize all objects similar to halite hopper crystals and in particular to eliminate cracks. In a second step, all the objects unsuitable for a structural deformation analysis were dismissed using a support vector machine (SVM) (clusters, polyhalite-coated crystals and spherical halites) The SVM simultaneously drastically reduced the number of halites. From 184 OBIA-objects 67 well shaped remained, which comes close to the number of pre-selected 52 objects. To assess the accuracy of the automated reconstruction, the result before and after SVM was compared to the reference, i.e. the gold standard. State-of the art per-scene statistics were extended to a per-object statistics. Görgey R (1912) Zur Kenntnis der Kalisalzlager von Wittelsheim im Ober-Elsaß. Tschermaks Mineral Petrogr Mitt 31:339-468 Gornitz VM, Schreiber BC (1981) Displacive halite hoppers from the dead sea: Some implications for ancient evaporite deposits. J of Sediment Petrol 51:787-794. doi: 10.1306/212F7DAB-2B24-11D7-8648000102C1865D Leitner C, Neubauer F, Marschallinger R, Genser J, Bernroider M (2013) Origin of deformed halite hopper crystals, pseudomorphic anhydrite cubes and polyhalite in Alpine evaporates (Austria, Germany). Int J Earth Sc 102, pp 813-829, doi: 10.1007/s00531-012-0836-6

  18. Three-dimensional visualization system as an aid for facial surgical planning

    NASA Astrophysics Data System (ADS)

    Barre, Sebastien; Fernandez-Maloigne, Christine; Paume, Patricia; Subrenat, Gilles

    2001-05-01

    We present an aid for facial deformities treatment. We designed a system for surgical planning and prediction of human facial aspect after maxillo-facial surgery. We study the 3D reconstruction process of the tissues involved in the simulation, starting from CT acquisitions. 3D iso-surfaces meshes of soft tissues and bone structures are built. A sparse set of still photographs is used to reconstruct a 360 degree(s) texture of the facial surface and increase its visual realism. Reconstructed objects are inserted into an object-oriented, portable and scriptable visualization software allowing the practitioner to manipulate and visualize them interactively. Several LODs (Level-Of- Details) techniques are used to ensure usability. Bone structures are separated and moved by means of cut planes matching orthognatic surgery procedures. We simulate soft tissue deformations by creating a physically-based springs model between both tissues. The new static state of the facial model is computed by minimizing the energy of the springs system to achieve equilibrium. This process is optimized by transferring informations like participation hints at vertex-level between a warped generic model and the facial mesh.

  19. Total variation optimization for imaging through turbid media with transmission matrix

    NASA Astrophysics Data System (ADS)

    Gong, Changmei; Shao, Xiaopeng; Wu, Tengfei; Liu, Jietao; Zhang, Jianqi

    2016-12-01

    With the transmission matrix (TM) of the whole optical system measured, the image of the object behind a turbid medium can be recovered from its speckle field by means of an image reconstruction algorithm. Instead of Tikhonov regularization algorithm (TRA), the total variation minimization by augmented Lagrangian and alternating direction algorithms (TVAL3) is introduced to recover object images. As a total variation (TV)-based approach, TVAL3 allows to effectively damp more noise and preserve more edges compared with TRA, thus providing more outstanding image quality. Different levels of detector noise and TM-measurement noise are successively added to analyze the antinoise performance of these two algorithms. Simulation results show that TVAL3 is able to recover more details and suppress more noise than TRA under different noise levels, thus providing much more excellent image quality. Furthermore, whether it be detector noise or TM-measurement noise, the reconstruction images obtained by TVAL3 at SNR=15 dB are far superior to those by TRA at SNR=50 dB.

  20. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.ed

    Purpose: A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). Methods: (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume ofmore » the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as “reference” images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was considered by utilizing the same reduced amplitude when the phantom was irradiated. To examine the phase matching in a humanoid environment, the matching was also performed in a digital phantom (4D XCAT phantom). Results: For the static, the theoretical, and the planning-optimized dynamic beams, the 4D reconstructed doses showed agreement with the forwardly calculated 4D doses within the gamma pass rates of 92.7%, 100%, and 98.1%, respectively, at the isocenter plane given by 3%/3 mm criteria. Excellent agreement in dose volume histogram of PTV and lung-PTV was also found between the two 4D doses, while substantial differences were found between the 3D and the 4D doses. The significant breathing irregularities modeled in this study were found not to be noticeably affecting the reconstructed dose. The phase matching was performed equally well in a digital phantom. Conclusions: The method of retrospective phase determination of a moving object under irradiation provided successful 4D dose reconstruction. This method will provide accurate quality assurance and facilitate adaptive therapy when distinguishable objects such as well-defined tumors, diaphragm, and organs with markers (pancreas and liver) are covered by treatment beam apertures.« less

  1. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device.

    PubMed

    Yoon, Jihyung; Jung, Jae Won; Kim, Jong Oh; Yi, Byong Yong; Yeo, Inhwan

    2016-07-01

    A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as "reference" images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was considered by utilizing the same reduced amplitude when the phantom was irradiated. To examine the phase matching in a humanoid environment, the matching was also performed in a digital phantom (4D XCAT phantom). For the static, the theoretical, and the planning-optimized dynamic beams, the 4D reconstructed doses showed agreement with the forwardly calculated 4D doses within the gamma pass rates of 92.7%, 100%, and 98.1%, respectively, at the isocenter plane given by 3%/3 mm criteria. Excellent agreement in dose volume histogram of PTV and lung-PTV was also found between the two 4D doses, while substantial differences were found between the 3D and the 4D doses. The significant breathing irregularities modeled in this study were found not to be noticeably affecting the reconstructed dose. The phase matching was performed equally well in a digital phantom. The method of retrospective phase determination of a moving object under irradiation provided successful 4D dose reconstruction. This method will provide accurate quality assurance and facilitate adaptive therapy when distinguishable objects such as well-defined tumors, diaphragm, and organs with markers (pancreas and liver) are covered by treatment beam apertures.

  2. Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Cao, Yiping; He, Dawu; Chen, Cheng

    2017-02-01

    A real-time tricolor phase measuring profilometry (RTPMP) based on charge coupled device (CCD) sensitivity calibration is proposed. Only one colour fringe pattern whose red (R), green (G) and blue (B) components are, respectively, coded as three sinusoidal phase-shifting gratings with an equivalent shifting phase of 2π/3 is needed and sent to an appointed flash memory on a specialized digital light projector (SDLP). A specialized time-division multiplexing timing sequence actively controls the SDLP to project the fringe patterns in R, G and B channels sequentially onto the measured object in one over seventy-two of a second and meanwhile actively controls a high frame rate monochrome CCD camera to capture the corresponding deformed patterns synchronously with the SDLP. So the sufficient information for reconstructing the three-dimensional (3D) shape in one over twenty-four of a second is obtained. Due to the different spectral sensitivity of the CCD camera to RGB lights, the captured deformed patterns from R, G and B channels cannot share the same peak and valley, which will lead to lower accuracy or even failing to reconstruct the 3D shape. So a deformed pattern amending method based on CCD sensitivity calibration is developed to guarantee the accurate 3D reconstruction. The experimental results verify the feasibility of the proposed RTPMP method. The proposed RTPMP method can obtain the 3D shape at over the video frame rate of 24 frames per second, avoid the colour crosstalk completely and be effective for measuring real-time changing object.

  3. 3D space positioning and image feature extraction for workpiece

    NASA Astrophysics Data System (ADS)

    Ye, Bing; Hu, Yi

    2008-03-01

    An optical system of 3D parameters measurement for specific area of a workpiece has been presented and discussed in this paper. A number of the CCD image sensors are employed to construct the 3D coordinate system for the measured area. The CCD image sensor of the monitoring target is used to lock the measured workpiece when it enters the field of view. The other sensors, which are placed symmetrically beam scanners, measure the appearance of the workpiece and the characteristic parameters. The paper established target image segmentation and the image feature extraction algorithm to lock the target, based on the geometric similarity of objective characteristics, rapid locking the goal can be realized. When line laser beam scan the tested workpiece, a number of images are extracted equal time interval and the overlapping images are processed to complete image reconstruction, and achieve the 3D image information. From the 3D coordinate reconstruction model, the 3D characteristic parameters of the tested workpiece are gained. The experimental results are provided in the paper.

  4. A simple derivation and analysis of a helical cone beam tomographic algorithm for long object imaging via a novel definition of region of interest

    NASA Astrophysics Data System (ADS)

    Hu, Jicun; Tam, Kwok; Johnson, Roger H.

    2004-01-01

    We derive and analyse a simple algorithm first proposed by Kudo et al (2001 Proc. 2001 Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine (Pacific Grove, CA) pp 7-10) for long object imaging from truncated helical cone beam data via a novel definition of region of interest (ROI). Our approach is based on the theory of short object imaging by Kudo et al (1998 Phys. Med. Biol. 43 2885-909). One of the key findings in their work is that filtering of the truncated projection can be divided into two parts: one, finite in the axial direction, results from ramp filtering the data within the Tam window. The other, infinite in the z direction, results from unbounded filtering of ray sums over PI lines only. We show that for an ROI defined by PI lines emanating from the initial and final source positions on a helical segment, the boundary data which would otherwise contaminate the reconstruction of the ROI can be completely excluded. This novel definition of the ROI leads to a simple algorithm for long object imaging. The overscan of the algorithm is analytically calculated and it is the same as that of the zero boundary method. The reconstructed ROI can be divided into two regions: one is minimally contaminated by the portion outside the ROI, while the other is reconstructed free of contamination. We validate the algorithm with a 3D Shepp-Logan phantom and a disc phantom.

  5. Comparison Between Laser Scanning and Automated 3d Modelling Techniques to Reconstruct Complex and Extensive Cultural Heritage Areas

    NASA Astrophysics Data System (ADS)

    Fassi, F.; Fregonese, L.; Ackermann, S.; De Troia, V.

    2013-02-01

    In Cultural Heritage field, the necessity to survey objects in a fast manner, with the ability to repeat the measurements several times for deformation or degradation monitoring purposes, is increasing. In this paper, two significant cases, an architectonical one and an archaeological one, are presented. Due to different reasons and emergency situations, the finding of the optimal solution to enable quick and well-timed survey for a complete digital reconstruction of the object is required. In both cases, two survey methods have been tested and used: a laser scanning approach that allows to obtain high-resolution and complete scans within a short time and a photogrammetric one that allows the three-dimensional reconstruction of the object from images. In the last months, several methodologies, including free or low cost techniques, have arisen. These kinds of software allow the fully automatically three-dimensional reconstruction of objects from images, giving back a dense point cloud and, in some case, a surfaced mesh model. In this paper some comparisons between the two methodologies above mentioned are presented, using the example of some real cases of study. The surveys have been performed by employing both photogrammetry and laser scanner techniques. The methodological operational choices, depending on the required goal, the difficulties encountered during the survey with these methods, the execution time (that is the key parameter), and finally the obtained results, are fully described and examinated. On the final 3D model, an analytical comparison has been made, to analyse the differences, the tolerances, the possibility of accuracy improvement and the future developments.

  6. Three-Dimensional Printing in Orthopedic Surgery.

    PubMed

    Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H

    2015-11-01

    Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. Copyright 2015, SLACK Incorporated.

  7. An efficient solid modeling system based on a hand-held 3D laser scan device

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2014-12-01

    The hand-held 3D laser scanner sold in the market is appealing for its port and convenient to use, but price is expensive. To develop such a system based cheap devices using the same principles as the commercial systems is impossible. In this paper, a simple hand-held 3D laser scanner is developed based on a volume reconstruction method using cheap devices. Unlike convenient laser scanner to collect point cloud of an object surface, the proposed method only scan few key profile curves on the surface. Planar section curve network can be generated from these profile curves to construct a volume model of the object. The details of design are presented, and illustrated by the example of a complex shaped object.

  8. Evaluation of interpolation methods for surface-based motion compensated tomographic reconstruction for cardiac angiographic C-arm data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Kerstin; Schwemmer, Chris; Hornegger, Joachim

    2013-03-15

    Purpose: For interventional cardiac procedures, anatomical and functional information about the cardiac chambers is of major interest. With the technology of angiographic C-arm systems it is possible to reconstruct intraprocedural three-dimensional (3D) images from 2D rotational angiographic projection data (C-arm CT). However, 3D reconstruction of a dynamic object is a fundamental problem in C-arm CT reconstruction. The 2D projections are acquired over a scan time of several seconds, thus the projection data show different states of the heart. A standard FDK reconstruction algorithm would use all acquired data for a filtered backprojection and result in a motion-blurred image. In thismore » approach, a motion compensated reconstruction algorithm requiring knowledge of the 3D heart motion is used. The motion is estimated from a previously presented 3D dynamic surface model. This dynamic surface model results in a sparse motion vector field (MVF) defined at control points. In order to perform a motion compensated reconstruction, a dense motion vector field is required. The dense MVF is generated by interpolation of the sparse MVF. Therefore, the influence of different motion interpolation methods on the reconstructed image quality is evaluated. Methods: Four different interpolation methods, thin-plate splines (TPS), Shepard's method, a smoothed weighting function, and a simple averaging, were evaluated. The reconstruction quality was measured on phantom data, a porcine model as well as on in vivo clinical data sets. As a quality index, the 2D overlap of the forward projected motion compensated reconstructed ventricle and the segmented 2D ventricle blood pool was quantitatively measured with the Dice similarity coefficient and the mean deviation between extracted ventricle contours. For the phantom data set, the normalized root mean square error (nRMSE) and the universal quality index (UQI) were also evaluated in 3D image space. Results: The quantitative evaluation of all experiments showed that TPS interpolation provided the best results. The quantitative results in the phantom experiments showed comparable nRMSE of Almost-Equal-To 0.047 {+-} 0.004 for the TPS and Shepard's method. Only slightly inferior results for the smoothed weighting function and the linear approach were achieved. The UQI resulted in a value of Almost-Equal-To 99% for all four interpolation methods. On clinical human data sets, the best results were clearly obtained with the TPS interpolation. The mean contour deviation between the TPS reconstruction and the standard FDK reconstruction improved in the three human cases by 1.52, 1.34, and 1.55 mm. The Dice coefficient showed less sensitivity with respect to variations in the ventricle boundary. Conclusions: In this work, the influence of different motion interpolation methods on left ventricle motion compensated tomographic reconstructions was investigated. The best quantitative reconstruction results of a phantom, a porcine, and human clinical data sets were achieved with the TPS approach. In general, the framework of motion estimation using a surface model and motion interpolation to a dense MVF provides the ability for tomographic reconstruction using a motion compensation technique.« less

  9. MATHEMATICS OF SENSING, EXPLOITATION, AND EXECUTION (MSEE) Sensing, Exploitation, and Execution (SEE) on a Foundation for Representation, Inference, and Learning

    DTIC Science & Technology

    2016-07-01

    reconstruction, video synchronization, multi - view tracking, action recognition, reasoning with uncertainty 16. SECURITY CLASSIFICATION OF: 17...3.4.2. Human action recognition across multi - views ......................................................................................... 44 3.4.3...68 4.2.1. Multi - view Multi -object Tracking with 3D cues

  10. 4D Hyperspherical Harmonic (HyperSPHARM) Representation of Multiple Disconnected Brain Subcortical Structures

    PubMed Central

    Hosseinbor, A. Pasha; Chung, Moo K.; Schaefer, Stacey M.; van Reekum, Carien M.; Peschke-Schmitz, Lara; Sutterer, Matt; Alexander, Andrew L.; Davidson, Richard J.

    2014-01-01

    We present a novel surface parameterization technique using hyperspherical harmonics (HSH) in representing compact, multiple, disconnected brain subcortical structures as a single analytic function. The proposed hyperspherical harmonic representation (HyperSPHARM) has many advantages over the widely used spherical harmonic (SPHARM) parameterization technique. SPHARM requires flattening 3D surfaces to 3D sphere which can be time consuming for large surface meshes, and can’t represent multiple disconnected objects with single parameterization. On the other hand, HyperSPHARM treats 3D object, via simple stereographic projection, as a surface of 4D hypersphere with extremely large radius, hence avoiding the computationally demanding flattening process. HyperSPHARM is shown to achieve a better reconstruction with only 5 basis compared to SPHARM that requires more than 441. PMID:24505716

  11. High-speed parallel implementation of a modified PBR algorithm on DSP-based EH topology

    NASA Astrophysics Data System (ADS)

    Rajan, K.; Patnaik, L. M.; Ramakrishna, J.

    1997-08-01

    Algebraic Reconstruction Technique (ART) is an age-old method used for solving the problem of three-dimensional (3-D) reconstruction from projections in electron microscopy and radiology. In medical applications, direct 3-D reconstruction is at the forefront of investigation. The simultaneous iterative reconstruction technique (SIRT) is an ART-type algorithm with the potential of generating in a few iterations tomographic images of a quality comparable to that of convolution backprojection (CBP) methods. Pixel-based reconstruction (PBR) is similar to SIRT reconstruction, and it has been shown that PBR algorithms give better quality pictures compared to those produced by SIRT algorithms. In this work, we propose a few modifications to the PBR algorithms. The modified algorithms are shown to give better quality pictures compared to PBR algorithms. The PBR algorithm and the modified PBR algorithms are highly compute intensive, Not many attempts have been made to reconstruct objects in the true 3-D sense because of the high computational overhead. In this study, we have developed parallel two-dimensional (2-D) and 3-D reconstruction algorithms based on modified PBR. We attempt to solve the two problems encountered by the PBR and modified PBR algorithms, i.e., the long computational time and the large memory requirements, by parallelizing the algorithm on a multiprocessor system. We investigate the possible task and data partitioning schemes by exploiting the potential parallelism in the PBR algorithm subject to minimizing the memory requirement. We have implemented an extended hypercube (EH) architecture for the high-speed execution of the 3-D reconstruction algorithm using the commercially available fast floating point digital signal processor (DSP) chips as the processing elements (PEs) and dual-port random access memories (DPR) as channels between the PEs. We discuss and compare the performances of the PBR algorithm on an IBM 6000 RISC workstation, on a Silicon Graphics Indigo 2 workstation, and on an EH system. The results show that an EH(3,1) using DSP chips as PEs executes the modified PBR algorithm about 100 times faster than an LBM 6000 RISC workstation. We have executed the algorithms on a 4-node IBM SP2 parallel computer. The results show that execution time of the algorithm on an EH(3,1) is better than that of a 4-node IBM SP2 system. The speed-up of an EH(3,1) system with eight PEs and one network controller is approximately 7.85.

  12. Online fully automated three-dimensional surface reconstruction of unknown objects

    NASA Astrophysics Data System (ADS)

    Khalfaoui, Souhaiel; Aigueperse, Antoine; Fougerolle, Yohan; Seulin, Ralph; Fofi, David

    2015-04-01

    This paper presents a novel scheme for automatic and intelligent 3D digitization using robotic cells. The advantage of our procedure is that it is generic since it is not performed for a specific scanning technology. Moreover, it is not dependent on the methods used to perform the tasks associated with each elementary process. The comparison of results between manual and automatic scanning of complex objects shows that our digitization strategy is very efficient and faster than trained experts. The 3D models of the different objects are obtained with a strongly reduced number of acquisitions while moving efficiently the ranging device.

  13. Silhouettes - An automated three-dimensional plume visualization and tracking system for environmental monitoring

    NASA Technical Reports Server (NTRS)

    Cambridge, Vivien J.; Magee, Ronald G.

    1993-01-01

    The method of silhouettes proceeds from the premise that the 3D location and shape of an arbitrary object can be approximated via the cross section of a series of conical volumes whose focal points are arranged at sites surrounding the object; the projection of each conical volume onto a picture plane at each focal point is identical to a projection of the outline of the object onto that picture plane. Attention is presently given to the use of the silhouettes method for gas plume dispersion monitoring through the 3D reconstruction of plumes from imagery acquired at strategically located stations in the plumes' path.

  14. Influence of Co-57 and CT Transmission Measurements on the Quantification Accuracy and Partial Volume Effect of a Small Animal PET Scanner.

    PubMed

    Mannheim, Julia G; Schmid, Andreas M; Pichler, Bernd J

    2017-12-01

    Non-invasive in vivo positron emission tomography (PET) provides high detection sensitivity in the nano- to picomolar range and in addition to other advantages, the possibility to absolutely quantify the acquired data. The present study focuses on the comparison of transmission data acquired with an X-ray computed tomography (CT) scanner or a Co-57 source for the Inveon small animal PET scanner (Siemens Healthcare, Knoxville, TN, USA), as well as determines their influences on the quantification accuracy and partial volume effect (PVE). A special focus included the impact of the performed calibration on the quantification accuracy. Phantom measurements were carried out to determine the quantification accuracy, the influence of the object size on the quantification, and the PVE for different sphere sizes, along the field of view and for different contrast ratios. An influence of the emission activity on the Co-57 transmission measurements was discovered (deviations up to 24.06 % measured to true activity), whereas no influence of the emission activity on the CT attenuation correction was identified (deviations <3 % for measured to true activity). The quantification accuracy was substantially influenced by the applied calibration factor and by the object size. The PVE demonstrated a dependency on the sphere size, the position within the field of view, the reconstruction and correction algorithms and the count statistics. Depending on the reconstruction algorithm, only ∼30-40 % of the true activity within a small sphere could be resolved. The iterative 3D reconstruction algorithms uncovered substantially increased recovery values compared to the analytical and 2D iterative reconstruction algorithms (up to 70.46 % and 80.82 % recovery for the smallest and largest sphere using iterative 3D reconstruction algorithms). The transmission measurement (CT or Co-57 source) to correct for attenuation did not severely influence the PVE. The analysis of the quantification accuracy and the PVE revealed an influence of the object size, the reconstruction algorithm and the applied corrections. Particularly, the influence of the emission activity during the transmission measurement performed with a Co-57 source must be considered. To receive comparable results, also among different scanner configurations, standardization of the acquisition (imaging parameters, as well as applied reconstruction and correction protocols) is necessary.

  15. Single-camera three-dimensional tracking of natural particulate and zooplankton

    NASA Astrophysics Data System (ADS)

    Troutman, Valerie A.; Dabiri, John O.

    2018-07-01

    We develop and characterize an image processing algorithm to adapt single-camera defocusing digital particle image velocimetry (DDPIV) for three-dimensional (3D) particle tracking velocimetry (PTV) of natural particulates, such as those present in the ocean. The conventional DDPIV technique is extended to facilitate tracking of non-uniform, non-spherical particles within a volume depth an order of magnitude larger than current single-camera applications (i.e. 10 cm  ×  10 cm  ×  24 cm depth) by a dynamic template matching method. This 2D cross-correlation method does not rely on precise determination of the centroid of the tracked objects. To accommodate the broad range of particle number densities found in natural marine environments, the performance of the measurement technique at higher particle densities has been improved by utilizing the time-history of tracked objects to inform 3D reconstruction. The developed processing algorithms were analyzed using synthetically generated images of flow induced by Hill’s spherical vortex, and the capabilities of the measurement technique were demonstrated empirically through volumetric reconstructions of the 3D trajectories of particles and highly non-spherical, 5 mm zooplankton.

  16. Spatial and symbolic queries for 3D image data

    NASA Astrophysics Data System (ADS)

    Benson, Daniel C.; Zick, Gregory L.

    1992-04-01

    We present a query system for an object-oriented biomedical imaging database containing 3-D anatomical structures and their corresponding 2-D images. The graphical interface facilitates the formation of spatial queries, nonspatial or symbolic queries, and combined spatial/symbolic queries. A query editor is used for the creation and manipulation of 3-D query objects as volumes, surfaces, lines, and points. Symbolic predicates are formulated through a combination of text fields and multiple choice selections. Query results, which may include images, image contents, composite objects, graphics, and alphanumeric data, are displayed in multiple views. Objects returned by the query may be selected directly within the views for further inspection or modification, or for use as query objects in subsequent queries. Our image database query system provides visual feedback and manipulation of spatial query objects, multiple views of volume data, and the ability to combine spatial and symbolic queries. The system allows for incremental enhancement of existing objects and the addition of new objects and spatial relationships. The query system is designed for databases containing symbolic and spatial data. This paper discuses its application to data acquired in biomedical 3- D image reconstruction, but it is applicable to other areas such as CAD/CAM, geographical information systems, and computer vision.

  17. Local motion-compensated method for high-quality 3D coronary artery reconstruction

    PubMed Central

    Liu, Bo; Bai, Xiangzhi; Zhou, Fugen

    2016-01-01

    The 3D reconstruction of coronary artery from X-ray angiograms rotationally acquired on C-arm has great clinical value. While cardiac-gated reconstruction has shown promising results, it suffers from the problem of residual motion. This work proposed a new local motion-compensated reconstruction method to handle this issue. An initial image was firstly reconstructed using a regularized iterative reconstruction method. Then a 3D/2D registration method was proposed to estimate the residual vessel motion. Finally, the residual motion was compensated in the final reconstruction using the extended iterative reconstruction method. Through quantitative evaluation, it was found that high-quality 3D reconstruction could be obtained and the result was comparable to state-of-the-art method. PMID:28018741

  18. Three-dimensional imaging of cultural heritage artifacts with holographic printers

    NASA Astrophysics Data System (ADS)

    Kang, Hoonjong; Stoykova, Elena; Berberova, Nataliya; Park, Jiyong; Nazarova, Dimana; Park, Joo Sup; Kim, Youngmin; Hong, Sunghee; Ivanov, Branimir; Malinowski, Nikola

    2016-01-01

    Holography is defined as a two-steps process of capture and reconstruction of the light wavefront scattered from three-dimensional (3D) objects. Capture of the wavefront is possible due to encoding of both amplitude and phase in the hologram as a result of interference of the light beam coming from the object and mutually coherent reference beam. Three-dimensional imaging provided by holography motivates development of digital holographic imaging methods based on computer generation of holograms as a holographic display or a holographic printer. The holographic printing technique relies on combining digital 3D object representation and encoding of the holographic data with recording of analog white light viewable reflection holograms. The paper considers 3D contents generation for a holographic stereogram printer and a wavefront printer as a means of analogue recording of specific artifacts which are complicated objects with regards to conventional analog holography restrictions.

  19. Recent progress in 3-D imaging of sea freight containers

    NASA Astrophysics Data System (ADS)

    Fuchs, Theobald; Schön, Tobias; Dittmann, Jonas; Sukowski, Frank; Hanke, Randolf

    2015-03-01

    The inspection of very large objects like sea freight containers with X-ray Computed Tomography (CT) is an emerging technology. A complete 3-D CT scan of a see-freight container takes several hours. Of course, this is too slow to apply it to a large number of containers. However, the benefits of a 3-D CT for sealed freight are obvious: detection of potential threats or illicit cargo without being confronted with legal complications or high time consumption and risks for the security personnel during a manual inspection. Recently distinct progress was made in the field of reconstruction of projections with only a relatively low number of angular positions. Instead of today's 500 to 1000 rotational steps, as needed for conventional CT reconstruction techniques, this new class of algorithms provides the potential to reduce the number of projection angles approximately by a factor of 10. The main drawback of these advanced iterative methods is the high consumption for numerical processing. But as computational power is getting steadily cheaper, there will be practical applications of these complex algorithms in a foreseeable future. In this paper, we discuss the properties of iterative image reconstruction algorithms and show results of their application to CT of extremely large objects scanning a sea-freight container. A specific test specimen is used to quantitatively evaluate the image quality in terms of spatial and contrast resolution and depending on different number of projections.

  20. Dynamic Non-Rigid Objects Reconstruction with a Single RGB-D Sensor

    PubMed Central

    Zuo, Xinxin; Du, Chao; Wang, Runxiao; Zheng, Jiangbin; Yang, Ruigang

    2018-01-01

    This paper deals with the 3D reconstruction problem for dynamic non-rigid objects with a single RGB-D sensor. It is a challenging task as we consider the almost inevitable accumulation error issue in some previous sequential fusion methods and also the possible failure of surface tracking in a long sequence. Therefore, we propose a global non-rigid registration framework and tackle the drifting problem via an explicit loop closure. Our novel scheme starts with a fusion step to get multiple partial scans from the input sequence, followed by a pairwise non-rigid registration and loop detection step to obtain correspondences between neighboring partial pieces and those pieces that form a loop. Then, we perform a global registration procedure to align all those pieces together into a consistent canonical space as guided by those matches that we have established. Finally, our proposed model-update step helps fixing potential misalignments that still exist after the global registration. Both geometric and appearance constraints are enforced during our alignment; therefore, we are able to get the recovered model with accurate geometry as well as high fidelity color maps for the mesh. Experiments on both synthetic and various real datasets have demonstrated the capability of our approach to reconstruct complete and watertight deformable objects. PMID:29547562

  1. Real-Time Amplitude and Phase Imaging of Optically Opaque Objects by Combining Full-Field Off-Axis Terahertz Digital Holography with Angular Spectrum Reconstruction

    NASA Astrophysics Data System (ADS)

    Yamagiwa, Masatomo; Ogawa, Takayuki; Minamikawa, Takeo; Abdelsalam, Dahi Ghareab; Okabe, Kyosuke; Tsurumachi, Noriaki; Mizutani, Yasuhiro; Iwata, Testuo; Yamamoto, Hirotsugu; Yasui, Takeshi

    2018-06-01

    Terahertz digital holography (THz-DH) has the potential to be used for non-destructive inspection of visibly opaque soft materials due to its good immunity to optical scattering and absorption. Although previous research on full-field off-axis THz-DH has usually been performed using Fresnel diffraction reconstruction, its minimum reconstruction distance occasionally prevents a sample from being placed near a THz imager to increase the signal-to-noise ratio in the hologram. In this article, we apply the angular spectrum method (ASM) for wavefront reconstruction in full-filed off-axis THz-DH because ASM is more accurate at short reconstruction distances. We demonstrate real-time phase imaging of a visibly opaque plastic sample with a phase resolution power of λ/49 at a frame rate of 3.5 Hz in addition to real-time amplitude imaging. We also perform digital focusing of the amplitude image for the same object with a depth selectivity of 447 μm. Furthermore, 3D imaging of visibly opaque silicon objects was achieved with a depth precision of 1.7 μm. The demonstrated results indicate the high potential of the proposed method for in-line or in-process non-destructive inspection of soft materials.

  2. Real-Time Amplitude and Phase Imaging of Optically Opaque Objects by Combining Full-Field Off-Axis Terahertz Digital Holography with Angular Spectrum Reconstruction

    NASA Astrophysics Data System (ADS)

    Yamagiwa, Masatomo; Ogawa, Takayuki; Minamikawa, Takeo; Abdelsalam, Dahi Ghareab; Okabe, Kyosuke; Tsurumachi, Noriaki; Mizutani, Yasuhiro; Iwata, Testuo; Yamamoto, Hirotsugu; Yasui, Takeshi

    2018-04-01

    Terahertz digital holography (THz-DH) has the potential to be used for non-destructive inspection of visibly opaque soft materials due to its good immunity to optical scattering and absorption. Although previous research on full-field off-axis THz-DH has usually been performed using Fresnel diffraction reconstruction, its minimum reconstruction distance occasionally prevents a sample from being placed near a THz imager to increase the signal-to-noise ratio in the hologram. In this article, we apply the angular spectrum method (ASM) for wavefront reconstruction in full-filed off-axis THz-DH because ASM is more accurate at short reconstruction distances. We demonstrate real-time phase imaging of a visibly opaque plastic sample with a phase resolution power of λ/49 at a frame rate of 3.5 Hz in addition to real-time amplitude imaging. We also perform digital focusing of the amplitude image for the same object with a depth selectivity of 447 μm. Furthermore, 3D imaging of visibly opaque silicon objects was achieved with a depth precision of 1.7 μm. The demonstrated results indicate the high potential of the proposed method for in-line or in-process non-destructive inspection of soft materials.

  3. Large-scale urban point cloud labeling and reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Liqiang; Li, Zhuqiang; Li, Anjian; Liu, Fangyu

    2018-04-01

    The large number of object categories and many overlapping or closely neighboring objects in large-scale urban scenes pose great challenges in point cloud classification. In this paper, a novel framework is proposed for classification and reconstruction of airborne laser scanning point cloud data. To label point clouds, we present a rectified linear units neural network named ReLu-NN where the rectified linear units (ReLu) instead of the traditional sigmoid are taken as the activation function in order to speed up the convergence. Since the features of the point cloud are sparse, we reduce the number of neurons by the dropout to avoid over-fitting of the training process. The set of feature descriptors for each 3D point is encoded through self-taught learning, and forms a discriminative feature representation which is taken as the input of the ReLu-NN. The segmented building points are consolidated through an edge-aware point set resampling algorithm, and then they are reconstructed into 3D lightweight models using the 2.5D contouring method (Zhou and Neumann, 2010). Compared with deep learning approaches, the ReLu-NN introduced can easily classify unorganized point clouds without rasterizing the data, and it does not need a large number of training samples. Most of the parameters in the network are learned, and thus the intensive parameter tuning cost is significantly reduced. Experimental results on various datasets demonstrate that the proposed framework achieves better performance than other related algorithms in terms of classification accuracy and reconstruction quality.

  4. Error analysis of speed of sound reconstruction in ultrasound limited angle transmission tomography.

    PubMed

    Jintamethasawat, Rungroj; Lee, Won-Mean; Carson, Paul L; Hooi, Fong Ming; Fowlkes, J Brian; Goodsitt, Mitchell M; Sampson, Richard; Wenisch, Thomas F; Wei, Siyuan; Zhou, Jian; Chakrabarti, Chaitali; Kripfgans, Oliver D

    2018-04-07

    We have investigated limited angle transmission tomography to estimate speed of sound (SOS) distributions for breast cancer detection. That requires both accurate delineations of major tissues, in this case by segmentation of prior B-mode images, and calibration of the relative positions of the opposed transducers. Experimental sensitivity evaluation of the reconstructions with respect to segmentation and calibration errors is difficult with our current system. Therefore, parametric studies of SOS errors in our bent-ray reconstructions were simulated. They included mis-segmentation of an object of interest or a nearby object, and miscalibration of relative transducer positions in 3D. Close correspondence of reconstruction accuracy was verified in the simplest case, a cylindrical object in homogeneous background with induced segmentation and calibration inaccuracies. Simulated mis-segmentation in object size and lateral location produced maximum SOS errors of 6.3% within 10 mm diameter change and 9.1% within 5 mm shift, respectively. Modest errors in assumed transducer separation produced the maximum SOS error from miscalibrations (57.3% within 5 mm shift), still, correction of this type of error can easily be achieved in the clinic. This study should aid in designing adequate transducer mounts and calibration procedures, and in specification of B-mode image quality and segmentation algorithms for limited angle transmission tomography relying on ray tracing algorithms. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Efficient volumetric estimation from plenoptic data

    NASA Astrophysics Data System (ADS)

    Anglin, Paul; Reeves, Stanley J.; Thurow, Brian S.

    2013-03-01

    The commercial release of the Lytro camera, and greater availability of plenoptic imaging systems in general, have given the image processing community cost-effective tools for light-field imaging. While this data is most commonly used to generate planar images at arbitrary focal depths, reconstruction of volumetric fields is also possible. Similarly, deconvolution is a technique that is conventionally used in planar image reconstruction, or deblurring, algorithms. However, when leveraged with the ability of a light-field camera to quickly reproduce multiple focal planes within an imaged volume, deconvolution offers a computationally efficient method of volumetric reconstruction. Related research has shown than light-field imaging systems in conjunction with tomographic reconstruction techniques are also capable of estimating the imaged volume and have been successfully applied to particle image velocimetry (PIV). However, while tomographic volumetric estimation through algorithms such as multiplicative algebraic reconstruction techniques (MART) have proven to be highly accurate, they are computationally intensive. In this paper, the reconstruction problem is shown to be solvable by deconvolution. Deconvolution offers significant improvement in computational efficiency through the use of fast Fourier transforms (FFTs) when compared to other tomographic methods. This work describes a deconvolution algorithm designed to reconstruct a 3-D particle field from simulated plenoptic data. A 3-D extension of existing 2-D FFT-based refocusing techniques is presented to further improve efficiency when computing object focal stacks and system point spread functions (PSF). Reconstruction artifacts are identified; their underlying source and methods of mitigation are explored where possible, and reconstructions of simulated particle fields are provided.

  6. High-efficiency aperiodic two-dimensional high-contrast-grating hologram

    NASA Astrophysics Data System (ADS)

    Qiao, Pengfei; Zhu, Li; Chang-Hasnain, Connie J.

    2016-03-01

    High efficiency phase holograms are designed and implemented using aperiodic two-dimensional (2D) high-contrast gratings (HCGs). With our design algorithm and an in-house developed rigorous coupled-wave analysis (RCWA) package for periodic 2D HCGs, the structural parameters are obtained to achieve a full 360-degree phase-tuning range of the reflected or transmitted wave, while maintaining the power efficiency above 90%. For given far-field patterns or 3D objects to reconstruct, we can generate the near-field phase distribution through an iterative process. The aperiodic HCG phase plates we design for holograms are pixelated, and the local geometric parameters for each pixel to achieve desired phase alternation are extracted from our periodic HCG designs. Our aperiodic HCG holograms are simulated using the 3D finite-difference time-domain method. The simulation results confirm that the desired far-field patterns are successfully produced under illumination at the designed wavelength. The HCG holograms are implemented on the quartz wafers, using amorphous silicon as the high-index material. We propose HCG designs at both visible and infrared wavelengths, and our simulation confirms the reconstruction of 3D objects. The high-contrast gratings allow us to realize low-cost, compact, flat, and integrable holograms with sub-micrometer thicknesses.

  7. TH-EF-207A-05: Feasibility of Applying SMEIR Method On Small Animal 4D Cone Beam CT Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Y; Zhang, Y; Shao, Y

    Purpose: Small animal cone beam CT imaging has been widely used in preclinical research. Due to the higher respiratory rate and heat beats of small animals, motion blurring is inevitable and needs to be corrected in the reconstruction. Simultaneous motion estimation and image reconstruction (SMEIR) method, which uses projection images of all phases, proved to be effective in motion model estimation and able to reconstruct motion-compensated images. We demonstrate the application of SMEIR for small animal 4D cone beam CT imaging by computer simulations on a digital rat model. Methods: The small animal CBCT imaging system was simulated with themore » source-to-detector distance of 300 mm and the source-to-object distance of 200 mm. A sequence of rat phantom were generated with 0.4 mm{sup 3} voxel size. The respiratory cycle was taken as 1.0 second and the motions were simulated with a diaphragm motion of 2.4mm and an anterior-posterior expansion of 1.6 mm. The projection images were calculated using a ray-tracing method, and 4D-CBCT were reconstructed using SMEIR and FDK methods. The SMEIR method iterates over two alternating steps: 1) motion-compensated iterative image reconstruction by using projections from all respiration phases and 2) motion model estimation from projections directly through a 2D-3D deformable registration of the image obtained in the first step to projection images of other phases. Results: The images reconstructed using SMEIR method reproduced the features in the original phantom. Projections from the same phase were also reconstructed using FDK method. Compared with the FDK results, the images from SMEIR method substantially improve the image quality with minimum artifacts. Conclusion: We demonstrate that it is viable to apply SMEIR method to reconstruct small animal 4D-CBCT images.« less

  8. Surface acquisition through virtual milling

    NASA Technical Reports Server (NTRS)

    Merriam, Marshal L.

    1993-01-01

    Surface acquisition deals with the reconstruction of three dimensional objects from a set of data points. The most straightforward techniques require human intervention, a time consuming proposition. It is desirable to develop a fully automated alternative. Such a method is proposed in this paper. It makes use of surface measurements obtained from a 3-D laser digitizer - an instrument which provides the (x,y,z) coordinates of surface data points from various viewpoints. These points are assembled into several partial surfaces using a visibility constraint and a 2-D triangulation technique. Reconstruction of the final object requires merging these partial surfaces. This is accomplished through a procedure that emulates milling, a standard machining operation. From a geometrical standpoint the problem reduces to constructing the intersection of two or more non-convex polyhedra.

  9. Can a single isotropic 3D fast spin echo sequence replace three-plane standard proton density fat-saturated knee MRI at 1.5 T?

    PubMed Central

    Robinson, P; Hodgson, R; Grainger, A J

    2015-01-01

    Objective: To assess whether a single isotropic three-dimensional (3D) fast spin echo (FSE) proton density fat-saturated (PD FS) sequence reconstructed in three planes could replace the three PD (FS) sequences in our standard protocol at 1.5 T (Siemens Avanto, Erlangen, Germany). Methods: A 3D FSE PD water excitation sequence was included in the protocol for 95 consecutive patients referred for routine knee MRI. This was used to produce offline reconstructions in axial, sagittal and coronal planes. Two radiologists independently assessed each case twice, once using the standard MRI protocol and once replacing the standard PD (FS) sequences with reconstructions from the 3D data set. Following scoring, the observer reviewed the 3D data set and performed multiplanar reformats to see if this altered confidence. The menisci, ligaments and cartilage were assessed, and statistical analysis was performed using the standard sequence as the reference standard. Results: The reporting accuracy was as follows: medial meniscus (MM) = 90.9%, lateral meniscus (LM) = 93.7%, anterior cruciate ligament (ACL) = 98.9% and cartilage surfaces = 85.8%. Agreement among the readers was for the standard protocol: MM kappa = 0.91, LM = 0.89, ACL = 0.98 and cartilage = 0.84; and for the 3D protocol: MM = 0.86, LM = 0.77, ACL = 0.94 and cartilage = 0.64. Conclusion: A 3D PD FSE sequence reconstructed in three planes gives reduced accuracy and decreased concordance among readers compared with conventional sequences when evaluating the menisci and cartilage with a 1.5-T MRI scanner. Advances in knowledge: Using the existing 1.5-T MR systems, a 3D FSE sequence should not replace two-dimensional sequences. PMID:26067920

  10. Implicit Regularization for Reconstructing 3D Building Rooftop Models Using Airborne LiDAR Data

    PubMed Central

    Jung, Jaewook; Jwa, Yoonseok; Sohn, Gunho

    2017-01-01

    With rapid urbanization, highly accurate and semantically rich virtualization of building assets in 3D become more critical for supporting various applications, including urban planning, emergency response and location-based services. Many research efforts have been conducted to automatically reconstruct building models at city-scale from remotely sensed data. However, developing a fully-automated photogrammetric computer vision system enabling the massive generation of highly accurate building models still remains a challenging task. One the most challenging task for 3D building model reconstruction is to regularize the noises introduced in the boundary of building object retrieved from a raw data with lack of knowledge on its true shape. This paper proposes a data-driven modeling approach to reconstruct 3D rooftop models at city-scale from airborne laser scanning (ALS) data. The focus of the proposed method is to implicitly derive the shape regularity of 3D building rooftops from given noisy information of building boundary in a progressive manner. This study covers a full chain of 3D building modeling from low level processing to realistic 3D building rooftop modeling. In the element clustering step, building-labeled point clouds are clustered into homogeneous groups by applying height similarity and plane similarity. Based on segmented clusters, linear modeling cues including outer boundaries, intersection lines, and step lines are extracted. Topology elements among the modeling cues are recovered by the Binary Space Partitioning (BSP) technique. The regularity of the building rooftop model is achieved by an implicit regularization process in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). The parameters governing the MDL optimization are automatically estimated based on Min-Max optimization and Entropy-based weighting method. The performance of the proposed method is tested over the International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark datasets. The results show that the proposed method can robustly produce accurate regularized 3D building rooftop models. PMID:28335486

  11. Implicit Regularization for Reconstructing 3D Building Rooftop Models Using Airborne LiDAR Data.

    PubMed

    Jung, Jaewook; Jwa, Yoonseok; Sohn, Gunho

    2017-03-19

    With rapid urbanization, highly accurate and semantically rich virtualization of building assets in 3D become more critical for supporting various applications, including urban planning, emergency response and location-based services. Many research efforts have been conducted to automatically reconstruct building models at city-scale from remotely sensed data. However, developing a fully-automated photogrammetric computer vision system enabling the massive generation of highly accurate building models still remains a challenging task. One the most challenging task for 3D building model reconstruction is to regularize the noises introduced in the boundary of building object retrieved from a raw data with lack of knowledge on its true shape. This paper proposes a data-driven modeling approach to reconstruct 3D rooftop models at city-scale from airborne laser scanning (ALS) data. The focus of the proposed method is to implicitly derive the shape regularity of 3D building rooftops from given noisy information of building boundary in a progressive manner. This study covers a full chain of 3D building modeling from low level processing to realistic 3D building rooftop modeling. In the element clustering step, building-labeled point clouds are clustered into homogeneous groups by applying height similarity and plane similarity. Based on segmented clusters, linear modeling cues including outer boundaries, intersection lines, and step lines are extracted. Topology elements among the modeling cues are recovered by the Binary Space Partitioning (BSP) technique. The regularity of the building rooftop model is achieved by an implicit regularization process in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). The parameters governing the MDL optimization are automatically estimated based on Min-Max optimization and Entropy-based weighting method. The performance of the proposed method is tested over the International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark datasets. The results show that the proposed method can robustly produce accurate regularized 3D building rooftop models.

  12. Sensor fusion V; Proceedings of the Meeting, Boston, MA, Nov. 15-17, 1992

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S. (Editor)

    1992-01-01

    Topics addressed include 3D object perception, human-machine interface in multisensor systems, sensor fusion architecture, fusion of multiple and distributed sensors, interface and decision models for sensor fusion, computational networks, simple sensing for complex action, multisensor-based control, and metrology and calibration of multisensor systems. Particular attention is given to controlling 3D objects by sketching 2D views, the graphical simulation and animation environment for flexible structure robots, designing robotic systems from sensorimotor modules, cylindrical object reconstruction from a sequence of images, an accurate estimation of surface properties by integrating information using Bayesian networks, an adaptive fusion model for a distributed detection system, multiple concurrent object descriptions in support of autonomous navigation, robot control with multiple sensors and heuristic knowledge, and optical array detectors for image sensors calibration. (No individual items are abstracted in this volume)

  13. Dual-modal three-dimensional imaging of single cells with isometric high resolution using an optical projection tomography microscope

    NASA Astrophysics Data System (ADS)

    Miao, Qin; Rahn, J. Richard; Tourovskaia, Anna; Meyer, Michael G.; Neumann, Thomas; Nelson, Alan C.; Seibel, Eric J.

    2009-11-01

    The practice of clinical cytology relies on bright-field microscopy using absorption dyes like hematoxylin and eosin in the transmission mode, while the practice of research microscopy relies on fluorescence microscopy in the epi-illumination mode. The optical projection tomography microscope is an optical microscope that can generate 3-D images of single cells with isometric high resolution both in absorption and fluorescence mode. Although the depth of field of the microscope objective is in the submicron range, it can be extended by scanning the objective's focal plane. The extended depth of field image is similar to a projection in a conventional x-ray computed tomography. Cells suspended in optical gel flow through a custom-designed microcapillary. Multiple pseudoprojection images are taken by rotating the microcapillary. After these pseudoprojection images are further aligned, computed tomography methods are applied to create 3-D reconstruction. 3-D reconstructed images of single cells are shown in both absorption and fluorescence mode. Fluorescence spatial resolution is measured at 0.35 μm in both axial and lateral dimensions. Since fluorescence and absorption images are taken in two different rotations, mechanical error may cause misalignment of 3-D images. This mechanical error is estimated to be within the resolution of the system.

  14. Data-driven sampling method for building 3D anatomical models from serial histology

    NASA Astrophysics Data System (ADS)

    Salunke, Snehal Ulhas; Ablove, Tova; Danforth, Theresa; Tomaszewski, John; Doyle, Scott

    2017-03-01

    In this work, we investigate the effect of slice sampling on 3D models of tissue architecture using serial histopathology. We present a method for using a single fully-sectioned tissue block as pilot data, whereby we build a fully-realized 3D model and then determine the optimal set of slices needed to reconstruct the salient features of the model objects under biological investigation. In our work, we are interested in the 3D reconstruction of microvessel architecture in the trigone region between the vagina and the bladder. This region serves as a potential avenue for drug delivery to treat bladder infection. We collect and co-register 23 serial sections of CD31-stained tissue images (6 μm thick sections), from which four microvessels are selected for analysis. To build each model, we perform semi-automatic segmentation of the microvessels. Subsampled meshes are then created by removing slices from the stack, interpolating the missing data, and re-constructing the mesh. We calculate the Hausdorff distance between the full and subsampled meshes to determine the optimal sampling rate for the modeled structures. In our application, we found that a sampling rate of 50% (corresponding to just 12 slices) was sufficient to recreate the structure of the microvessels without significant deviation from the fullyrendered mesh. This pipeline effectively minimizes the number of histopathology slides required for 3D model reconstruction, and can be utilized to either (1) reduce the overall costs of a project, or (2) enable additional analysis on the intermediate slides.

  15. Parallel image reconstruction for 3D positron emission tomography from incomplete 2D projection data

    NASA Astrophysics Data System (ADS)

    Guerrero, Thomas M.; Ricci, Anthony R.; Dahlbom, Magnus; Cherry, Simon R.; Hoffman, Edward T.

    1993-07-01

    The problem of excessive computational time in 3D Positron Emission Tomography (3D PET) reconstruction is defined, and we present an approach for solving this problem through the construction of an inexpensive parallel processing system and the adoption of the FAVOR algorithm. Currently, the 3D reconstruction of the 610 images of a total body procedure would require 80 hours and the 3D reconstruction of the 620 images of a dynamic study would require 110 hours. An inexpensive parallel processing system for 3D PET reconstruction is constructed from the integration of board level products from multiple vendors. The system achieves its computational performance through the use of 6U VME four i860 processor boards, the processor boards from five manufacturers are discussed from our perspective. The new 3D PET reconstruction algorithm FAVOR, FAst VOlume Reconstructor, that promises a substantial speed improvement is adopted. Preliminary results from parallelizing FAVOR are utilized in formulating architectural improvements for this problem. In summary, we are addressing the problem of excessive computational time in 3D PET image reconstruction, through the construction of an inexpensive parallel processing system and the parallelization of a 3D reconstruction algorithm that uses the incomplete data set that is produced by current PET systems.

  16. 3D Imaging with Holographic Tomography

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Kou, Shan Shan

    2010-04-01

    There are two main types of tomography that enable the 3D internal structures of objects to be reconstructed from scattered data. The commonly known computerized tomography (CT) give good results in the x-ray wavelength range where the filtered back-projection theorem and Radon transform can be used. These techniques rely on the Fourier projection-slice theorem where rays are considered to propagate straight through the object. Another type of tomography called `diffraction tomography' applies in applications in optics and acoustics where diffraction and scattering effects must be taken into account. The latter proves to be a more difficult problem, as light no longer travels straight through the sample. Holographic tomography is a popular way of performing diffraction tomography and there has been active experimental research on reconstructing complex refractive index data using this approach recently. However, there are two distinct ways of doing tomography: either by rotation of the object or by rotation of the illumination while fixing the detector. The difference between these two setups is intuitive but needs to be quantified. From Fourier optics and information transformation point of view, we use 3D transfer function analysis to quantitatively describe how spatial frequencies of the object are mapped to the Fourier domain. We first employ a paraxial treatment by calculating the Fourier transform of the defocused OTF. The shape of the calculated 3D CTF for tomography, by scanning the illumination in one direction only, takes on a form that we might call a 'peanut,' compared to the case of object rotation, where a diablo is formed, the peanut exhibiting significant differences and non-isotropy. In particular, there is a line singularity along one transverse direction. Under high numerical aperture conditions, the paraxial treatment is not accurate, and so we make use of 3D analytical geometry to calculate the behaviour in the non-paraxial case. This time, we obtain a similar peanut, but without the line singularity.

  17. [Application of 3D virtual reality technology with multi-modality fusion in resection of glioma located in central sulcus region].

    PubMed

    Chen, T N; Yin, X T; Li, X G; Zhao, J; Wang, L; Mu, N; Ma, K; Huo, K; Liu, D; Gao, B Y; Feng, H; Li, F

    2018-05-08

    Objective: To explore the clinical and teaching application value of virtual reality technology in preoperative planning and intraoperative guide of glioma located in central sulcus region. Method: Ten patients with glioma in the central sulcus region were proposed to surgical treatment. The neuro-imaging data, including CT, CTA, DSA, MRI, fMRI were input to 3dgo sczhry workstation for image fusion and 3D reconstruction. Spatial relationships between the lesions and the surrounding structures on the virtual reality image were obtained. These images were applied to the operative approach design, operation process simulation, intraoperative auxiliary decision and the training of specialist physician. Results: Intraoperative founding of 10 patients were highly consistent with preoperative simulation with virtual reality technology. Preoperative 3D reconstruction virtual reality images improved the feasibility of operation planning and operation accuracy. This technology had not only shown the advantages for neurological function protection and lesion resection during surgery, but also improved the training efficiency and effectiveness of dedicated physician by turning the abstract comprehension to virtual reality. Conclusion: Image fusion and 3D reconstruction based virtual reality technology in glioma resection is helpful for formulating the operation plan, improving the operation safety, increasing the total resection rate, and facilitating the teaching and training of the specialist physician.

  18. Automated Recognition of 3D Features in GPIR Images

    NASA Technical Reports Server (NTRS)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a directed-graph data structure. Relative to past approaches, this multiaxis approach offers the advantages of more reliable detections, better discrimination of objects, and provision of redundant information, which can be helpful in filling gaps in feature recognition by one of the component algorithms. The image-processing class also includes postprocessing algorithms that enhance identified features to prepare them for further scrutiny by human analysts (see figure). Enhancement of images as a postprocessing step is a significant departure from traditional practice, in which enhancement of images is a preprocessing step.

  19. Online 4d Reconstruction Using Multi-Images Available Under Open Access

    NASA Astrophysics Data System (ADS)

    Ioannides, M.; Hadjiprocopi, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E.; Makantasis, K.; Santos, P.; Fellner, D.; Stork, A.; Balet, O.; Julien, M.; Weinlinger, G.; Johnson, P. S.; Klein, M.; Fritsch, D.

    2013-07-01

    The advent of technology in digital cameras and their incorporation into virtually any smart mobile device has led to an explosion of the number of photographs taken every day. Today, the number of images stored online and available freely has reached unprecedented levels. It is estimated that in 2011, there were over 100 billion photographs stored in just one of the major social media sites. This number is growing exponentially. Moreover, advances in the fields of Photogrammetry and Computer Vision have led to significant breakthroughs such as the Structure from Motion algorithm which creates 3D models of objects using their twodimensional photographs. The existence of powerful and affordable computational machinery not only the reconstruction of complex structures but also entire cities. This paper illustrates an overview of our methodology for producing 3D models of Cultural Heritage structures such as monuments and artefacts from 2D data (pictures, video), available on Internet repositories, social media, Google Maps, Bing, etc. We also present new approaches to semantic enrichment of the end results and their subsequent export to Europeana, the European digital library, for integrated, interactive 3D visualisation within regular web browsers using WebGl and X3D. Our main goal is to enable historians, architects, archaeologists, urban planners and affiliated professionals to reconstruct views of historical structures from millions of images floating around the web and interact with them.

  20. Segeberg 1600 - Reconstructing a Historic Town for Virtual Reality Visualisation as AN Immersive Experience

    NASA Astrophysics Data System (ADS)

    Deggim, S.; Kersten, T. P.; Tschirschwitz, F.; Hinrichsen, N.

    2017-11-01

    The 3D reconstruction of historic buildings and cities offers an opportunity to experience the history of relevant objects and their development over the centuries. Digital visualisations of such historic objects allow for a more natural view of history as well as showing information that is not possible in a real world setting. New presentation forms, such as the virtual reality (VR) system HTC Vive, can be used to disseminate information in another dimension and simplify the access by changing the user's viewpoint from a listener and viewer into being an integrated part of an interactive situation. In general, this approach is a combination of education and entertainment, also known as "edutainment" or "gamification", a term used in the education sector as describing where motivation to learn is encouraged through adding a competitive element. It is thus a step away from simple consumption of information towards experiencing information and a more literal interpretation of "living history". In this contribution, we present the development of a 3D reconstruction of the two towns Segeberg and Gieschenhagen (today: Bad Segeberg) in Schleswig-Holstein, Germany in the Early Modern Age around 1600. The historic landscape and its conversion from a reconstructed virtual town model into an interactive VR application is also described. The reconstruction is based on a recent digital terrain model as well as survey data of surviving buildings, historic visual information based on historic drawings and written accounts from that era. All datasets are combined to a single walkable virtual world that spans approximately 3 km2.

  1. Quantitative characterization and comparison of precipitate and grain shape in Nickel -base superalloys using moment invariants

    NASA Astrophysics Data System (ADS)

    Callahan, Patrick Gregory

    A fundamental objective of materials science and engineering is to understand the structure-property-processing-performance relationship. We need to know the true 3-D microstructure of a material to understand certain geometric properties of a material, and thus fulfill this objective. Focused ion beam (FIB) serial sectioning allows us to find the true 3-D microstructure of Ni-base superalloys. Once the true 3-D microstructure is obtained, an accurate quantitative description and characterization of precipitate and/or grain shapes is needed to understand the microstructure and describe it in an unbiased way. In this thesis, second order moment invariants, the shape quotient Q, a convexity measure relating the volume of an object to the volume of its convex hull, V/Vconv, and Gaussian curvature have been used to compare an experimentally observed polycrystalline IN100 microstructure to three synthetic microstructures. The three synthetic microstructures used different shape classes to produce starting grain shapes. The three shape classes are ellipsoids, superellipsoids, and the shapes generated when truncating a cube with an octahedron. The microstructures are compared using a distance measure, the Hellinger distance. The Hellinger distance is used to compare distributions of shape descriptors for the grains in each microstructure. The synthetic microstructure that has the smallest Hellinger distance, and so best matched the experimentally observed microstructure is the microstructure that used superellipsoids as a starting grain shape. While it has the smallest Hellinger distance, and is approaching realistic grain morphologies, the superellipsoidal microstructure is still not realistic. Second order moment invariants, Q, and V/V conv have also been used to characterize the γ' precipitate shapes from four experimental Ru-containing Ni-base superalloys with differences in alloying additions. The superalloys are designated UM-F9, UM-F18, UM-F19, and UM-F22. The different alloying additions in each sample cause differences in lattice misfit and γ' precipitate shape morphology, varying from spherical, to cuboidal, to intermediate morphologies. 3-D datasets from each alloy were collected via automated Focused Ion Beam (FIB) serial sectioning. Digital image processing methods are used to register, clean, and segment the images in each of the datasets in order to digitally reconstruct the microstructures in 3-D. The distributions of the shape descriptors of the γ' precipitates from each microstructure are compared using the Hellinger distance. The Hellinger distance determines if there are quantitative differences in the γ' precipitate morphologies, or if they are the same. It was found that comparing distributions of the second order affine moment invariant Ω 3 with the Hellinger distance is sufficient for recognizing that alloys have different compositions. The secondary γ' precipitate shapes in two Ni-based superalloys, one from a UM-F20 alloy with cuboidal precipitates, and one from a Rene-88 DT alloy with more complex dendritic precipitates, have been decomposed and reconstructed using 3-D Zernike functions, which are orthogonal over the unit ball; they can be used to decompose an arbitrary shape scaled to fit inside an embedding sphere into spherical harmonics. Relatively complex shapes can be decomposed into, and reconstructed from, 3-D Zernike functions. In this thesis we show the 3-D Zernike functions and a method to derive expressions for Zernike moments from the more familiar geometric moments. Then Zernike moment reconstructions up to order 20 of precipitates from the two Ni-base superalloys are presented. The Zernike moment reconstructions were characterized using second order moment invariants, and have yielded good reconstructions of cuboidal precipitates. More orders of Zernike moments may be needed to accurately reconstruct the dendritic precipitates. We also introduce the concept of moment invariant density maps to describe 3-D shapes using 2-D moment invariants. To do this we characterize 2-D sections of a 3-D microstructure using 2-D moment invariants. The statistical distribution of 2-D moment invariants from the sections are compared to a library of density maps produced from different shapes. The sectioning plane is random so each group of particles produces a statistical distribution of 2-D moments that can represent a microstructure. Then we show three example applications: determination of a 3-D shape by computing the Hellinger distance between moment invariant density maps derived from random 2-D section micrographs and the density map database; automated detection and quantification of rafting in cuboidal microstructures; and quantitative comparison of pairs of microstructures.

  2. 3-D Imaging In Virtual Environment: A Scientific Clinical and Teaching Tool

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; DeVincenzi, Donald L. (Technical Monitor)

    1996-01-01

    The advent of powerful graphics workstations and computers has led to the advancement of scientific knowledge through three-dimensional (3-D) reconstruction and imaging of biological cells and tissues. The Biocomputation Center at NASA Ames Research Center pioneered the effort to produce an entirely computerized method for reconstruction of objects from serial sections studied in a transmission electron microscope (TEM). The software developed, ROSS (Reconstruction of Serial Sections), is now being distributed to users across the United States through Space Act Agreements. The software is in widely disparate fields such as geology, botany, biology and medicine. In the Biocomputation Center, ROSS serves as the basis for development of virtual environment technologies for scientific and medical use. This report will describe the Virtual Surgery Workstation Project that is ongoing with clinicians at Stanford University Medical Center, and the role of the Visible Human data in the project.

  3. Three-dimensional reconstruction of teeth and jaws based on segmentation of CT images using watershed transformation.

    PubMed

    Naumovich, S S; Naumovich, S A; Goncharenko, V G

    2015-01-01

    The objective of the present study was the development and clinical testing of a three-dimensional (3D) reconstruction method of teeth and a bone tissue of the jaw on the basis of CT images of the maxillofacial region. 3D reconstruction was performed using the specially designed original software based on watershed transformation. Computed tomograms in digital imaging and communications in medicine format obtained on multispiral CT and CBCT scanners were used for creation of 3D models of teeth and the jaws. The processing algorithm is realized in the stepwise threshold image segmentation with the placement of markers in the mode of a multiplanar projection in areas relating to the teeth and a bone tissue. The developed software initially creates coarse 3D models of the entire dentition and the jaw. Then, certain procedures specify the model of the jaw and cut the dentition into separate teeth. The proper selection of the segmentation threshold is very important for CBCT images having a low contrast and high noise level. The developed semi-automatic algorithm of multispiral and cone beam computed tomogram processing allows 3D models of teeth to be created separating them from a bone tissue of the jaws. The software is easy to install in a dentist's workplace, has an intuitive interface and takes little time in processing. The obtained 3D models can be used for solving a wide range of scientific and clinical tasks.

  4. How useful is 3D printing in maxillofacial surgery?

    PubMed

    Louvrier, A; Marty, P; Barrabé, A; Euvrard, E; Chatelain, B; Weber, E; Meyer, C

    2017-09-01

    3D printing seems to have more and more applications in maxillofacial surgery (MFS), particularly since the release on the market of general use 3D printers several years ago. The aim of our study was to answer 4 questions: 1. Who uses 3D printing in MFS and is it routine or not? 2. What are the main clinical indications for 3D printing in MFS and what are the kinds of objects that are used? 3. Are these objects printed by an official medical device (MD) manufacturer or made directly within the department or the lab? 4. What are the advantages and drawbacks? Two bibliographic researches were conducted on January the 1st, 2017 in PubMed, without time limitation, using "maxillofacial surgery" AND "3D printing" for the first and for the second "maxillofacial surgery" AND "computer-aided design" AND "computer-aided manufacturing" as keywords. Articles in English or French dealing with human clinical use of 3D printing were selected. Publication date, nationality of the authors, number of patients treated, clinical indication(s), type of printed object(s), type of printing (lab/hospital-made or professional/industry) and advantages/drawbacks were recorded. Two hundred and ninety-seven articles from 35 countries met the criteria. The most represented country was the People's Republic of China (16% of the articles). A total of 2889 patients (10 per article on average) benefited from 3D printed objects. The most frequent clinical indications were dental implant surgery and mandibular reconstruction. The most frequently printed objects were surgical guides and anatomic models. Forty-five percent of the prints were professional. The main advantages were improvement in precision and reduction of surgical time. The main disadvantages were the cost of the objects and the manufacturing period when printed by the industry. The arrival on the market of low-cost printers has increased the use of 3D printing in MFS. Anatomic models are not considered to be MDs and do not have to follow any regulation. Nowadays, they are easily printed with low-cost printers. They allow for better preoperative planning and training for the procedures and for pre-shaping of plates. Occlusal splints and surgical guides are intended for the smooth transfer of planning to the operating room. They are considered to be MDs and even if they are easy to print, they have to follow the regulations applying to MDs. Patient specific implants (custom-made plates and skeletal reconstruction modules) are much more demanding objects and their manufacturing remains nowadays in the hands of the industry. The main limitation of in-hospital 3D printing is the restrictive regulations applying to MDs. The main limitations of professional 3D printing are the cost and the lead time. 3D printed objects are nowadays easily available in MFS. However, they will never replace a surgeon's skill and should only be considered as useful tools. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Modeling and modification of medical 3D objects. The benefit of using a haptic modeling tool.

    PubMed

    Kling-Petersen, T; Rydmark, M

    2000-01-01

    The Computer Laboratory of the medical faculty in Goteborg (Mednet) has since the end of 1998 been one of a limited numbers of participants in the development of a new modeling tool together with SensAble Technologies Inc [http:¿www.sensable.com/]. The software called SensAble FreeForm was officially released at Siggraph September 1999. Briefly, the software mimics the modeling techniques traditionally used by clay artists. An imported model or a user defined block of "clay" can be modified using different tools such as a ball, square block, scrape etc via the use of a SensAble Technologies PHANToM haptic arm. The model will deform in 3D as a result of touching the "clay" with any selected tool and the amount of deformation is linear to the force applied. By getting instantaneous haptic as well as visual feedback, precise and intuitive changes are easily made. While SensAble FreeForm lacks several of the features normally associated with a 3D modeling program (such as text handling, application of surface and bumpmaps, high-end rendering engines, etc) it's strength lies in the ability to rapidly create non-geometric 3D models. For medical use, very few anatomically correct models are created from scratch. However, FreeForm features tools enable advanced modification of reconstructed or 3D scanned models. One of the main problems with 3D laserscanning of medical specimens is that the technique usually leaves holes or gaps in the dataset corresponding to areas in shadows such as orifices, deep grooves etc. By using FreeForms different tools, these defects are easily corrected and gaps are filled out. Similarly, traditional 3D reconstruction (based on serial sections etc) often shows artifacts as a result of the triangulation and/or tessellation processes. These artifacts usually manifest as unnatural ridges or uneven areas ("the accordion effect"). FreeForm contains a smoothing algorithm that enables the user to select an area to be modified and subsequently apply any given amount of smoothing to the object. While the final objects need to be exported for further 3D graphic manipulation, FreeForm addresses one of the most time consuming problems of 3D modeling: modification and creation of non-geometric 3D objects.

  6. The Performance Evaluation of Multi-Image 3d Reconstruction Software with Different Sensors

    NASA Astrophysics Data System (ADS)

    Mousavi, V.; Khosravi, M.; Ahmadi, M.; Noori, N.; Naveh, A. Hosseini; Varshosaz, M.

    2015-12-01

    Today, multi-image 3D reconstruction is an active research field and generating three dimensional model of the objects is one the most discussed issues in Photogrammetry and Computer Vision that can be accomplished using range-based or image-based methods. Very accurate and dense point clouds generated by range-based methods such as structured light systems and laser scanners has introduced them as reliable tools in the industry. Image-based 3D digitization methodologies offer the option of reconstructing an object by a set of unordered images that depict it from different viewpoints. As their hardware requirements are narrowed down to a digital camera and a computer system, they compose an attractive 3D digitization approach, consequently, although range-based methods are generally very accurate, image-based methods are low-cost and can be easily used by non-professional users. One of the factors affecting the accuracy of the obtained model in image-based methods is the software and algorithm used to generate three dimensional model. These algorithms are provided in the form of commercial software, open source and web-based services. Another important factor in the accuracy of the obtained model is the type of sensor used. Due to availability of mobile sensors to the public, popularity of professional sensors and the advent of stereo sensors, a comparison of these three sensors plays an effective role in evaluating and finding the optimized method to generate three-dimensional models. Lots of research has been accomplished to identify a suitable software and algorithm to achieve an accurate and complete model, however little attention is paid to the type of sensors used and its effects on the quality of the final model. The purpose of this paper is deliberation and the introduction of an appropriate combination of a sensor and software to provide a complete model with the highest accuracy. To do this, different software, used in previous studies, were compared and the most popular ones in each category were selected (Arc 3D, Visual SfM, Sure, Agisoft). Also four small objects with distinct geometric properties and especial complexities were chosen and their accurate models as reliable true data was created using ATOS Compact Scan 2M 3D scanner. Images were taken using Fujifilm Real 3D stereo camera, Apple iPhone 5 and Nikon D3200 professional camera and three dimensional models of the objects were obtained using each of the software. Finally, a comprehensive comparison between the detailed reviews of the results on the data set showed that the best combination of software and sensors for generating three-dimensional models is directly related to the object shape as well as the expected accuracy of the final model. Generally better quantitative and qualitative results were obtained by using the Nikon D3200 professional camera, while Fujifilm Real 3D stereo camera and Apple iPhone 5 were the second and third respectively in this comparison. On the other hand, three software of Visual SfM, Sure and Agisoft had a hard competition to achieve the most accurate and complete model of the objects and the best software was different according to the geometric properties of the object.

  7. Uniqueness and reconstruction in magnetic resonance-electrical impedance tomography (MR-EIT).

    PubMed

    Ider, Y Ziya; Onart, Serkan; Lionheart, William R B

    2003-05-01

    Magnetic resonance-electrical impedance tomography (MR-EIT) was first proposed in 1992. Since then various reconstruction algorithms have been suggested and applied. These algorithms use peripheral voltage measurements and internal current density measurements in different combinations. In this study the problem of MR-EIT is treated as a hyperbolic system of first-order partial differential equations, and three numerical methods are proposed for its solution. This approach is not utilized in any of the algorithms proposed earlier. The numerical solution methods are integration along equipotential surfaces (method of characteristics), integration on a Cartesian grid, and inversion of a system matrix derived by a finite difference formulation. It is shown that if some uniqueness conditions are satisfied, then using at least two injected current patterns, resistivity can be reconstructed apart from a multiplicative constant. This constant can then be identified using a single voltage measurement. The methods proposed are direct, non-iterative, and valid and feasible for 3D reconstructions. They can also be used to easily obtain slice and field-of-view images from a 3D object. 2D simulations are made to illustrate the performance of the algorithms.

  8. [Development of a software for 3D virtual phantom design].

    PubMed

    Zou, Lian; Xie, Zhao; Wu, Qi

    2014-02-01

    In this paper, we present a 3D virtual phantom design software, which was developed based on object-oriented programming methodology and dedicated to medical physics research. This software was named Magical Phan tom (MPhantom), which is composed of 3D visual builder module and virtual CT scanner. The users can conveniently construct any complex 3D phantom, and then export the phantom as DICOM 3.0 CT images. MPhantom is a user-friendly and powerful software for 3D phantom configuration, and has passed the real scene's application test. MPhantom will accelerate the Monte Carlo simulation for dose calculation in radiation therapy and X ray imaging reconstruction algorithm research.

  9. LivePhantom: Retrieving Virtual World Light Data to Real Environments.

    PubMed

    Kolivand, Hoshang; Billinghurst, Mark; Sunar, Mohd Shahrizal

    2016-01-01

    To achieve realistic Augmented Reality (AR), shadows play an important role in creating a 3D impression of a scene. Casting virtual shadows on real and virtual objects is one of the topics of research being conducted in this area. In this paper, we propose a new method for creating complex AR indoor scenes using real time depth detection to exert virtual shadows on virtual and real environments. A Kinect camera was used to produce a depth map for the physical scene mixing into a single real-time transparent tacit surface. Once this is created, the camera's position can be tracked from the reconstructed 3D scene. Real objects are represented by virtual object phantoms in the AR scene enabling users holding a webcam and a standard Kinect camera to capture and reconstruct environments simultaneously. The tracking capability of the algorithm is shown and the findings are assessed drawing upon qualitative and quantitative methods making comparisons with previous AR phantom generation applications. The results demonstrate the robustness of the technique for realistic indoor rendering in AR systems.

  10. LivePhantom: Retrieving Virtual World Light Data to Real Environments

    PubMed Central

    2016-01-01

    To achieve realistic Augmented Reality (AR), shadows play an important role in creating a 3D impression of a scene. Casting virtual shadows on real and virtual objects is one of the topics of research being conducted in this area. In this paper, we propose a new method for creating complex AR indoor scenes using real time depth detection to exert virtual shadows on virtual and real environments. A Kinect camera was used to produce a depth map for the physical scene mixing into a single real-time transparent tacit surface. Once this is created, the camera’s position can be tracked from the reconstructed 3D scene. Real objects are represented by virtual object phantoms in the AR scene enabling users holding a webcam and a standard Kinect camera to capture and reconstruct environments simultaneously. The tracking capability of the algorithm is shown and the findings are assessed drawing upon qualitative and quantitative methods making comparisons with previous AR phantom generation applications. The results demonstrate the robustness of the technique for realistic indoor rendering in AR systems. PMID:27930663

  11. 3D reconstruction of microminiature objects based on contour line

    NASA Astrophysics Data System (ADS)

    Li, Cailin; Wang, Qiang; Guo, Baoyun

    2009-10-01

    A new 3D automatic reconstruction method of micro solid of revolution is presented in this paper. In the implementation procedure of this method, image sequence of the solid of revolution of 360° is obtained, which rotation speed is controlled by motor precisely, in the rotate photographic mode of back light. Firstly, we need calibrate the height of turntable, the size of pixel and rotation axis of turntable. Then according to the calibration result of rotation axis, the height of turntable, rotation angle and the pixel size, the contour points of each image can be transformed into 3D points in the reference coordinate system to generate the point cloud model. Finally, the surface geometrical model of solid of revolution is obtained by using the relationship of two adjacent contours. Experimental results on real images are presented, which demonstrate the effectiveness of the Approach.

  12. Stages as models of scene geometry.

    PubMed

    Nedović, Vladimir; Smeulders, Arnold W M; Redert, André; Geusebroek, Jan-Mark

    2010-09-01

    Reconstruction of 3D scene geometry is an important element for scene understanding, autonomous vehicle and robot navigation, image retrieval, and 3D television. We propose accounting for the inherent structure of the visual world when trying to solve the scene reconstruction problem. Consequently, we identify geometric scene categorization as the first step toward robust and efficient depth estimation from single images. We introduce 15 typical 3D scene geometries called stages, each with a unique depth profile, which roughly correspond to a large majority of broadcast video frames. Stage information serves as a first approximation of global depth, narrowing down the search space in depth estimation and object localization. We propose different sets of low-level features for depth estimation, and perform stage classification on two diverse data sets of television broadcasts. Classification results demonstrate that stages can often be efficiently learned from low-dimensional image representations.

  13. A Fast 3-Dimensional Magnetic Resonance Imaging Reconstruction for Surgical Planning of Uterine Myomectomy

    PubMed Central

    2017-01-01

    Background Uterine myoma is the most common benign gynecologic tumor in reproductive-aged women. During myomectomy for women who want to preserve fertility, it is advisable to detect and remove all myomas to decrease the risk of additional surgery. However, finding myomas during surgery is often challenging, especially for deep-seated myomas. Therefore, three-dimensional (3D) preoperative localization of myomas can be helpful for the surgical planning for myomectomy. However, the previously reported manual 3D segmenting method takes too much time and effort for clinical use. The objective of this study was to propose a new method of rapid 3D visualization of uterine myoma using a uterine template. Methods Magnetic resonance images were listed according to the slide spacing on each plane of the multiplanar reconstruction, and images that were determined to be myomas were selected by simply scrolling the mouse down. By using the selected images, a 3D grid with a slide spacing interval was constructed and filled on its plane and finally registered to a uterine template. Results The location of multiple myomas in the uterus was visualized in 3D and this proposed method is over 95% faster than the existing manual-segmentation method. Not only the size and location of the myomas, but also the shortest distance between the uterine surface and the myomas, can be calculated. This technique also enables the surgeon to know the number of total, removed, and remaining myomas on the 3D image. Conclusion This proposed 3D reconstruction method with a uterine template enables faster 3D visualization of myomas. PMID:29215821

  14. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    NASA Astrophysics Data System (ADS)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less smoothing at early time points post-radiopharmaceutical administration but more smoothing and fewer iterations at later time points when the total organ activity was lower. The results of this study demonstrate the importance of using optimal reconstruction and regularization parameters. Optimal results were obtained with different parameters at each time point, but using a single set of parameters for all time points produced near-optimal dose-volume histograms.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, S; Jeraj, R; Galavis, P

    Purpose: Sensitivity of PET-derived texture features to reconstruction methods has been reported for features extracted from axial planes; however, studies often utilize three dimensional techniques. This work aims to quantify the impact of multi-plane (3D) vs. single-plane (2D) feature extraction on radiomics-based analysis, including sensitivity to reconstruction parameters and potential loss of spatial information. Methods: Twenty-three patients with solid tumors underwent [{sup 18}F]FDG PET/CT scans under identical protocols. PET data were reconstructed using five sets of reconstruction parameters. Tumors were segmented using an automatic, in-house algorithm robust to reconstruction variations. 50 texture features were extracted using two Methods: 2D patchesmore » along axial planes and 3D patches. For each method, sensitivity of features to reconstruction parameters was calculated as percent difference relative to the average value across reconstructions. Correlations between feature values were compared when using 2D and 3D extraction. Results: 21/50 features showed significantly different sensitivity to reconstruction parameters when extracted in 2D vs 3D (wilcoxon α<0.05), assessed by overall range of variation, Rangevar(%). Eleven showed greater sensitivity to reconstruction in 2D extraction, primarily first-order and co-occurrence features (average Rangevar increase 83%). The remaining ten showed higher variation in 3D extraction (average Range{sub var}increase 27%), mainly co-occurence and greylevel run-length features. Correlation of feature value extracted in 2D and feature value extracted in 3D was poor (R<0.5) in 12/50 features, including eight co-occurrence features. Feature-to-feature correlations in 2D were marginally higher than 3D, ∣R∣>0.8 in 16% and 13% of all feature combinations, respectively. Larger sensitivity to reconstruction parameters were seen for inter-feature correlation in 2D(σ=6%) than 3D (σ<1%) extraction. Conclusion: Sensitivity and correlation of various texture features were shown to significantly differ between 2D and 3D extraction. Additionally, inter-feature correlations were more sensitive to reconstruction variation using single-plane extraction. This work highlights a need for standardized feature extraction/selection techniques in radiomics.« less

  16. Fusion of light-field and photogrammetric surface form data

    NASA Astrophysics Data System (ADS)

    Sims-Waterhouse, Danny; Piano, Samanta; Leach, Richard K.

    2017-08-01

    Photogrammetry based systems are able to produce 3D reconstructions of an object given a set of images taken from different orientations. In this paper, we implement a light-field camera within a photogrammetry system in order to capture additional depth information, as well as the photogrammetric point cloud. Compared to a traditional camera that only captures the intensity of the incident light, a light-field camera also provides angular information for each pixel. In principle, this additional information allows 2D images to be reconstructed at a given focal plane, and hence a depth map can be computed. Through the fusion of light-field and photogrammetric data, we show that it is possible to improve the measurement uncertainty of a millimetre scale 3D object, compared to that from the individual systems. By imaging a series of test artefacts from various positions, individual point clouds were produced from depth-map information and triangulation of corresponding features between images. Using both measurements, data fusion methods were implemented in order to provide a single point cloud with reduced measurement uncertainty.

  17. Noise correlation in PET, CT, SPECT and PET/CT data evaluated using autocorrelation function: a phantom study on data, reconstructed using FBP and OSEM.

    PubMed

    Razifar, Pasha; Sandström, Mattias; Schnieder, Harald; Långström, Bengt; Maripuu, Enn; Bengtsson, Ewert; Bergström, Mats

    2005-08-25

    Positron Emission Tomography (PET), Computed Tomography (CT), PET/CT and Single Photon Emission Tomography (SPECT) are non-invasive imaging tools used for creating two dimensional (2D) cross section images of three dimensional (3D) objects. PET and SPECT have the potential of providing functional or biochemical information by measuring distribution and kinetics of radiolabelled molecules, whereas CT visualizes X-ray density in tissues in the body. PET/CT provides fused images representing both functional and anatomical information with better precision in localization than PET alone. Images generated by these types of techniques are generally noisy, thereby impairing the imaging potential and affecting the precision in quantitative values derived from the images. It is crucial to explore and understand the properties of noise in these imaging techniques. Here we used autocorrelation function (ACF) specifically to describe noise correlation and its non-isotropic behaviour in experimentally generated images of PET, CT, PET/CT and SPECT. Experiments were performed using phantoms with different shapes. In PET and PET/CT studies, data were acquired in 2D acquisition mode and reconstructed by both analytical filter back projection (FBP) and iterative, ordered subsets expectation maximisation (OSEM) methods. In the PET/CT studies, different magnitudes of X-ray dose in the transmission were employed by using different mA settings for the X-ray tube. In the CT studies, data were acquired using different slice thickness with and without applied dose reduction function and the images were reconstructed by FBP. SPECT studies were performed in 2D, reconstructed using FBP and OSEM, using post 3D filtering. ACF images were generated from the primary images, and profiles across the ACF images were used to describe the noise correlation in different directions. The variance of noise across the images was visualised as images and with profiles across these images. The most important finding was that the pattern of noise correlation is rotation symmetric or isotropic, independent of object shape in PET and PET/CT images reconstructed using the iterative method. This is, however, not the case in FBP images when the shape of phantom is not circular. Also CT images reconstructed using FBP show the same non-isotropic pattern independent of slice thickness and utilization of care dose function. SPECT images show an isotropic correlation of the noise independent of object shape or applied reconstruction algorithm. Noise in PET/CT images was identical independent of the applied X-ray dose in the transmission part (CT), indicating that the noise from transmission with the applied doses does not propagate into the PET images showing that the noise from the emission part is dominant. The results indicate that in human studies it is possible to utilize a low dose in transmission part while maintaining the noise behaviour and the quality of the images. The combined effect of noise correlation for asymmetric objects and a varying noise variance across the image field significantly complicates the interpretation of the images when statistical methods are used, such as with statistical estimates of precision in average values, use of statistical parametric mapping methods and principal component analysis. Hence it is recommended that iterative reconstruction methods are used for such applications. However, it is possible to calculate the noise analytically in images reconstructed by FBP, while it is not possible to do the same calculation in images reconstructed by iterative methods. Therefore for performing statistical methods of analysis which depend on knowing the noise, FBP would be preferred.

  18. Photogrammetry of the solar aureole

    NASA Technical Reports Server (NTRS)

    Deepak, A.

    1978-01-01

    This paper presents a photogrammetric analysis of the solar aureole for the purpose of making photographic sky radiance measurements for determining aerosol physical characteristics. A photograph is essentially a projection of a 3-D object space onto a 2-D image space. Photogrammetry deals with relations that exist between the object and the image spaces. The main problem of photogrammetry is the reconstruction of configurations in the object space by means of the image space data. It is shown that the almucantar projects onto the photographic plane as a conic section and the sun vertical as a straight line.

  19. Study of noise propagation and the effects of insufficient numbers of projection angles and detector samplings for iterative reconstruction using planar-integral data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, B.; Zeng, G. L.

    2006-09-15

    A rotating slat collimator can be used to acquire planar-integral data. It achieves higher geometric efficiency than a parallel-hole collimator by accepting more photons, but the planar-integral data contain less tomographic information that may result in larger noise amplification in the reconstruction. Lodge evaluated the rotating slat system and the parallel-hole system based on noise behavior for an FBP reconstruction. Here, we evaluate the noise propagation properties of the two collimation systems for iterative reconstruction. We extend Huesman's noise propagation analysis of the line-integral system to the planar-integral case, and show that approximately 2.0(D/dp) SPECT angles, 2.5(D/dp) self-spinning angles atmore » each detector position, and a 0.5dp detector sampling interval are required in order for the planar-integral data to be efficiently utilized. Here, D is the diameter of the object and dp is the linear dimension of the voxels that subdivide the object. The noise propagation behaviors of the two systems are then compared based on a least-square reconstruction using the ratio of the SNR in the image reconstructed using a planar-integral system to that reconstructed using a line-integral system. The ratio is found to be proportional to {radical}(F/D), where F is a geometric efficiency factor. This result has been verified by computer simulations. It confirms that for an iterative reconstruction, the noise tradeoff of the two systems is not only dependent on the increase of the geometric efficiency afforded by the planar projection method, but also dependent on the size of the object. The planar-integral system works better for small objects, while the line-integral system performs better for large ones. This result is consistent with Lodge's results based on the FBP method.« less

  20. False ankylosis of the temporomandibular joint in a cat. Correction by partial zygomatic arch resection.

    PubMed

    Larguier, L; Jamet, N

    2015-01-01

    To describe the use of two-dimensional computer-assisted tomography (CT) with three-dimensional (3D) reconstruction in the diagnosis and planning of surgical treatment of a case of false ankylosis of the temporomandibular joint. A young European Shorthaired cat was presented with the complaint of inability to eat and open its jaws. A CT scan with 3D reconstruction allowed visualization of the lesion which was causing extra-articular ankylosis of the temporomandibular joint. Surgery was performed to resect an osseous lesion of the zygomatic arch, thus freeing the temporomandibular joint. Postoperative physical therapy was initiated immediately following surgery, and then carried out by the owner with a one year follow-up. Clinical examination of the cat was performed during regular office visits (at 1 month and 3 months following surgery), which allowed objective assessment of postoperative recuperation. At the end of a year, the owners reported that the cat had maintained sufficient jaw opening without any signs consistent with chronic pain. Computed tomography scan with 3D reconstruction allowed planning of the surgical correction of extra-articular ankylosis of the temporomandibular joint, and in this case condylectomy was avoided, since temporomandibular joint range-of-motion was maintained.

  1. The properties of SIRT, TVM, and DART for 3D imaging of tubular domains in nanocomposite thin-films and sections.

    PubMed

    Chen, Delei; Goris, Bart; Bleichrodt, Folkert; Mezerji, Hamed Heidari; Bals, Sara; Batenburg, Kees Joost; de With, Gijsbertus; Friedrich, Heiner

    2014-12-01

    In electron tomography, the fidelity of the 3D reconstruction strongly depends on the employed reconstruction algorithm. In this paper, the properties of SIRT, TVM and DART reconstructions are studied with respect to having only a limited number of electrons available for imaging and applying different angular sampling schemes. A well-defined realistic model is generated, which consists of tubular domains within a matrix having slab-geometry. Subsequently, the electron tomography workflow is simulated from calculated tilt-series over experimental effects to reconstruction. In comparison with the model, the fidelity of each reconstruction method is evaluated qualitatively and quantitatively based on global and local edge profiles and resolvable distance between particles. Results show that the performance of all reconstruction methods declines with the total electron dose. Overall, SIRT algorithm is the most stable method and insensitive to changes in angular sampling. TVM algorithm yields significantly sharper edges in the reconstruction, but the edge positions are strongly influenced by the tilt scheme and the tubular objects become thinned. The DART algorithm markedly suppresses the elongation artifacts along the beam direction and moreover segments the reconstruction which can be considered a significant advantage for quantification. Finally, no advantage of TVM and DART to deal better with fewer projections was observed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Multilayered nonuniform sampling for three-dimensional scene representation

    NASA Astrophysics Data System (ADS)

    Lin, Huei-Yung; Xiao, Yu-Hua; Chen, Bo-Ren

    2015-09-01

    The representation of a three-dimensional (3-D) scene is essential in multiview imaging technologies. We present a unified geometry and texture representation based on global resampling of the scene. A layered data map representation with a distance-dependent nonuniform sampling strategy is proposed. It is capable of increasing the details of the 3-D structure locally and is compact in size. The 3-D point cloud obtained from the multilayered data map is used for view rendering. For any given viewpoint, image synthesis with different levels of detail is carried out using the quadtree-based nonuniformly sampled 3-D data points. Experimental results are presented using the 3-D models of reconstructed real objects.

  3. dPIRPLE: a joint estimation framework for deformable registration and penalized-likelihood CT image reconstruction using prior images

    NASA Astrophysics Data System (ADS)

    Dang, H.; Wang, A. S.; Sussman, Marc S.; Siewerdsen, J. H.; Stayman, J. W.

    2014-09-01

    Sequential imaging studies are conducted in many clinical scenarios. Prior images from previous studies contain a great deal of patient-specific anatomical information and can be used in conjunction with subsequent imaging acquisitions to maintain image quality while enabling radiation dose reduction (e.g., through sparse angular sampling, reduction in fluence, etc). However, patient motion between images in such sequences results in misregistration between the prior image and current anatomy. Existing prior-image-based approaches often include only a simple rigid registration step that can be insufficient for capturing complex anatomical motion, introducing detrimental effects in subsequent image reconstruction. In this work, we propose a joint framework that estimates the 3D deformation between an unregistered prior image and the current anatomy (based on a subsequent data acquisition) and reconstructs the current anatomical image using a model-based reconstruction approach that includes regularization based on the deformed prior image. This framework is referred to as deformable prior image registration, penalized-likelihood estimation (dPIRPLE). Central to this framework is the inclusion of a 3D B-spline-based free-form-deformation model into the joint registration-reconstruction objective function. The proposed framework is solved using a maximization strategy whereby alternating updates to the registration parameters and image estimates are applied allowing for improvements in both the registration and reconstruction throughout the optimization process. Cadaver experiments were conducted on a cone-beam CT testbench emulating a lung nodule surveillance scenario. Superior reconstruction accuracy and image quality were demonstrated using the dPIRPLE algorithm as compared to more traditional reconstruction methods including filtered backprojection, penalized-likelihood estimation (PLE), prior image penalized-likelihood estimation (PIPLE) without registration, and prior image penalized-likelihood estimation with rigid registration of a prior image (PIRPLE) over a wide range of sampling sparsity and exposure levels.

  4. A Low-Cost Approach to Automatically Obtain Accurate 3D Models of Woody Crops.

    PubMed

    Bengochea-Guevara, José M; Andújar, Dionisio; Sanchez-Sardana, Francisco L; Cantuña, Karla; Ribeiro, Angela

    2017-12-24

    Crop monitoring is an essential practice within the field of precision agriculture since it is based on observing, measuring and properly responding to inter- and intra-field variability. In particular, "on ground crop inspection" potentially allows early detection of certain crop problems or precision treatment to be carried out simultaneously with pest detection. "On ground monitoring" is also of great interest for woody crops. This paper explores the development of a low-cost crop monitoring system that can automatically create accurate 3D models (clouds of coloured points) of woody crop rows. The system consists of a mobile platform that allows the easy acquisition of information in the field at an average speed of 3 km/h. The platform, among others, integrates an RGB-D sensor that provides RGB information as well as an array with the distances to the objects closest to the sensor. The RGB-D information plus the geographical positions of relevant points, such as the starting and the ending points of the row, allow the generation of a 3D reconstruction of a woody crop row in which all the points of the cloud have a geographical location as well as the RGB colour values. The proposed approach for the automatic 3D reconstruction is not limited by the size of the sampled space and includes a method for the removal of the drift that appears in the reconstruction of large crop rows.

  5. A Low-Cost Approach to Automatically Obtain Accurate 3D Models of Woody Crops

    PubMed Central

    Andújar, Dionisio; Sanchez-Sardana, Francisco L.; Cantuña, Karla

    2017-01-01

    Crop monitoring is an essential practice within the field of precision agriculture since it is based on observing, measuring and properly responding to inter- and intra-field variability. In particular, “on ground crop inspection” potentially allows early detection of certain crop problems or precision treatment to be carried out simultaneously with pest detection. “On ground monitoring” is also of great interest for woody crops. This paper explores the development of a low-cost crop monitoring system that can automatically create accurate 3D models (clouds of coloured points) of woody crop rows. The system consists of a mobile platform that allows the easy acquisition of information in the field at an average speed of 3 km/h. The platform, among others, integrates an RGB-D sensor that provides RGB information as well as an array with the distances to the objects closest to the sensor. The RGB-D information plus the geographical positions of relevant points, such as the starting and the ending points of the row, allow the generation of a 3D reconstruction of a woody crop row in which all the points of the cloud have a geographical location as well as the RGB colour values. The proposed approach for the automatic 3D reconstruction is not limited by the size of the sampled space and includes a method for the removal of the drift that appears in the reconstruction of large crop rows. PMID:29295536

  6. Computed 3D visualisation of an extinct cephalopod using computer tomographs.

    PubMed

    Lukeneder, Alexander

    2012-08-01

    The first 3D visualisation of a heteromorph cephalopod species from the Southern Alps (Dolomites, northern Italy) is presented. Computed tomography, palaeontological data and 3D reconstructions were included in the production of a movie, which shows a life reconstruction of the extinct organism. This detailed reconstruction is according to the current knowledge of the shape and mode of life as well as habitat of this animal. The results are based on the most complete shell known thus far of the genus Dissimilites . Object-based combined analyses from computed tomography and various computed 3D facility programmes help to understand morphological details as well as their ontogentical changes in fossil material. In this study, an additional goal was to show changes in locomotion during different ontogenetic phases of such fossil, marine shell-bearing animals (ammonoids). Hence, the presented models and tools can serve as starting points for discussions on morphology and locomotion of extinct cephalopods in general, and of the genus Dissimilites in particular. The heteromorph ammonoid genus Dissimilites is interpreted here as an active swimmer of the Tethyan Ocean. This study portrays non-destructive methods of 3D visualisation applied on palaeontological material, starting with computed tomography resulting in animated, high-quality video clips. The here presented 3D geometrical models and animation, which are based on palaeontological material, demonstrate the wide range of applications, analytical techniques and also outline possible limitations of 3D models in earth sciences and palaeontology. The realistic 3D models and motion pictures can easily be shared amongst palaeontologists. Data, images and short clips can be discussed online and, if necessary, adapted in morphological details and motion-style to better represent the cephalopod animal.

  7. Computed 3D visualisation of an extinct cephalopod using computer tomographs

    NASA Astrophysics Data System (ADS)

    Lukeneder, Alexander

    2012-08-01

    The first 3D visualisation of a heteromorph cephalopod species from the Southern Alps (Dolomites, northern Italy) is presented. Computed tomography, palaeontological data and 3D reconstructions were included in the production of a movie, which shows a life reconstruction of the extinct organism. This detailed reconstruction is according to the current knowledge of the shape and mode of life as well as habitat of this animal. The results are based on the most complete shell known thus far of the genus Dissimilites. Object-based combined analyses from computed tomography and various computed 3D facility programmes help to understand morphological details as well as their ontogentical changes in fossil material. In this study, an additional goal was to show changes in locomotion during different ontogenetic phases of such fossil, marine shell-bearing animals (ammonoids). Hence, the presented models and tools can serve as starting points for discussions on morphology and locomotion of extinct cephalopods in general, and of the genus Dissimilites in particular. The heteromorph ammonoid genus Dissimilites is interpreted here as an active swimmer of the Tethyan Ocean. This study portrays non-destructive methods of 3D visualisation applied on palaeontological material, starting with computed tomography resulting in animated, high-quality video clips. The here presented 3D geometrical models and animation, which are based on palaeontological material, demonstrate the wide range of applications, analytical techniques and also outline possible limitations of 3D models in earth sciences and palaeontology. The realistic 3D models and motion pictures can easily be shared amongst palaeontologists. Data, images and short clips can be discussed online and, if necessary, adapted in morphological details and motion-style to better represent the cephalopod animal.

  8. Computed 3D visualisation of an extinct cephalopod using computer tomographs

    PubMed Central

    Lukeneder, Alexander

    2012-01-01

    The first 3D visualisation of a heteromorph cephalopod species from the Southern Alps (Dolomites, northern Italy) is presented. Computed tomography, palaeontological data and 3D reconstructions were included in the production of a movie, which shows a life reconstruction of the extinct organism. This detailed reconstruction is according to the current knowledge of the shape and mode of life as well as habitat of this animal. The results are based on the most complete shell known thus far of the genus Dissimilites. Object-based combined analyses from computed tomography and various computed 3D facility programmes help to understand morphological details as well as their ontogentical changes in fossil material. In this study, an additional goal was to show changes in locomotion during different ontogenetic phases of such fossil, marine shell-bearing animals (ammonoids). Hence, the presented models and tools can serve as starting points for discussions on morphology and locomotion of extinct cephalopods in general, and of the genus Dissimilites in particular. The heteromorph ammonoid genus Dissimilites is interpreted here as an active swimmer of the Tethyan Ocean. This study portrays non-destructive methods of 3D visualisation applied on palaeontological material, starting with computed tomography resulting in animated, high-quality video clips. The here presented 3D geometrical models and animation, which are based on palaeontological material, demonstrate the wide range of applications, analytical techniques and also outline possible limitations of 3D models in earth sciences and palaeontology. The realistic 3D models and motion pictures can easily be shared amongst palaeontologists. Data, images and short clips can be discussed online and, if necessary, adapted in morphological details and motion-style to better represent the cephalopod animal. PMID:24850976

  9. Laser microbeam CT scanning of dosimetry gels

    NASA Astrophysics Data System (ADS)

    Maryanski, Marek J.; Ranade, Manisha K.

    2001-06-01

    A novel design of an optical tomographic scanner is described that can be used for 3D mapping of optical attenuation coefficient within translucent cylindrical objects with spatial resolution on the order of 100 microns. Our scanner design utilizes the cylindrical geometry of the imaged object to obtain the desired paths of the scanning light rays. A rotating mirror and a photodetector are placed at two opposite foci of the translucent cylinder that acts as a cylindrical lens. A He-Ne laser beam passes first through a focusing lens and then is reflected by the rotating mirror, so as to scan the interior of the cylinder with focused and parallel paraxial rays that are subsequently collected by the photodetector to produce the projection data, as the cylinder rotates in small angle increments between projections. Filtered backprojection is then used to reconstruct planar distributions of optical attenuation coefficient in the cylinder. Multiplanar scans are used to obtain a complete 3D tomographic reconstruction. Among other applications, the scanner can be used in radiation therapy dosimetry and quality assurance for mapping 3D radiation dose distributions in various types of tissue-equivalent gel phantoms that change their optical attenuation coefficients in proportion to the absorbed radiation dose.

  10. 2D and 3D MALDI-imaging: conceptual strategies for visualization and data mining.

    PubMed

    Thiele, Herbert; Heldmann, Stefan; Trede, Dennis; Strehlow, Jan; Wirtz, Stefan; Dreher, Wolfgang; Berger, Judith; Oetjen, Janina; Kobarg, Jan Hendrik; Fischer, Bernd; Maass, Peter

    2014-01-01

    3D imaging has a significant impact on many challenges in life sciences, because biology is a 3-dimensional phenomenon. Current 3D imaging-technologies (various types MRI, PET, SPECT) are labeled, i.e. they trace the localization of a specific compound in the body. In contrast, 3D MALDI mass spectrometry-imaging (MALDI-MSI) is a label-free method imaging the spatial distribution of molecular compounds. It complements 3D imaging labeled methods, immunohistochemistry, and genetics-based methods. However, 3D MALDI-MSI cannot tap its full potential due to the lack of statistical methods for analysis and interpretation of large and complex 3D datasets. To overcome this, we established a complete and robust 3D MALDI-MSI pipeline combined with efficient computational data analysis methods for 3D edge preserving image denoising, 3D spatial segmentation as well as finding colocalized m/z values, which will be reviewed here in detail. Furthermore, we explain, why the integration and correlation of the MALDI imaging data with other imaging modalities allows to enhance the interpretation of the molecular data and provides visualization of molecular patterns that may otherwise not be apparent. Therefore, a 3D data acquisition workflow is described generating a set of 3 different dimensional images representing the same anatomies. First, an in-vitro MRI measurement is performed which results in a three-dimensional image modality representing the 3D structure of the measured object. After sectioning the 3D object into N consecutive slices, all N slices are scanned using an optical digital scanner, enabling for performing the MS measurements. Scanning the individual sections results into low-resolution images, which define the base coordinate system for the whole pipeline. The scanned images conclude the information from the spatial (MRI) and the mass spectrometric (MALDI-MSI) dimension and are used for the spatial three-dimensional reconstruction of the object performed by image registration techniques. Different strategies for automatic serial image registration applied to MS datasets are outlined in detail. The third image modality is histology driven, i.e. a digital scan of the histological stained slices in high-resolution. After fusion of reconstructed scan images and MRI the slice-related coordinates of the mass spectra can be propagated into 3D-space. After image registration of scan images and histological stained images, the anatomical information from histology is fused with the mass spectra from MALDI-MSI. As a result of the described pipeline we have a set of 3 dimensional images representing the same anatomies, i.e. the reconstructed slice scans, the spectral images as well as corresponding clustering results, and the acquired MRI. Great emphasis is put on the fact that the co-registered MRI providing anatomical details improves the interpretation of 3D MALDI images. The ability to relate mass spectrometry derived molecular information with in vivo and in vitro imaging has potentially important implications. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. Copyright © 2013. Published by Elsevier B.V.

  11. Dual-channel in-line digital holographic double random phase encryption

    PubMed Central

    Das, Bhargab; Yelleswarapu, Chandra S; Rao, D V G L N

    2012-01-01

    We present a robust encryption method for the encoding of 2D/3D objects using digital holography and virtual optics. Using our recently developed dual-plane in-line digital holography technique, two in-line digital holograms are recorded at two different planes and are encrypted using two different double random phase encryption configurations, independently. The process of using two mutually exclusive encryption channels makes the system more robust against attacks since both the channels should be decrypted accurately in order to get a recognizable reconstruction. Results show that the reconstructed object is unrecognizable even when the portion of the correct phase keys used during decryption is close to 75%. The system is verified against blind decryptions by evaluating the SNR and MSE. Validation of the proposed method and sensitivities of the associated parameters are quantitatively analyzed and illustrated. PMID:23471012

  12. Comparison of the Specificity of MREIT and Dynamic Contrast-Enhanced MRI in Breast Cancer

    DTIC Science & Technology

    2007-05-01

    ghosts ’ of objects in other slices may even appear in the reconstructed slice depending on how the conductivity and resulting 3D current density is...background and results are compared to the ideal reconstruction. (Some figures in this article are in colour only in the electronic version) 1. Introduction...eliminate any contribution from the currents flowing in those wires. Wires were mounted on acrylic support beams to establish rigidity. For all cases

  13. Best-next-view algorithm for three-dimensional scene reconstruction using range images

    NASA Astrophysics Data System (ADS)

    Banta, J. E.; Zhien, Yu; Wang, X. Z.; Zhang, G.; Smith, M. T.; Abidi, Mongi A.

    1995-10-01

    The primary focus of the research detailed in this paper is to develop an intelligent sensing module capable of automatically determining the optimal next sensor position and orientation during scene reconstruction. To facilitate a solution to this problem, we have assembled a system for reconstructing a 3D model of an object or scene from a sequence of range images. Candidates for the best-next-view position are determined by detecting and measuring occlusions to the range camera's view in an image. Ultimately, the candidate which will reveal the greatest amount of unknown scene information is selected as the best-next-view position. Our algorithm uses ray tracing to determine how much new information a given sensor perspective will reveal. We have tested our algorithm successfully on several synthetic range data streams, and found the system's results to be consistent with an intuitive human search. The models recovered by our system from range data compared well with the ideal models. Essentially, we have proven that range information of physical objects can be employed to automatically reconstruct a satisfactory dynamic 3D computer model at a minimal computational expense. This has obvious implications in the contexts of robot navigation, manufacturing, and hazardous materials handling. The algorithm we developed takes advantage of no a priori information in finding the best-next-view position.

  14. Development and Evaluation of Real-Time Volumetric Compton Gamma-Ray Imaging

    NASA Astrophysics Data System (ADS)

    Barnowski, Ross Wegner

    An approach to gamma-ray imaging has been developed that enables near real-time volumetric (3D) imaging of unknown environments thus improving the utility of gamma-ray imaging for source-search and radiation mapping applications. The approach, herein dubbed scene data fusion (SDF), is based on integrating mobile radiation imagers with real time tracking and scene reconstruction algorithms to enable a mobile mode of operation and 3D localization of gamma-ray sources. The real-time tracking allows the imager to be moved throughout the environment or around a particular object of interest, obtaining the multiple perspectives necessary for standoff 3D imaging. A 3D model of the scene, provided in real-time by a simultaneous localization and mapping (SLAM) algorithm, can be incorporated into the image reconstruction reducing the reconstruction time and improving imaging performance. The SDF concept is demonstrated in this work with a Microsoft Kinect RGB-D sensor, a real-time SLAM solver, and two different mobile gamma-ray imaging platforms. The first is a cart-based imaging platform known as the Volumetric Compton Imager (VCI), comprising two 3D position-sensitive high purity germanium (HPGe) detectors, exhibiting excellent gamma-ray imaging characteristics, but with limited mobility due to the size and weight of the cart. The second system is the High Efficiency Multimodal Imager (HEMI) a hand-portable gamma-ray imager comprising 96 individual cm3 CdZnTe crystals arranged in a two-plane, active-mask configuration. The HEMI instrument has poorer energy and angular resolution than the VCI, but is truly hand-portable, allowing the SDF concept to be tested in multiple environments and for more challenging imaging scenarios. An iterative algorithm based on Compton kinematics is used to reconstruct the gamma-ray source distribution in all three spatial dimensions. Each of the two mobile imaging systems are used to demonstrate SDF for a variety of scenarios, including general search and mapping scenarios with several point gamma-ray sources over the range of energies relevant for Compton imaging. More specific imaging scenarios are also addressed, including directed search and object interrogation scenarios. Finally, the volumetric image quality is quantitatively investigated with respect to the number of Compton events acquired during a measurement, the list-mode uncertainty of the Compton cone data, and the uncertainty in the pose estimate from the real-time tracking algorithm. SDF advances the real-world applicability of gamma-ray imaging for many search, mapping, and verification scenarios by improving the tractability of the gamma-ray image reconstruction and providing context for the 3D localization of gamma-ray sources within the environment in real-time.

  15. Lossy to lossless object-based coding of 3-D MRI data.

    PubMed

    Menegaz, Gloria; Thiran, Jean-Philippe

    2002-01-01

    We propose a fully three-dimensional (3-D) object-based coding system exploiting the diagnostic relevance of the different regions of the volumetric data for rate allocation. The data are first decorrelated via a 3-D discrete wavelet transform. The implementation via the lifting steps scheme allows to map integer-to-integer values, enabling lossless coding, and facilitates the definition of the object-based inverse transform. The coding process assigns disjoint segments of the bitstream to the different objects, which can be independently accessed and reconstructed at any up-to-lossless quality. Two fully 3-D coding strategies are considered: embedded zerotree coding (EZW-3D) and multidimensional layered zero coding (MLZC), both generalized for region of interest (ROI)-based processing. In order to avoid artifacts along region boundaries, some extra coefficients must be encoded for each object. This gives rise to an overheading of the bitstream with respect to the case where the volume is encoded as a whole. The amount of such extra information depends on both the filter length and the decomposition depth. The system is characterized on a set of head magnetic resonance images. Results show that MLZC and EZW-3D have competitive performances. In particular, the best MLZC mode outperforms the others state-of-the-art techniques on one of the datasets for which results are available in the literature.

  16. 3D reconstructions with pixel-based images are made possible by digitally clearing plant and animal tissue

    USDA-ARS?s Scientific Manuscript database

    Reconstruction of 3D images from a series of 2D images has been restricted by the limited capacity to decrease the opacity of surrounding tissue. Commercial software that allows color-keying and manipulation of 2D images in true 3D space allowed us to produce 3D reconstructions from pixel based imag...

  17. Monitoring the Deterioration of Stone at Mindener MUSEUM'S Lapidarium

    NASA Astrophysics Data System (ADS)

    Pomaska, G.

    2013-07-01

    Mindener Museum's Lapidarium incorporates a collection of stone work like reliefs, sculptures and inscriptions from different time epochs as advices of the city's history. These gems must be protected against environmental influences and deterioration. In advance of the measures a 3D reconstruction and detailed documentation has to be taken. The framework to establish hard- and software must match the museum's infrastructure. Two major question will be answered. Are low-cost scanning devices like depth cameras and digital of the shelf cameras suitable for the data acquisition? Does the functionality of open source and freeware covers the demand on investigation and analysis in this application? The working chain described in this contribution covers the structure from motion method and the reconstruction with RGB-D cameras. Mesh processing such as cleaning, smoothing, poisson surface reconstruction and texturing will be accomplished with MeshLab. Data acquisition and modelling continues in structure analysis. Therefore the focus lies as well on latest software developments related to 3D printing technologies. Repairing and finishing of meshes is a task for MeshMixer. Netfabb as a tool for positioning, dimensioning and slicing enables virtual handling of the items. On the Sketchfab web site one can publish and share 3D objects with integration into web pages supported by WebGL. Finally if a prototype is needed, the mesh can be uploaded to a 3D printing device provided by an online service.

  18. A Kullback-Leibler approach for 3D reconstruction of spectral CT data corrupted by Poisson noise

    NASA Astrophysics Data System (ADS)

    Hohweiller, Tom; Ducros, Nicolas; Peyrin, Françoise; Sixou, Bruno

    2017-09-01

    While standard computed tomography (CT) data do not depend on energy, spectral computed tomography (SPCT) acquire energy-resolved data, which allows material decomposition of the object of interest. Decompo- sitions in the projection domain allow creating projection mass density (PMD) per materials. From decomposed projections, a tomographic reconstruction creates 3D material density volume. The decomposition is made pos- sible by minimizing a cost function. The variational approach is preferred since this is an ill-posed non-linear inverse problem. Moreover, noise plays a critical role when decomposing data. That is why in this paper, a new data fidelity term is used to take into account of the photonic noise. In this work two data fidelity terms were investigated: a weighted least squares (WLS) term, adapted to Gaussian noise, and the Kullback-Leibler distance (KL), adapted to Poisson noise. A regularized Gauss-Newton algorithm minimizes the cost function iteratively. Both methods decompose materials from a numerical phantom of a mouse. Soft tissues and bones are decomposed in the projection domain; then a tomographic reconstruction creates a 3D material density volume for each material. Comparing relative errors, KL is shown to outperform WLS for low photon counts, in 2D and 3D. This new method could be of particular interest when low-dose acquisitions are performed.

  19. Compression and accelerated rendering of volume data using DWT

    NASA Astrophysics Data System (ADS)

    Kamath, Preyas; Akleman, Ergun; Chan, Andrew K.

    1998-09-01

    2D images cannot convey information on object depth and location relative to the surfaces. The medical community is increasingly using 3D visualization techniques to view data from CT scans, MRI etc. 3D images provide more information on depth and location in the spatial domain to help surgeons making better diagnoses of the problem. 3D images can be constructed from 2D images using 3D scalar algorithms. With recent advances in communication techniques, it is possible for doctors to diagnose and plan treatment of a patient who lives at a remote location. It is made possible by transmitting relevant data of the patient via telephone lines. If this information is to be reconstructed in 3D, then 2D images must be transmitted. However 2D dataset storage occupies a lot of memory. In addition, visualization algorithms are slow. We describe in this paper a scheme which reduces the data transfer time by only transmitting information that the doctor wants. Compression is achieved by reducing the amount of data transfer. This is possible by using the 3D wavelet transform applied to 3D datasets. Since the wavelet transform is localized in frequency and spatial domain, we transmit detail only in the region where the doctor needs it. Since only ROM (Region of Interest) is reconstructed in detail, we need to render only ROI in detail, thus we can reduce the rendering time.

  20. Terrestrial laser scanning for biomass assessment and tree reconstruction: improved processing efficiency

    NASA Astrophysics Data System (ADS)

    Alboabidallah, Ahmed; Martin, John; Lavender, Samantha; Abbott, Victor

    2017-09-01

    Terrestrial Laser Scanning (TLS) processing for biomass mapping involves large data volumes, and often includes relatively slow 3D object fitting steps that increase the processing time. This study aimed to test new features that can speed up the overall processing time. A new type of 3D voxel is used, where the horizontal layers are parallel to the Digital Terrain Model. This voxel type allows procedures to extract tree diameters using just one layer, but still gives direct tree-height estimations. Layer intersection is used to emphasize the trunks as upright standing objects, which are detected in the spatially segmented intersection of the breast-height voxels and then extended upwards and downwards. The diameters were calculated by fitting elliptical cylinders to the laser points in the detected trunk segments. Non-trunk segments, used in sub-tree- structures, were found using the parent-child relationships between successive layers. The branches were reconstructed by skeletonizing each sub-tree branch, and the biomass was distributed statistically amongst the weighted skeletons. The procedure was applied to nine plots within the UK. The average correlation coefficients between reconstructed and directly measured tree diameters, heights and branches were R2 = 0.92, 0.97 and 0.59 compared to 0.91, 0.95, and 0.63 when cylindrical fitting was used. The average time to apply the method reduced from 5hrs:18mins per plot, for the conventional methods, to 2hrs:24mins when the same hardware and software libraries were used with the 3D voxels. These results indicate that this 3D voxel method can produce, much more quickly, results of a similar accuracy that would improve efficiency if applied to projects with large volume TLS datasets.

  1. Recent progress in 3-D imaging of sea freight containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, Theobald, E-mail: theobold.fuchs@iis.fraunhofer.de; Schön, Tobias, E-mail: theobold.fuchs@iis.fraunhofer.de; Sukowski, Frank

    The inspection of very large objects like sea freight containers with X-ray Computed Tomography (CT) is an emerging technology. A complete 3-D CT scan of a see-freight container takes several hours. Of course, this is too slow to apply it to a large number of containers. However, the benefits of a 3-D CT for sealed freight are obvious: detection of potential threats or illicit cargo without being confronted with legal complications or high time consumption and risks for the security personnel during a manual inspection. Recently distinct progress was made in the field of reconstruction of projections with only amore » relatively low number of angular positions. Instead of today’s 500 to 1000 rotational steps, as needed for conventional CT reconstruction techniques, this new class of algorithms provides the potential to reduce the number of projection angles approximately by a factor of 10. The main drawback of these advanced iterative methods is the high consumption for numerical processing. But as computational power is getting steadily cheaper, there will be practical applications of these complex algorithms in a foreseeable future. In this paper, we discuss the properties of iterative image reconstruction algorithms and show results of their application to CT of extremely large objects scanning a sea-freight container. A specific test specimen is used to quantitatively evaluate the image quality in terms of spatial and contrast resolution and depending on different number of projections.« less

  2. D Reconstruction from Uav-Based Hyperspectral Images

    NASA Astrophysics Data System (ADS)

    Liu, L.; Xu, L.; Peng, J.

    2018-04-01

    Reconstructing the 3D profile from a set of UAV-based images can obtain hyperspectral information, as well as the 3D coordinate of any point on the profile. Our images are captured from the Cubert UHD185 (UHD) hyperspectral camera, which is a new type of high-speed onboard imaging spectrometer. And it can get both hyperspectral image and panchromatic image simultaneously. The panchromatic image have a higher spatial resolution than hyperspectral image, but each hyperspectral image provides considerable information on the spatial spectral distribution of the object. Thus there is an opportunity to derive a high quality 3D point cloud from panchromatic image and considerable spectral information from hyperspectral image. The purpose of this paper is to introduce our processing chain that derives a database which can provide hyperspectral information and 3D position of each point. First, We adopt a free and open-source software, Visual SFM which is based on structure from motion (SFM) algorithm, to recover 3D point cloud from panchromatic image. And then get spectral information of each point from hyperspectral image by a self-developed program written in MATLAB. The production can be used to support further research and applications.

  3. Beat to beat 3-dimensional intracardiac echocardiography: theoretical approach and practical experiences.

    PubMed

    Stapf, Daniel; Franke, Andreas; Schreckenberg, Marcus; Schummers, Georg; Mischke, Karl; Marx, Nikolaus; Schauerte, Patrick; Knackstedt, Christian

    2013-04-01

    Three-dimensional (3D)-imaging provides important information on cardiac anatomy during electrophysiological procedures. Real-time updates of modalities with high soft-tissue contrast are particularly advantageous during cardiac procedures. Therefore, a beat to beat 3D visualization of cardiac anatomy by intracardiac echocardiography (ICE) was developed and tested in phantoms and animals. An electronic phased-array 5-10 MHz ICE-catheter (Acuson, AcuNav/Siemens Medical Solutions USA/64 elements) providing a 90° sector image was used for ICE-imaging. A custom-made mechanical prototype controlled by a servo motor allowed automatic rotation of the ICE-catheter around its longitudinal axis. During a single heartbeat, the ICE-catheter was rotated and 2D-images were acquired. Reconstruction into a 3D volume and rendering by a prototype software was performed beat to beat. After experimental validation using a rigid phantom, the system was tested in an animal study and afterwards, for quantitative validation, in a dynamic phantom. Acquisition of beat to beat 3D-reconstruction was technically feasible. However, twisting of the ICE-catheter shaft due to friction and torsion was found and rotation was hampered. Also, depiction of catheters was not always ensured in case of parallel alignment. Using a curved sheath for depiction of cardiac anatomy there was no congruent depiction of shape and dimension of static and moving objects. Beat to beat 3D-ICE-imaging is feasible. However, shape and dimension of static and moving objects cannot always be displayed with necessary steadiness as needed in the clinical setting. As catheter depiction is also limited, clinical use seems impossible.

  4. MO-A-9A-01: Innovation in Medical Physics Practice: 3D Printing Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehler, E; Perks, J; Rasmussen, K

    2014-06-15

    3D printing, also called additive manufacturing, has great potential to advance the field of medicine. Many medical uses have been exhibited from facial reconstruction to the repair of pulmonary obstructions. The strength of 3D printing is to quickly convert a 3D computer model into a physical object. Medical use of 3D models is already ubiquitous with technologies such as computed tomography and magnetic resonance imaging. Thus tailoring 3D printing technology to medical functions has the potential to impact patient care. This session will discuss applications to the field of Medical Physics. Topics discussed will include introduction to 3D printing methodsmore » as well as examples of real-world uses of 3D printing spanning clinical and research practice in diagnostic imaging and radiation therapy. The session will also compare 3D printing to other manufacturing processes and discuss a variety of uses of 3D printing technology outside the field of Medical Physics. Learning Objectives: Understand the technologies available for 3D Printing Understand methods to generate 3D models Identify the benefits and drawbacks to rapid prototyping / 3D Printing Understand the potential issues related to clinical use of 3D Printing.« less

  5. Solving the inverse scattering problem in reflection-mode dynamic speckle-field phase microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; So, Peter T. C.; Yaqoob, Zahid; Jin, Di; Hosseini, Poorya; Kuang, Cuifang; Singh, Vijay Raj; Kim, Yang-Hyo; Dasari, Ramachandra R.

    2017-02-01

    Most of the quantitative phase microscopy systems are unable to provide depth-resolved information for measuring complex biological structures. Optical diffraction tomography provides a non-trivial solution to it by 3D reconstructing the object with multiple measurements through different ways of realization. Previously, our lab developed a reflection-mode dynamic speckle-field phase microscopy (DSPM) technique, which can be used to perform depth resolved measurements in a single shot. Thus, this system is suitable for measuring dynamics in a layer of interest in the sample. DSPM can be also used for tomographic imaging, which promises to solve the long-existing "missing cone" problem in 3D imaging. However, the 3D imaging theory for this type of system has not been developed in the literature. Recently, we have developed an inverse scattering model to rigorously describe the imaging physics in DSPM. Our model is based on the diffraction tomography theory and the speckle statistics. Using our model, we first precisely calculated the defocus response and the depth resolution in our system. Then, we further calculated the 3D coherence transfer function to link the 3D object structural information with the axially scanned imaging data. From this transfer function, we found that in the reflection mode excellent sectioning effect exists in the low lateral spatial frequency region, thus allowing us to solve the "missing cone" problem. Currently, we are working on using this coherence transfer function to reconstruct layered structures and complex cells.

  6. Development of a three-dimensional correction method for optical distortion of flow field inside a liquid droplet.

    PubMed

    Gim, Yeonghyeon; Ko, Han Seo

    2016-04-15

    In this Letter, a three-dimensional (3D) optical correction method, which was verified by simulation, was developed to reconstruct droplet-based flow fields. In the simulation, a synthetic phantom was reconstructed using a simultaneous multiplicative algebraic reconstruction technique with three detectors positioned at the synthetic object (represented by the phantom), with offset angles of 30° relative to each other. Additionally, a projection matrix was developed using the ray tracing method. If the phantom is in liquid, the image of the phantom can be distorted since the light passes through a convex liquid-vapor interface. Because of the optical distortion effect, the projection matrix used to reconstruct a 3D field should be supplemented by the revision ray, instead of the original projection ray. The revision ray can be obtained from the refraction ray occurring on the surface of the liquid. As a result, the error on the reconstruction field of the phantom could be reduced using the developed optical correction method. In addition, the developed optical method was applied to a Taylor cone which was caused by the high voltage between the droplet and the substrate.

  7. Rotational magneto-acousto-electric tomography (MAET): theory and experimental validation

    PubMed Central

    Kunyansky, L; Ingram, C P; Witte, R S

    2017-01-01

    We present a novel two-dimensional (2D) MAET scanner, with a rotating object of interest and two fixed pairs of electrodes. Such an acquisition scheme, with our novel reconstruction techniques, recovers the boundaries of the regions of constant conductivity uniformly well, regardless of their orientation. We also present a general image reconstruction algorithm for the 2D MAET in a circular chamber with point-like electrodes immersed into the saline surrounding the object. An alternative linearized reconstruction procedure is developed, suitable for recovering the material interfaces (boundaries) when a non-ideal piezoelectric transducer is used for acoustic excitation. The work of the scanner and the linearized reconstruction algorithm is demonstrated using several phantoms made of high-contrast materials and a biological sample. PMID:28323633

  8. Experimental study of sector and linear array ultrasound accuracy and the influence of navigated 3D-reconstruction as compared to MRI in a brain tumor model.

    PubMed

    Siekmann, Max; Lothes, Thomas; König, Ralph; Wirtz, Christian Rainer; Coburger, Jan

    2018-03-01

    Currently, intraoperative ultrasound in brain tumor surgery is a rapidly propagating option in imaging technology. We examined the accuracy and resolution limits of different ultrasound probes and the influence of 3D-reconstruction in a phantom and compared these results to MRI in an intraoperative setting (iMRI). An agarose gel phantom with predefined gel targets was examined with iMRI, a sector (SUS) and a linear (LUS) array probe with two-dimensional images. Additionally, 3D-reconstructed sweeps in perpendicular directions were made of every target with both probes, resulting in 392 measurements. Statistical calculations were performed, and comparative boxplots were generated. Every measurement of iMRI and LUS was more precise than SUS, while there was no apparent difference in height of iMRI and 3D-reconstructed LUS. Measurements with 3D-reconstructed LUS were always more accurate than in 2D-LUS, while 3D-reconstruction of SUS showed nearly no differences to 2D-SUS in some measurements. We found correlations of 3D-reconstructed SUS and LUS length and width measurements with 2D results in the same image orientation. LUS provides an accuracy and resolution comparable to iMRI, while SUS is less exact than LUS and iMRI. 3D-reconstruction showed the potential to distinctly improve accuracy and resolution of ultrasound images, although there is a strong correlation with the sweep direction during data acquisition.

  9. D Building FAÇADE Reconstruction Using Handheld Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Sadeghi, F.; Arefi, H.; Fallah, A.; Hahn, M.

    2015-12-01

    3D The three dimensional building modelling has been an interesting topic of research for decades and it seems that photogrammetry methods provide the only economic means to acquire truly 3D city data. According to the enormous developments of 3D building reconstruction with several applications such as navigation system, location based services and urban planning, the need to consider the semantic features (such as windows and doors) becomes more essential than ever, and therefore, a 3D model of buildings as block is not any more sufficient. To reconstruct the façade elements completely, we employed the high density point cloud data that obtained from the handheld laser scanner. The advantage of the handheld laser scanner with capability of direct acquisition of very dense 3D point clouds is that there is no need to derive three dimensional data from multi images using structure from motion techniques. This paper presents a grammar-based algorithm for façade reconstruction using handheld laser scanner data. The proposed method is a combination of bottom-up (data driven) and top-down (model driven) methods in which, at first the façade basic elements are extracted in a bottom-up way and then they are served as pre-knowledge for further processing to complete models especially in occluded and incomplete areas. The first step of data driven modelling is using the conditional RANSAC (RANdom SAmple Consensus) algorithm to detect façade plane in point cloud data and remove noisy objects like trees, pedestrians, traffic signs and poles. Then, the façade planes are divided into three depth layers to detect protrusion, indentation and wall points using density histogram. Due to an inappropriate reflection of laser beams from glasses, the windows appear like holes in point cloud data and therefore, can be distinguished and extracted easily from point cloud comparing to the other façade elements. Next step, is rasterizing the indentation layer that holds the windows and doors information. After rasterization process, the morphological operators are applied in order to remove small irrelevant objects. Next, the horizontal splitting lines are employed to determine floors and vertical splitting lines are employed to detect walls, windows, and doors. The windows, doors and walls elements which are named as terminals are clustered during classification process. Each terminal contains a special property as width. Among terminals, windows and doors are named the geometry tiles in definition of the vocabularies of grammar rules. Higher order structures that inferred by grouping the tiles resulted in the production rules. The rules with three dimensional modelled façade elements constitute formal grammar that is named façade grammar. This grammar holds all the information that is necessary to reconstruct façades in the style of the given building. Thus, it can be used to improve and complete façade reconstruction in areas with no or limited sensor data. Finally, a 3D reconstructed façade model is generated that the accuracy of its geometry size and geometry position depends on the density of the raw point cloud.

  10. Inefficacy of Kinesio-Taping(®) on early postoperative pain after ACL reconstruction: Prospective comparative study.

    PubMed

    Laborie, M; Klouche, S; Herman, S; Gerometta, A; Lefevre, N; Bohu, Y

    2015-12-01

    Kinesio-Taping(®) (K-Tape) is used in sports traumatology with the aim of reducing pain and improving blood and lymph circulation. The main objective of the present study was to assess the efficacy of K-Tape on early postoperative pain after anterior cruciate ligament (ACL) reconstruction. The study hypothesis was that K-Tape significantly decreases pain. A prospective non-randomized comparative study was conducted in 2013-2014 and included all patients who underwent primary ACL reconstruction by hamstring graft. Analgesia was standardized. Two groups, "K-Tape" and "controls", were formed according to the days on which the study physiotherapist was present. The K-Tape compression/decompression assembly was applied immediately postoperatively and maintained for 3days. Patients filled out online questionnaires. The main assessment criterion was mean postoperative pain (D0-D3) on a 0-to-10 scale. Secondary criteria were analgesia intake on the three WHO levels, awakening during the night of D0 due to pain, signs of postoperative discomfort, and patient satisfaction. Sixty patients (30 per group) were included, 57 of whom could be assessed: 28 K-Tape, 29 controls; 44 male, 13 female; mean age, 30.9±8.9 years. At inclusion, the two groups were comparable. There was no significant difference in mean (D0-D3) knee pain intensity: 3.8±2.2 for K-Tape, and 3.9±2 for controls (P=0.93). Analysis of variance (ANOVA) found no significant intergroup difference in evolution of pain (P=0.34). There were no other significant differences on the other assessment criteria. K-Tape showed no efficacy on early postoperative pain following ACL reconstruction. III; prospective non-randomized comparative study. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Guoyan

    2010-04-15

    Purpose: The aim of this article is to investigate the feasibility of using a statistical shape model (SSM)-based reconstruction technique to derive a scaled, patient-specific surface model of the pelvis from a single standard anteroposterior (AP) x-ray radiograph and the feasibility of estimating the scale of the reconstructed surface model by performing a surface-based 3D/3D matching. Methods: Data sets of 14 pelvises (one plastic bone, 12 cadavers, and one patient) were used to validate the single-image based reconstruction technique. This reconstruction technique is based on a hybrid 2D/3D deformable registration process combining a landmark-to-ray registration with a SSM-based 2D/3D reconstruction.more » The landmark-to-ray registration was used to find an initial scale and an initial rigid transformation between the x-ray image and the SSM. The estimated scale and rigid transformation were used to initialize the SSM-based 2D/3D reconstruction. The optimal reconstruction was then achieved in three stages by iteratively matching the projections of the apparent contours extracted from a 3D model derived from the SSM to the image contours extracted from the x-ray radiograph: Iterative affine registration, statistical instantiation, and iterative regularized shape deformation. The image contours are first detected by using a semiautomatic segmentation tool based on the Livewire algorithm and then approximated by a set of sparse dominant points that are adaptively sampled from the detected contours. The unknown scales of the reconstructed models were estimated by performing a surface-based 3D/3D matching between the reconstructed models and the associated ground truth models that were derived from a CT-based reconstruction method. Such a matching also allowed for computing the errors between the reconstructed models and the associated ground truth models. Results: The technique could reconstruct the surface models of all 14 pelvises directly from the landmark-based initialization. Depending on the surface-based matching techniques, the reconstruction errors were slightly different. When a surface-based iterative affine registration was used, an average reconstruction error of 1.6 mm was observed. This error was increased to 1.9 mm, when a surface-based iterative scaled rigid registration was used. Conclusions: It is feasible to reconstruct a scaled, patient-specific surface model of the pelvis from single standard AP x-ray radiograph using the present approach. The unknown scale of the reconstructed model can be estimated by performing a surface-based 3D/3D matching.« less

  12. Refraction corrected calibration for aquatic locomotion research: application of Snell's law improves spatial accuracy.

    PubMed

    Henrion, Sebastian; Spoor, Cees W; Pieters, Remco P M; Müller, Ulrike K; van Leeuwen, Johan L

    2015-07-07

    Images of underwater objects are distorted by refraction at the water-glass-air interfaces and these distortions can lead to substantial errors when reconstructing the objects' position and shape. So far, aquatic locomotion studies have minimized refraction in their experimental setups and used the direct linear transform algorithm (DLT) to reconstruct position information, which does not model refraction explicitly. Here we present a refraction corrected ray-tracing algorithm (RCRT) that reconstructs position information using Snell's law. We validated this reconstruction by calculating 3D reconstruction error-the difference between actual and reconstructed position of a marker. We found that reconstruction error is small (typically less than 1%). Compared with the DLT algorithm, the RCRT has overall lower reconstruction errors, especially outside the calibration volume, and errors are essentially insensitive to camera position and orientation and the number and position of the calibration points. To demonstrate the effectiveness of the RCRT, we tracked an anatomical marker on a seahorse recorded with four cameras to reconstruct the swimming trajectory for six different camera configurations. The RCRT algorithm is accurate and robust and it allows cameras to be oriented at large angles of incidence and facilitates the development of accurate tracking algorithms to quantify aquatic manoeuvers.

  13. Improving 3D Genome Reconstructions Using Orthologous and Functional Constraints

    PubMed Central

    Diament, Alon; Tuller, Tamir

    2015-01-01

    The study of the 3D architecture of chromosomes has been advancing rapidly in recent years. While a number of methods for 3D reconstruction of genomic models based on Hi-C data were proposed, most of the analyses in the field have been performed on different 3D representation forms (such as graphs). Here, we reproduce most of the previous results on the 3D genomic organization of the eukaryote Saccharomyces cerevisiae using analysis of 3D reconstructions. We show that many of these results can be reproduced in sparse reconstructions, generated from a small fraction of the experimental data (5% of the data), and study the properties of such models. Finally, we propose for the first time a novel approach for improving the accuracy of 3D reconstructions by introducing additional predicted physical interactions to the model, based on orthologous interactions in an evolutionary-related organism and based on predicted functional interactions between genes. We demonstrate that this approach indeed leads to the reconstruction of improved models. PMID:26000633

  14. 5D Modelling: An Efficient Approach for Creating Spatiotemporal Predictive 3D Maps of Large-Scale Cultural Resources

    NASA Astrophysics Data System (ADS)

    Doulamis, A.; Doulamis, N.; Ioannidis, C.; Chrysouli, C.; Grammalidis, N.; Dimitropoulos, K.; Potsiou, C.; Stathopoulou, E.-K.; Ioannides, M.

    2015-08-01

    Outdoor large-scale cultural sites are mostly sensitive to environmental, natural and human made factors, implying an imminent need for a spatio-temporal assessment to identify regions of potential cultural interest (material degradation, structuring, conservation). On the other hand, in Cultural Heritage research quite different actors are involved (archaeologists, curators, conservators, simple users) each of diverse needs. All these statements advocate that a 5D modelling (3D geometry plus time plus levels of details) is ideally required for preservation and assessment of outdoor large scale cultural sites, which is currently implemented as a simple aggregation of 3D digital models at different time and levels of details. The main bottleneck of such an approach is its complexity, making 5D modelling impossible to be validated in real life conditions. In this paper, a cost effective and affordable framework for 5D modelling is proposed based on a spatial-temporal dependent aggregation of 3D digital models, by incorporating a predictive assessment procedure to indicate which regions (surfaces) of an object should be reconstructed at higher levels of details at next time instances and which at lower ones. In this way, dynamic change history maps are created, indicating spatial probabilities of regions needed further 3D modelling at forthcoming instances. Using these maps, predictive assessment can be made, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 5D Digital Cultural Heritage Model (5D-DCHM) is implemented using open interoperable standards based on the CityGML framework, which also allows the description of additional semantic metadata information. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 5D-DCHM geometry and the respective semantic information. The open source 3DCityDB incorporating a PostgreSQL geo-database is used to manage and manipulate 3D data and their semantics.

  15. WE-AB-BRA-08: Correction of Patient Motion in C-Arm Cone-Beam CT Using 3D-2D Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouadah, S; Jacobson, M; Stayman, JW

    2016-06-15

    Purpose: Intraoperative C-arm cone-beam CT (CBCT) is subject to artifacts arising from patient motion during the fairly long (∼5–20 s) scan times. We present a fiducial free method to mitigate motion artifacts using 3D-2D image registration that simultaneously corrects residual errors in geometric calibration. Methods: A 3D-2D registration process was used to register each projection to DRRs computed from the 3D image by maximizing gradient orientation (GO) using the CMA-ES optimizer. The resulting rigid 6 DOF transforms were applied to the system projection matrices, and a 3D image was reconstructed via model-based image reconstruction (MBIR, which accommodates the resulting noncircularmore » orbit). Experiments were conducted using a Zeego robotic C-arm (20 s, 200°, 496 projections) to image a head phantom undergoing various types of motion: 1) 5° lateral motion; 2) 15° lateral motion; and 3) 5° lateral motion with 10 mm periodic inferior-superior motion. Images were reconstructed using a penalized likelihood (PL) objective function, and structural similarity (SSIM) was measured for axial slices of the reconstructed images. A motion-free image was acquired using the same protocol for comparison. Results: There was significant improvement (p < 0.001) in the SSIM of the motion-corrected (MC) images compared to uncorrected images. The SSIM in MC-PL images was >0.99, indicating near identity to the motion-free reference. The point spread function (PSF) measured from a wire in the phantom was restored to that of the reference in each case. Conclusion: The 3D-2D registration method provides a robust framework for mitigation of motion artifacts and is expected to hold for applications in the head, pelvis, and extremities with reasonably constrained operative setup. Further improvement can be achieved by incorporating multiple rigid components and non-rigid deformation within the framework. The method is highly parallelizable and could in principle be run with every acquisition. Research supported by National Institutes of Health Grant No. R01-EB-017226 and academic-industry partnership with Siemens Healthcare (AX Division, Forcheim, Germany).« less

  16. 3D road marking reconstruction from street-level calibrated stereo pairs

    NASA Astrophysics Data System (ADS)

    Soheilian, Bahman; Paparoditis, Nicolas; Boldo, Didier

    This paper presents an automatic approach to road marking reconstruction using stereo pairs acquired by a mobile mapping system in a dense urban area. Two types of road markings were studied: zebra crossings (crosswalks) and dashed lines. These two types of road markings consist of strips having known shape and size. These geometric specifications are used to constrain the recognition of strips. In both cases (i.e. zebra crossings and dashed lines), the reconstruction method consists of three main steps. The first step extracts edge points from the left and right images of a stereo pair and computes 3D linked edges using a matching process. The second step comprises a filtering process that uses the known geometric specifications of road marking objects. The goal is to preserve linked edges that can plausibly belong to road markings and to filter others out. The final step uses the remaining linked edges to fit a theoretical model to the data. The method developed has been used for processing a large number of images. Road markings are successfully and precisely reconstructed in dense urban areas under real traffic conditions.

  17. [Three-dimensional tooth model reconstruction based on fusion of dental computed tomography images and laser-scanned images].

    PubMed

    Zhang, Dongxia; Gan, Yangzhou; Xiong, Jing; Xia, Zeyang

    2017-02-01

    Complete three-dimensional(3D) tooth model provides essential information to assist orthodontists for diagnosis and treatment planning. Currently, 3D tooth model is mainly obtained by segmentation and reconstruction from dental computed tomography(CT) images. However, the accuracy of 3D tooth model reconstructed from dental CT images is low and not applicable for invisalign design. And another serious problem also occurs, i.e. frequentative dental CT scan during different intervals of orthodontic treatment often leads to radiation to the patients. Hence, this paper proposed a method to reconstruct tooth model based on fusion of dental CT images and laser-scanned images. A complete3 D tooth model was reconstructed with the registration and fusion between the root reconstructed from dental CT images and the crown reconstructed from laser-scanned images. The crown of the complete 3D tooth model reconstructed with the proposed method has higher accuracy. Moreover, in order to reconstruct complete 3D tooth model of each orthodontic treatment interval, only one pre-treatment CT scan is needed and in the orthodontic treatment process only the laser-scan is required. Therefore, radiation to the patients can be reduced significantly.

  18. a Line-Based 3d Roof Model Reconstruction Algorithm: Tin-Merging and Reshaping (tmr)

    NASA Astrophysics Data System (ADS)

    Rau, J.-Y.

    2012-07-01

    Three-dimensional building model is one of the major components of a cyber-city and is vital for the realization of 3D GIS applications. In the last decade, the airborne laser scanning (ALS) data is widely used for 3D building model reconstruction and object extraction. Instead, based on 3D roof structural lines, this paper presents a novel algorithm for automatic roof models reconstruction. A line-based roof model reconstruction algorithm, called TIN-Merging and Reshaping (TMR), is proposed. The roof structural line, such as edges, eaves and ridges, can be measured manually from aerial stereo-pair, derived by feature line matching or inferred from ALS data. The originality of the TMR algorithm for 3D roof modelling is to perform geometric analysis and topology reconstruction among those unstructured lines and then reshapes the roof-type using elevation information from the 3D structural lines. For topology reconstruction, a line constrained Delaunay Triangulation algorithm is adopted where the input structural lines act as constraint and their vertex act as input points. Thus, the constructed TINs will not across the structural lines. Later at the stage of Merging, the shared edge between two TINs will be check if the original structural line exists. If not, those two TINs will be merged into a polygon. Iterative checking and merging of any two neighboured TINs/Polygons will result in roof polygons on the horizontal plane. Finally, at the Reshaping stage any two structural lines with fixed height will be used to adjust a planar function for the whole roof polygon. In case ALS data exist, the Reshaping stage can be simplified by adjusting the point cloud within the roof polygon. The proposed scheme reduces the complexity of 3D roof modelling and makes the modelling process easier. Five test datasets provided by ISPRS WG III/4 located at downtown Toronto, Canada and Vaihingen, Germany are used for experiment. The test sites cover high rise buildings and residential area with diverse roof type. For performance evaluation, the adopted roof structural lines are manually measured from the provided stereo-pair. Experimental results indicate a nearly 100% success rate for topology reconstruction was achieved provided that the 3D structural lines can be enclosed as polygons. On the other hand, the success rate at the Reshaping stage is dependent on the complexity of the rooftop structure. Thus, a visual inspection and semi-automatic adjustment of roof-type is suggested and implemented to complete the roof modelling. The results demonstrate that the proposed scheme is robust and reliable with a high degree of completeness, correctness, and quality, even when a group of connected buildings with multiple layers and mixed roof types is processed.

  19. Motion and positional error correction for cone beam 3D-reconstruction with mobile C-arms.

    PubMed

    Bodensteiner, C; Darolti, C; Schumacher, H; Matthäus, L; Schweikard, A

    2007-01-01

    CT-images acquired by mobile C-arm devices can contain artefacts caused by positioning errors. We propose a data driven method based on iterative 3D-reconstruction and 2D/3D-registration to correct projection data inconsistencies. With a 2D/3D-registration algorithm, transformations are computed to align the acquired projection images to a previously reconstructed volume. In an iterative procedure, the reconstruction algorithm uses the results of the registration step. This algorithm also reduces small motion artefacts within 3D-reconstructions. Experiments with simulated projections from real patient data show the feasibility of the proposed method. In addition, experiments with real projection data acquired with an experimental robotised C-arm device have been performed with promising results.

  20. A modified sparse reconstruction method for three-dimensional synthetic aperture radar image

    NASA Astrophysics Data System (ADS)

    Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin

    2018-03-01

    There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.

  1. Two-dimensional and 3-D images of thick tissue using time-constrained times-of-flight and absorbance spectrophotometry

    NASA Astrophysics Data System (ADS)

    Benaron, David A.; Lennox, M.; Stevenson, David K.

    1992-05-01

    Reconstructing deep-tissue images in real time using spectrophotometric data from optically diffusing thick tissues has been problematic. Continuous wave applications (e.g., pulse oximetry, regional cerebral saturation) ignore both the multiple paths traveled by the photons through the tissue and the effects of scattering, allowing scalar measurements but only under limited conditions; interferometry works poorly in thick, highly-scattering media; frequency- modulated approaches may not allow full deconvolution of scattering and absorbance; and pulsed-light techniques allow for preservation of information regarding the multiple paths taken by light through the tissue, but reconstruction is both computation intensive and limited by the relative surface area available for detection of photons. We have developed a picosecond times-of-flight and absorbance (TOFA) optical system, time-constrained to measure only photons with a narrow range of path lengths and arriving within a narrow angel of the emitter-detector axis. The delay until arrival of the earliest arriving photons is a function of both the scattering and absorbance of the tissues in a direct line between the emitter and detector, reducing the influence of surrounding tissues. Measurement using a variety of emitter and detector locations produces spatial information which can be analyzed in a standard 2-D grid, or subject to computer reconstruction to produce tomographic images representing 3-D structure. Using such a technique, we have been able to demonstrate the principles of tc-TOFA, detect and localize diffusive and/or absorptive objects suspended in highly scattering media (such as blood admixed with yeast), and perform simple 3-D reconstructions using phantom objects. We are now attempting to obtain images in vivo. Potential future applications include use as a research tool, and as a continuous, noninvasive, nondestructive monitor in diagnostic imaging, fetal monitoring, neurologic and cardiac assessment. The technique may lead to real-time optical imaging and quantitation of tissues oxygen delivery.

  2. Image-Based Modeling Techniques for Architectural Heritage 3d Digitalization: Limits and Potentialities

    NASA Astrophysics Data System (ADS)

    Santagati, C.; Inzerillo, L.; Di Paola, F.

    2013-07-01

    3D reconstruction from images has undergone a revolution in the last few years. Computer vision techniques use photographs from data set collection to rapidly build detailed 3D models. The simultaneous applications of different algorithms (MVS), the different techniques of image matching, feature extracting and mesh optimization are inside an active field of research in computer vision. The results are promising: the obtained models are beginning to challenge the precision of laser-based reconstructions. Among all the possibilities we can mainly distinguish desktop and web-based packages. Those last ones offer the opportunity to exploit the power of cloud computing in order to carry out a semi-automatic data processing, thus allowing the user to fulfill other tasks on its computer; whereas desktop systems employ too much processing time and hard heavy approaches. Computer vision researchers have explored many applications to verify the visual accuracy of 3D model but the approaches to verify metric accuracy are few and no one is on Autodesk 123D Catch applied on Architectural Heritage Documentation. Our approach to this challenging problem is to compare the 3Dmodels by Autodesk 123D Catch and 3D models by terrestrial LIDAR considering different object size, from the detail (capitals, moldings, bases) to large scale buildings for practitioner purpose.

  3. Do CAS measurements correlate with EOS 3D alignment measurements in primary TKA?

    PubMed

    Meijer, Marrigje F; Boerboom, Alexander L; Bulstra, Sjoerd K; Reininga, Inge H F; Stevens, Martin

    2017-09-01

    Objective of this study was to compare intraoperative computer-assisted surgery (CAS) alignment measurements during total knee arthroplasty (TKA) with pre- and postoperative coronal alignment measurements using EOS 3D reconstructions. In a prospective study, 56 TKAs using imageless CAS were performed and coronal alignment measurements were recorded twice: before bone cuts were made and after implantation of the prosthesis. Pre- and postoperative coronal alignment measurements were performed using EOS 3D reconstructions. Thanks to the EOS radiostereography system, measurement errors due to malpositioning and deformity during acquisition are eliminated. CAS measurements were compared with EOS 3D reconstructions. Varus/valgus angle (VV), mechanical lateral distal femoral angle (mLDFA) and mechanical medial proximal tibial angle (mMPTA) were measured. Significantly different VV angles were measured pre- and postoperatively with CAS compared to EOS. For preoperative measurements, mLDFA did not differ significantly, but a significantly larger mMPTA in valgus was measured with CAS. Results of this study indicate that differences in alignment measurements between CAS measurements and pre- and postoperative EOS 3D are due mainly to the difference between weight-bearing and non-weight-bearing position and potential errors in validity and reliability of the CAS system. EOS 3D measurements overestimate VV angle in lower limbs with substantial mechanical axis deviation. For lower limbs with minor mechanical axis deviation as well as for mMPTA measurements, CAS measures more valgus than EOS. Eventually the results of this study are of clinical relevance, since it raises concerns regarding the validity and reliability of CAS systems in TKA. IIb.

  4. Multispectral high-resolution hologram generation using orthographic projection images

    NASA Astrophysics Data System (ADS)

    Muniraj, I.; Guo, C.; Sheridan, J. T.

    2016-08-01

    We present a new method of synthesizing a digital hologram of three-dimensional (3D) real-world objects from multiple orthographic projection images (OPI). A high-resolution multiple perspectives of 3D objects (i.e., two dimensional elemental image array) are captured under incoherent white light using synthetic aperture integral imaging (SAII) technique and their OPIs are obtained respectively. The reference beam is then multiplied with the corresponding OPI and integrated to form a Fourier hologram. Eventually, a modified phase retrieval algorithm (GS/HIO) is applied to reconstruct the hologram. The principle is validated experimentally and the results support the feasibility of the proposed method.

  5. Four-dimensional volume-of-interest reconstruction for cone-beam computed tomography-guided radiation therapy.

    PubMed

    Ahmad, Moiz; Balter, Peter; Pan, Tinsu

    2011-10-01

    Data sufficiency are a major problem in four-dimensional cone-beam computed tomography (4D-CBCT) on linear accelerator-integrated scanners for image-guided radiotherapy. Scan times must be in the range of 4-6 min to avoid undersampling artifacts. Various image reconstruction algorithms have been proposed to accommodate undersampled data acquisitions, but these algorithms are computationally expensive, may require long reconstruction times, and may require algorithm parameters to be optimized. The authors present a novel reconstruction method, 4D volume-of-interest (4D-VOI) reconstruction which suppresses undersampling artifacts and resolves lung tumor motion for undersampled 1-min scans. The 4D-VOI reconstruction is much less computationally expensive than other 4D-CBCT algorithms. The 4D-VOI method uses respiration-correlated projection data to reconstruct a four-dimensional (4D) image inside a VOI containing the moving tumor, and uncorrelated projection data to reconstruct a three-dimensional (3D) image outside the VOI. Anatomical motion is resolved inside the VOI and blurred outside the VOI. The authors acquired a 1-min. scan of an anthropomorphic chest phantom containing a moving water-filled sphere. The authors also used previously acquired 1-min scans for two lung cancer patients who had received CBCT-guided radiation therapy. The same raw data were used to test and compare the 4D-VOI reconstruction with the standard 4D reconstruction and the McKinnon-Bates (MB) reconstruction algorithms. Both the 4D-VOI and the MB reconstructions suppress nearly all the streak artifacts compared with the standard 4D reconstruction, but the 4D-VOI has 3-8 times greater contrast-to-noise ratio than the MB reconstruction. In the dynamic chest phantom study, the 4D-VOI and the standard 4D reconstructions both resolved a moving sphere with an 18 mm displacement. The 4D-VOI reconstruction shows a motion blur of only 3 mm, whereas the MB reconstruction shows a motion blur of 13 mm. With graphics processing unit hardware used to accelerate computations, the 4D-VOI reconstruction required a 40-s reconstruction time. 4D-VOI reconstruction effectively reduces undersampling artifacts and resolves lung tumor motion in 4D-CBCT. The 4D-VOI reconstruction is computationally inexpensive compared with more sophisticated iterative algorithms. Compared with these algorithms, our 4D-VOI reconstruction is an attractive alternative in 4D-CBCT for reconstructing target motion without generating numerous streak artifacts.

  6. Four-dimensional volume-of-interest reconstruction for cone-beam computed tomography-guided radiation therapy

    PubMed Central

    Ahmad, Moiz; Balter, Peter; Pan, Tinsu

    2011-01-01

    Purpose: Data sufficiency are a major problem in four-dimensional cone-beam computed tomography (4D-CBCT) on linear accelerator-integrated scanners for image-guided radiotherapy. Scan times must be in the range of 4–6 min to avoid undersampling artifacts. Various image reconstruction algorithms have been proposed to accommodate undersampled data acquisitions, but these algorithms are computationally expensive, may require long reconstruction times, and may require algorithm parameters to be optimized. The authors present a novel reconstruction method, 4D volume-of-interest (4D-VOI) reconstruction which suppresses undersampling artifacts and resolves lung tumor motion for undersampled 1-min scans. The 4D-VOI reconstruction is much less computationally expensive than other 4D-CBCT algorithms. Methods: The 4D-VOI method uses respiration-correlated projection data to reconstruct a four-dimensional (4D) image inside a VOI containing the moving tumor, and uncorrelated projection data to reconstruct a three-dimensional (3D) image outside the VOI. Anatomical motion is resolved inside the VOI and blurred outside the VOI. The authors acquired a 1-min. scan of an anthropomorphic chest phantom containing a moving water-filled sphere. The authors also used previously acquired 1-min scans for two lung cancer patients who had received CBCT-guided radiation therapy. The same raw data were used to test and compare the 4D-VOI reconstruction with the standard 4D reconstruction and the McKinnon-Bates (MB) reconstruction algorithms. Results: Both the 4D-VOI and the MB reconstructions suppress nearly all the streak artifacts compared with the standard 4D reconstruction, but the 4D-VOI has 3–8 times greater contrast-to-noise ratio than the MB reconstruction. In the dynamic chest phantom study, the 4D-VOI and the standard 4D reconstructions both resolved a moving sphere with an 18 mm displacement. The 4D-VOI reconstruction shows a motion blur of only 3 mm, whereas the MB reconstruction shows a motion blur of 13 mm. With graphics processing unit hardware used to accelerate computations, the 4D-VOI reconstruction required a 40-s reconstruction time. Conclusions: 4D-VOI reconstruction effectively reduces undersampling artifacts and resolves lung tumor motion in 4D-CBCT. The 4D-VOI reconstruction is computationally inexpensive compared with more sophisticated iterative algorithms. Compared with these algorithms, our 4D-VOI reconstruction is an attractive alternative in 4D-CBCT for reconstructing target motion without generating numerous streak artifacts. PMID:21992381

  7. A 3D Freehand Ultrasound System for Multi-view Reconstructions from Sparse 2D Scanning Planes

    PubMed Central

    2011-01-01

    Background A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. Methods We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes. For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Results Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical measures than measures from single view reconstructions. Conclusions Multi-view 3D reconstruction from sparse 2D freehand B-mode images leads to more accurate volume quantification compared to single view systems. The flexibility and low-cost of the proposed system allow for fine control of the image acquisition planes for optimal 3D reconstructions from multiple views. PMID:21251284

  8. A 3D freehand ultrasound system for multi-view reconstructions from sparse 2D scanning planes.

    PubMed

    Yu, Honggang; Pattichis, Marios S; Agurto, Carla; Beth Goens, M

    2011-01-20

    A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes.For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical measures than measures from single view reconstructions. Multi-view 3D reconstruction from sparse 2D freehand B-mode images leads to more accurate volume quantification compared to single view systems. The flexibility and low-cost of the proposed system allow for fine control of the image acquisition planes for optimal 3D reconstructions from multiple views.

  9. Digital in-line holography: 4-D imaging and tracking of micro-structures and organisms in microfluidics and biology

    NASA Astrophysics Data System (ADS)

    Garcia-Sucerquia, J.; Xu, W.; Jericho, S. K.; Jericho, M. H.; Tamblyn, I.; Kreuzer, H. J.

    2006-01-01

    In recent years, in-line holography as originally proposed by Gabor, supplemented with numerical reconstruction, has been perfected to the point at which wavelength resolution both laterally and in depth is routinely achieved with light by using digital in-line holographic microscopy (DIHM). The advantages of DIHM are: (1) simplicity of the hardware (laser- pinhole-CCD camera), (2) magnification is obtained in the numerical reconstruction, (3) maximum information of the 3-D structure with a depth of field of millimeters, (4) changes in the specimen and the simultaneous motion of many species, can be followed in 4-D at the camera frame rate. We present results obtained with DIHM in biological and microfluidic applications. By taking advantage of the large depth of field and the plane-to-plane reconstruction capability of DIHM, we can produce 3D representations of the paths followed by micron-sized objects such as suspensions of microspheres and biological samples (cells, algae, protozoa, bacteria). Examples from biology include a study of the motion of bacteria in a diatom and the track of algae and paramecium. In microfluidic applications we observe micro-channel flow, motion of bubbles in water and evolution in electrolysis. The paper finishes with new results from an underwater version of DIHM.

  10. Effects of the approximations of light propagation on quantitative photoacoustic tomography using two-dimensional photon diffusion equation and linearization

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Kushibiki, Toshihiro; Ishihara, Miya

    2017-12-01

    Quantitative photoacoustic tomography (QPAT) employing a light propagation model will play an important role in medical diagnoses by quantifying the concentration of hemoglobin or a contrast agent. However, QPAT by the light propagation model with the three-dimensional (3D) radiative transfer equation (RTE) requires a huge computational load in the iterative forward calculations involved in the updating process to reconstruct the absorption coefficient. The approximations of the light propagation improve the efficiency of the image reconstruction for the QPAT. In this study, we compared the 3D/two-dimensional (2D) photon diffusion equation (PDE) approximating 3D RTE with the Monte Carlo simulation based on 3D RTE. Then, the errors in a 2D PDE-based linearized image reconstruction caused by the approximations were quantitatively demonstrated and discussed in the numerical simulations. It was clearly observed that the approximations affected the reconstructed absorption coefficient. The 2D PDE-based linearized algorithm succeeded in the image reconstruction of the region with a large absorption coefficient in the 3D phantom. The value reconstructed in the phantom experiment agreed with that in the numerical simulation, so that it was validated that the numerical simulation of the image reconstruction predicted the relationship between the true absorption coefficient of the target in the 3D medium and the reconstructed value with the 2D PDE-based linearized algorithm. Moreover, the the true absorption coefficient in 3D medium was estimated from the 2D reconstructed image on the basis of the prediction by the numerical simulation. The estimation was successful in the phantom experiment, although some limitations were revealed.

  11. Cardiac C-arm computed tomography using a 3D + time ROI reconstruction method with spatial and temporal regularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mory, Cyril, E-mail: cyril.mory@philips.com; Philips Research Medisys, 33 rue de Verdun, 92156 Suresnes; Auvray, Vincent

    2014-02-15

    Purpose: Reconstruction of the beating heart in 3D + time in the catheter laboratory using only the available C-arm system would improve diagnosis, guidance, device sizing, and outcome control for intracardiac interventions, e.g., electrophysiology, valvular disease treatment, structural or congenital heart disease. To obtain such a reconstruction, the patient's electrocardiogram (ECG) must be recorded during the acquisition and used in the reconstruction. In this paper, the authors present a 4D reconstruction method aiming to reconstruct the heart from a single sweep 10 s acquisition. Methods: The authors introduce the 4D RecOnstructiOn using Spatial and TEmporal Regularization (short 4D ROOSTER) method,more » which reconstructs all cardiac phases at once, as a 3D + time volume. The algorithm alternates between a reconstruction step based on conjugate gradient and four regularization steps: enforcing positivity, averaging along time outside a motion mask that contains the heart and vessels, 3D spatial total variation minimization, and 1D temporal total variation minimization. Results: 4D ROOSTER recovers the different temporal representations of a moving Shepp and Logan phantom, and outperforms both ECG-gated simultaneous algebraic reconstruction technique and prior image constrained compressed sensing on a clinical case. It generates 3D + time reconstructions with sharp edges which can be used, for example, to estimate the patient's left ventricular ejection fraction. Conclusions: 4D ROOSTER can be applied for human cardiac C-arm CT, and potentially in other dynamic tomography areas. It can easily be adapted to other problems as regularization is decoupled from projection and back projection.« less

  12. Comparison and use of 3D scanners to improve the quantification of medical images (surface structures and volumes) during follow up of clinical (surgical) procedures

    NASA Astrophysics Data System (ADS)

    Tokkari, Niki; Verdaasdonk, Rudolf M.; Liberton, Niels; Wolff, Jan; den Heijer, Martin; van der Veen, Albert; Klaessens, John H.

    2017-02-01

    It is difficult to obtain quantitative measurements as to surface areas and volumes from standard photos of the body parts of patients which is highly desirable for objective follow up of treatments in e.g. dermatology. plastic, aesthetic and reconstructive surgery. Recently, 3-D scanners have become available to provide quantification. Phantoms (3-D printed hand, nose and ear, colored bread sculpture) were developed to compare a range from low-cost (Sense), medium (HP Sprout) to high end (Artec Spider, Vectra M3) scanners using different 3D imaging technologies, as to resolution, working range, surface color representation, user friendliness. The 3D scans files (STL, OBJ) were processed with Artec studio and GOM software as to deviation compared to the high resolution Artec Spider scanner taken as `golden' standard. The HP Spout, which uses a fringe projection, proved to be nearly as good as the Artec, however, needs to be converted for clinical use. Photogrammetry as used by the Vectra M3 scanner is limited to provide sufficient data points for accurate surface mapping however provides good color/structure representation. The low performance of the Sense is not recommended for clinical use. The Artec scanner was successfully used to measure the structure/volume changes in the face after hormone treatment in transgender patients. 3D scanners can greatly improve quantitative measurements of surfaces and volumes as objective follow up in clinical studies performed by various clinical specialisms (dermatology, aesthetic and reconstructive surgery). New scanning technologies, like fringe projection, are promising for development of low-cost, high precision scanners.

  13. Singular-value decomposition of a tomosynthesis system

    PubMed Central

    Burvall, Anna; Barrett, Harrison H.; Myers, Kyle J.; Dainty, Christopher

    2010-01-01

    Tomosynthesis is an emerging technique with potential to replace mammography, since it gives 3D information at a relatively small increase in dose and cost. We present an analytical singular-value decomposition of a tomosynthesis system, which provides the measurement component of any given object. The method is demonstrated on an example object. The measurement component can be used as a reconstruction of the object, and can also be utilized in future observer studies of tomosynthesis image quality. PMID:20940966

  14. The Return of the Siegesburg - 3D-RECONSTRUCTION of a Disappeared and Forgotten Monument

    NASA Astrophysics Data System (ADS)

    Deggim, S.; Kersten, T. P.; Lindstaedt, M.; Hinrichsen, N.

    2017-02-01

    Many Cultural Heritage (CH) monuments are destroyed in the past and they are often lost forever. If there is no contemporary metric documentation of the historic objects available, the monument and the information about this monument could be disappeared and forgotten forever. The Siegesburg (also known as Segeberg castle) located on the "Kalkberg" (Chalk Mountain) in Bad Segeberg in Northern Germany, is a typical example for such a monument, which was destroyed by Swedish troops at the end of the Thirty Years' War in 1644. This important monument was only documented by a few historic isometric maps, but the castle and even the later castle ruin were totally destructed and demolished over the last centuries and disappeared forever. Furthermore, this significant memorial is even forgotten in many people's mind. This contribution describes the physical and virtual return of the Siegesburg by 3D reconstruction using historic sources. The laboratory for Photogrammetry & Laser Scanning of the HafenCity University Hamburg conducted this project in co-operation with the museum Alt-Segeberger Bürgerhaus (Old-Segeberg town house). The process of the 3D reconstruction and visualisation of both the Kalkberg and the castle is presented in this paper.

  15. The applicability of holography in forensic identification: a fusion of the traditional optical technique and digital technique.

    PubMed

    Biwasaka, Hitoshi; Saigusa, Kiyoshi; Aoki, Yasuhiro

    2005-03-01

    In this study, the applicability of holography in the 3-dimensional recording of forensic objects such as skulls and mandibulae, and the accuracy of the reconstructed 3-D images, were examined. The virtual holographic image, which records the 3-dimensional data of the original object, is visually observed on the other side of the holographic plate, and reproduces the 3-dimensional shape of the object well. Another type of holographic image, the real image, is focused on a frosted glass screen, and cross-sectional images of the object can be observed. When measuring the distances between anatomical reference points using an image-processing software, the average deviations in the holographic images as compared to the actual objects were less than 0.1 mm. Therefore, holography could be useful as a 3-dimensional recording method of forensic objects. Two superimposition systems using holographic images were examined. In the 2D-3D system, the transparent virtual holographic image of an object is directly superimposed onto the digitized photograph of the same object on the LCD monitor. On the other hand, in the video system, the holographic image captured by the CCD camera is superimposed onto the digitized photographic image using a personal computer. We found that the discrepancy between the outlines of the superimposed holographic and photographic dental images using the video system was smaller than that using the 2D-3D system. Holography seemed to perform comparably to the computer graphic system; however, a fusion with the digital technique would expand the utility of holography in superimposition.

  16. Inlining 3d Reconstruction, Multi-Source Texture Mapping and Semantic Analysis Using Oblique Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Frommholz, D.; Linkiewicz, M.; Poznanska, A. M.

    2016-06-01

    This paper proposes an in-line method for the simplified reconstruction of city buildings from nadir and oblique aerial images that at the same time are being used for multi-source texture mapping with minimal resampling. Further, the resulting unrectified texture atlases are analyzed for façade elements like windows to be reintegrated into the original 3D models. Tests on real-world data of Heligoland/ Germany comprising more than 800 buildings exposed a median positional deviation of 0.31 m at the façades compared to the cadastral map, a correctness of 67% for the detected windows and good visual quality when being rendered with GPU-based perspective correction. As part of the process building reconstruction takes the oriented input images and transforms them into dense point clouds by semi-global matching (SGM). The point sets undergo local RANSAC-based regression and topology analysis to detect adjacent planar surfaces and determine their semantics. Based on this information the roof, wall and ground surfaces found get intersected and limited in their extension to form a closed 3D building hull. For texture mapping the hull polygons are projected into each possible input bitmap to find suitable color sources regarding the coverage and resolution. Occlusions are detected by ray-casting a full-scale digital surface model (DSM) of the scene and stored in pixel-precise visibility maps. These maps are used to derive overlap statistics and radiometric adjustment coefficients to be applied when the visible image parts for each building polygon are being copied into a compact texture atlas without resampling whenever possible. The atlas bitmap is passed to a commercial object-based image analysis (OBIA) tool running a custom rule set to identify windows on the contained façade patches. Following multi-resolution segmentation and classification based on brightness and contrast differences potential window objects are evaluated against geometric constraints and conditionally grown, fused and filtered morphologically. The output polygons are vectorized and reintegrated into the previously reconstructed buildings by sparsely ray-tracing their vertices. Finally the enhanced 3D models get stored as textured geometry for visualization and semantically annotated "LOD-2.5" CityGML objects for GIS applications.

  17. Very fast road database verification using textured 3D city models obtained from airborne imagery

    NASA Astrophysics Data System (ADS)

    Bulatov, Dimitri; Ziems, Marcel; Rottensteiner, Franz; Pohl, Melanie

    2014-10-01

    Road databases are known to be an important part of any geodata infrastructure, e.g. as the basis for urban planning or emergency services. Updating road databases for crisis events must be performed quickly and with the highest possible degree of automation. We present a semi-automatic algorithm for road verification using textured 3D city models, starting from aerial or even UAV-images. This algorithm contains two processes, which exchange input and output, but basically run independently from each other. These processes are textured urban terrain reconstruction and road verification. The first process contains a dense photogrammetric reconstruction of 3D geometry of the scene using depth maps. The second process is our core procedure, since it contains various methods for road verification. Each method represents a unique road model and a specific strategy, and thus is able to deal with a specific type of roads. Each method is designed to provide two probability distributions, where the first describes the state of a road object (correct, incorrect), and the second describes the state of its underlying road model (applicable, not applicable). Based on the Dempster-Shafer Theory, both distributions are mapped to a single distribution that refers to three states: correct, incorrect, and unknown. With respect to the interaction of both processes, the normalized elevation map and the digital orthophoto generated during 3D reconstruction are the necessary input - together with initial road database entries - for the road verification process. If the entries of the database are too obsolete or not available at all, sensor data evaluation enables classification of the road pixels of the elevation map followed by road map extraction by means of vectorization and filtering of the geometrically and topologically inconsistent objects. Depending on the time issue and availability of a geo-database for buildings, the urban terrain reconstruction procedure has semantic models of buildings, trees, and ground as output. Building s and ground are textured by means of available images. This facilitates the orientation in the model and the interactive verification of the road objects that where initially classified as unknown. The three main modules of the texturing algorithm are: Pose estimation (if the videos are not geo-referenced), occlusion analysis, and texture synthesis.

  18. Computational optical tomography using 3-D deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh; Bui, Vy; Nehmetallah, George

    2018-04-01

    Deep convolutional neural networks (DCNNs) offer a promising performance for many image processing areas, such as super-resolution, deconvolution, image classification, denoising, and segmentation, with outstanding results. Here, we develop for the first time, to our knowledge, a method to perform 3-D computational optical tomography using 3-D DCNN. A simulated 3-D phantom dataset was first constructed and converted to a dataset of phase objects imaged on a spatial light modulator. For each phase image in the dataset, the corresponding diffracted intensity image was experimentally recorded on a CCD. We then experimentally demonstrate the ability of the developed 3-D DCNN algorithm to solve the inverse problem by reconstructing the 3-D index of refraction distributions of test phantoms from the dataset from their corresponding diffraction patterns.

  19. 3D reconstruction based on light field images

    NASA Astrophysics Data System (ADS)

    Zhu, Dong; Wu, Chunhong; Liu, Yunluo; Fu, Dongmei

    2018-04-01

    This paper proposed a method of reconstructing three-dimensional (3D) scene from two light field images capture by Lytro illium. The work was carried out by first extracting the sub-aperture images from light field images and using the scale-invariant feature transform (SIFT) for feature registration on the selected sub-aperture images. Structure from motion (SFM) algorithm is further used on the registration completed sub-aperture images to reconstruct the three-dimensional scene. 3D sparse point cloud was obtained in the end. The method shows that the 3D reconstruction can be implemented by only two light field camera captures, rather than at least a dozen times captures by traditional cameras. This can effectively solve the time-consuming, laborious issues for 3D reconstruction based on traditional digital cameras, to achieve a more rapid, convenient and accurate reconstruction.

  20. A quantitative evaluation of the three dimensional reconstruction of patients' coronary arteries.

    PubMed

    Klein, J L; Hoff, J G; Peifer, J W; Folks, R; Cooke, C D; King, S B; Garcia, E V

    1998-04-01

    Through extensive training and experience angiographers learn to mentally reconstruct the three dimensional (3D) relationships of the coronary arterial branches. Graphic computer technology can assist angiographers to more quickly visualize the coronary 3D structure from limited initial views and then help to determine additional helpful views by predicting subsequent angiograms before they are obtained. A new computer method for facilitating 3D reconstruction and visualization of human coronary arteries was evaluated by reconstructing biplane left coronary angiograms from 30 patients. The accuracy of the reconstruction was assessed in two ways: 1) by comparing the vessel's centerlines of the actual angiograms with the centerlines of a 2D projection of the 3D model projected into the exact angle of the actual angiogram; and 2) by comparing two 3D models generated by different simultaneous pairs on angiograms. The inter- and intraobserver variability of reconstruction were evaluated by mathematically comparing the 3D model centerlines of repeated reconstructions. The average absolute corrected displacement of 14,662 vessel centerline points in 2D from 30 patients was 1.64 +/- 2.26 mm. The average corrected absolute displacement of 3D models generated from different biplane pairs was 7.08 +/- 3.21 mm. The intraobserver variability of absolute 3D corrected displacement was 5.22 +/- 3.39 mm. The interobserver variability was 6.6 +/- 3.1 mm. The centerline analyses show that the reconstruction algorithm is mathematically accurate and reproducible. The figures presented in this report put these measurement errors into clinical perspective showing that they yield an accurate representation of the clinically relevant information seen on the actual angiograms. These data show that this technique can be clinically useful by accurately displaying in three dimensions the complex relationships of the branches of the coronary arterial tree.

  1. Appearance of bony lesions on 3-D CT reconstructions: a case study in variable renderings

    NASA Astrophysics Data System (ADS)

    Mankovich, Nicholas J.; White, Stuart C.

    1992-05-01

    This paper discusses conventional 3-D reconstruction for bone visualization and presents a case study to demonstrate the dangers of performing 3-D reconstructions without careful selection of the bone threshold. The visualization of midface bone lesions directly from axial CT images is difficult because of the complex anatomic relationships. Three-dimensional reconstructions made from the CT to provide graphic images showing lesions in relation to adjacent facial bones. Most commercially available 3-D image reconstruction requires that the radiologist or technologist identify a threshold image intensity value that can be used to distinguish bone from other tissues. Much has been made of the many disadvantages of this technique, but it continues as the predominant method in producing 3-D pictures for clinical use. This paper is intended to provide a clear demonstration for the physician of the caveats that should accompany 3-D reconstructions. We present a case of recurrent odontogenic keratocyst in the anterior maxilla where the 3-D reconstructions, made with different bone thresholds (windows), are compared to the resected specimen. A DMI 3200 computer was used to convert the scan data from a GE 9800 CT into a 3-D shaded surface image. Threshold values were assigned to (1) generate the most clinically pleasing image, (2) produce maximum theoretical fidelity (using the midpoint image intensity between average cortical bone and average soft tissue), and (3) cover stepped threshold intensities between these two methods. We compared the computer lesions with the resected specimen and noted measurement errors of up to 44 percent introduced by inappropriate bone threshold levels. We suggest clinically applicable standardization techniques in the 3-D reconstruction as well as cautionary language that should accompany the 3-D images.

  2. The potential of 3D techniques for cultural heritage object documentation

    NASA Astrophysics Data System (ADS)

    Bitelli, Gabriele; Girelli, Valentina A.; Remondino, Fabio; Vittuari, Luca

    2007-01-01

    The generation of 3D models of objects has become an important research point in many fields of application like industrial inspection, robotics, navigation and body scanning. Recently the techniques for generating photo-textured 3D digital models have interested also the field of Cultural Heritage, due to their capability to combine high precision metrical information with a qualitative and photographic description of the objects. In fact this kind of product is a fundamental support for documentation, studying and restoration of works of art, until a production of replicas by fast prototyping techniques. Close-range photogrammetric techniques are nowadays more and more frequently used for the generation of precise 3D models. With the advent of automated procedures and fully digital products in the 1990s, it has become easier to use and cheaper, and nowadays a wide range of commercial software is available to calibrate, orient and reconstruct objects from images. This paper presents the complete process for the derivation of a photorealistic 3D model of an important basalt stela (about 70 x 60 x 25 cm) discovered in the archaeological site of Tilmen Höyük, in Turkey, dating back to 2nd mill. BC. We will report the modeling performed using passive and active sensors and the comparison of the achieved results.

  3. Sci—Fri PM: Dosimetry—06: Commissioning of a 3D patient specific QA system for hypofractionated prostate treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivest, R; Venkataraman, S; McCurdy, B

    The objective of this work is to commission the 6MV-SRS beam model in COMPASS (v2.1, IBA-Dosimetry) and validate its use for patient specific QA of hypofractionated prostate treatments. The COMPASS system consists of a 2D ion chamber array (MatriXX{sup Evolution}), an independent gantry angle sensor and associated software. The system can either directly calculate or reconstruct (using measured detector responses) a 3D dose distribution on the patient CT dataset for plan verification. Beam models are developed and commissioned in the same manner as a beam model is commissioned in a standard treatment planning system. Model validation was initially performed bymore » comparing both COMPASS calculations and reconstructions to measured open field beam data. Next, 10 hypofractionated prostate RapidArc plans were delivered to both the COMPASS system and a phantom with ion chamber and film inserted. COMPASS dose distributions calculated and reconstructed on the phantom CT dataset were compared to the chamber and film measurements. The mean (± standard deviation) difference between COMPASS reconstructed dose and ion chamber measurement was 1.4 ± 1.0%. The maximum discrepancy was 2.6%. Corresponding values for COMPASS calculation were 0.9 ± 0.9% and 2.6%, respectively. The average gamma agreement index (3%/3mm) for COMPAS reconstruction and film was 96.7% and 95.3% when using 70% and 20% dose thresholds, respectively. The corresponding values for COMPASS calculation were 97.1% and 97.1%, respectively. Based on our results, COMPASS can be used for the patient specific QA of hypofractionated prostate treatments delivered with the 6MV-SRS beam.« less

  4. Detection and 3d Modelling of Vehicles from Terrestrial Stereo Image Pairs

    NASA Astrophysics Data System (ADS)

    Coenen, M.; Rottensteiner, F.; Heipke, C.

    2017-05-01

    The detection and pose estimation of vehicles plays an important role for automated and autonomous moving objects e.g. in autonomous driving environments. We tackle that problem on the basis of street level stereo images, obtained from a moving vehicle. Processing every stereo pair individually, our approach is divided into two subsequent steps: the vehicle detection and the modelling step. For the detection, we make use of the 3D stereo information and incorporate geometric assumptions on vehicle inherent properties in a firstly applied generic 3D object detection. By combining our generic detection approach with a state of the art vehicle detector, we are able to achieve satisfying detection results with values for completeness and correctness up to more than 86%. By fitting an object specific vehicle model into the vehicle detections, we are able to reconstruct the vehicles in 3D and to derive pose estimations as well as shape parameters for each vehicle. To deal with the intra-class variability of vehicles, we make use of a deformable 3D active shape model learned from 3D CAD vehicle data in our model fitting approach. While we achieve encouraging values up to 67.2% for correct position estimations, we are facing larger problems concerning the orientation estimation. The evaluation is done by using the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012).

  5. Phase analysis for three-dimensional surface reconstruction of apples using structured-illumination reflectance imaging

    NASA Astrophysics Data System (ADS)

    Lu, Yuzhen; Lu, Renfu

    2017-05-01

    Three-dimensional (3-D) shape information is valuable for fruit quality evaluation. This study was aimed at developing phase analysis techniques for reconstruction of the 3-D surface of fruit from the pattern images acquired by a structuredillumination reflectance imaging (SIRI) system. Phase-shifted sinusoidal patterns, distorted by the fruit geometry, were acquired and processed through phase demodulation, phase unwrapping and other post-processing procedures to obtain phase difference maps relative to the phase of a reference plane. The phase maps were then transformed into height profiles and 3-D shapes in a world coordinate system based on phase-to-height and in-plane calibrations. A reference plane-based approach, coupled with the curve fitting technique using polynomials of order 3 or higher, was utilized for phase-to-height calibrations, which achieved superior accuracies with the root-mean-squared errors (RMSEs) of 0.027- 0.033 mm for a height measurement range of 0-91 mm. The 3rd-order polynomial curve fitting technique was further tested on two reference blocks with known heights, resulting in relative errors of 3.75% and 4.16%. In-plane calibrations were performed by solving a linear system formed by a number of control points in a calibration object, which yielded a RMSE of 0.311 mm. Tests of the calibrated system for reconstructing the surface of apple samples showed that surface concavities (i.e., stem/calyx regions) could be easily discriminated from bruises from the phase difference maps, reconstructed height profiles and the 3-D shape of apples. This study has laid a foundation for using SIRI for 3-D shape measurement, and thus expanded the capability of the technique for quality evaluation of horticultural products. Further research is needed to utilize the phase analysis techniques for stem/calyx detection of apples, and optimize the phase demodulation and unwrapping algorithms for faster and more reliable detection.

  6. Integrated Fusion, Performance Prediction, and Sensor Management for Automatic Target Exploitation

    DTIC Science & Technology

    2007-05-30

    with large region of attraction about the true minimum. The physical optics models provide features for high confidence identification of stationary...the detection test are used to estimate 3D object scattering; multiple images can be noncoherently combined to reconstruct a more complete object...Proc. SPIE Algorithms for Synthetic Aper- ture Radar Imagery XIII, The International Society for Optical Engineering, April 2006. [40] K. Varshney, M. C

  7. Modeling repetitive motions using structured light.

    PubMed

    Xu, Yi; Aliaga, Daniel G

    2010-01-01

    Obtaining models of dynamic 3D objects is an important part of content generation for computer graphics. Numerous methods have been extended from static scenarios to model dynamic scenes. If the states or poses of the dynamic object repeat often during a sequence (but not necessarily periodically), we call such a repetitive motion. There are many objects, such as toys, machines, and humans, undergoing repetitive motions. Our key observation is that when a motion-state repeats, we can sample the scene under the same motion state again but using a different set of parameters; thus, providing more information of each motion state. This enables robustly acquiring dense 3D information difficult for objects with repetitive motions using only simple hardware. After the motion sequence, we group temporally disjoint observations of the same motion state together and produce a smooth space-time reconstruction of the scene. Effectively, the dynamic scene modeling problem is converted to a series of static scene reconstructions, which are easier to tackle. The varying sampling parameters can be, for example, structured-light patterns, illumination directions, and viewpoints resulting in different modeling techniques. Based on this observation, we present an image-based motion-state framework and demonstrate our paradigm using either a synchronized or an unsynchronized structured-light acquisition method.

  8. Design of relative motion and attitude profiles for three-dimensional resident space object imaging with a laser rangefinder

    NASA Astrophysics Data System (ADS)

    Nayak, M.; Beck, J.; Udrea, B.

    This paper focuses on the aerospace application of a single beam laser rangefinder (LRF) for 3D imaging, shape detection, and reconstruction in the context of a space-based space situational awareness (SSA) mission scenario. The primary limitation to 3D imaging from LRF point clouds is the one-dimensional nature of the single beam measurements. A method that combines relative orbital motion and scanning attitude motion to generate point clouds has been developed and the design and characterization of multiple relative motion and attitude maneuver profiles are presented. The target resident space object (RSO) has the shape of a generic telecommunications satellite. The shape and attitude of the RSO are unknown to the chaser satellite however, it is assumed that the RSO is un-cooperative and has fixed inertial pointing. All sensors in the metrology chain are assumed ideal. A previous study by the authors used pure Keplerian motion to perform a similar 3D imaging mission at an asteroid. A new baseline for proximity operations maneuvers for LRF scanning, based on a waypoint adaptation of the Hill-Clohessy-Wiltshire (HCW) equations is examined. Propellant expenditure for each waypoint profile is discussed and combinations of relative motion and attitude maneuvers that minimize the propellant used to achieve a minimum required point cloud density are studied. Both LRF strike-point coverage and point cloud density are maximized; the capability for 3D shape registration and reconstruction from point clouds generated with a single beam LRF without catalog comparison is proven. Next, a method of using edge detection algorithms to process a point cloud into a 3D modeled image containing reconstructed shapes is presented. Weighted accuracy of edge reconstruction with respect to the true model is used to calculate a qualitative “ metric” that evaluates effectiveness of coverage. Both edge recognition algorithms and the metric are independent of point cloud densit- , therefore they are utilized to compare the quality of point clouds generated by various attitude and waypoint command profiles. The RSO model incorporates diverse irregular protruding shapes, such as open sensor covers, instrument pods and solar arrays, to test the limits of the algorithms. This analysis is used to mathematically prove that point clouds generated by a single-beam LRF can achieve sufficient edge recognition accuracy for SSA applications, with meaningful shape information extractable even from sparse point clouds. For all command profiles, reconstruction of RSO shapes from the point clouds generated with the proposed method are compared to the truth model and conclusions are drawn regarding their fidelity.

  9. Single-Step 3-D Image Reconstruction in Magnetic Induction Tomography: Theoretical Limits of Spatial Resolution and Contrast to Noise Ratio

    PubMed Central

    Hollaus, Karl; Rosell-Ferrer, Javier; Merwa, Robert

    2006-01-01

    Magnetic induction tomography (MIT) is a low-resolution imaging modality for reconstructing the changes of the complex conductivity in an object. MIT is based on determining the perturbation of an alternating magnetic field, which is coupled from several excitation coils to the object. The conductivity distribution is reconstructed from the corresponding voltage changes induced in several receiver coils. Potential medical applications comprise the continuous, non-invasive monitoring of tissue alterations which are reflected in the change of the conductivity, e.g. edema, ventilation disorders, wound healing and ischemic processes. MIT requires the solution of an ill-posed inverse eddy current problem. A linearized version of this problem was solved for 16 excitation coils and 32 receiver coils with a model of two spherical perturbations within a cylindrical phantom. The method was tested with simulated measurement data. Images were reconstructed with a regularized single-step Gauss–Newton approach. Theoretical limits for spatial resolution and contrast/noise ratio were calculated and compared with the empirical results from a Monte-Carlo study. The conductivity perturbations inside a homogeneous cylinder were localized for a SNR between 44 and 64 dB. The results prove the feasibility of difference imaging with MIT and give some quantitative data on the limitations of the method. PMID:17031597

  10. Fast, accurate, small-scale 3D scene capture using a low-cost depth sensor

    PubMed Central

    Carey, Nicole; Nagpal, Radhika; Werfel, Justin

    2017-01-01

    Commercially available depth sensing devices are primarily designed for domains that are either macroscopic, or static. We develop a solution for fast microscale 3D reconstruction, using off-the-shelf components. By the addition of lenses, precise calibration of camera internals and positioning, and development of bespoke software, we turn an infrared depth sensor designed for human-scale motion and object detection into a device with mm-level accuracy capable of recording at up to 30Hz. PMID:28758159

  11. Technical note: RabbitCT--an open platform for benchmarking 3D cone-beam reconstruction algorithms.

    PubMed

    Rohkohl, C; Keck, B; Hofmann, H G; Hornegger, J

    2009-09-01

    Fast 3D cone beam reconstruction is mandatory for many clinical workflows. For that reason, researchers and industry work hard on hardware-optimized 3D reconstruction. Backprojection is a major component of many reconstruction algorithms that require a projection of each voxel onto the projection data, including data interpolation, before updating the voxel value. This step is the bottleneck of most reconstruction algorithms and the focus of optimization in recent publications. A crucial limitation, however, of these publications is that the presented results are not comparable to each other. This is mainly due to variations in data acquisitions, preprocessing, and chosen geometries and the lack of a common publicly available test dataset. The authors provide such a standardized dataset that allows for substantial comparison of hardware accelerated backprojection methods. They developed an open platform RabbitCT (www.rabbitCT.com) for worldwide comparison in backprojection performance and ranking on different architectures using a specific high resolution C-arm CT dataset of a rabbit. This includes a sophisticated benchmark interface, a prototype implementation in C++, and image quality measures. At the time of writing, six backprojection implementations are already listed on the website. Optimizations include multithreading using Intel threading building blocks and OpenMP, vectorization using SSE, and computation on the GPU using CUDA 2.0. There is a need for objectively comparing backprojection implementations for reconstruction algorithms. RabbitCT aims to provide a solution to this problem by offering an open platform with fair chances for all participants. The authors are looking forward to a growing community and await feedback regarding future evaluations of novel software- and hardware-based acceleration schemes.

  12. 3D noise power spectrum applied on clinical MDCT scanners: effects of reconstruction algorithms and reconstruction filters

    NASA Astrophysics Data System (ADS)

    Miéville, Frédéric A.; Bolard, Gregory; Benkreira, Mohamed; Ayestaran, Paul; Gudinchet, François; Bochud, François; Verdun, Francis R.

    2011-03-01

    The noise power spectrum (NPS) is the reference metric for understanding the noise content in computed tomography (CT) images. To evaluate the noise properties of clinical multidetector (MDCT) scanners, local 2D and 3D NPSs were computed for different acquisition reconstruction parameters. A 64- and a 128-MDCT scanners were employed. Measurements were performed on a water phantom in axial and helical acquisition modes. CT dose index was identical for both installations. Influence of parameters such as the pitch, the reconstruction filter (soft, standard and bone) and the reconstruction algorithm (filtered-back projection (FBP), adaptive statistical iterative reconstruction (ASIR)) were investigated. Images were also reconstructed in the coronal plane using a reformat process. Then 2D and 3D NPS methods were computed. In axial acquisition mode, the 2D axial NPS showed an important magnitude variation as a function of the z-direction when measured at the phantom center. In helical mode, a directional dependency with lobular shape was observed while the magnitude of the NPS was kept constant. Important effects of the reconstruction filter, pitch and reconstruction algorithm were observed on 3D NPS results for both MDCTs. With ASIR, a reduction of the NPS magnitude and a shift of the NPS peak to the low frequency range were visible. 2D coronal NPS obtained from the reformat images was impacted by the interpolation when compared to 2D coronal NPS obtained from 3D measurements. The noise properties of volume measured in last generation MDCTs was studied using local 3D NPS metric. However, impact of the non-stationarity noise effect may need further investigations.

  13. Three-dimensional motion-picture imaging of dynamic object by parallel-phase-shifting digital holographic microscopy using an inverted magnification optical system

    NASA Astrophysics Data System (ADS)

    Fukuda, Takahito; Shinomura, Masato; Xia, Peng; Awatsuji, Yasuhiro; Nishio, Kenzo; Matoba, Osamu

    2017-04-01

    We constructed a parallel-phase-shifting digital holographic microscopy (PPSDHM) system using an inverted magnification optical system, and succeeded in three-dimensional (3D) motion-picture imaging for 3D displacement of a microscopic object. In the PPSDHM system, the inverted and afocal magnification optical system consisted of a microscope objective (16.56 mm focal length and 0.25 numerical aperture) and a convex lens (300 mm focal length and 82 mm aperture diameter). A polarization-imaging camera was used to record multiple phase-shifted holograms with a single-shot exposure. We recorded an alum crystal, sinking down in aqueous solution of alum, by the constructed PPSDHM system at 60 frames/s for about 20 s and reconstructed high-quality 3D motion-picture image of the crystal. Then, we calculated amounts of displacement of the crystal from the amounts in the focus plane and the magnifications of the magnification optical system, and obtained the 3D trajectory of the crystal by that amounts.

  14. Incremental Refinement of FAÇADE Models with Attribute Grammar from 3d Point Clouds

    NASA Astrophysics Data System (ADS)

    Dehbi, Y.; Staat, C.; Mandtler, L.; Pl¨umer, L.

    2016-06-01

    Data acquisition using unmanned aerial vehicles (UAVs) has gotten more and more attention over the last years. Especially in the field of building reconstruction the incremental interpretation of such data is a demanding task. In this context formal grammars play an important role for the top-down identification and reconstruction of building objects. Up to now, the available approaches expect offline data in order to parse an a-priori known grammar. For mapping on demand an on the fly reconstruction based on UAV data is required. An incremental interpretation of the data stream is inevitable. This paper presents an incremental parser of grammar rules for an automatic 3D building reconstruction. The parser enables a model refinement based on new observations with respect to a weighted attribute context-free grammar (WACFG). The falsification or rejection of hypotheses is supported as well. The parser can deal with and adapt available parse trees acquired from previous interpretations or predictions. Parse trees derived so far are updated in an iterative way using transformation rules. A diagnostic step searches for mismatches between current and new nodes. Prior knowledge on façades is incorporated. It is given by probability densities as well as architectural patterns. Since we cannot always assume normal distributions, the derivation of location and shape parameters of building objects is based on a kernel density estimation (KDE). While the level of detail is continuously improved, the geometrical, semantic and topological consistency is ensured.

  15. 3D frequency-domain ultrasound waveform tomography breast imaging

    NASA Astrophysics Data System (ADS)

    Sandhu, Gursharan Yash; West, Erik; Li, Cuiping; Roy, Olivier; Duric, Neb

    2017-03-01

    Frequency-domain ultrasound waveform tomography is a promising method for the visualization and characterization of breast disease. It has previously been shown to accurately reconstruct the sound speed distributions of breasts of varying densities. The reconstructed images show detailed morphological and quantitative information that can help differentiate different types of breast disease including benign and malignant lesions. The attenuation properties of an ex vivo phantom have also been assessed. However, the reconstruction algorithms assumed a 2D geometry while the actual data acquisition process was not. Although clinically useful sound speed images can be reconstructed assuming this mismatched geometry, artifacts from the reconstruction process exist within the reconstructed images. This is especially true for registration across different modalities and when the 2D assumption is violated. For example, this happens when a patient's breast is rapidly sloping. It is also true for attenuation imaging where energy lost or gained out of the plane gets transformed into artifacts within the image space. In this paper, we will briefly review ultrasound waveform tomography techniques, give motivation for pursuing the 3D method, discuss the 3D reconstruction algorithm, present the results of 3D forward modeling, show the mismatch that is induced by the violation of 3D modeling via numerical simulations, and present a 3D inversion of a numerical phantom.

  16. D Reconstruction from Multi-View Medical X-Ray Images - Review and Evaluation of Existing Methods

    NASA Astrophysics Data System (ADS)

    Hosseinian, S.; Arefi, H.

    2015-12-01

    The 3D concept is extremely important in clinical studies of human body. Accurate 3D models of bony structures are currently required in clinical routine for diagnosis, patient follow-up, surgical planning, computer assisted surgery and biomechanical applications. However, 3D conventional medical imaging techniques such as computed tomography (CT) scan and magnetic resonance imaging (MRI) have serious limitations such as using in non-weight-bearing positions, costs and high radiation dose(for CT). Therefore, 3D reconstruction methods from biplanar X-ray images have been taken into consideration as reliable alternative methods in order to achieve accurate 3D models with low dose radiation in weight-bearing positions. Different methods have been offered for 3D reconstruction from X-ray images using photogrammetry which should be assessed. In this paper, after demonstrating the principles of 3D reconstruction from X-ray images, different existing methods of 3D reconstruction of bony structures from radiographs are classified and evaluated with various metrics and their advantages and disadvantages are mentioned. Finally, a comparison has been done on the presented methods with respect to several metrics such as accuracy, reconstruction time and their applications. With regards to the research, each method has several advantages and disadvantages which should be considered for a specific application.

  17. A defocus-information-free autostereoscopic three-dimensional (3D) digital reconstruction method using direct extraction of disparity information (DEDI)

    NASA Astrophysics Data System (ADS)

    Li, Da; Cheung, Chifai; Zhao, Xing; Ren, Mingjun; Zhang, Juan; Zhou, Liqiu

    2016-10-01

    Autostereoscopy based three-dimensional (3D) digital reconstruction has been widely applied in the field of medical science, entertainment, design, industrial manufacture, precision measurement and many other areas. The 3D digital model of the target can be reconstructed based on the series of two-dimensional (2D) information acquired by the autostereoscopic system, which consists multiple lens and can provide information of the target from multiple angles. This paper presents a generalized and precise autostereoscopic three-dimensional (3D) digital reconstruction method based on Direct Extraction of Disparity Information (DEDI) which can be used to any transform autostereoscopic systems and provides accurate 3D reconstruction results through error elimination process based on statistical analysis. The feasibility of DEDI method has been successfully verified through a series of optical 3D digital reconstruction experiments on different autostereoscopic systems which is highly efficient to perform the direct full 3D digital model construction based on tomography-like operation upon every depth plane with the exclusion of the defocused information. With the absolute focused information processed by DEDI method, the 3D digital model of the target can be directly and precisely formed along the axial direction with the depth information.

  18. Opti-acoustic stereo imaging: on system calibration and 3-D target reconstruction.

    PubMed

    Negahdaripour, Shahriar; Sekkati, Hicham; Pirsiavash, Hamed

    2009-06-01

    Utilization of an acoustic camera for range measurements is a key advantage for 3-D shape recovery of underwater targets by opti-acoustic stereo imaging, where the associated epipolar geometry of optical and acoustic image correspondences can be described in terms of conic sections. In this paper, we propose methods for system calibration and 3-D scene reconstruction by maximum likelihood estimation from noisy image measurements. The recursive 3-D reconstruction method utilized as initial condition a closed-form solution that integrates the advantages of two other closed-form solutions, referred to as the range and azimuth solutions. Synthetic data tests are given to provide insight into the merits of the new target imaging and 3-D reconstruction paradigm, while experiments with real data confirm the findings based on computer simulations, and demonstrate the merits of this novel 3-D reconstruction paradigm.

  19. Comparison of reconstruction methods and quantitative accuracy in Siemens Inveon PET scanner

    NASA Astrophysics Data System (ADS)

    Ram Yu, A.; Kim, Jin Su; Kang, Joo Hyun; Moo Lim, Sang

    2015-04-01

    PET reconstruction is key to the quantification of PET data. To our knowledge, no comparative study of reconstruction methods has been performed to date. In this study, we compared reconstruction methods with various filters in terms of their spatial resolution, non-uniformities (NU), recovery coefficients (RCs), and spillover ratios (SORs). In addition, the linearity of reconstructed radioactivity between linearity of measured and true concentrations were also assessed. A Siemens Inveon PET scanner was used in this study. Spatial resolution was measured with NEMA standard by using a 1 mm3 sized 18F point source. Image quality was assessed in terms of NU, RC and SOR. To measure the effect of reconstruction algorithms and filters, data was reconstructed using FBP, 3D reprojection algorithm (3DRP), ordered subset expectation maximization 2D (OSEM 2D), and maximum a posteriori (MAP) with various filters or smoothing factors (β). To assess the linearity of reconstructed radioactivity, image quality phantom filled with 18F was used using FBP, OSEM and MAP (β =1.5 & 5 × 10-5). The highest achievable volumetric resolution was 2.31 mm3 and the highest RCs were obtained when OSEM 2D was used. SOR was 4.87% for air and 3.97% for water, obtained OSEM 2D reconstruction was used. The measured radioactivity of reconstruction image was proportional to the injected one for radioactivity below 16 MBq/ml when FBP or OSEM 2D reconstruction methods were used. By contrast, when the MAP reconstruction method was used, activity of reconstruction image increased proportionally, regardless of the amount of injected radioactivity. When OSEM 2D or FBP were used, the measured radioactivity concentration was reduced by 53% compared with true injected radioactivity for radioactivity <16 MBq/ml. The OSEM 2D reconstruction method provides the highest achievable volumetric resolution and highest RC among all the tested methods and yields a linear relation between the measured and true concentrations for radioactivity Our data collectively showed that OSEM 2D reconstruction method provides quantitatively accurate reconstructed PET data results.

  20. A Regularized Volumetric Fusion Framework for Large-Scale 3D Reconstruction

    NASA Astrophysics Data System (ADS)

    Rajput, Asif; Funk, Eugen; Börner, Anko; Hellwich, Olaf

    2018-07-01

    Modern computational resources combined with low-cost depth sensing systems have enabled mobile robots to reconstruct 3D models of surrounding environments in real-time. Unfortunately, low-cost depth sensors are prone to produce undesirable estimation noise in depth measurements which result in either depth outliers or introduce surface deformations in the reconstructed model. Conventional 3D fusion frameworks integrate multiple error-prone depth measurements over time to reduce noise effects, therefore additional constraints such as steady sensor movement and high frame-rates are required for high quality 3D models. In this paper we propose a generic 3D fusion framework with controlled regularization parameter which inherently reduces noise at the time of data fusion. This allows the proposed framework to generate high quality 3D models without enforcing additional constraints. Evaluation of the reconstructed 3D models shows that the proposed framework outperforms state of art techniques in terms of both absolute reconstruction error and processing time.

  1. [The dynamic concision for three-dimensional reconstruction of human organ built with virtual reality modeling language (VRML)].

    PubMed

    Yu, Zhengyang; Zheng, Shusen; Chen, Huaiqing; Wang, Jianjun; Xiong, Qingwen; Jing, Wanjun; Zeng, Yu

    2006-10-01

    This research studies the process of dynamic concision and 3D reconstruction from medical body data using VRML and JavaScript language, focuses on how to realize the dynamic concision of 3D medical model built with VRML. The 2D medical digital images firstly are modified and manipulated by 2D image software. Then, based on these images, 3D mould is built with VRML and JavaScript language. After programming in JavaScript to control 3D model, the function of dynamic concision realized by Script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be formed in high quality near to those got in traditional methods. By this way, with the function of dynamic concision, VRML browser can offer better windows of man-computer interaction in real time environment than before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and has a promising prospect in the fields of medical image.

  2. Reconstruction dynamics of recorded holograms in photochromic glass.

    PubMed

    Mihailescu, Mona; Pavel, Eugen; Nicolae, Vasile B

    2011-06-20

    We have investigated the dynamics of the record-erase process of holograms in photochromic glass using continuum Nd:YVO₄ laser radiation (λ=532 nm). A bidimensional microgrid pattern was formed and visualized in photochromic glass, and its diffraction efficiency decay versus time (during reconstruction step) gave us information (D, Δn) about the diffusion process inside the material. The recording and reconstruction processes were carried out in an off-axis setup, and the images of the reconstructed object were recorded by a CCD camera. Measurements realized on reconstructed object images using holograms recorded at a different incident power laser have shown a two-stage process involved in silver atom kinetics.

  3. Application of distance-dependent resolution compensation and post-reconstruction filtering for myocardial SPECT

    NASA Astrophysics Data System (ADS)

    Hutton, Brian F.; Lau, Yiu H.

    1998-06-01

    Compensation for distance-dependent resolution can be directly incorporated in maximum likelihood reconstruction. Our objective was to examine the effectiveness of this compensation using either the standard expectation maximization (EM) algorithm or an accelerated algorithm based on use of ordered subsets (OSEM). We also investigated the application of post-reconstruction filtering in combination with resolution compensation. Using the MCAT phantom, projections were simulated for data, including attenuation and distance-dependent resolution. Projection data were reconstructed using conventional EM and OSEM with subset size 2 and 4, with/without 3D compensation for detector response (CDR). Also post-reconstruction filtering (PRF) was performed using a 3D Butterworth filter of order 5 with various cutoff frequencies (0.2-). Image quality and reconstruction accuracy were improved when CDR was included. Image noise was lower with CDR for a given iteration number. PRF with cutoff frequency greater than improved noise with no reduction in recovery coefficient for myocardium but the effect was less when CDR was incorporated in the reconstruction. CDR alone provided better results than use of PRF without CDR. Results suggest that using CDR without PRF, and stopping at a small number of iterations, may provide sufficiently good results for myocardial SPECT. Similar behaviour was demonstrated for OSEM.

  4. Pre-operative planning for mandibular reconstruction - A full digital planning workflow resulting in a patient specific reconstruction

    PubMed Central

    2011-01-01

    Objectives Reconstruction of large mandiblular defects following ablative oncologic surgery could be done by using vascularized bone transfer or, more often, primarily with simultaneous or delayed bone grafting, using load bearing reconstruction plates. Bending of these reconstruction plates is typically directed along the outer contour of the original mandible. Simultaneously or in a second operation vascularized or non-vascularized bone is fixed to the reconstruction plate. However, the prosthodontic-driven backward planning to ease bony reconstruction of the mandible in terms of dental rehabilitation using implant-retained overdentures might be an eligible solution. The purpose of this work was to develop, establish and clinically evaluate a novel 3D planning procedure for mandibular reconstruction. Materials and methods Three patients with tumors involving the mandible, which included squamous cell carcinoma in the floor of the mouth and keratocystic odontogenic tumor, were treated surgically by hemimandibulectomy. Results In primary alloplastic mandible reconstruction, shape and size of the reconstruction plate could be predefined and prebent prior to surgery. Clinical relevance This study provides modern treatment strategies for mandibular reconstruction. PMID:21968330

  5. Liquid argon TPC signal formation, signal processing and reconstruction techniques

    NASA Astrophysics Data System (ADS)

    Baller, B.

    2017-07-01

    This document describes a reconstruction chain that was developed for the ArgoNeuT and MicroBooNE experiments at Fermilab. These experiments study accelerator neutrino interactions that occur in a Liquid Argon Time Projection Chamber. Reconstructing the properties of particles produced in these interactions benefits from the knowledge of the micro-physics processes that affect the creation and transport of ionization electrons to the readout system. A wire signal deconvolution technique was developed to convert wire signals to a standard form for hit reconstruction, to remove artifacts in the electronics chain and to remove coherent noise. A unique clustering algorithm reconstructs line-like trajectories and vertices in two dimensions which are then matched to create of 3D objects. These techniques and algorithms are available to all experiments that use the LArSoft suite of software.

  6. Multi-energy method of digital radiography for imaging of biological objects

    NASA Astrophysics Data System (ADS)

    Ryzhikov, V. D.; Naydenov, S. V.; Opolonin, O. D.; Volkov, V. G.; Smith, C. F.

    2016-03-01

    This work has been dedicated to the search for a new possibility to use multi-energy digital radiography (MER) for medical applications. Our work has included both theoretical and experimental investigations of 2-energy (2E) and 3- energy (3D) radiography for imaging the structure of biological objects. Using special simulation methods and digital analysis based on the X-ray interaction energy dependence for each element of importance to medical applications in the X-ray range of energy up to 150 keV, we have implemented a quasi-linear approximation for the energy dependence of the X-ray linear mass absorption coefficient μm (E) that permits us to determine the intrinsic structure of the biological objects. Our measurements utilize multiple X-ray tube voltages (50, 100, and 150 kV) with Al and Cu filters of different thicknesses to achieve 3-energy X-ray examination of objects. By doing so, we are able to achieve significantly improved imaging quality of the structure of the subject biological objects. To reconstruct and visualize the final images, we use both two-dimensional (2D) and three-dimensional (3D) palettes of identification. The result is a 2E and/or 3E representation of the object with color coding of each pixel according to the data outputs. Following the experimental measurements and post-processing, we produce a 3D image of the biological object - in the case of our trials, fragments or parts of chicken and turkey.

  7. Theory and preliminary experimental verification of quantitative edge illumination x-ray phase contrast tomography.

    PubMed

    Hagen, C K; Diemoz, P C; Endrizzi, M; Rigon, L; Dreossi, D; Arfelli, F; Lopez, F C M; Longo, R; Olivo, A

    2014-04-07

    X-ray phase contrast imaging (XPCi) methods are sensitive to phase in addition to attenuation effects and, therefore, can achieve improved image contrast for weakly attenuating materials, such as often encountered in biomedical applications. Several XPCi methods exist, most of which have already been implemented in computed tomographic (CT) modality, thus allowing volumetric imaging. The Edge Illumination (EI) XPCi method had, until now, not been implemented as a CT modality. This article provides indications that quantitative 3D maps of an object's phase and attenuation can be reconstructed from EI XPCi measurements. Moreover, a theory for the reconstruction of combined phase and attenuation maps is presented. Both reconstruction strategies find applications in tissue characterisation and the identification of faint, weakly attenuating details. Experimental results for wires of known materials and for a biological object validate the theory and confirm the superiority of the phase over conventional, attenuation-based image contrast.

  8. Quickly updatable hologram images with high performance photorefractive polymer composites

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Naoto; Kinashi, Kenji; Nonomura, Asato; Sakai, Wataru

    2012-02-01

    We present here quickly updatable hologram images using high performance photorefractive (PR) polymer composite based on poly(N-vinyl carbazole) (PVCz). PVCz is one of the pioneer materials for photoconductive polymer. PVCz/7- DCST/CzEPA/TNF (44/35/20/1 by wt) gives high diffraction efficiency of 68 % at E = 45 V/μm with fast response speed. Response speed of optical diffraction is the key parameter for real-time 3D holographic display. Key parameter for obtaining quickly updatable hologram images is to control the glass transition temperature lower enough to enhance chromophore orientation. Object image of the reflected coin surface recorded with reference beam at 532 nm (green beam) in the PR polymer composite is simultaneously reconstructed using a red probe beam at 642 nm. Instead of using coin object, object image produced by a computer was displayed on a spatial light modulator (SLM) is used as an object for hologram. Reflected object beam from a SLM interfered with reference beam on PR polymer composite to record a hologram and simultaneously reconstructed by a red probe beam. Movie produced in a computer was recorded as a realtime hologram in the PR polymer composite and simultaneously clearly reconstructed with a video rate.

  9. An interactive display system for large-scale 3D models

    NASA Astrophysics Data System (ADS)

    Liu, Zijian; Sun, Kun; Tao, Wenbing; Liu, Liman

    2018-04-01

    With the improvement of 3D reconstruction theory and the rapid development of computer hardware technology, the reconstructed 3D models are enlarging in scale and increasing in complexity. Models with tens of thousands of 3D points or triangular meshes are common in practical applications. Due to storage and computing power limitation, it is difficult to achieve real-time display and interaction with large scale 3D models for some common 3D display software, such as MeshLab. In this paper, we propose a display system for large-scale 3D scene models. We construct the LOD (Levels of Detail) model of the reconstructed 3D scene in advance, and then use an out-of-core view-dependent multi-resolution rendering scheme to realize the real-time display of the large-scale 3D model. With the proposed method, our display system is able to render in real time while roaming in the reconstructed scene and 3D camera poses can also be displayed. Furthermore, the memory consumption can be significantly decreased via internal and external memory exchange mechanism, so that it is possible to display a large scale reconstructed scene with over millions of 3D points or triangular meshes in a regular PC with only 4GB RAM.

  10. Image-based reconstruction of three-dimensional myocardial infarct geometry for patient-specific modeling of cardiac electrophysiology

    PubMed Central

    Ukwatta, Eranga; Arevalo, Hermenegild; Rajchl, Martin; White, James; Pashakhanloo, Farhad; Prakosa, Adityo; Herzka, Daniel A.; McVeigh, Elliot; Lardo, Albert C.; Trayanova, Natalia A.; Vadakkumpadan, Fijoy

    2015-01-01

    Purpose: Accurate three-dimensional (3D) reconstruction of myocardial infarct geometry is crucial to patient-specific modeling of the heart aimed at providing therapeutic guidance in ischemic cardiomyopathy. However, myocardial infarct imaging is clinically performed using two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) techniques, and a method to build accurate 3D infarct reconstructions from the 2D LGE-CMR images has been lacking. The purpose of this study was to address this need. Methods: The authors developed a novel methodology to reconstruct 3D infarct geometry from segmented low-resolution (Lo-res) clinical LGE-CMR images. Their methodology employed the so-called logarithm of odds (LogOdds) function to implicitly represent the shape of the infarct in segmented image slices as LogOdds maps. These 2D maps were then interpolated into a 3D image, and the result transformed via the inverse of LogOdds to a binary image representing the 3D infarct geometry. To assess the efficacy of this method, the authors utilized 39 high-resolution (Hi-res) LGE-CMR images, including 36 in vivo acquisitions of human subjects with prior myocardial infarction and 3 ex vivo scans of canine hearts following coronary ligation to induce infarction. The infarct was manually segmented by trained experts in each slice of the Hi-res images, and the segmented data were downsampled to typical clinical resolution. The proposed method was then used to reconstruct 3D infarct geometry from the downsampled images, and the resulting reconstructions were compared with the manually segmented data. The method was extensively evaluated using metrics based on geometry as well as results of electrophysiological simulations of cardiac sinus rhythm and ventricular tachycardia in individual hearts. Several alternative reconstruction techniques were also implemented and compared with the proposed method. Results: The accuracy of the LogOdds method in reconstructing 3D infarct geometry, as measured by the Dice similarity coefficient, was 82.10% ± 6.58%, a significantly higher value than those of the alternative reconstruction methods. Among outcomes of electrophysiological simulations with infarct reconstructions generated by various methods, the simulation results corresponding to the LogOdds method showed the smallest deviation from those corresponding to the manual reconstructions, as measured by metrics based on both activation maps and pseudo-ECGs. Conclusions: The authors have developed a novel method for reconstructing 3D infarct geometry from segmented slices of Lo-res clinical 2D LGE-CMR images. This method outperformed alternative approaches in reproducing expert manual 3D reconstructions and in electrophysiological simulations. PMID:26233186

  11. Image-based reconstruction of three-dimensional myocardial infarct geometry for patient-specific modeling of cardiac electrophysiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ukwatta, Eranga, E-mail: eukwatt1@jhu.edu; Arevalo, Hermenegild; Pashakhanloo, Farhad

    Purpose: Accurate three-dimensional (3D) reconstruction of myocardial infarct geometry is crucial to patient-specific modeling of the heart aimed at providing therapeutic guidance in ischemic cardiomyopathy. However, myocardial infarct imaging is clinically performed using two-dimensional (2D) late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) techniques, and a method to build accurate 3D infarct reconstructions from the 2D LGE-CMR images has been lacking. The purpose of this study was to address this need. Methods: The authors developed a novel methodology to reconstruct 3D infarct geometry from segmented low-resolution (Lo-res) clinical LGE-CMR images. Their methodology employed the so-called logarithm of odds (LogOdds) function to implicitlymore » represent the shape of the infarct in segmented image slices as LogOdds maps. These 2D maps were then interpolated into a 3D image, and the result transformed via the inverse of LogOdds to a binary image representing the 3D infarct geometry. To assess the efficacy of this method, the authors utilized 39 high-resolution (Hi-res) LGE-CMR images, including 36 in vivo acquisitions of human subjects with prior myocardial infarction and 3 ex vivo scans of canine hearts following coronary ligation to induce infarction. The infarct was manually segmented by trained experts in each slice of the Hi-res images, and the segmented data were downsampled to typical clinical resolution. The proposed method was then used to reconstruct 3D infarct geometry from the downsampled images, and the resulting reconstructions were compared with the manually segmented data. The method was extensively evaluated using metrics based on geometry as well as results of electrophysiological simulations of cardiac sinus rhythm and ventricular tachycardia in individual hearts. Several alternative reconstruction techniques were also implemented and compared with the proposed method. Results: The accuracy of the LogOdds method in reconstructing 3D infarct geometry, as measured by the Dice similarity coefficient, was 82.10% ± 6.58%, a significantly higher value than those of the alternative reconstruction methods. Among outcomes of electrophysiological simulations with infarct reconstructions generated by various methods, the simulation results corresponding to the LogOdds method showed the smallest deviation from those corresponding to the manual reconstructions, as measured by metrics based on both activation maps and pseudo-ECGs. Conclusions: The authors have developed a novel method for reconstructing 3D infarct geometry from segmented slices of Lo-res clinical 2D LGE-CMR images. This method outperformed alternative approaches in reproducing expert manual 3D reconstructions and in electrophysiological simulations.« less

  12. Dynamic 3D shape of the plantar surface of the foot using coded structured light: a technical report

    PubMed Central

    2014-01-01

    Background The foot provides a crucial contribution to the balance and stability of the musculoskeletal system, and accurate foot measurements are important in applications such as designing custom insoles/footwear. With better understanding of the dynamic behavior of the foot, dynamic foot reconstruction techniques are surfacing as useful ways to properly measure the shape of the foot. This paper presents a novel design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Methods Engineering and clinical tests were carried out to test the accuracy and repeatability of the system. Accuracy experiments involved imaging a planar surface from different orientations and elevations and measuring the fitting errors of the data to a plane. Repeatability experiments were done using reconstructions from 27 different subjects, where for each one both right and left feet were reconstructed in static and dynamic conditions over two different days. Results The static accuracy of the system was found to be 0.3 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.4 mm (static case) and 2.8 mm (dynamic case). Conclusion The results obtained in the experiments show positive accuracy and repeatability results when compared to current literature. The design also shows to be superior to the systems available in the literature in several factors. Further studies need to be done to quantify the reliability of the system in clinical environments. PMID:24456711

  13. Dynamic 3D shape of the plantar surface of the foot using coded structured light: a technical report.

    PubMed

    Thabet, Ali K; Trucco, Emanuele; Salvi, Joaquim; Wang, Weijie; Abboud, Rami J

    2014-01-23

    The foot provides a crucial contribution to the balance and stability of the musculoskeletal system, and accurate foot measurements are important in applications such as designing custom insoles/footwear. With better understanding of the dynamic behavior of the foot, dynamic foot reconstruction techniques are surfacing as useful ways to properly measure the shape of the foot. This paper presents a novel design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Engineering and clinical tests were carried out to test the accuracy and repeatability of the system. Accuracy experiments involved imaging a planar surface from different orientations and elevations and measuring the fitting errors of the data to a plane. Repeatability experiments were done using reconstructions from 27 different subjects, where for each one both right and left feet were reconstructed in static and dynamic conditions over two different days. The static accuracy of the system was found to be 0.3 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.4 mm (static case) and 2.8 mm (dynamic case). The results obtained in the experiments show positive accuracy and repeatability results when compared to current literature. The design also shows to be superior to the systems available in the literature in several factors. Further studies need to be done to quantify the reliability of the system in clinical environments.

  14. A Comparative Study of Registration Methods for RGB-D Video of Static Scenes

    PubMed Central

    Morell-Gimenez, Vicente; Saval-Calvo, Marcelo; Azorin-Lopez, Jorge; Garcia-Rodriguez, Jose; Cazorla, Miguel; Orts-Escolano, Sergio; Fuster-Guillo, Andres

    2014-01-01

    The use of RGB-D sensors for mapping and recognition tasks in robotics or, in general, for virtual reconstruction has increased in recent years. The key aspect of these kinds of sensors is that they provide both depth and color information using the same device. In this paper, we present a comparative analysis of the most important methods used in the literature for the registration of subsequent RGB-D video frames in static scenarios. The analysis begins by explaining the characteristics of the registration problem, dividing it into two representative applications: scene modeling and object reconstruction. Then, a detailed experimentation is carried out to determine the behavior of the different methods depending on the application. For both applications, we used standard datasets and a new one built for object reconstruction. PMID:24834909

  15. 2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance.

    PubMed

    Beltran, M A; Paganin, D M; Uesugi, K; Kitchen, M J

    2010-03-29

    A method of tomographic phase retrieval is developed for multi-material objects whose components each has a distinct complex refractive index. The phase-retrieval algorithm, based on the Transport-of-Intensity equation, utilizes propagation-based X-ray phase contrast images acquired at a single defocus distance for each tomographic projection. The method requires a priori knowledge of the complex refractive index for each material present in the sample, together with the total projected thickness of the object at each orientation. The requirement of only a single defocus distance per projection simplifies the experimental setup and imposes no additional dose compared to conventional tomography. The algorithm was implemented using phase contrast data acquired at the SPring-8 Synchrotron facility in Japan. The three-dimensional (3D) complex refractive index distribution of a multi-material test object was quantitatively reconstructed using a single X-ray phase-contrast image per projection. The technique is robust in the presence of noise, compared to conventional absorption based tomography.

  16. Procedural 3d Modelling for Traditional Settlements. The Case Study of Central Zagori

    NASA Astrophysics Data System (ADS)

    Kitsakis, D.; Tsiliakou, E.; Labropoulos, T.; Dimopoulou, E.

    2017-02-01

    Over the last decades 3D modelling has been a fast growing field in Geographic Information Science, extensively applied in various domains including reconstruction and visualization of cultural heritage, especially monuments and traditional settlements. Technological advances in computer graphics, allow for modelling of complex 3D objects achieving high precision and accuracy. Procedural modelling is an effective tool and a relatively novel method, based on algorithmic modelling concept. It is utilized for the generation of accurate 3D models and composite facade textures from sets of rules which are called Computer Generated Architecture grammars (CGA grammars), defining the objects' detailed geometry, rather than altering or editing the model manually. In this paper, procedural modelling tools have been exploited to generate the 3D model of a traditional settlement in the region of Central Zagori in Greece. The detailed geometries of 3D models derived from the application of shape grammars on selected footprints, and the process resulted in a final 3D model, optimally describing the built environment of Central Zagori, in three levels of Detail (LoD). The final 3D scene was exported and published as 3D web-scene which can be viewed with 3D CityEngine viewer, giving a walkthrough the whole model, same as in virtual reality or game environments. This research work addresses issues regarding textures' precision, LoD for 3D objects and interactive visualization within one 3D scene, as well as the effectiveness of large scale modelling, along with the benefits and drawbacks that derive from procedural modelling techniques in the field of cultural heritage and more specifically on 3D modelling of traditional settlements.

  17. Dynamic concision for three-dimensional reconstruction of human organ built with virtual reality modelling language (VRML).

    PubMed

    Yu, Zheng-yang; Zheng, Shu-sen; Chen, Lei-ting; He, Xiao-qian; Wang, Jian-jun

    2005-07-01

    This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.

  18. Dynamic concision for three-dimensional reconstruction of human organ built with virtual reality modelling language (VRML)*

    PubMed Central

    Yu, Zheng-yang; Zheng, Shu-sen; Chen, Lei-ting; He, Xiao-qian; Wang, Jian-jun

    2005-01-01

    This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging. PMID:15973760

  19. Cervical vertebrae maturation index estimates on cone beam CT: 3D reconstructions vs sagittal sections.

    PubMed

    Bonfim, Marco A E; Costa, André L F; Fuziy, Acácio; Ximenez, Michel E L; Cotrim-Ferreira, Flávio A; Ferreira-Santos, Rívea I

    2016-01-01

    The aim of this study was to evaluate the performance of CBCT three-dimensional (3D) reconstructions and sagittal sections for estimates of cervical vertebrae maturation index (CVMI). The sample consisted of 72 CBCT examinations from patients aged 8-16 years (45 females and 27 males) selected from the archives of two private clinics. Two calibrated observers (kappa scores: ≥0.901) interpreted the CBCT settings twice. Intra- and interobserver agreement for both imaging exhibition modes was analyzed by kappa statistics, which was also used to analyze the agreement between 3D reconstructions and sagittal sections. Correlations between cervical vertebrae maturation estimates and chronological age, as well as between the assessments by 3D reconstructions and sagittal sections, were analyzed using gamma Goodman-Kruskal coefficients (α = 0.05). The kappa scores evidenced almost perfect agreement between the first and second assessments of the cervical vertebrae by 3D reconstructions (0.933-0.983) and sagittal sections (0.983-1.000). Similarly, the agreement between 3D reconstructions and sagittal sections was almost perfect (kappa index: 0.983). In most divergent cases, the difference between 3D reconstructions and sagittal sections was one stage of CVMI. Strongly positive correlations (>0.8, p < 0.001) were found not only between chronological age and CVMI but also between the estimates by 3D reconstructions and sagittal sections (p < 0.001). Although CBCT imaging must not be used exclusively for this purpose, it may be suitable for skeletal maturity assessments.

  20. A 3D camera for improved facial recognition

    NASA Astrophysics Data System (ADS)

    Lewin, Andrew; Orchard, David A.; Scott, Andrew M.; Walton, Nicholas A.; Austin, Jim

    2004-12-01

    We describe a camera capable of recording 3D images of objects. It does this by projecting thousands of spots onto an object and then measuring the range to each spot by determining the parallax from a single frame. A second frame can be captured to record a conventional image, which can then be projected onto the surface mesh to form a rendered skin. The camera is able of locating the images of the spots to a precision of better than one tenth of a pixel, and from this it can determine range to an accuracy of less than 1 mm at 1 meter. The data can be recorded as a set of two images, and is reconstructed by forming a 'wire mesh' of range points and morphing the 2 D image over this structure. The camera can be used to record the images of faces and reconstruct the shape of the face, which allows viewing of the face from various angles. This allows images to be more critically inspected for the purpose of identifying individuals. Multiple images can be stitched together to create full panoramic images of head sized objects that can be viewed from any direction. The system is being tested with a graph matching system capable of fast and accurate shape comparisons for facial recognition. It can also be used with "models" of heads and faces to provide a means of obtaining biometric data.

  1. VIRTOPSY--scientific documentation, reconstruction and animation in forensic: individual and real 3D data based geo-metric approach including optical body/object surface and radiological CT/MRI scanning.

    PubMed

    Thali, Michael J; Braun, Marcel; Buck, Ursula; Aghayev, Emin; Jackowski, Christian; Vock, Peter; Sonnenschein, Martin; Dirnhofer, Richard

    2005-03-01

    Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.

  2. 3D equilibrium reconstruction with islands

    NASA Astrophysics Data System (ADS)

    Cianciosa, M.; Hirshman, S. P.; Seal, S. K.; Shafer, M. W.

    2018-04-01

    This paper presents the development of a 3D equilibrium reconstruction tool and the results of the first-ever reconstruction of an island equilibrium. The SIESTA non-nested equilibrium solver has been coupled to the V3FIT 3D equilibrium reconstruction code. Computed from a coupled VMEC and SIESTA model, synthetic signals are matched to measured signals by finding an optimal set of equilibrium parameters. By using the normalized pressure in place of normalized flux, non-equilibrium quantities needed by diagnostic signals can be efficiently mapped to the equilibrium. The effectiveness of this tool is demonstrated by reconstructing an island equilibrium of a DIII-D inner wall limited L-mode case with an n = 1 error field applied. Flat spots in Thomson and ECE temperature diagnostics show the reconstructed islands have the correct size and phase. ).

  3. Correction of patient motion in cone-beam CT using 3D-2D registration

    NASA Astrophysics Data System (ADS)

    Ouadah, S.; Jacobson, M.; Stayman, J. W.; Ehtiati, T.; Weiss, C.; Siewerdsen, J. H.

    2017-12-01

    Cone-beam CT (CBCT) is increasingly common in guidance of interventional procedures, but can be subject to artifacts arising from patient motion during fairly long (~5-60 s) scan times. We present a fiducial-free method to mitigate motion artifacts using 3D-2D image registration that simultaneously corrects residual errors in the intrinsic and extrinsic parameters of geometric calibration. The 3D-2D registration process registers each projection to a prior 3D image by maximizing gradient orientation using the covariance matrix adaptation-evolution strategy optimizer. The resulting rigid transforms are applied to the system projection matrices, and a 3D image is reconstructed via model-based iterative reconstruction. Phantom experiments were conducted using a Zeego robotic C-arm to image a head phantom undergoing 5-15 cm translations and 5-15° rotations. To further test the algorithm, clinical images were acquired with a CBCT head scanner in which long scan times were susceptible to significant patient motion. CBCT images were reconstructed using a penalized likelihood objective function. For phantom studies the structural similarity (SSIM) between motion-free and motion-corrected images was  >0.995, with significant improvement (p  <  0.001) compared to the SSIM values of uncorrected images. Additionally, motion-corrected images exhibited a point-spread function with full-width at half maximum comparable to that of the motion-free reference image. Qualitative comparison of the motion-corrupted and motion-corrected clinical images demonstrated a significant improvement in image quality after motion correction. This indicates that the 3D-2D registration method could provide a useful approach to motion artifact correction under assumptions of local rigidity, as in the head, pelvis, and extremities. The method is highly parallelizable, and the automatic correction of residual geometric calibration errors provides added benefit that could be valuable in routine use.

  4. 2D and 3D Terahertz Imaging and X-Rays CT for Sigillography Study

    NASA Astrophysics Data System (ADS)

    Fabre, M.; Durand, R.; Bassel, L.; Recur, B.; Balacey, H.; Bou Sleiman, J.; Perraud, J.-B.; Mounaix, P.

    2017-04-01

    Seals are part of our cultural heritage but the study of these objects is limited because of their fragility. Terahertz and X-Ray imaging are used to analyze a collection of wax seals from the fourteenth to eighteenth centuries. In this work, both techniques are compared in order to discuss their advantages and limits and their complementarity for conservation state study of the samples. Thanks to 3D analysis and reconstructions, defects and fractures are detected with an estimation of their depth position. The path from the parchment tongue inside the seals is also detected.

  5. Three-Dimensional Characterization of Buried Metallic Targets via a Tomographic Algorithm Applied to GPR Synthetic Data

    NASA Astrophysics Data System (ADS)

    Comite, Davide; Galli, Alessandro; Catapano, Ilaria; Soldovieri, Francesco; Pettinelli, Elena

    2013-04-01

    This work is focused on the three-dimensional (3-D) imaging of buried metallic targets achievable by processing GPR (ground penetrating radar) simulation data via a tomographic inversion algorithm. The direct scattering problem has been analysed by means of a recently-developed numerical setup based on an electromagnetic time-domain CAD tool (CST Microwave Studio), which enables us to efficiently explore different GPR scenarios of interest [1]. The investigated 3D domain considers here two media, representing, e.g., an air/soil environment in which variously-shaped metallic (PEC) scatterers can be buried. The GPR system is simulated with Tx/Rx antennas placed in a bistatic configuration at the soil interface. In the implementation, the characteristics of the antennas may suitably be chosen in terms of topology, offset, radiative features, frequency ranges, etc. Arbitrary time-domain waveforms can be used as the input GPR signal (e.g., a Gaussian-like pulse having the frequency spectrum in the microwave range). The gathered signal at the output port includes the backscattered wave from the objects to be reconstructed, and the relevant data may be displayed in canonical radargram forms [1]. The GPR system sweeps along one main rectilinear direction, and the scanning process is here repeated along different close parallel lines to acquire data for a full 3-D analysis. Starting from the processing of the synthetic GPR data, a microwave tomographic approach is used to tackle the imaging, which is based on the Kirchhoff approximation to linearize the inverse scattering problem [2]. The target reconstruction is given in terms of the amplitude of the 'object function' (normalized with respect to its maximum inside the 3-D investigation domain). The data of the scattered field are collected considering a multi-frequency step process inside the fixed range of the signal spectrum, under a multi-bistatic configuration where the Tx and Rx antennas are separated by an offset distance and move at the interface over rectilinear observation domains. Analyses have been performed for some canonical scatterer shapes (e.g., sphere and cylinder, cube and parallelepiped, cone and wedge) in order to specifically highlight the influence of all the three dimensions (length, depth, and width) in the reconstruction of the targets. The roles of both size and location of the objects are also addressed in terms of the probing signal wavelengths and of the antenna offset. The results show to what extent it is possible to achieve a correct spatial localization of the targets, in conjunction with a generally satisfactory prediction of their 3-D size and shape. It should anyway be noted that the tomographic reconstructions here manage challenging cases of non-penetrable objects with data gathered under a reflection configuration, hence most of the information achievable is expected relating to the upper illuminated parts of the reflectors that give rise to the main scattering effects. The limits in the identification of fine geometrical details are discussed further in connection with the critical aspects of GPR operation, which include the adopted detection configuration and the frequency spectrum of the employed signals. [1] G. Valerio, A. Galli, P. M. Barone, S. E. Lauro, E. Mattei, and E. Pettinelli, "GPR detectability of rocks in a Martian-like shallow subsoil: a numerical approach," Planet. Space Sci., Vol. 62, pp. 31-40, 2012. [2] R. Solimene, A. Buonanno, F. Soldovieri, and R. Pierri, "Physical optics imaging of 3D PEC objects: vector and multipolarized approaches," IEEE Trans. Geosci. Remote Sens., Vol. 48, pp. 1799-1808, Apr. 2010.

  6. A novel binary shape context for 3D local surface description

    NASA Astrophysics Data System (ADS)

    Dong, Zhen; Yang, Bisheng; Liu, Yuan; Liang, Fuxun; Li, Bijun; Zang, Yufu

    2017-08-01

    3D local surface description is now at the core of many computer vision technologies, such as 3D object recognition, intelligent driving, and 3D model reconstruction. However, most of the existing 3D feature descriptors still suffer from low descriptiveness, weak robustness, and inefficiency in both time and memory. To overcome these challenges, this paper presents a robust and descriptive 3D Binary Shape Context (BSC) descriptor with high efficiency in both time and memory. First, a novel BSC descriptor is generated for 3D local surface description, and the performance of the BSC descriptor under different settings of its parameters is analyzed. Next, the descriptiveness, robustness, and efficiency in both time and memory of the BSC descriptor are evaluated and compared to those of several state-of-the-art 3D feature descriptors. Finally, the performance of the BSC descriptor for 3D object recognition is also evaluated on a number of popular benchmark datasets, and an urban-scene dataset is collected by a terrestrial laser scanner system. Comprehensive experiments demonstrate that the proposed BSC descriptor obtained high descriptiveness, strong robustness, and high efficiency in both time and memory and achieved high recognition rates of 94.8%, 94.1% and 82.1% on the considered UWA, Queen, and WHU datasets, respectively.

  7. SU-E-T-428: Feasibility Study of 4D Image Reconstruction by Organ Motion Vector Extension Based On Portal Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, J; Jung, J; Yeo, I

    2015-06-15

    Purpose: To develop and to test a method to generate a new 4D CT images of the treatment day from the old 4D CT and the portal images of the day when the motion extent exceeded from that represented by plan CTs. Methods: A motion vector of a moving tumor in a patient may be extended to reconstruct the tumor position when the motion extent exceeded from that represented by plan CTs. To test this, 1. a phantom that consists of a polystyrene cylinder (tumor) embedded in cork (lung) was placed on a moving platform with 4 sec/cycle and amplitudesmore » of 1 cm and 2 cm, and was 4D-scanned. 2. A 6MV photon beam was irradiated on the moving phantoms and cineEPID images were obtained. 3. A motion vector of the tumor was acquired from 4D CT images of the phantom with 1 cm amplitude. 4. From cine EPID images of the phantom with the 2 cm amplitude, various motion extents (0.3 cm, 0.5 cm, etc) were acquired and programmed into the motion vector, producing CT images at each position. 5. The reconstructed CT images were then compared with pre-acquired “reference” 4D CT images at each position (i.e. phase). Results: The CT image was reconstructed and compared with the reference image, showing a slight mismatch in the transition direction limited by voxel size (slice thickness) in CT image. Due to the rigid nature of the phantom studied, the modeling the displacement of the center of object was sufficient. When deformable tumors are to be modeled, more complex scheme is necessary, which utilize cine EPID and 4D CT images. Conclusion: The new idea of CT image reconstruction was demonstrated. Deformable tumor movements need to be considered in the future.« less

  8. Fourier Domain Iterative Approach to Optical Sectioning of 3d Translucent Objects for Ophthalmology Purposes

    NASA Astrophysics Data System (ADS)

    Razguli, A. V.; Iroshnikov, N. G.; Larichev, A. V.; Romanenko, T. E.; Goncharov, A. S.

    2017-05-01

    In this paper we deal with the problem of optical sectioning. This is a post processing step while investigating of 3D translucent medical objects based on rapid refocusing of the imaging system by the adaptive optics technique. Each image, captured in focal plane, can be represented as the sum of in-focus true section and out-of-focus images of the neighboring sections of the depth that are undesirable in the subsequent reconstruction of 3D object. The problem of optical sectioning under consideration is to elaborate a robust approach capable of obtaining a stack of cross section images purified from such distortions. For a typical sectioning statement arising in ophthalmology we propose a local iterative method in Fourier spectral plane. Compared to the non-local constant parameter selection for the whole spectral domain, the method demonstrates both improved sectioning results and a good level of scalability when implemented on multi-core CPUs.

  9. Low-Cost 3D Printing Orbital Implant Templates in Secondary Orbital Reconstructions.

    PubMed

    Callahan, Alison B; Campbell, Ashley A; Petris, Carisa; Kazim, Michael

    Despite its increasing use in craniofacial reconstructions, three-dimensional (3D) printing of customized orbital implants has not been widely adopted. Limitations include the cost of 3D printers able to print in a biocompatible material suitable for implantation in the orbit and the breadth of available implant materials. The authors report the technique of low-cost 3D printing of orbital implant templates used in complex, often secondary, orbital reconstructions. A retrospective case series of 5 orbital reconstructions utilizing a technique of 3D printed orbital implant templates is presented. Each patient's Digital Imaging and Communications in Medicine data were uploaded and processed to create 3D renderings upon which a customized implant was designed and sent electronically to printers open for student use at our affiliated institutions. The mock implants were sterilized and used intraoperatively as a stencil and mold. The final implant material was chosen by the surgeons based on the requirements of the case. Five orbital reconstructions were performed with this technique: 3 tumor reconstructions and 2 orbital fractures. Four of the 5 cases were secondary reconstructions. Molded Medpor Titan (Stryker, Kalamazoo, MI) implants were used in 4 cases and titanium mesh in 1 case. The stenciled and molded implants were adjusted no more than 2 times before anchored in place (mean 1). No case underwent further revision. The technique and cases presented demonstrate 1) the feasibility and accessibility of low-cost, independent use of 3D printing technology to fashion patient-specific implants in orbital reconstructions, 2) the ability to apply this technology to the surgeon's preference of any routinely implantable material, and 3) the utility of this technique in complex, secondary reconstructions.

  10. 3D Reconstruction and Standardization of the Rat Vibrissal Cortex for Precise Registration of Single Neuron Morphology

    PubMed Central

    Egger, Robert; Narayanan, Rajeevan T.; Helmstaedter, Moritz; de Kock, Christiaan P. J.; Oberlaender, Marcel

    2012-01-01

    The three-dimensional (3D) structure of neural circuits is commonly studied by reconstructing individual or small groups of neurons in separate preparations. Investigation of structural organization principles or quantification of dendritic and axonal innervation thus requires integration of many reconstructed morphologies into a common reference frame. Here we present a standardized 3D model of the rat vibrissal cortex and introduce an automated registration tool that allows for precise placement of single neuron reconstructions. We (1) developed an automated image processing pipeline to reconstruct 3D anatomical landmarks, i.e., the barrels in Layer 4, the pia and white matter surfaces and the blood vessel pattern from high-resolution images, (2) quantified these landmarks in 12 different rats, (3) generated an average 3D model of the vibrissal cortex and (4) used rigid transformations and stepwise linear scaling to register 94 neuron morphologies, reconstructed from in vivo stainings, to the standardized cortex model. We find that anatomical landmarks vary substantially across the vibrissal cortex within an individual rat. In contrast, the 3D layout of the entire vibrissal cortex remains remarkably preserved across animals. This allows for precise registration of individual neuron reconstructions with approximately 30 µm accuracy. Our approach could be used to reconstruct and standardize other anatomically defined brain areas and may ultimately lead to a precise digital reference atlas of the rat brain. PMID:23284282

  11. Accuracy Assessment of Underwater Photogrammetric Three Dimensional Modelling for Coral Reefs

    NASA Astrophysics Data System (ADS)

    Guo, T.; Capra, A.; Troyer, M.; Gruen, A.; Brooks, A. J.; Hench, J. L.; Schmitt, R. J.; Holbrook, S. J.; Dubbini, M.

    2016-06-01

    Recent advances in automation of photogrammetric 3D modelling software packages have stimulated interest in reconstructing highly accurate 3D object geometry in unconventional environments such as underwater utilizing simple and low-cost camera systems. The accuracy of underwater 3D modelling is affected by more parameters than in single media cases. This study is part of a larger project on 3D measurements of temporal change of coral cover in tropical waters. It compares the accuracies of 3D point clouds generated by using images acquired from a system camera mounted in an underwater housing and the popular GoPro cameras respectively. A precisely measured calibration frame was placed in the target scene in order to provide accurate control information and also quantify the errors of the modelling procedure. In addition, several objects (cinder blocks) with various shapes were arranged in the air and underwater and 3D point clouds were generated by automated image matching. These were further used to examine the relative accuracy of the point cloud generation by comparing the point clouds of the individual objects with the objects measured by the system camera in air (the best possible values). Given a working distance of about 1.5 m, the GoPro camera can achieve a relative accuracy of 1.3 mm in air and 2.0 mm in water. The system camera achieved an accuracy of 1.8 mm in water, which meets our requirements for coral measurement in this system.

  12. Indoor space 3D visual reconstruction using mobile cart with laser scanner and cameras

    NASA Astrophysics Data System (ADS)

    Gashongore, Prince Dukundane; Kawasue, Kikuhito; Yoshida, Kumiko; Aoki, Ryota

    2017-02-01

    Indoor space 3D visual reconstruction has many applications and, once done accurately, it enables people to conduct different indoor activities in an efficient manner. For example, an effective and efficient emergency rescue response can be accomplished in a fire disaster situation by using 3D visual information of a destroyed building. Therefore, an accurate Indoor Space 3D visual reconstruction system which can be operated in any given environment without GPS has been developed using a Human-Operated mobile cart equipped with a laser scanner, CCD camera, omnidirectional camera and a computer. By using the system, accurate indoor 3D Visual Data is reconstructed automatically. The obtained 3D data can be used for rescue operations, guiding blind or partially sighted persons and so forth.

  13. Lensfree diffractive tomography for the imaging of 3D cell cultures

    NASA Astrophysics Data System (ADS)

    Berdeu, Anthony; Momey, Fabien; Dinten, Jean-Marc; Gidrol, Xavier; Picollet-D'hahan, Nathalie; Allier, Cédric

    2017-02-01

    New microscopes are needed to help reaching the full potential of 3D organoid culture studies by gathering large quantitative and systematic data over extended periods of time while preserving the integrity of the living sample. In order to reconstruct large volumes while preserving the ability to catch every single cell, we propose new imaging platforms based on lens-free microscopy, a technic which is addressing these needs in the context of 2D cell culture, providing label-free and non-phototoxic acquisition of large datasets. We built lens-free diffractive tomography setups performing multi-angle acquisitions of 3D organoid cultures embedded in Matrigel and developed dedicated 3D holographic reconstruction algorithms based on the Fourier diffraction theorem. Nonetheless, holographic setups do not record the phase of the incident wave front and the biological samples in Petri dish strongly limit the angular coverage. These limitations introduce numerous artefacts in the sample reconstruction. We developed several methods to overcome them, such as multi-wavelength imaging or iterative phase retrieval. The most promising technic currently developed is based on a regularised inverse problem approach directly applied on the 3D volume to reconstruct. 3D reconstructions were performed on several complex samples such as 3D networks or spheroids embedded in capsules with large reconstructed volumes up to 25 mm3 while still being able to identify single cells. To our knowledge, this is the first time that such an inverse problem approach is implemented in the context of lens-free diffractive tomography enabling to reconstruct large fully 3D volumes of unstained biological samples.

  14. Crowd-sourced pictures geo-localization method based on street view images and 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Cheng, Liang; Yuan, Yi; Xia, Nan; Chen, Song; Chen, Yanming; Yang, Kang; Ma, Lei; Li, Manchun

    2018-07-01

    People are increasingly becoming accustomed to taking photos of everyday life in modern cities and uploading them on major photo-sharing social media sites. These sites contain numerous pictures, but some have incomplete or blurred location information. The geo-localization of crowd-sourced pictures enriches the information contained therein, and is applicable to activities such as urban construction, urban landscape analysis, and crime tracking. However, geo-localization faces huge technical challenges. This paper proposes a method for large-scale geo-localization of crowd-sourced pictures. Our approach uses structured, organized Street View images as a reference dataset and employs a three-step strategy of coarse geo-localization by image retrieval, selecting reliable matches by image registration, and fine geo-localization by 3D reconstruction to attach geographic tags to pictures from unidentified sources. In study area, 3D reconstruction based on close-range photogrammetry is used to restore the 3D geographical information of the crowd-sourced pictures, resulting in the proposed method improving the median error from 256.7 m to 69.0 m, and the percentage of the geo-localized query pictures under a 50 m error from 17.2% to 43.2% compared with the previous method. Another discovery using the proposed method is that, in respect of the causes of reconstruction error, closer distances from the cameras to the main objects in query pictures tend to produce lower errors and the component of error parallel to the road makes a more significant contribution to the Total Error. The proposed method is not limited to small areas, and could be expanded to cities and larger areas owing to its flexible parameters.

  15. Robust surface reconstruction by design-guided SEM photometric stereo

    NASA Astrophysics Data System (ADS)

    Miyamoto, Atsushi; Matsuse, Hiroki; Koutaki, Gou

    2017-04-01

    We present a novel approach that addresses the blind reconstruction problem in scanning electron microscope (SEM) photometric stereo for complicated semiconductor patterns to be measured. In our previous work, we developed a bootstrapping de-shadowing and self-calibration (BDS) method, which automatically calibrates the parameter of the gradient measurement formulas and resolves shadowing errors for estimating an accurate three-dimensional (3D) shape and underlying shadowless images. Experimental results on 3D surface reconstruction demonstrated the significance of the BDS method for simple shapes, such as an isolated line pattern. However, we found that complicated shapes, such as line-and-space (L&S) and multilayered patterns, produce deformed and inaccurate measurement results. This problem is due to brightness fluctuations in the SEM images, which are mainly caused by the energy fluctuations of the primary electron beam, variations in the electronic expanse inside a specimen, and electrical charging of specimens. Despite these being essential difficulties encountered in SEM photometric stereo, it is difficult to model accurately all the complicated physical phenomena of electronic behavior. We improved the robustness of the surface reconstruction in order to deal with these practical difficulties with complicated shapes. Here, design data are useful clues as to the pattern layout and layer information of integrated semiconductors. We used the design data as a guide of the measured shape and incorporated a geometrical constraint term to evaluate the difference between the measured and designed shapes into the objective function of the BDS method. Because the true shape does not necessarily correspond to the designed one, we use an iterative scheme to develop proper guide patterns and a 3D surface that provides both a less distorted and more accurate 3D shape after convergence. Extensive experiments on real image data demonstrate the robustness and effectiveness of our method.

  16. Computer-assisted design and finite element simulation of braces for the treatment of adolescent idiopathic scoliosis using a coronal plane radiograph and surface topography.

    PubMed

    Pea, Rany; Dansereau, Jean; Caouette, Christiane; Cobetto, Nikita; Aubin, Carl-Éric

    2018-05-01

    Orthopedic braces made by Computer-Aided Design and Manufacturing and numerical simulation were shown to improve spinal deformities correction in adolescent idiopathic scoliosis while using less material. Simulations with BraceSim (Rodin4D, Groupe Lagarrigue, Bordeaux, France) require a sagittal radiograph, not always available. The objective was to develop an innovative modeling method based on a single coronal radiograph and surface topography, and assess the effectiveness of braces designed with this approach. With a patient coronal radiograph and a surface topography, the developed method allowed the 3D reconstruction of the spine, rib cage and pelvis using geometric models from a database and a free form deformation technique. The resulting 3D reconstruction converted into a finite element model was used to design and simulate the correction of a brace. The developed method was tested with data from ten scoliosis cases. The simulated correction was compared to analogous simulations performed with a 3D reconstruction built using two radiographs and surface topography (validated gold standard reference). There was an average difference of 1.4°/1.7° for the thoracic/lumbar Cobb angle, and 2.6°/5.5° for the kyphosis/lordosis between the developed reconstruction method and the reference. The average difference of the simulated correction was 2.8°/2.4° for the thoracic/lumbar Cobb angles and 3.5°/5.4° the kyphosis/lordosis. This study showed the feasibility to design and simulate brace corrections based on a new modeling method with a single coronal radiograph and surface topography. This innovative method could be used to improve brace designs, at a lesser radiation dose for the patient. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Conception and realization of a semiconductor based 240 GHz full 3D MIMO imaging system

    NASA Astrophysics Data System (ADS)

    Weisenstein, Christian; Kahl, Matthias; Friederich, Fabian; Haring Bolívar, Peter

    2017-02-01

    Multiple-input multiple-output (MIMO) imaging systems in the terahertz frequency range have a high potential in the field of non-destructive testing (NDT). With such systems it is possible to detect defects in composite materials, for example cracks or delaminations in fiber composites. To investigate mass-produced products it is necessary to study the objects in close to real-time on a conveyor without affecting the production cycle time. In this work we present the conception and realization of a 3D MIMO imaging system for in-line investigation of composite materials and structures. To achieve a lateral resolution of 1 mm, in order to detect such small defects in composite materials with a moderate number of elements, precise sensor design is crucial. In our approach we use the effective aperture concept. The designed sparse array consists of 32 transmitters and 30 receivers based on planar semiconductor components. High range resolution is achieved by an operating frequency between 220 GHz and 260 GHz in a stepped frequency continuous wave (SFCW) setup. A matched filter approach is used to simulate the reconstructed 3D image through the array. This allows the evaluation of the designed array geometry in regard of resolution and side lobe level. In contrast to earlier demonstrations, in which synthetic reconstruction is only performed in a 2D plane, an optics-free full 3D recon- struction has been implemented in our concept. Based on this simulation we designed an array geometry that enables to resolve objects with a resolution smaller than 1mm and moderate side lobe level.

  18. Limitation of Liquid Crystal on Silicon Spatial Light Modular for Holographic Three-dimensional Displays

    NASA Technical Reports Server (NTRS)

    Wang, Xinghua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Kujawinska, Malgorzata; Pouch, John; Miranda, Feliz

    2004-01-01

    In a 3-D display system based on an opto-electronic reconstruction of a digitally recorded hologram, the field of view of such a system is limited by the spatial resolution of the liquid crystal on silicon (LCOS) spatial light modular (SLM) used to perform the opto-electronic reconstruction. In this article, the special resolution limitation of LCOS SLM associated with the fringe field effect and interpixel coupling is determined by the liquid crystal detector simulation and the Finite Difference Time Domain (FDTD) simulation. The diffraction efficiency loss associated with the imperfection in the phase profile is studied with an example of opto-electronic reconstruction of an amplitude object. A high spatial resolution LCOS SLM with a wide reconstruction angle is proposed.

  19. An Automatic Image-Based Modelling Method Applied to Forensic Infography

    PubMed Central

    Zancajo-Blazquez, Sandra; Gonzalez-Aguilera, Diego; Gonzalez-Jorge, Higinio; Hernandez-Lopez, David

    2015-01-01

    This paper presents a new method based on 3D reconstruction from images that demonstrates the utility and integration of close-range photogrammetry and computer vision as an efficient alternative to modelling complex objects and scenarios of forensic infography. The results obtained confirm the validity of the method compared to other existing alternatives as it guarantees the following: (i) flexibility, permitting work with any type of camera (calibrated and non-calibrated, smartphone or tablet) and image (visible, infrared, thermal, etc.); (ii) automation, allowing the reconstruction of three-dimensional scenarios in the absence of manual intervention, and (iii) high quality results, sometimes providing higher resolution than modern laser scanning systems. As a result, each ocular inspection of a crime scene with any camera performed by the scientific police can be transformed into a scaled 3d model. PMID:25793628

  20. Preliminary development of augmented reality systems for spinal surgery

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhu Q.; Ramjist, Joel M.; Jivraj, Jamil; Jakubovic, Raphael; Deorajh, Ryan; Yang, Victor X. D.

    2017-02-01

    Surgical navigation has been more actively deployed in open spinal surgeries due to the need for improved precision during procedures. This is increasingly difficult in minimally invasive surgeries due to the lack of visual cues caused by smaller exposure sites, and increases a surgeon's dependence on their knowledge of anatomical landmarks as well as the CT or MRI images. The use of augmented reality (AR) systems and registration technologies in spinal surgeries could allow for improvements to techniques by overlaying a 3D reconstruction of patient anatomy in the surgeon's field of view, creating a mixed reality visualization. The AR system will be capable of projecting the 3D reconstruction onto a field and preliminary object tracking on a phantom. Dimensional accuracy of the mixed media will also be quantified to account for distortions in tracking.

  1. A Comparison of Ultrasound Tomography Methods in Circular Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leach, R R; Azevedo, S G; Berryman, J G

    2002-01-24

    Extremely high quality data was acquired using an experimental ultrasound scanner developed at Lawrence Livermore National Laboratory using a 2D ring geometry with up to 720 transmitter/receiver transducer positions. This unique geometry allows reflection and transmission modes and transmission imaging and quantification of a 3D volume using 2D slice data. Standard image reconstruction methods were applied to the data including straight-ray filtered back projection, reflection tomography, and diffraction tomography. Newer approaches were also tested such as full wave, full wave adjoint method, bent-ray filtered back projection, and full-aperture tomography. A variety of data sets were collected including a formalin-fixed humanmore » breast tissue sample, a commercial ultrasound complex breast phantom, and cylindrical objects with and without inclusions. The resulting reconstruction quality of the images ranges from poor to excellent. The method and results of this study are described including like-data reconstructions produced by different algorithms with side-by-side image comparisons. Comparisons to medical B-scan and x-ray CT scan images are also shown. Reconstruction methods with respect to image quality using resolution, noise, and quantitative accuracy, and computational efficiency metrics will also be discussed.« less

  2. Investigation of undersampling and reconstruction algorithm dependence on respiratory correlated 4D-MRI for online MR-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Mickevicius, Nikolai J.; Paulson, Eric S.

    2017-04-01

    The purpose of this work is to investigate the effects of undersampling and reconstruction algorithm on the total processing time and image quality of respiratory phase-resolved 4D MRI data. Specifically, the goal is to obtain quality 4D-MRI data with a combined acquisition and reconstruction time of five minutes or less, which we reasoned would be satisfactory for pre-treatment 4D-MRI in online MRI-gRT. A 3D stack-of-stars, self-navigated, 4D-MRI acquisition was used to scan three healthy volunteers at three image resolutions and two scan durations. The NUFFT, CG-SENSE, SPIRiT, and XD-GRASP reconstruction algorithms were used to reconstruct each dataset on a high performance reconstruction computer. The overall image quality, reconstruction time, artifact prevalence, and motion estimates were compared. The CG-SENSE and XD-GRASP reconstructions provided superior image quality over the other algorithms. The combination of a 3D SoS sequence and parallelized reconstruction algorithms using computing hardware more advanced than those typically seen on product MRI scanners, can result in acquisition and reconstruction of high quality respiratory correlated 4D-MRI images in less than five minutes.

  3. Representation and Reconstruction of Three-dimensional Microstructures in Ni-based Superalloys

    DTIC Science & Technology

    2010-12-20

    Materiala, 56, pp. 427-437 (2009); • Application of joint histogram and mutual information to registration and data fusion problems in serial...sectioning data sets and synthetically generated microstructures. The method is easy to use, and allows for a quantitative description of shapes. Further...following objectives were achieved: • we have successfully applied 3-D moment invariant analysis to several experimental data sets; • we have extended 2-D

  4. Three-dimensional dictionary-learning reconstruction of (23)Na MRI data.

    PubMed

    Behl, Nicolas G R; Gnahm, Christine; Bachert, Peter; Ladd, Mark E; Nagel, Armin M

    2016-04-01

    To reduce noise and artifacts in (23)Na MRI with a Compressed Sensing reconstruction and a learned dictionary as sparsifying transform. A three-dimensional dictionary-learning compressed sensing reconstruction algorithm (3D-DLCS) for the reconstruction of undersampled 3D radial (23)Na data is presented. The dictionary used as the sparsifying transform is learned with a K-singular-value-decomposition (K-SVD) algorithm. The reconstruction parameters are optimized on simulated data, and the quality of the reconstructions is assessed with peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The performance of the algorithm is evaluated in phantom and in vivo (23)Na MRI data of seven volunteers and compared with nonuniform fast Fourier transform (NUFFT) and other Compressed Sensing reconstructions. The reconstructions of simulated data have maximal PSNR and SSIM for an undersampling factor (USF) of 10 with numbers of averages equal to the USF. For 10-fold undersampling, the PSNR is increased by 5.1 dB compared with the NUFFT reconstruction, and the SSIM by 24%. These results are confirmed by phantom and in vivo (23)Na measurements in the volunteers that show markedly reduced noise and undersampling artifacts in the case of 3D-DLCS reconstructions. The 3D-DLCS algorithm enables precise reconstruction of undersampled (23)Na MRI data with markedly reduced noise and artifact levels compared with NUFFT reconstruction. Small structures are well preserved. © 2015 Wiley Periodicals, Inc.

  5. Three-Dimensional Printing: Basic Principles and Applications in Medicine and Radiology.

    PubMed

    Kim, Guk Bae; Lee, Sangwook; Kim, Haekang; Yang, Dong Hyun; Kim, Young-Hak; Kyung, Yoon Soo; Kim, Choung-Soo; Choi, Se Hoon; Kim, Bum Joon; Ha, Hojin; Kwon, Sun U; Kim, Namkug

    2016-01-01

    The advent of three-dimensional printing (3DP) technology has enabled the creation of a tangible and complex 3D object that goes beyond a simple 3D-shaded visualization on a flat monitor. Since the early 2000s, 3DP machines have been used only in hard tissue applications. Recently developed multi-materials for 3DP have been used extensively for a variety of medical applications, such as personalized surgical planning and guidance, customized implants, biomedical research, and preclinical education. In this review article, we discuss the 3D reconstruction process, touching on medical imaging, and various 3DP systems applicable to medicine. In addition, the 3DP medical applications using multi-materials are introduced, as well as our recent results.

  6. Exploring local regularities for 3D object recognition

    NASA Astrophysics Data System (ADS)

    Tian, Huaiwen; Qin, Shengfeng

    2016-11-01

    In order to find better simplicity measurements for 3D object recognition, a new set of local regularities is developed and tested in a stepwise 3D reconstruction method, including localized minimizing standard deviation of angles(L-MSDA), localized minimizing standard deviation of segment magnitudes(L-MSDSM), localized minimum standard deviation of areas of child faces (L-MSDAF), localized minimum sum of segment magnitudes of common edges (L-MSSM), and localized minimum sum of areas of child face (L-MSAF). Based on their effectiveness measurements in terms of form and size distortions, it is found that when two local regularities: L-MSDA and L-MSDSM are combined together, they can produce better performance. In addition, the best weightings for them to work together are identified as 10% for L-MSDSM and 90% for L-MSDA. The test results show that the combined usage of L-MSDA and L-MSDSM with identified weightings has a potential to be applied in other optimization based 3D recognition methods to improve their efficacy and robustness.

  7. A dental vision system for accurate 3D tooth modeling.

    PubMed

    Zhang, Li; Alemzadeh, K

    2006-01-01

    This paper describes an active vision system based reverse engineering approach to extract the three-dimensional (3D) geometric information from dental teeth and transfer this information into Computer-Aided Design/Computer-Aided Manufacture (CAD/CAM) systems to improve the accuracy of 3D teeth models and at the same time improve the quality of the construction units to help patient care. The vision system involves the development of a dental vision rig, edge detection, boundary tracing and fast & accurate 3D modeling from a sequence of sliced silhouettes of physical models. The rig is designed using engineering design methods such as a concept selection matrix and weighted objectives evaluation chart. Reconstruction results and accuracy evaluation are presented on digitizing different teeth models.

  8. Probabilistic Feasibility of the Reconstruction Process of Russian-Orthodox Churches

    NASA Astrophysics Data System (ADS)

    Chizhova, M.; Brunn, A.; Stilla, U.

    2016-06-01

    The cultural human heritage is important for the identity of following generations and has to be preserved in a suitable manner. In the course of time a lot of information about former cultural constructions has been lost because some objects were strongly damaged by natural erosion or on account of human work or were even destroyed. It is important to capture still available building parts of former buildings, mostly ruins. This data could be the basis for a virtual reconstruction. Laserscanning offers in principle the possibility to take up extensively surfaces of buildings in its actual status. In this paper we assume a priori given 3d-laserscanner data, 3d point cloud for the partly destroyed church. There are many well known algorithms, that describe different methods of extraction and detection of geometric primitives, which are recognized separately in 3d points clouds. In our work we put them in a common probabilistic framework, which guides the complete reconstruction process of complex buildings, in our case russian-orthodox churches. Churches are modeled with their functional volumetric components, enriched with a priori known probabilities, which are deduced from a database of russian-orthodox churches. Each set of components represents a complete church. The power of the new method is shown for a simulated dataset of 100 russian-orthodox churches.

  9. Calibration of RGBD camera and cone-beam CT for 3D intra-operative mixed reality visualization.

    PubMed

    Lee, Sing Chun; Fuerst, Bernhard; Fotouhi, Javad; Fischer, Marius; Osgood, Greg; Navab, Nassir

    2016-06-01

    This work proposes a novel algorithm to register cone-beam computed tomography (CBCT) volumes and 3D optical (RGBD) camera views. The co-registered real-time RGBD camera and CBCT imaging enable a novel augmented reality solution for orthopedic surgeries, which allows arbitrary views using digitally reconstructed radiographs overlaid on the reconstructed patient's surface without the need to move the C-arm. An RGBD camera is rigidly mounted on the C-arm near the detector. We introduce a calibration method based on the simultaneous reconstruction of the surface and the CBCT scan of an object. The transformation between the two coordinate spaces is recovered using Fast Point Feature Histogram descriptors and the Iterative Closest Point algorithm. Several experiments are performed to assess the repeatability and the accuracy of this method. Target registration error is measured on multiple visual and radio-opaque landmarks to evaluate the accuracy of the registration. Mixed reality visualizations from arbitrary angles are also presented for simulated orthopedic surgeries. To the best of our knowledge, this is the first calibration method which uses only tomographic and RGBD reconstructions. This means that the method does not impose a particular shape of the phantom. We demonstrate a marker-less calibration of CBCT volumes and 3D depth cameras, achieving reasonable registration accuracy. This design requires a one-time factory calibration, is self-contained, and could be integrated into existing mobile C-arms to provide real-time augmented reality views from arbitrary angles.

  10. Image reconstruction algorithm for optically stimulated luminescence 2D dosimetry using laser-scanned Al2O3:C and Al2O3:C,Mg films

    NASA Astrophysics Data System (ADS)

    Ahmed, M. F.; Schnell, E.; Ahmad, S.; Yukihara, E. G.

    2016-10-01

    The objective of this work was to develop an image reconstruction algorithm for 2D dosimetry using Al2O3:C and Al2O3:C,Mg optically stimulated luminescence (OSL) films imaged using a laser scanning system. The algorithm takes into account parameters associated with detector properties and the readout system. Pieces of Al2O3:C films (~8 mm  ×  8 mm  ×  125 µm) were irradiated and used to simulate dose distributions with extreme dose gradients (zero and non-zero dose regions). The OSLD film pieces were scanned using a custom-built laser-scanning OSL reader and the data obtained were used to develop and demonstrate a dose reconstruction algorithm. The algorithm includes corrections for: (a) galvo hysteresis, (b) photomultiplier tube (PMT) linearity, (c) phosphorescence, (d) ‘pixel bleeding’ caused by the 35 ms luminescence lifetime of F-centers in Al2O3, (e) geometrical distortion inherent to Galvo scanning system, and (f) position dependence of the light collection efficiency. The algorithm was also applied to 6.0 cm  ×  6.0 cm  ×  125 μm or 10.0 cm  ×  10.0 cm  ×  125 µm Al2O3:C and Al2O3:C,Mg films exposed to megavoltage x-rays (6 MV) and 12C beams (430 MeV u-1). The results obtained using pieces of irradiated films show the ability of the image reconstruction algorithm to correct for pixel bleeding even in the presence of extremely sharp dose gradients. Corrections for geometric distortion and position dependence of light collection efficiency were shown to minimize characteristic limitations of this system design. We also exemplify the application of the algorithm to more clinically relevant 6 MV x-ray beam and a 12C pencil beam, demonstrating the potential for small field dosimetry. The image reconstruction algorithm described here provides the foundation for laser-scanned OSL applied to 2D dosimetry.

  11. Left ventricular endocardial surface detection based on real-time 3D echocardiographic data

    NASA Technical Reports Server (NTRS)

    Corsi, C.; Borsari, M.; Consegnati, F.; Sarti, A.; Lamberti, C.; Travaglini, A.; Shiota, T.; Thomas, J. D.

    2001-01-01

    OBJECTIVE: A new computerized semi-automatic method for left ventricular (LV) chamber segmentation is presented. METHODS: The LV is imaged by real-time three-dimensional echocardiography (RT3DE). The surface detection model, based on level set techniques, is applied to RT3DE data for image analysis. The modified level set partial differential equation we use is solved by applying numerical methods for conservation laws. The initial conditions are manually established on some slices of the entire volume. The solution obtained for each slice is a contour line corresponding with the boundary between LV cavity and LV endocardium. RESULTS: The mathematical model has been applied to sequences of frames of human hearts (volume range: 34-109 ml) imaged by 2D and reconstructed off-line and RT3DE data. Volume estimation obtained by this new semi-automatic method shows an excellent correlation with those obtained by manual tracing (r = 0.992). Dynamic change of LV volume during the cardiac cycle is also obtained. CONCLUSION: The volume estimation method is accurate; edge based segmentation, image completion and volume reconstruction can be accomplished. The visualization technique also allows to navigate into the reconstructed volume and to display any section of the volume.

  12. a Low-Cost and Portable System for 3d Reconstruction of Texture-Less Objects

    NASA Astrophysics Data System (ADS)

    Hosseininaveh, A.; Yazdan, R.; Karami, A.; Moradi, M.; Ghorbani, F.

    2015-12-01

    The optical methods for 3D modelling of objects can be classified into two categories including image-based and range-based methods. Structure from Motion is one of the image-based methods implemented in commercial software. In this paper, a low-cost and portable system for 3D modelling of texture-less objects is proposed. This system includes a rotating table designed and developed by using a stepper motor and a very light rotation plate. The system also has eight laser light sources with very dense and strong beams which provide a relatively appropriate pattern on texture-less objects. In this system, regarding to the step of stepper motor, images are semi automatically taken by a camera. The images can be used in structure from motion procedures implemented in Agisoft software.To evaluate the performance of the system, two dark objects were used. The point clouds of these objects were obtained by spraying a light powders on the objects and exploiting a GOM laser scanner. Then these objects were placed on the proposed turntable. Several convergent images were taken from each object while the laser light sources were projecting the pattern on the objects. Afterward, the images were imported in VisualSFM as a fully automatic software package for generating an accurate and complete point cloud. Finally, the obtained point clouds were compared to the point clouds generated by the GOM laser scanner. The results showed the ability of the proposed system to produce a complete 3D model from texture-less objects.

  13. An efficient direct method for image registration of flat objects

    NASA Astrophysics Data System (ADS)

    Nikolaev, Dmitry; Tihonkih, Dmitrii; Makovetskii, Artyom; Voronin, Sergei

    2017-09-01

    Image alignment of rigid surfaces is a rapidly developing area of research and has many practical applications. Alignment methods can be roughly divided into two types: feature-based methods and direct methods. Known SURF and SIFT algorithms are examples of the feature-based methods. Direct methods refer to those that exploit the pixel intensities without resorting to image features and image-based deformations are general direct method to align images of deformable objects in 3D space. Nevertheless, it is not good for the registration of images of 3D rigid objects since the underlying structure cannot be directly evaluated. In the article, we propose a model that is suitable for image alignment of rigid flat objects under various illumination models. The brightness consistency assumptions used for reconstruction of optimal geometrical transformation. Computer simulation results are provided to illustrate the performance of the proposed algorithm for computing of an accordance between pixels of two images.

  14. Monocular correspondence detection for symmetrical objects by template matching

    NASA Astrophysics Data System (ADS)

    Vilmar, G.; Besslich, Philipp W., Jr.

    1990-09-01

    We describe a possibility to reconstruct 3-D information from a single view of an 3-D bilateral symmetric object. The symmetry assumption allows us to obtain a " second view" from a different viewpoint by a simple reflection of the monocular image. Therefore we have to solve the correspondence problem in a special case where known feature-based or area-based binocular approaches fail. In principle our approach is based on a frequency domain template matching of the features on the epipolar lines. During a training period our system " learns" the assignment of correspondence models to image features. The object shape is interpolated when no template matches to the image features. This fact is an important advantage of this methodology because no " real world" image holds the symmetry assumption perfectly. To simplify the training process we used single views on human faces (e. g. passport photos) but our system is trainable on any other kind of objects.

  15. D Modeling for the Knowledge of Architectural Heritage and Virtual Reconstruction of its Historical Memory

    NASA Astrophysics Data System (ADS)

    Campi, M.; di Luggo, A.; Scandurra, S.

    2017-02-01

    The object of this paper is one of the most ancient palaces of Naples, Palazzo Penne, a fourteenth-century residential building located on a small high ground which originally was in the outer fringe of the built up area in a privileged position enabling to enjoy the landscape and gulf beauty. This building, which today is in the heart of the historical center, was the subject of an extensive analysis and documentary research, as well as of metric laser scanner survey carried out by the group researchers working at the Interdepartmental Centre of Research Urban Eco of the University of Naples Federico II. Starting from scan to bim systems the creation of a parametric model of the current state of the building is completed, by bringing the point cloud elements back to objects to which historical and construction data can be associated. Moreover starting from acquired data, the 3D model shows the reconstructive hypothesis of the original structure and the virtual reconstruction of the building based on traces found on-site and on the comparison with coeval creations allowing to properly hypothesize the design of point features.

  16. 3D equilibrium reconstruction with islands

    DOE PAGES

    Cianciosa, M.; Hirshman, S. P.; Seal, S. K.; ...

    2018-02-15

    This study presents the development of a 3D equilibrium reconstruction tool and the results of the first-ever reconstruction of an island equilibrium. The SIESTA non-nested equilibrium solver has been coupled to the V3FIT 3D equilibrium reconstruction code. Computed from a coupled VMEC and SIESTA model, synthetic signals are matched to measured signals by finding an optimal set of equilibrium parameters. By using the normalized pressure in place of normalized flux, non-equilibrium quantities needed by diagnostic signals can be efficiently mapped to the equilibrium. The effectiveness of this tool is demonstrated by reconstructing an island equilibrium of a DIII-D inner wallmore » limited L-mode case with an n = 1 error field applied. Finally, flat spots in Thomson and ECE temperature diagnostics show the reconstructed islands have the correct size and phase.« less

  17. 3D equilibrium reconstruction with islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cianciosa, M.; Hirshman, S. P.; Seal, S. K.

    This study presents the development of a 3D equilibrium reconstruction tool and the results of the first-ever reconstruction of an island equilibrium. The SIESTA non-nested equilibrium solver has been coupled to the V3FIT 3D equilibrium reconstruction code. Computed from a coupled VMEC and SIESTA model, synthetic signals are matched to measured signals by finding an optimal set of equilibrium parameters. By using the normalized pressure in place of normalized flux, non-equilibrium quantities needed by diagnostic signals can be efficiently mapped to the equilibrium. The effectiveness of this tool is demonstrated by reconstructing an island equilibrium of a DIII-D inner wallmore » limited L-mode case with an n = 1 error field applied. Finally, flat spots in Thomson and ECE temperature diagnostics show the reconstructed islands have the correct size and phase.« less

  18. The One to Multiple Automatic High Accuracy Registration of Terrestrial LIDAR and Optical Images

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Hu, C.; Xia, G.; Xue, H.

    2018-04-01

    The registration of ground laser point cloud and close-range image is the key content of high-precision 3D reconstruction of cultural relic object. In view of the requirement of high texture resolution in the field of cultural relic at present, The registration of point cloud and image data in object reconstruction will result in the problem of point cloud to multiple images. In the current commercial software, the two pairs of registration of the two kinds of data are realized by manually dividing point cloud data, manual matching point cloud and image data, manually selecting a two - dimensional point of the same name of the image and the point cloud, and the process not only greatly reduces the working efficiency, but also affects the precision of the registration of the two, and causes the problem of the color point cloud texture joint. In order to solve the above problems, this paper takes the whole object image as the intermediate data, and uses the matching technology to realize the automatic one-to-one correspondence between the point cloud and multiple images. The matching of point cloud center projection reflection intensity image and optical image is applied to realize the automatic matching of the same name feature points, and the Rodrigo matrix spatial similarity transformation model and weight selection iteration are used to realize the automatic registration of the two kinds of data with high accuracy. This method is expected to serve for the high precision and high efficiency automatic 3D reconstruction of cultural relic objects, which has certain scientific research value and practical significance.

  19. A Dynamic Multi-Projection-Contour Approximating Framework for the 3D Reconstruction of Buildings by Super-Generalized Optical Stereo-Pairs.

    PubMed

    Yan, Yiming; Su, Nan; Zhao, Chunhui; Wang, Liguo

    2017-09-19

    In this paper, a novel framework of the 3D reconstruction of buildings is proposed, focusing on remote sensing super-generalized stereo-pairs (SGSPs). As we all know, 3D reconstruction cannot be well performed using nonstandard stereo pairs, since reliable stereo matching could not be achieved when the image-pairs are collected at a great difference of views, and we always failed to obtain dense 3D points for regions of buildings, and cannot do further 3D shape reconstruction. We defined SGSPs as two or more optical images collected in less constrained views but covering the same buildings. It is even more difficult to reconstruct the 3D shape of a building by SGSPs using traditional frameworks. As a result, a dynamic multi-projection-contour approximating (DMPCA) framework was introduced for SGSP-based 3D reconstruction. The key idea is that we do an optimization to find a group of parameters of a simulated 3D model and use a binary feature-image that minimizes the total differences between projection-contours of the building in the SGSPs and that in the simulated 3D model. Then, the simulated 3D model, defined by the group of parameters, could approximate the actual 3D shape of the building. Certain parameterized 3D basic-unit-models of typical buildings were designed, and a simulated projection system was established to obtain a simulated projection-contour in different views. Moreover, the artificial bee colony algorithm was employed to solve the optimization. With SGSPs collected by the satellite and our unmanned aerial vehicle, the DMPCA framework was verified by a group of experiments, which demonstrated the reliability and advantages of this work.

  20. Automatic Texture Reconstruction of 3d City Model from Oblique Images

    NASA Astrophysics Data System (ADS)

    Kang, Junhua; Deng, Fei; Li, Xinwei; Wan, Fang

    2016-06-01

    In recent years, the photorealistic 3D city models are increasingly important in various geospatial applications related to virtual city tourism, 3D GIS, urban planning, real-estate management. Besides the acquisition of high-precision 3D geometric data, texture reconstruction is also a crucial step for generating high-quality and visually realistic 3D models. However, most of the texture reconstruction approaches are probably leading to texture fragmentation and memory inefficiency. In this paper, we introduce an automatic framework of texture reconstruction to generate textures from oblique images for photorealistic visualization. Our approach include three major steps as follows: mesh parameterization, texture atlas generation and texture blending. Firstly, mesh parameterization procedure referring to mesh segmentation and mesh unfolding is performed to reduce geometric distortion in the process of mapping 2D texture to 3D model. Secondly, in the texture atlas generation step, the texture of each segmented region in texture domain is reconstructed from all visible images with exterior orientation and interior orientation parameters. Thirdly, to avoid color discontinuities at boundaries between texture regions, the final texture map is generated by blending texture maps from several corresponding images. We evaluated our texture reconstruction framework on a dataset of a city. The resulting mesh model can get textured by created texture without resampling. Experiment results show that our method can effectively mitigate the occurrence of texture fragmentation. It is demonstrated that the proposed framework is effective and useful for automatic texture reconstruction of 3D city model.

  1. 3D Printing: current use in facial plastic and reconstructive surgery.

    PubMed

    Hsieh, Tsung-Yen; Dedhia, Raj; Cervenka, Brian; Tollefson, Travis T

    2017-08-01

    To review the use of three-dimensional (3D) printing in facial plastic and reconstructive surgery, with a focus on current uses in surgical training, surgical planning, clinical outcomes, and biomedical research. To evaluate the limitations and future implications of 3D printing in facial plastic and reconstructive surgery. Studies reviewed demonstrated 3D printing applications in surgical planning including accurate anatomic biomodels, surgical cutting guides in reconstruction, and patient-specific implants fabrication. 3D printing technology also offers access to well tolerated, reproducible, and high-fidelity/patient-specific models for surgical training. Emerging research in 3D biomaterial printing have led to the development of biocompatible scaffolds with potential for tissue regeneration in reconstruction cases involving significant tissue absence or loss. Major limitations of utilizing 3D printing technology include time and cost, which may be offset by decreased operating times and collaboration between departments to diffuse in-house printing costs SUMMARY: The current state of the literature shows promising results, but has not yet been validated by large studies or randomized controlled trials. Ultimately, further research and advancements in 3D printing technology should be supported as there is potential to improve resident training, patient care, and surgical outcomes.

  2. Reconstruction of Consistent 3d CAD Models from Point Cloud Data Using a Priori CAD Models

    NASA Astrophysics Data System (ADS)

    Bey, A.; Chaine, R.; Marc, R.; Thibault, G.; Akkouche, S.

    2011-09-01

    We address the reconstruction of 3D CAD models from point cloud data acquired in industrial environments, using a pre-existing 3D model as an initial estimate of the scene to be processed. Indeed, this prior knowledge can be used to drive the reconstruction so as to generate an accurate 3D model matching the point cloud. We more particularly focus our work on the cylindrical parts of the 3D models. We propose to state the problem in a probabilistic framework: we have to search for the 3D model which maximizes some probability taking several constraints into account, such as the relevancy with respect to the point cloud and the a priori 3D model, and the consistency of the reconstructed model. The resulting optimization problem can then be handled using a stochastic exploration of the solution space, based on the random insertion of elements in the configuration under construction, coupled with a greedy management of the conflicts which efficiently improves the configuration at each step. We show that this approach provides reliable reconstructed 3D models by presenting some results on industrial data sets.

  3. Objective Assessment and Design Improvement of a Staring, Sparse Transducer Array by the Spatial Crosstalk Matrix for 3D Photoacoustic Tomography

    PubMed Central

    Kosik, Ivan; Raess, Avery

    2015-01-01

    Accurate reconstruction of 3D photoacoustic (PA) images requires detection of photoacoustic signals from many angles. Several groups have adopted staring ultrasound arrays, but assessment of array performance has been limited. We previously reported on a method to calibrate a 3D PA tomography (PAT) staring array system and analyze system performance using singular value decomposition (SVD). The developed SVD metric, however, was impractical for large system matrices, which are typical of 3D PAT problems. The present study consisted of two main objectives. The first objective aimed to introduce the crosstalk matrix concept to the field of PAT for system design. Figures-of-merit utilized in this study were root mean square error, peak signal-to-noise ratio, mean absolute error, and a three dimensional structural similarity index, which were derived between the normalized spatial crosstalk matrix and the identity matrix. The applicability of this approach for 3D PAT was validated by observing the response of the figures-of-merit in relation to well-understood PAT sampling characteristics (i.e. spatial and temporal sampling rate). The second objective aimed to utilize the figures-of-merit to characterize and improve the performance of a near-spherical staring array design. Transducer arrangement, array radius, and array angular coverage were the design parameters examined. We observed that the performance of a 129-element staring transducer array for 3D PAT could be improved by selection of optimal values of the design parameters. The results suggested that this formulation could be used to objectively characterize 3D PAT system performance and would enable the development of efficient strategies for system design optimization. PMID:25875177

  4. Comparing performance of many-core CPUs and GPUs for static and motion compensated reconstruction of C-arm CT data.

    PubMed

    Hofmann, Hannes G; Keck, Benjamin; Rohkohl, Christopher; Hornegger, Joachim

    2011-01-01

    Interventional reconstruction of 3-D volumetric data from C-arm CT projections is a computationally demanding task. Hardware optimization is not an option but mandatory for interventional image processing and, in particular, for image reconstruction due to the high demands on performance. Several groups have published fast analytical 3-D reconstruction on highly parallel hardware such as GPUs to mitigate this issue. The authors show that the performance of modern CPU-based systems is in the same order as current GPUs for static 3-D reconstruction and outperforms them for a recent motion compensated (3-D+time) image reconstruction algorithm. This work investigates two algorithms: Static 3-D reconstruction as well as a recent motion compensated algorithm. The evaluation was performed using a standardized reconstruction benchmark, RABBITCT, to get comparable results and two additional clinical data sets. The authors demonstrate for a parametric B-spline motion estimation scheme that the derivative computation, which requires many write operations to memory, performs poorly on the GPU and can highly benefit from modern CPU architectures with large caches. Moreover, on a 32-core Intel Xeon server system, the authors achieve linear scaling with the number of cores used and reconstruction times almost in the same range as current GPUs. Algorithmic innovations in the field of motion compensated image reconstruction may lead to a shift back to CPUs in the future. For analytical 3-D reconstruction, the authors show that the gap between GPUs and CPUs became smaller. It can be performed in less than 20 s (on-the-fly) using a 32-core server.

  5. THz near-field spectral encoding imaging using a rainbow metasurface.

    PubMed

    Lee, Kanghee; Choi, Hyun Joo; Son, Jaehyeon; Park, Hyun-Sung; Ahn, Jaewook; Min, Bumki

    2015-09-24

    We demonstrate a fast image acquisition technique in the terahertz range via spectral encoding using a metasurface. The metasurface is composed of spatially varying units of mesh filters that exhibit bandpass features. Each mesh filter is arranged such that the centre frequencies of the mesh filters are proportional to their position within the metasurface, similar to a rainbow. For imaging, the object is placed in front of the rainbow metasurface, and the image is reconstructed by measuring the transmitted broadband THz pulses through both the metasurface and the object. The 1D image information regarding the object is linearly mapped into the spectrum of the transmitted wave of the rainbow metasurface. Thus, 2D images can be successfully reconstructed using simple 1D data acquisition processes.

  6. 3-D reconstruction of neurons from multichannel confocal laser scanning image series.

    PubMed

    Wouterlood, Floris G

    2014-04-10

    A confocal laser scanning microscope (CLSM) collects information from a thin, focal plane and ignores out-of-focus information. Scanning of a specimen, with stepwise axial (Z-) movement of the stage in between each scan, produces Z-series of confocal images of a tissue volume, which then can be used to 3-D reconstruct structures of interest. The operator first configures separate channels (e.g., laser, filters, and detector settings) for each applied fluorochrome and then acquires Z-series of confocal images: one series per channel. Channel signal separation is extremely important. Measures to avoid bleaching are vital. Post-acquisition deconvolution of the image series is often performed to increase resolution before 3-D reconstruction takes place. In the 3-D reconstruction programs described in this unit, reconstructions can be inspected in real time from any viewing angle. By altering viewing angles and by switching channels off and on, the spatial relationships of 3-D-reconstructed structures with respect to structures visualized in other channels can be studied. Since each brand of CLSM, computer program, and 3-D reconstruction package has its own proprietary set of procedures, a general approach is provided in this protocol wherever possible. Copyright © 2014 John Wiley & Sons, Inc.

  7. Optimization of Stereo Matching in 3D Reconstruction Based on Binocular Vision

    NASA Astrophysics Data System (ADS)

    Gai, Qiyang

    2018-01-01

    Stereo matching is one of the key steps of 3D reconstruction based on binocular vision. In order to improve the convergence speed and accuracy in 3D reconstruction based on binocular vision, this paper adopts the combination method of polar constraint and ant colony algorithm. By using the line constraint to reduce the search range, an ant colony algorithm is used to optimize the stereo matching feature search function in the proposed search range. Through the establishment of the stereo matching optimization process analysis model of ant colony algorithm, the global optimization solution of stereo matching in 3D reconstruction based on binocular vision system is realized. The simulation results show that by the combining the advantage of polar constraint and ant colony algorithm, the stereo matching range of 3D reconstruction based on binocular vision is simplified, and the convergence speed and accuracy of this stereo matching process are improved.

  8. A fast 4D cone beam CT reconstruction method based on the OSC-TV algorithm.

    PubMed

    Mascolo-Fortin, Julia; Matenine, Dmitri; Archambault, Louis; Després, Philippe

    2018-01-01

    Four-dimensional cone beam computed tomography allows for temporally resolved imaging with useful applications in radiotherapy, but raises particular challenges in terms of image quality and computation time. The purpose of this work is to develop a fast and accurate 4D algorithm by adapting a GPU-accelerated ordered subsets convex algorithm (OSC), combined with the total variation minimization regularization technique (TV). Different initialization schemes were studied to adapt the OSC-TV algorithm to 4D reconstruction: each respiratory phase was initialized either with a 3D reconstruction or a blank image. Reconstruction algorithms were tested on a dynamic numerical phantom and on a clinical dataset. 4D iterations were implemented for a cluster of 8 GPUs. All developed methods allowed for an adequate visualization of the respiratory movement and compared favorably to the McKinnon-Bates and adaptive steepest descent projection onto convex sets algorithms, while the 4D reconstructions initialized from a prior 3D reconstruction led to better overall image quality. The most suitable adaptation of OSC-TV to 4D CBCT was found to be a combination of a prior FDK reconstruction and a 4D OSC-TV reconstruction with a reconstruction time of 4.5 minutes. This relatively short reconstruction time could facilitate a clinical use.

  9. Light-field and holographic three-dimensional displays [Invited].

    PubMed

    Yamaguchi, Masahiro

    2016-12-01

    A perfect three-dimensional (3D) display that satisfies all depth cues in human vision is possible if a light field can be reproduced exactly as it appeared when it emerged from a real object. The light field can be generated based on either light ray or wavefront reconstruction, with the latter known as holography. This paper first provides an overview of the advances of ray-based and wavefront-based 3D display technologies, including integral photography and holography, and the integration of those technologies with digital information systems. Hardcopy displays have already been used in some applications, whereas the electronic display of a light field is under active investigation. Next, a fundamental question in this technology field is addressed: what is the difference between ray-based and wavefront-based methods for light-field 3D displays? In considering this question, it is of particular interest to look at the technology of holographic stereograms. The phase information in holography contributes to the resolution of a reconstructed image, especially for deep 3D images. Moreover, issues facing the electronic display system of light fields are discussed, including the resolution of the spatial light modulator, the computational techniques of holography, and the speckle in holographic images.

  10. a Smartphone-Based 3d Pipeline for the Creative Industry - the Replicate EU Project

    NASA Astrophysics Data System (ADS)

    Nocerino, E.; Lago, F.; Morabito, D.; Remondino, F.; Porzi, L.; Poiesi, F.; Rota Bulo, S.; Chippendale, P.; Locher, A.; Havlena, M.; Van Gool, L.; Eder, M.; Fötschl, A.; Hilsmann, A.; Kausch, L.; Eisert, P.

    2017-02-01

    During the last two decades we have witnessed great improvements in ICT hardware and software technologies. Three-dimensional content is starting to become commonplace now in many applications. Although for many years 3D technologies have been used in the generation of assets by researchers and experts, nowadays these tools are starting to become commercially available to every citizen. This is especially the case for smartphones, that are powerful enough and sufficiently widespread to perform a huge variety of activities (e.g. paying, calling, communication, photography, navigation, localization, etc.), including just very recently the possibility of running 3D reconstruction pipelines. The REPLICATE project is tackling this particular issue, and it has an ambitious vision to enable ubiquitous 3D creativity via the development of tools for mobile 3D-assets generation on smartphones/tablets. This article presents the REPLICATE project's concept and some of the ongoing activities, with particular attention being paid to advances made in the first year of work. Thus the article focuses on the system architecture definition, selection of optimal frames for 3D cloud reconstruction, automated generation of sparse and dense point clouds, mesh modelling techniques and post-processing actions. Experiments so far were concentrated on indoor objects and some simple heritage artefacts, however, in the long term we will be targeting a larger variety of scenarios and communities.

  11. Real-time 3D measurement based on structured light illumination considering camera lens distortion

    NASA Astrophysics Data System (ADS)

    Feng, Shijie; Chen, Qian; Zuo, Chao; Sun, Jiasong; Yu, ShiLing

    2014-12-01

    Optical three-dimensional (3-D) profilometry is gaining increasing attention for its simplicity, flexibility, high accuracy, and non-contact nature. Recent advances in imaging sensors and digital projection technology further its progress in high-speed, real-time applications, enabling 3-D shapes reconstruction of moving objects and dynamic scenes. In traditional 3-D measurement system where the processing time is not a key factor, camera lens distortion correction is performed directly. However, for the time-critical high-speed applications, the time-consuming correction algorithm is inappropriate to be performed directly during the real-time process. To cope with this issue, here we present a novel high-speed real-time 3-D coordinates measuring technique based on fringe projection with the consideration of the camera lens distortion. A pixel mapping relation between a distorted image and a corrected one is pre-determined and stored in computer memory for real-time fringe correction. And a method of lookup table (LUT) is introduced as well for fast data processing. Our experimental results reveal that the measurement error of the in-plane coordinates has been reduced by one order of magnitude and the accuracy of the out-plane coordinate been tripled after the distortions being eliminated. Moreover, owing to the merit of the LUT, the 3-D reconstruction can be achieved at 92.34 frames per second.

  12. Evaluation of two 3D virtual computer reconstructions for comparison of cleft lip and palate to normal fetal microanatomy.

    PubMed

    Landes, Constantin A; Weichert, Frank; Geis, Philipp; Helga, Fritsch; Wagner, Mathias

    2006-03-01

    Cleft lip and palate reconstructive surgery requires thorough knowledge of normal and pathological labial, palatal, and velopharyngeal anatomy. This study compared two software algorithms and their 3D virtual anatomical reconstruction because exact 3D micromorphological reconstruction may improve learning, reveal spatial relationships, and provide data for mathematical modeling. Transverse and frontal serial sections of the midface of 18 fetal specimens (11th to 32nd gestational week) were used for two manual segmentation approaches. The first manual segmentation approach used bitmap images and either Windows-based or Mac-based SURFdriver commercial software that allowed manual contour matching, surface generation with average slice thickness, 3D triangulation, and real-time interactive virtual 3D reconstruction viewing. The second manual segmentation approach used tagged image format and platform-independent prototypical SeViSe software developed by one of the authors (F.W.). Distended or compressed structures were dynamically transformed. Registration was automatic but allowed manual correction, such as individual section thickness, surface generation, and interactive virtual 3D real-time viewing. SURFdriver permitted intuitive segmentation, easy manual offset correction, and the reconstruction showed complex spatial relationships in real time. However, frequent software crashes and erroneous landmarks appearing "out of the blue," requiring manual correction, were tedious. Individual section thickness, defined smoothing, and unlimited structure number could not be integrated. The reconstruction remained underdimensioned and not sufficiently accurate for this study's reconstruction problem. SeViSe permitted unlimited structure number, late addition of extra sections, and quantified smoothing and individual slice thickness; however, SeViSe required more elaborate work-up compared to SURFdriver, yet detailed and exact 3D reconstructions were created.

  13. Incremental Multi-view 3D Reconstruction Starting from Two Images Taken by a Stereo Pair of Cameras

    NASA Astrophysics Data System (ADS)

    El hazzat, Soulaiman; Saaidi, Abderrahim; Karam, Antoine; Satori, Khalid

    2015-03-01

    In this paper, we present a new method for multi-view 3D reconstruction based on the use of a binocular stereo vision system constituted of two unattached cameras to initialize the reconstruction process. Afterwards , the second camera of stereo vision system (characterized by varying parameters) moves to capture more images at different times which are used to obtain an almost complete 3D reconstruction. The first two projection matrices are estimated by using a 3D pattern with known properties. After that, 3D scene points are recovered by triangulation of the matched interest points between these two images. The proposed approach is incremental. At each insertion of a new image, the camera projection matrix is estimated using the 3D information already calculated and new 3D points are recovered by triangulation from the result of the matching of interest points between the inserted image and the previous image. For the refinement of the new projection matrix and the new 3D points, a local bundle adjustment is performed. At first, all projection matrices are estimated, the matches between consecutive images are detected and Euclidean sparse 3D reconstruction is obtained. So, to increase the number of matches and have a more dense reconstruction, the Match propagation algorithm, more suitable for interesting movement of the camera, was applied on the pairs of consecutive images. The experimental results show the power and robustness of the proposed approach.

  14. 3D Surface Reconstruction and Automatic Camera Calibration

    NASA Technical Reports Server (NTRS)

    Jalobeanu, Andre

    2004-01-01

    Illustrations in this view-graph presentation are presented on a Bayesian approach to 3D surface reconstruction and camera calibration.Existing methods, surface analysis and modeling,preliminary surface reconstruction results, and potential applications are addressed.

  15. High-Speed Surface Reconstruction of Flying Birds Using Structured Light

    NASA Astrophysics Data System (ADS)

    Deetjen, Marc; Lentink, David

    2017-11-01

    Birds fly effectively through complex environments, and in order to understand the strategies that enable them to do so, we need to determine the shape and movement of their wings. Previous studies show that even small perturbations in wing shape have dramatic aerodynamic effects, but these shape changes have not been quantified automatically at high temporal and spatial resolutions. Hence, we developed a custom 3D surface mapping method which uses a high-speed camera to view a grid of stripes projected onto a flying bird. Because the light is binary rather than grayscale, and each frame is separately analyzed, this method can function at any frame rate with sufficient light. The method is automated, non-invasive, and able to measure a volume by simultaneously reconstructing from multiple views. We use this technique to reconstruct the 3D shape of the surface of a parrotlet during flapping flight at 3200 fps. We then analyze key dynamic parameters such as wing twist and angle of attack, and compute aerodynamic parameters such as lift and drag. While this novel system is designed to quantify bird wing shape and motion, it is adaptable for tracking other objects such as quickly deforming fish, especially those which are difficult to reconstruct using other 3D tracking methods. The presenter needs to leave by 3 pm on the final day of the conference (11/21) in order to make his flight. Please account for this in the scheduling if possible by scheduling the presentation earlier in the day or a different day.

  16. Three-dimensional simulation, surgical navigation and thoracoscopic lung resection

    PubMed Central

    Kanzaki, Masato; Kikkawa, Takuma; Sakamoto, Kei; Maeda, Hideyuki; Wachi, Naoko; Komine, Hiroshi; Oyama, Kunihiro; Murasugi, Masahide; Onuki, Takamasa

    2013-01-01

    This report describes a 3-dimensional (3-D) video-assisted thoracoscopic lung resection guided by a 3-D video navigation system having a patient-specific 3-D reconstructed pulmonary model obtained by preoperative simulation. A 78-year-old man was found to have a small solitary pulmonary nodule in the left upper lobe in chest computed tomography. By a virtual 3-D pulmonary model the tumor was found to be involved in two subsegments (S1 + 2c and S3a). Complete video-assisted thoracoscopic surgery bi-subsegmentectomy was selected in simulation and was performed with lymph node dissection. A 3-D digital vision system was used for 3-D thoracoscopic performance. Wearing 3-D glasses, the patient's actual reconstructed 3-D model on 3-D liquid-crystal displays was observed, and the 3-D intraoperative field and the picture of 3-D reconstructed pulmonary model were compared. PMID:24964426

  17. Clinical introduction of a linac head-mounted 2D detector array based quality assurance system in head and neck IMRT.

    PubMed

    Korevaar, Erik W; Wauben, David J L; van der Hulst, Peter C; Langendijk, Johannes A; Van't Veld, Aart A

    2011-09-01

    IMRT QA is commonly performed in a phantom geometry but the clinical interpretation of the results in a 2D phantom plane is difficult. The main objective of our work is to move from film measurement based QA to 3D dose reconstruction in a patient CT scan. In principle, this could be achieved using a dose reconstruction method from 2D detector array measurements as available in the COMPASS system (IBA Dosimetry). The first step in the clinical introduction of this system instead of the currently used film QA procedures is to test the reliability of the dose reconstruction. In this paper we investigated the validation of the method in a homogeneous phantom with the film QA procedure as a reference. We tested whether COMPASS QA results correctly identified treatment plans that did or did not fulfil QA requirements in head and neck (H&N) IMRT. A total number of 24 treatments were selected from an existing database with more than 100 film based H&N IMRT QA results. The QA results were classified as either good, just acceptable or clinically rejected (mean gamma index <0.4, 0.4-0.5 or >0.5, respectively with 3%/3mm criteria). Film QA was repeated and compared to COMPASS QA with a MatriXX detector measurement performed on the same day. Good agreement was found between COMPASS reconstructed dose and film measured dose in a phantom (mean gamma 0.83±0.09, 1SD with 1%/1mm criteria, 0.33±0.04 with 3%/3mm criteria). COMPASS QA results correlated well with film QA, identifying the same patients with less good QA results. Repeated measurements with film and COMPASS showed changes in delivery after a modified MLC calibration, also visible in a standard MLC check in COMPASS. The time required for QA reduced by half by using COMPASS instead of film. Agreement of COMPASS QA results with film based QA supports its clinical introduction for a phantom geometry. A standard MLC calibration check is sensitive to <1mm changes that could be significant in H&N IMRT. These findings offer opportunities to further investigate the method based on a 2D detector array to 3D dose reconstruction in a patient anatomy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Evaluating the morphological completeness of a training image.

    PubMed

    Gao, Mingliang; Teng, Qizhi; He, Xiaohai; Feng, Junxi; Han, Xue

    2017-05-01

    Understanding the three-dimensional (3D) stochastic structure of a porous medium is helpful for studying its physical properties. A 3D stochastic structure can be reconstructed from a two-dimensional (2D) training image (TI) using mathematical modeling. In order to predict what specific morphology belonging to a TI can be reconstructed at the 3D orthogonal slices by the method of 3D reconstruction, this paper begins by introducing the concept of orthogonal chords. After analyzing the relationship among TI morphology, orthogonal chords, and the 3D morphology of orthogonal slices, a theory for evaluating the morphological completeness of a TI is proposed for the cases of three orthogonal slices and of two orthogonal slices. The proposed theory is evaluated using four TIs of porous media that represent typical but distinct morphological types. The significance of this theoretical evaluation lies in two aspects: It allows special morphologies, for which the attributes of a TI can be reconstructed at a special orthogonal slice of a 3D structure, to be located and quantified, and it can guide the selection of an appropriate reconstruction method for a special TI.

  19. Estimating Aircraft Heading Based on Laserscanner Derived Point Clouds

    NASA Astrophysics Data System (ADS)

    Koppanyi, Z.; Toth, C., K.

    2015-03-01

    Using LiDAR sensors for tracking and monitoring an operating aircraft is a new application. In this paper, we present data processing methods to estimate the heading of a taxiing aircraft using laser point clouds. During the data acquisition, a Velodyne HDL-32E laser scanner tracked a moving Cessna 172 airplane. The point clouds captured at different times were used for heading estimation. After addressing the problem and specifying the equation of motion to reconstruct the aircraft point cloud from the consecutive scans, three methods are investigated here. The first requires a reference model to estimate the relative angle from the captured data by fitting different cross-sections (horizontal profiles). In the second approach, iterative closest point (ICP) method is used between the consecutive point clouds to determine the horizontal translation of the captured aircraft body. Regarding the ICP, three different versions were compared, namely, the ordinary 3D, 3-DoF 3D and 2-DoF 3D ICP. It was found that 2-DoF 3D ICP provides the best performance. Finally, the last algorithm searches for the unknown heading and velocity parameters by minimizing the volume of the reconstructed plane. The three methods were compared using three test datatypes which are distinguished by object-sensor distance, heading and velocity. We found that the ICP algorithm fails at long distances and when the aircraft motion direction perpendicular to the scan plane, but the first and the third methods give robust and accurate results at 40m object distance and at ~12 knots for a small Cessna airplane.

  20. A Multi-Resolution Approach for an Automated Fusion of Different Low-Cost 3D Sensors

    PubMed Central

    Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner

    2014-01-01

    The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory. PMID:24763255

  1. A multi-resolution approach for an automated fusion of different low-cost 3D sensors.

    PubMed

    Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner

    2014-04-24

    The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory.

  2. WE-G-18A-04: 3D Dictionary Learning Based Statistical Iterative Reconstruction for Low-Dose Cone Beam CT Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, T; UT Southwestern Medical Center, Dallas, TX; Yan, H

    2014-06-15

    Purpose: To develop a 3D dictionary learning based statistical reconstruction algorithm on graphic processing units (GPU), to improve the quality of low-dose cone beam CT (CBCT) imaging with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms) of 3x3x3 voxels was trained from a high quality volume image. During reconstruction, we utilized a Cholesky decomposition based orthogonal matching pursuit algorithm to find a sparse representation on this dictionary basis of each patch in the reconstructed image, in order to regularize the image quality. To accelerate the time-consuming sparse coding in the 3D case, we implemented our algorithm inmore » a parallel fashion by taking advantage of the tremendous computational power of GPU. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with a tight frame (TF) based one using a subset data of 121 projections. The image qualities under different resolutions in z-direction, with or without statistical weighting are also studied. Results: Compared to the TF-based CBCT reconstruction, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, to remove more streaking artifacts, and is less susceptible to blocky artifacts. It is also observed that statistical reconstruction approach is sensitive to inconsistency between the forward and backward projection operations in parallel computing. Using high a spatial resolution along z direction helps improving the algorithm robustness. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppressing noise, and hence to achieve high quality reconstruction. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential clinical application. A high zresolution is preferred to stabilize statistical iterative reconstruction. This work was supported in part by NIH(1R01CA154747-01), NSFC((No. 61172163), Research Fund for the Doctoral Program of Higher Education of China (No. 20110201110011), China Scholarship Council.« less

  3. Three-Dimensional Analysis and Surgical Planning in Craniomaxillofacial Surgery.

    PubMed

    Steinbacher, Derek M

    2015-12-01

    Three-dimensional (3D) analysis and planning are powerful tools in craniofacial and reconstructive surgery. The elements include 1) analysis, 2) planning, 3) virtual surgery, 4) 3D printouts of guides or implants, and 5) verification of actual to planned results. The purpose of this article is to review different applications of 3D planning in craniomaxillofacial surgery. Case examples involving 3D analysis and planning were reviewed. Common threads pertaining to all types of reconstruction are highlighted and contrasted with unique aspects specific to new applications in craniomaxillofacial surgery. Six examples of 3D planning are described: 1) cranial reconstruction, 2) craniosynostosis, 3) midface advancement, 4) mandibular distraction, 5) mandibular reconstruction, and 6) orthognathic surgery. Planning in craniomaxillofacial surgery is useful and has applicability across different procedures and reconstructions. Three-dimensional planning and virtual surgery enhance efficiency, accuracy, creativity, and reproducibility in craniomaxillofacial surgery. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Iterative reconstruction of volumetric particle distribution

    NASA Astrophysics Data System (ADS)

    Wieneke, Bernhard

    2013-02-01

    For tracking the motion of illuminated particles in space and time several volumetric flow measurement techniques are available like 3D-particle tracking velocimetry (3D-PTV) recording images from typically three to four viewing directions. For higher seeding densities and the same experimental setup, tomographic PIV (Tomo-PIV) reconstructs voxel intensities using an iterative tomographic reconstruction algorithm (e.g. multiplicative algebraic reconstruction technique, MART) followed by cross-correlation of sub-volumes computing instantaneous 3D flow fields on a regular grid. A novel hybrid algorithm is proposed here that similar to MART iteratively reconstructs 3D-particle locations by comparing the recorded images with the projections calculated from the particle distribution in the volume. But like 3D-PTV, particles are represented by 3D-positions instead of voxel-based intensity blobs as in MART. Detailed knowledge of the optical transfer function and the particle image shape is mandatory, which may differ for different positions in the volume and for each camera. Using synthetic data it is shown that this method is capable of reconstructing densely seeded flows up to about 0.05 ppp with similar accuracy as Tomo-PIV. Finally the method is validated with experimental data.

  5. Canine neuroanatomy: Development of a 3D reconstruction and interactive application for undergraduate veterinary education

    PubMed Central

    Raffan, Hazel; Guevar, Julien; Poyade, Matthieu; Rea, Paul M.

    2017-01-01

    Current methods used to communicate and present the complex arrangement of vasculature related to the brain and spinal cord is limited in undergraduate veterinary neuroanatomy training. Traditionally it is taught with 2-dimensional (2D) diagrams, photographs and medical imaging scans which show a fixed viewpoint. 2D representations of 3-dimensional (3D) objects however lead to loss of spatial information, which can present problems when translating this to the patient. Computer-assisted learning packages with interactive 3D anatomical models have become established in medical training, yet equivalent resources are scarce in veterinary education. For this reason, we set out to develop a workflow methodology creating an interactive model depicting the vasculature of the canine brain that could be used in undergraduate education. Using MR images of a dog and several commonly available software programs, we set out to show how combining image editing, segmentation and surface generation, 3D modeling and texturing can result in the creation of a fully interactive application for veterinary training. In addition to clearly identifying a workflow methodology for the creation of this dataset, we have also demonstrated how an interactive tutorial and self-assessment tool can be incorporated into this. In conclusion, we present a workflow which has been successful in developing a 3D reconstruction of the canine brain and associated vasculature through segmentation, surface generation and post-processing of readily available medical imaging data. The reconstructed model was implemented into an interactive application for veterinary education that has been designed to target the problems associated with learning neuroanatomy, primarily the inability to visualise complex spatial arrangements from 2D resources. The lack of similar resources in this field suggests this workflow is original within a veterinary context. There is great potential to explore this method, and introduce a new dimension into veterinary education and training. PMID:28192461

  6. Canine neuroanatomy: Development of a 3D reconstruction and interactive application for undergraduate veterinary education.

    PubMed

    Raffan, Hazel; Guevar, Julien; Poyade, Matthieu; Rea, Paul M

    2017-01-01

    Current methods used to communicate and present the complex arrangement of vasculature related to the brain and spinal cord is limited in undergraduate veterinary neuroanatomy training. Traditionally it is taught with 2-dimensional (2D) diagrams, photographs and medical imaging scans which show a fixed viewpoint. 2D representations of 3-dimensional (3D) objects however lead to loss of spatial information, which can present problems when translating this to the patient. Computer-assisted learning packages with interactive 3D anatomical models have become established in medical training, yet equivalent resources are scarce in veterinary education. For this reason, we set out to develop a workflow methodology creating an interactive model depicting the vasculature of the canine brain that could be used in undergraduate education. Using MR images of a dog and several commonly available software programs, we set out to show how combining image editing, segmentation and surface generation, 3D modeling and texturing can result in the creation of a fully interactive application for veterinary training. In addition to clearly identifying a workflow methodology for the creation of this dataset, we have also demonstrated how an interactive tutorial and self-assessment tool can be incorporated into this. In conclusion, we present a workflow which has been successful in developing a 3D reconstruction of the canine brain and associated vasculature through segmentation, surface generation and post-processing of readily available medical imaging data. The reconstructed model was implemented into an interactive application for veterinary education that has been designed to target the problems associated with learning neuroanatomy, primarily the inability to visualise complex spatial arrangements from 2D resources. The lack of similar resources in this field suggests this workflow is original within a veterinary context. There is great potential to explore this method, and introduce a new dimension into veterinary education and training.

  7. Semi-automated Image Processing for Preclinical Bioluminescent Imaging.

    PubMed

    Slavine, Nikolai V; McColl, Roderick W

    Bioluminescent imaging is a valuable noninvasive technique for investigating tumor dynamics and specific biological molecular events in living animals to better understand the effects of human disease in animal models. The purpose of this study was to develop and test a strategy behind automated methods for bioluminescence image processing from the data acquisition to obtaining 3D images. In order to optimize this procedure a semi-automated image processing approach with multi-modality image handling environment was developed. To identify a bioluminescent source location and strength we used the light flux detected on the surface of the imaged object by CCD cameras. For phantom calibration tests and object surface reconstruction we used MLEM algorithm. For internal bioluminescent sources we used the diffusion approximation with balancing the internal and external intensities on the boundary of the media and then determined an initial order approximation for the photon fluence we subsequently applied a novel iterative deconvolution method to obtain the final reconstruction result. We find that the reconstruction techniques successfully used the depth-dependent light transport approach and semi-automated image processing to provide a realistic 3D model of the lung tumor. Our image processing software can optimize and decrease the time of the volumetric imaging and quantitative assessment. The data obtained from light phantom and lung mouse tumor images demonstrate the utility of the image reconstruction algorithms and semi-automated approach for bioluminescent image processing procedure. We suggest that the developed image processing approach can be applied to preclinical imaging studies: characteristics of tumor growth, identify metastases, and potentially determine the effectiveness of cancer treatment.

  8. Influence of the limited detector size on spatial variations of the reconstruction accuracy in holographic tomography

    NASA Astrophysics Data System (ADS)

    Kostencka, Julianna; Kozacki, Tomasz; Hennelly, Bryan; Sheridan, John T.

    2017-06-01

    Holographic tomography (HT) allows noninvasive, quantitative, 3D imaging of transparent microobjects, such as living biological cells and fiber optics elements. The technique is based on acquisition of multiple scattered fields for various sample perspectives using digital holographic microscopy. Then, the captured data is processed with one of the tomographic reconstruction algorithms, which enables 3D reconstruction of refractive index distribution. In our recent works we addressed the issue of spatially variant accuracy of the HT reconstructions, which results from the insufficient model of diffraction that is applied in the widely-used tomographic reconstruction algorithms basing on the Rytov approximation. In the present study, we continue investigating the spatially variant properties of the HT imaging, however, we are now focusing on the limited spatial size of holograms as a source of this problem. Using the Wigner distribution representation and the Ewald sphere approach, we show that the limited size of the holograms results in a decreased quality of tomographic imaging in off-center regions of the HT reconstructions. This is because the finite detector extent becomes a limiting aperture that prohibits acquisition of full information about diffracted fields coming from the out-of-focus structures of a sample. The incompleteness of the data results in an effective truncation of the tomographic transfer function for the out-of-center regions of the tomographic image. In this paper, the described effect is quantitatively characterized for three types of the tomographic systems: the configuration with 1) object rotation, 2) scanning of the illumination direction, 3) the hybrid HT solution combing both previous approaches.

  9. Pseudo-shading technique in the two-dimensional domain: a post-processing algorithm for enhancing the Z-buffer of a three-dimensional binary image.

    PubMed

    Tan, A C; Richards, R

    1989-01-01

    Three-dimensional (3D) medical graphics is becoming popular in clinical use on tomographic scanners. Research work in 3D reconstructive display of computerized tomography (CT) and magnetic resonance imaging (MRI) scans on conventional computers has produced many so-called pseudo-3D images. The quality of these images depends on the rendering algorithm, the coarseness of the digitized object, the number of grey levels and the image screen resolution. CT and MRI data are fundamentally voxel based and they produce images that are coarse because of the resolution of the data acquisition system. 3D images produced by the Z-buffer depth shading technique suffer loss of detail when complex objects with fine textural detail need to be displayed. Attempts have been made to improve the display of voxel objects, and existing techniques have shown the improvement possible using these post-processing algorithms. The improved rendering technique works on the Z-buffer image to generate a shaded image using a single light source in any direction. The effectiveness of the technique in generating a shaded image has been shown to be a useful means of presenting 3D information for clinical use.

  10. Oblique reconstructions in tomosynthesis. II. Super-resolution

    PubMed Central

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes. Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system. Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest detectable frequency on pitch followed the same trend as the analytical model. It was demonstrated that super-resolution is not achievable if the pitch of the object approaches 90°, corresponding to the case in which the test frequency is perpendicular to the breast support. Only low frequency objects are detectable at pitches close to 90°. Conclusions: This work provides a platform for investigating super-resolution in oblique reconstructions for tomosynthesis. In breast imaging, this study should have applications in visualizing microcalcifications and other subtle signs of cancer. PMID:24320445

  11. [3D bioprinting of cartilage: challenges concerning the reconstruction of a burned ear].

    PubMed

    Visscher, Dafydd O; Bos, Ernst J; van Zuijlen, Paul P M

    2015-01-01

    Reconstruction of a severely maimed ear is a major challenge. The ear is highly flexible yet tough, and has a very complex three-dimensional shape. Reconstruction of a patient's burned ear is even more complex due to surrounding tissue damage. Not only does this hamper reconstruction options, it also increases the likelihood of issues when using synthetic implant materials. In such cases, rib cartilage is the preferred option, but this tissue has practical limitations too. For these reasons, tissue engineering and 3D bioprinting may have the potential to create personalized cartilage implants for burns patients. However, 3D bioprinting is a tool to facilitate the reconstruction, and not by itself the Holy Grail. The clinical application of this technique is still at a very early stage. Nevertheless, we expect that 3D bioprinting can be utilised for facial reconstruction following burns come 2020.

  12. Cell assisted lipotransfer in breast augmentation and reconstruction: A systematic review of safety, efficacy, use of patient reported outcomes and study quality.

    PubMed

    Arshad, Zeeshaan; Karmen, Lindsey; Choudhary, Rajan; Smith, James A; Branford, Olivier A; Brindley, David A; Pettitt, David; Davies, Benjamin M

    2016-12-01

    Cell assisted lipotransfer serves as a novel technique for both breast reconstruction and breast augmentation. This systematic review assesses the efficacy, safety and use of patient reported outcome measures in studies involving cell assisted lipotransfer. We also carry out an objective assessment of study quality focussing on recruitment, follow-up and provide an up-to-date clinical trial landscaping analysis. Key electronic databases were searched according to PRISMA guidelines and pre-defined inclusion and exclusion criteria. Two independent reviewers examined the retrieved publications and performed data extraction. 3980 publications were identified. Following screening, 11 studies were included for full review, representing a total of 336 patients with a follow-up time ranging from six to 42 months. A degree of variation was noted in graft retention and reported satisfaction levels, although there were only three comparative studies with conflicting results. Complications occurred at a rate of 37%. Additionally, there was a paucity of objective outcomes assessments (e.g. 3D assessment modalities or validated patient reported outcome measures) in the selected studies. Cell assisted lipotransfer is a surgical technique that is currently employed sparingly within the plastic & reconstructive surgery community. Presently, further technical and outcome standardization is required, in addition to rigorous randomized controlled trials and supporting long-term follow-up data to better determine procedural safety and efficacy. Routine use of more objective outcome measures, particularly 3D assessments and validated patient reported outcome measures, will also help facilitate wider clinical adoption and establish procedural utility.

  13. 3D visualization techniques for the STEREO-mission

    NASA Astrophysics Data System (ADS)

    Wiegelmann, T.; Podlipnik, B.; Inhester, B.; Feng, L.; Ruan, P.

    The forthcoming STEREO-mission will observe the Sun from two different viewpoints We expect about 2GB data per day which ask for suitable data presentation techniques A key feature of STEREO is that it will provide for the first time a 3D-view of the Sun and the solar corona In our normal environment we see objects three dimensional because the light from real 3D objects needs different travel times to our left and right eye As a consequence we see slightly different images with our eyes which gives us information about the depth of objects and a corresponding 3D impression Techniques for the 3D-visualization of scientific and other data on paper TV computer screen cinema etc are well known e g two colour anaglyph technique shutter glasses polarization filters and head-mounted displays We discuss advantages and disadvantages of these techniques and how they can be applied to STEREO-data The 3D-visualization techniques are not limited to visual images but can be also used to show the reconstructed coronal magnetic field and energy and helicity distribution In the advent of STEREO we test the method with data from SOHO which provides us different viewpoints by the solar rotation This restricts the analysis to structures which remain stationary for several days Real STEREO-data will not be affected by these limitations however

  14. Analysis of acetabular orientation and femoral anteversion using images of three-dimensional reconstructed bone models.

    PubMed

    Park, Jaeyeong; Kim, Jun-Young; Kim, Hyun Deok; Kim, Young Cheol; Seo, Anna; Je, Minkyu; Mun, Jong Uk; Kim, Bia; Park, Il Hyung; Kim, Shin-Yoon

    2017-05-01

    Radiographic measurements using two-dimensional (2D) plain radiographs or planes from computed tomography (CT) scans have several drawbacks, while measurements using images of three-dimensional (3D) reconstructed bone models can provide more consistent anthropometric information. We compared the consistency of results using measurements based on images of 3D reconstructed bone models (3D measurements) with those using planes from CT scans (measurements using 2D slice images). Ninety-six of 561 patients who had undergone deep vein thrombosis-CT between January 2013 and November 2014 were randomly selected. We evaluated measurements using 2D slice images and 3D measurements. The images used for 3D reconstruction of bone models were obtained and measured using [Formula: see text] and [Formula: see text] (Materialize, Leuven, Belgium). The mean acetabular inclination, acetabular anteversion and femoral anteversion values on 2D slice images were 42.01[Formula: see text], 18.64[Formula: see text] and 14.44[Formula: see text], respectively, while those using images of 3D reconstructed bone models were 52.80[Formula: see text], 14.98[Formula: see text] and 17.26[Formula: see text]. Intra-rater reliabilities for acetabular inclination, acetabular anteversion, and femoral anteversion on 2D slice images were 0.55, 0.81, and 0.85, respectively, while those for 3D measurements were 0.98, 0.99, and 0.98. Inter-rater reliabilities for acetabular inclination, acetabular anteversion and femoral anteversion on 2D slice images were 0.48, 0.86, and 0.84, respectively, while those for 3D measurements were 0.97, 0.99, and 0.97. The differences between the two measurements are explained by the use of different tools. However, more consistent measurements were possible using the images of 3D reconstructed bone models. Therefore, 3D measurement can be a good alternative to measurement using 2D slice images.

  15. Evaluation of a Fully 3-D Bpf Method for Small Animal PET Images on Mimd Architectures

    NASA Astrophysics Data System (ADS)

    Bevilacqua, A.

    Positron Emission Tomography (PET) images can be reconstructed using Fourier transform methods. This paper describes the performance of a fully 3-D Backprojection-Then-Filter (BPF) algorithm on the Cray T3E machine and on a cluster of workstations. PET reconstruction of small animals is a class of problems characterized by poor counting statistics. The low-count nature of these studies necessitates 3-D reconstruction in order to improve the sensitivity of the PET system: by including axially oblique Lines Of Response (LORs), the sensitivity of the system can be significantly improved by the 3-D acquisition and reconstruction. The BPF method is widely used in clinical studies because of its speed and easy implementation. Moreover, the BPF method is suitable for on-time 3-D reconstruction as it does not need any sinogram or rearranged data. In order to investigate the possibility of on-line processing, we reconstruct a phantom using the data stored in the list-mode format by the data acquisition system. We show how the intrinsically parallel nature of the BPF method makes it suitable for on-line reconstruction on a MIMD system such as the Cray T3E. Lastly, we analyze the performance of this algorithm on a cluster of workstations.

  16. Equilibrium reconstruction with 3D eddy currents in the Lithium Tokamak eXperiment

    DOE PAGES

    Hansen, C.; Boyle, D. P.; Schmitt, J. C.; ...

    2017-04-18

    Axisymmetric free-boundary equilibrium reconstructions of tokamak plasmas in the Lithium Tokamak eXperiment (LTX) are performed using the PSI-Tri equilibrium code. Reconstructions in LTX are complicated by the presence of long-lived non-axisymmetric eddy currents generated by a vacuum vessel and first wall structures. To account for this effect, reconstructions are performed with additional toroidal current sources in these conducting regions. The eddy current sources are fixed in their poloidal distributions, but their magnitude is adjusted as part of the full reconstruction. Eddy distributions are computed by toroidally averaging currents, generated by coupling to vacuum field coils, from a simplified 3D filamentmore » model of important conducting structures. The full 3D eddy current fields are also used to enable the inclusion of local magnetic field measurements, which have strong 3D eddy current pick-up, as reconstruction constraints. Using this method, equilibrium reconstruction yields good agreement with all available diagnostic signals. Here, an accompanying field perturbation produced by 3D eddy currents on the plasma surface with a primarily n = 2, m = 1 character is also predicted for these equilibria.« less

  17. Camera pose estimation for augmented reality in a small indoor dynamic scene

    NASA Astrophysics Data System (ADS)

    Frikha, Rawia; Ejbali, Ridha; Zaied, Mourad

    2017-09-01

    Camera pose estimation remains a challenging task for augmented reality (AR) applications. Simultaneous localization and mapping (SLAM)-based methods are able to estimate the six degrees of freedom camera motion while constructing a map of an unknown environment. However, these methods do not provide any reference for where to insert virtual objects since they do not have any information about scene structure and may fail in cases of occlusion of three-dimensional (3-D) map points or dynamic objects. This paper presents a real-time monocular piece wise planar SLAM method using the planar scene assumption. Using planar structures in the mapping process allows rendering virtual objects in a meaningful way on the one hand and improving the precision of the camera pose and the quality of 3-D reconstruction of the environment by adding constraints on 3-D points and poses in the optimization process on the other hand. We proposed to benefit from the 3-D planes rigidity motion in the tracking process to enhance the system robustness in the case of dynamic scenes. Experimental results show that using a constrained planar scene improves our system accuracy and robustness compared with the classical SLAM systems.

  18. Shift-Invariant Image Reconstruction of Speckle-Degraded Images Using Bispectrum Estimation

    DTIC Science & Technology

    1990-05-01

    process with the requisite negative exponential pelf. I call this model the Negative Exponential Model ( NENI ). The NENI flowchart is seen in Figure 6...Figure ]3d-g. Statistical Histograms and Phase for the RPj NG EXP FDF MULT METHOD FILuteC 14a. Truth Object Speckled Via the NENI HISTOGRAM OF SPECKLE

  19. Feasibility of intra-acquisition motion correction for 4D DSA reconstruction for applications in the thorax and abdomen

    NASA Astrophysics Data System (ADS)

    Wagner, Martin; Laeseke, Paul; Harari, Colin; Schafer, Sebastian; Speidel, Michael; Mistretta, Charles

    2018-03-01

    The recently proposed 4D DSA technique enables reconstruction of time resolved 3D volumes from two C-arm CT acquisitions. This provides information on the blood flow in neurovascular applications and can be used for the diagnosis and treatment of vascular diseases. For applications in the thorax and abdomen, respiratory motion can prevent successful 4D DSA reconstruction and cause severe artifacts. The purpose of this work is to propose a novel technique for motion compensated 4D DSA reconstruction to enable applications in the thorax and abdomen. The approach uses deformable 2D registration to align the projection images of a non-contrast and a contrast enhanced scan. A subset of projection images is then selected, which are acquired in a similar respiratory state and an iterative simultaneous multiplicative algebraic reconstruction is applied to determine a 3D constraint volume. A 2D-3D registration step then aligns the remaining projection images with the 3D constraint volume. Finally, a constrained back-projection is performed to create a 3D volume for each projection image. A pig study has been performed, where 4D DSA acquisitions were performed with and without respiratory motion to evaluate the feasibility of the approach. The dice similarity coefficient between the reference 3D constraint volume and the motion compensated reconstruction was 51.12 % compared to 35.99 % without motion compensation. This technique could improve the workflow for procedures in interventional radiology, e.g. liver embolizations, where changes in blood flow have to be monitored carefully.

  20. Use of reconstructed 3D VMEC equilibria to match effects of toroidally rotating discharges in DIII-D

    DOE PAGES

    Wingen, Andreas; Wilcox, Robert S.; Cianciosa, Mark R.; ...

    2016-10-13

    Here, a technique for tokamak equilibrium reconstructions is used for multiple DIII-D discharges, including L-mode and H-mode cases when weakly 3D fieldsmore » $$\\left(\\delta B/B\\sim {{10}^{-3}}\\right)$$ are applied. The technique couples diagnostics to the non-linear, ideal MHD equilibrium solver VMEC, using the V3FIT code, to find the most likely 3D equilibrium based on a suite of measurements. It is demonstrated that V3FIT can be used to find non-linear 3D equilibria that are consistent with experimental measurements of the plasma response to very weak 3D perturbations, as well as with 2D profile measurements. Observations at DIII-D show that plasma rotation larger than 20 krad s –1 changes the relative phase between the applied 3D fields and the measured plasma response. Discharges with low averaged rotation (10 krad s –1) and peaked rotation profiles (40 krad s –1) are reconstructed. Similarities and differences to forward modeled VMEC equilibria, which do not include rotational effects, are shown. Toroidal phase shifts of up to $${{30}^{\\circ}}$$ are found between the measured and forward modeled plasma responses at the highest values of rotation. The plasma response phases of reconstructed equilibra on the other hand match the measured ones. This is the first time V3FIT has been used to reconstruct weakly 3D tokamak equilibria.« less

  1. Angular reconstitution-based 3D reconstructions of nanomolecular structures from superresolution light-microscopy images

    PubMed Central

    Salas, Desirée; Le Gall, Antoine; Fiche, Jean-Bernard; Valeri, Alessandro; Ke, Yonggang; Bron, Patrick; Bellot, Gaetan

    2017-01-01

    Superresolution light microscopy allows the imaging of labeled supramolecular assemblies at a resolution surpassing the classical diffraction limit. A serious limitation of the superresolution approach is sample heterogeneity and the stochastic character of the labeling procedure. To increase the reproducibility and the resolution of the superresolution results, we apply multivariate statistical analysis methods and 3D reconstruction approaches originally developed for cryogenic electron microscopy of single particles. These methods allow for the reference-free 3D reconstruction of nanomolecular structures from two-dimensional superresolution projection images. Since these 2D projection images all show the structure in high-resolution directions of the optical microscope, the resulting 3D reconstructions have the best possible isotropic resolution in all directions. PMID:28811371

  2. 3D range-gated super-resolution imaging based on stereo matching for moving platforms and targets

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Wang, Xinwei; Zhou, Yan

    2017-11-01

    3D range-gated superresolution imaging is a novel 3D reconstruction technique for target detection and recognition with good real-time performance. However, for moving targets or platforms such as airborne, shipborne, remote operated vehicle and autonomous vehicle, 3D reconstruction has a large error or failure. In order to overcome this drawback, we propose a method of stereo matching for 3D range-gated superresolution reconstruction algorithm. In experiment, the target is a doll of Mario with a height of 38cm at the location of 34m, and we obtain two successive frame images of the Mario. To confirm our method is effective, we transform the original images with translation, rotation, scale and perspective, respectively. The experimental result shows that our method has a good result of 3D reconstruction for moving targets or platforms.

  3. ASB Clinical Biomechanics Award Paper 2010: Virtual Pre-Operative Reconstruction Planning for Comminuted Articular Fractures

    PubMed Central

    Thomas, Thaddeus P.; Anderson, Donald D.; Willis, Andrew R.; Liu, Pengcheng; Marsh, J. Lawrence; Brown, Thomas D.

    2010-01-01

    Background Highly comminuted intra-articular fractures are complex and difficult injuries to treat. Once emergent care is rendered, the definitive treatment objective is to restore the original anatomy while minimizing surgically induced trauma. Operations that use limited or percutaneous approaches help preserve tissue vitality, but reduced visibility makes reconstruction more difficult. A pre-operative plan of how comminuted fragments would best be re-positioned to restore anatomy helps in executing a successful reduction. Methods In this study, methods for virtually reconstructing a tibial plafond fracture were developed and applied to clinical cases. Building upon previous benchtop work, novel image analysis techniques and puzzle solving algorithms were developed for clinical application. Specialty image analysis tools were used to segment the fracture fragment geometries from CT data. The original anatomy was then restored by matching fragment native (periosteal and subchondral) bone surfaces to an intact template, generated from the uninjured contralateral limb. Findings Virtual reconstructions obtained for ten tibial plafond fracture cases had average alignment errors of 0.39 (0.5 standard deviation) mm. In addition to precise reduction planning, 3D puzzle solutions can help identify articular deformities and bone loss. Interpretation The results from this study indicate that 3D puzzle solving provides a powerful new tool for planning the surgical reconstruction of comminuted articular fractures. PMID:21215501

  4. A simple method to achieve full-field and real-scale reconstruction using a movable stereo rig

    NASA Astrophysics Data System (ADS)

    Gu, Feifei; Zhao, Hong; Song, Zhan; Tang, Suming

    2018-06-01

    This paper introduces a simple method to achieve full-field and real-scale reconstruction using a movable binocular vision system (MBVS). The MBVS is composed of two cameras, one is called the tracking camera, and the other is called the working camera. The tracking camera is used for tracking the positions of the MBVS and the working camera is used for the 3D reconstruction task. The MBVS has several advantages compared with a single moving camera or multi-camera networks. Firstly, the MBVS could recover the real-scale-depth-information from the captured image sequences without using auxiliary objects whose geometry or motion should be precisely known. Secondly, the removability of the system could guarantee appropriate baselines to supply more robust point correspondences. Additionally, using one camera could avoid the drawback which exists in multi-camera networks, that the variability of a cameras’ parameters and performance could significantly affect the accuracy and robustness of the feature extraction and stereo matching methods. The proposed framework consists of local reconstruction and initial pose estimation of the MBVS based on transferable features, followed by overall optimization and accurate integration of multi-view 3D reconstruction data. The whole process requires no information other than the input images. The framework has been verified with real data, and very good results have been obtained.

  5. Grammar-based Automatic 3D Model Reconstruction from Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Helmholz, P.; Belton, D.; West, G.

    2014-04-01

    The automatic reconstruction of 3D buildings has been an important research topic during the last years. In this paper, a novel method is proposed to automatically reconstruct the 3D building models from segmented data based on pre-defined formal grammar and rules. Such segmented data can be extracted e.g. from terrestrial or mobile laser scanning devices. Two steps are considered in detail. The first step is to transform the segmented data into 3D shapes, for instance using the DXF (Drawing Exchange Format) format which is a CAD data file format used for data interchange between AutoCAD and other program. Second, we develop a formal grammar to describe the building model structure and integrate the pre-defined grammars into the reconstruction process. Depending on the different segmented data, the selected grammar and rules are applied to drive the reconstruction process in an automatic manner. Compared with other existing approaches, our proposed method allows the model reconstruction directly from 3D shapes and takes the whole building into account.

  6. MobileFusion: real-time volumetric surface reconstruction and dense tracking on mobile phones.

    PubMed

    Ondrúška, Peter; Kohli, Pushmeet; Izadi, Shahram

    2015-11-01

    We present the first pipeline for real-time volumetric surface reconstruction and dense 6DoF camera tracking running purely on standard, off-the-shelf mobile phones. Using only the embedded RGB camera, our system allows users to scan objects of varying shape, size, and appearance in seconds, with real-time feedback during the capture process. Unlike existing state of the art methods, which produce only point-based 3D models on the phone, or require cloud-based processing, our hybrid GPU/CPU pipeline is unique in that it creates a connected 3D surface model directly on the device at 25Hz. In each frame, we perform dense 6DoF tracking, which continuously registers the RGB input to the incrementally built 3D model, minimizing a noise aware photoconsistency error metric. This is followed by efficient key-frame selection, and dense per-frame stereo matching. These depth maps are fused volumetrically using a method akin to KinectFusion, producing compelling surface models. For each frame, the implicit surface is extracted for live user feedback and pose estimation. We demonstrate scans of a variety of objects, and compare to a Kinect-based baseline, showing on average ∼ 1.5cm error. We qualitatively compare to a state of the art point-based mobile phone method, demonstrating an order of magnitude faster scanning times, and fully connected surface models.

  7. Opto-Electronic Systems Research. Image Recovery from Partial Fresnel Zone Information

    DTIC Science & Technology

    1988-03-01

    c E. zq D 40 & 0v -E 0C cE. #1. C 4- 0 ’ A ED - 4-0 T r CCE...in Figs. 2-4( a ), 2-4(b), 2-4( c ), and 2- 4(d) respectively. The phase is represented by 256 grey levels, with a phase which is just greater than - n... a grey scale from black to white. - 30- ( a ) ZF = 0.0 (b) ZF = 0.5 - . .. ( C ) ZF = 3.0 (d) ZF = 8.0 Fig. 2-5 Results of reconstructing an object

  8. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water.

    PubMed

    Glaser, Adam K; Andreozzi, Jacqueline M; Zhang, Rongxiao; Pogue, Brian W; Gladstone, David J

    2015-07-01

    To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp-Davis-Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm(3) volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%-99% pass fraction depending on the chosen threshold dose. The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  9. Stochastic Analysis and Design of Heterogeneous Microstructural Materials System

    NASA Astrophysics Data System (ADS)

    Xu, Hongyi

    Advanced materials system refers to new materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to superior properties over the conventional materials. To accelerate the development of new advanced materials system, the objective of this dissertation is to develop a computational design framework and the associated techniques for design automation of microstructure materials systems, with an emphasis on addressing the uncertainties associated with the heterogeneity of microstructural materials. Five key research tasks are identified: design representation, design evaluation, design synthesis, material informatics and uncertainty quantification. Design representation of microstructure includes statistical characterization and stochastic reconstruction. This dissertation develops a new descriptor-based methodology, which characterizes 2D microstructures using descriptors of composition, dispersion and geometry. Statistics of 3D descriptors are predicted based on 2D information to enable 2D-to-3D reconstruction. An efficient sequential reconstruction algorithm is developed to reconstruct statistically equivalent random 3D digital microstructures. In design evaluation, a stochastic decomposition and reassembly strategy is developed to deal with the high computational costs and uncertainties induced by material heterogeneity. The properties of Representative Volume Elements (RVE) are predicted by stochastically reassembling SVE elements with stochastic properties into a coarse representation of the RVE. In design synthesis, a new descriptor-based design framework is developed, which integrates computational methods of microstructure characterization and reconstruction, sensitivity analysis, Design of Experiments (DOE), metamodeling and optimization the enable parametric optimization of the microstructure for achieving the desired material properties. Material informatics is studied to efficiently reduce the dimension of microstructure design space. This dissertation develops a machine learning-based methodology to identify the key microstructure descriptors that highly impact properties of interest. In uncertainty quantification, a comparative study on data-driven random process models is conducted to provide guidance for choosing the most accurate model in statistical uncertainty quantification. Two new goodness-of-fit metrics are developed to provide quantitative measurements of random process models' accuracy. The benefits of the proposed methods are demonstrated by the example of designing the microstructure of polymer nanocomposites. This dissertation provides material-generic, intelligent modeling/design methodologies and techniques to accelerate the process of analyzing and designing new microstructural materials system.

  10. Patient-specific dosimetry based on quantitative SPECT imaging and 3D-DFT convolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akabani, G.; Hawkins, W.G.; Eckblade, M.B.

    1999-01-01

    The objective of this study was to validate the use of a 3-D discrete Fourier Transform (3D-DFT) convolution method to carry out the dosimetry for I-131 for soft tissues in radioimmunotherapy procedures. To validate this convolution method, mathematical and physical phantoms were used as a basis of comparison with Monte Carlo transport (MCT) calculations which were carried out using the EGS4 system code. The mathematical phantom consisted of a sphere containing uniform and nonuniform activity distributions. The physical phantom consisted of a cylinder containing uniform and nonuniform activity distributions. Quantitative SPECT reconstruction was carried out using the Circular Harmonic Transformmore » (CHT) algorithm.« less

  11. 3D printing and intraoperative neuronavigation tailoring for skull base reconstruction after extended endoscopic endonasal surgery: proof of concept.

    PubMed

    Essayed, Walid I; Unadkat, Prashin; Hosny, Ahmed; Frisken, Sarah; Rassi, Marcio S; Mukundan, Srinivasan; Weaver, James C; Al-Mefty, Ossama; Golby, Alexandra J; Dunn, Ian F

    2018-03-02

    OBJECTIVE Endoscopic endonasal approaches are increasingly performed for the surgical treatment of multiple skull base pathologies. Preventing postoperative CSF leaks remains a major challenge, particularly in extended approaches. In this study, the authors assessed the potential use of modern multimaterial 3D printing and neuronavigation to help model these extended defects and develop specifically tailored prostheses for reconstructive purposes. METHODS Extended endoscopic endonasal skull base approaches were performed on 3 human cadaveric heads. Preprocedure and intraprocedure CT scans were completed and were used to segment and design extended and tailored skull base models. Multimaterial models with different core/edge interfaces were 3D printed for implantation trials. A novel application of the intraoperative landmark acquisition method was used to transfer the navigation, helping to tailor the extended models. RESULTS Prostheses were created based on preoperative and intraoperative CT scans. The navigation transfer offered sufficiently accurate data to tailor the preprinted extended skull base defect prostheses. Successful implantation of the skull base prostheses was achieved in all specimens. The progressive flexibility gradient of the models' edges offered the best compromise for easy intranasal maneuverability, anchoring, and structural stability. Prostheses printed based on intraprocedure CT scans were accurate in shape but slightly undersized. CONCLUSIONS Preoperative 3D printing of patient-specific skull base models is achievable for extended endoscopic endonasal surgery. The careful spatial modeling and the use of a flexibility gradient in the design helped achieve the most stable reconstruction. Neuronavigation can help tailor preprinted prostheses.

  12. Automated discrete electron tomography - Towards routine high-fidelity reconstruction of nanomaterials.

    PubMed

    Zhuge, Xiaodong; Jinnai, Hiroshi; Dunin-Borkowski, Rafal E; Migunov, Vadim; Bals, Sara; Cool, Pegie; Bons, Anton-Jan; Batenburg, Kees Joost

    2017-04-01

    Electron tomography is an essential imaging technique for the investigation of morphology and 3D structure of nanomaterials. This method, however, suffers from well-known missing wedge artifacts due to a restricted tilt range, which limits the objectiveness, repeatability and efficiency of quantitative structural analysis. Discrete tomography represents one of the promising reconstruction techniques for materials science, potentially capable of delivering higher fidelity reconstructions by exploiting the prior knowledge of the limited number of material compositions in a specimen. However, the application of discrete tomography to practical datasets remains a difficult task due to the underlying challenging mathematical problem. In practice, it is often hard to obtain consistent reconstructions from experimental datasets. In addition, numerous parameters need to be tuned manually, which can lead to bias and non-repeatability. In this paper, we present the application of a new iterative reconstruction technique, named TVR-DART, for discrete electron tomography. The technique is capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts for a variety of challenging data and imaging conditions, and can automatically estimate its key parameters. We describe the principles of the technique and apply it to datasets from three different types of samples acquired under diverse imaging modes. By further reducing the available tilt range and number of projections, we show that the proposed technique can still produce consistent reconstructions with minimized missing wedge artifacts. This new development promises to provide the electron microscopy community with an easy-to-use and robust tool for high-fidelity 3D characterization of nanomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Shearlet-based regularization in sparse dynamic tomography

    NASA Astrophysics Data System (ADS)

    Bubba, T. A.; März, M.; Purisha, Z.; Lassas, M.; Siltanen, S.

    2017-08-01

    Classical tomographic imaging is soundly understood and widely employed in medicine, nondestructive testing and security applications. However, it still offers many challenges when it comes to dynamic tomography. Indeed, in classical tomography, the target is usually assumed to be stationary during the data acquisition, but this is not a realistic model. Moreover, to ensure a lower X-ray radiation dose, only a sparse collection of measurements per time step is assumed to be available. With such a set up, we deal with a sparse data, dynamic tomography problem, which clearly calls for regularization, due to the loss of information in the data and the ongoing motion. In this paper, we propose a 3D variational formulation based on 3D shearlets, where the third dimension accounts for the motion in time, to reconstruct a moving 2D object. Results are presented for real measured data and compared against a 2D static model, in the case of fan-beam geometry. Results are preliminary but show that better reconstructions can be achieved when motion is taken into account.

  14. Three-dimensional surface contouring of macroscopic objects by means of phase-difference images.

    PubMed

    Velásquez Prieto, Daniel; Garcia-Sucerquia, Jorge

    2006-09-01

    We report a technique to determine the 3D contour of objects with dimensions of at least 4 orders of magnitude larger than the illumination optical wavelength. Our proposal is based on the numerical reconstruction of the optical wave field of digitally recorded holograms. The required modulo 2pi phase map in any contouring process is obtained by means of the direct subtraction of two phase-contrast images under different illumination angles to create a phase-difference image of a still object. Obtaining the phase-difference images is only possible by using the capability of numerical reconstruction of the complex optical field provided by digital holography. This unique characteristic leads us to a robust, reliable, and fast procedure that requires only two images. A theoretical analysis of the contouring system is shown, with verification by means of numerical and experimental results.

  15. Hierarchical automated clustering of cloud point set by ellipsoidal skeleton: application to organ geometric modeling from CT-scan images

    NASA Astrophysics Data System (ADS)

    Banegas, Frederic; Michelucci, Dominique; Roelens, Marc; Jaeger, Marc

    1999-05-01

    We present a robust method for automatically constructing an ellipsoidal skeleton (e-skeleton) from a set of 3D points taken from NMR or TDM images. To ensure steadiness and accuracy, all points of the objects are taken into account, including the inner ones, which is different from the existing techniques. This skeleton will be essentially useful for object characterization, for comparisons between various measurements and as a basis for deformable models. It also provides good initial guess for surface reconstruction algorithms. On output of the entire process, we obtain an analytical description of the chosen entity, semantically zoomable (local features only or reconstructed surfaces), with any level of detail (LOD) by discretization step control in voxel or polygon format. This capability allows us to handle objects at interactive frame rates once the e-skeleton is computed. Each e-skeleton is stored as a multiscale CSG implicit tree.

  16. A novel point cloud registration using 2D image features

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Chou; Tai, Yen-Chou; Lee, Jhong-Jin; Chen, Yong-Sheng

    2017-01-01

    Since a 3D scanner only captures a scene of a 3D object at a time, a 3D registration for multi-scene is the key issue of 3D modeling. This paper presents a novel and an efficient 3D registration method based on 2D local feature matching. The proposed method transforms the point clouds into 2D bearing angle images and then uses the 2D feature based matching method, SURF, to find matching pixel pairs between two images. The corresponding points of 3D point clouds can be obtained by those pixel pairs. Since the corresponding pairs are sorted by their distance between matching features, only the top half of the corresponding pairs are used to find the optimal rotation matrix by the least squares approximation. In this paper, the optimal rotation matrix is derived by orthogonal Procrustes method (SVD-based approach). Therefore, the 3D model of an object can be reconstructed by aligning those point clouds with the optimal transformation matrix. Experimental results show that the accuracy of the proposed method is close to the ICP, but the computation cost is reduced significantly. The performance is six times faster than the generalized-ICP algorithm. Furthermore, while the ICP requires high alignment similarity of two scenes, the proposed method is robust to a larger difference of viewing angle.

  17. 4D-PET reconstruction using a spline-residue model with spatial and temporal roughness penalties

    NASA Astrophysics Data System (ADS)

    Ralli, George P.; Chappell, Michael A.; McGowan, Daniel R.; Sharma, Ricky A.; Higgins, Geoff S.; Fenwick, John D.

    2018-05-01

    4D reconstruction of dynamic positron emission tomography (dPET) data can improve the signal-to-noise ratio in reconstructed image sequences by fitting smooth temporal functions to the voxel time-activity-curves (TACs) during the reconstruction, though the optimal choice of function remains an open question. We propose a spline-residue model, which describes TACs as weighted sums of convolutions of the arterial input function with cubic B-spline basis functions. Convolution with the input function constrains the spline-residue model at early time-points, potentially enhancing noise suppression in early time-frames, while still allowing a wide range of TAC descriptions over the entire imaged time-course, thus limiting bias. Spline-residue based 4D-reconstruction is compared to that of a conventional (non-4D) maximum a posteriori (MAP) algorithm, and to 4D-reconstructions based on adaptive-knot cubic B-splines, the spectral model and an irreversible two-tissue compartment (‘2C3K’) model. 4D reconstructions were carried out using a nested-MAP algorithm including spatial and temporal roughness penalties. The algorithms were tested using Monte-Carlo simulated scanner data, generated for a digital thoracic phantom with uptake kinetics based on a dynamic [18F]-Fluromisonidazole scan of a non-small cell lung cancer patient. For every algorithm, parametric maps were calculated by fitting each voxel TAC within a sub-region of the reconstructed images with the 2C3K model. Compared to conventional MAP reconstruction, spline-residue-based 4D reconstruction achieved  >50% improvements for five of the eight combinations of the four kinetics parameters for which parametric maps were created with the bias and noise measures used to analyse them, and produced better results for 5/8 combinations than any of the other reconstruction algorithms studied, while spectral model-based 4D reconstruction produced the best results for 2/8. 2C3K model-based 4D reconstruction generated the most biased parametric maps. Inclusion of a temporal roughness penalty function improved the performance of 4D reconstruction based on the cubic B-spline, spectral and spline-residue models.

  18. Sensor-Topology Based Simplicial Complex Reconstruction from Mobile Laser Scanning

    NASA Astrophysics Data System (ADS)

    Guinard, S.; Vallet, B.

    2018-05-01

    We propose a new method for the reconstruction of simplicial complexes (combining points, edges and triangles) from 3D point clouds from Mobile Laser Scanning (MLS). Our main goal is to produce a reconstruction of a scene that is adapted to the local geometry of objects. Our method uses the inherent topology of the MLS sensor to define a spatial adjacency relationship between points. We then investigate each possible connexion between adjacent points and filter them by searching collinear structures in the scene, or structures perpendicular to the laser beams. Next, we create triangles for each triplet of self-connected edges. Last, we improve this method with a regularization based on the co-planarity of triangles and collinearity of remaining edges. We compare our results to a naive simplicial complexes reconstruction based on edge length.

  19. Three-Dimensional Reconstruction of Cloud-to-Ground Lightning Using High-Speed Video and VHF Broadband Interferometer

    NASA Astrophysics Data System (ADS)

    Li, Yun; Qiu, Shi; Shi, Lihua; Huang, Zhengyu; Wang, Tao; Duan, Yantao

    2017-12-01

    The time resolved three-dimensional (3-D) spatial reconstruction of lightning channels using high-speed video (HSV) images and VHF broadband interferometer (BITF) data is first presented in this paper. Because VHF and optical radiations in step formation process occur with time separation no more than 1 μs, the observation data of BITF and HSV at two different sites provide the possibility of reconstructing the time resolved 3-D channel of lightning. With the proposed procedures for 3-D reconstruction of leader channels, dart leaders as well as stepped leaders with complex multiple branches can be well reconstructed. The differences between 2-D speeds and 3-D speeds of leader channels are analyzed by comparing the development of leader channels in 2-D and 3-D space. Since return stroke (RS) usually follows the path of previous leader channels, the 3-D speeds of the return strokes are first estimated by combination with the 3-D structure of the preceding leaders and HSV image sequences. For the fourth RS, the ratios of the 3-D to 2-D RS speeds increase with height, and the largest ratio of the 3-D to 2-D return stroke speeds can reach 2.03, which is larger than the result of triggered lightning reported by Idone. Since BITF can detect lightning radiation in a 360° view, correlated BITF and HSV observations increase the 3-D detection probability than dual-station HSV observations, which is helpful to obtain more events and deeper understanding of the lightning process.

  20. 3D heart motion from single-plane angiography of the coronary vasculature: a model-based approach

    NASA Astrophysics Data System (ADS)

    Sherknies, Denis; Meunier, Jean; Tardif, Jean-Claude

    2004-05-01

    In order to complete a thorough examination of a patient heart muscle, physicians practice two common invasive procedures: the ventriculography, which allows the determination of the ejection fraction, and the coronarography, giving among other things, information on stenosis of arteries. We propose a method that allows the determination of a contraction index similar to ejection fraction, using only single-plane coronarography. Our method first reconstructs in 3D, selected points on the angiogram, using a 3D model devised from data published by Dodge ea. ['88, '92]. We then follow the point displacements through a complete heart contraction cycle. The objective function, minimizing the RMS distances between the angiogram and the model, relies on affine transformations, i.e. translation, rotation and isotropic scaling. We validate our method on simulated projections using cases from Dodge data. In order to avoid any bias, a leave-one-out strategy was used, which excludes the reference case when constructing the 3D coronary heart model. The simulated projections are created by transforming the reference case, with scaling, translation and rotation transformations, and by adding random 3D noise for each frame in the contraction cycle. Comparing the true scaling parameters to the reconstructed sequence, our method is quite robust (R2=96.6%, P<1%), even when noise error level is as high as 1 cm. Using 10 clinical cases we then proceeded to reconstruct the contraction sequence for a complete cardiac cycle starting at end-diastole. A simple heart contraction mathematical model permitted us to link the measured ejection fraction of the different cases to the maximum heart contraction amplitude (R2=57%, P<1%) determined by our method.

Top