Sample records for reconstruction quality compared

  1. Comparative Analysis of Reconstructed Image Quality in a Simulated Chromotomographic Imager

    DTIC Science & Technology

    2014-03-01

    quality . This example uses five basic images a backlit bar chart with random intensity, 100 nm separation. A total of 54 initial target...compared for a variety of scenes. Reconstructed image quality is highly dependent on the initial target hypercube so a total of 54 initial target...COMPARATIVE ANALYSIS OF RECONSTRUCTED IMAGE QUALITY IN A SIMULATED CHROMOTOMOGRAPHIC IMAGER THESIS

  2. COMPARISON OF ADAPTIVE STATISTICAL ITERATIVE RECONSTRUCTION (ASIR™) AND MODEL-BASED ITERATIVE RECONSTRUCTION (VEO™) FOR PAEDIATRIC ABDOMINAL CT EXAMINATIONS: AN OBSERVER PERFORMANCE STUDY OF DIAGNOSTIC IMAGE QUALITY.

    PubMed

    Hultenmo, Maria; Caisander, Håkan; Mack, Karsten; Thilander-Klang, Anne

    2016-06-01

    The diagnostic image quality of 75 paediatric abdominal computed tomography (CT) examinations reconstructed with two different iterative reconstruction (IR) algorithms-adaptive statistical IR (ASiR™) and model-based IR (Veo™)-was compared. Axial and coronal images were reconstructed with 70 % ASiR with the Soft™ convolution kernel and with the Veo algorithm. The thickness of the reconstructed images was 2.5 or 5 mm depending on the scanning protocol used. Four radiologists graded the delineation of six abdominal structures and the diagnostic usefulness of the image quality. The Veo reconstruction significantly improved the visibility of most of the structures compared with ASiR in all subgroups of images. For coronal images, the Veo reconstruction resulted in significantly improved ratings of the diagnostic use of the image quality compared with the ASiR reconstruction. This was not seen for the axial images. The greatest improvement using Veo reconstruction was observed for the 2.5 mm coronal slices. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Comparison of Knowledge-based Iterative Model Reconstruction and Hybrid Reconstruction Techniques for Liver CT Evaluation of Hypervascular Hepatocellular Carcinoma.

    PubMed

    Park, Hyun Jeong; Lee, Jeong Min; Park, Sung Bin; Lee, Jong Beum; Jeong, Yoong Ki; Yoon, Jeong Hee

    The purpose of this work was to evaluate the image quality, lesion conspicuity, and dose reduction provided by knowledge-based iterative model reconstruction (IMR) in computed tomography (CT) of the liver compared with hybrid iterative reconstruction (IR) and filtered back projection (FBP) in patients with hepatocellular carcinoma (HCC). Fifty-six patients with 61 HCCs who underwent multiphasic reduced-dose CT (RDCT; n = 33) or standard-dose CT (SDCT; n = 28) were retrospectively evaluated. Reconstructed images with FBP, hybrid IR (iDose), IMR were evaluated for image quality using CT attenuation and image noise. Objective and subjective image quality of RDCT and SDCT sets were independently assessed by 2 observers in a blinded manner. Image quality and lesion conspicuity were better with IMR for both RDCT and SDCT than either FBP or IR (P < 0.001). Contrast-to-noise ratio of HCCs in IMR-RDCT was significantly higher on delayed phase (DP) (P < 0.001), and comparable on arterial phase, than with IR-SDCT (P = 0.501). Iterative model reconstruction RDCT was significantly superior to FBP-SDCT (P < 0.001). Compared with IR-SDCT, IMR-RDCT was comparable in image sharpness and tumor conspicuity on arterial phase, and superior in image quality, noise, and lesion conspicuity on DP. With the use of IMR, a 27% reduction of effective dose was achieved with RDCT (12.7 ± 0.6 mSv) compared with SDCT (17.4 ± 1.1 mSv) without loss of image quality (P < 0.001). Iterative model reconstruction provides better image quality and tumor conspicuity than FBP and IR with considerable noise reduction. In addition, more than comparable results were achieved with IMR-RDCT to IR-SDCT for the evaluation of HCCs.

  4. Cost-effectiveness analysis of implants versus autologous perforator flaps using the BREAST-Q.

    PubMed

    Matros, Evan; Albornoz, Claudia R; Razdan, Shantanu N; Mehrara, Babak J; Macadam, Sheina A; Ro, Teresa; McCarthy, Colleen M; Disa, Joseph J; Cordeiro, Peter G; Pusic, Andrea L

    2015-04-01

    Reimbursement has been recognized as a physician barrier to autologous reconstruction. Autologous reconstructions are more expensive than prosthetic reconstructions, but provide greater health-related quality of life. The authors' hypothesis is that autologous tissue reconstructions are cost-effective compared with prosthetic techniques when considering health-related quality of life and patient satisfaction. A cost-effectiveness analysis from the payer perspective, including patient input, was performed for unilateral and bilateral reconstructions with deep inferior epigastric perforator (DIEP) flaps and implants. The effectiveness measure was derived using the BREAST-Q and interpreted as the cost for obtaining 1 year of perfect breast health-related quality-adjusted life-year. Costs were obtained from the 2010 Nationwide Inpatient Sample. The incremental cost-effectiveness ratio was generated. A sensitivity analysis for age and stage at diagnosis was performed. BREAST-Q scores from 309 patients with implants and 217 DIEP flap reconstructions were included. The additional cost for obtaining 1 year of perfect breast-related health for a unilateral DIEP flap compared with implant reconstruction was $11,941. For bilateral DIEP flaps compared with implant reconstructions, the cost for an additional breast health-related quality-adjusted life-year was $28,017. The sensitivity analysis demonstrated that the cost for an additional breast health-related quality-adjusted life-year for DIEP flaps compared with implants was less for younger patients and earlier stage breast cancer. DIEP flaps are cost-effective compared with implants, especially for unilateral reconstructions. Cost-effectiveness of autologous techniques is maximized in women with longer life expectancy. Patient-reported outcomes findings can be incorporated into cost-effectiveness analyses to demonstrate the relative value of reconstructive procedures.

  5. Evaluating the effect of increased pitch, iterative reconstruction and dual source CT on dose reduction and image quality.

    PubMed

    Gariani, Joanna; Martin, Steve P; Botsikas, Diomidis; Becker, Christoph D; Montet, Xavier

    2018-06-14

    To compare radiation dose and image quality of thoracoabdominal scans obtained with a high-pitch protocol (pitch 3.2) and iterative reconstruction (Sinogram Affirmed Iterative Reconstruction) in comparison to standard pitch reconstructed with filtered back projection (FBP) using dual source CT. 114 CT scans (Somatom Definition Flash, Siemens Healthineers, Erlangen, Germany), 39 thoracic scans, 54 thoracoabdominal scans and 21 abdominal scans were performed. Analysis of three protocols was undertaken; pitch of 1 reconstructed with FBP, pitch of 3.2 reconstructed with SAFIRE, pitch of 3.2 with stellar detectors reconstructed with SAFIRE. Objective and subjective image analysis were performed. Dose differences of the protocols used were compared. Dose was reduced when comparing scans with a pitch of 1 reconstructed with FBP to high-pitch scans with a pitch of 3.2 reconstructed with SAFIRE with a reduction of volume CT dose index of 75% for thoracic scans, 64% for thoracoabdominal scans and 67% for abdominal scans. There was a further reduction after the implementation of stellar detectors reflected in a reduction of 36% of the dose-length product for thoracic scans. This was not at the detriment of image quality, contrast-to-noise ratio, signal-to-noise ratio and the qualitative image analysis revealed a superior image quality in the high-pitch protocols. The combination of a high pitch protocol with iterative reconstruction allows significant dose reduction in routine chest and abdominal scans whilst maintaining or improving diagnostic image quality, with a further reduction in thoracic scans with stellar detectors. Advances in knowledge: High pitch imaging with iterative reconstruction is a tool that can be used to reduce dose without sacrificing image quality.

  6. Long-Term Follow-Up of Quality of Life following DIEP Flap Breast Reconstruction.

    PubMed

    Hunsinger, Vincent; Hivelin, Mikael; Derder, Mohamed; Klein, Delphine; Velten, Michel; Lantieri, Laurent

    2016-05-01

    Sequelae resulting from breast cancer negatively impact patients' quality of life. Although the deep inferior epigastric perforator (DIEP) flap has become a standard for autologous breast reconstruction, there are limited data regarding long-term quality of life. The authors studied patients' quality of life more than 5 years after DIEP flap breast reconstruction and compare it with two French reference samples. A cross-sectional study of quality of life was performed in women who underwent DIEP flap breast reconstruction between 1995 and 2007 using the Medical Outcomes Study 36-Item Health Survey (Short Form-36). The first reference sample included subjects from the French general population (n = 3308), and the second included cancer survivors who underwent mastectomy with (n = 70) or without (n = 135) breast reconstruction. One hundred eleven respondents were analyzed among 186 eligible women. The mean follow-up period after reconstruction was 8.6 years (range, 5 to 15 years). There were no statistically significant differences in the quality of life between women from 45 to 64 years old who underwent DIEP flap breast reconstruction and from the French general population. Five of the eight Short Form-36 dimensions were significantly better in the DIEP flap breast reconstruction group in the 65- to 74-year-old cohort. In addition, quality of life of our study population was significantly higher than that of women who underwent mastectomy with or without any type of breast reconstruction. These results indicate that DIEP flap breast reconstruction allows patients with breast cancer to maintain a good postoperative quality of life comparable to that of the general population. Therapeutic, III.

  7. Can use of adaptive statistical iterative reconstruction reduce radiation dose in unenhanced head CT? An analysis of qualitative and quantitative image quality

    PubMed Central

    Heggen, Kristin Livelten; Pedersen, Hans Kristian; Andersen, Hilde Kjernlie; Martinsen, Anne Catrine T

    2016-01-01

    Background Iterative reconstruction can reduce image noise and thereby facilitate dose reduction. Purpose To evaluate qualitative and quantitative image quality for full dose and dose reduced head computed tomography (CT) protocols reconstructed using filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR). Material and Methods Fourteen patients undergoing follow-up head CT were included. All patients underwent full dose (FD) exam and subsequent 15% dose reduced (DR) exam, reconstructed using FBP and 30% ASIR. Qualitative image quality was assessed using visual grading characteristics. Quantitative image quality was assessed using ROI measurements in cerebrospinal fluid (CSF), white matter, peripheral and central gray matter. Additionally, quantitative image quality was measured in Catphan and vendor’s water phantom. Results There was no significant difference in qualitative image quality between FD FBP and DR ASIR. Comparing same scan FBP versus ASIR, a noise reduction of 28.6% in CSF and between −3.7 and 3.5% in brain parenchyma was observed. Comparing FD FBP versus DR ASIR, a noise reduction of 25.7% in CSF, and −7.5 and 6.3% in brain parenchyma was observed. Image contrast increased in ASIR reconstructions. Contrast-to-noise ratio was improved in DR ASIR compared to FD FBP. In phantoms, noise reduction was in the range of 3 to 28% with image content. Conclusion There was no significant difference in qualitative image quality between full dose FBP and dose reduced ASIR. CNR improved in DR ASIR compared to FD FBP mostly due to increased contrast, not reduced noise. Therefore, we recommend using caution if reducing dose and applying ASIR to maintain image quality. PMID:27583169

  8. Can use of adaptive statistical iterative reconstruction reduce radiation dose in unenhanced head CT? An analysis of qualitative and quantitative image quality.

    PubMed

    Østerås, Bjørn Helge; Heggen, Kristin Livelten; Pedersen, Hans Kristian; Andersen, Hilde Kjernlie; Martinsen, Anne Catrine T

    2016-08-01

    Iterative reconstruction can reduce image noise and thereby facilitate dose reduction. To evaluate qualitative and quantitative image quality for full dose and dose reduced head computed tomography (CT) protocols reconstructed using filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR). Fourteen patients undergoing follow-up head CT were included. All patients underwent full dose (FD) exam and subsequent 15% dose reduced (DR) exam, reconstructed using FBP and 30% ASIR. Qualitative image quality was assessed using visual grading characteristics. Quantitative image quality was assessed using ROI measurements in cerebrospinal fluid (CSF), white matter, peripheral and central gray matter. Additionally, quantitative image quality was measured in Catphan and vendor's water phantom. There was no significant difference in qualitative image quality between FD FBP and DR ASIR. Comparing same scan FBP versus ASIR, a noise reduction of 28.6% in CSF and between -3.7 and 3.5% in brain parenchyma was observed. Comparing FD FBP versus DR ASIR, a noise reduction of 25.7% in CSF, and -7.5 and 6.3% in brain parenchyma was observed. Image contrast increased in ASIR reconstructions. Contrast-to-noise ratio was improved in DR ASIR compared to FD FBP. In phantoms, noise reduction was in the range of 3 to 28% with image content. There was no significant difference in qualitative image quality between full dose FBP and dose reduced ASIR. CNR improved in DR ASIR compared to FD FBP mostly due to increased contrast, not reduced noise. Therefore, we recommend using caution if reducing dose and applying ASIR to maintain image quality.

  9. Intra-individual diagnostic image quality and organ-specific-radiation dose comparison between spiral cCT with iterative image reconstruction and z-axis automated tube current modulation and sequential cCT.

    PubMed

    Wenz, Holger; Maros, Máté E; Meyer, Mathias; Gawlitza, Joshua; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O; Groden, Christoph; Henzler, Thomas

    2016-01-01

    To prospectively evaluate image quality and organ-specific-radiation dose of spiral cranial CT (cCT) combined with automated tube current modulation (ATCM) and iterative image reconstruction (IR) in comparison to sequential tilted cCT reconstructed with filtered back projection (FBP) without ATCM. 31 patients with a previous performed tilted non-contrast enhanced sequential cCT aquisition on a 4-slice CT system with only FBP reconstruction and no ATCM were prospectively enrolled in this study for a clinical indicated cCT scan. All spiral cCT examinations were performed on a 3rd generation dual-source CT system using ATCM in z-axis direction. Images were reconstructed using both, FBP and IR (level 1-5). A Monte-Carlo-simulation-based analysis was used to compare organ-specific-radiation dose. Subjective image quality for various anatomic structures was evaluated using a 4-point Likert-scale and objective image quality was evaluated by comparing signal-to-noise ratios (SNR). Spiral cCT led to a significantly lower (p < 0.05) organ-specific-radiation dose in all targets including eye lense. Subjective image quality of spiral cCT datasets with an IR reconstruction level 5 was rated significantly higher compared to the sequential cCT acquisitions (p < 0.0001). Consecutive mean SNR was significantly higher in all spiral datasets (FBP, IR 1-5) when compared to sequential cCT with a mean SNR improvement of 44.77% (p < 0.0001). Spiral cCT combined with ATCM and IR allows for significant-radiation dose reduction including a reduce eye lens organ-dose when compared to a tilted sequential cCT while improving subjective and objective image quality.

  10. Can sinogram-affirmed iterative (SAFIRE) reconstruction improve imaging quality on low-dose lung CT screening compared with traditional filtered back projection (FBP) reconstruction?

    PubMed

    Yang, Wen Jie; Yan, Fu Hua; Liu, Bo; Pang, Li Fang; Hou, Liang; Zhang, Huan; Pan, Zi Lai; Chen, Ke Min

    2013-01-01

    To evaluate the performance of sinogram-affirmed iterative (SAFIRE) reconstruction on image quality of low-dose lung computed tomographic (CT) screening compared with filtered back projection (FBP). Three hundred four patients for annual low-dose lung CT screening were examined by a dual-source CT system at 120 kilovolt (peak) with reference tube current of 40 mA·s. Six image serials were reconstructed, including one data set of FBP and 5 data sets of SAFIRE with different reconstruction strengths from 1 to 5. Image noise was recorded; and subjective scores of image noise, images artifacts, and the overall image quality were also assessed by 2 radiologists. The mean ± SD weight for all patients was 66.3 ± 12.8 kg, and the body mass index was 23.4 ± 3.2. The mean ± SD dose-length product was 95.2 ± 30.6 mGy cm, and the mean ± SD effective dose was 1.6 ± 0.5 mSv. The observation agreements for image noise grade, artifact grade, and the overall image quality were 0.785, 0.595 and 0.512, respectively. Among the overall 6 data sets, both the measured mean objective image noise and the subjective image noise of FBP was the highest, and the image noise decreased with the increasing of SAFIRE reconstruction strength. The data sets of S3 obtained the best image quality scores. Sinogram-affirmed iterative reconstruction can significantly improve image quality of low-dose lung CT screening compared with FBP, and SAFIRE with reconstruction strength 3 was a pertinent choice for low-dose lung CT.

  11. Split Bregman multicoil accelerated reconstruction technique: A new framework for rapid reconstruction of cardiac perfusion MRI

    PubMed Central

    Kamesh Iyer, Srikant; Tasdizen, Tolga; Likhite, Devavrat; DiBella, Edward

    2016-01-01

    Purpose: Rapid reconstruction of undersampled multicoil MRI data with iterative constrained reconstruction method is a challenge. The authors sought to develop a new substitution based variable splitting algorithm for faster reconstruction of multicoil cardiac perfusion MRI data. Methods: The new method, split Bregman multicoil accelerated reconstruction technique (SMART), uses a combination of split Bregman based variable splitting and iterative reweighting techniques to achieve fast convergence. Total variation constraints are used along the spatial and temporal dimensions. The method is tested on nine ECG-gated dog perfusion datasets, acquired with a 30-ray golden ratio radial sampling pattern and ten ungated human perfusion datasets, acquired with a 24-ray golden ratio radial sampling pattern. Image quality and reconstruction speed are evaluated and compared to a gradient descent (GD) implementation and to multicoil k-t SLR, a reconstruction technique that uses a combination of sparsity and low rank constraints. Results: Comparisons based on blur metric and visual inspection showed that SMART images had lower blur and better texture as compared to the GD implementation. On average, the GD based images had an ∼18% higher blur metric as compared to SMART images. Reconstruction of dynamic contrast enhanced (DCE) cardiac perfusion images using the SMART method was ∼6 times faster than standard gradient descent methods. k-t SLR and SMART produced images with comparable image quality, though SMART was ∼6.8 times faster than k-t SLR. Conclusions: The SMART method is a promising approach to reconstruct good quality multicoil images from undersampled DCE cardiac perfusion data rapidly. PMID:27036592

  12. Investigation of undersampling and reconstruction algorithm dependence on respiratory correlated 4D-MRI for online MR-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Mickevicius, Nikolai J.; Paulson, Eric S.

    2017-04-01

    The purpose of this work is to investigate the effects of undersampling and reconstruction algorithm on the total processing time and image quality of respiratory phase-resolved 4D MRI data. Specifically, the goal is to obtain quality 4D-MRI data with a combined acquisition and reconstruction time of five minutes or less, which we reasoned would be satisfactory for pre-treatment 4D-MRI in online MRI-gRT. A 3D stack-of-stars, self-navigated, 4D-MRI acquisition was used to scan three healthy volunteers at three image resolutions and two scan durations. The NUFFT, CG-SENSE, SPIRiT, and XD-GRASP reconstruction algorithms were used to reconstruct each dataset on a high performance reconstruction computer. The overall image quality, reconstruction time, artifact prevalence, and motion estimates were compared. The CG-SENSE and XD-GRASP reconstructions provided superior image quality over the other algorithms. The combination of a 3D SoS sequence and parallelized reconstruction algorithms using computing hardware more advanced than those typically seen on product MRI scanners, can result in acquisition and reconstruction of high quality respiratory correlated 4D-MRI images in less than five minutes.

  13. Image quality comparison of two adaptive statistical iterative reconstruction (ASiR, ASiR-V) algorithms and filtered back projection in routine liver CT.

    PubMed

    Chen, Li-Hong; Jin, Chao; Li, Jian-Ying; Wang, Ge-Liang; Jia, Yong-Jun; Duan, Hai-Feng; Pan, Ning; Guo, Jianxin

    2018-06-06

    To compare image quality of two adaptive statistical iterative reconstruction (ASiR and ASiR-V) algorithms using objective and subjective metrics for routine liver CT, with the conventional filtered back projection (FBP) reconstructions as reference standards. This institutional review board-approved study included 52 patients with clinically suspected hepatic metastases. Patients were divided equally into ASiR and ASiR-V groups with same scan parameters. Images were reconstructed with ASiR and ASiR-V from 0 (FBP) to 100% blending percentages at 10% interval in its respective group. Mean and standard deviation of CT numbers for liver parenchyma were recorded. Two experienced radiologists reviewed all images for image quality blindly and independently. Data were statistically analyzed. There was no difference in CT dose index between ASiR and ASiR-V groups. As the percentage of ASiR and ASiR-V increased from 10 to 100% , image noise reduced by 8.6 -57.9% and 8.9-81.6%, respectively, compared with FBP. There was substantial interobserver agreement in image quality assessment for ASiR and ASiR-V images. Compared with FBP reconstruction, subjective image quality scores of ASiR and ASiR-V improved significantly as percentage increased from 10 to 80% for ASiR (peaked at 50% with 32.2% noise reduction) and from 10 to 90% (peaked at 60% with 51.5% noise reduction) for ASiR-V. Both ASiR and ASiR-V improved the objective and subjective image quality for routine liver CT compared with FBP. ASiR-V provided further image quality improvement with higher acceptable percentage than ASiR, and ASiR-V60% had the highest image quality score. Advances in knowledge: (1) Both ASiR and ASiR-V significantly reduce image noise compared with conventional FBP reconstruction. (2) ASiR-V with 60 blending percentage provides the highest image quality score in routine liver CT.

  14. Knowledge-based iterative model reconstruction: comparative image quality and radiation dose with a pediatric computed tomography phantom.

    PubMed

    Ryu, Young Jin; Choi, Young Hun; Cheon, Jung-Eun; Ha, Seongmin; Kim, Woo Sun; Kim, In-One

    2016-03-01

    CT of pediatric phantoms can provide useful guidance to the optimization of knowledge-based iterative reconstruction CT. To compare radiation dose and image quality of CT images obtained at different radiation doses reconstructed with knowledge-based iterative reconstruction, hybrid iterative reconstruction and filtered back-projection. We scanned a 5-year anthropomorphic phantom at seven levels of radiation. We then reconstructed CT data with knowledge-based iterative reconstruction (iterative model reconstruction [IMR] levels 1, 2 and 3; Philips Healthcare, Andover, MA), hybrid iterative reconstruction (iDose(4), levels 3 and 7; Philips Healthcare, Andover, MA) and filtered back-projection. The noise, signal-to-noise ratio and contrast-to-noise ratio were calculated. We evaluated low-contrast resolutions and detectability by low-contrast targets and subjective and objective spatial resolutions by the line pairs and wire. With radiation at 100 peak kVp and 100 mAs (3.64 mSv), the relative doses ranged from 5% (0.19 mSv) to 150% (5.46 mSv). Lower noise and higher signal-to-noise, contrast-to-noise and objective spatial resolution were generally achieved in ascending order of filtered back-projection, iDose(4) levels 3 and 7, and IMR levels 1, 2 and 3, at all radiation dose levels. Compared with filtered back-projection at 100% dose, similar noise levels were obtained on IMR level 2 images at 24% dose and iDose(4) level 3 images at 50% dose, respectively. Regarding low-contrast resolution, low-contrast detectability and objective spatial resolution, IMR level 2 images at 24% dose showed comparable image quality with filtered back-projection at 100% dose. Subjective spatial resolution was not greatly affected by reconstruction algorithm. Reduced-dose IMR obtained at 0.92 mSv (24%) showed similar image quality to routine-dose filtered back-projection obtained at 3.64 mSv (100%), and half-dose iDose(4) obtained at 1.81 mSv.

  15. Influence of reconstruction algorithms on image quality in SPECT myocardial perfusion imaging.

    PubMed

    Davidsson, Anette; Olsson, Eva; Engvall, Jan; Gustafsson, Agnetha

    2017-11-01

    We investigated if image- and diagnostic quality in SPECT MPI could be maintained despite a reduced acquisition time adding Depth Dependent Resolution Recovery (DDRR) for image reconstruction. Images were compared with filtered back projection (FBP) and iterative reconstruction using Ordered Subsets Expectation Maximization with (IRAC) and without (IRNC) attenuation correction (AC). Stress- and rest imaging for 15 min was performed on 21 subjects with a dual head gamma camera (Infinia Hawkeye; GE Healthcare), ECG-gating with 8 frames/cardiac cycle and a low-dose CT-scan. A 9 min acquisition was generated using five instead of eight gated frames and was reconstructed with DDRR, with (IRACRR) and without AC (IRNCRR) as well as with FBP. Three experienced nuclear medicine specialists visually assessed anonymized images according to eight criteria on a four point scale, three related to image quality and five to diagnostic confidence. Statistical analysis was performed using Visual Grading Regression (VGR). Observer confidence in statements on image quality was highest for the images that were reconstructed using DDRR (P<0·01 compared to FBP). Iterative reconstruction without DDRR was not superior to FBP. Interobserver variability was significant for statements on image quality (P<0·05) but lower in the diagnostic statements on ischemia and scar. The confidence in assessing ischemia and scar was not different between the reconstruction techniques (P = n.s.). SPECT MPI collected in 9 min, reconstructed with DDRR and AC, produced better image quality than the standard procedure. The observers expressed the highest diagnostic confidence in the DDRR reconstruction. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  16. Evaluation of an iterative model-based reconstruction of pediatric abdominal CT with regard to image quality and radiation dose.

    PubMed

    Aurumskjöld, Marie-Louise; Söderberg, Marcus; Stålhammar, Fredrik; von Steyern, Kristina Vult; Tingberg, Anders; Ydström, Kristina

    2018-06-01

    Background In pediatric patients, computed tomography (CT) is important in the medical chain of diagnosing and monitoring various diseases. Because children are more radiosensitive than adults, they require minimal radiation exposure. One way to achieve this goal is to implement new technical solutions, like iterative reconstruction. Purpose To evaluate the potential of a new, iterative, model-based method for reconstructing (IMR) pediatric abdominal CT at a low radiation dose and determine whether it maintains or improves image quality, compared to the current reconstruction method. Material and Methods Forty pediatric patients underwent abdominal CT. Twenty patients were examined with the standard dose settings and 20 patients were examined with a 32% lower radiation dose. Images from the standard examination were reconstructed with a hybrid iterative reconstruction method (iDose 4 ), and images from the low-dose examinations were reconstructed with both iDose 4 and IMR. Image quality was evaluated subjectively by three observers, according to modified EU image quality criteria, and evaluated objectively based on the noise observed in liver images. Results Visual grading characteristics analyses showed no difference in image quality between the standard dose examination reconstructed with iDose 4 and the low dose examination reconstructed with IMR. IMR showed lower image noise in the liver compared to iDose 4 images. Inter- and intra-observer variance was low: the intraclass coefficient was 0.66 (95% confidence interval = 0.60-0.71) for the three observers. Conclusion IMR provided image quality equivalent or superior to the standard iDose 4 method for evaluating pediatric abdominal CT, even with a 32% dose reduction.

  17. Improvements to image quality using hybrid and model-based iterative reconstructions: a phantom study.

    PubMed

    Aurumskjöld, Marie-Louise; Ydström, Kristina; Tingberg, Anders; Söderberg, Marcus

    2017-01-01

    The number of computed tomography (CT) examinations is increasing and leading to an increase in total patient exposure. It is therefore important to optimize CT scan imaging conditions in order to reduce the radiation dose. The introduction of iterative reconstruction methods has enabled an improvement in image quality and a reduction in radiation dose. To investigate how image quality depends on reconstruction method and to discuss patient dose reduction resulting from the use of hybrid and model-based iterative reconstruction. An image quality phantom (Catphan® 600) and an anthropomorphic torso phantom were examined on a Philips Brilliance iCT. The image quality was evaluated in terms of CT numbers, noise, noise power spectra (NPS), contrast-to-noise ratio (CNR), low-contrast resolution, and spatial resolution for different scan parameters and dose levels. The images were reconstructed using filtered back projection (FBP) and different settings of hybrid (iDose 4 ) and model-based (IMR) iterative reconstruction methods. iDose 4 decreased the noise by 15-45% compared with FBP depending on the level of iDose 4 . The IMR reduced the noise even further, by 60-75% compared to FBP. The results are independent of dose. The NPS showed changes in the noise distribution for different reconstruction methods. The low-contrast resolution and CNR were improved with iDose 4 , and the improvement was even greater with IMR. There is great potential to reduce noise and thereby improve image quality by using hybrid or, in particular, model-based iterative reconstruction methods, or to lower radiation dose and maintain image quality. © The Foundation Acta Radiologica 2016.

  18. Comparison among Reconstruction Algorithms for Quantitative Analysis of 11C-Acetate Cardiac PET Imaging.

    PubMed

    Shi, Ximin; Li, Nan; Ding, Haiyan; Dang, Yonghong; Hu, Guilan; Liu, Shuai; Cui, Jie; Zhang, Yue; Li, Fang; Zhang, Hui; Huo, Li

    2018-01-01

    Kinetic modeling of dynamic 11 C-acetate PET imaging provides quantitative information for myocardium assessment. The quality and quantitation of PET images are known to be dependent on PET reconstruction methods. This study aims to investigate the impacts of reconstruction algorithms on the quantitative analysis of dynamic 11 C-acetate cardiac PET imaging. Suspected alcoholic cardiomyopathy patients ( N = 24) underwent 11 C-acetate dynamic PET imaging after low dose CT scan. PET images were reconstructed using four algorithms: filtered backprojection (FBP), ordered subsets expectation maximization (OSEM), OSEM with time-of-flight (TOF), and OSEM with both time-of-flight and point-spread-function (TPSF). Standardized uptake values (SUVs) at different time points were compared among images reconstructed using the four algorithms. Time-activity curves (TACs) in myocardium and blood pools of ventricles were generated from the dynamic image series. Kinetic parameters K 1 and k 2 were derived using a 1-tissue-compartment model for kinetic modeling of cardiac flow from 11 C-acetate PET images. Significant image quality improvement was found in the images reconstructed using iterative OSEM-type algorithms (OSME, TOF, and TPSF) compared with FBP. However, no statistical differences in SUVs were observed among the four reconstruction methods at the selected time points. Kinetic parameters K 1 and k 2 also exhibited no statistical difference among the four reconstruction algorithms in terms of mean value and standard deviation. However, for the correlation analysis, OSEM reconstruction presented relatively higher residual in correlation with FBP reconstruction compared with TOF and TPSF reconstruction, and TOF and TPSF reconstruction were highly correlated with each other. All the tested reconstruction algorithms performed similarly for quantitative analysis of 11 C-acetate cardiac PET imaging. TOF and TPSF yielded highly consistent kinetic parameter results with superior image quality compared with FBP. OSEM was relatively less reliable. Both TOF and TPSF were recommended for cardiac 11 C-acetate kinetic analysis.

  19. Local motion-compensated method for high-quality 3D coronary artery reconstruction

    PubMed Central

    Liu, Bo; Bai, Xiangzhi; Zhou, Fugen

    2016-01-01

    The 3D reconstruction of coronary artery from X-ray angiograms rotationally acquired on C-arm has great clinical value. While cardiac-gated reconstruction has shown promising results, it suffers from the problem of residual motion. This work proposed a new local motion-compensated reconstruction method to handle this issue. An initial image was firstly reconstructed using a regularized iterative reconstruction method. Then a 3D/2D registration method was proposed to estimate the residual vessel motion. Finally, the residual motion was compensated in the final reconstruction using the extended iterative reconstruction method. Through quantitative evaluation, it was found that high-quality 3D reconstruction could be obtained and the result was comparable to state-of-the-art method. PMID:28018741

  20. Holographic Subsurface Radar Technique for Nondestructive Testing of Dielectric Structures

    NASA Astrophysics Data System (ADS)

    Ivashov, S. I.; Bugaev, A. S.; Zhuravlev, A. V.; Razevig, V. V.; Chizh, M. A.; Ivashov, A. I.

    2018-02-01

    Holographic subsurface radar method is compared with the conventional technology of impulse radars. Basic relationships needed for the reconstruction of complex microwave holograms are presented. Possible applications of the proposed technology are discussed. Diagnostics of polyurethane foam coatings of spacecrafts is used as an example of the efficiency of holographic subsurface radars. Results of reconstruction of complex and amplitude microwave holograms are compared. It is demonstrated that the image quality that results from reconstruction of complex microwave holograms is higher than the image quality obtained with the aid of amplitude holograms.

  1. Health-related quality-of-life assessment and surgical outcomes for auricular reconstruction using autologous costal cartilage.

    PubMed

    Soukup, Benjamin; Mashhadi, Syed A; Bulstrode, Neil W

    2012-03-01

    This study aims to assess the health-related quality-of-life benefit following auricular reconstruction using autologous costal cartilage in children. In addition, key aspects of the surgical reconstruction are assessed. After auricular reconstruction, patients completed two questionnaires. The first was a postinterventional health-related quality-of-life assessment tool, the Glasgow Benefit Inventory. A score of 0 signifies no change in health-related quality-of-life, +100 indicates maximal improvement, and -100 indicates maximal negative impact. The second questionnaire assessed surgical outcomes in auricular reconstruction across three areas: facial integration, aesthetic auricular units, and costal reconstruction. These were recorded on a five-point ordinal scale and are presented as mean scores of a total of 5. The mean total Glasgow Benefit Inventory score was 48.1; significant improvements were seen in all three Glasgow Benefit Inventory subscales (p < 0.0001). A mean integration score of 3.8 and a mean aesthetic auricular unit reconstruction score of 3.4 were recorded. Skin color matching (4.3) of the ear was most successfully reconstructed and auricular cartilage reconstruction scored lowest (3.5). Of the aesthetic units, the helix scored highest (3.6) and the tragus/antitragus scored lowest (3.3). Donor-site reconstruction scored 3.9. Correlation analysis revealed that higher reconstruction scores are associated with a greater health-related quality-of-life gain (r = 0.5). Ninety-six percent of patients would recommend the procedure to a friend. Auricular reconstruction with autologous cartilage results in significant improvements in health-related quality-of-life. In addition, better surgical outcomes lead to a greater improvement in health-related quality-of-life. Comparatively poorer reconstructed areas of the ear were identified so that surgical techniques may be improved. Therapeutic, IV.

  2. J-pouch versus Roux-en-Y reconstruction after gastrectomy: functional assessment and quality of life (randomized trial).

    PubMed

    Zonča, Pavel; Malý, Tomáš; Ihnát, Peter; Peteja, Matus; Kraft, Otakar; Kuca, Kamil

    2017-01-01

    The aim of this study was to evaluate the quality of life and functional emptying of J-pouch versus Roux-en-Y reconstruction after total gastrectomy for malignancy. This study was designed as a prospective, nonblinded, randomized, parallel clinical trial (Trial Number: MN Ostrava, 200604). With informed consent, patients undergoing gastrectomy for malignancy were randomized to J-pouch or Roux-en-Y reconstruction. The time taken for a test semisolid meal labeled with 99m Tc-sulfur colloid to exit the reconstructed parts was measured by dynamic scintigraphy 1 year after resection. Quality of life was measured using the Eypasch questionnaire at the same time as functional emptying assessment. This trial was investigator-initiated. In all, 72 patients were included into the study. The time taken for the test meal to exit the postgastrectomy reconstruction was 16.5±10.0 minutes (mean ± standard deviation) in the Roux-en-Y group and 89.4±37.8 minutes in the "J-pouch" group; the difference was statistically significant ( P <0.001). Emptying of the J-pouch appeared to be a linear decreasing function compared to the exponential pattern seen in the Roux-en-Y group. The quality of life measurement showed scores of 106±18.8 points (mean ± standard deviation) in the Roux-en-Y group compared to 122±22.5 points in the J-pouch group; the difference was statistically significant ( P =0.0016). There were no important adverse events. After total gastrectomy, a J-pouch reconstruction empties more slowly and is associated with higher quality of life compared to Roux-en-Y reconstruction. Whether these two observations have a direct causative link remains unanswered.

  3. Image quality of mixed convolution kernel in thoracic computed tomography.

    PubMed

    Neubauer, Jakob; Spira, Eva Maria; Strube, Juliane; Langer, Mathias; Voss, Christian; Kotter, Elmar

    2016-11-01

    The mixed convolution kernel alters his properties geographically according to the depicted organ structure, especially for the lung. Therefore, we compared the image quality of the mixed convolution kernel to standard soft and hard kernel reconstructions for different organ structures in thoracic computed tomography (CT) images.Our Ethics Committee approved this prospective study. In total, 31 patients who underwent contrast-enhanced thoracic CT studies were included after informed consent. Axial reconstructions were performed with hard, soft, and mixed convolution kernel. Three independent and blinded observers rated the image quality according to the European Guidelines for Quality Criteria of Thoracic CT for 13 organ structures. The observers rated the depiction of the structures in all reconstructions on a 5-point Likert scale. Statistical analysis was performed with the Friedman Test and post hoc analysis with the Wilcoxon rank-sum test.Compared to the soft convolution kernel, the mixed convolution kernel was rated with a higher image quality for lung parenchyma, segmental bronchi, and the border between the pleura and the thoracic wall (P < 0.03). Compared to the hard convolution kernel, the mixed convolution kernel was rated with a higher image quality for aorta, anterior mediastinal structures, paratracheal soft tissue, hilar lymph nodes, esophagus, pleuromediastinal border, large and medium sized pulmonary vessels and abdomen (P < 0.004) but a lower image quality for trachea, segmental bronchi, lung parenchyma, and skeleton (P < 0.001).The mixed convolution kernel cannot fully substitute the standard CT reconstructions. Hard and soft convolution kernel reconstructions still seem to be mandatory for thoracic CT.

  4. Energy and Quality Evaluation for Compressive Sensing of Fetal Electrocardiogram Signals

    PubMed Central

    Da Poian, Giulia; Brandalise, Denis; Bernardini, Riccardo; Rinaldo, Roberto

    2016-01-01

    This manuscript addresses the problem of non-invasive fetal Electrocardiogram (ECG) signal acquisition with low power/low complexity sensors. A sensor architecture using the Compressive Sensing (CS) paradigm is compared to a standard compression scheme using wavelets in terms of energy consumption vs. reconstruction quality, and, more importantly, vs. performance of fetal heart beat detection in the reconstructed signals. We show in this paper that a CS scheme based on reconstruction with an over-complete dictionary has similar reconstruction quality to one based on wavelet compression. We also consider, as a more important figure of merit, the accuracy of fetal beat detection after reconstruction as a function of the sensor power consumption. Experimental results with an actual implementation in a commercial device show that CS allows significant reduction of energy consumption in the sensor node, and that the detection performance is comparable to that obtained from original signals for compression ratios up to about 75%. PMID:28025510

  5. Edge guided image reconstruction in linear scan CT by weighted alternating direction TV minimization.

    PubMed

    Cai, Ailong; Wang, Linyuan; Zhang, Hanming; Yan, Bin; Li, Lei; Xi, Xiaoqi; Li, Jianxin

    2014-01-01

    Linear scan computed tomography (CT) is a promising imaging configuration with high scanning efficiency while the data set is under-sampled and angularly limited for which high quality image reconstruction is challenging. In this work, an edge guided total variation minimization reconstruction (EGTVM) algorithm is developed in dealing with this problem. The proposed method is modeled on the combination of total variation (TV) regularization and iterative edge detection strategy. In the proposed method, the edge weights of intermediate reconstructions are incorporated into the TV objective function. The optimization is efficiently solved by applying alternating direction method of multipliers. A prudential and conservative edge detection strategy proposed in this paper can obtain the true edges while restricting the errors within an acceptable degree. Based on the comparison on both simulation studies and real CT data set reconstructions, EGTVM provides comparable or even better quality compared to the non-edge guided reconstruction and adaptive steepest descent-projection onto convex sets method. With the utilization of weighted alternating direction TV minimization and edge detection, EGTVM achieves fast and robust convergence and reconstructs high quality image when applied in linear scan CT with under-sampled data set.

  6. SU-D-206-01: Employing a Novel Consensus Optimization Strategy to Achieve Iterative Cone Beam CT Reconstruction On a Multi-GPU Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, B; Southern Medical University, Guangzhou, Guangdong; Tian, Z

    Purpose: While compressed sensing-based cone-beam CT (CBCT) iterative reconstruction techniques have demonstrated tremendous capability of reconstructing high-quality images from undersampled noisy data, its long computation time still hinders wide application in routine clinic. The purpose of this study is to develop a reconstruction framework that employs modern consensus optimization techniques to achieve CBCT reconstruction on a multi-GPU platform for improved computational efficiency. Methods: Total projection data were evenly distributed to multiple GPUs. Each GPU performed reconstruction using its own projection data with a conventional total variation regularization approach to ensure image quality. In addition, the solutions from GPUs were subjectmore » to a consistency constraint that they should be identical. We solved the optimization problem with all the constraints considered rigorously using an alternating direction method of multipliers (ADMM) algorithm. The reconstruction framework was implemented using OpenCL on a platform with two Nvidia GTX590 GPU cards, each with two GPUs. We studied the performance of our method and demonstrated its advantages through a simulation case with a NCAT phantom and an experimental case with a Catphan phantom. Result: Compared with the CBCT images reconstructed using conventional FDK method with full projection datasets, our proposed method achieved comparable image quality with about one third projection numbers. The computation time on the multi-GPU platform was ∼55 s and ∼ 35 s in the two cases respectively, achieving a speedup factor of ∼ 3.0 compared with single GPU reconstruction. Conclusion: We have developed a consensus ADMM-based CBCT reconstruction method which enabled performing reconstruction on a multi-GPU platform. The achieved efficiency made this method clinically attractive.« less

  7. The adaptive statistical iterative reconstruction-V technique for radiation dose reduction in abdominal CT: comparison with the adaptive statistical iterative reconstruction technique.

    PubMed

    Kwon, Heejin; Cho, Jinhan; Oh, Jongyeong; Kim, Dongwon; Cho, Junghyun; Kim, Sanghyun; Lee, Sangyun; Lee, Jihyun

    2015-10-01

    To investigate whether reduced radiation dose abdominal CT images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) compromise the depiction of clinically competent features when compared with the currently used routine radiation dose CT images reconstructed with ASIR. 27 consecutive patients (mean body mass index: 23.55 kg m(-2) underwent CT of the abdomen at two time points. At the first time point, abdominal CT was scanned at 21.45 noise index levels of automatic current modulation at 120 kV. Images were reconstructed with 40% ASIR, the routine protocol of Dong-A University Hospital. At the second time point, follow-up scans were performed at 30 noise index levels. Images were reconstructed with filtered back projection (FBP), 40% ASIR, 30% ASIR-V, 50% ASIR-V and 70% ASIR-V for the reduced radiation dose. Both quantitative and qualitative analyses of image quality were conducted. The CT dose index was also recorded. At the follow-up study, the mean dose reduction relative to the currently used common radiation dose was 35.37% (range: 19-49%). The overall subjective image quality and diagnostic acceptability of the 50% ASIR-V scores at the reduced radiation dose were nearly identical to those recorded when using the initial routine-dose CT with 40% ASIR. Subjective ratings of the qualitative analysis revealed that of all reduced radiation dose CT series reconstructed, 30% ASIR-V and 50% ASIR-V were associated with higher image quality with lower noise and artefacts as well as good sharpness when compared with 40% ASIR and FBP. However, the sharpness score at 70% ASIR-V was considered to be worse than that at 40% ASIR. Objective image noise for 50% ASIR-V was 34.24% and 46.34% which was lower than 40% ASIR and FBP. Abdominal CT images reconstructed with ASIR-V facilitate radiation dose reductions of to 35% when compared with the ASIR. This study represents the first clinical research experiment to use ASIR-V, the newest version of iterative reconstruction. Use of the ASIR-V algorithm decreased image noise and increased image quality when compared with the ASIR and FBP methods. These results suggest that high-quality low-dose CT may represent a new clinical option.

  8. The adaptive statistical iterative reconstruction-V technique for radiation dose reduction in abdominal CT: comparison with the adaptive statistical iterative reconstruction technique

    PubMed Central

    Cho, Jinhan; Oh, Jongyeong; Kim, Dongwon; Cho, Junghyun; Kim, Sanghyun; Lee, Sangyun; Lee, Jihyun

    2015-01-01

    Objective: To investigate whether reduced radiation dose abdominal CT images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) compromise the depiction of clinically competent features when compared with the currently used routine radiation dose CT images reconstructed with ASIR. Methods: 27 consecutive patients (mean body mass index: 23.55 kg m−2 underwent CT of the abdomen at two time points. At the first time point, abdominal CT was scanned at 21.45 noise index levels of automatic current modulation at 120 kV. Images were reconstructed with 40% ASIR, the routine protocol of Dong-A University Hospital. At the second time point, follow-up scans were performed at 30 noise index levels. Images were reconstructed with filtered back projection (FBP), 40% ASIR, 30% ASIR-V, 50% ASIR-V and 70% ASIR-V for the reduced radiation dose. Both quantitative and qualitative analyses of image quality were conducted. The CT dose index was also recorded. Results: At the follow-up study, the mean dose reduction relative to the currently used common radiation dose was 35.37% (range: 19–49%). The overall subjective image quality and diagnostic acceptability of the 50% ASIR-V scores at the reduced radiation dose were nearly identical to those recorded when using the initial routine-dose CT with 40% ASIR. Subjective ratings of the qualitative analysis revealed that of all reduced radiation dose CT series reconstructed, 30% ASIR-V and 50% ASIR-V were associated with higher image quality with lower noise and artefacts as well as good sharpness when compared with 40% ASIR and FBP. However, the sharpness score at 70% ASIR-V was considered to be worse than that at 40% ASIR. Objective image noise for 50% ASIR-V was 34.24% and 46.34% which was lower than 40% ASIR and FBP. Conclusion: Abdominal CT images reconstructed with ASIR-V facilitate radiation dose reductions of to 35% when compared with the ASIR. Advances in knowledge: This study represents the first clinical research experiment to use ASIR-V, the newest version of iterative reconstruction. Use of the ASIR-V algorithm decreased image noise and increased image quality when compared with the ASIR and FBP methods. These results suggest that high-quality low-dose CT may represent a new clinical option. PMID:26234823

  9. Standard and reduced radiation dose liver CT images: adaptive statistical iterative reconstruction versus model-based iterative reconstruction-comparison of findings and image quality.

    PubMed

    Shuman, William P; Chan, Keith T; Busey, Janet M; Mitsumori, Lee M; Choi, Eunice; Koprowicz, Kent M; Kanal, Kalpana M

    2014-12-01

    To investigate whether reduced radiation dose liver computed tomography (CT) images reconstructed with model-based iterative reconstruction ( MBIR model-based iterative reconstruction ) might compromise depiction of clinically relevant findings or might have decreased image quality when compared with clinical standard radiation dose CT images reconstructed with adaptive statistical iterative reconstruction ( ASIR adaptive statistical iterative reconstruction ). With institutional review board approval, informed consent, and HIPAA compliance, 50 patients (39 men, 11 women) were prospectively included who underwent liver CT. After a portal venous pass with ASIR adaptive statistical iterative reconstruction images, a 60% reduced radiation dose pass was added with MBIR model-based iterative reconstruction images. One reviewer scored ASIR adaptive statistical iterative reconstruction image quality and marked findings. Two additional independent reviewers noted whether marked findings were present on MBIR model-based iterative reconstruction images and assigned scores for relative conspicuity, spatial resolution, image noise, and image quality. Liver and aorta Hounsfield units and image noise were measured. Volume CT dose index and size-specific dose estimate ( SSDE size-specific dose estimate ) were recorded. Qualitative reviewer scores were summarized. Formal statistical inference for signal-to-noise ratio ( SNR signal-to-noise ratio ), contrast-to-noise ratio ( CNR contrast-to-noise ratio ), volume CT dose index, and SSDE size-specific dose estimate was made (paired t tests), with Bonferroni adjustment. Two independent reviewers identified all 136 ASIR adaptive statistical iterative reconstruction image findings (n = 272) on MBIR model-based iterative reconstruction images, scoring them as equal or better for conspicuity, spatial resolution, and image noise in 94.1% (256 of 272), 96.7% (263 of 272), and 99.3% (270 of 272), respectively. In 50 image sets, two reviewers (n = 100) scored overall image quality as sufficient or good with MBIR model-based iterative reconstruction in 99% (99 of 100). Liver SNR signal-to-noise ratio was significantly greater for MBIR model-based iterative reconstruction (10.8 ± 2.5 [standard deviation] vs 7.7 ± 1.4, P < .001); there was no difference for CNR contrast-to-noise ratio (2.5 ± 1.4 vs 2.4 ± 1.4, P = .45). For ASIR adaptive statistical iterative reconstruction and MBIR model-based iterative reconstruction , respectively, volume CT dose index was 15.2 mGy ± 7.6 versus 6.2 mGy ± 3.6; SSDE size-specific dose estimate was 16.4 mGy ± 6.6 versus 6.7 mGy ± 3.1 (P < .001). Liver CT images reconstructed with MBIR model-based iterative reconstruction may allow up to 59% radiation dose reduction compared with the dose with ASIR adaptive statistical iterative reconstruction , without compromising depiction of findings or image quality. © RSNA, 2014.

  10. Volume reconstruction optimization for tomo-PIV algorithms applied to experimental data

    NASA Astrophysics Data System (ADS)

    Martins, Fabio J. W. A.; Foucaut, Jean-Marc; Thomas, Lionel; Azevedo, Luis F. A.; Stanislas, Michel

    2015-08-01

    Tomographic PIV is a three-component volumetric velocity measurement technique based on the tomographic reconstruction of a particle distribution imaged by multiple camera views. In essence, the performance and accuracy of this technique is highly dependent on the parametric adjustment and the reconstruction algorithm used. Although synthetic data have been widely employed to optimize experiments, the resulting reconstructed volumes might not have optimal quality. The purpose of the present study is to offer quality indicators that can be applied to data samples in order to improve the quality of velocity results obtained by the tomo-PIV technique. The methodology proposed can potentially lead to significantly reduction in the time required to optimize a tomo-PIV reconstruction, also leading to better quality velocity results. Tomo-PIV data provided by a six-camera turbulent boundary-layer experiment were used to optimize the reconstruction algorithms according to this methodology. Velocity statistics measurements obtained by optimized BIMART, SMART and MART algorithms were compared with hot-wire anemometer data and velocity measurement uncertainties were computed. Results indicated that BIMART and SMART algorithms produced reconstructed volumes with equivalent quality as the standard MART with the benefit of reduced computational time.

  11. X-ray dose reduction in abdominal computed tomography using advanced iterative reconstruction algorithms.

    PubMed

    Ning, Peigang; Zhu, Shaocheng; Shi, Dapeng; Guo, Ying; Sun, Minghua

    2014-01-01

    This work aims to explore the effects of adaptive statistical iterative reconstruction (ASiR) and model-based iterative reconstruction (MBIR) algorithms in reducing computed tomography (CT) radiation dosages in abdominal imaging. CT scans on a standard male phantom were performed at different tube currents. Images at the different tube currents were reconstructed with the filtered back-projection (FBP), 50% ASiR and MBIR algorithms and compared. The CT value, image noise and contrast-to-noise ratios (CNRs) of the reconstructed abdominal images were measured. Volumetric CT dose indexes (CTDIvol) were recorded. At different tube currents, 50% ASiR and MBIR significantly reduced image noise and increased the CNR when compared with FBP. The minimal tube current values required by FBP, 50% ASiR, and MBIR to achieve acceptable image quality using this phantom were 200, 140, and 80 mA, respectively. At the identical image quality, 50% ASiR and MBIR reduced the radiation dose by 35.9% and 59.9% respectively when compared with FBP. Advanced iterative reconstruction techniques are able to reduce image noise and increase image CNRs. Compared with FBP, 50% ASiR and MBIR reduced radiation doses by 35.9% and 59.9%, respectively.

  12. The Detection of Focal Liver Lesions Using Abdominal CT: A Comparison of Image Quality Between Adaptive Statistical Iterative Reconstruction V and Adaptive Statistical Iterative Reconstruction.

    PubMed

    Lee, Sangyun; Kwon, Heejin; Cho, Jihan

    2016-12-01

    To investigate image quality characteristics of abdominal computed tomography (CT) scans reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) vs currently using applied adaptive statistical iterative reconstruction (ASIR). This institutional review board-approved study included 35 consecutive patients who underwent CT of the abdomen. Among these 35 patients, 27 with focal liver lesions underwent abdomen CT with a 128-slice multidetector unit using the following parameters: fixed noise index of 30, 1.25 mm slice thickness, 120 kVp, and a gantry rotation time of 0.5 seconds. CT images were analyzed depending on the method of reconstruction: ASIR (30%, 50%, and 70%) vs ASIR-V (30%, 50%, and 70%). Three radiologists independently assessed randomized images in a blinded manner. Imaging sets were compared to focal lesion detection numbers, overall image quality, and objective noise with a paired sample t test. Interobserver agreement was assessed with the intraclass correlation coefficient. The detection of small focal liver lesions (<10 mm) was significantly higher when ASIR-V was used when compared to ASIR (P <0.001). Subjective image noise, artifact, and objective image noise in liver were generally significantly better for ASIR-V compared to ASIR, especially in 50% ASIR-V. Image sharpness and diagnostic acceptability were significantly worse in 70% ASIR-V compared to various levels of ASIR. Images analyzed using 50% ASIR-V were significantly better than three different series of ASIR or other ASIR-V conditions at providing diagnostically acceptable CT scans without compromising image quality and in the detection of focal liver lesions. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  13. Combined Use of Automatic Tube Voltage Selection and Current Modulation with Iterative Reconstruction for CT Evaluation of Small Hypervascular Hepatocellular Carcinomas: Effect on Lesion Conspicuity and Image Quality

    PubMed Central

    Lv, Peijie; Liu, Jie; Zhang, Rui; Jia, Yan

    2015-01-01

    Objective To assess the lesion conspicuity and image quality in CT evaluation of small (≤ 3 cm) hepatocellular carcinomas (HCCs) using automatic tube voltage selection (ATVS) and automatic tube current modulation (ATCM) with or without iterative reconstruction. Materials and Methods One hundred and five patients with 123 HCC lesions were included. Fifty-seven patients were scanned using both ATVS and ATCM and images were reconstructed using either filtered back-projection (FBP) (group A1) or sinogram-affirmed iterative reconstruction (SAFIRE) (group A2). Forty-eight patients were imaged using only ATCM, with a fixed tube potential of 120 kVp and FBP reconstruction (group B). Quantitative parameters (image noise in Hounsfield unit and contrast-to-noise ratio of the aorta, the liver, and the hepatic tumors) and qualitative visual parameters (image noise, overall image quality, and lesion conspicuity as graded on a 5-point scale) were compared among the groups. Results Group A2 scanned with the automatically chosen 80 kVp and 100 kVp tube voltages ranked the best in lesion conspicuity and subjective and objective image quality (p values ranging from < 0.001 to 0.004) among the three groups, except for overall image quality between group A2 and group B (p = 0.022). Group A1 showed higher image noise (p = 0.005) but similar lesion conspicuity and overall image quality as compared with group B. The radiation dose in group A was 19% lower than that in group B (p = 0.022). Conclusion CT scanning with combined use of ATVS and ATCM and image reconstruction with SAFIRE algorithm provides higher lesion conspicuity and better image quality for evaluating small hepatic HCCs with radiation dose reduction. PMID:25995682

  14. The Cost-Effectiveness of Anterior Cruciate Ligament Reconstruction in Competitive Athletes.

    PubMed

    Stewart, Bruce A; Momaya, Amit M; Silverstein, Marc D; Lintner, David

    2017-01-01

    Competitive athletes value the ability to return to competitive play after the treatment of anterior cruciate ligament (ACL) injuries. ACL reconstruction has high success rates for return to play, but some studies indicate that patients may do well with nonoperative physical therapy treatment. To evaluate the cost-effectiveness of the treatment of acute ACL tears with either initial surgical reconstruction or physical therapy in competitive athletes. Economic and decision analysis; Level of evidence, 2. The incremental cost, incremental effectiveness, and incremental cost-effectiveness ratio (ICER) of ACL reconstruction compared with physical therapy were calculated from a cost-effectiveness analysis of ACL reconstruction compared with physical therapy for the initial management of acute ACL injuries in competitive athletes. The ACL reconstruction strategy and the physical therapy strategy were represented as Markov models. Costs and quality-adjusted life-years (QALYs) were evaluated over a 6-year time horizon and were analyzed from a societal perspective. Quality of life and probabilities of clinical outcomes were obtained from the peer-reviewed literature, and costs were compiled from a large academic hospital in the United States. One-way, 2-way, and probabilistic sensitivity analyses were used to assess the effect of uncertainty in variables on the ICER of ACL reconstruction. The ICER of ACL reconstruction compared with physical therapy was $22,702 per QALY gained. The ICER was most sensitive to the quality of life of returning to play or not returning to play, costs, and duration of follow-up but relatively insensitive to the rates and costs of complications, probabilities of return to play for both operative and nonoperative treatments, and discount rate. ACL reconstruction is a cost-effective strategy for competitive athletes with an ACL injury.

  15. Single image super-resolution reconstruction algorithm based on eage selection

    NASA Astrophysics Data System (ADS)

    Zhang, Yaolan; Liu, Yijun

    2017-05-01

    Super-resolution (SR) has become more important, because it can generate high-quality high-resolution (HR) images from low-resolution (LR) input images. At present, there are a lot of work is concentrated on developing sophisticated image priors to improve the image quality, while taking much less attention to estimating and incorporating the blur model that can also impact the reconstruction results. We present a new reconstruction method based on eager selection. This method takes full account of the factors that affect the blur kernel estimation and accurately estimating the blur process. When comparing with the state-of-the-art methods, our method has comparable performance.

  16. Reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning.

    PubMed

    Song, Ying; Zhu, Zhen; Lu, Yang; Liu, Qiegen; Zhao, Jun

    2014-03-01

    To improve the magnetic resonance imaging (MRI) data acquisition speed while maintaining the reconstruction quality, a novel method is proposed for multislice MRI reconstruction from undersampled k-space data based on compressed-sensing theory using dictionary learning. There are two aspects to improve the reconstruction quality. One is that spatial correlation among slices is used by extending the atoms in dictionary learning from patches to blocks. The other is that the dictionary-learning scheme is used at two resolution levels; i.e., a low-resolution dictionary is used for sparse coding and a high-resolution dictionary is used for image updating. Numerical experiments are carried out on in vivo 3D MR images of brains and abdomens with a variety of undersampling schemes and ratios. The proposed method (dual-DLMRI) achieves better reconstruction quality than conventional reconstruction methods, with the peak signal-to-noise ratio being 7 dB higher. The advantages of the dual dictionaries are obvious compared with the single dictionary. Parameter variations ranging from 50% to 200% only bias the image quality within 15% in terms of the peak signal-to-noise ratio. Dual-DLMRI effectively uses the a priori information in the dual-dictionary scheme and provides dramatically improved reconstruction quality. Copyright © 2013 Wiley Periodicals, Inc.

  17. [Criteria of life quality after reconstructive breast cancer surgery].

    PubMed

    Strittmatter, H J; Neises, M; Blecken, S R

    2006-08-01

    The aim of this study was to evaluate the quality of life of women after a breast cancer surgery. The question was if women which had reconstructive breast cancer surgery experience a higher quality of life than women who, for various distinct reasons, had not undergone reconstruction. The participants of this study were women who had either received a mastectomy or those who at the same time underwent a breast reconstruction using implants during the time period from 1/1/2000 until 31/10/2003 at the University Hospital for Women of Heidelberg and Mannheim. With the help of three standardised questionnaires, the women could describe their post-surgical physical and psychological condition as well as the perceived quality of life. The study included 33 patients who had received breast implants and 31 patients without reconstruction. Women who had breast cancer surgery with reconstruction through implants had less problems and restrictions concerning their physical condition as well as their functional status. Moreover, compared to those participants with no reconstruction, their cognitive and emotional burdens were not as pronounced and they also they were able to better cope with the disease. Thus, their overall quality of life was superior than that of the other women. Breast reconstruction after primary and secondary mastectomy is an important contribution in order to improve the self-esteem and quality of a patient's life. Furthermore, it plays an essential role in coping with the psychological effects of breast cancer.

  18. WE-G-18A-04: 3D Dictionary Learning Based Statistical Iterative Reconstruction for Low-Dose Cone Beam CT Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, T; UT Southwestern Medical Center, Dallas, TX; Yan, H

    2014-06-15

    Purpose: To develop a 3D dictionary learning based statistical reconstruction algorithm on graphic processing units (GPU), to improve the quality of low-dose cone beam CT (CBCT) imaging with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms) of 3x3x3 voxels was trained from a high quality volume image. During reconstruction, we utilized a Cholesky decomposition based orthogonal matching pursuit algorithm to find a sparse representation on this dictionary basis of each patch in the reconstructed image, in order to regularize the image quality. To accelerate the time-consuming sparse coding in the 3D case, we implemented our algorithm inmore » a parallel fashion by taking advantage of the tremendous computational power of GPU. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with a tight frame (TF) based one using a subset data of 121 projections. The image qualities under different resolutions in z-direction, with or without statistical weighting are also studied. Results: Compared to the TF-based CBCT reconstruction, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, to remove more streaking artifacts, and is less susceptible to blocky artifacts. It is also observed that statistical reconstruction approach is sensitive to inconsistency between the forward and backward projection operations in parallel computing. Using high a spatial resolution along z direction helps improving the algorithm robustness. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppressing noise, and hence to achieve high quality reconstruction. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential clinical application. A high zresolution is preferred to stabilize statistical iterative reconstruction. This work was supported in part by NIH(1R01CA154747-01), NSFC((No. 61172163), Research Fund for the Doctoral Program of Higher Education of China (No. 20110201110011), China Scholarship Council.« less

  19. Iterative reconstruction of simulated low count data: a comparison of post-filtering versus regularised OSEM

    NASA Astrophysics Data System (ADS)

    Karaoglanis, K.; Efthimiou, N.; Tsoumpas, C.

    2015-09-01

    Low count PET data is a challenge for medical image reconstruction. The statistics of a dataset is a key factor of the quality of the reconstructed images. Reconstruction algorithms which would be able to compensate for low count datasets could provide the means to reduce the patient injected doses and/or reduce the scan times. It has been shown that the use of priors improve the image quality in low count conditions. In this study we compared regularised versus post-filtered OSEM for their performance on challenging simulated low count datasets. Initial visual comparison demonstrated that both algorithms improve the image quality, although the use of regularization does not introduce the undesired blurring as post-filtering.

  20. Initial phantom study comparing image quality in computed tomography using adaptive statistical iterative reconstruction and new adaptive statistical iterative reconstruction v.

    PubMed

    Lim, Kyungjae; Kwon, Heejin; Cho, Jinhan; Oh, Jongyoung; Yoon, Seongkuk; Kang, Myungjin; Ha, Dongho; Lee, Jinhwa; Kang, Eunju

    2015-01-01

    The purpose of this study was to assess the image quality of a novel advanced iterative reconstruction (IR) method called as "adaptive statistical IR V" (ASIR-V) by comparing the image noise, contrast-to-noise ratio (CNR), and spatial resolution from those of filtered back projection (FBP) and adaptive statistical IR (ASIR) on computed tomography (CT) phantom image. We performed CT scans at 5 different tube currents (50, 70, 100, 150, and 200 mA) using 3 types of CT phantoms. Scanned images were subsequently reconstructed in 7 different scan settings, such as FBP, and 3 levels of ASIR and ASIR-V (30%, 50%, and 70%). The image noise was measured in the first study using body phantom. The CNR was measured in the second study using contrast phantom and the spatial resolutions were measured in the third study using a high-resolution phantom. We compared the image noise, CNR, and spatial resolution among the 7 reconstructed image scan settings to determine whether noise reduction, high CNR, and high spatial resolution could be achieved at ASIR-V. At quantitative analysis of the first and second studies, it showed that the images reconstructed using ASIR-V had reduced image noise and improved CNR compared with those of FBP and ASIR (P < 0.001). At qualitative analysis of the third study, it also showed that the images reconstructed using ASIR-V had significantly improved spatial resolution than those of FBP and ASIR (P < 0.001). Our phantom studies showed that ASIR-V provides a significant reduction in image noise and a significant improvement in CNR as well as spatial resolution. Therefore, this technique has the potential to reduce the radiation dose further without compromising image quality.

  1. Photoacoustic image reconstruction via deep learning

    NASA Astrophysics Data System (ADS)

    Antholzer, Stephan; Haltmeier, Markus; Nuster, Robert; Schwab, Johannes

    2018-02-01

    Applying standard algorithms to sparse data problems in photoacoustic tomography (PAT) yields low-quality images containing severe under-sampling artifacts. To some extent, these artifacts can be reduced by iterative image reconstruction algorithms which allow to include prior knowledge such as smoothness, total variation (TV) or sparsity constraints. These algorithms tend to be time consuming as the forward and adjoint problems have to be solved repeatedly. Further, iterative algorithms have additional drawbacks. For example, the reconstruction quality strongly depends on a-priori model assumptions about the objects to be recovered, which are often not strictly satisfied in practical applications. To overcome these issues, in this paper, we develop direct and efficient reconstruction algorithms based on deep learning. As opposed to iterative algorithms, we apply a convolutional neural network, whose parameters are trained before the reconstruction process based on a set of training data. For actual image reconstruction, a single evaluation of the trained network yields the desired result. Our presented numerical results (using two different network architectures) demonstrate that the proposed deep learning approach reconstructs images with a quality comparable to state of the art iterative reconstruction methods.

  2. Upgrade to iterative image reconstruction (IR) in abdominal MDCT imaging: a clinical study for detailed parameter optimization beyond vendor recommendations using the adaptive statistical iterative reconstruction environment (ASIR).

    PubMed

    Mueck, F G; Körner, M; Scherr, M K; Geyer, L L; Deak, Z; Linsenmaier, U; Reiser, M; Wirth, S

    2012-03-01

    To compare the image quality of dose-reduced 64-row abdominal CT reconstructed at different levels of adaptive statistical iterative reconstruction (ASIR) to full-dose baseline examinations reconstructed with filtered back-projection (FBP) in a clinical setting and upgrade situation. Abdominal baseline examinations (noise index NI = 29; LightSpeed VCT XT, GE) were intra-individually compared to follow-up studies on a CT with an ASIR option (NI = 43; Discovery HD750, GE), n = 42. Standard-kernel images were calculated with ASIR blendings of 0 - 100 % in slice and volume mode, respectively. Three experienced radiologists compared the image quality of these 567 sets to their corresponding full-dose baseline examination (- 2: diagnostically inferior, - 1: inferior, 0: equal, + 1: superior, + 2: diagnostically superior). Furthermore, a phantom was scanned. Statistical analysis used the Wilcoxon - the Mann-Whitney U-test and the intra-class correlation (ICC). The mean CTDIvol decreased from 19.7 ± 5.5 to 12.2 ± 4.7 mGy (p < 0.001). The ICC was 0.861. The total image quality of the dose-reduced ASIR studies was comparable to the baseline at ASIR 50 % in slice (p = 0.18) and ASIR 50 - 100 % in volume mode (p > 0.10). Volume mode performed 73 % slower than slice mode (p < 0.01). After the system upgrade, the vendor recommendation of ASIR 50 % in slice mode allowed for a dose reduction of 38 % in abdominal CT with comparable image quality and time expenditure. However, there is still further dose reduction potential for more complex reconstruction settings. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Comparison of FSE T2 W PROPELLER and 3D-FIESTA of 3 T MR for the internal auditory canal.

    PubMed

    Wu, Hai-Bo; Yuan, Hui-Shu; Ma, Furong; Zhao, Qiang

    The study compared the use of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique fast spin echo (FSE) T2 W and the sequence of three-dimensional fast imaging employing steady-state acquisition (3D-FIESTA) technique in the MRI of the internal auditory canal for overall image quality improvement. One hundred thirty-two patients undergoing FSE T2 W PROPELLER and 3D-FIESTA examinations of the internal auditory canal were included. All examinations were performed at 3.0 T with comparison of a sagittal oblique FSE T2 W sequence with the PROPELLER technique to 3D-FIESTA in the same reconstructed orientation with PROPELLER. Image quality was evaluated by two radiologists using a 4-point scale. The Wilcoxon signed rank test was used to compare the data of the two techniques. The image quality of FSE T2 W PROPELLER was significantly improved compared to the reconstructed images of 3D-FIESTA. Observer 1: median FSE T2 W with PROPELLER, 4 [mean, 3.455] versus median reconstructed 3D-FIESTA, 3 [mean, 3.15], (P<.001); Observer 2: median FSE T2 W with PROPELLER, 4 [mean, 3.47] versus median reconstructed 3D-FIESTA, 3 [mean, 3.25], (P<.001). Interobserver agreement was good (k value, 0.73) for the rating of the overall image quality. The FSE T2 W PROPELLER technique for MRI of internal auditory canal reduced uncertainty caused by motion artifact and improved the quality of the image compared to the reconstructed 3D-FIESTA. It was affected by different parameters including the blade width, echo train length (ETL). This is explained by data oversampling at the center region of k-space, which requires additional imaging time over conventional MRI techniques. Increasing blade was expected to improve motion correction effects but also the signal-to-noise ratio. ETL increases the image sharpness and the overall image quality. Copyright © 2016. Published by Elsevier Inc.

  4. Image quality improvement using model-based iterative reconstruction in low dose chest CT for children with necrotizing pneumonia.

    PubMed

    Sun, Jihang; Yu, Tong; Liu, Jinrong; Duan, Xiaomin; Hu, Di; Liu, Yong; Peng, Yun

    2017-03-16

    Model-based iterative reconstruction (MBIR) is a promising reconstruction method which could improve CT image quality with low radiation dose. The purpose of this study was to demonstrate the advantage of using MBIR for noise reduction and image quality improvement in low dose chest CT for children with necrotizing pneumonia, over the adaptive statistical iterative reconstruction (ASIR) and conventional filtered back-projection (FBP) technique. Twenty-six children with necrotizing pneumonia (aged 2 months to 11 years) who underwent standard of care low dose CT scans were included. Thinner-slice (0.625 mm) images were retrospectively reconstructed using MBIR, ASIR and conventional FBP techniques. Image noise and signal-to-noise ratio (SNR) for these thin-slice images were measured and statistically analyzed using ANOVA. Two radiologists independently analyzed the image quality for detecting necrotic lesions, and results were compared using a Friedman's test. Radiation dose for the overall patient population was 0.59 mSv. There was a significant improvement in the high-density and low-contrast resolution of the MBIR reconstruction resulting in more detection and better identification of necrotic lesions (38 lesions in 0.625 mm MBIR images vs. 29 lesions in 0.625 mm FBP images). The subjective display scores (mean ± standard deviation) for the detection of necrotic lesions were 5.0 ± 0.0, 2.8 ± 0.4 and 2.5 ± 0.5 with MBIR, ASIR and FBP reconstruction, respectively, and the respective objective image noise was 13.9 ± 4.0HU, 24.9 ± 6.6HU and 33.8 ± 8.7HU. The image noise decreased by 58.9 and 26.3% in MBIR images as compared to FBP and ASIR images. Additionally, the SNR of MBIR images was significantly higher than FBP images and ASIR images. The quality of chest CT images obtained by MBIR in children with necrotizing pneumonia was significantly improved by the MBIR technique as compared to the ASIR and FBP reconstruction, to provide a more confident and accurate diagnosis for necrotizing pneumonia.

  5. A pseudo-discrete algebraic reconstruction technique (PDART) prior image-based suppression of high density artifacts in computed tomography

    NASA Astrophysics Data System (ADS)

    Pua, Rizza; Park, Miran; Wi, Sunhee; Cho, Seungryong

    2016-12-01

    We propose a hybrid metal artifact reduction (MAR) approach for computed tomography (CT) that is computationally more efficient than a fully iterative reconstruction method, but at the same time achieves superior image quality to the interpolation-based in-painting techniques. Our proposed MAR method, an image-based artifact subtraction approach, utilizes an intermediate prior image reconstructed via PDART to recover the background information underlying the high density objects. For comparison, prior images generated by total-variation minimization (TVM) algorithm, as a realization of fully iterative approach, were also utilized as intermediate images. From the simulation and real experimental results, it has been shown that PDART drastically accelerates the reconstruction to an acceptable quality of prior images. Incorporating PDART-reconstructed prior images in the proposed MAR scheme achieved higher quality images than those by a conventional in-painting method. Furthermore, the results were comparable to the fully iterative MAR that uses high-quality TVM prior images.

  6. GRAPPA reconstructed wave-CAIPI MP-RAGE at 7 Tesla.

    PubMed

    Schwarz, Jolanda M; Pracht, Eberhard D; Brenner, Daniel; Reuter, Martin; Stöcker, Tony

    2018-04-16

    The aim of this project was to develop a GRAPPA-based reconstruction for wave-CAIPI data. Wave-CAIPI fully exploits the 3D coil sensitivity variations by combining corkscrew k-space trajectories with CAIPIRINHA sampling. It reduces artifacts and limits reconstruction induced spatially varying noise enhancement. The GRAPPA-based wave-CAIPI method is robust and does not depend on the accuracy of coil sensitivity estimations. We developed a GRAPPA-based, noniterative wave-CAIPI reconstruction algorithm utilizing multiple GRAPPA kernels. For data acquisition, we implemented a fast 3D magnetization-prepared rapid gradient-echo wave-CAIPI sequence tailored for ultra-high field application. The imaging results were evaluated by comparing the g-factor and the root mean square error to Cartesian CAIPIRINHA acquisitions. Additionally, to assess the performance of subcortical segmentations (calculated by FreeSurfer), the data were analyzed across five subjects. Sixteen-fold accelerated whole brain magnetization-prepared rapid gradient-echo data (1 mm isotropic resolution) were acquired in 40 seconds at 7T. A clear improvement in image quality compared to Cartesian CAIPIRINHA sampling was observed. For the chosen imaging protocol, the results of 16-fold accelerated wave-CAIPI acquisitions were comparable to results of 12-fold accelerated Cartesian CAIPIRINHA. In comparison to the originally proposed SENSitivity Encoding reconstruction of Wave-CAIPI data, the GRAPPA approach provided similar image quality. High-quality, wave-CAIPI magnetization-prepared rapid gradient-echo images can be reconstructed by means of a GRAPPA-based reconstruction algorithm. Even for high acceleration factors, the noniterative reconstruction is robust and does not require coil sensitivity estimations. By altering the aliasing pattern, ultra-fast whole-brain structural imaging becomes feasible. © 2018 International Society for Magnetic Resonance in Medicine.

  7. Tomography for two-dimensional gas temperature distribution based on TDLAS

    NASA Astrophysics Data System (ADS)

    Luo, Can; Wang, Yunchu; Xing, Fei

    2018-03-01

    Based on tunable diode laser absorption spectroscopy (TDLAS), the tomography is used to reconstruct the combustion gas temperature distribution. The effects of number of rays, number of grids, and spacing of rays on the temperature reconstruction results for parallel ray are researched. The reconstruction quality is proportional to the ray number. The quality tends to be smoother when the ray number exceeds a certain value. The best quality is achieved when η is between 0.5 and 1. A virtual ray method combined with the reconstruction algorithms is tested. It is found that virtual ray method is effective to improve the accuracy of reconstruction results, compared with the original method. The linear interpolation method and cubic spline interpolation method, are used to improve the calculation accuracy of virtual ray absorption value. According to the calculation results, cubic spline interpolation is better. Moreover, the temperature distribution of a TBCC combustion chamber is used to validate those conclusions.

  8. Image quality of iterative reconstruction in cranial CT imaging: comparison of model-based iterative reconstruction (MBIR) and adaptive statistical iterative reconstruction (ASiR).

    PubMed

    Notohamiprodjo, S; Deak, Z; Meurer, F; Maertz, F; Mueck, F G; Geyer, L L; Wirth, S

    2015-01-01

    The purpose of this study was to compare cranial CT (CCT) image quality (IQ) of the MBIR algorithm with standard iterative reconstruction (ASiR). In this institutional review board (IRB)-approved study, raw data sets of 100 unenhanced CCT examinations (120 kV, 50-260 mAs, 20 mm collimation, 0.984 pitch) were reconstructed with both ASiR and MBIR. Signal-to-noise (SNR) and contrast-to-noise (CNR) were calculated from attenuation values measured in caudate nucleus, frontal white matter, anterior ventricle horn, fourth ventricle, and pons. Two radiologists, who were blinded to the reconstruction algorithms, evaluated anonymized multiplanar reformations of 2.5 mm with respect to depiction of different parenchymal structures and impact of artefacts on IQ with a five-point scale (0: unacceptable, 1: less than average, 2: average, 3: above average, 4: excellent). MBIR decreased artefacts more effectively than ASiR (p < 0.01). The median depiction score for MBIR was 3, whereas the median value for ASiR was 2 (p < 0.01). SNR and CNR were significantly higher in MBIR than ASiR (p < 0.01). MBIR showed significant improvement of IQ parameters compared to ASiR. As CCT is an examination that is frequently required, the use of MBIR may allow for substantial reduction of radiation exposure caused by medical diagnostics. • Model-Based iterative reconstruction (MBIR) effectively decreased artefacts in cranial CT. • MBIR reconstructed images were rated with significantly higher scores for image quality. • Model-Based iterative reconstruction may allow reduced-dose diagnostic examination protocols.

  9. Synthesis method from low-coherence digital holograms for improvement of image quality in holographic display.

    PubMed

    Mori, Yutaka; Nomura, Takanori

    2013-06-01

    In holographic displays, it is undesirable to observe the speckle noises with the reconstructed images. A method for improvement of reconstructed image quality by synthesizing low-coherence digital holograms is proposed. It is possible to obtain speckleless reconstruction of holograms due to low-coherence digital holography. An image sensor records low-coherence digital holograms, and the holograms are synthesized by computational calculation. Two approaches, the threshold-processing and the picking-a-peak methods, are proposed in order to reduce random noise of low-coherence digital holograms. The reconstructed image quality by the proposed methods is compared with the case of high-coherence digital holography. Quantitative evaluation is given to confirm the proposed methods. In addition, the visual evaluation by 15 people is also shown.

  10. Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices.

    PubMed

    Reznicek, Lukas; Klein, Thomas; Wieser, Wolfgang; Kernt, Marcus; Wolf, Armin; Haritoglou, Christos; Kampik, Anselm; Huber, Robert; Neubauer, Aljoscha S

    2014-06-01

    To investigate the image quality of wide-angle cross-sectional and reconstructed fundus images based on ultra-megahertz swept-source Fourier domain mode locking (FDML) OCT compared to current generation diagnostic devices. A 1,050 nm swept-source FDML OCT system was constructed running at 1.68 MHz A-scan rate covering approximately 70° field of view. Twelve normal eyes were imaged with the device applying an isotropically dense sampling protocol (1,900 × 1,900 A-scans) with a fill factor of 100 %. Obtained OCT scan image quality was compared with two commercial OCT systems (Heidelberg Spectralis and Stratus OCT) of the same 12 eyes. Reconstructed en-face fundus images from the same FDML-OCT data set were compared to color fundus, infrared and ultra-wide-field scanning laser images (SLO). Comparison of cross-sectional scans showed a high overall image quality of the 15× averaged FDML images at 1.68 MHz [overall quality grading score: 8.42 ± 0.52, range 0 (bad)-10 (excellent)] comparable to current spectral-domain OCTs (overall quality grading score: 8.83 ± 0.39, p = 0.731). On FDML OCT, a dense 3D data set was obtained covering also the central and mid-peripheral retina. The reconstructed FDML OCT en-face fundus images had high image quality comparable to scanning laser ophthalmoscope (SLO) as judged from retinal structures such as vessels and optic disc. Overall grading score was 8.36 ± 0.51 for FDML OCT vs 8.27 ± 0.65 for SLO (p = 0.717). Ultra-wide-field megahertz 3D FDML OCT at 1.68 MHz is feasible, and provides cross-sectional image quality comparable to current spectral-domain OCT devices. In addition, reconstructed en-face visualization of fundus images result in a wide-field view with high image quality as compared to currently available fundus imaging devices. The improvement of >30× in imaging speed over commercial spectral-domain OCT technology enables high-density scan protocols leading to a data set for high quality cross-sectional and en-face images of the posterior segment.

  11. Evaluation of Social Support, Quality of Life, and Body Image in Women with Breast Cancer.

    PubMed

    Spatuzzi, Roberta; Vespa, Anna; Lorenzi, Primo; Miccinesi, Guido; Ricciuti, Marcello; Cifarelli, Wanda; Susi, Marina; Fabrizio, Tommaso; Ferrari, Maria G; Ottaviani, Marica; Giulietti, Maria V; Merico, Fabiana; Aieta, Michele

    2016-02-01

    This study was aimed at comparing the quality of life, body image, and perceived social support in women with breast cancer surgery. Patients receiving breast-conserving surgery (BCS) (n = 72), mastectomy alone (n = 44), and mastectomy with breast reconstruction (n = 41) were evaluated using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30), the EORTC Breast Cancer Module (QLQ-BR23), the Body Image Scale (BIS) and the Multidimensional Scale of Perceived Social Support (MSPSS). The results indicated that the BCS group had a better body image compared with the other 2 groups and better role functioning compared with the mastectomy-alone group. In the reconstruction group, body image correlated with perceived social support, especially from family and significant others. These results suggest that a positive perception of a supportive social network can help women with breast reconstruction to better cope with the psychological effects of surgery on their body image.

  12. Evaluation of automatic image quality assessment in chest CT - A human cadaver study.

    PubMed

    Franck, Caro; De Crop, An; De Roo, Bieke; Smeets, Peter; Vergauwen, Merel; Dewaele, Tom; Van Borsel, Mathias; Achten, Eric; Van Hoof, Tom; Bacher, Klaus

    2017-04-01

    The evaluation of clinical image quality (IQ) is important to optimize CT protocols and to keep patient doses as low as reasonably achievable. Considering the significant amount of effort needed for human observer studies, automatic IQ tools are a promising alternative. The purpose of this study was to evaluate automatic IQ assessment in chest CT using Thiel embalmed cadavers. Chest CT's of Thiel embalmed cadavers were acquired at different exposures. Clinical IQ was determined by performing a visual grading analysis. Physical-technical IQ (noise, contrast-to-noise and contrast-detail) was assessed in a Catphan phantom. Soft and sharp reconstructions were made with filtered back projection and two strengths of iterative reconstruction. In addition to the classical IQ metrics, an automatic algorithm was used to calculate image quality scores (IQs). To be able to compare datasets reconstructed with different kernels, the IQs values were normalized. Good correlations were found between IQs and the measured physical-technical image quality: noise (ρ=-1.00), contrast-to-noise (ρ=1.00) and contrast-detail (ρ=0.96). The correlation coefficients between IQs and the observed clinical image quality of soft and sharp reconstructions were 0.88 and 0.93, respectively. The automatic scoring algorithm is a promising tool for the evaluation of thoracic CT scans in daily clinical practice. It allows monitoring of the image quality of a chest protocol over time, without human intervention. Different reconstruction kernels can be compared after normalization of the IQs. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Influence of adaptive statistical iterative reconstruction algorithm on image quality in coronary computed tomography angiography.

    PubMed

    Precht, Helle; Thygesen, Jesper; Gerke, Oke; Egstrup, Kenneth; Waaler, Dag; Lambrechtsen, Jess

    2016-12-01

    Coronary computed tomography angiography (CCTA) requires high spatial and temporal resolution, increased low contrast resolution for the assessment of coronary artery stenosis, plaque detection, and/or non-coronary pathology. Therefore, new reconstruction algorithms, particularly iterative reconstruction (IR) techniques, have been developed in an attempt to improve image quality with no cost in radiation exposure. To evaluate whether adaptive statistical iterative reconstruction (ASIR) enhances perceived image quality in CCTA compared to filtered back projection (FBP). Thirty patients underwent CCTA due to suspected coronary artery disease. Images were reconstructed using FBP, 30% ASIR, and 60% ASIR. Ninety image sets were evaluated by five observers using the subjective visual grading analysis (VGA) and assessed by proportional odds modeling. Objective quality assessment (contrast, noise, and the contrast-to-noise ratio [CNR]) was analyzed with linear mixed effects modeling on log-transformed data. The need for ethical approval was waived by the local ethics committee as the study only involved anonymously collected clinical data. VGA showed significant improvements in sharpness by comparing FBP with ASIR, resulting in odds ratios of 1.54 for 30% ASIR and 1.89 for 60% ASIR ( P  = 0.004). The objective measures showed significant differences between FBP and 60% ASIR ( P  < 0.0001) for noise, with an estimated ratio of 0.82, and for CNR, with an estimated ratio of 1.26. ASIR improved the subjective image quality of parameter sharpness and, objectively, reduced noise and increased CNR.

  14. Investigation of iterative image reconstruction in low-dose breast CT

    NASA Astrophysics Data System (ADS)

    Bian, Junguo; Yang, Kai; Boone, John M.; Han, Xiao; Sidky, Emil Y.; Pan, Xiaochuan

    2014-06-01

    There is interest in developing computed tomography (CT) dedicated to breast-cancer imaging. Because breast tissues are radiation-sensitive, the total radiation exposure in a breast-CT scan is kept low, often comparable to a typical two-view mammography exam, thus resulting in a challenging low-dose-data-reconstruction problem. In recent years, evidence has been found that suggests that iterative reconstruction may yield images of improved quality from low-dose data. In this work, based upon the constrained image total-variation minimization program and its numerical solver, i.e., the adaptive steepest descent-projection onto the convex set (ASD-POCS), we investigate and evaluate iterative image reconstructions from low-dose breast-CT data of patients, with a focus on identifying and determining key reconstruction parameters, devising surrogate utility metrics for characterizing reconstruction quality, and tailoring the program and ASD-POCS to the specific reconstruction task under consideration. The ASD-POCS reconstructions appear to outperform the corresponding clinical FDK reconstructions, in terms of subjective visualization and surrogate utility metrics.

  15. Anisotropic modeling and joint-MAP stitching for improved ultrasound model-based iterative reconstruction of large and thick specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almansouri, Hani; Venkatakrishnan, Singanallur V.; Clayton, Dwight A.

    One-sided non-destructive evaluation (NDE) is widely used to inspect materials, such as concrete structures in nuclear power plants (NPP). A widely used method for one-sided NDE is the synthetic aperture focusing technique (SAFT). The SAFT algorithm produces reasonable results when inspecting simple structures. However, for complex structures, such as heavily reinforced thick concrete structures, SAFT results in artifacts and hence there is a need for a more sophisticated inversion technique. Model-based iterative reconstruction (MBIR) algorithms, which are typically equivalent to regularized inversion techniques, offer a powerful framework to incorporate complex models for the physics, detector miscalibrations and the materials beingmore » imaged to obtain high quality reconstructions. Previously, we have proposed an ultrasonic MBIR method that signifcantly improves reconstruction quality compared to SAFT. However, the method made some simplifying assumptions on the propagation model and did not disucss ways to handle data that is obtained by raster scanning a system over a surface to inspect large regions. In this paper, we propose a novel MBIR algorithm that incorporates an anisotropic forward model and allows for the joint processing of data obtained from a system that raster scans a large surface. We demonstrate that the new MBIR method can produce dramatic improvements in reconstruction quality compared to SAFT and suppresses articfacts compared to the perviously presented MBIR approach.« less

  16. Anisotropic modeling and joint-MAP stitching for improved ultrasound model-based iterative reconstruction of large and thick specimens

    NASA Astrophysics Data System (ADS)

    Almansouri, Hani; Venkatakrishnan, Singanallur; Clayton, Dwight; Polsky, Yarom; Bouman, Charles; Santos-Villalobos, Hector

    2018-04-01

    One-sided non-destructive evaluation (NDE) is widely used to inspect materials, such as concrete structures in nuclear power plants (NPP). A widely used method for one-sided NDE is the synthetic aperture focusing technique (SAFT). The SAFT algorithm produces reasonable results when inspecting simple structures. However, for complex structures, such as heavily reinforced thick concrete structures, SAFT results in artifacts and hence there is a need for a more sophisticated inversion technique. Model-based iterative reconstruction (MBIR) algorithms, which are typically equivalent to regularized inversion techniques, offer a powerful framework to incorporate complex models for the physics, detector miscalibrations and the materials being imaged to obtain high quality reconstructions. Previously, we have proposed an ultrasonic MBIR method that signifcantly improves reconstruction quality compared to SAFT. However, the method made some simplifying assumptions on the propagation model and did not disucss ways to handle data that is obtained by raster scanning a system over a surface to inspect large regions. In this paper, we propose a novel MBIR algorithm that incorporates an anisotropic forward model and allows for the joint processing of data obtained from a system that raster scans a large surface. We demonstrate that the new MBIR method can produce dramatic improvements in reconstruction quality compared to SAFT and suppresses articfacts compared to the perviously presented MBIR approach.

  17. Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography

    PubMed Central

    Wang, Kun; Su, Richard; Oraevsky, Alexander A; Anastasio, Mark A

    2012-01-01

    Iterative image reconstruction algorithms for optoacoustic tomography (OAT), also known as photoacoustic tomography, have the ability to improve image quality over analytic algorithms due to their ability to incorporate accurate models of the imaging physics, instrument response, and measurement noise. However, to date, there have been few reported attempts to employ advanced iterative image reconstruction algorithms for improving image quality in three-dimensional (3D) OAT. In this work, we implement and investigate two iterative image reconstruction methods for use with a 3D OAT small animal imager: namely, a penalized least-squares (PLS) method employing a quadratic smoothness penalty and a PLS method employing a total variation norm penalty. The reconstruction algorithms employ accurate models of the ultrasonic transducer impulse responses. Experimental data sets are employed to compare the performances of the iterative reconstruction algorithms to that of a 3D filtered backprojection (FBP) algorithm. By use of quantitative measures of image quality, we demonstrate that the iterative reconstruction algorithms can mitigate image artifacts and preserve spatial resolution more effectively than FBP algorithms. These features suggest that the use of advanced image reconstruction algorithms can improve the effectiveness of 3D OAT while reducing the amount of data required for biomedical applications. PMID:22864062

  18. Image Quality Performance Measurement of the microPET Focus 120

    NASA Astrophysics Data System (ADS)

    Ballado, Fernando Trejo; López, Nayelli Ortega; Flores, Rafael Ojeda; Ávila-Rodríguez, Miguel A.

    2010-12-01

    The aim of this work is to evaluate the characteristics involved in the image reconstruction of the microPET Focus 120. For this evaluation were used two different phantoms; a miniature hot-rod Derenzo phantom and a National Electrical Manufacturers Association (NEMA) NU4-2008 image quality (IQ) phantom. The best image quality was obtained when using OSEM3D as the reconstruction method reaching a spatial resolution of 1.5 mm with the Derenzo phantom filled with 18F. Image quality test results indicate a superior image quality for the Focus 120 when compared to previous microPET models.

  19. Model-based iterative reconstruction for reduction of radiation dose in abdominopelvic CT: comparison to adaptive statistical iterative reconstruction.

    PubMed

    Yasaka, Koichiro; Katsura, Masaki; Akahane, Masaaki; Sato, Jiro; Matsuda, Izuru; Ohtomo, Kuni

    2013-12-01

    To evaluate dose reduction and image quality of abdominopelvic computed tomography (CT) reconstructed with model-based iterative reconstruction (MBIR) compared to adaptive statistical iterative reconstruction (ASIR). In this prospective study, 85 patients underwent referential-, low-, and ultralow-dose unenhanced abdominopelvic CT. Images were reconstructed with ASIR for low-dose (L-ASIR) and ultralow-dose CT (UL-ASIR), and with MBIR for ultralow-dose CT (UL-MBIR). Image noise was measured in the abdominal aorta and iliopsoas muscle. Subjective image analyses and a lesion detection study (adrenal nodules) were conducted by two blinded radiologists. A reference standard was established by a consensus panel of two different radiologists using referential-dose CT reconstructed with filtered back projection. Compared to low-dose CT, there was a 63% decrease in dose-length product with ultralow-dose CT. UL-MBIR had significantly lower image noise than L-ASIR and UL-ASIR (all p<0.01). UL-MBIR was significantly better for subjective image noise and streak artifacts than L-ASIR and UL-ASIR (all p<0.01). There were no significant differences between UL-MBIR and L-ASIR in diagnostic acceptability (p>0.65), or diagnostic performance for adrenal nodules (p>0.87). MBIR significantly improves image noise and streak artifacts compared to ASIR, and can achieve radiation dose reduction without severely compromising image quality.

  20. Quality of Life in Symptomatic Individuals After Anterior Cruciate Ligament Reconstruction, With and Without Radiographic Knee Osteoarthritis.

    PubMed

    Filbay, Stephanie R; Ackerman, Ilana N; Dhupelia, Sanjay; Arden, Nigel K; Crossley, Kay M

    2018-05-01

    Study Design Clinical measurement, cross-sectional. Background Individuals who have undergone anterior cruciate ligament (ACL) reconstruction commonly experience long-term impairments in quality of life (QoL), which may be related to persistent knee symptoms or radiographic osteoarthritis (ROA). Understanding the impact of knee symptoms and ROA on QoL after ACL reconstruction may assist in the development of appropriate management strategies. Objectives To (1) compare QoL between groups of individuals after ACL reconstruction (including those who are symptomatic with ROA, symptomatic without ROA, and asymptomatic [unknown ROA status]), and (2) identify specific aspects of QoL impairment in symptomatic individuals with and without ROA post ACL reconstruction. Methods One hundred thirteen participants completed QoL measures (Knee injury and Osteoarthritis Outcome Score QoL subscale [KOOS-QoL], Anterior Cruciate Ligament Quality of Life [ACL-QoL], Assessment of Quality of Life-8 Dimensions [AQoL-8D]) 5 to 20 years after ACL reconstruction. Eighty-one symptomatic individuals underwent radiographs, and 32 asymptomatic individuals formed a comparison group. Radiographic osteoarthritis was defined as a Kellgren-Lawrence grade of 2 or greater for the tibiofemoral and/or patellofemoral joints. Mann-Whitney U tests compared outcomes between groups. Individual ACL-QoL items were used to explore specific aspects of QoL. Results In symptomatic individuals after ACL reconstruction, ROA was related to worse knee-related outcomes on the KOOS-QoL (median, 50; interquartile range [IQR], 38-69 versus median, 69; IQR, 56-81; P<.001) and the ACL-QoL (median, 51; IQR, 38-71 versus median, 66; IQR, 50-82; P = .04). The AQoL-8D scores showed that health-related QoL was impaired in both symptomatic groups compared to the asymptomatic group. The ACL-QoL item scores revealed greater limitations and concern surrounding sport and exercise and social/emotional difficulties in the symptomatic group with ROA. Conclusion Osteoarthritis is associated with worse knee-related QoL in symptomatic individuals after ACL reconstruction. Diagnosing ROA in symptomatic individuals after ACL reconstruction may be valuable, because these individuals may require unique management. Targeted strategies to facilitate participation in satisfying activities have potential to improve QoL in symptomatic people with ROA after ACL reconstruction. J Orthop Sports Phys Ther 2018;48(5):398-408. doi:10.2519/jospt.2018.7830.

  1. Dose reduction with adaptive statistical iterative reconstruction for paediatric CT: phantom study and clinical experience on chest and abdomen CT.

    PubMed

    Gay, F; Pavia, Y; Pierrat, N; Lasalle, S; Neuenschwander, S; Brisse, H J

    2014-01-01

    To assess the benefit and limits of iterative reconstruction of paediatric chest and abdominal computed tomography (CT). The study compared adaptive statistical iterative reconstruction (ASIR) with filtered back projection (FBP) on 64-channel MDCT. A phantom study was first performed using variable tube potential, tube current and ASIR settings. The assessed image quality indices were the signal-to-noise ratio (SNR), the noise power spectrum, low contrast detectability (LCD) and spatial resolution. A clinical retrospective study of 26 children (M:F = 14/12, mean age: 4 years, range: 1-9 years) was secondarily performed allowing comparison of 18 chest and 14 abdominal CT pairs, one with a routine CT dose and FBP reconstruction, and the other with 30 % lower dose and 40 % ASIR reconstruction. Two radiologists independently compared the images for overall image quality, noise, sharpness and artefacts, and measured image noise. The phantom study demonstrated a significant increase in SNR without impairment of the LCD or spatial resolution, except for tube current values below 30-50 mA. On clinical images, no significant difference was observed between FBP and reduced dose ASIR images. Iterative reconstruction allows at least 30 % dose reduction in paediatric chest and abdominal CT, without impairment of image quality. • Iterative reconstruction helps lower radiation exposure levels in children undergoing CT. • Adaptive statistical iterative reconstruction (ASIR) significantly increases SNR without impairing spatial resolution. • For abdomen and chest CT, ASIR allows at least a 30 % dose reduction.

  2. A sparsity-based iterative algorithm for reconstruction of micro-CT images from highly undersampled projection datasets obtained with a synchrotron X-ray source

    NASA Astrophysics Data System (ADS)

    Melli, S. Ali; Wahid, Khan A.; Babyn, Paul; Cooper, David M. L.; Gopi, Varun P.

    2016-12-01

    Synchrotron X-ray Micro Computed Tomography (Micro-CT) is an imaging technique which is increasingly used for non-invasive in vivo preclinical imaging. However, it often requires a large number of projections from many different angles to reconstruct high-quality images leading to significantly high radiation doses and long scan times. To utilize this imaging technique further for in vivo imaging, we need to design reconstruction algorithms that reduce the radiation dose and scan time without reduction of reconstructed image quality. This research is focused on using a combination of gradient-based Douglas-Rachford splitting and discrete wavelet packet shrinkage image denoising methods to design an algorithm for reconstruction of large-scale reduced-view synchrotron Micro-CT images with acceptable quality metrics. These quality metrics are computed by comparing the reconstructed images with a high-dose reference image reconstructed from 1800 equally spaced projections spanning 180°. Visual and quantitative-based performance assessment of a synthetic head phantom and a femoral cortical bone sample imaged in the biomedical imaging and therapy bending magnet beamline at the Canadian Light Source demonstrates that the proposed algorithm is superior to the existing reconstruction algorithms. Using the proposed reconstruction algorithm to reduce the number of projections in synchrotron Micro-CT is an effective way to reduce the overall radiation dose and scan time which improves in vivo imaging protocols.

  3. Immediate Breast Reconstruction with Abdominal Free Flap and Adjuvant Radiotherapy: Evaluation of Quality of Life and Outcomes.

    PubMed

    Pont, Luis Parra; Marcelli, Stefano; Robustillo, Manuel; Song, Dajiang; Grandes, Daniel; Martin, Marcos; Iglesias, Israel; Aso, Jorge; Laloumet, Iñaki; Díaz, Antonio J

    2017-10-01

    The effects of postoperative radiotherapy on free flap-based breast reconstruction are still controversial. Poor outcomes, breast distortion, and fat necrosis have been traditionally documented. The aim of this study was to evaluate whether adjuvant radiotherapy affects the quality of life, satisfaction, and cosmetic result in patients undergoing immediate breast reconstruction with autologous free flap. Between January of 2013 and December of 2016, 230 patients underwent mastectomy with immediate free flap reconstruction at the authors' institution. Patients were divided into two groups depending on whether they received postmastectomy radiotherapy. Quality of life measured with the BREAST-Q questionnaire, self-reported aesthetic outcomes, and general satisfaction were assessed and compared. Fat necrosis of the flap and its severity were also analyzed as the main surgical outcomes. Mean follow-up time after reconstruction was 23 months (range, 6 to 48 months). No significant difference in quality of life or satisfaction scores were found between patients that underwent postmastectomy radiotherapy and patients who did not receive adjuvant radiotherapy. There were no significant differences in rates of fat necrosis between the groups (11.1 percent versus 13.76 percent; p = 0.75). Postmastectomy radiotherapy in patients undergoing immediate breast reconstruction with free flaps does not seem to affect quality of life, satisfaction with the outcome, or the cosmetic result as perceived by the patients. The potential need for postoperative radiotherapy should not hinder women from the benefits of autologous immediate breast reconstruction. Therapeutic, III.

  4. Image Reconstruction Under Contact Impedance Effect in Micro Electrical Impedance Tomography Sensors.

    PubMed

    Liu, Xiayi; Yao, Jiafeng; Zhao, Tong; Obara, Hiromichi; Cui, Yahui; Takei, Masahiro

    2018-06-01

    Contact impedance has an important effect on micro electrical impedance tomography (EIT) sensors compared to conventional macro sensors. In the present work, a complex contact impedance effect ratio ξ is defined to quantitatively evaluate the effect of the contact impedance on the accuracy of the reconstructed images by micro EIT. Quality of the reconstructed image under various ξ is estimated by the phantom simulation to find the optimum algorithm. The generalized vector sampled pattern matching (GVSPM) method reveals the best image quality and the best tolerance to ξ. Moreover, the images of yeast cells sedimentary distribution in a multilayered microchannel are reconstructed by the GVSPM method under various mean magnitudes of contact impedance effect ratio |ξ|. The result shows that the best image quality that has the smallest voltage error U E = 0.581 is achieved with measurement frequency f = 1 MHz and mean magnitude |ξ| = 26. In addition, the reconstructed images of cells distribution become improper while f < 10 kHz and mean value of |ξ| > 2400.

  5. Impact of a New Adaptive Statistical Iterative Reconstruction (ASIR)-V Algorithm on Image Quality in Coronary Computed Tomography Angiography.

    PubMed

    Pontone, Gianluca; Muscogiuri, Giuseppe; Andreini, Daniele; Guaricci, Andrea I; Guglielmo, Marco; Baggiano, Andrea; Fazzari, Fabio; Mushtaq, Saima; Conte, Edoardo; Annoni, Andrea; Formenti, Alberto; Mancini, Elisabetta; Verdecchia, Massimo; Campari, Alessandro; Martini, Chiara; Gatti, Marco; Fusini, Laura; Bonfanti, Lorenzo; Consiglio, Elisa; Rabbat, Mark G; Bartorelli, Antonio L; Pepi, Mauro

    2018-03-27

    A new postprocessing algorithm named adaptive statistical iterative reconstruction (ASIR)-V has been recently introduced. The aim of this article was to analyze the impact of ASIR-V algorithm on signal, noise, and image quality of coronary computed tomography angiography. Fifty consecutive patients underwent clinically indicated coronary computed tomography angiography (Revolution CT; GE Healthcare, Milwaukee, WI). Images were reconstructed using filtered back projection and ASIR-V 0%, and a combination of filtered back projection and ASIR-V 20%-80% and ASIR-V 100%. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were calculated for left main coronary artery (LM), left anterior descending artery (LAD), left circumflex artery (LCX), and right coronary artery (RCA) and were compared between the different postprocessing algorithms used. Similarly a four-point Likert image quality score of coronary segments was graded for each dataset and compared. A cutoff value of P < .05 was considered statistically significant. Compared to ASIR-V 0%, ASIR-V 100% demonstrated a significant reduction of image noise in all coronaries (P < .01). Compared to ASIR-V 0%, SNR was significantly higher with ASIR-V 60% in LM (P < .01), LAD (P < .05), LCX (P < .05), and RCA (P < .01). Compared to ASIR-V 0%, CNR for ASIR-V ≥60% was significantly improved in LM (P < .01), LAD (P < .05), and RCA (P < .01), whereas LCX demonstrated a significant improvement with ASIR-V ≥80%. ASIR-V 60% had significantly better Likert image quality scores compared to ASIR-V 0% in segment-, vessel-, and patient-based analyses (P < .01). Reconstruction with ASIR-V 60% provides the optimal balance between image noise, SNR, CNR, and image quality. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  6. Penalized maximum likelihood reconstruction for x-ray differential phase-contrast tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brendel, Bernhard, E-mail: bernhard.brendel@philips.com; Teuffenbach, Maximilian von; Noël, Peter B.

    2016-01-15

    Purpose: The purpose of this work is to propose a cost function with regularization to iteratively reconstruct attenuation, phase, and scatter images simultaneously from differential phase contrast (DPC) acquisitions, without the need of phase retrieval, and examine its properties. Furthermore this reconstruction method is applied to an acquisition pattern that is suitable for a DPC tomographic system with continuously rotating gantry (sliding window acquisition), overcoming the severe smearing in noniterative reconstruction. Methods: We derive a penalized maximum likelihood reconstruction algorithm to directly reconstruct attenuation, phase, and scatter image from the measured detector values of a DPC acquisition. The proposed penaltymore » comprises, for each of the three images, an independent smoothing prior. Image quality of the proposed reconstruction is compared to images generated with FBP and iterative reconstruction after phase retrieval. Furthermore, the influence between the priors is analyzed. Finally, the proposed reconstruction algorithm is applied to experimental sliding window data acquired at a synchrotron and results are compared to reconstructions based on phase retrieval. Results: The results show that the proposed algorithm significantly increases image quality in comparison to reconstructions based on phase retrieval. No significant mutual influence between the proposed independent priors could be observed. Further it could be illustrated that the iterative reconstruction of a sliding window acquisition results in images with substantially reduced smearing artifacts. Conclusions: Although the proposed cost function is inherently nonconvex, it can be used to reconstruct images with less aliasing artifacts and less streak artifacts than reconstruction methods based on phase retrieval. Furthermore, the proposed method can be used to reconstruct images of sliding window acquisitions with negligible smearing artifacts.« less

  7. Influence of adaptive statistical iterative reconstruction algorithm on image quality in coronary computed tomography angiography

    PubMed Central

    Thygesen, Jesper; Gerke, Oke; Egstrup, Kenneth; Waaler, Dag; Lambrechtsen, Jess

    2016-01-01

    Background Coronary computed tomography angiography (CCTA) requires high spatial and temporal resolution, increased low contrast resolution for the assessment of coronary artery stenosis, plaque detection, and/or non-coronary pathology. Therefore, new reconstruction algorithms, particularly iterative reconstruction (IR) techniques, have been developed in an attempt to improve image quality with no cost in radiation exposure. Purpose To evaluate whether adaptive statistical iterative reconstruction (ASIR) enhances perceived image quality in CCTA compared to filtered back projection (FBP). Material and Methods Thirty patients underwent CCTA due to suspected coronary artery disease. Images were reconstructed using FBP, 30% ASIR, and 60% ASIR. Ninety image sets were evaluated by five observers using the subjective visual grading analysis (VGA) and assessed by proportional odds modeling. Objective quality assessment (contrast, noise, and the contrast-to-noise ratio [CNR]) was analyzed with linear mixed effects modeling on log-transformed data. The need for ethical approval was waived by the local ethics committee as the study only involved anonymously collected clinical data. Results VGA showed significant improvements in sharpness by comparing FBP with ASIR, resulting in odds ratios of 1.54 for 30% ASIR and 1.89 for 60% ASIR (P = 0.004). The objective measures showed significant differences between FBP and 60% ASIR (P < 0.0001) for noise, with an estimated ratio of 0.82, and for CNR, with an estimated ratio of 1.26. Conclusion ASIR improved the subjective image quality of parameter sharpness and, objectively, reduced noise and increased CNR. PMID:28405477

  8. Investigation into image quality difference between total variation and nonlinear sparsifying transform based compressed sensing

    NASA Astrophysics Data System (ADS)

    Dong, Jian; Kudo, Hiroyuki

    2017-03-01

    Compressed sensing (CS) is attracting growing concerns in sparse-view computed tomography (CT) image reconstruction. The most standard approach of CS is total variation (TV) minimization. However, images reconstructed by TV usually suffer from distortions, especially in reconstruction of practical CT images, in forms of patchy artifacts, improper serrate edges and loss of image textures. Most existing CS approaches including TV achieve image quality improvement by applying linear transforms to object image, but linear transforms usually fail to take discontinuities into account, such as edges and image textures, which is considered to be the key reason for image distortions. Actually, discussions on nonlinear filter based image processing has a long history, leading us to clarify that the nonlinear filters yield better results compared to linear filters in image processing task such as denoising. Median root prior was first utilized by Alenius as nonlinear transform in CT image reconstruction, with significant gains obtained. Subsequently, Zhang developed the application of nonlocal means-based CS. A fact is gradually becoming clear that the nonlinear transform based CS has superiority in improving image quality compared with the linear transform based CS. However, it has not been clearly concluded in any previous paper within the scope of our knowledge. In this work, we investigated the image quality differences between the conventional TV minimization and nonlinear sparsifying transform based CS, as well as image quality differences among different nonlinear sparisying transform based CSs in sparse-view CT image reconstruction. Additionally, we accelerated the implementation of nonlinear sparsifying transform based CS algorithm.

  9. Optimization of image quality and acquisition time for lab-based X-ray microtomography using an iterative reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Lin, Qingyang; Andrew, Matthew; Thompson, William; Blunt, Martin J.; Bijeljic, Branko

    2018-05-01

    Non-invasive laboratory-based X-ray microtomography has been widely applied in many industrial and research disciplines. However, the main barrier to the use of laboratory systems compared to a synchrotron beamline is its much longer image acquisition time (hours per scan compared to seconds to minutes at a synchrotron), which results in limited application for dynamic in situ processes. Therefore, the majority of existing laboratory X-ray microtomography is limited to static imaging; relatively fast imaging (tens of minutes per scan) can only be achieved by sacrificing imaging quality, e.g. reducing exposure time or number of projections. To alleviate this barrier, we introduce an optimized implementation of a well-known iterative reconstruction algorithm that allows users to reconstruct tomographic images with reasonable image quality, but requires lower X-ray signal counts and fewer projections than conventional methods. Quantitative analysis and comparison between the iterative and the conventional filtered back-projection reconstruction algorithm was performed using a sandstone rock sample with and without liquid phases in the pore space. Overall, by implementing the iterative reconstruction algorithm, the required image acquisition time for samples such as this, with sparse object structure, can be reduced by a factor of up to 4 without measurable loss of sharpness or signal to noise ratio.

  10. A comparison between the pectoralis major myocutaneous flap and the free anterolateral thigh perforator flap for reconstruction in head and neck cancer patients: assessment of the quality of life.

    PubMed

    Zhang, Xu; Li, Meng-Jie; Fang, Qi-Gen; Sun, Chang-Fu

    2014-05-01

    Our study investigated the quality of life (QoL) of Chinese patients after immediate reconstruction surgery on individuals with head and neck cancer. In addition, we compared the differences between pectoralis major myocutaneous flap (PMMF) and anterolateral thigh free flap (ALTFF). The University of Washington Quality of Life questionnaire, version 4, was used to assess the QoL. Assessments were performed at least 24 months postoperatively. A total of 110 patients' records were obtained. Among them, 86 patients completed a QoL questionnaire (78.2%). No significant differences could be found in age, primary site, T stage, N stage, and postoperative radiotherapy between PMMF and ALTFF groups. However, there were significant differences between both groups in sex, operation time, and complication. A matched analysis was performed to compare the differences in QoL between patients with head and neck cancers reconstructed with PMMF or ALTFF. Patients reconstructed with ALTFF had better shoulder but worse speech functions. There was a significant effect on the QoL of head and neck cancer patients who had undergone either PMMF or ALTFF reconstruction. The result of this study provide useful information for physicians and patients during their discussion of treatment modalities for head and neck cancers.

  11. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET

    NASA Astrophysics Data System (ADS)

    Ahn, Sangtae; Ross, Steven G.; Asma, Evren; Miao, Jun; Jin, Xiao; Cheng, Lishui; Wollenweber, Scott D.; Manjeshwar, Ravindra M.

    2015-08-01

    Ordered subset expectation maximization (OSEM) is the most widely used algorithm for clinical PET image reconstruction. OSEM is usually stopped early and post-filtered to control image noise and does not necessarily achieve optimal quantitation accuracy. As an alternative to OSEM, we have recently implemented a penalized likelihood (PL) image reconstruction algorithm for clinical PET using the relative difference penalty with the aim of improving quantitation accuracy without compromising visual image quality. Preliminary clinical studies have demonstrated visual image quality including lesion conspicuity in images reconstructed by the PL algorithm is better than or at least as good as that in OSEM images. In this paper we evaluate lesion quantitation accuracy of the PL algorithm with the relative difference penalty compared to OSEM by using various data sets including phantom data acquired with an anthropomorphic torso phantom, an extended oval phantom and the NEMA image quality phantom; clinical data; and hybrid clinical data generated by adding simulated lesion data to clinical data. We focus on mean standardized uptake values and compare them for PL and OSEM using both time-of-flight (TOF) and non-TOF data. The results demonstrate improvements of PL in lesion quantitation accuracy compared to OSEM with a particular improvement in cold background regions such as lungs.

  12. Dose reduction in abdominal computed tomography: intraindividual comparison of image quality of full-dose standard and half-dose iterative reconstructions with dual-source computed tomography.

    PubMed

    May, Matthias S; Wüst, Wolfgang; Brand, Michael; Stahl, Christian; Allmendinger, Thomas; Schmidt, Bernhard; Uder, Michael; Lell, Michael M

    2011-07-01

    We sought to evaluate the image quality of iterative reconstruction in image space (IRIS) in half-dose (HD) datasets compared with full-dose (FD) and HD filtered back projection (FBP) reconstruction in abdominal computed tomography (CT). To acquire data with FD and HD simultaneously, contrast-enhanced abdominal CT was performed with a dual-source CT system, both tubes operating at 120 kV, 100 ref.mAs, and pitch 0.8. Three different image datasets were reconstructed from the raw data: Standard FD images applying FBP which served as reference, HD images applying FBP and HD images applying IRIS. For the HD data sets, only data from 1 tube detector-system was used. Quantitative image quality analysis was performed by measuring image noise in tissue and air. Qualitative image quality was evaluated according to the European Guidelines on Quality criteria for CT. Additional assessment of artifacts, lesion conspicuity, and edge sharpness was performed. : Image noise in soft tissue was substantially decreased in HD-IRIS (-3.4 HU, -22%) and increased in HD-FBP (+6.2 HU, +39%) images when compared with the reference (mean noise, 15.9 HU). No significant differences between the FD-FBP and HD-IRIS images were found for the visually sharp anatomic reproduction, overall diagnostic acceptability (P = 0.923), lesion conspicuity (P = 0.592), and edge sharpness (P = 0.589), while HD-FBP was rated inferior. Streak artifacts and beam hardening was significantly more prominent in HD-FBP while HD-IRIS images exhibited a slightly different noise pattern. Direct intrapatient comparison of standard FD body protocols and HD-IRIS reconstruction suggest that the latest iterative reconstruction algorithms allow for approximately 50% dose reduction without deterioration of the high image quality necessary for confident diagnosis.

  13. CT image reconstruction with half precision floating-point values.

    PubMed

    Maaß, Clemens; Baer, Matthias; Kachelrieß, Marc

    2011-07-01

    Analytic CT image reconstruction is a computationally demanding task. Currently, the even more demanding iterative reconstruction algorithms find their way into clinical routine because their image quality is superior to analytic image reconstruction. The authors thoroughly analyze a so far unconsidered but valuable tool of tomorrow's reconstruction hardware (CPU and GPU) that allows implementing the forward projection and backprojection steps, which are the computationally most demanding parts of any reconstruction algorithm, much more efficiently. Instead of the standard 32 bit floating-point values (float), a recently standardized floating-point value with 16 bit (half) is adopted for data representation in image domain and in rawdata domain. The reduction in the total data amount reduces the traffic on the memory bus, which is the bottleneck of today's high-performance algorithms, by 50%. In CT simulations and CT measurements, float reconstructions (gold standard) and half reconstructions are visually compared via difference images and by quantitative image quality evaluation. This is done for analytical reconstruction (filtered backprojection) and iterative reconstruction (ordered subset SART). The magnitude of quantization noise, which is caused by a reduction in the data precision of both rawdata and image data during image reconstruction, is negligible. This is clearly shown for filtered backprojection and iterative ordered subset SART reconstruction. In filtered backprojection, the implementation of the backprojection should be optimized for low data precision if the image data are represented in half format. In ordered subset SART image reconstruction, no adaptations are necessary and the convergence speed remains unchanged. Half precision floating-point values allow to speed up CT image reconstruction without compromising image quality.

  14. Image Quality of 3rd Generation Spiral Cranial Dual-Source CT in Combination with an Advanced Model Iterative Reconstruction Technique: A Prospective Intra-Individual Comparison Study to Standard Sequential Cranial CT Using Identical Radiation Dose

    PubMed Central

    Wenz, Holger; Maros, Máté E.; Meyer, Mathias; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O.; Flohr, Thomas; Leidecker, Christianne; Groden, Christoph; Scharf, Johann; Henzler, Thomas

    2015-01-01

    Objectives To prospectively intra-individually compare image quality of a 3rd generation Dual-Source-CT (DSCT) spiral cranial CT (cCT) to a sequential 4-slice Multi-Slice-CT (MSCT) while maintaining identical intra-individual radiation dose levels. Methods 35 patients, who had a non-contrast enhanced sequential cCT examination on a 4-slice MDCT within the past 12 months, underwent a spiral cCT scan on a 3rd generation DSCT. CTDIvol identical to initial 4-slice MDCT was applied. Data was reconstructed using filtered backward projection (FBP) and 3rd-generation iterative reconstruction (IR) algorithm at 5 different IR strength levels. Two neuroradiologists independently evaluated subjective image quality using a 4-point Likert-scale and objective image quality was assessed in white matter and nucleus caudatus with signal-to-noise ratios (SNR) being subsequently calculated. Results Subjective image quality of all spiral cCT datasets was rated significantly higher compared to the 4-slice MDCT sequential acquisitions (p<0.05). Mean SNR was significantly higher in all spiral compared to sequential cCT datasets with mean SNR improvement of 61.65% (p*Bonferroni0.05<0.0024). Subjective image quality improved with increasing IR levels. Conclusion Combination of 3rd-generation DSCT spiral cCT with an advanced model IR technique significantly improves subjective and objective image quality compared to a standard sequential cCT acquisition acquired at identical dose levels. PMID:26288186

  15. Image Quality of 3rd Generation Spiral Cranial Dual-Source CT in Combination with an Advanced Model Iterative Reconstruction Technique: A Prospective Intra-Individual Comparison Study to Standard Sequential Cranial CT Using Identical Radiation Dose.

    PubMed

    Wenz, Holger; Maros, Máté E; Meyer, Mathias; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O; Flohr, Thomas; Leidecker, Christianne; Groden, Christoph; Scharf, Johann; Henzler, Thomas

    2015-01-01

    To prospectively intra-individually compare image quality of a 3rd generation Dual-Source-CT (DSCT) spiral cranial CT (cCT) to a sequential 4-slice Multi-Slice-CT (MSCT) while maintaining identical intra-individual radiation dose levels. 35 patients, who had a non-contrast enhanced sequential cCT examination on a 4-slice MDCT within the past 12 months, underwent a spiral cCT scan on a 3rd generation DSCT. CTDIvol identical to initial 4-slice MDCT was applied. Data was reconstructed using filtered backward projection (FBP) and 3rd-generation iterative reconstruction (IR) algorithm at 5 different IR strength levels. Two neuroradiologists independently evaluated subjective image quality using a 4-point Likert-scale and objective image quality was assessed in white matter and nucleus caudatus with signal-to-noise ratios (SNR) being subsequently calculated. Subjective image quality of all spiral cCT datasets was rated significantly higher compared to the 4-slice MDCT sequential acquisitions (p<0.05). Mean SNR was significantly higher in all spiral compared to sequential cCT datasets with mean SNR improvement of 61.65% (p*Bonferroni0.05<0.0024). Subjective image quality improved with increasing IR levels. Combination of 3rd-generation DSCT spiral cCT with an advanced model IR technique significantly improves subjective and objective image quality compared to a standard sequential cCT acquisition acquired at identical dose levels.

  16. Comparison of virtual monoenergetic and polyenergetic images reconstructed from dual-layer detector CT angiography of the head and neck.

    PubMed

    Neuhaus, Victor; Große Hokamp, Nils; Abdullayev, Nuran; Maus, Volker; Kabbasch, Christoph; Mpotsaris, Anastasios; Maintz, David; Borggrefe, Jan

    2018-03-01

    To compare the image quality of virtual monoenergetic images and polyenergetic images reconstructed from dual-layer detector CT angiography (DLCTA). Thirty patients who underwent DLCTA of the head and neck were retrospectively identified and polyenergetic as well as virtual monoenergetic images (40 to 120 keV) were reconstructed. Signals (± SD) of the cervical and cerebral vessels as well as lateral pterygoid muscle and the air surrounding the head were measured to calculate the CNR and SNR. In addition, subjective image quality was assessed using a 5-point Likert scale. Student's t-test and Wilcoxon test were used to determine statistical significance. Compared to polyenergetic images, although noise increased with lower keV, CNR (p < 0.02) and SNR (p > 0.05) of the cervical, petrous and intracranial vessels were improved in virtual monoenergetic images at 40 keV and virtual monoenergetic images at 45 keV were also rated superior regarding vascular contrast, assessment of arteries close to the skull base and small arterial branches (p < 0.0001 each). Compared to polyenergetic images, virtual monoenergetic images reconstructed from DLCTA at low keV ranging from 40 to 45 keV improve the objective and subjective image quality of extra- and intracranial vessels and facilitate assessment of vessels close to the skull base and of small arterial branches. • Virtual monoenergetic images greatly improve attenuation, while noise only slightly increases. • Virtual monoenergetic images show superior contrast-to-noise ratios compared to polyenergetic images. • Virtual monoenergetic images significantly improve image quality at low keV.

  17. SU-G-BRA-11: Tumor Tracking in An Iterative Volume of Interest Based 4D CBCT Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R; Pan, T; Ahmad, M

    2016-06-15

    Purpose: 4D CBCT can allow evaluation of tumor motion immediately prior to radiation therapy, but suffers from heavy artifacts that limit its ability to track tumors. Various iterative and compressed sensing reconstructions have been proposed to reduce these artifacts, but are costly time-wise and can degrade the image quality of bony anatomy for alignment with regularization. We have previously proposed an iterative volume of interest (I4D VOI) method which minimizes reconstruction time and maintains image quality of bony anatomy by focusing a 4D reconstruction within a VOI. The purpose of this study is to test the tumor tracking accuracy ofmore » this method compared to existing methods. Methods: Long scan (8–10 mins) CBCT data with corresponding RPM data was collected for 12 lung cancer patients. The full data set was sorted into 8 phases and reconstructed using FDK cone beam reconstruction to serve as a gold standard. The data was reduced in way that maintains a normal breathing pattern and used to reconstruct 4D images using FDK, low and high regularization TV minimization (λ=2,10), and the proposed I4D VOI method with PTVs used for the VOI. Tumor trajectories were found using rigid registration within the VOI for each reconstruction and compared to the gold standard. Results: The root mean square error (RMSE) values were 2.70mm for FDK, 2.50mm for low regularization TV, 1.48mm for high regularization TV, and 2.34mm for I4D VOI. Streak artifacts in I4D VOI were reduced compared to FDK and images were less blurred than TV reconstructed images. Conclusion: I4D VOI performed at least as well as existing methods in tumor tracking, with the exception of high regularization TV minimization. These results along with the reconstruction time and outside VOI image quality advantages suggest I4D VOI to be an improvement over existing methods. Funding support provided by CPRIT grant RP110562-P2-01.« less

  18. Iterative metal artifact reduction: evaluation and optimization of technique.

    PubMed

    Subhas, Naveen; Primak, Andrew N; Obuchowski, Nancy A; Gupta, Amit; Polster, Joshua M; Krauss, Andreas; Iannotti, Joseph P

    2014-12-01

    Iterative metal artifact reduction (IMAR) is a sinogram inpainting technique that incorporates high-frequency data from standard weighted filtered back projection (WFBP) reconstructions to reduce metal artifact on computed tomography (CT). This study was designed to compare the image quality of IMAR and WFBP in total shoulder arthroplasties (TSA); determine the optimal amount of WFBP high-frequency data needed for IMAR; and compare image quality of the standard 3D technique with that of a faster 2D technique. Eight patients with nine TSA underwent CT with standardized parameters: 140 kVp, 300 mAs, 0.6 mm collimation and slice thickness, and B30 kernel. WFBP, three 3D IMAR algorithms with different amounts of WFBP high-frequency data (IMARlo, lowest; IMARmod, moderate; IMARhi, highest), and one 2D IMAR algorithm were reconstructed. Differences in attenuation near hardware and away from hardware were measured and compared using repeated measures ANOVA. Five readers independently graded image quality; scores were compared using Friedman's test. Attenuation differences were smaller with all 3D IMAR techniques than with WFBP (p < 0.0063). With increasing high-frequency data, the attenuation difference increased slightly (differences not statistically significant). All readers ranked IMARmod and IMARhi more favorably than WFBP (p < 0.05), with IMARmod ranked highest for most structures. The attenuation difference was slightly higher with 2D than with 3D IMAR, with no significant reader preference for 3D over 2D. IMAR significantly decreases metal artifact compared to WFBP both objectively and subjectively in TSA. The incorporation of a moderate amount of WFBP high-frequency data and use of a 2D reconstruction technique optimize image quality and allow for relatively short reconstruction times.

  19. Application of a dual-resolution voxelization scheme to compressed-sensing (CS)-based iterative reconstruction in digital tomosynthesis (DTS)

    NASA Astrophysics Data System (ADS)

    Park, S. Y.; Kim, G. A.; Cho, H. S.; Park, C. K.; Lee, D. Y.; Lim, H. W.; Lee, H. W.; Kim, K. S.; Kang, S. Y.; Park, J. E.; Kim, W. S.; Jeon, D. H.; Je, U. K.; Woo, T. H.; Oh, J. E.

    2018-02-01

    In recent digital tomosynthesis (DTS), iterative reconstruction methods are often used owing to the potential to provide multiplanar images of superior image quality to conventional filtered-backprojection (FBP)-based methods. However, they require enormous computational cost in the iterative process, which has still been an obstacle to put them to practical use. In this work, we propose a new DTS reconstruction method incorporated with a dual-resolution voxelization scheme in attempt to overcome these difficulties, in which the voxels outside a small region-of-interest (ROI) containing target diagnosis are binned by 2 × 2 × 2 while the voxels inside the ROI remain unbinned. We considered a compressed-sensing (CS)-based iterative algorithm with a dual-constraint strategy for more accurate DTS reconstruction. We implemented the proposed algorithm and performed a systematic simulation and experiment to demonstrate its viability. Our results indicate that the proposed method seems to be effective for reducing computational cost considerably in iterative DTS reconstruction, keeping the image quality inside the ROI not much degraded. A binning size of 2 × 2 × 2 required only about 31.9% computational memory and about 2.6% reconstruction time, compared to those for no binning case. The reconstruction quality was evaluated in terms of the root-mean-square error (RMSE), the contrast-to-noise ratio (CNR), and the universal-quality index (UQI).

  20. Different types of implants for reconstructive breast surgery.

    PubMed

    Rocco, Nicola; Rispoli, Corrado; Moja, Lorenzo; Amato, Bruno; Iannone, Loredana; Testa, Serena; Spano, Andrea; Catanuto, Giuseppe; Accurso, Antonello; Nava, Maurizio B

    2016-05-16

    Breast cancer is the most common cancer in women worldwide, and is a leading cause of cancer death among women. Prophylactic or curative mastectomy is often followed by breast reconstruction for which there are several surgical approaches that use breast implants with which surgeons can restore the natural feel, size and shape of the breast. To assess the effects of different types of breast implants on capsular contracture, surgical short- and long-term complications, postoperative satisfaction level and quality of life in women who have undergone reconstructive breast surgery after mastectomy. We searched the Cochrane Breast Cancer Group's Specialised Register on 20 July 2015, MEDLINE (1985 to 20 July 2015), EMBASE (1985 to 20 July 2015) and the Cochrane Central Register of Controlled Trials (CENTRAL; Issue 8, 2015). We also searched the World Health Organization's International Clinical Trials Registry Platform (WHO ICTRP) and ClinicalTrials.gov on 16 July 2015. We included randomised controlled trials (RCTs) and quasi-RCTs that compared different types of breast implants for reconstructive surgery. We considered the following types of intervention: implant envelope surfaces - texturised versus smooth; implant filler material - silicone versus saline, PVP-Hydrogel versus saline; implant shape - anatomical versus round; implant volume - variable versus fixed; brands - different implant manufacturing companies and implant generation (fifth versus previous generations). Two review authors independently assessed methodological quality and extracted data. We used standard Cochrane methodological procedures. The quality of the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. Five RCTs with 202 participants met the inclusion criteria. The women participants were typically in their 50s, and the majority of them (about 82%) received reconstructive surgery following breast cancer, while the others had reconstructive surgery after prophylactic mastectomy. The studies were heterogenous in terms of implant comparisons, which prevented us from pooling the data.The studies were judged as being at an unclear risk of bias for most risk of bias items owing to poor quality of reporting in the trial publications. Three of the five RCTs were judged to be at high risk of attrition bias, and one at high risk of detection bias.Textured silicone versus smooth silicone implants: textured implants were associated with worse outcomes when compared to smooth implants (capsular contracture: risk ratio (RR) 0.82, 95% CI 0.14 to 4.71; 1 study, 20 participants; very low quality evidence; reintervention: RR 0.82, 95% CI 0.14 to 4.71; 1 study, 20 participants; very low quality evidence). No results in this comparison were statistically significant.Silicone versus saline implants: saline-filled implants performed better than silicone-filled implants for some outcomes; specifically, they produced less severe capsular contracture (RR 3.25, 95% CI 1.24 to 8.51; 1 study, 60 participants; very low quality evidence) and increased patient satisfaction (RR 0.60, 95% CI 0.41 to 0.88; 1 study, 58 participants; very low quality evidence). However reintervention was significantly more frequent in the saline-filled implant group than in the silicone-filled group (OR 0.08, 95% CI 0.01 to 0.43; 1 study, 60 participants; very low quality evidence).Poly(N-vinyl-2-pyrrolidone) hydrogel-filled (PVP-hydrogel) versus saline-filled implants: PVP-hydrogel-filled implants were associated with worse outcomes when compared to saline-filled implants (capsular contracture: RR 3.50, 95% CI 0.83 to 14.83; 1 study, 40 participants; very low quality evidence; short-term complications: RR 2.10, 95% CI 0.21 to 21.39; 1 study, 41 participants; very low quality evidence).Anatomical versus round implants: anatomical implants were associated with worse outcomes than round implants (capsular contracture: RR 2.00, 95% CI 0.20 to 20.15; 1 study, 36 participants; very low quality evidence; short-term complications: RR 2.00, 95% CI 0.42 to 9.58; 1 study, 36 participants; very low quality evidence; reintervention: RR 1.50, 95% CI 0.51 to 4.43; 1 study, 36 participants; very low quality evidence). No results in this comparison were statistically significant.Variable-volume versus fixed-volume implants: data about one-stage reconstruction using variable-volume implants were compared with data about fixed-volume implants positioned during the second surgical procedure of two-stage reconstructions. Fixed-volume implant reconstructions were possibly associated with a greater number of women reporting that their reconstruction corresponded with expected results (RR 0.25, 95% CI 0.10 to 0.62; 1 study, 40 participants; very low quality evidence) and fewer reinterventions (RR 7.00, 95% CI 1.82 to 26.89; 1 study, 40 participants; very low quality evidence) when compared to variable-volume implants. A higher patient satisfaction level (rated from 1 to 6, with 1 being very bad and 6 being very good) was found with the fixed-volume implants for overall aesthetic result (mean difference (MD) -1.10, 95% CI -1.59 to -0.61; 1 study, 40 participants; very low quality evidence).There were no studies that examined the effects of recent (fifth) generation silicone implants versus previous generations or different implant manufacturing companies. Despite the central role of breast reconstruction in women with breast cancer, the best implants to use in reconstructive surgery have been studied rarely in the context of RCTs. Furthermore the quality of these studies and the overall evidence they provide is largely unsatisfactory. Some of our results can be interpreted as early evidence of potentially large differences between different surgical approaches, which should be confirmed in new high-quality RCTs that include a larger number of women. These days - even after a few million women have had breasts reconstructed - surgeons cannot inform women about the risks and complications of different implant-based breast reconstructive options on the basis of results derived from RCTs.

  1. The use of cone beam computed tomography in the postoperative assessment of orbital wall fracture reconstruction.

    PubMed

    Tsao, Kim; Cheng, Andrew; Goss, Alastair; Donovan, David

    2014-07-01

    Computed tomography (CT) is currently the standard in postoperative evaluation of orbital wall fracture reconstruction, but cone beam computed tomography (CBCT) offers potential advantages including reduced radiation dose and cost. The purpose of this study is to examine objectively the image quality of CBCT in the postoperative evaluation of orbital fracture reconstruction, its radiation dose, and cost compared with CT. Four consecutive patients with orbital wall fractures in whom surgery was indicated underwent orbital reconstruction with radio-opaque grafts (bone, titanium-reinforced polyethylene, and titanium plate) and were assessed postoperatively with orbital CBCT. CBCT was evaluated for its ability to provide objective information regarding the adequacy of orbital reconstruction, radiation dose, and cost. In all patients, CBCT was feasible and provided hard tissue image quality comparable to CT with significantly reduced radiation dose and cost. However, it has poorer soft tissue resolution, which limits its ability to identify the extraocular muscles, their relationship to the reconstructive graft, and potential muscle entrapment. CBCT is a viable alternative to CT in the routine postoperative evaluation of orbital fracture reconstruction. However, in the patient who develops gaze restriction postoperatively, conventional CT is preferred over CBCT for its superior soft tissue resolution to exclude extraocular muscle entrapment.

  2. Possible causes of data model discrepancy in the temperature history of the last Millennium.

    PubMed

    Neukom, Raphael; Schurer, Andrew P; Steiger, Nathan J; Hegerl, Gabriele C

    2018-05-15

    Model simulations and proxy-based reconstructions are the main tools for quantifying pre-instrumental climate variations. For some metrics such as Northern Hemisphere mean temperatures, there is remarkable agreement between models and reconstructions. For other diagnostics, such as the regional response to volcanic eruptions, or hemispheric temperature differences, substantial disagreements between data and models have been reported. Here, we assess the potential sources of these discrepancies by comparing 1000-year hemispheric temperature reconstructions based on real-world paleoclimate proxies with climate-model-based pseudoproxies. These pseudoproxy experiments (PPE) indicate that noise inherent in proxy records and the unequal spatial distribution of proxy data are the key factors in explaining the data-model differences. For example, lower inter-hemispheric correlations in reconstructions can be fully accounted for by these factors in the PPE. Noise and data sampling also partly explain the reduced amplitude of the response to external forcing in reconstructions compared to models. For other metrics, such as inter-hemispheric differences, some, although reduced, discrepancy remains. Our results suggest that improving proxy data quality and spatial coverage is the key factor to increase the quality of future climate reconstructions, while the total number of proxy records and reconstruction methodology play a smaller role.

  3. Influence of Sinogram-Affirmed Iterative Reconstruction on Computed Tomography-Based Lung Volumetry and Quantification of Pulmonary Emphysema.

    PubMed

    Baumueller, Stephan; Hilty, Regina; Nguyen, Thi Dan Linh; Weder, Walter; Alkadhi, Hatem; Frauenfelder, Thomas

    2016-01-01

    The purpose of this study was to evaluate the influence of sinogram-affirmed iterative reconstruction (SAFIRE) on quantification of lung volume and pulmonary emphysema in low-dose chest computed tomography compared with filtered back projection (FBP). Enhanced or nonenhanced low-dose chest computed tomography was performed in 20 patients with chronic obstructive pulmonary disease (group A) and in 20 patients without lung disease (group B). Data sets were reconstructed with FBP and SAFIRE strength levels 3 to 5. Two readers semiautomatically evaluated lung volumes and automatically quantified pulmonary emphysema, and another assessed image quality. Radiation dose parameters were recorded. Lung volume between FBP and SAFIRE 3 to 5 was not significantly different among both groups (all P > 0.05). When compared with those of FBP, total emphysema volume was significantly lower among reconstructions with SAFIRE 4 and 5 (mean difference, 0.56 and 0.79 L; all P < 0.001). There was no nondiagnostic image quality. Sinogram-affirmed iterative reconstruction does not alter lung volume measurements, although quantification of lung emphysema is affected at higher strength levels.

  4. WE-FG-207B-05: Iterative Reconstruction Via Prior Image Constrained Total Generalized Variation for Spectral CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, S; Zhang, Y; Ma, J

    Purpose: To investigate iterative reconstruction via prior image constrained total generalized variation (PICTGV) for spectral computed tomography (CT) using fewer projections while achieving greater image quality. Methods: The proposed PICTGV method is formulated as an optimization problem, which balances the data fidelity and prior image constrained total generalized variation of reconstructed images in one framework. The PICTGV method is based on structure correlations among images in the energy domain and high-quality images to guide the reconstruction of energy-specific images. In PICTGV method, the high-quality image is reconstructed from all detector-collected X-ray signals and is referred as the broad-spectrum image. Distinctmore » from the existing reconstruction methods applied on the images with first order derivative, the higher order derivative of the images is incorporated into the PICTGV method. An alternating optimization algorithm is used to minimize the PICTGV objective function. We evaluate the performance of PICTGV on noise and artifacts suppressing using phantom studies and compare the method with the conventional filtered back-projection method as well as TGV based method without prior image. Results: On the digital phantom, the proposed method outperforms the existing TGV method in terms of the noise reduction, artifacts suppression, and edge detail preservation. Compared to that obtained by the TGV based method without prior image, the relative root mean square error in the images reconstructed by the proposed method is reduced by over 20%. Conclusion: The authors propose an iterative reconstruction via prior image constrained total generalize variation for spectral CT. Also, we have developed an alternating optimization algorithm and numerically demonstrated the merits of our approach. Results show that the proposed PICTGV method outperforms the TGV method for spectral CT.« less

  5. Ultra-low-dose computed tomographic angiography with model-based iterative reconstruction compared with standard-dose imaging after endovascular aneurysm repair: a prospective pilot study.

    PubMed

    Naidu, Sailen G; Kriegshauser, J Scott; Paden, Robert G; He, Miao; Wu, Qing; Hara, Amy K

    2014-12-01

    An ultra-low-dose radiation protocol reconstructed with model-based iterative reconstruction was compared with our standard-dose protocol. This prospective study evaluated 20 men undergoing surveillance-enhanced computed tomography after endovascular aneurysm repair. All patients underwent standard-dose and ultra-low-dose venous phase imaging; images were compared after reconstruction with filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction. Objective measures of aortic contrast attenuation and image noise were averaged. Images were subjectively assessed (1 = worst, 5 = best) for diagnostic confidence, image noise, and vessel sharpness. Aneurysm sac diameter and endoleak detection were compared. Quantitative image noise was 26% less with ultra-low-dose model-based iterative reconstruction than with standard-dose adaptive statistical iterative reconstruction and 58% less than with ultra-low-dose adaptive statistical iterative reconstruction. Average subjective noise scores were not different between ultra-low-dose model-based iterative reconstruction and standard-dose adaptive statistical iterative reconstruction (3.8 vs. 4.0, P = .25). Subjective scores for diagnostic confidence were better with standard-dose adaptive statistical iterative reconstruction than with ultra-low-dose model-based iterative reconstruction (4.4 vs. 4.0, P = .002). Vessel sharpness was decreased with ultra-low-dose model-based iterative reconstruction compared with standard-dose adaptive statistical iterative reconstruction (3.3 vs. 4.1, P < .0001). Ultra-low-dose model-based iterative reconstruction and standard-dose adaptive statistical iterative reconstruction aneurysm sac diameters were not significantly different (4.9 vs. 4.9 cm); concordance for the presence of endoleak was 100% (P < .001). Compared with a standard-dose technique, an ultra-low-dose model-based iterative reconstruction protocol provides comparable image quality and diagnostic assessment at a 73% lower radiation dose.

  6. Comparison of reconstruction methods and quantitative accuracy in Siemens Inveon PET scanner

    NASA Astrophysics Data System (ADS)

    Ram Yu, A.; Kim, Jin Su; Kang, Joo Hyun; Moo Lim, Sang

    2015-04-01

    PET reconstruction is key to the quantification of PET data. To our knowledge, no comparative study of reconstruction methods has been performed to date. In this study, we compared reconstruction methods with various filters in terms of their spatial resolution, non-uniformities (NU), recovery coefficients (RCs), and spillover ratios (SORs). In addition, the linearity of reconstructed radioactivity between linearity of measured and true concentrations were also assessed. A Siemens Inveon PET scanner was used in this study. Spatial resolution was measured with NEMA standard by using a 1 mm3 sized 18F point source. Image quality was assessed in terms of NU, RC and SOR. To measure the effect of reconstruction algorithms and filters, data was reconstructed using FBP, 3D reprojection algorithm (3DRP), ordered subset expectation maximization 2D (OSEM 2D), and maximum a posteriori (MAP) with various filters or smoothing factors (β). To assess the linearity of reconstructed radioactivity, image quality phantom filled with 18F was used using FBP, OSEM and MAP (β =1.5 & 5 × 10-5). The highest achievable volumetric resolution was 2.31 mm3 and the highest RCs were obtained when OSEM 2D was used. SOR was 4.87% for air and 3.97% for water, obtained OSEM 2D reconstruction was used. The measured radioactivity of reconstruction image was proportional to the injected one for radioactivity below 16 MBq/ml when FBP or OSEM 2D reconstruction methods were used. By contrast, when the MAP reconstruction method was used, activity of reconstruction image increased proportionally, regardless of the amount of injected radioactivity. When OSEM 2D or FBP were used, the measured radioactivity concentration was reduced by 53% compared with true injected radioactivity for radioactivity <16 MBq/ml. The OSEM 2D reconstruction method provides the highest achievable volumetric resolution and highest RC among all the tested methods and yields a linear relation between the measured and true concentrations for radioactivity Our data collectively showed that OSEM 2D reconstruction method provides quantitatively accurate reconstructed PET data results.

  7. Impact of cleft lip and/or palate in children on family quality of life before and after reconstructive surgery.

    PubMed

    Macho, P; Bohac, M; Fedeles, J; Fekiacova, D; Fedeles, J

    2017-01-01

    The aim of the study was to evaluate the impact of cleft lip/palate children together with consequent treatment on quality of family life using standardized questionnaire. Different to previous studies the evaluation of quality of family life by questionnaire was realized twice in the same group of families (before the reconstructive surgery and several months after palatoplasty). The study was conducted in 40 families divided in two groups: 20 families with children with cleft lip (CL), 20 families with children with cleft lip and palate (CLP). The questionnaire of the Impact on Family Scale was used for evaluation of the influence of orofacial clefts on parent´s quality of life. Evaluations were made at the second month of child´s life and at one year of child´s life with reciprocally comparison. The higher impact of children with CLP on quality of family life was noted at 2 months and 1 year of child's age as compared to the impact of children with CL. The reduction of impact on quality of life after surgical correction was observed in families of children with CL at one year of child's age. This decrease of influence on family quality of life was due to significantly lower impact in strain and economic dimensions in families with CL children after operation. However, in the group of families with CLP children no significant changes in the impact on family quality of life were noted when compared to the values before and shortly after the reconstructive surgery. This study showed that orofacial clefts in children influence markedly the quality of their family life. The higher impact of children with CLP on quality of family life as compared to children with CL was noted and this impact in CLP group was not influenced shortly after reconstructive surgery. It is suggested that appropriate medical care in Cleft Centre with special psychological support may lead to improvement in quality of life for families with cleft lip and palate children (Tab. 2, Fig. 2, Ref. 14).

  8. Local ROI Reconstruction via Generalized FBP and BPF Algorithms along More Flexible Curves.

    PubMed

    Yu, Hengyong; Ye, Yangbo; Zhao, Shiying; Wang, Ge

    2006-01-01

    We study the local region-of-interest (ROI) reconstruction problem, also referred to as the local CT problem. Our scheme includes two steps: (a) the local truncated normal-dose projections are extended to global dataset by combining a few global low-dose projections; (b) the ROI are reconstructed by either the generalized filtered backprojection (FBP) or backprojection-filtration (BPF) algorithms. The simulation results show that both the FBP and BPF algorithms can reconstruct satisfactory results with image quality in the ROI comparable to that of the corresponding global CT reconstruction.

  9. Image quality of CT angiography in young children with congenital heart disease: a comparison between the sinogram-affirmed iterative reconstruction (SAFIRE) and advanced modelled iterative reconstruction (ADMIRE) algorithms.

    PubMed

    Nam, S B; Jeong, D W; Choo, K S; Nam, K J; Hwang, J-Y; Lee, J W; Kim, J Y; Lim, S J

    2017-12-01

    To compare the image quality of computed tomography angiography (CTA) reconstructed by sinogram-affirmed iterative reconstruction (SAFIRE) with that of advanced modelled iterative reconstruction (ADMIRE) in children with congenital heart disease (CHD). Thirty-one children (8.23±13.92 months) with CHD who underwent CTA were enrolled. Images were reconstructed using SAFIRE (strength 5) and ADMIRE (strength 5). Objective image qualities (attenuation, noise) were measured in the great vessels and heart chambers. Two radiologists independently calculated the contrast-to-noise ratio (CNR) by measuring the intensity and noise of the myocardial walls. Subjective noise, diagnostic confidence, and sharpness at the level prior to the first branch of the main pulmonary artery were also graded by the two radiologists independently. The objective image noise of ADMIRE was significantly lower than that of SAFIRE in the right atrium, right ventricle, and myocardial wall (p<0.05); however, there were no significant differences observed in the attenuations among the four chambers and great vessels, except in the pulmonary arteries (p>0.05). The mean CNR values were 21.56±10.80 for ADMIRE and 18.21±6.98 for SAFIRE, which were significantly different (p<0.05). In addition, the diagnostic confidence of ADMIRE was significantly lower than that of SAFIRE (p<0.05), while the subjective image noise and sharpness of ADMIRE were not significantly different (p>0.05). CTA using ADMIRE was superior to SAFIRE when comparing the objective and subjective image quality in children with CHD. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  10. Influence of the motion correction algorithm on the quality and interpretability of images of single-source 64-detector coronary CT angiography among patients grouped by heart rate.

    PubMed

    Machida, Haruhiko; Lin, Xiao-Zhu; Fukui, Rika; Shen, Yun; Suzuki, Shigeru; Tanaka, Isao; Ishikawa, Takuya; Tate, Etsuko; Ueno, Eiko

    2015-02-01

    We retrospectively investigated the effect of the motion correction algorithm (MCA) on image quality and interpretability by heart rate (HR) in coronary CT angiography (CCTA). For 105 patients (6 HR groups) undergoing CCTA, 2 readers independently graded the image quality of the 4 major coronary arteries reconstructed with and without MCA at diastole with HR ≤64 bpm and at systole and diastole ≥65 bpm using a 5-point scale. For each HR group and cardiac phase, we compared per-vessel and per-segment image quality using Wilcoxon signed rank test and percentages of interpretable image quality (scores 3-5) among without MCA at diastole with HR ≤64 bpm, as a reference, with MCA at diastole ≤69 bpm and at systole 70-79 bpm using the chi-square test. The motion correction algorithm reconstruction provided similar or better image quality and interpretability in all groups, with 96-100 % per-vessel (P = 0.008 for the right coronary artery; otherwise, P > 0.05) and 99 % per-segment interpretable image quality (P = 0.0002) at diastole with HR ≤69 bpm and at systole 70-79 bpm compared to the reference (88-100 and 97 %, respectively). MCA reconstruction preserved image quality and interpretability of CCTA with HR ≤79 bpm.

  11. Clinical evaluation of reducing acquisition time on single-photon emission computed tomography image quality using proprietary resolution recovery software.

    PubMed

    Aldridge, Matthew D; Waddington, Wendy W; Dickson, John C; Prakash, Vineet; Ell, Peter J; Bomanji, Jamshed B

    2013-11-01

    A three-dimensional model-based resolution recovery (RR) reconstruction algorithm that compensates for collimator-detector response, resulting in an improvement in reconstructed spatial resolution and signal-to-noise ratio of single-photon emission computed tomography (SPECT) images, was tested. The software is said to retain image quality even with reduced acquisition time. Clinically, any improvement in patient throughput without loss of quality is to be welcomed. Furthermore, future restrictions in radiotracer supplies may add value to this type of data analysis. The aims of this study were to assess improvement in image quality using the software and to evaluate the potential of performing reduced time acquisitions for bone and parathyroid SPECT applications. Data acquisition was performed using the local standard SPECT/CT protocols for 99mTc-hydroxymethylene diphosphonate bone and 99mTc-methoxyisobutylisonitrile parathyroid SPECT imaging. The principal modification applied was the acquisition of an eight-frame gated data set acquired using an ECG simulator with a fixed signal as the trigger. This had the effect of partitioning the data such that the effect of reduced time acquisitions could be assessed without conferring additional scanning time on the patient. The set of summed data sets was then independently reconstructed using the RR software to permit a blinded assessment of the effect of acquired counts upon reconstructed image quality as adjudged by three experienced observers. Data sets reconstructed with the RR software were compared with the local standard processing protocols; filtered back-projection and ordered-subset expectation-maximization. Thirty SPECT studies were assessed (20 bone and 10 parathyroid). The images reconstructed with the RR algorithm showed improved image quality for both full-time and half-time acquisitions over local current processing protocols (P<0.05). The RR algorithm improved image quality compared with local processing protocols and has been introduced into routine clinical use. SPECT acquisitions are now acquired at half of the time previously required. The method of binning the data can be applied to any other camera system to evaluate the reduction in acquisition time for similar processes. The potential for dose reduction is also inherent with this approach.

  12. The Impact of Different Levels of Adaptive Iterative Dose Reduction 3D on Image Quality of 320-Row Coronary CT Angiography: A Clinical Trial

    PubMed Central

    Feger, Sarah; Rief, Matthias; Zimmermann, Elke; Martus, Peter; Schuijf, Joanne Désirée; Blobel, Jörg; Richter, Felicitas; Dewey, Marc

    2015-01-01

    Purpose The aim of this study was the systematic image quality evaluation of coronary CT angiography (CTA), reconstructed with the 3 different levels of adaptive iterative dose reduction (AIDR 3D) and compared to filtered back projection (FBP) with quantum denoising software (QDS). Methods Standard-dose CTA raw data of 30 patients with mean radiation dose of 3.2 ± 2.6 mSv were reconstructed using AIDR 3D mild, standard, strong and compared to FBP/QDS. Objective image quality comparison (signal, noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), contour sharpness) was performed using 21 measurement points per patient, including measurements in each coronary artery from proximal to distal. Results Objective image quality parameters improved with increasing levels of AIDR 3D. Noise was lowest in AIDR 3D strong (p≤0.001 at 20/21 measurement points; compared with FBP/QDS). Signal and contour sharpness analysis showed no significant difference between the reconstruction algorithms for most measurement points. Best coronary SNR and CNR were achieved with AIDR 3D strong. No loss of SNR or CNR in distal segments was seen with AIDR 3D as compared to FBP. Conclusions On standard-dose coronary CTA images, AIDR 3D strong showed higher objective image quality than FBP/QDS without reducing contour sharpness. Trial Registration Clinicaltrials.gov NCT00967876 PMID:25945924

  13. Reducing Radiation Dose in Adult Head CT using Iterative Reconstruction - A Clinical Study in 177 Patients.

    PubMed

    Kaul, D; Kahn, J; Huizing, L; Wiener, E; Grupp, U; Böning, G; Ghadjar, P; Renz, D M; Streitparth, F

    2016-02-01

    To assess how ASIR (adaptive statistical iterative reconstruction) contributes to dose reduction and affects image quality of non-contrast cranial computed tomography (cCT). Non-contrast emergency CT scans of the head acquired in 177 patients were evaluated. The scans were acquired and processed using four different protocols: Group A (control): 120 kV, FBP (filtered back projection) n = 71; group B1: 120 kV, scan and reconstruction performed with 20 % ASIR (blending of 20 % ASIR and 80 % FBP), n = 86; group B2: raw data from group B1 reconstructed using a blending of 40 % ASIR and 60 % FBP, n = 74; group C1: 120 kV, scan and reconstruction performed with 30 % ASIR, n = 20; group C2: raw data from group C1 reconstructed using a blending of 50 % ASIR and 50 % FBP, n = 20. The effective dose was calculated. Image quality was assessed quantitatively and qualitatively. Compared to group A, groups B1/2 and C1/2 showed a significantly reduced effective dose of 40.4 % and 73.3 % (p < 0.0001), respectively. Group B1 and group C1/2 also showed significantly reduced quantitative and qualitative image quality parameters. In group B2, quantitative measures were comparable to group A, and qualitative scores were lower compared to group A but higher compared to group B1. Diagnostic confidence grading showed groups B1/2 to be adequate for everyday clinical practice. Group C2 was considered acceptable for follow-up imaging of severe acute events such as bleeding or subacute stroke. Use of ASIR makes it possible to reduce radiation significantly while maintaining adequate image quality in non-contrast head CT, which may be particularly useful for younger patients in an emergency setting and in follow-up. ASIR may reduce radiation significantly while maintaining adequate image quality. cCT protocol with 20 % ASIR and 40 %ASIR/60 %FBP blending is adequate for everyday clinical use. cCT protocol with 30 % ASIR and 50 %ASIR/50 %FBP blending is adequate for follow-up imaging © Georg Thieme Verlag KG Stuttgart · New York.

  14. Performance measurement of PSF modeling reconstruction (True X) on Siemens Biograph TruePoint TrueV PET/CT.

    PubMed

    Lee, Young Sub; Kim, Jin Su; Kim, Kyeong Min; Kang, Joo Hyun; Lim, Sang Moo; Kim, Hee-Joung

    2014-05-01

    The Siemens Biograph TruePoint TrueV (B-TPTV) positron emission tomography (PET) scanner performs 3D PET reconstruction using a system matrix with point spread function (PSF) modeling (called the True X reconstruction). PET resolution was dramatically improved with the True X method. In this study, we assessed the spatial resolution and image quality on a B-TPTV PET scanner. In addition, we assessed the feasibility of animal imaging with a B-TPTV PET and compared it with a microPET R4 scanner. Spatial resolution was measured at center and at 8 cm offset from the center in transverse plane with warm background activity. True X, ordered subset expectation maximization (OSEM) without PSF modeling, and filtered back-projection (FBP) reconstruction methods were used. Percent contrast (% contrast) and percent background variability (% BV) were assessed according to NEMA NU2-2007. The recovery coefficient (RC), non-uniformity, spill-over ratio (SOR), and PET imaging of the Micro Deluxe Phantom were assessed to compare image quality of B-TPTV PET with that of the microPET R4. When True X reconstruction was used, spatial resolution was <3.65 mm with warm background activity. % contrast and % BV with True X reconstruction were higher than those with the OSEM reconstruction algorithm without PSF modeling. In addition, the RC with True X reconstruction was higher than that with the FBP method and the OSEM without PSF modeling method on the microPET R4. The non-uniformity with True X reconstruction was higher than that with FBP and OSEM without PSF modeling on microPET R4. SOR with True X reconstruction was better than that with FBP or OSEM without PSF modeling on the microPET R4. This study assessed the performance of the True X reconstruction. Spatial resolution with True X reconstruction was improved by 45 % and its % contrast was significantly improved compared to those with the conventional OSEM without PSF modeling reconstruction algorithm. The noise level was higher than that with the other reconstruction algorithm. Therefore, True X reconstruction should be used with caution when quantifying PET data.

  15. Health-related quality of life after maxillectomy: obturator rehabilitation compared with flap reconstruction.

    PubMed

    Breeze, J; Rennie, A; Morrison, A; Dawson, D; Tipper, J; Rehman, K; Grew, N; Snee, D; Pigadas, N

    2016-10-01

    Health-related quality of life (QoL) reported by patients has the potential to improve care after ablative surgery of the midface, as existing treatment algorithms still generally revolve around outcomes assessed traditionally only by clinicians. Decisions in particular relate to reconstruction with a flap compared with rehabilitation with an obturator, the need for adjuvant treatment, and morbidity related to the size of the defect. We prospectively collected health-related QoL assessments for 39 consecutive patients treated by maxillectomy between 01 January 2010 and 31 December 2014 using the University of Washington Quality of Life Questionnaire, and who had a mean (SD) duration of follow-up of 14 (4). We made sub-group analyses using paired t tests and analysis of variance (ANOVA) to compare reconstruction with a flap with rehabilitation with obturators, size of the vertical defect, and whether adjuvant treatment with radiotherapy or chemoradiotherapy adversely affected it. Overall there was a significant decrease in health-related QoL after treatment compared with before (p<0.001), but there was no significant difference in the effects of any of the paired reconstructive and rehabilitation treatments on it. Obturators remain an important option for rehabilitation in selected patients in addition to reconstruction with a flap. We found that neither increasing the size of the vertical defect (in an attempt to ensure clear margins) nor the use of postoperative radiotherapy seemed to have any adverse effect on QoL. More patients are required before we can conclude that the potential survival benefits of such measures may outweigh any adverse effects. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms.

    PubMed

    Tang, Jie; Nett, Brian E; Chen, Guang-Hong

    2009-10-07

    Of all available reconstruction methods, statistical iterative reconstruction algorithms appear particularly promising since they enable accurate physical noise modeling. The newly developed compressive sampling/compressed sensing (CS) algorithm has shown the potential to accurately reconstruct images from highly undersampled data. The CS algorithm can be implemented in the statistical reconstruction framework as well. In this study, we compared the performance of two standard statistical reconstruction algorithms (penalized weighted least squares and q-GGMRF) to the CS algorithm. In assessing the image quality using these iterative reconstructions, it is critical to utilize realistic background anatomy as the reconstruction results are object dependent. A cadaver head was scanned on a Varian Trilogy system at different dose levels. Several figures of merit including the relative root mean square error and a quality factor which accounts for the noise performance and the spatial resolution were introduced to objectively evaluate reconstruction performance. A comparison is presented between the three algorithms for a constant undersampling factor comparing different algorithms at several dose levels. To facilitate this comparison, the original CS method was formulated in the framework of the statistical image reconstruction algorithms. Important conclusions of the measurements from our studies are that (1) for realistic neuro-anatomy, over 100 projections are required to avoid streak artifacts in the reconstructed images even with CS reconstruction, (2) regardless of the algorithm employed, it is beneficial to distribute the total dose to more views as long as each view remains quantum noise limited and (3) the total variation-based CS method is not appropriate for very low dose levels because while it can mitigate streaking artifacts, the images exhibit patchy behavior, which is potentially harmful for medical diagnosis.

  17. Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding.

    PubMed

    Benkert, Thomas; Tian, Ye; Huang, Chenchan; DiBella, Edward V R; Chandarana, Hersh; Feng, Li

    2018-07-01

    Golden-angle radial sparse parallel (GRASP) MRI reconstruction requires gridding and regridding to transform data between radial and Cartesian k-space. These operations are repeatedly performed in each iteration, which makes the reconstruction computationally demanding. This work aimed to accelerate GRASP reconstruction using self-calibrating GRAPPA operator gridding (GROG) and to validate its performance in clinical imaging. GROG is an alternative gridding approach based on parallel imaging, in which k-space data acquired on a non-Cartesian grid are shifted onto a Cartesian k-space grid using information from multicoil arrays. For iterative non-Cartesian image reconstruction, GROG is performed only once as a preprocessing step. Therefore, the subsequent iterative reconstruction can be performed directly in Cartesian space, which significantly reduces computational burden. Here, a framework combining GROG with GRASP (GROG-GRASP) is first optimized and then compared with standard GRASP reconstruction in 22 prostate patients. GROG-GRASP achieved approximately 4.2-fold reduction in reconstruction time compared with GRASP (∼333 min versus ∼78 min) while maintaining image quality (structural similarity index ≈ 0.97 and root mean square error ≈ 0.007). Visual image quality assessment by two experienced radiologists did not show significant differences between the two reconstruction schemes. With a graphics processing unit implementation, image reconstruction time can be further reduced to approximately 14 min. The GRASP reconstruction can be substantially accelerated using GROG. This framework is promising toward broader clinical application of GRASP and other iterative non-Cartesian reconstruction methods. Magn Reson Med 80:286-293, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Image reconstructions from super-sampled data sets with resolution modeling in PET imaging.

    PubMed

    Li, Yusheng; Matej, Samuel; Metzler, Scott D

    2014-12-01

    Spatial resolution in positron emission tomography (PET) is still a limiting factor in many imaging applications. To improve the spatial resolution for an existing scanner with fixed crystal sizes, mechanical movements such as scanner wobbling and object shifting have been considered for PET systems. Multiple acquisitions from different positions can provide complementary information and increased spatial sampling. The objective of this paper is to explore an efficient and useful reconstruction framework to reconstruct super-resolution images from super-sampled low-resolution data sets. The authors introduce a super-sampling data acquisition model based on the physical processes with tomographic, downsampling, and shifting matrices as its building blocks. Based on the model, we extend the MLEM and Landweber algorithms to reconstruct images from super-sampled data sets. The authors also derive a backprojection-filtration-like (BPF-like) method for the super-sampling reconstruction. Furthermore, they explore variant methods for super-sampling reconstructions: the separate super-sampling resolution-modeling reconstruction and the reconstruction without downsampling to further improve image quality at the cost of more computation. The authors use simulated reconstruction of a resolution phantom to evaluate the three types of algorithms with different super-samplings at different count levels. Contrast recovery coefficient (CRC) versus background variability, as an image-quality metric, is calculated at each iteration for all reconstructions. The authors observe that all three algorithms can significantly and consistently achieve increased CRCs at fixed background variability and reduce background artifacts with super-sampled data sets at the same count levels. For the same super-sampled data sets, the MLEM method achieves better image quality than the Landweber method, which in turn achieves better image quality than the BPF-like method. The authors also demonstrate that the reconstructions from super-sampled data sets using a fine system matrix yield improved image quality compared to the reconstructions using a coarse system matrix. Super-sampling reconstructions with different count levels showed that the more spatial-resolution improvement can be obtained with higher count at a larger iteration number. The authors developed a super-sampling reconstruction framework that can reconstruct super-resolution images using the super-sampling data sets simultaneously with known acquisition motion. The super-sampling PET acquisition using the proposed algorithms provides an effective and economic way to improve image quality for PET imaging, which has an important implication in preclinical and clinical region-of-interest PET imaging applications.

  19. Image reconstruction through thin scattering media by simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Fang, Longjie; Zuo, Haoyi; Pang, Lin; Yang, Zuogang; Zhang, Xicheng; Zhu, Jianhua

    2018-07-01

    An idea for reconstructing the image of an object behind thin scattering media is proposed by phase modulation. The optimized phase mask is achieved by modulating the scattered light using simulated annealing algorithm. The correlation coefficient is exploited as a fitness function to evaluate the quality of reconstructed image. The reconstructed images optimized from simulated annealing algorithm and genetic algorithm are compared in detail. The experimental results show that our proposed method has better definition and higher speed than genetic algorithm.

  20. Respiratory Motion-Resolved Compressed Sensing Reconstruction of Free-Breathing Radial Acquisition for Dynamic Liver MRI

    PubMed Central

    Chandarana, Hersh; Feng, Li; Ream, Justin; Wang, Annie; Babb, James S; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo

    2015-01-01

    Purpose Demonstrate feasibility of free-breathing radial acquisition with respiratory motion-resolved compressed sensing (CS) reconstruction (XD-GRASP) for multiphase dynamic Gd-EOB-DTPA enhanced liver imaging, and compare image quality to CS reconstruction with respiratory motion-averaging (GRASP) and prior conventional breath-held Cartesian-sampled datasets (BH-VIBE) in same patients. Subjects and Methods In this HIPAA-compliant prospective study, 16 subjects underwent free-breathing continuous radial acquisition during Gd-EOB-DTPA injection, and had prior BH-VIBE exam available. Acquired data were reconstructed using motion-averaging GRASP approach, in which consecutive 84-spokes were grouped in each contrast-enhanced phase for a temporal resolution of ~14 seconds. Additionally, respiratory motion-resolved reconstruction was performed from the same k-space data, by sorting each contrast-enhanced phase into multiple respiratory motion states using compressed sensing algorithm named XD-GRASP, which exploits sparsity along both the contrast-enhancement and respiratory-state dimensions. Contrast-enhanced dynamic multi-phase XD-GRASP, GRASP, and BH-VIBE images were anonymized, pooled together in a random order and presented to two board-certified radiologists for independent evaluation of image quality, with higher score indicating more optimal exam. Results XD-GRASP reconstructions had significantly (all p<0.05) higher overall image quality scores compared to GRASP for early arterial (Reader 1: 4.3 ± 0.6 vs. 3.31 ± 0.6 ; Reader 2: 3.81 ± 0.8 vs. 3.38 ± 0.9) and late arterial (Reader 1: 4.5 ± 0.6 vs. 3.63 ± 0.6; Reader 2: 3.56 ± 0.5 vs. 2.88 ± 0.7) phases of enhancement for both readers. XD-GRASP also had higher overall image quality score in portal venous phase which was significant for Reader 1 (4.44 ± 0.5 vs. 3.75 ± 0.8; p=0.002). In addition, XD-GRASP had higher overall image quality score compared to BH-VIBE for early (Reader 1: 4.3±0.6 vs. 3.88±0.6; Reader 2: 3.81±0.8 vs. 3.50±1.0) and late (Reader 1: 4.5±0.6 vs. 3.44±0.6; Reader 2: 3.56±0.5 vs. 2.94±0.9) arterial phases. Conclusion Free-breathing motion-resolved XD-GRASP reconstructions provide diagnostic high-quality multiphase images in patients undergoing Gd-EOB-DTPA-enhanced liver exam. PMID:26146869

  1. Directional sinogram interpolation for motion weighted 4D cone-beam CT reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Kruis, Matthijs; Sonke, Jan-Jakob

    2017-03-01

    The image quality of respiratory sorted four-dimensional (4D) cone-beam (CB) computed tomography (CT) is often limited by streak artifacts due to insufficient projections. A motion weighted reconstruction (MWR) method is proposed to decrease streak artifacts and improve image quality. Firstly, respiratory correlated CBCT projections were interpolated by directional sinogram interpolation (DSI) to generate additional CB projections for each phase and subsequently reconstructed. Secondly, local motion was estimated by deformable image registration of the interpolated 4D CBCT. Thirdly, a regular 3D FDK CBCT was reconstructed from the non-interpolated projections. Finally, weights were assigned to each voxel, based on the local motion, and then were used to combine the 3D FDK CBCT and interpolated 4D CBCT to generate the final 4D image. MWR method was compared with regular 4D CBCT scans as well as McKinnon and Bates (MKB) based reconstructions. Comparisons were made in terms of (1) comparing the steepness of an extracted profile from the boundary of the region-of-interest (ROI), (2) contrast-to-noise ratio (CNR) inside certain ROIs, and (3) the root-mean-square-error (RMSE) between the planning CT and CBCT inside a homogeneous moving region. Comparisons were made for both a phantom and four patient scans. In a 4D phantom, RMSE were reduced by 24.7% and 38.7% for MKB and MWR respectively, compared to conventional 4D CBCT. Meanwhile, interpolation induced blur was minimal in static regions for MWR based reconstructions. In regions with considerable respiratory motion, image blur using MWR is less than the MKB and 3D Feldkamp (FDK) methods. In the lung cancer patients, average CNRs of MKB, DSI and MWR improved by a factor 1.7, 2.8 and 3.5 respectively relative to 4D FDK. MWR effectively reduces RMSE in 4D cone-beam CT and improves the image quality in both the static and respiratory moving regions compared to 4D FDK and MKB methods.

  2. Directional sinogram interpolation for motion weighted 4D cone-beam CT reconstruction.

    PubMed

    Zhang, Hua; Kruis, Matthijs; Sonke, Jan-Jakob

    2017-03-21

    The image quality of respiratory sorted four-dimensional (4D) cone-beam (CB) computed tomography (CT) is often limited by streak artifacts due to insufficient projections. A motion weighted reconstruction (MWR) method is proposed to decrease streak artifacts and improve image quality. Firstly, respiratory correlated CBCT projections were interpolated by directional sinogram interpolation (DSI) to generate additional CB projections for each phase and subsequently reconstructed. Secondly, local motion was estimated by deformable image registration of the interpolated 4D CBCT. Thirdly, a regular 3D FDK CBCT was reconstructed from the non-interpolated projections. Finally, weights were assigned to each voxel, based on the local motion, and then were used to combine the 3D FDK CBCT and interpolated 4D CBCT to generate the final 4D image. MWR method was compared with regular 4D CBCT scans as well as McKinnon and Bates (MKB) based reconstructions. Comparisons were made in terms of (1) comparing the steepness of an extracted profile from the boundary of the region-of-interest (ROI), (2) contrast-to-noise ratio (CNR) inside certain ROIs, and (3) the root-mean-square-error (RMSE) between the planning CT and CBCT inside a homogeneous moving region. Comparisons were made for both a phantom and four patient scans. In a 4D phantom, RMSE were reduced by 24.7% and 38.7% for MKB and MWR respectively, compared to conventional 4D CBCT. Meanwhile, interpolation induced blur was minimal in static regions for MWR based reconstructions. In regions with considerable respiratory motion, image blur using MWR is less than the MKB and 3D Feldkamp (FDK) methods. In the lung cancer patients, average CNRs of MKB, DSI and MWR improved by a factor 1.7, 2.8 and 3.5 respectively relative to 4D FDK. MWR effectively reduces RMSE in 4D cone-beam CT and improves the image quality in both the static and respiratory moving regions compared to 4D FDK and MKB methods.

  3. Adaptive iterative dose reduction (AIDR) 3D in low dose CT abdomen-pelvis: Effects on image quality and radiation exposure

    NASA Astrophysics Data System (ADS)

    Ang, W. C.; Hashim, S.; Karim, M. K. A.; Bahruddin, N. A.; Salehhon, N.; Musa, Y.

    2017-05-01

    The widespread use of computed tomography (CT) has increased the medical radiation exposure and cancer risk. We aimed to evaluate the impact of AIDR 3D in CT abdomen-pelvic examinations based on image quality and radiation dose in low dose (LD) setting compared to standard dose (STD) with filtered back projection (FBP) reconstruction. We retrospectively reviewed the images of 40 patients who underwent CT abdomen-pelvic using a 80 slice CT scanner. Group 1 patients (n=20, mean age 41 ± 17 years) were performed at LD with AIDR 3D reconstruction and Group 2 patients (n=20, mean age 52 ± 21 years) were scanned with STD using FBP reconstruction. Objective image noise was assessed by region of interest (ROI) measurements in the liver and aorta as standard deviation (SD) of the attenuation value (Hounsfield Unit, HU) while subjective image quality was evaluated by two radiologists. Statistical analysis was used to compare the scan length, CT dose index volume (CTDIvol) and image quality of both patient groups. Although both groups have similar mean scan length, the CTDIvol significantly decreased by 38% in LD CT compared to STD CT (p<0.05). Objective and subjective image quality were statistically improved with AIDR 3D (p<0.05). In conclusion, AIDR 3D enables significant dose reduction of 38% with superior image quality in LD CT abdomen-pelvis.

  4. Image quality improvements using adaptive statistical iterative reconstruction for evaluating chronic myocardial infarction using iodine density images with spectral CT.

    PubMed

    Kishimoto, Junichi; Ohta, Yasutoshi; Kitao, Shinichiro; Watanabe, Tomomi; Ogawa, Toshihide

    2018-04-01

    Single-source dual-energy CT (ssDECT) allows the reconstruction of iodine density images (IDIs) from projection based computing. We hypothesized that adding adaptive statistical iterative reconstruction (ASiR) could improve image quality. The aim of our study was to evaluate the effect and determine the optimal blend percentages of ASiR for IDI of myocardial late iodine enhancement (LIE) in the evaluation of chronic myocardial infarction using ssDECT. A total of 28 patients underwent cardiac LIE using a ssDECT scanner. IDIs between 0 and 100% of ASiR contributions in 10% increments were reconstructed. The signal-to-noise ratio (SNR) of remote myocardia and the contrast-to-noise ratio (CNR) of infarcted myocardia were measured. Transmural extent of infarction was graded using a 5-point scale. The SNR, CNR, and transmural extent were assessed for each ASiR contribution ratio. The transmural extents were compared with MRI as a reference standard. Compared to 0% ASiR, the use of 20-100% ASiR resulted in a reduction of image noise (p < 0.01) without significant differences in the signal. Compared with 0% ASiR images, reconstruction with 100% ASiR image showed the highest improvement in SNR (229%; p < 0.001) and CNR (199%; p < 0.001). ASiR above 80% showed the highest ratio (73.7%) of accurate transmural extent classification. In conclusion, ASiR intensity of 80-100% in IDIs can improve image quality without changes in signal and maximizes the accuracy of transmural extent in infarcted myocardium.

  5. Image quality of multiplanar reconstruction of pulmonary CT scans using adaptive statistical iterative reconstruction.

    PubMed

    Honda, O; Yanagawa, M; Inoue, A; Kikuyama, A; Yoshida, S; Sumikawa, H; Tobino, K; Koyama, M; Tomiyama, N

    2011-04-01

    We investigated the image quality of multiplanar reconstruction (MPR) using adaptive statistical iterative reconstruction (ASIR). Inflated and fixed lungs were scanned with a garnet detector CT in high-resolution mode (HR mode) or non-high-resolution (HR) mode, and MPR images were then reconstructed. Observers compared 15 MPR images of ASIR (40%) and ASIR (80%) with those of ASIR (0%), and assessed image quality using a visual five-point scale (1, definitely inferior; 5, definitely superior), with particular emphasis on normal pulmonary structures, artefacts, noise and overall image quality. The mean overall image quality scores in HR mode were 3.67 with ASIR (40%) and 4.97 with ASIR (80%). Those in non-HR mode were 3.27 with ASIR (40%) and 3.90 with ASIR (80%). The mean artefact scores in HR mode were 3.13 with ASIR (40%) and 3.63 with ASIR (80%), but those in non-HR mode were 2.87 with ASIR (40%) and 2.53 with ASIR (80%). The mean scores of the other parameters were greater than 3, whereas those in HR mode were higher than those in non-HR mode. There were significant differences between ASIR (40%) and ASIR (80%) in overall image quality (p<0.01). Contrast medium in the injection syringe was scanned to analyse image quality; ASIR did not suppress the severe artefacts of contrast medium. In general, MPR image quality with ASIR (80%) was superior to that with ASIR (40%). However, there was an increased incidence of artefacts by ASIR when CT images were obtained in non-HR mode.

  6. Iterative image reconstruction for PROPELLER-MRI using the nonuniform fast fourier transform.

    PubMed

    Tamhane, Ashish A; Anastasio, Mark A; Gui, Minzhi; Arfanakis, Konstantinos

    2010-07-01

    To investigate an iterative image reconstruction algorithm using the nonuniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) MRI. Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it with that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased signal to noise ratio, reduced artifacts, for similar spatial resolution, compared with gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter, the new reconstruction technique may provide PROPELLER images with improved image quality compared with conventional gridding. (c) 2010 Wiley-Liss, Inc.

  7. Iterative Image Reconstruction for PROPELLER-MRI using the NonUniform Fast Fourier Transform

    PubMed Central

    Tamhane, Ashish A.; Anastasio, Mark A.; Gui, Minzhi; Arfanakis, Konstantinos

    2013-01-01

    Purpose To investigate an iterative image reconstruction algorithm using the non-uniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping parallEL Lines with Enhanced Reconstruction) MRI. Materials and Methods Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it to that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. Results It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased SNR, reduced artifacts, for similar spatial resolution, compared to gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. Conclusion An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter the new reconstruction technique may provide PROPELLER images with improved image quality compared to conventional gridding. PMID:20578028

  8. Tradeoff between noise reduction and inartificial visualization in a model-based iterative reconstruction algorithm on coronary computed tomography angiography.

    PubMed

    Hirata, Kenichiro; Utsunomiya, Daisuke; Kidoh, Masafumi; Funama, Yoshinori; Oda, Seitaro; Yuki, Hideaki; Nagayama, Yasunori; Iyama, Yuji; Nakaura, Takeshi; Sakabe, Daisuke; Tsujita, Kenichi; Yamashita, Yasuyuki

    2018-05-01

    We aimed to evaluate the image quality performance of coronary CT angiography (CTA) under the different settings of forward-projected model-based iterative reconstruction solutions (FIRST).Thirty patients undergoing coronary CTA were included. Each image was reconstructed using filtered back projection (FBP), adaptive iterative dose reduction 3D (AIDR-3D), and 2 model-based iterative reconstructions including FIRST-body and FIRST-cardiac sharp (CS). CT number and noise were measured in the coronary vessels and plaque. Subjective image-quality scores were obtained for noise and structure visibility.In the objective image analysis, FIRST-body produced the significantly highest contrast-to-noise ratio. Regarding subjective image quality, FIRST-CS had the highest score for structure visibility, although the image noise score was inferior to that of FIRST-body.In conclusion, FIRST provides significant improvements in objective and subjective image quality compared with FBP and AIDR-3D. FIRST-body effectively reduces image noise, but the structure visibility with FIRST-CS was superior to FIRST-body.

  9. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study

    PubMed Central

    Grosser, Oliver S.; Kupitz, Dennis; Ruf, Juri; Czuczwara, Damian; Steffen, Ingo G.; Furth, Christian; Thormann, Markus; Loewenthal, David; Ricke, Jens; Amthauer, Holger

    2015-01-01

    Background Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) with computed tomography (CT). Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR) on the image quality of the low-dose CT images. Methodology/Principal Findings Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU) values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88) and the contrast-to-noise ratio (CNR) was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04). In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001). Conclusion/Significance In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality. PMID:26390216

  10. Online dose reconstruction for tracked volumetric arc therapy: Real-time implementation and offline quality assurance for prostate SBRT.

    PubMed

    Kamerling, Cornelis Ph; Fast, Martin F; Ziegenhein, Peter; Menten, Martin J; Nill, Simeon; Oelfke, Uwe

    2017-11-01

    Firstly, this study provides a real-time implementation of online dose reconstruction for tracked volumetric arc therapy (VMAT). Secondly, this study describes a novel offline quality assurance tool, based on commercial dose calculation algorithms. Online dose reconstruction for VMAT is a computationally challenging task in terms of computer memory usage and calculation speed. To potentially reduce the amount of memory used, we analyzed the impact of beam angle sampling for dose calculation on the accuracy of the dose distribution. To establish the performance of the method, we planned two single-arc VMAT prostate stereotactic body radiation therapy cases for delivery with dynamic MLC tracking. For quality assurance of our online dose reconstruction method we have also developed a stand-alone offline dose reconstruction tool, which utilizes the RayStation treatment planning system to calculate dose. For the online reconstructed dose distributions of the tracked deliveries, we could establish strong resemblance for 72 and 36 beam co-planar equidistant beam samples with less than 1.2% deviation for the assessed dose-volume indicators (clinical target volume D98 and D2, and rectum D2). We could achieve average runtimes of 28-31 ms per reported MLC aperture for both dose computation and accumulation, meeting our real-time requirement. To cross-validate the offline tool, we have compared the planned dose to the offline reconstructed dose for static deliveries and found excellent agreement (3%/3 mm global gamma passing rates of 99.8%-100%). Being able to reconstruct dose during delivery enables online quality assurance and online replanning strategies for VMAT. The offline quality assurance tool provides the means to validate novel online dose reconstruction applications using a commercial dose calculation engine. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  11. SU-E-I-33: Initial Evaluation of Model-Based Iterative CT Reconstruction Using Standard Image Quality Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gingold, E; Dave, J

    2014-06-01

    Purpose: The purpose of this study was to compare a new model-based iterative reconstruction with existing reconstruction methods (filtered backprojection and basic iterative reconstruction) using quantitative analysis of standard image quality phantom images. Methods: An ACR accreditation phantom (Gammex 464) and a CATPHAN600 phantom were scanned using 3 routine clinical acquisition protocols (adult axial brain, adult abdomen, and pediatric abdomen) on a Philips iCT system. Each scan was acquired using default conditions and 75%, 50% and 25% dose levels. Images were reconstructed using standard filtered backprojection (FBP), conventional iterative reconstruction (iDose4) and a prototype model-based iterative reconstruction (IMR). Phantom measurementsmore » included CT number accuracy, contrast to noise ratio (CNR), modulation transfer function (MTF), low contrast detectability (LCD), and noise power spectrum (NPS). Results: The choice of reconstruction method had no effect on CT number accuracy, or MTF (p<0.01). The CNR of a 6 HU contrast target was improved by 1–67% with iDose4 relative to FBP, while IMR improved CNR by 145–367% across all protocols and dose levels. Within each scan protocol, the CNR improvement from IMR vs FBP showed a general trend of greater improvement at lower dose levels. NPS magnitude was greatest for FBP and lowest for IMR. The NPS of the IMR reconstruction showed a pronounced decrease with increasing spatial frequency, consistent with the unusual noise texture seen in IMR images. Conclusion: Iterative Model Reconstruction reduces noise and improves contrast-to-noise ratio without sacrificing spatial resolution in CT phantom images. This offers the possibility of radiation dose reduction and improved low contrast detectability compared with filtered backprojection or conventional iterative reconstruction.« less

  12. Shaping the breast in secondary microsurgical breast reconstruction: single- vs. two-esthetic unit reconstruction.

    PubMed

    Gravvanis, Andreas; Smith, Roger W

    2010-10-01

    The esthetic outcome is dictated essentially not only by the position, size, and shape of the reconstructed breast, but also by the extra scaring involved. In the present study, we conducted a visual analog scale survey to compare the esthetic outcome in delayed autologous breast reconstruction following two different abdominal flaps inset. Twenty-five patients had their reconstruction using the Single-esthetic Unit principle and were compared with 25 patients that their breast was reconstructed using the Two-Esthetic Unit principle. Photographic images were formulated to a PowerPoint presentation and cosmetic outcomes were assessed from 30 physicians, by means of a Questionnaire and a visual analog scale. Our data showed that the single-esthetic unit breast reconstruction presents significant advantages over the traditional two-esthetic units, due to inconspicuous flap reconstruction, better position of the inframammary fold, and more natural transition from native and reconstructed tissues. Moreover, patient self-evaluation of esthetic outcome and quality of life showed that single-esthetic unit reconstruction is associated with higher patient satisfaction, therefore should be considered the method of choice. © 2010 Wiley-Liss, Inc.

  13. Local ROI Reconstruction via Generalized FBP and BPF Algorithms along More Flexible Curves

    PubMed Central

    Ye, Yangbo; Zhao, Shiying; Wang, Ge

    2006-01-01

    We study the local region-of-interest (ROI) reconstruction problem, also referred to as the local CT problem. Our scheme includes two steps: (a) the local truncated normal-dose projections are extended to global dataset by combining a few global low-dose projections; (b) the ROI are reconstructed by either the generalized filtered backprojection (FBP) or backprojection-filtration (BPF) algorithms. The simulation results show that both the FBP and BPF algorithms can reconstruct satisfactory results with image quality in the ROI comparable to that of the corresponding global CT reconstruction. PMID:23165018

  14. Implementation of compressive sensing for preclinical cine-MRI

    NASA Astrophysics Data System (ADS)

    Tan, Elliot; Yang, Ming; Ma, Lixin; Zheng, Yahong Rosa

    2014-03-01

    This paper presents a practical implementation of Compressive Sensing (CS) for a preclinical MRI machine to acquire randomly undersampled k-space data in cardiac function imaging applications. First, random undersampling masks were generated based on Gaussian, Cauchy, wrapped Cauchy and von Mises probability distribution functions by the inverse transform method. The best masks for undersampling ratios of 0.3, 0.4 and 0.5 were chosen for animal experimentation, and were programmed into a Bruker Avance III BioSpec 7.0T MRI system through method programming in ParaVision. Three undersampled mouse heart datasets were obtained using a fast low angle shot (FLASH) sequence, along with a control undersampled phantom dataset. ECG and respiratory gating was used to obtain high quality images. After CS reconstructions were applied to all acquired data, resulting images were quantitatively analyzed using the performance metrics of reconstruction error and Structural Similarity Index (SSIM). The comparative analysis indicated that CS reconstructed images from MRI machine undersampled data were indeed comparable to CS reconstructed images from retrospective undersampled data, and that CS techniques are practical in a preclinical setting. The implementation achieved 2 to 4 times acceleration for image acquisition and satisfactory quality of image reconstruction.

  15. Quality of life in women following various surgeries of body manipulation: organ transplantation, mastectomy, and breast reconstruction.

    PubMed

    Pérez-San-Gregorio, M Angeles; Fernández-Jiménez, Eduardo; Martín-Rodríguez, Agustín; Borda-Más, Mercedes; Rincón-Fernández, M Esther

    2013-09-01

    This study aimed to determine biopsychosocial differences (anxious-depressive symptomatology and quality of life) among three groups of patients who underwent surgical interventions related to body manipulation, as well as to assess the clinical significance of these results versus reference values. Four groups were compared: women who underwent organ transplant (n = 26), mastectomy for breast cancer (n = 36), breast reconstruction (n = 36), and general population (n = 608). The Hospital Anxiety and Depression Scale and the EORTC QLQ-C30 were used. Women who underwent mastectomy showed the highest anxious-depressive symptomatology and quality-of-life impairment in comparison to the remaining groups, and they also displayed the most clinically significant deterioration in the majority of dimensions (large effect sizes). In contrast, the group with implantation of a healthy organ (transplantation) only showed higher biopsychosocial impairment than the group with reconstruction of an organ (breast reconstruction) in gastrointestinal dysfunctions and in the global self-perception of health.

  16. Quantitative image quality evaluation of MR images using perceptual difference models

    PubMed Central

    Miao, Jun; Huo, Donglai; Wilson, David L.

    2008-01-01

    The authors are using a perceptual difference model (Case-PDM) to quantitatively evaluate image quality of the thousands of test images which can be created when optimizing fast magnetic resonance (MR) imaging strategies and reconstruction techniques. In this validation study, they compared human evaluation of MR images from multiple organs and from multiple image reconstruction algorithms to Case-PDM and similar models. The authors found that Case-PDM compared very favorably to human observers in double-stimulus continuous-quality scale and functional measurement theory studies over a large range of image quality. The Case-PDM threshold for nonperceptible differences in a 2-alternative forced choice study varied with the type of image under study, but was ≈1.1 for diffuse image effects, providing a rule of thumb. Ordering the image quality evaluation models, we found in overall Case-PDM ≈ IDM (Sarnoff Corporation) ≈ SSIM [Wang et al. IEEE Trans. Image Process. 13, 600–612 (2004)] > mean squared error ≈ NR [Wang et al. (2004) (unpublished)] > DCTune (NASA) > IQM (MITRE Corporation). The authors conclude that Case-PDM is very useful in MR image evaluation but that one should probably restrict studies to similar images and similar processing, normally not a limitation in image reconstruction studies. PMID:18649487

  17. WE-AB-207A-08: BEST IN PHYSICS (IMAGING): Advanced Scatter Correction and Iterative Reconstruction for Improved Cone-Beam CT Imaging On the TrueBeam Radiotherapy Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, A; Paysan, P; Brehm, M

    2016-06-15

    Purpose: To improve CBCT image quality for image-guided radiotherapy by applying advanced reconstruction algorithms to overcome scatter, noise, and artifact limitations Methods: CBCT is used extensively for patient setup in radiotherapy. However, image quality generally falls short of diagnostic CT, limiting soft-tissue based positioning and potential applications such as adaptive radiotherapy. The conventional TrueBeam CBCT reconstructor uses a basic scatter correction and FDK reconstruction, resulting in residual scatter artifacts, suboptimal image noise characteristics, and other artifacts like cone-beam artifacts. We have developed an advanced scatter correction that uses a finite-element solver (AcurosCTS) to model the behavior of photons as theymore » pass (and scatter) through the object. Furthermore, iterative reconstruction is applied to the scatter-corrected projections, enforcing data consistency with statistical weighting and applying an edge-preserving image regularizer to reduce image noise. The combined algorithms have been implemented on a GPU. CBCT projections from clinically operating TrueBeam systems have been used to compare image quality between the conventional and improved reconstruction methods. Planning CT images of the same patients have also been compared. Results: The advanced scatter correction removes shading and inhomogeneity artifacts, reducing the scatter artifact from 99.5 HU to 13.7 HU in a typical pelvis case. Iterative reconstruction provides further benefit by reducing image noise and eliminating streak artifacts, thereby improving soft-tissue visualization. In a clinical head and pelvis CBCT, the noise was reduced by 43% and 48%, respectively, with no change in spatial resolution (assessed visually). Additional benefits include reduction of cone-beam artifacts and reduction of metal artifacts due to intrinsic downweighting of corrupted rays. Conclusion: The combination of an advanced scatter correction with iterative reconstruction substantially improves CBCT image quality. It is anticipated that clinically acceptable reconstruction times will result from a multi-GPU implementation (the algorithms are under active development and not yet commercially available). All authors are employees of and (may) own stock of Varian Medical Systems.« less

  18. Imaging reconstruction based on improved wavelet denoising combined with parallel-beam filtered back-projection algorithm

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2012-11-01

    The image reconstruction is a key step in medical imaging (MI) and its algorithm's performance determinates the quality and resolution of reconstructed image. Although some algorithms have been used, filter back-projection (FBP) algorithm is still the classical and commonly-used algorithm in clinical MI. In FBP algorithm, filtering of original projection data is a key step in order to overcome artifact of the reconstructed image. Since simple using of classical filters, such as Shepp-Logan (SL), Ram-Lak (RL) filter have some drawbacks and limitations in practice, especially for the projection data polluted by non-stationary random noises. So, an improved wavelet denoising combined with parallel-beam FBP algorithm is used to enhance the quality of reconstructed image in this paper. In the experiments, the reconstructed effects were compared between the improved wavelet denoising and others (directly FBP, mean filter combined FBP and median filter combined FBP method). To determine the optimum reconstruction effect, different algorithms, and different wavelet bases combined with three filters were respectively test. Experimental results show the reconstruction effect of improved FBP algorithm is better than that of others. Comparing the results of different algorithms based on two evaluation standards i.e. mean-square error (MSE), peak-to-peak signal-noise ratio (PSNR), it was found that the reconstructed effects of the improved FBP based on db2 and Hanning filter at decomposition scale 2 was best, its MSE value was less and the PSNR value was higher than others. Therefore, this improved FBP algorithm has potential value in the medical imaging.

  19. Three-dimensional dictionary-learning reconstruction of (23)Na MRI data.

    PubMed

    Behl, Nicolas G R; Gnahm, Christine; Bachert, Peter; Ladd, Mark E; Nagel, Armin M

    2016-04-01

    To reduce noise and artifacts in (23)Na MRI with a Compressed Sensing reconstruction and a learned dictionary as sparsifying transform. A three-dimensional dictionary-learning compressed sensing reconstruction algorithm (3D-DLCS) for the reconstruction of undersampled 3D radial (23)Na data is presented. The dictionary used as the sparsifying transform is learned with a K-singular-value-decomposition (K-SVD) algorithm. The reconstruction parameters are optimized on simulated data, and the quality of the reconstructions is assessed with peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The performance of the algorithm is evaluated in phantom and in vivo (23)Na MRI data of seven volunteers and compared with nonuniform fast Fourier transform (NUFFT) and other Compressed Sensing reconstructions. The reconstructions of simulated data have maximal PSNR and SSIM for an undersampling factor (USF) of 10 with numbers of averages equal to the USF. For 10-fold undersampling, the PSNR is increased by 5.1 dB compared with the NUFFT reconstruction, and the SSIM by 24%. These results are confirmed by phantom and in vivo (23)Na measurements in the volunteers that show markedly reduced noise and undersampling artifacts in the case of 3D-DLCS reconstructions. The 3D-DLCS algorithm enables precise reconstruction of undersampled (23)Na MRI data with markedly reduced noise and artifact levels compared with NUFFT reconstruction. Small structures are well preserved. © 2015 Wiley Periodicals, Inc.

  20. WE-G-18A-01: JUNIOR INVESTIGATOR WINNER - Low-Dose C-Arm Cone-Beam CT with Model-Based Image Reconstruction for High-Quality Guidance of Neurosurgical Intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, A; Stayman, J; Otake, Y

    Purpose: To address the challenges of image quality, radiation dose, and reconstruction speed in intraoperative cone-beam CT (CBCT) for neurosurgery by combining model-based image reconstruction (MBIR) with accelerated algorithmic and computational methods. Methods: Preclinical studies involved a mobile C-arm for CBCT imaging of two anthropomorphic head phantoms that included simulated imaging targets (ventricles, soft-tissue structures/bleeds) and neurosurgical procedures (deep brain stimulation (DBS) electrode insertion) for assessment of image quality. The penalized likelihood (PL) framework was used for MBIR, incorporating a statistical model with image regularization via an edgepreserving penalty. To accelerate PL reconstruction, the ordered-subset, separable quadratic surrogates (OS-SQS) algorithmmore » was modified to incorporate Nesterov's method and implemented on a multi-GPU system. A fair comparison of image quality between PL and conventional filtered backprojection (FBP) was performed by selecting reconstruction parameters that provided matched low-contrast spatial resolution. Results: CBCT images of the head phantoms demonstrated that PL reconstruction improved image quality (∼28% higher CNR) even at half the radiation dose (3.3 mGy) compared to FBP. A combination of Nesterov's method and fast projectors yielded a PL reconstruction run-time of 251 sec (cf., 5729 sec for OS-SQS, 13 sec for FBP). Insertion of a DBS electrode resulted in severe metal artifact streaks in FBP reconstructions, whereas PL was intrinsically robust against metal artifact. The combination of noise and artifact was reduced from 32.2 HU in FBP to 9.5 HU in PL, thereby providing better assessment of device placement and potential complications. Conclusion: The methods can be applied to intraoperative CBCT for guidance and verification of neurosurgical procedures (DBS electrode insertion, biopsy, tumor resection) and detection of complications (intracranial hemorrhage). Significant improvement in image quality, dose reduction, and reconstruction time of ∼4 min will enable practical deployment of low-dose C-arm CBCT within the operating room. AAPM Research Seed Funding (2013-2014); NIH Fellowship F32EB017571; Siemens Healthcare (XP Division)« less

  1. A fast 4D cone beam CT reconstruction method based on the OSC-TV algorithm.

    PubMed

    Mascolo-Fortin, Julia; Matenine, Dmitri; Archambault, Louis; Després, Philippe

    2018-01-01

    Four-dimensional cone beam computed tomography allows for temporally resolved imaging with useful applications in radiotherapy, but raises particular challenges in terms of image quality and computation time. The purpose of this work is to develop a fast and accurate 4D algorithm by adapting a GPU-accelerated ordered subsets convex algorithm (OSC), combined with the total variation minimization regularization technique (TV). Different initialization schemes were studied to adapt the OSC-TV algorithm to 4D reconstruction: each respiratory phase was initialized either with a 3D reconstruction or a blank image. Reconstruction algorithms were tested on a dynamic numerical phantom and on a clinical dataset. 4D iterations were implemented for a cluster of 8 GPUs. All developed methods allowed for an adequate visualization of the respiratory movement and compared favorably to the McKinnon-Bates and adaptive steepest descent projection onto convex sets algorithms, while the 4D reconstructions initialized from a prior 3D reconstruction led to better overall image quality. The most suitable adaptation of OSC-TV to 4D CBCT was found to be a combination of a prior FDK reconstruction and a 4D OSC-TV reconstruction with a reconstruction time of 4.5 minutes. This relatively short reconstruction time could facilitate a clinical use.

  2. Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Gu, Xuejun

    2013-10-15

    Purpose: Image reconstruction and motion model estimation in four-dimensional cone-beam CT (4D-CBCT) are conventionally handled as two sequential steps. Due to the limited number of projections at each phase, the image quality of 4D-CBCT is degraded by view aliasing artifacts, and the accuracy of subsequent motion modeling is decreased by the inferior 4D-CBCT. The objective of this work is to enhance both the image quality of 4D-CBCT and the accuracy of motion model estimation with a novel strategy enabling simultaneous motion estimation and image reconstruction (SMEIR).Methods: The proposed SMEIR algorithm consists of two alternating steps: (1) model-based iterative image reconstructionmore » to obtain a motion-compensated primary CBCT (m-pCBCT) and (2) motion model estimation to obtain an optimal set of deformation vector fields (DVFs) between the m-pCBCT and other 4D-CBCT phases. The motion-compensated image reconstruction is based on the simultaneous algebraic reconstruction technique (SART) coupled with total variation minimization. During the forward- and backprojection of SART, measured projections from an entire set of 4D-CBCT are used for reconstruction of the m-pCBCT by utilizing the updated DVF. The DVF is estimated by matching the forward projection of the deformed m-pCBCT and measured projections of other phases of 4D-CBCT. The performance of the SMEIR algorithm is quantitatively evaluated on a 4D NCAT phantom. The quality of reconstructed 4D images and the accuracy of tumor motion trajectory are assessed by comparing with those resulting from conventional sequential 4D-CBCT reconstructions (FDK and total variation minimization) and motion estimation (demons algorithm). The performance of the SMEIR algorithm is further evaluated by reconstructing a lung cancer patient 4D-CBCT.Results: Image quality of 4D-CBCT is greatly improved by the SMEIR algorithm in both phantom and patient studies. When all projections are used to reconstruct a 3D-CBCT by FDK, motion-blurring artifacts are present, leading to a 24.4% relative reconstruction error in the NACT phantom. View aliasing artifacts are present in 4D-CBCT reconstructed by FDK from 20 projections, with a relative error of 32.1%. When total variation minimization is used to reconstruct 4D-CBCT, the relative error is 18.9%. Image quality of 4D-CBCT is substantially improved by using the SMEIR algorithm and relative error is reduced to 7.6%. The maximum error (MaxE) of tumor motion determined from the DVF obtained by demons registration on a FDK-reconstructed 4D-CBCT is 3.0, 2.3, and 7.1 mm along left–right (L-R), anterior–posterior (A-P), and superior–inferior (S-I) directions, respectively. From the DVF obtained by demons registration on 4D-CBCT reconstructed by total variation minimization, the MaxE of tumor motion is reduced to 1.5, 0.5, and 5.5 mm along L-R, A-P, and S-I directions. From the DVF estimated by SMEIR algorithm, the MaxE of tumor motion is further reduced to 0.8, 0.4, and 1.5 mm along L-R, A-P, and S-I directions, respectively.Conclusions: The proposed SMEIR algorithm is able to estimate a motion model and reconstruct motion-compensated 4D-CBCT. The SMEIR algorithm improves image reconstruction accuracy of 4D-CBCT and tumor motion trajectory estimation accuracy as compared to conventional sequential 4D-CBCT reconstruction and motion estimation.« less

  3. Imaging the Parasinus Region with a Third-Generation Dual-Source CT and the Effect of Tin Filtration on Image Quality and Radiation Dose.

    PubMed

    Lell, M M; May, M S; Brand, M; Eller, A; Buder, T; Hofmann, E; Uder, M; Wuest, W

    2015-07-01

    CT is the imaging technique of choice in the evaluation of midface trauma or inflammatory disease. We performed a systematic evaluation of scan protocols to optimize image quality and radiation exposure on third-generation dual-source CT. CT protocols with different tube voltage (70-150 kV), current (25-300 reference mAs), prefiltration, pitch value, and rotation time were systematically evaluated. All images were reconstructed with iterative reconstruction (Advanced Modeled Iterative Reconstruction, level 2). To individually compare results with otherwise identical factors, we obtained all scans on a frozen human head. Conebeam CT was performed for image quality and dose comparison with multidetector row CT. Delineation of important anatomic structures and incidental pathologic conditions in the cadaver head was evaluated. One hundred kilovolts with tin prefiltration demonstrated the best compromise between dose and image quality. The most dose-effective combination for trauma imaging was Sn100 kV/250 mAs (volume CT dose index, 2.02 mGy), and for preoperative sinus surgery planning, Sn100 kV/150 mAs (volume CT dose index, 1.22 mGy). "Sn" indicates an additional prefiltration of the x-ray beam with a tin filter to constrict the energy spectrum. Exclusion of sinonasal disease was possible with even a lower dose by using Sn100 kV/25 mAs (volume CT dose index, 0.2 mGy). High image quality at very low dose levels can be achieved by using a Sn100-kV protocol with iterative reconstruction. The effective dose is comparable with that of conventional radiography, and the high image quality at even lower radiation exposure favors multidetector row CT over conebeam CT. © 2015 by American Journal of Neuroradiology.

  4. Dual-energy CT in patients with abdominal malignant lymphoma: impact of noise-optimised virtual monoenergetic imaging on objective and subjective image quality.

    PubMed

    Lenga, L; Czwikla, R; Wichmann, J L; Leithner, D; Albrecht, M H; D'Angelo, T; Arendt, C T; Booz, C; Hammerstingl, R; Vogl, T J; Martin, S S

    2018-06-05

    To investigate the impact of noise-optimised virtual monoenergetic imaging (VMI+) reconstructions on quantitative and qualitative image parameters in patients with malignant lymphoma at dual-energy computed tomography (DECT) examinations of the abdomen. Thirty-five consecutive patients (mean age, 53.8±18.6 years; range, 21-82 years) with histologically proven malignant lymphoma of the abdomen were included retrospectively. Images were post-processed with standard linear blending (M_0.6), traditional VMI, and VMI+ technique at energy levels ranging from 40 to 100 keV in 10 keV increments. Signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were objectively measured in lymphoma lesions. Image quality, lesion delineation, and image noise were rated subjectively by three blinded observers using five-point Likert scales. Quantitative image quality parameters peaked at 40-keV VMI+ (SNR, 15.77±7.74; CNR, 18.27±8.04) with significant differences compared to standard linearly blended M_0.6 (SNR, 7.96±3.26; CNR, 13.55±3.47) and all traditional VMI series (p<0.001). Qualitative image quality assessment revealed significantly superior ratings for image quality at 60-keV VMI+ (median, 5) in comparison with all other image series (p<0.001). Assessment of lesion delineation showed the highest rating scores for 40-keV VMI+ series (median, 5), while lowest subjective image noise was found for 100-keV VMI+ reconstructions (median, 5). Low-keV VMI+ reconstructions led to improved image quality and lesion delineation of malignant lymphoma lesions compared to standard image reconstruction and traditional VMI at abdominal DECT examinations. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  5. Image quality of multiplanar reconstruction of pulmonary CT scans using adaptive statistical iterative reconstruction

    PubMed Central

    Honda, O; Yanagawa, M; Inoue, A; Kikuyama, A; Yoshida, S; Sumikawa, H; Tobino, K; Koyama, M; Tomiyama, N

    2011-01-01

    Objective We investigated the image quality of multiplanar reconstruction (MPR) using adaptive statistical iterative reconstruction (ASIR). Methods Inflated and fixed lungs were scanned with a garnet detector CT in high-resolution mode (HR mode) or non-high-resolution (HR) mode, and MPR images were then reconstructed. Observers compared 15 MPR images of ASIR (40%) and ASIR (80%) with those of ASIR (0%), and assessed image quality using a visual five-point scale (1, definitely inferior; 5, definitely superior), with particular emphasis on normal pulmonary structures, artefacts, noise and overall image quality. Results The mean overall image quality scores in HR mode were 3.67 with ASIR (40%) and 4.97 with ASIR (80%). Those in non-HR mode were 3.27 with ASIR (40%) and 3.90 with ASIR (80%). The mean artefact scores in HR mode were 3.13 with ASIR (40%) and 3.63 with ASIR (80%), but those in non-HR mode were 2.87 with ASIR (40%) and 2.53 with ASIR (80%). The mean scores of the other parameters were greater than 3, whereas those in HR mode were higher than those in non-HR mode. There were significant differences between ASIR (40%) and ASIR (80%) in overall image quality (p<0.01). Contrast medium in the injection syringe was scanned to analyse image quality; ASIR did not suppress the severe artefacts of contrast medium. Conclusion In general, MPR image quality with ASIR (80%) was superior to that with ASIR (40%). However, there was an increased incidence of artefacts by ASIR when CT images were obtained in non-HR mode. PMID:21081572

  6. Feasibility Study of Using Gemstone Spectral Imaging (GSI) and Adaptive Statistical Iterative Reconstruction (ASIR) for Reducing Radiation and Iodine Contrast Dose in Abdominal CT Patients with High BMI Values.

    PubMed

    Zhu, Zheng; Zhao, Xin-ming; Zhao, Yan-feng; Wang, Xiao-yi; Zhou, Chun-wu

    2015-01-01

    To prospectively investigate the effect of using Gemstone Spectral Imaging (GSI) and adaptive statistical iterative reconstruction (ASIR) for reducing radiation and iodine contrast dose in abdominal CT patients with high BMI values. 26 patients (weight > 65kg and BMI ≥ 22) underwent abdominal CT using GSI mode with 300mgI/kg contrast material as study group (group A). Another 21 patients (weight ≤ 65kg and BMI ≥ 22) were scanned with a conventional 120 kVp tube voltage for noise index (NI) of 11 with 450mgI/kg contrast material as control group (group B). GSI images were reconstructed at 60keV with 50%ASIR and the conventional 120kVp images were reconstructed with FBP reconstruction. The CT values, standard deviation (SD), signal-noise-ratio (SNR), contrast-noise-ratio (CNR) of 26 landmarks were quantitatively measured and image quality qualitatively assessed using statistical analysis. As for the quantitative analysis, the difference of CNR between groups A and B was all significant except for the mesenteric vein. The SNR in group A was higher than B except the mesenteric artery and splenic artery. As for the qualitative analysis, all images had diagnostic quality and the agreement for image quality assessment between the reviewers was substantial (kappa = 0.684). CT dose index (CTDI) values for non-enhanced, arterial phase and portal phase in group A were decreased by 49.04%, 40.51% and 40.54% compared with group B (P = 0.000), respectively. The total dose and the injection rate for the contrast material were reduced by 14.40% and 14.95% in A compared with B. The use of GSI and ASIR provides similar enhancement in vessels and image quality with reduced radiation dose and contrast dose, compared with the use of conventional scan protocol.

  7. Long-term Patient-Reported Outcomes in Postmastectomy Breast Reconstruction.

    PubMed

    Santosa, Katherine B; Qi, Ji; Kim, Hyungjin M; Hamill, Jennifer B; Wilkins, Edwin G; Pusic, Andrea L

    2018-06-20

    Previous outcome studies comparing implant and autologous breast reconstruction techniques have been limited by short-term follow-up, single-center design, and a lack of rigorous patient-reported outcome data. An understanding of the expected satisfaction and breast-related quality of life associated with each type of procedure is central to the decision-making process. To determine outcomes reported by patients undergoing postmastectomy breast reconstruction using implant or autologous techniques 2 years after surgery. Patients were recruited from 11 centers (57 plastic surgeons) across North America for the Mastectomy Reconstruction Outcomes Consortium study, a prospective, multicenter trial, from February 1, 2012, to July 31, 2015. Women undergoing immediate breast reconstruction using implant or autologous tissue reconstruction after mastectomy for cancer treatment or prophylaxis were eligible. Overall, 2013 women (1490 implant and 523 autologous tissue reconstruction) met the inclusion criteria. All patients included in this analysis had 2 years of follow-up. Procedure type (ie, implant vs autologous tissue reconstruction). The primary outcomes of interest were scores on the BREAST-Q, a validated, condition-specific, patient-reported outcome instrument, which were collected prior to and at 2 years after surgery. The following 4 domains of the BREAST-Q reconstruction module were evaluated: satisfaction with breasts, psychosocial well-being, physical well-being, and sexual well-being. Responses from each scale were summed and transformed on a 0 to 100 scale, with higher numbers representing greater satisfaction or quality of life. Of the 2013 women in the study (mean [SD] age, 48.1 [10.5] years for the group that underwent implant-based reconstruction and 51.6 [8.7] years for the group that underwent autologous reconstruction), 1217 (60.5%) completed questionnaires at 2 years after reconstruction. After controlling for baseline patient characteristics, patients who underwent autologous reconstruction had greater satisfaction with their breasts (difference, 7.94; 95% CI, 5.68-10.20; P < .001), psychosocial well-being (difference, 3.27; 95% CI, 1.25-5.29; P = .002), and sexual well-being (difference, 5.53; 95% CI, 2.95-8.11; P < .001) at 2 years compared with patients who underwent implant reconstruction. At 2 years, patients who underwent autologous reconstruction were more satisfied with their breasts and had greater psychosocial well-being and sexual well-being than did those who underwent implant reconstruction. These findings can inform patients and their clinicians about expected satisfaction and quality of life outcomes of autologous vs implant-based procedures and further support the adoption of shared decision making in clinical practice.

  8. Improved parallel image reconstruction using feature refinement.

    PubMed

    Cheng, Jing; Jia, Sen; Ying, Leslie; Liu, Yuanyuan; Wang, Shanshan; Zhu, Yanjie; Li, Ye; Zou, Chao; Liu, Xin; Liang, Dong

    2018-07-01

    The aim of this study was to develop a novel feature refinement MR reconstruction method from highly undersampled multichannel acquisitions for improving the image quality and preserve more detail information. The feature refinement technique, which uses a feature descriptor to pick up useful features from residual image discarded by sparsity constrains, is applied to preserve the details of the image in compressed sensing and parallel imaging in MRI (CS-pMRI). The texture descriptor and structure descriptor recognizing different types of features are required for forming the feature descriptor. Feasibility of the feature refinement was validated using three different multicoil reconstruction methods on in vivo data. Experimental results show that reconstruction methods with feature refinement improve the quality of reconstructed image and restore the image details more accurately than the original methods, which is also verified by the lower values of the root mean square error and high frequency error norm. A simple and effective way to preserve more useful detailed information in CS-pMRI is proposed. This technique can effectively improve the reconstruction quality and has superior performance in terms of detail preservation compared with the original version without feature refinement. Magn Reson Med 80:211-223, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Comparison of SeaWinds Backscatter Imaging Algorithms

    PubMed Central

    Long, David G.

    2017-01-01

    This paper compares the performance and tradeoffs of various backscatter imaging algorithms for the SeaWinds scatterometer when multiple passes over a target are available. Reconstruction methods are compared with conventional gridding algorithms. In particular, the performance and tradeoffs in conventional ‘drop in the bucket’ (DIB) gridding at the intrinsic sensor resolution are compared to high-spatial-resolution imaging algorithms such as fine-resolution DIB and the scatterometer image reconstruction (SIR) that generate enhanced-resolution backscatter images. Various options for each algorithm are explored, including considering both linear and dB computation. The effects of sampling density and reconstruction quality versus time are explored. Both simulated and actual data results are considered. The results demonstrate the effectiveness of high-resolution reconstruction using SIR as well as its limitations and the limitations of DIB and fDIB. PMID:28828143

  10. Radiation dose reduction in soft tissue neck CT using adaptive statistical iterative reconstruction (ASIR).

    PubMed

    Vachha, Behroze; Brodoefel, Harald; Wilcox, Carol; Hackney, David B; Moonis, Gul

    2013-12-01

    To compare objective and subjective image quality in neck CT images acquired at different tube current-time products (275 mAs and 340 mAs) and reconstructed with filtered-back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR). HIPAA-compliant study with IRB approval and waiver of informed consent. 66 consecutive patients were randomly assigned to undergo contrast-enhanced neck CT at a standard tube-current-time-product (340 mAs; n = 33) or reduced tube-current-time-product (275 mAs, n = 33). Data sets were reconstructed with FBP and 2 levels (30%, 40%) of ASIR-FBP blending at 340 mAs and 275 mAs. Two neuroradiologists assessed subjective image quality in a blinded and randomized manner. Volume CT dose index (CTDIvol), dose-length-product (DLP), effective dose, and objective image noise were recorded. Signal-to-noise ratio (SNR) was computed as mean attenuation in a region of interest in the sternocleidomastoid muscle divided by image noise. Compared with FBP, ASIR resulted in a reduction of image noise at both 340 mAs and 275 mAs. Reduction of tube current from 340 mAs to 275 mAs resulted in an increase in mean objective image noise (p=0.02) and a decrease in SNR (p = 0.03) when images were reconstructed with FBP. However, when the 275 mAs images were reconstructed using ASIR, the mean objective image noise and SNR were similar to those of the standard 340 mAs CT images reconstructed with FBP (p>0.05). Subjective image noise was ranked by both raters as either average or less-than-average irrespective of the tube current and iterative reconstruction technique. Adapting ASIR into neck CT protocols reduced effective dose by 17% without compromising image quality. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Segmented Separable Footprint Projector for Digital Breast Tomosynthesis and Its application for Subpixel Reconstruction

    PubMed Central

    Zheng, Jiabei; Fessler, Jeffrey A; Chan, Heang-Ping

    2017-01-01

    Purpose Digital forward and back projectors play a significant role in iterative image reconstruction. The accuracy of the projector affects the quality of the reconstructed images. Digital breast tomosynthesis (DBT) often uses the ray-tracing (RT) projector that ignores finite detector element size. This paper proposes a modified version of the separable footprint (SF) projector, called the segmented separable footprint (SG) projector, that calculates efficiently the Radon transform mean value over each detector element. The SG projector is specifically designed for DBT reconstruction because of the large height-to-width ratio of the voxels generally used in DBT. This study evaluates the effectiveness of the SG projector in reducing projection error and improving DBT reconstruction quality. Methods We quantitatively compared the projection error of the RT and the SG projector at different locations and their performance in regular and subpixel DBT reconstruction. Subpixel reconstructions used finer voxels in the imaged volume than the detector pixel size. Subpixel reconstruction with RT projector uses interpolated projection views as input to provide adequate coverage of the finer voxel grid with the traced rays. Subpixel reconstruction with the SG projector, however, uses the measured projection views without interpolation. We simulated DBT projections of a test phantom using CatSim (GE Global Research, Niskayuna, NY) under idealized imaging conditions without noise and blur, to analyze the effects of the projectors and subpixel reconstruction without other image degrading factors. The phantom contained an array of horizontal and vertical line pair patterns (1 to 9.5 line pairs/mm) and pairs of closely spaced spheres (diameters 0.053 to 0.5 mm) embedded at the mid-plane of a 5-cm-thick breast-tissue-equivalent uniform volume. The images were reconstructed with regular simultaneous algebraic reconstruction technique (SART) and subpixel SART using different projectors. The resolution and contrast of the test objects in the reconstructed images and the computation times were compared under different reconstruction conditions. Results The SG projector reduced the projector error by 1 to 2 orders of magnitude at most locations. In the worst case, the SG projector still reduced the projection error by about 50%. In the DBT reconstructed slices parallel to the detector plane, the SG projector not only increased the contrast of the line pairs and spheres, but also produced more smooth and continuous reconstructed images whereas the discrete and sparse nature of the RT projector caused artifacts appearing as patterned noise. For subpixel reconstruction, the SG projector significantly increased object contrast and computation speed, especially for high subpixel ratios, compared with the RT projector implemented with accelerated Siddon’s algorithm. The difference in the depth resolution among the projectors is negligible under the conditions studied. Our results also demonstrated that subpixel reconstruction can improve the spatial resolution of the reconstructed images, and can exceed the Nyquist limit of the detector under some conditions. Conclusions The SG projector was more accurate and faster than the RT projector. The SG projector also substantially reduced computation time and improved the image quality for the tomosynthesized images with and without subpixel reconstruction. PMID:28058719

  12. Image quality in thoracic 4D cone-beam CT: A sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing

    PubMed Central

    Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.; Kuncic, Zdenka; Keall, Paul J.

    2014-01-01

    Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets with various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR values were found to increase with decreasing RMSE values of projection angular gaps with strong correlations (r ≈ −0.7) regardless of the reconstruction algorithm used. Conclusions: Based on the authors’ results, displacement-based binning methods, better reconstruction algorithms, and the acquisition of even projection angular views are the most important factors to consider for improving thoracic 4D-CBCT image quality. In view of the practical issues with displacement-based binning and the fact that projection angular spacing is not currently directly controllable, development of better reconstruction algorithms represents the most effective strategy for improving image quality in thoracic 4D-CBCT for IGRT applications at the current stage. PMID:24694143

  13. SubspaceEM: A Fast Maximum-a-posteriori Algorithm for Cryo-EM Single Particle Reconstruction

    PubMed Central

    Dvornek, Nicha C.; Sigworth, Fred J.; Tagare, Hemant D.

    2015-01-01

    Single particle reconstruction methods based on the maximum-likelihood principle and the expectation-maximization (E–M) algorithm are popular because of their ability to produce high resolution structures. However, these algorithms are computationally very expensive, requiring a network of computational servers. To overcome this computational bottleneck, we propose a new mathematical framework for accelerating maximum-likelihood reconstructions. The speedup is by orders of magnitude and the proposed algorithm produces similar quality reconstructions compared to the standard maximum-likelihood formulation. Our approach uses subspace approximations of the cryo-electron microscopy (cryo-EM) data and projection images, greatly reducing the number of image transformations and comparisons that are computed. Experiments using simulated and actual cryo-EM data show that speedup in overall execution time compared to traditional maximum-likelihood reconstruction reaches factors of over 300. PMID:25839831

  14. The role of isolated posterior cruciate ligament reconstruction in knees with combined posterior cruciate ligament and posterolateral complex injury.

    PubMed

    Lee, Dong-Yeong; Park, Young-Jin; Kim, Dong-Hee; Kim, Hyun-Jung; Nam, Dae-Cheol; Park, Jin-Sung; Hwang, Sun-Chul

    2017-08-14

    This is a meta-analysis comparing biomechanical outcomes to determine whether an isolated posterior cruciate ligament (PCL) reconstruction can restore normal knee kinematics in a combined PCL/posterolateral complex (PLC) injury and whether double-bundle (DB) PCL reconstruction is superior in controlling posterior and rotational laxity compared with single-bundle (SB) PCL reconstruction in a PCL/PLC-deficient knee. A number of electronic databases were searched for relevant articles published through August 2016 that compared biomechanical outcomes of PCL reconstruction in patients who underwent reconstruction for combined PCL/PLC deficiencies. Data were searched, extracted, analysed, and assessed for quality according to Cochrane Collaboration guidelines, and biomechanical outcomes were evaluated using various outcome values. The results are presented as relative ratios for binary outcomes and standard mean differences for continuous outcomes with 95% confidence intervals. Five biomechanical studies were included in this meta-analysis. There were significant differences in laxities such as posterior tibial translation (PTT), external rotation, varus rotation, and PTT coupled with external rotation in the isolated PCL reconstruction group compared with the native PCL group. Furthermore, there were no significant differences in laxities such as PTT, external rotation, or varus rotation between the SB and DB PCL reconstruction groups. Isolated PCL reconstruction, whether SB or DB, could not restore normal knee kinematics in the PCL/PLC-deficient knee. In such cases, residual laxity after isolated PCL reconstruction can be controlled successfully with PLC reconstruction. Therefore, simultaneous PCL and PLC reconstruction is recommended for patients with combined PCL/PLC injury.

  15. Nonlinear PET parametric image reconstruction with MRI information using kernel method

    NASA Astrophysics Data System (ADS)

    Gong, Kuang; Wang, Guobao; Chen, Kevin T.; Catana, Ciprian; Qi, Jinyi

    2017-03-01

    Positron Emission Tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neurology. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information. Previously we have used kernel learning to embed MR information in static PET reconstruction and direct Patlak reconstruction. Here we extend this method to direct reconstruction of nonlinear parameters in a compartment model by using the alternating direction of multiplier method (ADMM) algorithm. Simulation studies show that the proposed method can produce superior parametric images compared with existing methods.

  16. High-speed parallel implementation of a modified PBR algorithm on DSP-based EH topology

    NASA Astrophysics Data System (ADS)

    Rajan, K.; Patnaik, L. M.; Ramakrishna, J.

    1997-08-01

    Algebraic Reconstruction Technique (ART) is an age-old method used for solving the problem of three-dimensional (3-D) reconstruction from projections in electron microscopy and radiology. In medical applications, direct 3-D reconstruction is at the forefront of investigation. The simultaneous iterative reconstruction technique (SIRT) is an ART-type algorithm with the potential of generating in a few iterations tomographic images of a quality comparable to that of convolution backprojection (CBP) methods. Pixel-based reconstruction (PBR) is similar to SIRT reconstruction, and it has been shown that PBR algorithms give better quality pictures compared to those produced by SIRT algorithms. In this work, we propose a few modifications to the PBR algorithms. The modified algorithms are shown to give better quality pictures compared to PBR algorithms. The PBR algorithm and the modified PBR algorithms are highly compute intensive, Not many attempts have been made to reconstruct objects in the true 3-D sense because of the high computational overhead. In this study, we have developed parallel two-dimensional (2-D) and 3-D reconstruction algorithms based on modified PBR. We attempt to solve the two problems encountered by the PBR and modified PBR algorithms, i.e., the long computational time and the large memory requirements, by parallelizing the algorithm on a multiprocessor system. We investigate the possible task and data partitioning schemes by exploiting the potential parallelism in the PBR algorithm subject to minimizing the memory requirement. We have implemented an extended hypercube (EH) architecture for the high-speed execution of the 3-D reconstruction algorithm using the commercially available fast floating point digital signal processor (DSP) chips as the processing elements (PEs) and dual-port random access memories (DPR) as channels between the PEs. We discuss and compare the performances of the PBR algorithm on an IBM 6000 RISC workstation, on a Silicon Graphics Indigo 2 workstation, and on an EH system. The results show that an EH(3,1) using DSP chips as PEs executes the modified PBR algorithm about 100 times faster than an LBM 6000 RISC workstation. We have executed the algorithms on a 4-node IBM SP2 parallel computer. The results show that execution time of the algorithm on an EH(3,1) is better than that of a 4-node IBM SP2 system. The speed-up of an EH(3,1) system with eight PEs and one network controller is approximately 7.85.

  17. Computed Tomography Imaging of a Hip Prosthesis Using Iterative Model-Based Reconstruction and Orthopaedic Metal Artefact Reduction: A Quantitative Analysis.

    PubMed

    Wellenberg, Ruud H H; Boomsma, Martijn F; van Osch, Jochen A C; Vlassenbroek, Alain; Milles, Julien; Edens, Mireille A; Streekstra, Geert J; Slump, Cornelis H; Maas, Mario

    To quantify the combined use of iterative model-based reconstruction (IMR) and orthopaedic metal artefact reduction (O-MAR) in reducing metal artefacts and improving image quality in a total hip arthroplasty phantom. Scans acquired at several dose levels and kVps were reconstructed with filtered back-projection (FBP), iterative reconstruction (iDose) and IMR, with and without O-MAR. Computed tomography (CT) numbers, noise levels, signal-to-noise-ratios and contrast-to-noise-ratios were analysed. Iterative model-based reconstruction results in overall improved image quality compared to iDose and FBP (P < 0.001). Orthopaedic metal artefact reduction is most effective in reducing severe metal artefacts improving CT number accuracy by 50%, 60%, and 63% (P < 0.05) and reducing noise by 1%, 62%, and 85% (P < 0.001) whereas improving signal-to-noise-ratios by 27%, 47%, and 46% (P < 0.001) and contrast-to-noise-ratios by 16%, 25%, and 19% (P < 0.001) with FBP, iDose, and IMR, respectively. The combined use of IMR and O-MAR strongly improves overall image quality and strongly reduces metal artefacts in the CT imaging of a total hip arthroplasty phantom.

  18. Improved Compressive Sensing of Natural Scenes Using Localized Random Sampling

    PubMed Central

    Barranca, Victor J.; Kovačič, Gregor; Zhou, Douglas; Cai, David

    2016-01-01

    Compressive sensing (CS) theory demonstrates that by using uniformly-random sampling, rather than uniformly-spaced sampling, higher quality image reconstructions are often achievable. Considering that the structure of sampling protocols has such a profound impact on the quality of image reconstructions, we formulate a new sampling scheme motivated by physiological receptive field structure, localized random sampling, which yields significantly improved CS image reconstructions. For each set of localized image measurements, our sampling method first randomly selects an image pixel and then measures its nearby pixels with probability depending on their distance from the initially selected pixel. We compare the uniformly-random and localized random sampling methods over a large space of sampling parameters, and show that, for the optimal parameter choices, higher quality image reconstructions can be consistently obtained by using localized random sampling. In addition, we argue that the localized random CS optimal parameter choice is stable with respect to diverse natural images, and scales with the number of samples used for reconstruction. We expect that the localized random sampling protocol helps to explain the evolutionarily advantageous nature of receptive field structure in visual systems and suggests several future research areas in CS theory and its application to brain imaging. PMID:27555464

  19. Respiratory Motion-Resolved Compressed Sensing Reconstruction of Free-Breathing Radial Acquisition for Dynamic Liver Magnetic Resonance Imaging.

    PubMed

    Chandarana, Hersh; Feng, Li; Ream, Justin; Wang, Annie; Babb, James S; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo

    2015-11-01

    This study aimed to demonstrate feasibility of free-breathing radial acquisition with respiratory motion-resolved compressed sensing reconstruction [extra-dimensional golden-angle radial sparse parallel imaging (XD-GRASP)] for multiphase dynamic gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced liver imaging, and to compare image quality to compressed sensing reconstruction with respiratory motion-averaging (GRASP) and prior conventional breath-held Cartesian-sampled data sets [BH volume interpolated breath-hold examination (VIBE)] in same patients. In this Health Insurance Portability and Accountability Act-compliant prospective study, 16 subjects underwent free-breathing continuous radial acquisition during Gd-EOB-DTPA injection and had prior BH-VIBE available. Acquired data were reconstructed using motion-averaging GRASP approach in which consecutive 84 spokes were grouped in each contrast-enhanced phase for a temporal resolution of approximately 14 seconds. Additionally, respiratory motion-resolved reconstruction was performed from the same k-space data by sorting each contrast-enhanced phase into multiple respiratory motion states using compressed sensing algorithm named XD-GRASP, which exploits sparsity along both the contrast-enhancement and respiratory-state dimensions.Contrast-enhanced dynamic multiphase XD-GRASP, GRASP, and BH-VIBE images were anonymized, pooled together in a random order, and presented to 2 board-certified radiologists for independent evaluation of image quality, with higher score indicating more optimal examination. The XD-GRASP reconstructions had significantly (all P < 0.05) higher overall image quality scores compared to GRASP for early arterial (reader 1: 4.3 ± 0.6 vs 3.31 ± 0.6; reader 2: 3.81 ± 0.8 vs 3.38 ± 0.9) and late arterial (reader 1: 4.5 ± 0.6 vs 3.63 ± 0.6; reader 2: 3.56 ± 0.5 vs 2.88 ± 0.7) phases of enhancement for both readers. The XD-GRASP also had higher overall image quality score in portal venous phase, which was significant for reader 1 (4.44 ± 0.5 vs 3.75 ± 0.8; P = 0.002). In addition, the XD-GRASP had higher overall image quality score compared to BH-VIBE for early (reader 1: 4.3 ± 0.6 vs 3.88 ± 0.6; reader 2: 3.81 ± 0.8 vs 3.50 ± 1.0) and late (reader 1: 4.5 ± 0.6 vs 3.44 ± 0.6; reader 2: 3.56 ± 0.5 vs 2.94 ± 0.9) arterial phases. Free-breathing motion-resolved XD-GRASP reconstructions provide diagnostic high-quality multiphase images in patients undergoing Gd-EOB-DTPA-enhanced liver examination.

  20. Clinical evaluation of new automatic coronary-specific best cardiac phase selection algorithm for single-beat coronary CT angiography.

    PubMed

    Wang, Hui; Xu, Lei; Fan, Zhanming; Liang, Junfu; Yan, Zixu; Sun, Zhonghua

    2017-01-01

    The aim of this study was to evaluate the workflow efficiency of a new automatic coronary-specific reconstruction technique (Smart Phase, GE Healthcare-SP) for selection of the best cardiac phase with least coronary motion when compared with expert manual selection (MS) of best phase in patients with high heart rate. A total of 46 patients with heart rates above 75 bpm who underwent single beat coronary computed tomography angiography (CCTA) were enrolled in this study. CCTA of all subjects were performed on a 256-detector row CT scanner (Revolution CT, GE Healthcare, Waukesha, Wisconsin, US). With the SP technique, the acquired phase range was automatically searched in 2% phase intervals during the reconstruction process to determine the optimal phase for coronary assessment, while for routine expert MS, reconstructions were performed at 5% intervals and a best phase was manually determined. The reconstruction and review times were recorded to measure the workflow efficiency for each method. Two reviewers subjectively assessed image quality for each coronary artery in the MS and SP reconstruction volumes using a 4-point grading scale. The average HR of the enrolled patients was 91.1±19.0bpm. A total of 204 vessels were assessed. The subjective image quality using SP was comparable to that of the MS, 1.45±0.85 vs 1.43±0.81 respectively (p = 0.88). The average time was 246 seconds for the manual best phase selection, and 98 seconds for the SP selection, resulting in average time saving of 148 seconds (60%) with use of the SP algorithm. The coronary specific automatic cardiac best phase selection technique (Smart Phase) improves clinical workflow in high heart rate patients and provides image quality comparable with manual cardiac best phase selection. Reconstruction of single-beat CCTA exams with SP can benefit the users with less experienced in CCTA image interpretation.

  1. TU-F-18A-06: Dual Energy CT Using One Full Scan and a Second Scan with Very Few Projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T; Zhu, L

    Purpose: The conventional dual energy CT (DECT) requires two full CT scans at different energy levels, resulting in dose increase as well as imaging errors from patient motion between the two scans. To shorten the scan time of DECT and thus overcome these drawbacks, we propose a new DECT algorithm using one full scan and a second scan with very few projections by preserving structural information. Methods: We first reconstruct a CT image on the full scan using a standard filtered-backprojection (FBP) algorithm. We then use a compressed sensing (CS) based iterative algorithm on the second scan for reconstruction frommore » very few projections. The edges extracted from the first scan are used as weights in the Objectives: function of the CS-based reconstruction to substantially improve the image quality of CT reconstruction. The basis material images are then obtained by an iterative image-domain decomposition method and an electron density map is finally calculated. The proposed method is evaluated on phantoms. Results: On the Catphan 600 phantom, the CT reconstruction mean error using the proposed method on 20 and 5 projections are 4.76% and 5.02%, respectively. Compared with conventional iterative reconstruction, the proposed edge weighting preserves object structures and achieves a better spatial resolution. With basis materials of Iodine and Teflon, our method on 20 projections obtains similar quality of decomposed material images compared with FBP on a full scan and the mean error of electron density in the selected regions of interest is 0.29%. Conclusion: We propose an effective method for reducing projections and therefore scan time in DECT. We show that a full scan plus a 20-projection scan are sufficient to provide DECT images and electron density with similar quality compared with two full scans. Our future work includes more phantom studies to validate the performance of our method.« less

  2. Impact of iterative metal artifact reduction on diagnostic image quality in patients with dental hardware.

    PubMed

    Weiß, Jakob; Schabel, Christoph; Bongers, Malte; Raupach, Rainer; Clasen, Stephan; Notohamiprodjo, Mike; Nikolaou, Konstantin; Bamberg, Fabian

    2017-03-01

    Background Metal artifacts often impair diagnostic accuracy in computed tomography (CT) imaging. Therefore, effective and workflow implemented metal artifact reduction algorithms are crucial to gain higher diagnostic image quality in patients with metallic hardware. Purpose To assess the clinical performance of a novel iterative metal artifact reduction (iMAR) algorithm for CT in patients with dental fillings. Material and Methods Thirty consecutive patients scheduled for CT imaging and dental fillings were included in the analysis. All patients underwent CT imaging using a second generation dual-source CT scanner (120 kV single-energy; 100/Sn140 kV in dual-energy, 219 mAs, gantry rotation time 0.28-1/s, collimation 0.6 mm) as part of their clinical work-up. Post-processing included standard kernel (B49) and an iterative MAR algorithm. Image quality and diagnostic value were assessed qualitatively (Likert scale) and quantitatively (HU ± SD) by two reviewers independently. Results All 30 patients were included in the analysis, with equal reconstruction times for iMAR and standard reconstruction (17 s ± 0.5 vs. 19 s ± 0.5; P > 0.05). Visual image quality was significantly higher for iMAR as compared with standard reconstruction (3.8 ± 0.5 vs. 2.6 ± 0.5; P < 0.0001, respectively) and showed improved evaluation of adjacent anatomical structures. Similarly, HU-based measurements of degree of artifacts were significantly lower in the iMAR reconstructions as compared with the standard reconstruction (0.9 ± 1.6 vs. -20 ± 47; P < 0.05, respectively). Conclusion The tested iterative, raw-data based reconstruction MAR algorithm allows for a significant reduction of metal artifacts and improved evaluation of adjacent anatomical structures in the head and neck area in patients with dental hardware.

  3. Differences in the Reporting of Racial and Socioeconomic Disparities among Three Large National Databases for Breast Reconstruction.

    PubMed

    Kamali, Parisa; Zettervall, Sara L; Wu, Winona; Ibrahim, Ahmed M S; Medin, Caroline; Rakhorst, Hinne A; Schermerhorn, Marc L; Lee, Bernard T; Lin, Samuel J

    2017-04-01

    Research derived from large-volume databases plays an increasing role in the development of clinical guidelines and health policy. In breast cancer research, the Surveillance, Epidemiology and End Results, National Surgical Quality Improvement Program, and Nationwide Inpatient Sample databases are widely used. This study aims to compare the trends in immediate breast reconstruction and identify the drawbacks and benefits of each database. Patients with invasive breast cancer and ductal carcinoma in situ were identified from each database (2005-2012). Trends of immediate breast reconstruction over time were evaluated. Patient demographics and comorbidities were compared. Subgroup analysis of immediate breast reconstruction use per race was conducted. Within the three databases, 1.2 million patients were studied. Immediate breast reconstruction in invasive breast cancer patients increased significantly over time in all databases. A similar significant upward trend was seen in ductal carcinoma in situ patients. Significant differences in immediate breast reconstruction rates were seen among races; and the disparity differed among the three databases. Rates of comorbidities were similar among the three databases. There has been a significant increase in immediate breast reconstruction; however, the extent of the reporting of overall immediate breast reconstruction rates and of racial disparities differs significantly among databases. The Nationwide Inpatient Sample and the National Surgical Quality Improvement Program report similar findings, with the Surveillance, Epidemiology and End Results database reporting results significantly lower in several categories. These findings suggest that use of the Surveillance, Epidemiology and End Results database may not be universally generalizable to the entire U.S.

  4. NEMA NU 4-Optimized Reconstructions for Therapy Assessment in Cancer Research with the Inveon Small Animal PET/CT System.

    PubMed

    Lasnon, Charline; Dugue, Audrey Emmanuelle; Briand, Mélanie; Blanc-Fournier, Cécile; Dutoit, Soizic; Louis, Marie-Hélène; Aide, Nicolas

    2015-06-01

    We compared conventional filtered back-projection (FBP), two-dimensional-ordered subsets expectation maximization (OSEM) and maximum a posteriori (MAP) NEMA NU 4-optimized reconstructions for therapy assessment. Varying reconstruction settings were used to determine the parameters for optimal image quality with two NEMA NU 4 phantom acquisitions. Subsequently, data from two experiments in which nude rats bearing subcutaneous tumors had received a dual PI3K/mTOR inhibitor were reconstructed with the NEMA NU 4-optimized parameters. Mann-Whitney tests were used to compare mean standardized uptake value (SUV(mean)) variations among groups. All NEMA NU 4-optimized reconstructions showed the same 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) kinetic patterns and detected a significant difference in SUV(mean) relative to day 0 between controls and treated groups for all time points with comparable p values. In the framework of therapy assessment in rats bearing subcutaneous tumors, all algorithms available on the Inveon system performed equally.

  5. Prospective analysis using a patient-based health-related scale shows lower functional scores after posterior cruciate ligament reconstructions as compared with anterior cruciate ligament reconstructions of the knee.

    PubMed

    Ochiai, Satoshi; Hagino, Tetsuo; Senga, Shinya; Yamashita, Takashi; Ando, Takashi; Haro, Hirotaka

    2016-09-01

    This study evaluated the treatment outcome of posterior cruciate ligament (PCL) reconstruction using the Medical Outcome Study 36-item Short-Form Health Survey (SF-36), a patient-based quality of life (QOL) questionnaire comparing it with anterior cruciate ligament (ACL) reconstruction. Patients who underwent reconstruction at our center for PCL (n = 24) or ACL (n = 197) injury were studied. The patients were evaluated using SF-36, visual analogue scale (VAS) for knee pain, Lysholm scale, posterior or anterior tibial translation and range of motion (ROM) before surgery until 24 months after surgery. Results were compared. In the ACL group, all evaluation methods showed significant improvement after surgery. In the PCL group, however, improvement was observed in only three of eight subscales of the SF-36, Lysholm score and posterior tibial translation after surgery. In intergroup comparison, the PCL group showed inferior performance in three subscales of the SF-36, Lysholm score and ROM for flexion compared with the ACL group. The surgical outcome of PCL reconstruction was inferior to that of ACL reconstruction both in patient-based and conventional doctor-based assessments. An improved surgical technique for PCL is required.

  6. How Many Bits Are Enough?

    NASA Technical Reports Server (NTRS)

    Larimer, James; Gille, Jennifer; Luszcz, Jeff; Hindson, William S. (Technical Monitor)

    1997-01-01

    Carlson and Cohen suggest that 'the perfect image is one that looks like a piece of the world viewed through a picture frame.' They propose that the metric for the perfect image be the discriminability of the reconstructed image from the ideal image the reconstruction is meant to represent. If these two images, the ideal and the reconstruction are noticeably different, then the reconstruction is less than perfect. If they cannot be discriminated then the reconstructed image is perfect. This definition has the advantage that it can be used to define 'good enough' image quality. An image that fully satisfies a task's image quality requirements for example text legibility, is selected to be the standard. Rendered images are then compared to the standard. Rendered images that are indiscriminable from the standard are good enough. Test patterns and test image sets serve as standards for many tasks and are commonplace to the image communications and display industries, so this is not a new nor novel idea.

  7. Path integration guided with a quality map for shape reconstruction in the fringe reflection technique

    NASA Astrophysics Data System (ADS)

    Jing, Xiaoli; Cheng, Haobo; Wen, Yongfu

    2018-04-01

    A new local integration algorithm called quality map path integration (QMPI) is reported for shape reconstruction in the fringe reflection technique. A quality map is proposed to evaluate the quality of gradient data locally, and functions as a guideline for the integrated path. The presented method can be employed in wavefront estimation from its slopes over the general shaped surface with slope noise equivalent to that in practical measurements. Moreover, QMPI is much better at handling the slope data with local noise, which may be caused by the irregular shapes of the surface under test. The performance of QMPI is discussed by simulations and experiment. It is shown that QMPI not only improves the accuracy of local integration, but can also be easily implemented with no iteration compared to Southwell zonal reconstruction (SZR). From an engineering point-of-view, the proposed method may also provide an efficient and stable approach for different shapes with high-precise demand.

  8. Sparse dictionary for synthetic transmit aperture medical ultrasound imaging.

    PubMed

    Wang, Ping; Jiang, Jin-Yang; Li, Na; Luo, Han-Wu; Li, Fang; Cui, Shi-Gang

    2017-07-01

    It is possible to recover a signal below the Nyquist sampling limit using a compressive sensing technique in ultrasound imaging. However, the reconstruction enabled by common sparse transform approaches does not achieve satisfactory results. Considering the ultrasound echo signal's features of attenuation, repetition, and superposition, a sparse dictionary with the emission pulse signal is proposed. Sparse coefficients in the proposed dictionary have high sparsity. Images reconstructed with this dictionary were compared with those obtained with the three other common transforms, namely, discrete Fourier transform, discrete cosine transform, and discrete wavelet transform. The performance of the proposed dictionary was analyzed via a simulation and experimental data. The mean absolute error (MAE) was used to quantify the quality of the reconstructions. Experimental results indicate that the MAE associated with the proposed dictionary was always the smallest, the reconstruction time required was the shortest, and the lateral resolution and contrast of the reconstructed images were also the closest to the original images. The proposed sparse dictionary performed better than the other three sparse transforms. With the same sampling rate, the proposed dictionary achieved excellent reconstruction quality.

  9. Tight-frame based iterative image reconstruction for spectral breast CT

    PubMed Central

    Zhao, Bo; Gao, Hao; Ding, Huanjun; Molloi, Sabee

    2013-01-01

    Purpose: To investigate tight-frame based iterative reconstruction (TFIR) technique for spectral breast computed tomography (CT) using fewer projections while achieving greater image quality. Methods: The experimental data were acquired with a fan-beam breast CT system based on a cadmium zinc telluride photon-counting detector. The images were reconstructed with a varying number of projections using the TFIR and filtered backprojection (FBP) techniques. The image quality between these two techniques was evaluated. The image's spatial resolution was evaluated using a high-resolution phantom, and the contrast to noise ratio (CNR) was evaluated using a postmortem breast sample. The postmortem breast samples were decomposed into water, lipid, and protein contents based on images reconstructed from TFIR with 204 projections and FBP with 614 projections. The volumetric fractions of water, lipid, and protein from the image-based measurements in both TFIR and FBP were compared to the chemical analysis. Results: The spatial resolution and CNR were comparable for the images reconstructed by TFIR with 204 projections and FBP with 614 projections. Both reconstruction techniques provided accurate quantification of water, lipid, and protein composition of the breast tissue when compared with data from the reference standard chemical analysis. Conclusions: Accurate breast tissue decomposition can be done with three fold fewer projection images by the TFIR technique without any reduction in image spatial resolution and CNR. This can result in a two-third reduction of the patient dose in a multislit and multislice spiral CT system in addition to the reduced scanning time in this system. PMID:23464320

  10. Randomized clinical trial comparing long-term quality of life for Billroth I versus Roux-en-Y reconstruction after distal gastrectomy for gastric cancer.

    PubMed

    Nakamura, M; Nakamori, M; Ojima, T; Iwahashi, M; Horiuchi, T; Kobayashi, Y; Yamade, N; Shimada, K; Oka, M; Yamaue, H

    2016-03-01

    Patients' quality of life (QoL) deteriorates remarkably after gastrectomy. Billroth I reconstruction following distal gastrectomy has the physiological advantage of allowing food to pass through the duodenum. It was hypothesized that Billroth I reconstruction would be superior to Roux-en-Y reconstruction in terms of long-term QoL after distal gastrectomy. This study compared two reconstructions in a multicentre prospective randomized clinical trial to identify the optimal reconstruction procedure. Between January 2009 and September 2010, patients who underwent gastrectomy for gastric cancer were randomized during surgery to Billroth I or Roux-en-Y reconstruction. The primary endpoint was assessment of QoL using the Functional Assessment of Cancer Therapy - Gastric (FACT-Ga) questionnaire 36 months after surgery. A total of 122 patients were enrolled in the study, 60 to Billroth I and 62 to Roux-en-Y reconstruction. There were no differences between the two groups in terms of postoperative complications or mortality, and no significant differences in FACT-Ga total score (P = 0·496). Symptom scales such as epigastric fullness (heaviness), diarrhoea and fatigue were significantly better in the Billroth I group at 36 months after gastrectomy (heaviness, P = 0·040; diarrhoea, P = 0·046; fatigue, P = 0·029). The rate of weight loss in the third year was lower for patients in the Billroth I group (P = 0·046). The choice of anastomotic reconstruction after distal gastrectomy resulted in no difference in long-term QoL in patients with gastric cancer. NCT01065688 (http://www.clinicaltrials.gov). © 2016 BJS Society Ltd Published by John Wiley & Sons Ltd.

  11. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography.

    PubMed

    Park, Justin C; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Li, Jonathan G; Liu, Chihray; Lu, Bo

    2015-12-07

    Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm 'the common mask guided image reconstruction' (c-MGIR).In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and 'well' solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the algorithm, the code was implemented with a graphic processing unit for parallel processing purposes.Root mean square error (RMSE) between the ground truth and reconstructed volumes of the numerical phantom were in the descending order of FDK, CTV, PICCS, MCIR, and c-MGIR for all phases. Specifically, the means and the standard deviations of the RMSE of FDK, CTV, PICCS, MCIR and c-MGIR for all phases were 42.64  ±  6.5%, 3.63  ±  0.83%, 1.31%  ±  0.09%, 0.86%  ±  0.11% and 0.52 %  ±  0.02%, respectively. The image quality of the patient case also indicated the superiority of c-MGIR compared to other algorithms.The results indicated that clinically viable 4D CBCT images can be reconstructed while requiring no more projection data than a typical clinical 3D CBCT scan. This makes c-MGIR a potential online reconstruction algorithm for 4D CBCT, which can provide much better image quality than other available algorithms, while requiring less dose and potentially less scanning time.

  12. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging.

    PubMed

    Yan, Hao; Zhen, Xin; Folkerts, Michael; Li, Yongbao; Pan, Tinsu; Cervino, Laura; Jiang, Steve B; Jia, Xun

    2014-07-01

    4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is invented to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3-0.5 mm for patients 1-3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1-1.5 min per phase. High-quality 4D-CBCT imaging based on the clinically standard 1-min 3D CBCT scanning protocol is feasible via the proposed hybrid reconstruction algorithm.

  13. Design and assessment of a novel SPECT system for desktop open-gantry imaging of small animals: A simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeraatkar, Navid; Farahani, Mohammad Hossein; Rahmim, Arman

    Purpose: Given increasing efforts in biomedical research utilizing molecular imaging methods, development of dedicated high-performance small-animal SPECT systems has been growing rapidly in the last decade. In the present work, we propose and assess an alternative concept for SPECT imaging enabling desktop open-gantry imaging of small animals. Methods: The system, PERSPECT, consists of an imaging desk, with a set of tilted detector and pinhole collimator placed beneath it. The object to be imaged is simply placed on the desk. Monte Carlo (MC) and analytical simulations were utilized to accurately model and evaluate the proposed concept and design. Furthermore, a dedicatedmore » image reconstruction algorithm, finite-aperture-based circular projections (FABCP), was developed and validated for the system, enabling more accurate modeling of the system and higher quality reconstructed images. Image quality was quantified as a function of different tilt angles in the acquisition and number of iterations in the reconstruction algorithm. Furthermore, more complex phantoms including Derenzo, Defrise, and mouse whole body were simulated and studied. Results: The sensitivity of the PERSPECT was 207 cps/MBq. It was quantitatively demonstrated that for a tilt angle of 30°, comparable image qualities were obtained in terms of normalized squared error, contrast, uniformity, noise, and spatial resolution measurements, the latter at ∼0.6 mm. Furthermore, quantitative analyses demonstrated that 3 iterations of FABCP image reconstruction (16 subsets/iteration) led to optimally reconstructed images. Conclusions: The PERSPECT, using a novel imaging protocol, can achieve comparable image quality performance in comparison with a conventional pinhole SPECT with the same configuration. The dedicated FABCP algorithm, which was developed for reconstruction of data from the PERSPECT system, can produce high quality images for small-animal imaging via accurate modeling of the system as incorporated in the forward- and back-projection steps. Meanwhile, the developed MC model and the analytical simulator of the system can be applied for further studies on development and evaluation of the system.« less

  14. Deterministic compressive sampling for high-quality image reconstruction of ultrasound tomography.

    PubMed

    Huy, Tran Quang; Tue, Huynh Huu; Long, Ton That; Duc-Tan, Tran

    2017-05-25

    A well-known diagnostic imaging modality, termed ultrasound tomography, was quickly developed for the detection of very small tumors whose sizes are smaller than the wavelength of the incident pressure wave without ionizing radiation, compared to the current gold-standard X-ray mammography. Based on inverse scattering technique, ultrasound tomography uses some material properties such as sound contrast or attenuation to detect small targets. The Distorted Born Iterative Method (DBIM) based on first-order Born approximation is an efficient diffraction tomography approach. One of the challenges for a high quality reconstruction is to obtain many measurements from the number of transmitters and receivers. Given the fact that biomedical images are often sparse, the compressed sensing (CS) technique could be therefore effectively applied to ultrasound tomography by reducing the number of transmitters and receivers, while maintaining a high quality of image reconstruction. There are currently several work on CS that dispose randomly distributed locations for the measurement system. However, this random configuration is relatively difficult to implement in practice. Instead of it, we should adopt a methodology that helps determine the locations of measurement devices in a deterministic way. For this, we develop the novel DCS-DBIM algorithm that is highly applicable in practice. Inspired of the exploitation of the deterministic compressed sensing technique (DCS) introduced by the authors few years ago with the image reconstruction process implemented using l 1 regularization. Simulation results of the proposed approach have demonstrated its high performance, with the normalized error approximately 90% reduced, compared to the conventional approach, this new approach can save half of number of measurements and only uses two iterations. Universal image quality index is also evaluated in order to prove the efficiency of the proposed approach. Numerical simulation results indicate that CS and DCS techniques offer equivalent image reconstruction quality with simpler practical implementation. It would be a very promising approach in practical applications of modern biomedical imaging technology.

  15. Thermal depth profiling of vascular lesions: automated regularization of reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Verkruysse, Wim; Choi, Bernard; Zhang, Jenny R.; Kim, Jeehyun; Nelson, J. Stuart

    2008-03-01

    Pulsed photo-thermal radiometry (PPTR) is a non-invasive, non-contact diagnostic technique used to locate cutaneous chromophores such as melanin (epidermis) and hemoglobin (vascular structures). Clinical utility of PPTR is limited because it typically requires trained user intervention to regularize the inversion solution. Herein, the feasibility of automated regularization was studied. A second objective of this study was to depart from modeling port wine stain PWS, a vascular skin lesion frequently studied with PPTR, as strictly layered structures since this may influence conclusions regarding PPTR reconstruction quality. Average blood vessel depths, diameters and densities derived from histology of 30 PWS patients were used to generate 15 randomized lesion geometries for which we simulated PPTR signals. Reconstruction accuracy for subjective regularization was compared with that for automated regularization methods. The objective regularization approach performed better. However, the average difference was much smaller than the variation between the 15 simulated profiles. Reconstruction quality depended more on the actual profile to be reconstructed than on the reconstruction algorithm or regularization method. Similar, or better, accuracy reconstructions can be achieved with an automated regularization procedure which enhances prospects for user friendly implementation of PPTR to optimize laser therapy on an individual patient basis.

  16. Radiation dose reduction in CT with adaptive statistical iterative reconstruction (ASIR) for patients with bronchial carcinoma and intrapulmonary metastases.

    PubMed

    Schäfer, M-L; Lüdemann, L; Böning, G; Kahn, J; Fuchs, S; Hamm, B; Streitparth, F

    2016-05-01

    To compare the radiation dose and image quality of 64-row chest computed tomography (CT) in patients with bronchial carcinoma or intrapulmonary metastases using full-dose CT reconstructed with filtered back projection (FBP) at baseline and reduced dose with 40% adaptive statistical iterative reconstruction (ASIR) at follow-up. The chest CT images of patients who underwent FBP and ASIR studies were reviewed. Dose-length products (DLP), effective dose, and size-specific dose estimates (SSDEs) were obtained. Image quality was analysed quantitatively by signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) measurement. In addition, image quality was assessed by two blinded radiologists evaluating images for noise, contrast, artefacts, visibility of small structures, and diagnostic acceptability using a five-point scale. The ASIR studies showed 36% reduction in effective dose compared with the FBP studies. The qualitative and quantitative image quality was good to excellent in both protocols, without significant differences. There were also no significant differences for SNR except for the SNR of lung surrounding the tumour (FBP: 35±17, ASIR: 39±22). A protocol with 40% ASIR can provide approximately 36% dose reduction in chest CT of patients with bronchial carcinoma or intrapulmonary metastases while maintaining excellent image quality. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  17. Effects of pure and hybrid iterative reconstruction algorithms on high-resolution computed tomography in the evaluation of interstitial lung disease.

    PubMed

    Katsura, Masaki; Sato, Jiro; Akahane, Masaaki; Mise, Yoko; Sumida, Kaoru; Abe, Osamu

    2017-08-01

    To compare image quality characteristics of high-resolution computed tomography (HRCT) in the evaluation of interstitial lung disease using three different reconstruction methods: model-based iterative reconstruction (MBIR), adaptive statistical iterative reconstruction (ASIR), and filtered back projection (FBP). Eighty-nine consecutive patients with interstitial lung disease underwent standard-of-care chest CT with 64-row multi-detector CT. HRCT images were reconstructed in 0.625-mm contiguous axial slices using FBP, ASIR, and MBIR. Two radiologists independently assessed the images in a blinded manner for subjective image noise, streak artifacts, and visualization of normal and pathologic structures. Objective image noise was measured in the lung parenchyma. Spatial resolution was assessed by measuring the modulation transfer function (MTF). MBIR offered significantly lower objective image noise (22.24±4.53, P<0.01 among all pairs, Student's t-test) compared with ASIR (39.76±7.41) and FBP (51.91±9.71). MTF (spatial resolution) was increased using MBIR compared with ASIR and FBP. MBIR showed improvements in visualization of normal and pathologic structures over ASIR and FBP, while ASIR was rated quite similarly to FBP. MBIR significantly improved subjective image noise (P<0.01 among all pairs, the sign test), and streak artifacts (P<0.01 each for MBIR vs. the other 2 image data sets). MBIR provides high-quality HRCT images for interstitial lung disease by reducing image noise and streak artifacts and improving spatial resolution compared with ASIR and FBP. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Upgrade to iterative image reconstruction (IR) in MDCT imaging: a clinical study for detailed parameter optimization beyond vendor recommendations using the adaptive statistical iterative reconstruction environment (ASIR) Part2: The chest.

    PubMed

    Mueck, F G; Michael, L; Deak, Z; Scherr, M K; Maxien, D; Geyer, L L; Reiser, M; Wirth, S

    2013-07-01

    To compare the image quality in dose-reduced 64-row CT of the chest at different levels of adaptive statistical iterative reconstruction (ASIR) to full-dose baseline examinations reconstructed solely with filtered back projection (FBP) in a realistic upgrade scenario. A waiver of consent was granted by the institutional review board (IRB). The noise index (NI) relates to the standard deviation of Hounsfield units in a water phantom. Baseline exams of the chest (NI = 29; LightSpeed VCT XT, GE Healthcare) were intra-individually compared to follow-up studies on a CT with ASIR after system upgrade (NI = 45; Discovery HD750, GE Healthcare), n = 46. Images were calculated in slice and volume mode with ASIR levels of 0 - 100 % in the standard and lung kernel. Three radiologists independently compared the image quality to the corresponding full-dose baseline examinations (-2: diagnostically inferior, -1: inferior, 0: equal, + 1: superior, + 2: diagnostically superior). Statistical analysis used Wilcoxon's test, Mann-Whitney U test and the intraclass correlation coefficient (ICC). The mean CTDIvol decreased by 53 % from the FBP baseline to 8.0 ± 2.3 mGy for ASIR follow-ups; p < 0.001. The ICC was 0.70. Regarding the standard kernel, the image quality in dose-reduced studies was comparable to the baseline at ASIR 70 % in volume mode (-0.07 ± 0.29, p = 0.29). Concerning the lung kernel, every ASIR level outperformed the baseline image quality (p < 0.001), with ASIR 30 % rated best (slice: 0.70 ± 0.6, volume: 0.74 ± 0.61). Vendors' recommendation of 50 % ASIR is fair. In detail, the ASIR 70 % in volume mode for the standard kernel and ASIR 30 % for the lung kernel performed best, allowing for a dose reduction of approximately 50 %. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Breast reconstruction after mastectomy at a comprehensive cancer center.

    PubMed

    Connors, Shahnjayla K; Goodman, Melody S; Myckatyn, Terence; Margenthaler, Julie; Gehlert, Sarah

    2016-01-01

    Breast reconstruction after mastectomy is an integral part of breast cancer treatment that positively impacts quality of life in breast cancer survivors. Although breast reconstruction rates have increased over time, African American women remain less likely to receive breast reconstruction compared to Caucasian women. National Cancer Institute-designated Comprehensive Cancer Centers, specialized institutions with more standardized models of cancer treatment, report higher breast reconstruction rates than primary healthcare facilities. Whether breast reconstruction disparities are reduced for women treated at comprehensive cancer centers is unclear. The purpose of this study was to further investigate breast reconstruction rates and determinants at a comprehensive cancer center in St. Louis, Missouri. Sociodemographic and clinical data were obtained for women who received mastectomy for definitive surgical treatment for breast cancer between 2000 and 2012. Logistic regression was used to identify factors associated with the receipt of breast reconstruction. We found a breast reconstruction rate of 54 % for the study sample. Women who were aged 55 and older, had public insurance, received unilateral mastectomy, and received adjuvant radiation therapy were significantly less likely to receive breast reconstruction. African American women were 30 % less likely to receive breast reconstruction than Caucasian women. These findings suggest that racial disparities in breast reconstruction persist in comprehensive cancer centers. Future research should further delineate the determinants of breast reconstruction disparities across various types of healthcare institutions. Only then can we develop interventions to ensure all eligible women have access to breast reconstruction and the improved quality of life it affords breast cancer survivors.

  20. AIR-MRF: Accelerated iterative reconstruction for magnetic resonance fingerprinting.

    PubMed

    Cline, Christopher C; Chen, Xiao; Mailhe, Boris; Wang, Qiu; Pfeuffer, Josef; Nittka, Mathias; Griswold, Mark A; Speier, Peter; Nadar, Mariappan S

    2017-09-01

    Existing approaches for reconstruction of multiparametric maps with magnetic resonance fingerprinting (MRF) are currently limited by their estimation accuracy and reconstruction time. We aimed to address these issues with a novel combination of iterative reconstruction, fingerprint compression, additional regularization, and accelerated dictionary search methods. The pipeline described here, accelerated iterative reconstruction for magnetic resonance fingerprinting (AIR-MRF), was evaluated with simulations as well as phantom and in vivo scans. We found that the AIR-MRF pipeline provided reduced parameter estimation errors compared to non-iterative and other iterative methods, particularly at shorter sequence lengths. Accelerated dictionary search methods incorporated into the iterative pipeline reduced the reconstruction time at little cost of quality. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. PSF reconstruction for Compton-based prompt gamma imaging

    NASA Astrophysics Data System (ADS)

    Jan, Meei-Ling; Lee, Ming-Wei; Huang, Hsuan-Ming

    2018-02-01

    Compton-based prompt gamma (PG) imaging has been proposed for in vivo range verification in proton therapy. However, several factors degrade the image quality of PG images, some of which are due to inherent properties of a Compton camera such as spatial resolution and energy resolution. Moreover, Compton-based PG imaging has a spatially variant resolution loss. In this study, we investigate the performance of the list-mode ordered subset expectation maximization algorithm with a shift-variant point spread function (LM-OSEM-SV-PSF) model. We also evaluate how well the PG images reconstructed using an SV-PSF model reproduce the distal falloff of the proton beam. The SV-PSF parameters were estimated from simulation data of point sources at various positions. Simulated PGs were produced in a water phantom irradiated with a proton beam. Compared to the LM-OSEM algorithm, the LM-OSEM-SV-PSF algorithm improved the quality of the reconstructed PG images and the estimation of PG falloff positions. In addition, the 4.44 and 5.25 MeV PG emissions can be accurately reconstructed using the LM-OSEM-SV-PSF algorithm. However, for the 2.31 and 6.13 MeV PG emissions, the LM-OSEM-SV-PSF reconstruction provides limited improvement. We also found that the LM-OSEM algorithm followed by a shift-variant Richardson-Lucy deconvolution could reconstruct images with quality visually similar to the LM-OSEM-SV-PSF-reconstructed images, while requiring shorter computation time.

  2. Study on the key technology of optical encryption based on compressive ghost imaging with double random-phase encoding

    NASA Astrophysics Data System (ADS)

    Zhang, Leihong; Pan, Zilan; Liang, Dong; Ma, Xiuhua; Zhang, Dawei

    2015-12-01

    An optical encryption method based on compressive ghost imaging (CGI) with double random-phase encoding (DRPE), named DRPE-CGI, is proposed. The information is first encrypted by the sender with DRPE, the DRPE-coded image is encrypted by the system of computational ghost imaging with a secret key. The key of N random-phase vectors is generated by the sender and will be shared with the receiver who is the authorized user. The receiver decrypts the DRPE-coded image with the key, with the aid of CGI and a compressive sensing technique, and then reconstructs the original information by the technique of DRPE-decoding. The experiments suggest that cryptanalysts cannot get any useful information about the original image even if they eavesdrop 60% of the key at a given time, so the security of DRPE-CGI is higher than that of the security of conventional ghost imaging. Furthermore, this method can reduce 40% of the information quantity compared with ghost imaging while the qualities of reconstructing the information are the same. It can also improve the quality of the reconstructed plaintext information compared with DRPE-GI with the same sampling times. This technique can be immediately applied to encryption and data storage with the advantages of high security, fast transmission, and high quality of reconstructed information.

  3. Assessment of noise reduction potential and image quality improvement of a new generation adaptive statistical iterative reconstruction (ASIR-V) in chest CT.

    PubMed

    Tang, Hui; Yu, Nan; Jia, Yongjun; Yu, Yong; Duan, Haifeng; Han, Dong; Ma, Guangming; Ren, Chenglong; He, Taiping

    2018-01-01

    To evaluate the image quality improvement and noise reduction in routine dose, non-enhanced chest CT imaging by using a new generation adaptive statistical iterative reconstruction (ASIR-V) in comparison with ASIR algorithm. 30 patients who underwent routine dose, non-enhanced chest CT using GE Discovery CT750HU (GE Healthcare, Waukesha, WI) were included. The scan parameters included tube voltage of 120 kVp, automatic tube current modulation to obtain a noise index of 14HU, rotation speed of 0.6 s, pitch of 1.375:1 and slice thickness of 5 mm. After scanning, all scans were reconstructed with the recommended level of 40%ASIR for comparison purpose and different percentages of ASIR-V from 10% to 100% in a 10% increment. The CT attenuation values and SD of the subcutaneous fat, back muscle and descending aorta were measured at the level of tracheal carina of all reconstructed images. The signal-to-noise ratio (SNR) was calculated with SD representing image noise. The subjective image quality was independently evaluated by two experienced radiologists. For all ASIR-V images, the objective image noise (SD) of fat, muscle and aorta decreased and SNR increased along with increasing ASIR-V percentage. The SD of 30% ASIR-V to 100% ASIR-V was significantly lower than that of 40% ASIR (p < 0.05). In terms of subjective image evaluation, all ASIR-V reconstructions had good diagnostic acceptability. However, the 50% ASIR-V to 70% ASIR-V series showed significantly superior visibility of small structures when compared with the 40% ASIR and ASIR-V of other percentages (p < 0.05), and 60% ASIR-V was the best series of all ASIR-V images, with a highest subjective image quality. The image sharpness was significantly decreased in images reconstructed by 80% ASIR-V and higher. In routine dose, non-enhanced chest CT, ASIR-V shows greater potential in reducing image noise and artefacts and maintaining image sharpness when compared to the recommended level of 40%ASIR algorithm. Combining both the objective and subjective evaluation of images, non-enhanced chest CT images reconstructed with 60% ASIR-V have the highest image quality. Advances in knowledge: This is the first clinical study to evaluate the clinical value of ASIR-V in the same patients using the same CT scanner in the non-enhanced chest CT scans. It suggests that ASIR-V provides the better image quality and higher diagnostic confidence in comparison with ASIR algorithm.

  4. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matenine, Dmitri, E-mail: dmitri.matenine.1@ulaval.ca; Mascolo-Fortin, Julia, E-mail: julia.mascolo-fortin.1@ulaval.ca; Goussard, Yves, E-mail: yves.goussard@polymtl.ca

    Purpose: The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. Methods: This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numericalmore » simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. Results: The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. Conclusions: The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can potentially improve the rendering of spatial features and reduce cone-beam optical CT artifacts.« less

  5. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT.

    PubMed

    Matenine, Dmitri; Mascolo-Fortin, Julia; Goussard, Yves; Després, Philippe

    2015-11-01

    The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can potentially improve the rendering of spatial features and reduce cone-beam optical CT artifacts.

  6. Evaluation of accelerated iterative x-ray CT image reconstruction using floating point graphics hardware.

    PubMed

    Kole, J S; Beekman, F J

    2006-02-21

    Statistical reconstruction methods offer possibilities to improve image quality as compared with analytical methods, but current reconstruction times prohibit routine application in clinical and micro-CT. In particular, for cone-beam x-ray CT, the use of graphics hardware has been proposed to accelerate the forward and back-projection operations, in order to reduce reconstruction times. In the past, wide application of this texture hardware mapping approach was hampered owing to limited intrinsic accuracy. Recently, however, floating point precision has become available in the latest generation commodity graphics cards. In this paper, we utilize this feature to construct a graphics hardware accelerated version of the ordered subset convex reconstruction algorithm. The aims of this paper are (i) to study the impact of using graphics hardware acceleration for statistical reconstruction on the reconstructed image accuracy and (ii) to measure the speed increase one can obtain by using graphics hardware acceleration. We compare the unaccelerated algorithm with the graphics hardware accelerated version, and for the latter we consider two different interpolation techniques. A simulation study of a micro-CT scanner with a mathematical phantom shows that at almost preserved reconstructed image accuracy, speed-ups of a factor 40 to 222 can be achieved, compared with the unaccelerated algorithm, and depending on the phantom and detector sizes. Reconstruction from physical phantom data reconfirms the usability of the accelerated algorithm for practical cases.

  7. High Spatial and Temporal Resolution Dynamic Contrast-Enhanced Magnetic Resonance Angiography (CE-MRA) using Compressed Sensing with Magnitude Image Subtraction

    PubMed Central

    Rapacchi, Stanislas; Han, Fei; Natsuaki, Yutaka; Kroeker, Randall; Plotnik, Adam; Lehman, Evan; Sayre, James; Laub, Gerhard; Finn, J Paul; Hu, Peng

    2014-01-01

    Purpose We propose a compressed-sensing (CS) technique based on magnitude image subtraction for high spatial and temporal resolution dynamic contrast-enhanced MR angiography (CE-MRA). Methods Our technique integrates the magnitude difference image into the CS reconstruction to promote subtraction sparsity. Fully sampled Cartesian 3D CE-MRA datasets from 6 volunteers were retrospectively under-sampled and three reconstruction strategies were evaluated: k-space subtraction CS, independent CS, and magnitude subtraction CS. The techniques were compared in image quality (vessel delineation, image artifacts, and noise) and image reconstruction error. Our CS technique was further tested on 7 volunteers using a prospectively under-sampled CE-MRA sequence. Results Compared with k-space subtraction and independent CS, our magnitude subtraction CS provides significantly better vessel delineation and less noise at 4X acceleration, and significantly less reconstruction error at 4X and 8X (p<0.05 for all). On a 1–4 point image quality scale in vessel delineation, our technique scored 3.8±0.4 at 4X, 2.8±0.4 at 8X and 2.3±0.6 at 12X acceleration. Using our CS sequence at 12X acceleration, we were able to acquire dynamic CE-MRA with higher spatial and temporal resolution than current clinical TWIST protocol while maintaining comparable image quality (2.8±0.5 vs. 3.0±0.4, p=NS). Conclusion Our technique is promising for dynamic CE-MRA. PMID:23801456

  8. Intraoperative Nerve Blocks Fail to Improve Quality of Recovery after Tissue Expander Breast Reconstruction: A Prospective, Double-Blinded, Randomized, Placebo-Controlled Clinical Trial.

    PubMed

    Lanier, Steven T; Lewis, Kevin C; Kendall, Mark C; Vieira, Brittany L; De Oliveira, Gildasio; Nader, Anthony; Kim, John Y S; Alghoul, Mohammed

    2018-03-01

    The authors' study represents the first level I evidence to assess whether intraoperative nerve blocks improve the quality of recovery from immediate tissue expander/implant breast reconstruction. A prospective, randomized, double-blinded, placebo-controlled clinical trial was conducted in which patients undergoing immediate tissue expander/implant breast reconstruction were randomized to either (1) intraoperative intercostal and pectoral nerve blocks with 0.25% bupivacaine with 1:200,000 epinephrine and 4 mg of dexamethasone or (2) sham nerve blocks with normal saline. The 40-item Quality of Recovery score, pain score, and opioid use in the postoperative period were compared statistically between groups. Power analysis ensured 80 percent power to detect a 10-point (clinically significant) difference in the 40-item Quality of Recovery score. Forty-seven patients were enrolled. Age, body mass index, laterality, mastectomy type, and lymph node dissection were similar between groups. There were no statistical differences in quality of recovery, pain burden as measured by visual analogue scale, opioid consumption, antiemetic use, or length of hospital stay between groups at 24 hours after surgery. Mean global 40-item Quality of Recovery scores were 169 (range, 155 to 182) for the treatment arm and 165 (range, 143 to 179) for the placebo arm (p = 0.36), indicating a high quality of recovery in both groups. Although intraoperative nerve blocks can be a safe adjunct to a comprehensive postsurgical recovery regimen, the authors' results indicate no effect on overall quality of recovery from tissue expander/implant breast reconstruction. Therapeutic, I.

  9. SU-F-I-49: Vendor-Independent, Model-Based Iterative Reconstruction On a Rotating Grid with Coordinate-Descent Optimization for CT Imaging Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, S; Hoffman, J; McNitt-Gray, M

    Purpose: Iterative reconstruction methods show promise for improving image quality and lowering the dose in helical CT. We aim to develop a novel model-based reconstruction method that offers potential for dose reduction with reasonable computation speed and storage requirements for vendor-independent reconstruction from clinical data on a normal desktop computer. Methods: In 2012, Xu proposed reconstructing on rotating slices to exploit helical symmetry and reduce the storage requirements for the CT system matrix. Inspired by this concept, we have developed a novel reconstruction method incorporating the stored-system-matrix approach together with iterative coordinate-descent (ICD) optimization. A penalized-least-squares objective function with amore » quadratic penalty term is solved analytically voxel-by-voxel, sequentially iterating along the axial direction first, followed by the transaxial direction. 8 in-plane (transaxial) neighbors are used for the ICD algorithm. The forward problem is modeled via a unique approach that combines the principle of Joseph’s method with trilinear B-spline interpolation to enable accurate reconstruction with low storage requirements. Iterations are accelerated with multi-CPU OpenMP libraries. For preliminary evaluations, we reconstructed (1) a simulated 3D ellipse phantom and (2) an ACR accreditation phantom dataset exported from a clinical scanner (Definition AS, Siemens Healthcare). Image quality was evaluated in the resolution module. Results: Image quality was excellent for the ellipse phantom. For the ACR phantom, image quality was comparable to clinical reconstructions and reconstructions using open-source FreeCT-wFBP software. Also, we did not observe any deleterious impact associated with the utilization of rotating slices. The system matrix storage requirement was only 4.5GB, and reconstruction time was 50 seconds per iteration. Conclusion: Our reconstruction method shows potential for furthering research in low-dose helical CT, in particular as part of our ongoing development of an acquisition/reconstruction pipeline for generating images under a wide range of conditions. Our algorithm will be made available open-source as “FreeCT-ICD”. NIH U01 CA181156; Disclosures (McNitt-Gray): Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less

  10. Image quality in thoracic 4D cone-beam CT: A sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.

    Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets withmore » various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR values were found to increase with decreasing RMSE values of projection angular gaps with strong correlations (r ≈ −0.7) regardless of the reconstruction algorithm used. Conclusions: Based on the authors’ results, displacement-based binning methods, better reconstruction algorithms, and the acquisition of even projection angular views are the most important factors to consider for improving thoracic 4D-CBCT image quality. In view of the practical issues with displacement-based binning and the fact that projection angular spacing is not currently directly controllable, development of better reconstruction algorithms represents the most effective strategy for improving image quality in thoracic 4D-CBCT for IGRT applications at the current stage.« less

  11. Radiation dose and image quality in pediatric chest CT: effects of iterative reconstruction in normal weight and overweight children.

    PubMed

    Yoon, Haesung; Kim, Myung-Joon; Yoon, Choon-Sik; Choi, Jiin; Shin, Hyun Joo; Kim, Hyun Gi; Lee, Mi-Jung

    2015-03-01

    New CT reconstruction techniques may help reduce the burden of ionizing radiation. To quantify radiation dose reduction when performing pediatric chest CT using a low-dose protocol and 50% adaptive statistical iterative reconstruction (ASIR) compared with age/gender-matched chest CT using a conventional dose protocol and reconstructed with filtered back projection (control group) and to determine its effect on image quality in normal weight and overweight children. We retrospectively reviewed 40 pediatric chest CT (M:F = 21:19; range: 0.1-17 years) in both groups. Radiation dose was compared between the two groups using paired Student's t-test. Image quality including noise, sharpness, artifacts and diagnostic acceptability was subjectively assessed by three pediatric radiologists using a four-point scale (superior, average, suboptimal, unacceptable). Eight children in the ASIR group and seven in the control group were overweight. All radiation dose parameters were significantly lower in the ASIR group (P < 0.01) with a greater than 57% dose reduction in overweight children. Image noise was higher in the ASIR group in both normal weight and overweight children. Only one scan in the ASIR group (1/40, 2.5%) was rated as diagnostically suboptimal and there was no unacceptable study. In both normal weight and overweight children, the ASIR technique is associated with a greater than 57% mean dose reduction, without significantly impacting diagnostic image quality in pediatric chest CT examinations. However, CT scans in overweight children may have a greater noise level, even when using the ASIR technique.

  12. A heuristic statistical stopping rule for iterative reconstruction in emission tomography.

    PubMed

    Ben Bouallègue, F; Crouzet, J F; Mariano-Goulart, D

    2013-01-01

    We propose a statistical stopping criterion for iterative reconstruction in emission tomography based on a heuristic statistical description of the reconstruction process. The method was assessed for MLEM reconstruction. Based on Monte-Carlo numerical simulations and using a perfectly modeled system matrix, our method was compared with classical iterative reconstruction followed by low-pass filtering in terms of Euclidian distance to the exact object, noise, and resolution. The stopping criterion was then evaluated with realistic PET data of a Hoffman brain phantom produced using the GATE platform for different count levels. The numerical experiments showed that compared with the classical method, our technique yielded significant improvement of the noise-resolution tradeoff for a wide range of counting statistics compatible with routine clinical settings. When working with realistic data, the stopping rule allowed a qualitatively and quantitatively efficient determination of the optimal image. Our method appears to give a reliable estimation of the optimal stopping point for iterative reconstruction. It should thus be of practical interest as it produces images with similar or better quality than classical post-filtered iterative reconstruction with a mastered computation time.

  13. Region of interest processing for iterative reconstruction in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Kopp, Felix K.; Nasirudin, Radin A.; Mei, Kai; Fehringer, Andreas; Pfeiffer, Franz; Rummeny, Ernst J.; Noël, Peter B.

    2015-03-01

    The recent advancements in the graphics card technology raised the performance of parallel computing and contributed to the introduction of iterative reconstruction methods for x-ray computed tomography in clinical CT scanners. Iterative maximum likelihood (ML) based reconstruction methods are known to reduce image noise and to improve the diagnostic quality of low-dose CT. However, iterative reconstruction of a region of interest (ROI), especially ML based, is challenging. But for some clinical procedures, like cardiac CT, only a ROI is needed for diagnostics. A high-resolution reconstruction of the full field of view (FOV) consumes unnecessary computation effort that results in a slower reconstruction than clinically acceptable. In this work, we present an extension and evaluation of an existing ROI processing algorithm. Especially improvements for the equalization between regions inside and outside of a ROI are proposed. The evaluation was done on data collected from a clinical CT scanner. The performance of the different algorithms is qualitatively and quantitatively assessed. Our solution to the ROI problem provides an increase in signal-to-noise ratio and leads to visually less noise in the final reconstruction. The reconstruction speed of our technique was observed to be comparable with other previous proposed techniques. The development of ROI processing algorithms in combination with iterative reconstruction will provide higher diagnostic quality in the near future.

  14. Improvement of cardiac CT reconstruction using local motion vector fields.

    PubMed

    Schirra, Carsten Oliver; Bontus, Claas; van Stevendaal, Udo; Dössel, Olaf; Grass, Michael

    2009-03-01

    The motion of the heart is a major challenge for cardiac imaging using CT. A novel approach to decrease motion blur and to improve the signal to noise ratio is motion compensated reconstruction which takes motion vector fields into account in order to correct motion. The presented work deals with the determination of local motion vector fields from high contrast objects and their utilization within motion compensated filtered back projection reconstruction. Image registration is applied during the quiescent cardiac phases. Temporal interpolation in parameter space is used in order to estimate motion during strong motion phases. The resulting motion vector fields are during image reconstruction. The method is assessed using a software phantom and several clinical cases for calcium scoring. As a criterion for reconstruction quality, calcium volume scores were derived from both, gated cardiac reconstruction and motion compensated reconstruction throughout the cardiac phases using low pitch helical cone beam CT acquisitions. The presented technique is a robust method to determine and utilize local motion vector fields. Motion compensated reconstruction using the derived motion vector fields leads to superior image quality compared to gated reconstruction. As a result, the gating window can be enlarged significantly, resulting in increased SNR, while reliable Hounsfield units are achieved due to the reduced level of motion artefacts. The enlargement of the gating window can be translated into reduced dose requirements.

  15. TU-E-217BCD-09: The Feasibility of the Dual-Dictionary Method for Breast Computed Tomography Based on Photon-Counting Detectors.

    PubMed

    Zhao, B; Ding, H; Lu, Y; Wang, G; Zhao, J; Molloi, S

    2012-06-01

    To investigate the feasibility of an Iterative Reconstruction (IR) method utilizing the algebraic reconstruction technique coupled with dual-dictionary learning for the application of dedicated breast computed tomography (CT) based on a photon-counting detector. Postmortem breast samples were scanned in an experimental fan beam CT system based on a Cadmium-Zinc-Telluride (CZT) photon-counting detector. Images were reconstructed from various numbers of projections with both IR and Filtered-Back-Projection (FBP) methods. Contrast-to-Noise Ratio (CNR) between the glandular and adipose tissue of postmortem breast samples were calculated to evaluate the quality of images reconstructed from IR and FBP. In addition to CNR, the spatial resolution was also used as a metric to evaluate the quality of images reconstructed from the two methods. This is further studied with a high-resolution phantom consisting of a 14 cm diameter, 10 cm length polymethylmethacrylate (PMMA) cylinder. A 5 cm diameter coaxial volume of Interest insert that contains fine Aluminum wires of various diameters was used to determine spatial resolution. The spatial resolution and CNR were better when identical sinograms were reconstructed in IR as compared to FBP. In comparison with FBP reconstruction, a similar CNR was achieved using IR method with up to a factor of 5 fewer projections. The results of this study suggest that IR method can significantly reduce the required number of projections for a CT reconstruction compared to FBP method to achieve an equivalent CNR. Therefore, the scanning time of a CZT-based CT system using the IR method can potentially be reduced. © 2012 American Association of Physicists in Medicine.

  16. Full dose reduction potential of statistical iterative reconstruction for head CT protocols in a predominantly pediatric population

    PubMed Central

    Mirro, Amy E.; Brady, Samuel L.; Kaufman, Robert. A.

    2016-01-01

    Purpose To implement the maximum level of statistical iterative reconstruction that can be used to establish dose-reduced head CT protocols in a primarily pediatric population. Methods Select head examinations (brain, orbits, sinus, maxilla and temporal bones) were investigated. Dose-reduced head protocols using an adaptive statistical iterative reconstruction (ASiR) were compared for image quality with the original filtered back projection (FBP) reconstructed protocols in phantom using the following metrics: image noise frequency (change in perceived appearance of noise texture), image noise magnitude, contrast-to-noise ratio (CNR), and spatial resolution. Dose reduction estimates were based on computed tomography dose index (CTDIvol) values. Patient CTDIvol and image noise magnitude were assessed in 737 pre and post dose reduced examinations. Results Image noise texture was acceptable up to 60% ASiR for Soft reconstruction kernel (at both 100 and 120 kVp), and up to 40% ASiR for Standard reconstruction kernel. Implementation of 40% and 60% ASiR led to an average reduction in CTDIvol of 43% for brain, 41% for orbits, 30% maxilla, 43% for sinus, and 42% for temporal bone protocols for patients between 1 month and 26 years, while maintaining an average noise magnitude difference of 0.1% (range: −3% to 5%), improving CNR of low contrast soft tissue targets, and improving spatial resolution of high contrast bony anatomy, as compared to FBP. Conclusion The methodology in this study demonstrates a methodology for maximizing patient dose reduction and maintaining image quality using statistical iterative reconstruction for a primarily pediatric population undergoing head CT examination. PMID:27056425

  17. Comparison and analysis of nonlinear algorithms for compressed sensing in MRI.

    PubMed

    Yu, Yeyang; Hong, Mingjian; Liu, Feng; Wang, Hua; Crozier, Stuart

    2010-01-01

    Compressed sensing (CS) theory has been recently applied in Magnetic Resonance Imaging (MRI) to accelerate the overall imaging process. In the CS implementation, various algorithms have been used to solve the nonlinear equation system for better image quality and reconstruction speed. However, there are no explicit criteria for an optimal CS algorithm selection in the practical MRI application. A systematic and comparative study of those commonly used algorithms is therefore essential for the implementation of CS in MRI. In this work, three typical algorithms, namely, the Gradient Projection For Sparse Reconstruction (GPSR) algorithm, Interior-point algorithm (l(1)_ls), and the Stagewise Orthogonal Matching Pursuit (StOMP) algorithm are compared and investigated in three different imaging scenarios, brain, angiogram and phantom imaging. The algorithms' performances are characterized in terms of image quality and reconstruction speed. The theoretical results show that the performance of the CS algorithms is case sensitive; overall, the StOMP algorithm offers the best solution in imaging quality, while the GPSR algorithm is the most efficient one among the three methods. In the next step, the algorithm performances and characteristics will be experimentally explored. It is hoped that this research will further support the applications of CS in MRI.

  18. Failure Rate and Clinical Outcomes of Anterior Cruciate Ligament Reconstruction Using Autograft Hamstring Versus a Hybrid Graft.

    PubMed

    Leo, Brian M; Krill, Michael; Barksdale, Leticia; Alvarez-Pinzon, Andres M

    2016-11-01

    To compare the revision rate and subjective outcome measures of autograft hamstring versus a soft tissue hybrid graft combining both autograft hamstring and tibialis allograft for isolated anterior cruciate ligament (ACL) reconstruction. A single-center retrospective, nonrandomized, comparative study of isolated ACL reconstruction revision rates for subjects who underwent arthroscopic reconstruction of the ACL using autograft hamstring or a soft tissue hybrid graft using both autograft hamstring and tibialis allograft was performed. Patients with isolated ACL tears were included and underwent anatomic single-bundle reconstruction using an independent tunnel drilling technique and a minimum of 24 months' follow-up. The primary outcome assessed was the presence or absence of ACL rerupture. Secondary clinical outcomes consisted of the International Knee Documentation Committee, University of California at Los Angeles (UCLA) ACL quality of life assessment, and the visual analog pain scale. Between February 2010 and April 2013, 95 patients with isolated ACL tears between ages 18 and 40 met the inclusion criteria and were enrolled. Seventy-one autograft hamstring and 24 soft tissue hybrid graft ACL reconstructions were performed during the course of this study. The follow-up period was 24 to 32 months (mean 26.9 months). There were no statistically significant differences in patient demographics or Outerbridge classification. No statistically significant differences in ACL retears (5.6% auto, 4.2% hybrid; P = .57) were found between groups. Clinical International Knee Documentation Committee and UCLA ACL quality of life assessment improvement scores revealed no statistically significant differences in autograft and hybrid graft reconstructions (41 ± 11, 43 ± 13; P = .65) (38 ± 11, 40 ± 10; P = .23). The mean pain level decreased from 8.1 to 2.8 in the autograft group and 7.9 to 2.5 in the hybrid group (P = .18). The use of a hybrid soft tissue graft has a comparable rerupture rate and clinical outcome to ACL reconstruction using autograft hamstring. Level III, retrospective comparative study. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  19. INFLUENCE OF DIFFERENT LEVELS OF SPORTS ACTIVITIES ON THE QUALITY OF LIFE AFTER THE RECONSTRUCTION OF ANTERIOR CRUCIATE LIGAMENT.

    PubMed

    Ninković, Srđan; Avramov, Snežana; Harhaji, Vladimir; Obradović, Mirko; Vranješ, Miodrag; Milankov, Miroslav

    2015-01-01

    The goal of this study was to examine the nature and presence of influence of different levels of sports activity on the life quality of the patients a year after the reconstruction of anterior cruciate ligament. The study included 185 patients operated at the Department of Orthopedic Surgery and Traumatology of the Clinical Centre of Vojvodina, who were followed for twelve months. Data were collected using the modified Knee Injury and Osteoarthritis Outcome Score questionnaire which included the Lysholm scale. This study included 146 male and 39 female subjects. The reconstruction of anterior cruciate ligament was equally successful in both gender groups. In relation to different types of sports activity, there were no differences in the overall life quality measured by the questionnaire and its subscales, regardless of the level (professional or recreational). However, regarding the level of sports activities, there were differences among the subjects engaged in sports activities at the national level as compared with those going in for sports activities at the recreational level, and particularly in comparison with physically inactive population. A significant correlation was not found by examining the aforementioned relationship between sports activities. This study has shown that the overall life quality a year after the reconstruction of the anterior cruciate ligament does not differ in relation to either the gender of the subjects or the type of sports activity, while the level of sports activity does have some influence on the quality of life. Professional athletes have proved to train significantly more intensively after this reconstruction than those going in for sports recreationally.

  20. Can state-of-the-art HVS-based objective image quality criteria be used for image reconstruction techniques based on ROI analysis?

    NASA Astrophysics Data System (ADS)

    Dostal, P.; Krasula, L.; Klima, M.

    2012-06-01

    Various image processing techniques in multimedia technology are optimized using visual attention feature of the human visual system. Spatial non-uniformity causes that different locations in an image are of different importance in terms of perception of the image. In other words, the perceived image quality depends mainly on the quality of important locations known as regions of interest. The performance of such techniques is measured by subjective evaluation or objective image quality criteria. Many state-of-the-art objective metrics are based on HVS properties; SSIM, MS-SSIM based on image structural information, VIF based on the information that human brain can ideally gain from the reference image or FSIM utilizing the low-level features to assign the different importance to each location in the image. But still none of these objective metrics utilize the analysis of regions of interest. We solve the question if these objective metrics can be used for effective evaluation of images reconstructed by processing techniques based on ROI analysis utilizing high-level features. In this paper authors show that the state-of-the-art objective metrics do not correlate well with subjective evaluation while the demosaicing based on ROI analysis is used for reconstruction. The ROI were computed from "ground truth" visual attention data. The algorithm combining two known demosaicing techniques on the basis of ROI location is proposed to reconstruct the ROI in fine quality while the rest of image is reconstructed with low quality. The color image reconstructed by this ROI approach was compared with selected demosaicing techniques by objective criteria and subjective testing. The qualitative comparison of the objective and subjective results indicates that the state-of-the-art objective metrics are still not suitable for evaluation image processing techniques based on ROI analysis and new criteria is demanded.

  1. MO-DE-207A-01: Impact of Statistical Weights On Detection of Low-Contrast Details in Model-Based Iterative CT Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noo, F; Guo, Z

    2016-06-15

    Purpose: Penalized-weighted least-square reconstruction has become an important research topic in CT, to reduce dose without affecting image quality. Two components impact image quality in this reconstruction: the statistical weights and the use of an edge-preserving penalty term. We are interested in assessing the influence of statistical weights on their own, without the edge-preserving feature. Methods: The influence of statistical weights on image quality was assessed in terms of low-contrast detail detection using LROC analysis. The task amounted to detect and localize a 6-mm lesion with random contrast inside the FORBILD head phantom. A two-alternative forced-choice experiment was used withmore » two human observers performing the task. Reconstructions without and with statistical weights were compared, both using the same quadratic penalty term. The beam energy was set to 30keV to amplify spatial differences in attenuation and thereby the role of statistical weights. A fan-beam data acquisition geometry was used. Results: Visual inspection of images clearly showed a difference in noise between the two reconstructions methods. As expected, the reconstruction without statistical weights exhibited noise streaks. The other reconstruction appeared better in this aspect, but presented other disturbing noise patterns and artifacts induced by the weights. The LROC analysis yield the following 95-percent confidence interval for the difference in reader-averaged AUC (reconstruction without weights minus reconstruction with weights): [0.0026,0.0599]. The mean AUC value was 0.9094. Conclusion: We have investigated the impact of statistical weights without the use of edge-preserving penalty in penalized weighted least-square reconstruction. A decrease rather than increase in image quality was observed when using statistical weights. Thus, the observers were better able to cope with the noise streaks than the noise patterns and artifacts induced by the statistical weights. It may be that different results would be obtained if the penalty term was used with a pixel-dependent weight. F Noo receives research support from Siemens Healthcare GmbH.« less

  2. Mandibular reconstruction using plates prebent to fit rapid prototyping 3-dimensional printing models ameliorates contour deformity.

    PubMed

    Azuma, Masaki; Yanagawa, Toru; Ishibashi-Kanno, Naomi; Uchida, Fumihiko; Ito, Takaaki; Yamagata, Kenji; Hasegawa, Shogo; Sasaki, Kaoru; Adachi, Koji; Tabuchi, Katsuhiko; Sekido, Mitsuru; Bukawa, Hiroki

    2014-10-23

    Recently, medical rapid prototyping (MRP) models, fabricated with computer-aided design and computer-aided manufacture (CAD/CAM) techniques, have been applied to reconstructive surgery in the treatment of head and neck cancers. Here, we tested the use of preoperatively manufactured reconstruction plates, which were produced using MRP models. The clinical efficacy and esthetic outcome of using these products in mandibular reconstruction was evaluated. A series of 28 patients with malignant oral tumors underwent unilateral segmental resection of the mandible and simultaneous mandibular reconstruction. Twelve patients were treated with prebent reconstruction plates that were molded to MRP mandibular models designed with CAD/CAM techniques and fabricated on a combined powder bed and inkjet head three-dimensional printer. The remaining 16 patients were treated using conventional reconstruction methods. The surgical and esthetic outcomes of the two groups were compared by imaging analysis using post-operative panoramic tomography. The mandibular symmetry in patients receiving the MRP-model-based prebent plates was significantly better than that in patients receiving conventional reconstructive surgery. Patients with head and neck cancer undergoing reconstructive surgery using a prebent reconstruction plate fabricated according to an MRP mandibular model showed improved mandibular contour compared to patients undergoing conventional mandibular reconstruction. Thus, use of this new technology for mandibular reconstruction results in an improved esthetic outcome with the potential for improved quality of life for patients.

  3. Multicenter evaluation of quality of life and patient satisfaction after breast reconstruction, a long-term retrospective study.

    PubMed

    Ménez, T; Michot, A; Tamburino, S; Weigert, R; Pinsolle, V

    2018-04-01

    Breast reconstruction techniques are multiple and they should be chosen in order to improve women's satisfaction and well-being, thus obtaining a personalized treatment. This report's major purpose was to study, through the Breast-Q questionnaire, how the functional and aesthetic outcomes, as well as the complications, of the main autologous breast reconstruction techniques, can affect patients quality of life and well-being at long-term. The secondary purpose was to analyse, thus to identify, the independent factors characterizing the different reconstructive techniques, which may affect patients' satisfaction. Women who underwent autologous breast reconstruction through deep inferior epigastric artery perforator or Latissimus dorsi muscle flap from May 2006 to May 2013 were included. The assessment was based on the Breast-Q reconstruction questionnaire. All times of post-mastectomy reconstruction were concerned: immediate, delayed, after previous procedure failure or conversion to another reconstructive technique due to the patient's dissatisfaction. A total of 98 patients were included. Concerning patients satisfaction, the breast-Q score is highest in patients who underwent immediate breast reconstruction, while scores after delayed breast reconstruction, previous surgery failure or conversion to another technique are generally equivalent. Higher scores have been observed in patients who underwent reconstruction through autologous Latissimus dorsi compared to Latissimus dorsi with prosthetic implant reconstruction. The authors identified factors of higher patients' satisfaction, like absence of major complication and advanced patient's age, in order to personalize the surgical planning according to the patient's priorities. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Reconstruction of piano hammer force from string velocity.

    PubMed

    Chaigne, Antoine

    2016-11-01

    A method is presented for reconstructing piano hammer forces through appropriate filtering of the measured string velocity. The filter design is based on the analysis of the pulses generated by the hammer blow and propagating along the string. In the five lowest octaves, the hammer force is reconstructed by considering two waves only: the incoming wave from the hammer and its first reflection at the front end. For the higher notes, four- or eight-wave schemes must be considered. The theory is validated on simulated string velocities by comparing imposed and reconstructed forces. The simulations are based on a nonlinear damped stiff string model previously developed by Chabassier, Chaigne, and Joly [J. Acoust. Soc. Am. 134(1), 648-665 (2013)]. The influence of absorption, dispersion, and amplitude of the string waves on the quality of the reconstruction is discussed. Finally, the method is applied to real piano strings. The measured string velocity is compared to the simulated velocity excited by the reconstructed force, showing a high degree of accuracy. A number of simulations are compared to simulated strings excited by a force derived from measurements of mass and acceleration of the hammer head. One application to an historic piano is also presented.

  5. Novel Fourier-based iterative reconstruction for sparse fan projection using alternating direction total variation minimization

    NASA Astrophysics Data System (ADS)

    Zhao, Jin; Han-Ming, Zhang; Bin, Yan; Lei, Li; Lin-Yuan, Wang; Ai-Long, Cai

    2016-03-01

    Sparse-view x-ray computed tomography (CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in reconstruction speed and memory usage. A novel Fourier-based iterative reconstruction technique that utilizes non-uniform fast Fourier transform (NUFFT) is presented in this work along with advanced total variation (TV) regularization for a fan sparse-view CT. The proposition of a selective matrix contributes to improve reconstruction quality. The new method employs the NUFFT and its adjoin to iterate back and forth between the Fourier and image space. The performance of the proposed algorithm is demonstrated through a series of digital simulations and experimental phantom studies. Results of the proposed algorithm are compared with those of existing TV-regularized techniques based on compressed sensing method, as well as basic algebraic reconstruction technique. Compared with the existing TV-regularized techniques, the proposed Fourier-based technique significantly improves convergence rate and reduces memory allocation, respectively. Projected supported by the National High Technology Research and Development Program of China (Grant No. 2012AA011603) and the National Natural Science Foundation of China (Grant No. 61372172).

  6. Joint image and motion reconstruction for PET using a B-spline motion model.

    PubMed

    Blume, Moritz; Navab, Nassir; Rafecas, Magdalena

    2012-12-21

    We present a novel joint image and motion reconstruction method for PET. The method is based on gated data and reconstructs an image together with a motion function. The motion function can be used to transform the reconstructed image to any of the input gates. All available events (from all gates) are used in the reconstruction. The presented method uses a B-spline motion model, together with a novel motion regularization procedure that does not need a regularization parameter (which is usually extremely difficult to adjust). Several image and motion grid levels are used in order to reduce the reconstruction time. In a simulation study, the presented method is compared to a recently proposed joint reconstruction method. While the presented method provides comparable reconstruction quality, it is much easier to use since no regularization parameter has to be chosen. Furthermore, since the B-spline discretization of the motion function depends on fewer parameters than a displacement field, the presented method is considerably faster and consumes less memory than its counterpart. The method is also applied to clinical data, for which a novel purely data-driven gating approach is presented.

  7. Iterative metal artefact reduction (MAR) in postsurgical chest CT: comparison of three iMAR-algorithms.

    PubMed

    Aissa, Joel; Boos, Johannes; Sawicki, Lino Morris; Heinzler, Niklas; Krzymyk, Karl; Sedlmair, Martin; Kröpil, Patric; Antoch, Gerald; Thomas, Christoph

    2017-11-01

    The purpose of this study was to evaluate the impact of three novel iterative metal artefact (iMAR) algorithms on image quality and artefact degree in chest CT of patients with a variety of thoracic metallic implants. 27 postsurgical patients with thoracic implants who underwent clinical chest CT between March and May 2015 in clinical routine were retrospectively included. Images were retrospectively reconstructed with standard weighted filtered back projection (WFBP) and with three iMAR algorithms (iMAR-Algo1 = Cardiac algorithm, iMAR-Algo2 = Pacemaker algorithm and iMAR-Algo3 = ThoracicCoils algorithm). The subjective and objective image quality was assessed. Averaged over all artefacts, artefact degree was significantly lower for the iMAR-Algo1 (58.9 ± 48.5 HU), iMAR-Algo2 (52.7 ± 46.8 HU) and the iMAR-Algo3 (51.9 ± 46.1 HU) compared with WFBP (91.6 ± 81.6 HU, p < 0.01 for all). All iMAR reconstructed images showed significantly lower artefacts (p < 0.01) compared with the WFPB while there was no significant difference between the iMAR algorithms, respectively. iMAR-Algo2 and iMAR-Algo3 reconstructions decreased mild and moderate artefacts compared with WFBP and iMAR-Algo1 (p < 0.01). All three iMAR algorithms led to a significant reduction of metal artefacts and increase in overall image quality compared with WFBP in chest CT of patients with metallic implants in subjective and objective analysis. The iMARAlgo2 and iMARAlgo3 were best for mild artefacts. IMARAlgo1 was superior for severe artefacts. Advances in knowledge: Iterative MAR led to significant artefact reduction and increase image-quality compared with WFBP in CT after implementation of thoracic devices. Adjusting iMAR-algorithms to patients' metallic implants can help to improve image quality in CT.

  8. Integrating prior information into microwave tomography Part 1: Impact of detail on image quality.

    PubMed

    Kurrant, Douglas; Baran, Anastasia; LoVetri, Joe; Fear, Elise

    2017-12-01

    The authors investigate the impact that incremental increases in the level of detail of patient-specific prior information have on image quality and the convergence behavior of an inversion algorithm in the context of near-field microwave breast imaging. A methodology is presented that uses image quality measures to characterize the ability of the algorithm to reconstruct both internal structures and lesions embedded in fibroglandular tissue. The approach permits key aspects that impact the quality of reconstruction of these structures to be identified and quantified. This provides insight into opportunities to improve image reconstruction performance. Patient-specific information is acquired using radar-based methods that form a regional map of the breast. This map is then incorporated into a microwave tomography algorithm. Previous investigations have demonstrated the effectiveness of this approach to improve image quality when applied to data generated with two-dimensional (2D) numerical models. The present study extends this work by generating prior information that is customized to vary the degree of structural detail to facilitate the investigation of the role of prior information in image formation. Numerical 2D breast models constructed from magnetic resonance (MR) scans, and reconstructions formed with a three-dimensional (3D) numerical breast model are used to assess if trends observed for the 2D results can be extended to 3D scenarios. For the blind reconstruction scenario (i.e., no prior information), the breast surface is not accurately identified and internal structures are not clearly resolved. A substantial improvement in image quality is achieved by incorporating the skin surface map and constraining the imaging domain to the breast. Internal features within the breast appear in the reconstructed image. However, it is challenging to discriminate between adipose and glandular regions and there are inaccuracies in both the structural properties of the glandular region and the dielectric properties reconstructed within this structure. Using a regional map with a skin layer only marginally improves this situation. Increasing the structural detail in the prior information to include internal features leads to reconstructions for which the interface that delineates the fat and gland regions can be inferred. Different features within the glandular region corresponding to tissues with varying relative permittivity values, such as a lesion embedded within glandular structure, emerge in the reconstructed images. Including knowledge of the breast surface and skin layer leads to a substantial improvement in image quality compared to the blind case, but the images have limited diagnostic utility for applications such as tumor response tracking. The diagnostic utility of the reconstruction technique is improved considerably when patient-specific structural information is used. This qualitative observation is supported quantitatively with image metrics. © 2017 American Association of Physicists in Medicine.

  9. Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames

    NASA Astrophysics Data System (ADS)

    Li, Tao; Pareja, Jhon; Fuest, Frederik; Schütte, Manuel; Zhou, Yihui; Dreizler, Andreas; Böhm, Benjamin

    2018-01-01

    In this paper a new approach for 3D flame structure diagnostics using tomographic laser-induced fluorescence (Tomo-LIF) of the OH radical was evaluated. The approach combined volumetric illumination with a multi-camera detection system of eight views. Single-shot measurements were performed in a methane/air premixed laminar flame and in a non-premixed turbulent methane jet flame. 3D OH fluorescence distributions in the flames were reconstructed using the simultaneous multiplicative algebraic reconstruction technique. The tomographic measurements were compared and validated against results of OH-PLIF in the laminar flame. The effects of the experimental setup of the detection system and the size of the volumetric illumination on the quality of the tomographic reconstructions were evaluated. Results revealed that the Tomo-LIF is suitable for volumetric reconstruction of flame structures with acceptable spatial resolution and uncertainty. It was found that the number of views and their angular orientation have a strong influence on the quality and accuracy of the tomographic reconstruction while the illumination volume thickness influences mainly the spatial resolution.

  10. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Park, Justin C.; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Li, Jonathan G.; Liu, Chihray; Lu, Bo

    2015-12-01

    Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm ‘the common mask guided image reconstruction’ (c-MGIR). In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and ‘well’ solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the algorithm, the code was implemented with a graphic processing unit for parallel processing purposes. Root mean square error (RMSE) between the ground truth and reconstructed volumes of the numerical phantom were in the descending order of FDK, CTV, PICCS, MCIR, and c-MGIR for all phases. Specifically, the means and the standard deviations of the RMSE of FDK, CTV, PICCS, MCIR and c-MGIR for all phases were 42.64  ±  6.5%, 3.63  ±  0.83%, 1.31%  ±  0.09%, 0.86%  ±  0.11% and 0.52 %  ±  0.02%, respectively. The image quality of the patient case also indicated the superiority of c-MGIR compared to other algorithms. The results indicated that clinically viable 4D CBCT images can be reconstructed while requiring no more projection data than a typical clinical 3D CBCT scan. This makes c-MGIR a potential online reconstruction algorithm for 4D CBCT, which can provide much better image quality than other available algorithms, while requiring less dose and potentially less scanning time.

  11. Indirect CT Venography at 80 kVp with Sinogram-Affirmed Iterative Reconstruction Compared to 120 kVp with Filtered Back Projection: Assessment of Image Quality and Radiation Dose

    PubMed Central

    Song, Inyoung; Yi, Jeong Geun; Park, Jeong Hee; Ko, Sung Min

    2016-01-01

    Objective To evaluate the image quality and radiation dose of indirect computed tomographic venography (CTV) using 80 kVp with sinogram-affirmed iterative reconstruction (SAFIRE) and 120 kVp with filtered back projection (FBP). Materials and Methods This retrospective study was approved by our institution and informed consent was waived. Sixty-one consecutive patients (M: F = 27: 34, mean age 60 ± 16, mean BMI 23.6 ± 3.6 kg/m2) underwent pelvic and lower extremity CTVs [group A (n = 31, 120 kVp, reconstructed with FBP) vs. group B (n = 30, 80 kVp, reconstructed with SAFIRE)]. The vascular enhancement, image noise, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) were compared. Subjective image analysis for image quality and noise was performed by two radiologists. Radiation dose was compared between the two groups. Results Compared with group A, higher mean vascular enhancement was observed in the group B (group A vs. B, 118.8 ± 15.7 HU vs. 178.6 ± 39.6 HU, p < 0.001), as well as image noise (12.0 ± 3.8 HU vs. 17.9 ± 6.1 HU, p < 0.001) and CNR (5.1 ± 1.9 vs. 7.6 ± 3.0, p < 0.001). The SNRs were not significantly different in both groups (11.2 ± 4.8 vs. 10.8 ± 3.7, p = 0.617). There was no significant difference in subjective image quality between the two groups (all p > 0.05). The subjective image noise was higher in the group B (p = 0.036 in reader 1, p = 0.005 in reader 2). The inter-observer reliability for assessing subjective image quality was good (ICC 0.746~0.784, p < 0.001). The mean CT dose index volume (CTDIvol) and mean dose length product (DLP) were significantly lower in group B than group A [CTDIvol, 6.4 ± 1.3 vs. 2.2 ± 2.2 mGy (p < 0.001); DLP, 499.1 ± 116.0 vs. 133.1 ± 45.7 mGy × cm (p < 0.001)]. Conclusions CTV using 80 kVp combined with SAFIRE provides lower radiation dose and improved CNR compared to CTV using 120 kVp with FBP. PMID:27662618

  12. Low-Contrast and Low-Radiation Dose Protocol in Cardiac Computed Tomography: Usefulness of Low Tube Voltage and Knowledge-Based Iterative Model Reconstruction Algorithm.

    PubMed

    Iyama, Yuji; Nakaura, Takeshi; Yokoyama, Koichi; Kidoh, Masafumi; Harada, Kazunori; Oda, Seitaro; Tokuyasu, Shinichi; Yamashita, Yasuyuki

    This study aimed to evaluate the feasibility of a low contrast, low-radiation dose protocol of 80-peak kilovoltage (kVp) with prospective electrocardiography-gated cardiac computed tomography (CT) using knowledge-based iterative model reconstruction (IMR). Thirty patients underwent an 80-kVp prospective electrocardiography-gated cardiac CT with low-contrast agent (222-mg iodine per kilogram of body weight) dose. We also enrolled 30 consecutive patients who were scanned with a 120-kVp cardiac CT with filtered back projection using the standard contrast agent dose (370-mg iodine per kilogram of body weight) as a historical control group. We evaluated the radiation dose for the 2 groups. The 80-kVp images were reconstructed with filtered back projection (protocol A), hybrid iterative reconstruction (HIR, protocol B), and IMR (protocol C). We compared CT numbers, image noise, and contrast-to-noise ratio among 120-kVp protocol, protocol A, protocol B, and protocol C. In addition, we compared the noise reduction rate between HIR and IMR. Two independent readers compared image contrast, image noise, image sharpness, unfamiliar image texture, and overall image quality among the 4 protocols. The estimated effective dose (ED) of the 80-kVp protocol was 74% lower than that of the 120-kVp protocol (1.4 vs 5.4 mSv). The contrast-to-noise ratio of protocol C was significantly higher than that of protocol A. The noise reduction rate of IMR was significantly higher than that of HIR (P < 0.01). There was no significant difference in almost all qualitative image quality between 120-kVp protocol and protocol C except for image contrast. A 80-kVp protocol with IMR yields higher image quality with 74% decreased radiation dose and 40% decreased contrast agent dose as compared with a 120-kVp protocol, while decreasing more image noise compared with the 80-kVp protocol with HIR.

  13. Low dose dynamic myocardial CT perfusion using advanced iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Eck, Brendan L.; Fahmi, Rachid; Fuqua, Christopher; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2015-03-01

    Dynamic myocardial CT perfusion (CTP) can provide quantitative functional information for the assessment of coronary artery disease. However, x-ray dose in dynamic CTP is high, typically from 10mSv to >20mSv. We compared the dose reduction potential of advanced iterative reconstruction, Iterative Model Reconstruction (IMR, Philips Healthcare, Cleveland, Ohio) to hybrid iterative reconstruction (iDose4) and filtered back projection (FBP). Dynamic CTP scans were obtained using a porcine model with balloon-induced ischemia in the left anterior descending coronary artery to prescribed fractional flow reserve values. High dose dynamic CTP scans were acquired at 100kVp/100mAs with effective dose of 23mSv. Low dose scans at 75mAs, 50mAs, and 25mAs were simulated by adding x-ray quantum noise and detector electronic noise to the projection space data. Images were reconstructed with FBP, iDose4, and IMR at each dose level. Image quality in static CTP images was assessed by SNR and CNR. Blood flow was obtained using a dynamic CTP analysis pipeline and blood flow image quality was assessed using flow-SNR and flow-CNR. IMR showed highest static image quality according to SNR and CNR. Blood flow in FBP was increasingly over-estimated at reduced dose. Flow was more consistent for iDose4 from 100mAs to 50mAs, but was over-estimated at 25mAs. IMR was most consistent from 100mAs to 25mAs. Static images and flow maps for 100mAs FBP, 50mAs iDose4, and 25mAs IMR showed comparable, clear ischemia, CNR, and flow-CNR values. These results suggest that IMR can enable dynamic CTP at significantly reduced dose, at 5.8mSv or 25% of the comparable 23mSv FBP protocol.

  14. Iterative reconstruction methods in atmospheric tomography: FEWHA, Kaczmarz and Gradient-based algorithm

    NASA Astrophysics Data System (ADS)

    Ramlau, R.; Saxenhuber, D.; Yudytskiy, M.

    2014-07-01

    The problem of atmospheric tomography arises in ground-based telescope imaging with adaptive optics (AO), where one aims to compensate in real-time for the rapidly changing optical distortions in the atmosphere. Many of these systems depend on a sufficient reconstruction of the turbulence profiles in order to obtain a good correction. Due to steadily growing telescope sizes, there is a strong increase in the computational load for atmospheric reconstruction with current methods, first and foremost the MVM. In this paper we present and compare three novel iterative reconstruction methods. The first iterative approach is the Finite Element- Wavelet Hybrid Algorithm (FEWHA), which combines wavelet-based techniques and conjugate gradient schemes to efficiently and accurately tackle the problem of atmospheric reconstruction. The method is extremely fast, highly flexible and yields superior quality. Another novel iterative reconstruction algorithm is the three step approach which decouples the problem in the reconstruction of the incoming wavefronts, the reconstruction of the turbulent layers (atmospheric tomography) and the computation of the best mirror correction (fitting step). For the atmospheric tomography problem within the three step approach, the Kaczmarz algorithm and the Gradient-based method have been developed. We present a detailed comparison of our reconstructors both in terms of quality and speed performance in the context of a Multi-Object Adaptive Optics (MOAO) system for the E-ELT setting on OCTOPUS, the ESO end-to-end simulation tool.

  15. Radiation dose reduction in abdominal computed tomography during the late hepatic arterial phase using a model-based iterative reconstruction algorithm: how low can we go?

    PubMed

    Husarik, Daniela B; Marin, Daniele; Samei, Ehsan; Richard, Samuel; Chen, Baiyu; Jaffe, Tracy A; Bashir, Mustafa R; Nelson, Rendon C

    2012-08-01

    The aim of this study was to compare the image quality of abdominal computed tomography scans in an anthropomorphic phantom acquired at different radiation dose levels where each raw data set is reconstructed with both a standard convolution filtered back projection (FBP) and a full model-based iterative reconstruction (MBIR) algorithm. An anthropomorphic phantom in 3 sizes was used with a custom-built liver insert simulating late hepatic arterial enhancement and containing hypervascular liver lesions of various sizes. Imaging was performed on a 64-section multidetector-row computed tomography scanner (Discovery CT750 HD; GE Healthcare, Waukesha, WI) at 3 different tube voltages for each patient size and 5 incrementally decreasing tube current-time products for each tube voltage. Quantitative analysis consisted of contrast-to-noise ratio calculations and image noise assessment. Qualitative image analysis was performed by 3 independent radiologists rating subjective image quality and lesion conspicuity. Contrast-to-noise ratio was significantly higher and mean image noise was significantly lower on MBIR images than on FBP images in all patient sizes, at all tube voltage settings, and all radiation dose levels (P < 0.05). Overall image quality and lesion conspicuity were rated higher for MBIR images compared with FBP images at all radiation dose levels. Image quality and lesion conspicuity on 25% to 50% dose MBIR images were rated equal to full-dose FBP images. This phantom study suggests that depending on patient size, clinically acceptable image quality of the liver in the late hepatic arterial phase can be achieved with MBIR at approximately 50% lower radiation dose compared with FBP.

  16. Dynamic Liver Magnetic Resonance Imaging in Free-Breathing: Feasibility of a Cartesian T1-Weighted Acquisition Technique With Compressed Sensing and Additional Self-Navigation Signal for Hard-Gated and Motion-Resolved Reconstruction.

    PubMed

    Kaltenbach, Benjamin; Bucher, Andreas M; Wichmann, Julian L; Nickel, Dominik; Polkowski, Christoph; Hammerstingl, Renate; Vogl, Thomas J; Bodelle, Boris

    2017-11-01

    The aim of this study was to assess the feasibility of a free-breathing dynamic liver imaging technique using a prototype Cartesian T1-weighted volumetric interpolated breathhold examination (VIBE) sequence with compressed sensing and simultaneous acquisition of a navigation signal for hard-gated and motion state-resolved reconstruction. A total of 43 consecutive oncologic patients (mean age, 66 ± 11 years; 44% female) underwent free-breathing dynamic liver imaging for the evaluation of liver metastases from colorectal cancer using a prototype Cartesian VIBE sequence (field of view, 380 × 345 mm; image matrix, 320 × 218; echo time/repetition time, 1.8/3.76 milliseconds; flip angle, 10 degrees; slice thickness, 3.0 mm; acquisition time, 188 seconds) with continuous data sampling and additionally acquired self-navigation signal. Data were iteratively reconstructed using 2 different approaches: first, a hard-gated reconstruction only using data associated to the dominating motion state (CS VIBE, Compressed Sensing VIBE), and second, a motion-resolved reconstruction with 6 different motion states as additional image dimension (XD VIBE, eXtended dimension VIBE). Continuous acquired data were grouped in 16 subsequent time increments with 11.57 seconds each to resolve arterial and venous contrast phases. For image quality assessment, both CS VIBE and XD VIBE were compared with the patient's last staging dynamic liver magnetic resonance imaging including a breathhold (BH) VIBE as reference standard 4.5 ± 1.2 months before. Representative quality parameters including respiratory artifacts were evaluated for arterial and venous phase images independently, retrospectively and blindly by 3 experienced radiologists, with higher scores indicating better examination quality. To assess diagnostic accuracy, same readers evaluated the presence of metastatic lesions for XD VIBE and CS VIBE compared with reference BH examination in a second session. Compared with CS VIBE, XD VIBE showed significantly higher overall image quality for both arterial phase (4.2 ± 0.6 vs 3.8 ± 0.7, P = 0.008) and venous phase (4.7 ± 0.4 vs 4.3 ± 0.7, P < 0.001) imaging. There was no significant difference between XD VIBE and BH VIBE for overall image quality in the venous phase (4.7 ± 0.4 vs 4.8 ± 0.4, P = 0.834), whereas arterial phase images were scored slightly lower for XD VIBE (4.5 ± 0.6 vs 4.2 ± 0.6, P = 0.024). Both XD VIBE and BH VIBE were characterized by a very low level of respiratory artifacts with no significant difference between BH and motion-resolved free-breathing strategy (P = 0.505 for arterial phase; P = 0.496 for venous phase). Compared with CS VIBE, obvious quality improvement could be achieved for the extended XD VIBE reconstruction with significantly reduced motion artifacts for venous phase images (P = 0.007). Generally, arterial phase images were scored slightly lower compared with venous phase images when using the free-breathing protocol. Overall, 98% of all metastatic lesions were identified on XD VIBE images and 92% of all metastases were found on CS VIBE. Dynamic liver imaging using the proposed free-breathing Cartesian strategy is feasible in oncologic patients with excellent image quality, high respiratory motion robustness, and accurate lesion detection. Overall, XD VIBE was superior to CS VIBE in our study.

  17. Recovery after abdominal wall reconstruction.

    PubMed

    Jensen, Kristian Kiim

    2017-03-01

    Incisional hernia is a common long-term complication to abdominal surgery, occurring in more than 20% of all patients. Some of these hernias become giant and affect patients in several ways. This patient group often experiences pain, decreased perceived body image, and loss of physical function, which results in a need for surgical repair of the giant hernia, known as abdominal wall reconstruction. In the current thesis, patients with a giant hernia were examined to achieve a better understanding of their physical and psychological function before and after abdominal wall reconstruction. Study I was a systematic review of the existing standardized methods for assessing quality of life after incisional hernia repair. After a systematic search in the electronic databases Embase and PubMed, a total of 26 studies using standardized measures for assessment of quality of life after incisional hernia repair were found. The most commonly used questionnaire was the generic Short-Form 36, which assesses overall health-related quality of life, addressing both physical and mental health. The second-most common questionnaire was the Carolinas Comfort Scale, which is a disease specific questionnaire addressing pain, movement limitation and mesh sensation in relation to a current or previous hernia. In total, eight different questionnaires were used at varying time points in the 26 studies. In conclusion, standardization of timing and method of quality of life assessment after incisional hernia repair was lacking. Study II was a case-control study of the effects of an enhanced recovery after surgery pathway for patients undergoing abdominal wall reconstruction for a giant hernia. Sixteen consecutive patients were included prospectively after the implementation of a new enhanced recovery after surgery pathway at the Digestive Disease Center, Bispebjerg Hospital, and compared to a control group of 16 patients included retrospectively in the period immediately prior to the implementation of the pathway. The enhanced recovery after surgery pathway included preoperative high-dose steroid, daily assessment of revised discharge criteria and an aggressive approach to restore bowel function (chewing gum and enema on postoperative day two). Patients who followed the enhanced recovery after surgery pathway reported low scores of pain, nausea and fatigue, and were discharged significantly faster than patients in the control group. A non-significant increase in postoperative readmissions and reoperations was observed after the introduction of the enhanced recovery after surgery pathway. Study III and IV were prospective studies of patients undergoing abdominal wall reconstruction for giant incisional hernia, who were compared to a control group of patients with an intact abdominal wall undergoing colorectal resection for benign or low-grade malignant disease. Patients were examined within a week preoperatively and again one year postoperatively. In study III, the respiratory function and respiratory quality of life were assessed, and the results showed that patients with a giant incisional hernia had a decreased expiratory lung function (peak expiratory flow and maximal expiratory pressure) compared to the predicted values and also compared to patients in the control group. Both parameters increased significantly after abdominal wall reconstruction, while no other significant changes were found in objective or subjective measures at one-year follow-up in both groups of patients. Lastly, study IV examined the abdominal wall- and extremity function, as well as overall and disease specific quality of life. We found that patients with a giant hernia had a significantly decreased relative function of the abdominal wall compared to patients with an intact abdominal wall, and that this deficit was offset at one-year follow-up. Patients in the control group showed a postoperative decrease in abdominal wall function, while no changes were found in extremity function in either group. Patients reported improved quality of life after abdominal wall reconstruction. In summary, the studies in this thesis concluded that; standardization of patient-reported outcomes after incisional hernia repair is lacking; enhanced recovery after surgery is feasible: after abdominal wall reconstruction and seems to lower the time to discharge; patients with giant incisional hernia have compromised expiratory lung function and abdominal wall function, both of which are restored one year after abdominal wall reconstruction.

  18. Quality of reconstruction of compressed off-axis digital holograms by frequency filtering and wavelets.

    PubMed

    Cheremkhin, Pavel A; Kurbatova, Ekaterina A

    2018-01-01

    Compression of digital holograms can significantly help with the storage of objects and data in 2D and 3D form, its transmission, and its reconstruction. Compression of standard images by methods based on wavelets allows high compression ratios (up to 20-50 times) with minimum losses of quality. In the case of digital holograms, application of wavelets directly does not allow high values of compression to be obtained. However, additional preprocessing and postprocessing can afford significant compression of holograms and the acceptable quality of reconstructed images. In this paper application of wavelet transforms for compression of off-axis digital holograms are considered. The combined technique based on zero- and twin-order elimination, wavelet compression of the amplitude and phase components of the obtained Fourier spectrum, and further additional compression of wavelet coefficients by thresholding and quantization is considered. Numerical experiments on reconstruction of images from the compressed holograms are performed. The comparative analysis of applicability of various wavelets and methods of additional compression of wavelet coefficients is performed. Optimum parameters of compression of holograms by the methods can be estimated. Sizes of holographic information were decreased up to 190 times.

  19. Clinical Feasibility of Free-Breathing Dynamic T1-Weighted Imaging With Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging Using a Combination of Variable Density Sampling and Compressed Sensing.

    PubMed

    Yoon, Jeong Hee; Yu, Mi Hye; Chang, Won; Park, Jin-Young; Nickel, Marcel Dominik; Son, Yohan; Kiefer, Berthold; Lee, Jeong Min

    2017-10-01

    The purpose of the study was to investigate the clinical feasibility of free-breathing dynamic T1-weighted imaging (T1WI) using Cartesian sampling, compressed sensing, and iterative reconstruction in gadoxetic acid-enhanced liver magnetic resonance imaging (MRI). This retrospective study was approved by our institutional review board, and the requirement for informed consent was waived. A total of 51 patients at high risk of breath-holding failure underwent dynamic T1WI in a free-breathing manner using volumetric interpolated breath-hold (BH) examination with compressed sensing reconstruction (CS-VIBE) and hard gating. Timing, motion artifacts, and image quality were evaluated by 4 radiologists on a 4-point scale. For patients with low image quality scores (<3) on the late arterial phase, respiratory motion-resolved (extradimension [XD]) reconstruction was additionally performed and reviewed in the same manner. In addition, in 68.6% (35/51) patients who had previously undergone liver MRI, image quality and motion artifacts on dynamic phases using CS-VIBE were compared with previous BH-T1WIs. In all patients, adequate arterial-phase timing was obtained at least once. Overall image quality of free-breathing T1WI was 3.30 ± 0.59 on precontrast and 2.68 ± 0.70, 2.93 ± 0.65, and 3.30 ± 0.49 on early arterial, late arterial, and portal venous phases, respectively. In 13 patients with lower than average image quality (<3) on the late arterial phase, motion-resolved reconstructed T1WI (XD-reconstructed CS-VIBE) significantly reduced motion artifacts (P < 0.002-0.021) and improved image quality (P < 0.0001-0.002). In comparison with previous BH-T1WI, CS-VIBE with hard gating or XD reconstruction showed less motion artifacts and better image quality on precontrast, arterial, and portal venous phases (P < 0.0001-0.013). Volumetric interpolated breath-hold examination with compressed sensing has the potential to provide consistent, motion-corrected free-breathing dynamic T1WI for liver MRI in patients at high risk of breath-holding failure.

  20. A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hao; Folkerts, Michael; Jiang, Steve B., E-mail: xun.jia@utsouthwestern.edu, E-mail: steve.jiang@UTSouthwestern.edu

    2014-07-15

    Purpose: 4D cone beam CT (4D-CBCT) has been utilized in radiation therapy to provide 4D image guidance in lung and upper abdomen area. However, clinical application of 4D-CBCT is currently limited due to the long scan time and low image quality. The purpose of this paper is to develop a new 4D-CBCT reconstruction method that restores volumetric images based on the 1-min scan data acquired with a standard 3D-CBCT protocol. Methods: The model optimizes a deformation vector field that deforms a patient-specific planning CT (p-CT), so that the calculated 4D-CBCT projections match measurements. A forward-backward splitting (FBS) method is inventedmore » to solve the optimization problem. It splits the original problem into two well-studied subproblems, i.e., image reconstruction and deformable image registration. By iteratively solving the two subproblems, FBS gradually yields correct deformation information, while maintaining high image quality. The whole workflow is implemented on a graphic-processing-unit to improve efficiency. Comprehensive evaluations have been conducted on a moving phantom and three real patient cases regarding the accuracy and quality of the reconstructed images, as well as the algorithm robustness and efficiency. Results: The proposed algorithm reconstructs 4D-CBCT images from highly under-sampled projection data acquired with 1-min scans. Regarding the anatomical structure location accuracy, 0.204 mm average differences and 0.484 mm maximum difference are found for the phantom case, and the maximum differences of 0.3–0.5 mm for patients 1–3 are observed. As for the image quality, intensity errors below 5 and 20 HU compared to the planning CT are achieved for the phantom and the patient cases, respectively. Signal-noise-ratio values are improved by 12.74 and 5.12 times compared to results from FDK algorithm using the 1-min data and 4-min data, respectively. The computation time of the algorithm on a NVIDIA GTX590 card is 1–1.5 min per phase. Conclusions: High-quality 4D-CBCT imaging based on the clinically standard 1-min 3D CBCT scanning protocol is feasible via the proposed hybrid reconstruction algorithm.« less

  1. Priori mask guided image reconstruction (p-MGIR) for ultra-low dose cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Park, Justin C.; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Kahler, Darren L.; Liu, Chihray; Lu, Bo

    2015-11-01

    Recently, the compressed sensing (CS) based iterative reconstruction method has received attention because of its ability to reconstruct cone beam computed tomography (CBCT) images with good quality using sparsely sampled or noisy projections, thus enabling dose reduction. However, some challenges remain. In particular, there is always a tradeoff between image resolution and noise/streak artifact reduction based on the amount of regularization weighting that is applied uniformly across the CBCT volume. The purpose of this study is to develop a novel low-dose CBCT reconstruction algorithm framework called priori mask guided image reconstruction (p-MGIR) that allows reconstruction of high-quality low-dose CBCT images while preserving the image resolution. In p-MGIR, the unknown CBCT volume was mathematically modeled as a combination of two regions: (1) where anatomical structures are complex, and (2) where intensities are relatively uniform. The priori mask, which is the key concept of the p-MGIR algorithm, was defined as the matrix that distinguishes between the two separate CBCT regions where the resolution needs to be preserved and where streak or noise needs to be suppressed. We then alternately updated each part of image by solving two sub-minimization problems iteratively, where one minimization was focused on preserving the edge information of the first part while the other concentrated on the removal of noise/artifacts from the latter part. To evaluate the performance of the p-MGIR algorithm, a numerical head-and-neck phantom, a Catphan 600 physical phantom, and a clinical head-and-neck cancer case were used for analysis. The results were compared with the standard Feldkamp-Davis-Kress as well as conventional CS-based algorithms. Examination of the p-MGIR algorithm showed that high-quality low-dose CBCT images can be reconstructed without compromising the image resolution. For both phantom and the patient cases, the p-MGIR is able to achieve a clinically-reasonable image with 60 projections. Therefore, a clinically-viable, high-resolution head-and-neck CBCT image can be obtained while cutting the dose by 83%. Moreover, the image quality obtained using p-MGIR is better than the quality obtained using other algorithms. In this work, we propose a novel low-dose CBCT reconstruction algorithm called p-MGIR. It can be potentially used as a CBCT reconstruction algorithm with low dose scan requests

  2. Image quality of low-dose CCTA in obese patients: impact of high-definition computed tomography and adaptive statistical iterative reconstruction.

    PubMed

    Gebhard, Cathérine; Fuchs, Tobias A; Fiechter, Michael; Stehli, Julia; Stähli, Barbara E; Gaemperli, Oliver; Kaufmann, Philipp A

    2013-10-01

    The accuracy of coronary computed tomography angiography (CCTA) in obese persons is compromised by increased image noise. We investigated CCTA image quality acquired on a high-definition 64-slice CT scanner using modern adaptive statistical iterative reconstruction (ASIR). Seventy overweight and obese patients (24 males; mean age 57 years, mean body mass index 33 kg/m(2)) were studied with clinically-indicated contrast enhanced CCTA. Thirty-five patients underwent a standard definition protocol with filtered backprojection reconstruction (SD-FBP) while 35 patients matched for gender, age, body mass index and coronary artery calcifications underwent a novel high definition protocol with ASIR (HD-ASIR). Segment by segment image quality was assessed using a four-point scale (1 = excellent, 2 = good, 3 = moderate, 4 = non-diagnostic) and revealed better scores for HD-ASIR compared to SD-FBP (1.5 ± 0.43 vs. 1.8 ± 0.48; p < 0.05). The smallest detectable vessel diameter was also improved, 1.0 ± 0.5 mm for HD-ASIR as compared to 1.4 ± 0.4 mm for SD-FBP (p < 0.001). Average vessel attenuation was higher for HD-ASIR (388.3 ± 109.6 versus 350.6 ± 90.3 Hounsfield Units, HU; p < 0.05), while image noise, signal-to-noise ratio and contrast-to noise ratio did not differ significantly between reconstruction protocols (p = NS). The estimated effective radiation doses were similar, 2.3 ± 0.1 and 2.5 ± 0.1 mSv (HD-ASIR vs. SD-ASIR respectively). Compared to a standard definition backprojection protocol (SD-FBP), a newer high definition scan protocol in combination with ASIR (HD-ASIR) incrementally improved image quality and visualization of distal coronary artery segments in overweight and obese individuals, without increasing image noise and radiation dose.

  3. Quantitative Image Quality and Histogram-Based Evaluations of an Iterative Reconstruction Algorithm at Low-to-Ultralow Radiation Dose Levels: A Phantom Study in Chest CT

    PubMed Central

    Lee, Ki Baek

    2018-01-01

    Objective To describe the quantitative image quality and histogram-based evaluation of an iterative reconstruction (IR) algorithm in chest computed tomography (CT) scans at low-to-ultralow CT radiation dose levels. Materials and Methods In an adult anthropomorphic phantom, chest CT scans were performed with 128-section dual-source CT at 70, 80, 100, 120, and 140 kVp, and the reference (3.4 mGy in volume CT Dose Index [CTDIvol]), 30%-, 60%-, and 90%-reduced radiation dose levels (2.4, 1.4, and 0.3 mGy). The CT images were reconstructed by using filtered back projection (FBP) algorithms and IR algorithm with strengths 1, 3, and 5. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were statistically compared between different dose levels, tube voltages, and reconstruction algorithms. Moreover, histograms of subtraction images before and after standardization in x- and y-axes were visually compared. Results Compared with FBP images, IR images with strengths 1, 3, and 5 demonstrated image noise reduction up to 49.1%, SNR increase up to 100.7%, and CNR increase up to 67.3%. Noteworthy image quality degradations on IR images including a 184.9% increase in image noise, 63.0% decrease in SNR, and 51.3% decrease in CNR, and were shown between 60% and 90% reduced levels of radiation dose (p < 0.0001). Subtraction histograms between FBP and IR images showed progressively increased dispersion with increased IR strength and increased dose reduction. After standardization, the histograms appeared deviated and ragged between FBP images and IR images with strength 3 or 5, but almost normally-distributed between FBP images and IR images with strength 1. Conclusion The IR algorithm may be used to save radiation doses without substantial image quality degradation in chest CT scanning of the adult anthropomorphic phantom, down to approximately 1.4 mGy in CTDIvol (60% reduced dose). PMID:29354008

  4. CT of the chest with model-based, fully iterative reconstruction: comparison with adaptive statistical iterative reconstruction.

    PubMed

    Ichikawa, Yasutaka; Kitagawa, Kakuya; Nagasawa, Naoki; Murashima, Shuichi; Sakuma, Hajime

    2013-08-09

    The recently developed model-based iterative reconstruction (MBIR) enables significant reduction of image noise and artifacts, compared with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP). The purpose of this study was to evaluate lesion detectability of low-dose chest computed tomography (CT) with MBIR in comparison with ASIR and FBP. Chest CT was acquired with 64-slice CT (Discovery CT750HD) with standard-dose (5.7 ± 2.3 mSv) and low-dose (1.6 ± 0.8 mSv) conditions in 55 patients (aged 72 ± 7 years) who were suspected of lung disease on chest radiograms. Low-dose CT images were reconstructed with MBIR, ASIR 50% and FBP, and standard-dose CT images were reconstructed with FBP, using a reconstructed slice thickness of 0.625 mm. Two observers evaluated the image quality of abnormal lung and mediastinal structures on a 5-point scale (Score 5 = excellent and score 1 = non-diagnostic). The objective image noise was also measured as the standard deviation of CT intensity in the descending aorta. The image quality score of enlarged mediastinal lymph nodes on low-dose MBIR CT (4.7 ± 0.5) was significantly improved in comparison with low-dose FBP and ASIR CT (3.0 ± 0.5, p = 0.004; 4.0 ± 0.5, p = 0.02, respectively), and was nearly identical to the score of standard-dose FBP image (4.8 ± 0.4, p = 0.66). Concerning decreased lung attenuation (bulla, emphysema, or cyst), the image quality score on low-dose MBIR CT (4.9 ± 0.2) was slightly better compared to low-dose FBP and ASIR CT (4.5 ± 0.6, p = 0.01; 4.6 ± 0.5, p = 0.01, respectively). There were no significant differences in image quality scores of visualization of consolidation or mass, ground-glass attenuation, or reticular opacity among low- and standard-dose CT series. Image noise with low-dose MBIR CT (11.6 ± 1.0 Hounsfield units (HU)) were significantly lower than with low-dose ASIR (21.1 ± 2.6 HU, p < 0.0005), low-dose FBP CT (30.9 ± 3.9 HU, p < 0.0005), and standard-dose FBP CT (16.6 ± 2.3 HU, p < 0.0005). MBIR shows greater potential than ASIR for providing diagnostically acceptable low-dose CT without compromising image quality. With radiation dose reduction of >70%, MBIR can provide equivalent lesion detectability of standard-dose FBP CT.

  5. Feasibility study of low-dose intra-operative cone-beam CT for image-guided surgery

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Shi, Shuanghe; Bian, Junguo; Helm, Patrick; Sidky, Emil Y.; Pan, Xiaochuan

    2011-03-01

    Cone-beam computed tomography (CBCT) has been increasingly used during surgical procedures for providing accurate three-dimensional anatomical information for intra-operative navigation and verification. High-quality CBCT images are in general obtained through reconstruction from projection data acquired at hundreds of view angles, which is associated with a non-negligible amount of radiation exposure to the patient. In this work, we have applied a novel image-reconstruction algorithm, the adaptive-steepest-descent-POCS (ASD-POCS) algorithm, to reconstruct CBCT images from projection data at a significantly reduced number of view angles. Preliminary results from experimental studies involving both simulated data and real data show that images of comparable quality to those presently available in clinical image-guidance systems can be obtained by use of the ASD-POCS algorithm from a fraction of the projection data that are currently used. The result implies potential value of the proposed reconstruction technique for low-dose intra-operative CBCT imaging applications.

  6. Integration of TomoPy and the ASTRA toolbox for advanced processing and reconstruction of tomographic synchrotron data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelt, Daniël M.; Gürsoy, Dogˇa; Palenstijn, Willem Jan

    2016-04-28

    The processing of tomographic synchrotron data requires advanced and efficient software to be able to produce accurate results in reasonable time. In this paper, the integration of two software toolboxes, TomoPy and the ASTRA toolbox, which, together, provide a powerful framework for processing tomographic data, is presented. The integration combines the advantages of both toolboxes, such as the user-friendliness and CPU-efficient methods of TomoPy and the flexibility and optimized GPU-based reconstruction methods of the ASTRA toolbox. It is shown that both toolboxes can be easily installed and used together, requiring only minor changes to existing TomoPy scripts. Furthermore, it ismore » shown that the efficient GPU-based reconstruction methods of the ASTRA toolbox can significantly decrease the time needed to reconstruct large datasets, and that advanced reconstruction methods can improve reconstruction quality compared with TomoPy's standard reconstruction method.« less

  7. Integration of TomoPy and the ASTRA toolbox for advanced processing and reconstruction of tomographic synchrotron data

    PubMed Central

    Pelt, Daniël M.; Gürsoy, Doǧa; Palenstijn, Willem Jan; Sijbers, Jan; De Carlo, Francesco; Batenburg, Kees Joost

    2016-01-01

    The processing of tomographic synchrotron data requires advanced and efficient software to be able to produce accurate results in reasonable time. In this paper, the integration of two software toolboxes, TomoPy and the ASTRA toolbox, which, together, provide a powerful framework for processing tomographic data, is presented. The integration combines the advantages of both toolboxes, such as the user-friendliness and CPU-efficient methods of TomoPy and the flexibility and optimized GPU-based reconstruction methods of the ASTRA toolbox. It is shown that both toolboxes can be easily installed and used together, requiring only minor changes to existing TomoPy scripts. Furthermore, it is shown that the efficient GPU-based reconstruction methods of the ASTRA toolbox can significantly decrease the time needed to reconstruct large datasets, and that advanced reconstruction methods can improve reconstruction quality compared with TomoPy’s standard reconstruction method. PMID:27140167

  8. Intermediate view reconstruction using adaptive disparity search algorithm for real-time 3D processing

    NASA Astrophysics Data System (ADS)

    Bae, Kyung-hoon; Park, Changhan; Kim, Eun-soo

    2008-03-01

    In this paper, intermediate view reconstruction (IVR) using adaptive disparity search algorithm (ASDA) is for realtime 3-dimensional (3D) processing proposed. The proposed algorithm can reduce processing time of disparity estimation by selecting adaptive disparity search range. Also, the proposed algorithm can increase the quality of the 3D imaging. That is, by adaptively predicting the mutual correlation between stereo images pair using the proposed algorithm, the bandwidth of stereo input images pair can be compressed to the level of a conventional 2D image and a predicted image also can be effectively reconstructed using a reference image and disparity vectors. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm improves the PSNRs of a reconstructed image to about 4.8 dB by comparing with that of conventional algorithms, and reduces the Synthesizing time of a reconstructed image to about 7.02 sec by comparing with that of conventional algorithms.

  9. l0 regularization based on a prior image incorporated non-local means for limited-angle X-ray CT reconstruction.

    PubMed

    Zhang, Lingli; Zeng, Li; Guo, Yumeng

    2018-01-01

    Restricted by the scanning environment in some CT imaging modalities, the acquired projection data are usually incomplete, which may lead to a limited-angle reconstruction problem. Thus, image quality usually suffers from the slope artifacts. The objective of this study is to first investigate the distorted domains of the reconstructed images which encounter the slope artifacts and then present a new iterative reconstruction method to address the limited-angle X-ray CT reconstruction problem. The presented framework of new method exploits the structural similarity between the prior image and the reconstructed image aiming to compensate the distorted edges. Specifically, the new method utilizes l0 regularization and wavelet tight framelets to suppress the slope artifacts and pursue the sparsity. New method includes following 4 steps to (1) address the data fidelity using SART; (2) compensate for the slope artifacts due to the missed projection data using the prior image and modified nonlocal means (PNLM); (3) utilize l0 regularization to suppress the slope artifacts and pursue the sparsity of wavelet coefficients of the transformed image by using iterative hard thresholding (l0W); and (4) apply an inverse wavelet transform to reconstruct image. In summary, this method is referred to as "l0W-PNLM". Numerical implementations showed that the presented l0W-PNLM was superior to suppress the slope artifacts while preserving the edges of some features as compared to the commercial and other popular investigative algorithms. When the image to be reconstructed is inconsistent with the prior image, the new method can avoid or minimize the distorted edges in the reconstructed images. Quantitative assessments also showed that applying the new method obtained the highest image quality comparing to the existing algorithms. This study demonstrated that the presented l0W-PNLM yielded higher image quality due to a number of unique characteristics, which include that (1) it utilizes the structural similarity between the reconstructed image and prior image to modify the distorted edges by slope artifacts; (2) it adopts wavelet tight frames to obtain the first and high derivative in several directions and levels; and (3) it takes advantage of l0 regularization to promote the sparsity of wavelet coefficients, which is effective for the inhibition of the slope artifacts. Therefore, the new method can address the limited-angle CT reconstruction problem effectively and have practical significance.

  10. Short and long-term quality of life after reconstruction of bladder exstrophy in infancy: preliminary results of the QUALEX (QUAlity of Life of bladder EXstrophy) study.

    PubMed

    Jochault-Ritz, Sandy; Mercier, Mariette; Aubert, Didier

    2010-08-01

    The aim of the study was to assess quality of life (QOL) of patients born with bladder exstrophy (BE) and reconstructed during early childhood in 7 French university hospitals (QUALEX study: QUAlity of Life of bladder EXstrophy). Patients from 6 to 42 years old answered self-administered Short-Form 36 (SF-36), VSP-A (Vécu et Santé Perçue de l'Adolescent), VSP-AE (Vécu et Santé Perçue de l'Enfant), AUQUIE (AUto-QUestionnaire Imagé de l'Enfant), and general questionnaires about functional and socioeconomic data. Dimension scores were compared between adults and adolescents using SF-36 and adolescents and children using VSP-AE. Scores were also compared to the general French population. Among the 134 eligible patients, 36 adults, 18 adolescents, and 17 children answered the questionnaire. There was no difference between responders and nonresponders in reconstruction criteria. Continence was achieved in 77% of adults, 65% of adolescents, and 12% of children. Adolescent QOL was globally superior to adults and children. Adult QOL was globally lower than the general population except on the physical dimension. Children's QOL was also globally lower than the general population except for relations with family and school work. Adolescents' scores on SF-36 were superior to the general population but lower on half of the dimensions with VSP-AE. Patients presenting with reconstructed BE have impaired QOL, and functional results seem to be the most likely predictive factor of health-related QOL score. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Adaptive Chroma Subsampling-binding and Luma-guided Chroma Reconstruction Method for Screen Content Images.

    PubMed

    Chung, Kuo-Liang; Huang, Chi-Chao; Hsu, Tsu-Chun

    2017-09-04

    In this paper, we propose a novel adaptive chroma subsampling-binding and luma-guided (ASBLG) chroma reconstruction method for screen content images (SCIs). After receiving the decoded luma and subsampled chroma image from the decoder, a fast winner-first voting strategy is proposed to identify the used chroma subsampling scheme prior to compression. Then, the decoded luma image is subsampled as the identified subsampling scheme was performed on the chroma image such that we are able to conclude an accurate correlation between the subsampled decoded luma image and the decoded subsampled chroma image. Accordingly, an adaptive sliding window-based and luma-guided chroma reconstruction method is proposed. The related computational complexity analysis is also provided. We take two quality metrics, the color peak signal-to-noise ratio (CPSNR) of the reconstructed chroma images and SCIs and the gradient-based structure similarity index (CGSS) of the reconstructed SCIs to evaluate the quality performance. Let the proposed chroma reconstruction method be denoted as 'ASBLG'. Based on 26 typical test SCIs and 6 JCT-VC test screen content video sequences (SCVs), several experiments show that on average, the CPSNR gains of all the reconstructed UV images by 4:2:0(A)-ASBLG, SCIs by 4:2:0(MPEG-B)-ASBLG, and SCVs by 4:2:0(A)-ASBLG are 2.1 dB, 1.87 dB, and 1.87 dB, respectively, when compared with that of the other combinations. Specifically, in terms of CPSNR and CGSS, CSBILINEAR-ASBLG for the test SCIs and CSBICUBIC-ASBLG for the test SCVs outperform the existing state-of-the-art comparative combinations, where CSBILINEAR and CSBICUBIC denote the luma-aware based chroma subsampling schemes by Wang et al.

  12. WE-G-207-05: Relationship Between CT Image Quality, Segmentation Performance, and Quantitative Image Feature Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J; Nishikawa, R; Reiser, I

    Purpose: Segmentation quality can affect quantitative image feature analysis. The objective of this study is to examine the relationship between computed tomography (CT) image quality, segmentation performance, and quantitative image feature analysis. Methods: A total of 90 pathology proven breast lesions in 87 dedicated breast CT images were considered. An iterative image reconstruction (IIR) algorithm was used to obtain CT images with different quality. With different combinations of 4 variables in the algorithm, this study obtained a total of 28 different qualities of CT images. Two imaging tasks/objectives were considered: 1) segmentation and 2) classification of the lesion as benignmore » or malignant. Twenty-three image features were extracted after segmentation using a semi-automated algorithm and 5 of them were selected via a feature selection technique. Logistic regression was trained and tested using leave-one-out-cross-validation and its area under the ROC curve (AUC) was recorded. The standard deviation of a homogeneous portion and the gradient of a parenchymal portion of an example breast were used as an estimate of image noise and sharpness. The DICE coefficient was computed using a radiologist’s drawing on the lesion. Mean DICE and AUC were used as performance metrics for each of the 28 reconstructions. The relationship between segmentation and classification performance under different reconstructions were compared. Distributions (median, 95% confidence interval) of DICE and AUC for each reconstruction were also compared. Results: Moderate correlation (Pearson’s rho = 0.43, p-value = 0.02) between DICE and AUC values was found. However, the variation between DICE and AUC values for each reconstruction increased as the image sharpness increased. There was a combination of IIR parameters that resulted in the best segmentation with the worst classification performance. Conclusion: There are certain images that yield better segmentation or classification performance. The best segmentation Result does not necessarily lead to the best classification Result. This work has been supported in part by grants from the NIH R21-EB015053. R Nishikawa is receives royalties form Hologic, Inc.« less

  13. Paediatric cardiac CT examinations: impact of the iterative reconstruction method ASIR on image quality--preliminary findings.

    PubMed

    Miéville, Frédéric A; Gudinchet, François; Rizzo, Elena; Ou, Phalla; Brunelle, Francis; Bochud, François O; Verdun, Francis R

    2011-09-01

    Radiation dose exposure is of particular concern in children due to the possible harmful effects of ionizing radiation. The adaptive statistical iterative reconstruction (ASIR) method is a promising new technique that reduces image noise and produces better overall image quality compared with routine-dose contrast-enhanced methods. To assess the benefits of ASIR on the diagnostic image quality in paediatric cardiac CT examinations. Four paediatric radiologists based at two major hospitals evaluated ten low-dose paediatric cardiac examinations (80 kVp, CTDI(vol) 4.8-7.9 mGy, DLP 37.1-178.9 mGy·cm). The average age of the cohort studied was 2.6 years (range 1 day to 7 years). Acquisitions were performed on a 64-MDCT scanner. All images were reconstructed at various ASIR percentages (0-100%). For each examination, radiologists scored 19 anatomical structures using the relative visual grading analysis method. To estimate the potential for dose reduction, acquisitions were also performed on a Catphan phantom and a paediatric phantom. The best image quality for all clinical images was obtained with 20% and 40% ASIR (p < 0.001) whereas with ASIR above 50%, image quality significantly decreased (p < 0.001). With 100% ASIR, a strong noise-free appearance of the structures reduced image conspicuity. A potential for dose reduction of about 36% is predicted for a 2- to 3-year-old child when using 40% ASIR rather than the standard filtered back-projection method. Reconstruction including 20% to 40% ASIR slightly improved the conspicuity of various paediatric cardiac structures in newborns and children with respect to conventional reconstruction (filtered back-projection) alone.

  14. Feasibility of deep-inspiration breath-hold PET/CT with short-time acquisition: detectability for pulmonary lesions compared with respiratory-gated PET/CT.

    PubMed

    Yamashita, Shozo; Yokoyama, Kunihiko; Onoguchi, Masahisa; Yamamoto, Haruki; Hiko, Shigeaki; Horita, Akihiro; Nakajima, Kenichi

    2014-01-01

    Deep-inspiration breath-hold (DIBH) PET/CT with short-time acquisition and respiratory-gated (RG) PET/CT are performed for pulmonary lesions to reduce the respiratory motion artifacts, and to obtain more accurate standardized uptake value (SUV). DIBH PET/CT demonstrates significant advantages in terms of rapid examination, good quality of CT images and low radiation exposure. On the other hand, the image quality of DIBH PET is generally inferior to that of RG PET because of short-time acquisition resulting in poor signal-to-noise ratio. In this study, RG PET has been regarded as a gold standard, and its detectability between DIBH and RG PET studies was compared using each of the most optimal reconstruction parameters. In the phantom study, the most optimal reconstruction parameters for DIBH and RG PET were determined. In the clinical study, 19 cases were examined using each of the most optimal reconstruction parameters. In the phantom study, the most optimal reconstruction parameters for DIBH and RG PET were different. Reconstruction parameters of DIBH PET could be obtained by reducing the number of subsets for those of RG PET in the state of fixing the number of iterations. In the clinical study, high correlation in the maximum SUV was observed between DIBH and RG PET studies. The clinical result was consistent with that of the phantom study surrounded by air since most of the lesions were located in the low pulmonary radioactivity. DIBH PET/CT may be the most practical method which can be the first choice to reduce respiratory motion artifacts if the detectability of DIBH PET is equivalent with that of RG PET. Although DIBH PET may have limitations in suboptimal signal-to-noise ratio, most of the lesions surrounded by low background radioactivity could provide nearly equivalent image quality between DIBH and RG PET studies when each of the most optimal reconstruction parameters was used.

  15. CT angiography of the aorta using 80 kVp in combination with sinogram-affirmed iterative reconstruction and automated tube current modulation: Effects on image quality and radiation dose.

    PubMed

    Boos, Johannes; Aissa, Joel; Lanzman, Rotem S; Heusch, Philipp; Schimmöller, Lars; Schleich, Christoph; Thomas, Christoph; Antoch, Gerald; Kröpil, Patric

    2016-04-01

    The objective of this study was to evaluate image quality and radiation dose of a CT angiography (CTA) protocol using 80 kVp in combination with iterative reconstruction and automated tube current modulation. Ninety-five aortic CTA examinations were included in this study. A novel 80 kVp aortic CTA-protocol with iterative reconstruction was introduced in our department in March 2012 for patients with a body mass index (BMI) below 32 kg/m(2). The first 72 consecutive examinations were retrospectively assigned to group A (56 patients, 42 men, 14 women, mean age 69.6 ± 10.7 years, BMI range 19.7-31.1 kg/m(2)). For comparison, the last 23 consecutive examinations performed with the old protocol (100 kVp) were assigned to group B (21 patients, 13 men, 8 women, mean age 67.4 ± 11.1 years, BMI range 19.7-31.9 kg/m(2)). Thoracic and abdominal contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) and aortic attenuation were assessed. Subjective image quality was rated on a 5-point scale (1 = non diagnostic; 5 = excellent). Furthermore, dose length product (DLP) and volumetric computed tomography dose index (CTDIvol) were analysed. All examinations achieved diagnostic image quality. Attenuation of the aorta was significantly higher in group A compared with B (thoracic: 443.5 ± 90.5 Hounsfield units (HU) vs. 296.0 ± 61.0 HU; abdominal: 426.3 ± 94.2 HU vs. 283.6 ± 60.5 HU; P < 0.05, respectively). CNR, SNR and subjective image quality were comparable between both groups (CNR: 12.8 ± 3.7 vs. 13.0 ± 7.4; SNR 14.4 ± 3.9 vs. 14.9 ± 8.2; subjective image quality: 4.3 ± 0.6 vs. 4.5 ± 0.6; P > 0.05, respectively). CTDIvol and DLP were significantly lower in group A (1.9 ± 0.5 mGy; 139.2 ± 41.1 mGy × cm) as compared with group B (4.2 ± 1.4 mGy; 292.1 ± 91.5 mGy × cm; P < 0.001, respectively). Low-dose CTA of the aorta using 80 kVp with iterative reconstruction enables a significant dose reduction of up to 50% compared with a 100 kVp protocol in patients with a BMI below 32 kg/m(2) while diagnostic image quality is maintained. © 2016 The Royal Australian and New Zealand College of Radiologists.

  16. Multi-grid finite element method used for enhancing the reconstruction accuracy in Cerenkov luminescence tomography

    NASA Astrophysics Data System (ADS)

    Guo, Hongbo; He, Xiaowei; Liu, Muhan; Zhang, Zeyu; Hu, Zhenhua; Tian, Jie

    2017-03-01

    Cerenkov luminescence tomography (CLT), as a promising optical molecular imaging modality, can be applied to cancer diagnostic and therapeutic. Most researches about CLT reconstruction are based on the finite element method (FEM) framework. However, the quality of FEM mesh grid is still a vital factor to restrict the accuracy of the CLT reconstruction result. In this paper, we proposed a multi-grid finite element method framework, which was able to improve the accuracy of reconstruction. Meanwhile, the multilevel scheme adaptive algebraic reconstruction technique (MLS-AART) based on a modified iterative algorithm was applied to improve the reconstruction accuracy. In numerical simulation experiments, the feasibility of our proposed method were evaluated. Results showed that the multi-grid strategy could obtain 3D spatial information of Cerenkov source more accurately compared with the traditional single-grid FEM.

  17. Improved immediate breast reconstruction as a result of oncoplastic multidisciplinary meeting.

    PubMed

    El Gammal, Mohsen M; Lim, Maria; Uppal, Rajan; Sainsbury, Richard

    2017-01-01

    The National Institute for Health and Clinical Excellence guidelines recommend that breast reconstruction should be available to all women undergoing mastectomy and discussed at the initial surgical consultation (2002, and updated 2009). The National Mastectomy and Breast Reconstruction Audit (2009) showed that 21% of mastectomy patients underwent immediate breast reconstruction (IBR) and 11% had delayed breast reconstruction (DBR). Breast reconstruction has been shown to have a positive effect on quality of life postmastectomy. This retrospective study investigated the impact of the introduction of a dedicated oncoplastic multidisciplinary meeting (OP MDM) on our unit's breast reconstruction rate. A retrospective analysis of 229 women who underwent mastectomy, of whom 81 (35%) underwent breast reconstruction between April 2014 and March 2016. Data were analyzed before and after introduction of OP MDM in April 2015. Data on patient age, type of surgery (mastectomy only, mastectomy and reconstruction), timing of reconstruction (IBR, DBR), and type of reconstruction (implant, autologous) were collected. Between April 2015 and March 2016, following establishment of OP multidisciplinary team in April 2015, of the 120 patients who had mastectomy, 50 (42%) underwent breast reconstruction with 78% (39/50) choosing IBR (56% implant reconstruction and 22% autologous). Compared to the period between April 2014 and March 2015 preceding the OP MDM, of 109 patients who underwent mastectomy, only 31 (28%) had breast reconstruction with 64% (20/31) choosing IBR (45% implant reconstruction and 19% autologous). The rate of DBR was lower, 22% (11/50), following OP MDM compared to 35% (11/31) before OP MDM. There has been an increased uptake of breast reconstruction surgery from 28% to 42%. The biggest impact was on those opting for the immediate type reconstruction option (78%). The OP MDM has significantly contributed to this increased rate of reconstruction.

  18. Patient-Reported Outcomes of Aesthetics and Satisfaction in Immediate Breast Reconstruction After Nipple-Sparing Mastectomy With Implants and Fat Grafting.

    PubMed

    Qureshi, Ali A; Odom, Elizabeth B; Parikh, Rajiv P; Myckatyn, Terence M; Tenenbaum, Marissa M

    2017-10-01

    Direct-to-implant (DTI) and tissue expander/implant (TE/I) reconstructions are the most common implant-based reconstructions after nipple-sparing mastectomy (NSM). However, there are little data beyond complication rates comparing these options. Fat grafting has emerged as an adjunct in NSM reconstructions to improve aesthetic results; however, its impact on patient perceptions of aesthetic outcomes remain unknown. To improve patient-centered care, aesthetic outcomes must be considered from the patients' perspective. To evaluate patient-reported outcomes of aesthetic satisfaction and quality of life in patients undergoing immediate DTI vs TE/I reconstruction after NSM and to assess the role of fat grafting on these outcomes. This is a prospective cohort study comparing NSM patients undergoing DTI or TE/I reconstruction. Patient-reported outcomes were evaluated using the BREAST-Q. Continuous and categorical variables were analyzed using t test and Fisher's exact test, respectively. Fifty-nine patients underwent 113 reconstructions with either DTI (n = 41) or TE/I (n = 18). Mean follow up was 12.1 months. DTI and TE/I patients had comparable satisfaction with outcome, though TE/I patients had significantly larger final implant sizes. TE/I who underwent fat grafting also had significantly higher satisfaction with outcome and psychosocial wellbeing. Patient-reported outcomes are comparable between DTI and TE/I reconstructions after NSM. In order for TE/I patients to achieve a similar level of satisfaction, they may require a larger final implant and additional operations compared to DTI patients. Additionally, fat grafting improves overall satisfaction. TE/I patients may have different aesthetic expectations than DTI patients, emphasizing patient-centered discussions are essential to optimizing outcomes after NSM. 3. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  19. Virtual Reconstruction of Lost Architectures: from the Tls Survey to AR Visualization

    NASA Astrophysics Data System (ADS)

    Quattrini, R.; Pierdicca, R.; Frontoni, E.; Barcaglioni, R.

    2016-06-01

    The exploitation of high quality 3D models for dissemination of archaeological heritage is currently an investigated topic, although Mobile Augmented Reality platforms for historical architecture are not available, allowing to develop low-cost pipelines for effective contents. The paper presents a virtual anastylosis, starting from historical sources and from 3D model based on TLS survey. Several efforts and outputs in augmented or immersive environments, exploiting this reconstruction, are discussed. The work demonstrates the feasibility of a 3D reconstruction approach for complex architectural shapes starting from point clouds and its AR/VR exploitation, allowing the superimposition with archaeological evidences. Major contributions consist in the presentation and the discussion of a pipeline starting from the virtual model, to its simplification showing several outcomes, comparing also the supported data qualities and advantages/disadvantages due to MAR and VR limitations.

  20. Simultaneous phylogeny reconstruction and multiple sequence alignment

    PubMed Central

    Yue, Feng; Shi, Jian; Tang, Jijun

    2009-01-01

    Background A phylogeny is the evolutionary history of a group of organisms. To date, sequence data is still the most used data type for phylogenetic reconstruction. Before any sequences can be used for phylogeny reconstruction, they must be aligned, and the quality of the multiple sequence alignment has been shown to affect the quality of the inferred phylogeny. At the same time, all the current multiple sequence alignment programs use a guide tree to produce the alignment and experiments showed that good guide trees can significantly improve the multiple alignment quality. Results We devise a new algorithm to simultaneously align multiple sequences and search for the phylogenetic tree that leads to the best alignment. We also implemented the algorithm as a C program package, which can handle both DNA and protein data and can take simple cost model as well as complex substitution matrices, such as PAM250 or BLOSUM62. The performance of the new method are compared with those from other popular multiple sequence alignment tools, including the widely used programs such as ClustalW and T-Coffee. Experimental results suggest that this method has good performance in terms of both phylogeny accuracy and alignment quality. Conclusion We present an algorithm to align multiple sequences and reconstruct the phylogenies that minimize the alignment score, which is based on an efficient algorithm to solve the median problems for three sequences. Our extensive experiments suggest that this method is very promising and can produce high quality phylogenies and alignments. PMID:19208110

  1. Very low-dose adult whole-body tumor imaging with F-18 FDG PET/CT

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Naveed, Muhammad; McGrath, Mary; Lisi, Michele; Lavalley, Cathy; Feiglin, David

    2015-03-01

    The aim of this study was to evaluate if effective radiation dose due to PET component in adult whole-body tumor imaging with time-of-flight F-18 FDG PET/CT could be significantly reduced. We retrospectively analyzed data for 10 patients with the body mass index ranging from 25 to 50. We simulated F-18 FDG dose reduction to 25% of the ACR recommended dose via reconstruction of simulated shorter acquisition time per bed position scans from the acquired list data. F-18 FDG whole-body scans were reconstructed using time-of-flight OSEM algorithm and advanced system modeling. Two groups of images were obtained: group A with a standard dose of F-18 FDG and standard reconstruction parameters and group B with simulated 25% dose and modified reconstruction parameters, respectively. Three nuclear medicine physicians blinded to the simulated activity independently reviewed the images and compared diagnostic quality of images. Based on the input from the physicians, we selected optimal modified reconstruction parameters for group B. In so obtained images, all the lesions observed in the group A were visible in the group B. The tumor SUV values were different in the group A, as compared to group B, respectively. However, no significant differences were reported in the final interpretation of the images from A and B groups. In conclusion, for a small number of patients, we have demonstrated that F-18 FDG dose reduction to 25% of the ACR recommended dose, accompanied by appropriate modification of the reconstruction parameters provided adequate diagnostic quality of PET images acquired on time-of-flight PET/CT.

  2. Limiting CT radiation dose in children with craniosynostosis: phantom study using model-based iterative reconstruction.

    PubMed

    Kaasalainen, Touko; Palmu, Kirsi; Lampinen, Anniina; Reijonen, Vappu; Leikola, Junnu; Kivisaari, Riku; Kortesniemi, Mika

    2015-09-01

    Medical professionals need to exercise particular caution when developing CT scanning protocols for children who require multiple CT studies, such as those with craniosynostosis. To evaluate the utility of ultra-low-dose CT protocols with model-based iterative reconstruction techniques for craniosynostosis imaging. We scanned two pediatric anthropomorphic phantoms with a 64-slice CT scanner using different low-dose protocols for craniosynostosis. We measured organ doses in the head region with metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. Numerical simulations served to estimate organ and effective doses. We objectively and subjectively evaluated the quality of images produced by adaptive statistical iterative reconstruction (ASiR) 30%, ASiR 50% and Veo (all by GE Healthcare, Waukesha, WI). Image noise and contrast were determined for different tissues. Mean organ dose with the newborn phantom was decreased up to 83% compared to the routine protocol when using ultra-low-dose scanning settings. Similarly, for the 5-year phantom the greatest radiation dose reduction was 88%. The numerical simulations supported the findings with MOSFET measurements. The image quality remained adequate with Veo reconstruction, even at the lowest dose level. Craniosynostosis CT with model-based iterative reconstruction could be performed with a 20-μSv effective dose, corresponding to the radiation exposure of plain skull radiography, without compromising required image quality.

  3. A simple method for low-contrast detectability, image quality and dose optimisation with CT iterative reconstruction algorithms and model observers.

    PubMed

    Bellesi, Luca; Wyttenbach, Rolf; Gaudino, Diego; Colleoni, Paolo; Pupillo, Francesco; Carrara, Mauro; Braghetti, Antonio; Puligheddu, Carla; Presilla, Stefano

    2017-01-01

    The aim of this work was to evaluate detection of low-contrast objects and image quality in computed tomography (CT) phantom images acquired at different tube loadings (i.e. mAs) and reconstructed with different algorithms, in order to find appropriate settings to reduce the dose to the patient without any image detriment. Images of supraslice low-contrast objects of a CT phantom were acquired using different mAs values. Images were reconstructed using filtered back projection (FBP), hybrid and iterative model-based methods. Image quality parameters were evaluated in terms of modulation transfer function; noise, and uniformity using two software resources. For the definition of low-contrast detectability, studies based on both human (i.e. four-alternative forced-choice test) and model observers were performed across the various images. Compared to FBP, image quality parameters were improved by using iterative reconstruction (IR) algorithms. In particular, IR model-based methods provided a 60% noise reduction and a 70% dose reduction, preserving image quality and low-contrast detectability for human radiological evaluation. According to the model observer, the diameters of the minimum detectable detail were around 2 mm (up to 100 mAs). Below 100 mAs, the model observer was unable to provide a result. IR methods improve CT protocol quality, providing a potential dose reduction while maintaining a good image detectability. Model observer can in principle be useful to assist human performance in CT low-contrast detection tasks and in dose optimisation.

  4. Hybrid ECG-gated versus non-gated 512-slice CT angiography of the aorta and coronary artery: image quality and effect of a motion correction algorithm.

    PubMed

    Lee, Ji Won; Kim, Chang Won; Lee, Geewon; Lee, Han Cheol; Kim, Sang-Pil; Choi, Bum Sung; Jeong, Yeon Joo

    2018-02-01

    Background Using the hybrid electrocardiogram (ECG)-gated computed tomography (CT) technique, assessment of entire aorta, coronary arteries, and aortic valve can be possible using single-bolus contrast administration within a single acquisition. Purpose To compare the image quality of hybrid ECG-gated and non-gated CT angiography of the aorta and evaluate the effect of a motion correction algorithm (MCA) on coronary artery image quality in a hybrid ECG-gated aorta CT group. Material and Methods In total, 104 patients (76 men; mean age = 65.8 years) prospectively randomized into two groups (Group 1 = hybrid ECG-gated CT; Group 2 = non-gated CT) underwent wide-detector array aorta CT. Image quality, assessed using a four-point scale, was compared between the groups. Coronary artery image quality was compared between the conventional reconstruction and motion correction reconstruction subgroups in Group 1. Results Group 1 showed significant advantages over Group 2 in aortic wall, cardiac chamber, aortic valve, coronary ostia, and main coronary arteries image quality (all P < 0.001). All Group 1 patients had diagnostic image quality of the aortic wall and left ostium. The MCA significantly improved the image quality of the three main coronary arteries ( P < 0.05). Moreover, per-vessel interpretability improved from 92.3% to 97.1% with the MCA ( P = 0.013). Conclusion Hybrid ECG-gated CT significantly improved the heart and aortic wall image quality and the MCA can further improve the image quality and interpretability of coronary arteries.

  5. Diagnostic Accuracy of CT Enterography for Active Inflammatory Terminal Ileal Crohn Disease: Comparison of Full-Dose and Half-Dose Images Reconstructed with FBP and Half-Dose Images with SAFIRE.

    PubMed

    Gandhi, Namita S; Baker, Mark E; Goenka, Ajit H; Bullen, Jennifer A; Obuchowski, Nancy A; Remer, Erick M; Coppa, Christopher P; Einstein, David; Feldman, Myra K; Kanmaniraja, Devaraju; Purysko, Andrei S; Vahdat, Noushin; Primak, Andrew N; Karim, Wadih; Herts, Brian R

    2016-08-01

    Purpose To compare the diagnostic accuracy and image quality of computed tomographic (CT) enterographic images obtained at half dose and reconstructed with filtered back projection (FBP) and sinogram-affirmed iterative reconstruction (SAFIRE) with those of full-dose CT enterographic images reconstructed with FBP for active inflammatory terminal or neoterminal ileal Crohn disease. Materials and Methods This retrospective study was compliant with HIPAA and approved by the institutional review board. The requirement to obtain informed consent was waived. Ninety subjects (45 with active terminal ileal Crohn disease and 45 without Crohn disease) underwent CT enterography with a dual-source CT unit. The reference standard for confirmation of active Crohn disease was active terminal ileal Crohn disease based on ileocolonoscopy or established Crohn disease and imaging features of active terminal ileal Crohn disease. Data from both tubes were reconstructed with FBP (100% exposure); data from the primary tube (50% exposure) were reconstructed with FBP and SAFIRE strengths 3 and 4, yielding four datasets per CT enterographic examination. The mean volume CT dose index (CTDIvol) and size-specific dose estimate (SSDE) at full dose were 13.1 mGy (median, 7.36 mGy) and 15.9 mGy (median, 13.06 mGy), respectively, and those at half dose were 6.55 mGy (median, 3.68 mGy) and 7.95 mGy (median, 6.5 mGy). Images were subjectively evaluated by eight radiologists for quality and diagnostic confidence for Crohn disease. Areas under the receiver operating characteristic curves (AUCs) were estimated, and the multireader, multicase analysis of variance method was used to compare reconstruction methods on the basis of a noninferiority margin of 0.05. Results The mean AUCs with half-dose scans (FBP, 0.908; SAFIRE 3, 0.935; SAFIRE 4, 0.924) were noninferior to the mean AUC with full-dose FBP scans (0.908; P < .003). The proportion of images with inferior quality was significantly higher with all half-dose reconstructions than with full-dose FBP (mean proportion: 0.117 for half-dose FBP, 0.054 for half-dose SAFIRE 3, 0.054 for half-dose SAFIRE 4, and 0.017 for full-dose FBP; P < .001). Conclusion The diagnostic accuracy of half-dose CT enterography with FBP and SAFIRE is statistically noninferior to that of full-dose CT enterography for active inflammatory terminal ileal Crohn disease, despite an inferior subjective image quality. (©) RSNA, 2016 Online supplemental material is available for this article.

  6. Zoom Reconstruction Tool: Evaluation of Image Quality and Influence on the Diagnosis of Root Fracture.

    PubMed

    Queiroz, Polyane Mazucatto; Santaella, Gustavo Machado; Capelozza, Ana Lúcia Alvares; Rosalen, Pedro Luiz; Freitas, Deborah Queiroz; Haiter-Neto, Francisco

    2018-04-01

    This study evaluated the image quality and the diagnosis of root fractures when using the Zoom Reconstruction tool (J Morita, Kyoto, Japan). A utility wax phantom with a metal sample inside was used for objective evaluation, and a mandible with 27 single-rooted teeth (with and without obturation and with and without vertical or horizontal fractures) was used for diagnostic evaluation. The images were acquired in 3 protocols: protocol 1, field of view (FOV) of 4 × 4 cm and a voxel size of 0.08 mm; protocol 2, FOV of 10 × 10 cm and a voxel size of 0.2 mm; and protocol 3, Zoom Reconstruction of images from protocol 2 (FOV of 4 × 4 cm and a voxel size of 0.08 mm). The objective evaluation was achieved by measuring the image noise, and the diagnosis of fractures was performed by 3 evaluators. The area under the receiver operating characteristic curve was used to calculate accuracy, and analysis of variance compared the accuracy and image quality of the protocols. Regarding quality, protocol 1 was superior to protocol 2 (P < .0001) and Zoom Reconstruction (P < .0001). Additionally, images of protocol 2 presented less noise than the Zoom Reconstruction image (P < .0001); however, for diagnosis, Zoom Reconstruction was superior in relation to protocol 2 (P = .011) and did not differ from protocol 1 (P = .228) for the diagnosis of a vertical root fracture in filled teeth. The Zoom Reconstruction tool allows better accuracy for vertical root fracture detection in filled teeth, making it possible to obtain a higher-resolution image from a lower-resolution examination without having to expose the patient to more radiation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Differential Binary Encoding Method for Calibrating Image Sensors Based on IOFBs

    PubMed Central

    Fernández, Pedro R.; Lázaro-Galilea, José Luis; Gardel, Alfredo; Espinosa, Felipe; Bravo, Ignacio; Cano, Ángel

    2012-01-01

    Image transmission using incoherent optical fiber bundles (IOFBs) requires prior calibration to obtain the spatial in-out fiber correspondence necessary to reconstruct the image captured by the pseudo-sensor. This information is recorded in a Look-Up Table called the Reconstruction Table (RT), used later for reordering the fiber positions and reconstructing the original image. This paper presents a very fast method based on image-scanning using spaces encoded by a weighted binary code to obtain the in-out correspondence. The results demonstrate that this technique yields a remarkable reduction in processing time and the image reconstruction quality is very good compared to previous techniques based on spot or line scanning, for example. PMID:22666023

  8. Spectral reconstruction of dental X-ray tubes using laplace inverse transform of the attenuation curve

    NASA Astrophysics Data System (ADS)

    Malezan, A.; Tomal, A.; Antoniassi, M.; Watanabe, P. C. A.; Albino, L. D.; Poletti, M. E.

    2015-11-01

    In this work, a spectral reconstruction methodology for diagnostic X-ray, using Laplace inverse transform of the attenuation, was successfully applied to dental X-ray equipments. The attenuation curves of 8 commercially available dental X-ray equipment, from 3 different manufactures (Siemens, Gnatus and Dabi Atlante), were obtained by using an ionization chamber and high purity aluminium filters, while the kVp was obtained with a specific meter. A computational routine was implemented in order to adjust a model function, whose inverse Laplace transform is analytically known, to the attenuation curve. This methodology was validated by comparing the reconstructed and the measured (using semiconductor detector of cadmium telluride) spectra of a given dental X-ray unit. The spectral reconstruction showed the Dabi Atlante equipments generating similar shape spectra. This is a desirable feature from clinic standpoint because it produces similar levels of image quality and dose. We observed that equipments from Siemens and Gnatus generate significantly different spectra, suggesting that, for a given operating protocol, these units will present different levels of image quality and dose. This fact claims for the necessity of individualized operating protocols that maximize image quality and dose. The proposed methodology is suitable to perform a spectral reconstruction of dental X-ray equipments from the simple measurements of attenuation curve and kVp. The simplified experimental apparatus and the low level of technical difficulty make this methodology accessible to a broad range of users. The knowledge of the spectral distribution can help in the development of operating protocols that maximize image quality and dose.

  9. Low-cost three-dimensional millimeter-wave holographic imaging system based on a frequency-scanning antenna.

    PubMed

    Amin Nili, Vahid; Mansouri, Ehsan; Kavehvash, Zahra; Fakharzadeh, Mohammad; Shabany, Mahdi; Khavasi, Amin

    2018-01-01

    In this paper, a closed-form two-dimensional reconstruction technique for hybrid frequency and mechanical scanning millimeter-wave (MMW) imaging systems is proposed. Although being commercially implemented in many imaging systems as a low-cost real-time solution, the results of frequency scanning systems have been reconstructed numerically or have been reported as the captured raw data with no clear details. Furthermore, this paper proposes a new framework to utilize the captured data of different frequencies for three-dimensional (3D) reconstruction based on novel proposed closed-form relations. The hybrid frequency and mechanical scanning structure, together with the proposed reconstruction method, yields a low-cost MMW imaging system with a satisfying performance. The extracted reconstruction formulations are validated through numerical simulations, which show comparable image quality with conventional MMW imaging systems, i.e., switched-array (SA) and phased-array (PA) structures. Extensive simulations are also performed in the presence of additive noise, demonstrating the acceptable robustness of the system against system noise compared to SA and comparable performance with PA. Finally, 3D reconstruction of the simulated data shows a depth resolution of better than 10 cm with minimum degradation of lateral resolution in the 10 GHz frequency bandwidth.

  10. A shape-based quality evaluation and reconstruction method for electrical impedance tomography.

    PubMed

    Antink, Christoph Hoog; Pikkemaat, Robert; Malmivuo, Jaakko; Leonhardt, Steffen

    2015-06-01

    Linear methods of reconstruction play an important role in medical electrical impedance tomography (EIT) and there is a wide variety of algorithms based on several assumptions. With the Graz consensus reconstruction algorithm for EIT (GREIT), a novel linear reconstruction algorithm as well as a standardized framework for evaluating and comparing methods of reconstruction were introduced that found widespread acceptance in the community. In this paper, we propose a two-sided extension of this concept by first introducing a novel method of evaluation. Instead of being based on point-shaped resistivity distributions, we use 2759 pairs of real lung shapes for evaluation that were automatically segmented from human CT data. Necessarily, the figures of merit defined in GREIT were adjusted. Second, a linear method of reconstruction that uses orthonormal eigenimages as training data and a tunable desired point spread function are proposed. Using our novel method of evaluation, this approach is compared to the classical point-shaped approach. Results show that most figures of merit improve with the use of eigenimages as training data. Moreover, the possibility of tuning the reconstruction by modifying the desired point spread function is shown. Finally, the reconstruction of real EIT data shows that higher contrasts and fewer artifacts can be achieved in ventilation- and perfusion-related images.

  11. MO-C-18A-01: Advances in Model-Based 3D Image Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G; Pan, X; Stayman, J

    2014-06-15

    Recent years have seen the emergence of CT image reconstruction techniques that exploit physical models of the imaging system, photon statistics, and even the patient to achieve improved 3D image quality and/or reduction of radiation dose. With numerous advantages in comparison to conventional 3D filtered backprojection, such techniques bring a variety of challenges as well, including: a demanding computational load associated with sophisticated forward models and iterative optimization methods; nonlinearity and nonstationarity in image quality characteristics; a complex dependency on multiple free parameters; and the need to understand how best to incorporate prior information (including patient-specific prior images) within themore » reconstruction process. The advantages, however, are even greater – for example: improved image quality; reduced dose; robustness to noise and artifacts; task-specific reconstruction protocols; suitability to novel CT imaging platforms and noncircular orbits; and incorporation of known characteristics of the imager and patient that are conventionally discarded. This symposium features experts in 3D image reconstruction, image quality assessment, and the translation of such methods to emerging clinical applications. Dr. Chen will address novel methods for the incorporation of prior information in 3D and 4D CT reconstruction techniques. Dr. Pan will show recent advances in optimization-based reconstruction that enable potential reduction of dose and sampling requirements. Dr. Stayman will describe a “task-based imaging” approach that leverages models of the imaging system and patient in combination with a specification of the imaging task to optimize both the acquisition and reconstruction process. Dr. Samei will describe the development of methods for image quality assessment in such nonlinear reconstruction techniques and the use of these methods to characterize and optimize image quality and dose in a spectrum of clinical applications. Learning Objectives: Learn the general methodologies associated with model-based 3D image reconstruction. Learn the potential advantages in image quality and dose associated with model-based image reconstruction. Learn the challenges associated with computational load and image quality assessment for such reconstruction methods. Learn how imaging task can be incorporated as a means to drive optimal image acquisition and reconstruction techniques. Learn how model-based reconstruction methods can incorporate prior information to improve image quality, ease sampling requirements, and reduce dose.« less

  12. Accelerating simultaneous algebraic reconstruction technique with motion compensation using CUDA-enabled GPU.

    PubMed

    Pang, Wai-Man; Qin, Jing; Lu, Yuqiang; Xie, Yongming; Chui, Chee-Kong; Heng, Pheng-Ann

    2011-03-01

    To accelerate the simultaneous algebraic reconstruction technique (SART) with motion compensation for speedy and quality computed tomography reconstruction by exploiting CUDA-enabled GPU. Two core techniques are proposed to fit SART into the CUDA architecture: (1) a ray-driven projection along with hardware trilinear interpolation, and (2) a voxel-driven back-projection that can avoid redundant computation by combining CUDA shared memory. We utilize the independence of each ray and voxel on both techniques to design CUDA kernel to represent a ray in the projection and a voxel in the back-projection respectively. Thus, significant parallelization and performance boost can be achieved. For motion compensation, we rectify each ray's direction during the projection and back-projection stages based on a known motion vector field. Extensive experiments demonstrate the proposed techniques can provide faster reconstruction without compromising image quality. The process rate is nearly 100 projections s (-1), and it is about 150 times faster than a CPU-based SART. The reconstructed image is compared against ground truth visually and quantitatively by peak signal-to-noise ratio (PSNR) and line profiles. We further evaluate the reconstruction quality using quantitative metrics such as signal-to-noise ratio (SNR) and mean-square-error (MSE). All these reveal that satisfactory results are achieved. The effects of major parameters such as ray sampling interval and relaxation parameter are also investigated by a series of experiments. A simulated dataset is used for testing the effectiveness of our motion compensation technique. The results demonstrate our reconstructed volume can eliminate undesirable artifacts like blurring. Our proposed method has potential to realize instantaneous presentation of 3D CT volume to physicians once the projection data are acquired.

  13. Design of k-Space Channel Combination Kernels and Integration with Parallel Imaging

    PubMed Central

    Beatty, Philip J.; Chang, Shaorong; Holmes, James H.; Wang, Kang; Brau, Anja C. S.; Reeder, Scott B.; Brittain, Jean H.

    2014-01-01

    Purpose In this work, a new method is described for producing local k-space channel combination kernels using a small amount of low-resolution multichannel calibration data. Additionally, this work describes how these channel combination kernels can be combined with local k-space unaliasing kernels produced by the calibration phase of parallel imaging methods such as GRAPPA, PARS and ARC. Methods Experiments were conducted to evaluate both the image quality and computational efficiency of the proposed method compared to a channel-by-channel parallel imaging approach with image-space sum-of-squares channel combination. Results Results indicate comparable image quality overall, with some very minor differences seen in reduced field-of-view imaging. It was demonstrated that this method enables a speed up in computation time on the order of 3–16X for 32-channel data sets. Conclusion The proposed method enables high quality channel combination to occur earlier in the reconstruction pipeline, reducing computational and memory requirements for image reconstruction. PMID:23943602

  14. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahimian, Benjamin P.; Zhao Yunzhe; Huang Zhifeng

    Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). Inmore » each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest scanner flux setting of 39 mAs produce comparable image quality, resolution, and contrast relative to FBP with the 140 mAs flux setting. Compared to the algebraic reconstruction technique and the expectation maximization statistical reconstruction algorithm, a significant reduction in computation time is achieved with EST. Finally, numerical experiments on helical cone-beam CT data suggest that the combination of EST and ASSR produces reconstructions with higher image quality and lower noise than the Feldkamp Davis and Kress (FDK) method and the conventional ASSR approach. Conclusions: A Fourier-based iterative method has been applied to the reconstruction of fan-bean CT data with reduced x-ray fluence. This method incorporates advantageous features in both real and Fourier space iterative schemes: using a fast and algebraically exact method to calculate forward projection, enforcing the measured data in Fourier space, and applying physical constraints and flexible regularization in real space. Our results suggest that EST can be utilized for radiation dose reduction in x-ray CT via the readily implementable technique of lowering mAs settings. Numerical experiments further indicate that EST requires less computation time than several other iterative algorithms and can, in principle, be extended to helical cone-beam geometry in combination with the ASSR method.« less

  15. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction.

    PubMed

    Fahimian, Benjamin P; Zhao, Yunzhe; Huang, Zhifeng; Fung, Russell; Mao, Yu; Zhu, Chun; Khatonabadi, Maryam; DeMarco, John J; Osher, Stanley J; McNitt-Gray, Michael F; Miao, Jianwei

    2013-03-01

    A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest scanner flux setting of 39 mAs produce comparable image quality, resolution, and contrast relative to FBP with the 140 mAs flux setting. Compared to the algebraic reconstruction technique and the expectation maximization statistical reconstruction algorithm, a significant reduction in computation time is achieved with EST. Finally, numerical experiments on helical cone-beam CT data suggest that the combination of EST and ASSR produces reconstructions with higher image quality and lower noise than the Feldkamp Davis and Kress (FDK) method and the conventional ASSR approach. A Fourier-based iterative method has been applied to the reconstruction of fan-bean CT data with reduced x-ray fluence. This method incorporates advantageous features in both real and Fourier space iterative schemes: using a fast and algebraically exact method to calculate forward projection, enforcing the measured data in Fourier space, and applying physical constraints and flexible regularization in real space. Our results suggest that EST can be utilized for radiation dose reduction in x-ray CT via the readily implementable technique of lowering mAs settings. Numerical experiments further indicate that EST requires less computation time than several other iterative algorithms and can, in principle, be extended to helical cone-beam geometry in combination with the ASSR method.

  16. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction

    PubMed Central

    Fahimian, Benjamin P.; Zhao, Yunzhe; Huang, Zhifeng; Fung, Russell; Mao, Yu; Zhu, Chun; Khatonabadi, Maryam; DeMarco, John J.; Osher, Stanley J.; McNitt-Gray, Michael F.; Miao, Jianwei

    2013-01-01

    Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest scanner flux setting of 39 mAs produce comparable image quality, resolution, and contrast relative to FBP with the 140 mAs flux setting. Compared to the algebraic reconstruction technique and the expectation maximization statistical reconstruction algorithm, a significant reduction in computation time is achieved with EST. Finally, numerical experiments on helical cone-beam CT data suggest that the combination of EST and ASSR produces reconstructions with higher image quality and lower noise than the Feldkamp Davis and Kress (FDK) method and the conventional ASSR approach. Conclusions: A Fourier-based iterative method has been applied to the reconstruction of fan-bean CT data with reduced x-ray fluence. This method incorporates advantageous features in both real and Fourier space iterative schemes: using a fast and algebraically exact method to calculate forward projection, enforcing the measured data in Fourier space, and applying physical constraints and flexible regularization in real space. Our results suggest that EST can be utilized for radiation dose reduction in x-ray CT via the readily implementable technique of lowering mAs settings. Numerical experiments further indicate that EST requires less computation time than several other iterative algorithms and can, in principle, be extended to helical cone-beam geometry in combination with the ASSR method. PMID:23464329

  17. Computed Tomography Image Quality Evaluation of a New Iterative Reconstruction Algorithm in the Abdomen (Adaptive Statistical Iterative Reconstruction-V) a Comparison With Model-Based Iterative Reconstruction, Adaptive Statistical Iterative Reconstruction, and Filtered Back Projection Reconstructions.

    PubMed

    Goodenberger, Martin H; Wagner-Bartak, Nicolaus A; Gupta, Shiva; Liu, Xinming; Yap, Ramon Q; Sun, Jia; Tamm, Eric P; Jensen, Corey T

    The purpose of this study was to compare abdominopelvic computed tomography images reconstructed with adaptive statistical iterative reconstruction-V (ASIR-V) with model-based iterative reconstruction (Veo 3.0), ASIR, and filtered back projection (FBP). Abdominopelvic computed tomography scans for 36 patients (26 males and 10 females) were reconstructed using FBP, ASIR (80%), Veo 3.0, and ASIR-V (30%, 60%, 90%). Mean ± SD patient age was 32 ± 10 years with mean ± SD body mass index of 26.9 ± 4.4 kg/m. Images were reviewed by 2 independent readers in a blinded, randomized fashion. Hounsfield unit, noise, and contrast-to-noise ratio (CNR) values were calculated for each reconstruction algorithm for further comparison. Phantom evaluation of low-contrast detectability (LCD) and high-contrast resolution was performed. Adaptive statistical iterative reconstruction-V 30%, ASIR-V 60%, and ASIR 80% were generally superior qualitatively compared with ASIR-V 90%, Veo 3.0, and FBP (P < 0.05). Adaptive statistical iterative reconstruction-V 90% showed superior LCD and had the highest CNR in the liver, aorta, and, pancreas, measuring 7.32 ± 3.22, 11.60 ± 4.25, and 4.60 ± 2.31, respectively, compared with the next best series of ASIR-V 60% with respective CNR values of 5.54 ± 2.39, 8.78 ± 3.15, and 3.49 ± 1.77 (P <0.0001). Veo 3.0 and ASIR 80% had the best and worst spatial resolution, respectively. Adaptive statistical iterative reconstruction-V 30% and ASIR-V 60% provided the best combination of qualitative and quantitative performance. Adaptive statistical iterative reconstruction 80% was equivalent qualitatively, but demonstrated inferior spatial resolution and LCD.

  18. Marker-free motion correction in weight-bearing cone-beam CT of the knee joint.

    PubMed

    Berger, M; Müller, K; Aichert, A; Unberath, M; Thies, J; Choi, J-H; Fahrig, R; Maier, A

    2016-03-01

    To allow for a purely image-based motion estimation and compensation in weight-bearing cone-beam computed tomography of the knee joint. Weight-bearing imaging of the knee joint in a standing position poses additional requirements for the image reconstruction algorithm. In contrast to supine scans, patient motion needs to be estimated and compensated. The authors propose a method that is based on 2D/3D registration of left and right femur and tibia segmented from a prior, motion-free reconstruction acquired in supine position. Each segmented bone is first roughly aligned to the motion-corrupted reconstruction of a scan in standing or squatting position. Subsequently, a rigid 2D/3D registration is performed for each bone to each of K projection images, estimating 6 × 4 × K motion parameters. The motion of individual bones is combined into global motion fields using thin-plate-spline extrapolation. These can be incorporated into a motion-compensated reconstruction in the backprojection step. The authors performed visual and quantitative comparisons between a state-of-the-art marker-based (MB) method and two variants of the proposed method using gradient correlation (GC) and normalized gradient information (NGI) as similarity measure for the 2D/3D registration. The authors evaluated their method on four acquisitions under different squatting positions of the same patient. All methods showed substantial improvement in image quality compared to the uncorrected reconstructions. Compared to NGI and MB, the GC method showed increased streaking artifacts due to misregistrations in lateral projection images. NGI and MB showed comparable image quality at the bone regions. Because the markers are attached to the skin, the MB method performed better at the surface of the legs where the authors observed slight streaking of the NGI and GC methods. For a quantitative evaluation, the authors computed the universal quality index (UQI) for all bone regions with respect to the motion-free reconstruction. The authors quantitative evaluation over regions around the bones yielded a mean UQI of 18.4 for no correction, 53.3 and 56.1 for the proposed method using GC and NGI, respectively, and 53.7 for the MB reference approach. In contrast to the authors registration-based corrections, the MB reference method caused slight nonrigid deformations at bone outlines when compared to a motion-free reference scan. The authors showed that their method based on the NGI similarity measure yields reconstruction quality close to the MB reference method. In contrast to the MB method, the proposed method does not require any preparation prior to the examination which will improve the clinical workflow and patient comfort. Further, the authors found that the MB method causes small, nonrigid deformations at the bone outline which indicates that markers may not accurately reflect the internal motion close to the knee joint. Therefore, the authors believe that the proposed method is a promising alternative to MB motion management.

  19. Marker-free motion correction in weight-bearing cone-beam CT of the knee joint

    PubMed Central

    Berger, M.; Müller, K.; Aichert, A.; Unberath, M.; Thies, J.; Choi, J.-H.; Fahrig, R.; Maier, A.

    2016-01-01

    Purpose: To allow for a purely image-based motion estimation and compensation in weight-bearing cone-beam computed tomography of the knee joint. Methods: Weight-bearing imaging of the knee joint in a standing position poses additional requirements for the image reconstruction algorithm. In contrast to supine scans, patient motion needs to be estimated and compensated. The authors propose a method that is based on 2D/3D registration of left and right femur and tibia segmented from a prior, motion-free reconstruction acquired in supine position. Each segmented bone is first roughly aligned to the motion-corrupted reconstruction of a scan in standing or squatting position. Subsequently, a rigid 2D/3D registration is performed for each bone to each of K projection images, estimating 6 × 4 × K motion parameters. The motion of individual bones is combined into global motion fields using thin-plate-spline extrapolation. These can be incorporated into a motion-compensated reconstruction in the backprojection step. The authors performed visual and quantitative comparisons between a state-of-the-art marker-based (MB) method and two variants of the proposed method using gradient correlation (GC) and normalized gradient information (NGI) as similarity measure for the 2D/3D registration. Results: The authors evaluated their method on four acquisitions under different squatting positions of the same patient. All methods showed substantial improvement in image quality compared to the uncorrected reconstructions. Compared to NGI and MB, the GC method showed increased streaking artifacts due to misregistrations in lateral projection images. NGI and MB showed comparable image quality at the bone regions. Because the markers are attached to the skin, the MB method performed better at the surface of the legs where the authors observed slight streaking of the NGI and GC methods. For a quantitative evaluation, the authors computed the universal quality index (UQI) for all bone regions with respect to the motion-free reconstruction. The authors quantitative evaluation over regions around the bones yielded a mean UQI of 18.4 for no correction, 53.3 and 56.1 for the proposed method using GC and NGI, respectively, and 53.7 for the MB reference approach. In contrast to the authors registration-based corrections, the MB reference method caused slight nonrigid deformations at bone outlines when compared to a motion-free reference scan. Conclusions: The authors showed that their method based on the NGI similarity measure yields reconstruction quality close to the MB reference method. In contrast to the MB method, the proposed method does not require any preparation prior to the examination which will improve the clinical workflow and patient comfort. Further, the authors found that the MB method causes small, nonrigid deformations at the bone outline which indicates that markers may not accurately reflect the internal motion close to the knee joint. Therefore, the authors believe that the proposed method is a promising alternative to MB motion management. PMID:26936708

  20. Preconditioned Alternating Projection Algorithms for Maximum a Posteriori ECT Reconstruction

    PubMed Central

    Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng

    2012-01-01

    We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constrain involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the preconditioned alternating projection algorithm. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality. PMID:23271835

  1. Preconditioned alternating projection algorithms for maximum a posteriori ECT reconstruction

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Li, Si; Shen, Lixin; Xu, Yuesheng

    2012-11-01

    We propose a preconditioned alternating projection algorithm (PAPA) for solving the maximum a posteriori (MAP) emission computed tomography (ECT) reconstruction problem. Specifically, we formulate the reconstruction problem as a constrained convex optimization problem with the total variation (TV) regularization. We then characterize the solution of the constrained convex optimization problem and show that it satisfies a system of fixed-point equations defined in terms of two proximity operators raised from the convex functions that define the TV-norm and the constraint involved in the problem. The characterization (of the solution) via the proximity operators that define two projection operators naturally leads to an alternating projection algorithm for finding the solution. For efficient numerical computation, we introduce to the alternating projection algorithm a preconditioning matrix (the EM-preconditioner) for the dense system matrix involved in the optimization problem. We prove theoretically convergence of the PAPA. In numerical experiments, performance of our algorithms, with an appropriately selected preconditioning matrix, is compared with performance of the conventional MAP expectation-maximization (MAP-EM) algorithm with TV regularizer (EM-TV) and that of the recently developed nested EM-TV algorithm for ECT reconstruction. Based on the numerical experiments performed in this work, we observe that the alternating projection algorithm with the EM-preconditioner outperforms significantly the EM-TV in all aspects including the convergence speed, the noise in the reconstructed images and the image quality. It also outperforms the nested EM-TV in the convergence speed while providing comparable image quality.

  2. Comparing five alternative methods of breast reconstruction surgery: a cost-effectiveness analysis.

    PubMed

    Grover, Ritwik; Padula, William V; Van Vliet, Michael; Ridgway, Emily B

    2013-11-01

    The purpose of this study was to assess the cost-effectiveness of five standardized procedures for breast reconstruction to delineate the best reconstructive approach in postmastectomy patients in the settings of nonirradiated and irradiated chest walls. A decision tree was used to model five breast reconstruction procedures from the provider perspective to evaluate cost-effectiveness. Procedures included autologous flaps with pedicled tissue, autologous flaps with free tissue, latissimus dorsi flaps with breast implants, expanders with implant exchange, and immediate implant placement. All methods were compared with a "do-nothing" alternative. Data for model parameters were collected through a systematic review, and patient health utilities were calculated from an ad hoc survey of reconstructive surgeons. Results were measured in cost (2011 U.S. dollars) per quality-adjusted life-year. Univariate sensitivity analyses and Bayesian multivariate probabilistic sensitivity analysis were conducted. Pedicled autologous tissue and free autologous tissue reconstruction were cost-effective compared with the do-nothing alternative. Pedicled autologous tissue was the slightly more cost-effective of the two. The other procedures were not found to be cost-effective. The results were robust to a number of sensitivity analyses, although the margin between pedicled and free autologous tissue reconstruction is small and affected by some parameter values. Autologous pedicled tissue was slightly more cost-effective than free tissue reconstruction in irradiated and nonirradiated patients. Implant-based techniques were not cost-effective. This is in agreement with the growing trend at academic institutions to encourage autologous tissue reconstruction because of its natural recreation of the breast contour, suppleness, and resiliency in the setting of irradiated recipient beds.

  3. Joint sparse reconstruction of multi-contrast MRI images with graph based redundant wavelet transform.

    PubMed

    Lai, Zongying; Zhang, Xinlin; Guo, Di; Du, Xiaofeng; Yang, Yonggui; Guo, Gang; Chen, Zhong; Qu, Xiaobo

    2018-05-03

    Multi-contrast images in magnetic resonance imaging (MRI) provide abundant contrast information reflecting the characteristics of the internal tissues of human bodies, and thus have been widely utilized in clinical diagnosis. However, long acquisition time limits the application of multi-contrast MRI. One efficient way to accelerate data acquisition is to under-sample the k-space data and then reconstruct images with sparsity constraint. However, images are compromised at high acceleration factor if images are reconstructed individually. We aim to improve the images with a jointly sparse reconstruction and Graph-based redundant wavelet transform (GBRWT). First, a sparsifying transform, GBRWT, is trained to reflect the similarity of tissue structures in multi-contrast images. Second, joint multi-contrast image reconstruction is formulated as a ℓ 2, 1 norm optimization problem under GBRWT representations. Third, the optimization problem is numerically solved using a derived alternating direction method. Experimental results in synthetic and in vivo MRI data demonstrate that the proposed joint reconstruction method can achieve lower reconstruction errors and better preserve image structures than the compared joint reconstruction methods. Besides, the proposed method outperforms single image reconstruction with joint sparsity constraint of multi-contrast images. The proposed method explores the joint sparsity of multi-contrast MRI images under graph-based redundant wavelet transform and realizes joint sparse reconstruction of multi-contrast images. Experiment demonstrate that the proposed method outperforms the compared joint reconstruction methods as well as individual reconstructions. With this high quality image reconstruction method, it is possible to achieve the high acceleration factors by exploring the complementary information provided by multi-contrast MRI.

  4. Mutual information as a measure of image quality for 3D dynamic lung imaging with EIT

    PubMed Central

    Crabb, M G; Davidson, J L; Little, R; Wright, P; Morgan, A R; Miller, C A; Naish, J H; Parker, G J M; Kikinis, R; McCann, H; Lionheart, W R B

    2014-01-01

    We report on a pilot study of dynamic lung electrical impedance tomography (EIT) at the University of Manchester. Low-noise EIT data at 100 frames per second (fps) were obtained from healthy male subjects during controlled breathing, followed by magnetic resonance imaging (MRI) subsequently used for spatial validation of the EIT reconstruction. The torso surface in the MR image and electrode positions obtained using MRI fiducial markers informed the construction of a 3D finite element model extruded along the caudal-distal axis of the subject. Small changes in the boundary that occur during respiration were accounted for by incorporating the sensitivity with respect to boundary shape into a robust temporal difference reconstruction algorithm. EIT and MRI images were co-registered using the open source medical imaging software, 3D Slicer. A quantitative comparison of quality of different EIT reconstructions was achieved through calculation of the mutual information with a lung-segmented MR image. EIT reconstructions using a linear shape correction algorithm reduced boundary image artefacts, yielding better contrast of the lungs, and had 10% greater mutual information compared with a standard linear EIT reconstruction. PMID:24710978

  5. Mutual information as a measure of image quality for 3D dynamic lung imaging with EIT.

    PubMed

    Crabb, M G; Davidson, J L; Little, R; Wright, P; Morgan, A R; Miller, C A; Naish, J H; Parker, G J M; Kikinis, R; McCann, H; Lionheart, W R B

    2014-05-01

    We report on a pilot study of dynamic lung electrical impedance tomography (EIT) at the University of Manchester. Low-noise EIT data at 100 frames per second were obtained from healthy male subjects during controlled breathing, followed by magnetic resonance imaging (MRI) subsequently used for spatial validation of the EIT reconstruction. The torso surface in the MR image and electrode positions obtained using MRI fiducial markers informed the construction of a 3D finite element model extruded along the caudal-distal axis of the subject. Small changes in the boundary that occur during respiration were accounted for by incorporating the sensitivity with respect to boundary shape into a robust temporal difference reconstruction algorithm. EIT and MRI images were co-registered using the open source medical imaging software, 3D Slicer. A quantitative comparison of quality of different EIT reconstructions was achieved through calculation of the mutual information with a lung-segmented MR image. EIT reconstructions using a linear shape correction algorithm reduced boundary image artefacts, yielding better contrast of the lungs, and had 10% greater mutual information compared with a standard linear EIT reconstruction.

  6. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner

    NASA Astrophysics Data System (ADS)

    Zhang, Xuezhu; Zhou, Jian; Cherry, Simon R.; Badawi, Ramsey D.; Qi, Jinyi

    2017-03-01

    The EXPLORER project aims to build a 2 meter long total-body PET scanner, which will provide extremely high sensitivity for imaging the entire human body. It will possess a range of capabilities currently unavailable to state-of-the-art clinical PET scanners with a limited axial field-of-view. The huge number of lines-of-response (LORs) of the EXPLORER poses a challenge to the data handling and image reconstruction. The objective of this study is to develop a quantitative image reconstruction method for the EXPLORER and compare its performance with current whole-body scanners. Fully 3D image reconstruction was performed using time-of-flight list-mode data with parallel computation. To recover the resolution loss caused by the parallax error between crystal pairs at a large axial ring difference or transaxial radial offset, we applied an image domain resolution model estimated from point source data. To evaluate the image quality, we conducted computer simulations using the SimSET Monte-Carlo toolkit and XCAT 2.0 anthropomorphic phantom to mimic a 20 min whole-body PET scan with an injection of 25 MBq 18F-FDG. We compare the performance of the EXPLORER with a current clinical scanner that has an axial FOV of 22 cm. The comparison results demonstrated superior image quality from the EXPLORER with a 6.9-fold reduction in noise standard deviation comparing with multi-bed imaging using the clinical scanner.

  7. Quantitative Image Reconstruction for Total-Body PET Imaging Using the 2-meter Long EXPLORER Scanner

    PubMed Central

    Zhang, Xuezhu; Zhou, Jian; Cherry, Simon R.; Badawi, Ramsey D.

    2017-01-01

    The EXPLORER project aims to build a 2-meter long total-body PET scanner, which will provide extremely high sensitivity for imaging the entire human body. It will possess a range of capabilities currently unavailable to state-of-the-art clinical PET scanners with a limited axial field-of-view. The huge number of lines-of-response (LORs) of the EXPLORER poses a challenge to the data handling and image reconstruction. The objective of this study is to develop a quantitative image reconstruction method for the EXPLORER and compare its performance with current whole-body scanners. Fully 3D image reconstruction was performed using time-of-flight list-mode data with parallel computation. To recover the resolution loss caused by the parallax error between crystal pairs at a large axial ring difference or transaxial radial offset, we applied an image domain resolution model estimated from point source data. To evaluate the image quality, we conducted computer simulations using the SimSET Monte-Carlo toolkit and XCAT 2.0 anthropomorphic phantom to mimic a 20-minute whole-body PET scan with an injection of 25 MBq 18F-FDG. We compare the performance of the EXPLORER with a current clinical scanner that has an axial FOV of 22 cm. The comparison results demonstrated superior image quality from the EXPLORER with a 6.9-fold reduction in noise standard deviation comparing with multi-bed imaging using the clinical scanner. PMID:28240215

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, C; Zhang, H; Chen, Y

    Purpose: Recently, compressed sensing (CS) based iterative reconstruction (IR) method is receiving attentions to reconstruct high quality cone beam computed tomography (CBCT) images using sparsely sampled or noisy projections. The aim of this study is to develop a novel baseline algorithm called Mask Guided Image Reconstruction (MGIR), which can provide superior image quality for both low-dose 3DCBCT and 4DCBCT under single mathematical framework. Methods: In MGIR, the unknown CBCT volume was mathematically modeled as a combination of two regions where anatomical structures are 1) within the priori-defined mask and 2) outside the mask. Then we update each part of imagesmore » alternatively thorough solving minimization problems based on CS type IR. For low-dose 3DCBCT, the former region is defined as the anatomically complex region where it is focused to preserve edge information while latter region is defined as contrast uniform, and hence aggressively updated to remove noise/artifact. In 4DCBCT, the regions are separated as the common static part and moving part. Then, static volume and moving volumes were updated with global and phase sorted projection respectively, to optimize the image quality of both moving and static part simultaneously. Results: Examination of MGIR algorithm showed that high quality of both low-dose 3DCBCT and 4DCBCT images can be reconstructed without compromising the image resolution and imaging dose or scanning time respectively. For low-dose 3DCBCT, a clinical viable and high resolution head-and-neck image can be obtained while cutting the dose by 83%. In 4DCBCT, excellent quality 4DCBCT images could be reconstructed while requiring no more projection data and imaging dose than a typical clinical 3DCBCT scan. Conclusion: The results shown that the image quality of MGIR was superior compared to other published CS based IR algorithms for both 4DCBCT and low-dose 3DCBCT. This makes our MGIR algorithm potentially useful in various on-line clinical applications. Provisional Patent: UF#15476; WGS Ref. No. U1198.70067US00.« less

  9. Contrast-enhanced time-resolved MRA for follow-up of intracranial aneurysms treated with the pipeline embolization device.

    PubMed

    Boddu, S R; Tong, F C; Dehkharghani, S; Dion, J E; Saindane, A M

    2014-01-01

    Endovascular reconstruction and flow diversion by using the Pipeline Embolization Device is an effective treatment for complex cerebral aneurysms. Accurate noninvasive alternatives to DSA for follow-up after Pipeline Embolization Device treatment are desirable. This study evaluated the accuracy of contrast-enhanced time-resolved MRA for this purpose, hypothesizing that contrast-enhanced time-resolved MRA will be comparable with DSA and superior to 3D-TOF MRA. During a 24-month period, 37 Pipeline Embolization Device-treated intracranial aneurysms in 26 patients underwent initial follow-up by using 3D-TOF MRA, contrast-enhanced time-resolved MRA, and DSA. MRA was performed on a 1.5T unit by using 3D-TOF and time-resolved imaging of contrast kinetics. All patients underwent DSA a median of 0 days (range, 0-68) after MRA. Studies were evaluated for aneurysm occlusion, quality of visualization of the reconstructed artery, and measurable luminal diameter of the Pipeline Embolization Device, with DSA used as the reference standard. The sensitivity, specificity, and positive and negative predictive values of contrast-enhanced time-resolved MRA relative to DSA for posttreatment aneurysm occlusion were 96%, 85%, 92%, and 92%. Contrast-enhanced time-resolved MRA demonstrated superior quality of visualization (P = .0001) and a higher measurable luminal diameter (P = .0001) of the reconstructed artery compared with 3D-TOF MRA but no significant difference compared with DSA. Contrast-enhanced time-resolved MRA underestimated the luminal diameter of the reconstructed artery by 0.965 ± 0.497 mm (27% ± 13%) relative to DSA. Contrast-enhanced time-resolved MRA is a reliable noninvasive method for monitoring intracranial aneurysms following flow diversion and vessel reconstruction by using the Pipeline Embolization Device. © 2014 by American Journal of Neuroradiology.

  10. GPU-accelerated regularized iterative reconstruction for few-view cone beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matenine, Dmitri, E-mail: dmitri.matenine.1@ulaval.ca; Goussard, Yves, E-mail: yves.goussard@polymtl.ca; Després, Philippe, E-mail: philippe.despres@phy.ulaval.ca

    2015-04-15

    Purpose: The present work proposes an iterative reconstruction technique designed for x-ray transmission computed tomography (CT). The main objective is to provide a model-based solution to the cone-beam CT reconstruction problem, yielding accurate low-dose images via few-views acquisitions in clinically acceptable time frames. Methods: The proposed technique combines a modified ordered subsets convex (OSC) algorithm and the total variation minimization (TV) regularization technique and is called OSC-TV. The number of subsets of each OSC iteration follows a reduction pattern in order to ensure the best performance of the regularization method. Considering the high computational cost of the algorithm, it ismore » implemented on a graphics processing unit, using parallelization to accelerate computations. Results: The reconstructions were performed on computer-simulated as well as human pelvic cone-beam CT projection data and image quality was assessed. In terms of convergence and image quality, OSC-TV performs well in reconstruction of low-dose cone-beam CT data obtained via a few-view acquisition protocol. It compares favorably to the few-view TV-regularized projections onto convex sets (POCS-TV) algorithm. It also appears to be a viable alternative to full-dataset filtered backprojection. Execution times are of 1–2 min and are compatible with the typical clinical workflow for nonreal-time applications. Conclusions: Considering the image quality and execution times, this method may be useful for reconstruction of low-dose clinical acquisitions. It may be of particular benefit to patients who undergo multiple acquisitions by reducing the overall imaging radiation dose and associated risks.« less

  11. Imaging diffusive media using time-independent and time-harmonic sources: dependence of image quality on imaging algorithms, target volume, weight matrix, and view angles

    NASA Astrophysics Data System (ADS)

    Chang, Jenghwa; Aronson, Raphael; Graber, Harry L.; Barbour, Randall L.

    1995-05-01

    We present results examining the dependence of image quality for imaging in dense scattering media as influenced by the choice of parameters pertaining to the physical measurement and factors influencing the efficiency of the computation. The former includes the density of the weight matrix as affected by the target volume, view angle, and source condition. The latter includes the density of the weight matrix and type of algorithm used. These were examined by solving a one-step linear perturbation equation derived from the transport equation using three different algorithms: POCS, CGD, and SART algorithms with contraints. THe above were explored by evaluating four different 3D cylindrical phantom media: a homogeneous medium, an media containing a single black rod on the axis, a single black rod parallel to the axis, and thirteen black rods arrayed in the shape of an 'X'. Solutions to the forward problem were computed using Monte Carlo methods for an impulse source, from which was calculated time- independent and time harmonic detector responses. The influence of target volume on image quality and computational efficiency was studied by computing solution to three types of reconstructions: 1) 3D reconstruction, which considered each voxel individually, 2) 2D reconstruction, which assumed that symmetry along the cylinder axis was know a proiri, 3) 2D limited reconstruction, which assumed that only those voxels in the plane of the detectors contribute information to the detecot readings. The effect of view angle was explored by comparing computed images obtained from a single source, whose position was varied, as well as for the type of tomographic measurement scheme used (i.e., radial scan versus transaxial scan). The former condition was also examined for the dependence of the above on choice of source condition [ i.e., cw (2D reconstructions) versus time-harmonic (2D limited reconstructions) source]. The efficiency of the computational effort was explored, principally, by conducting a weight matrix 'threshold titration' study. This involved computing the ratio of each matrix element to the maximum element of its row and setting this to zero if the ratio was less than a preselected threshold. Results obtained showed that all three types of reconstructions provided good image quality. The 3D reconstruction outperformed the other two reconstructions. The time required for 2D and 2D limited reconstruction is much less (< 10%) than that for the 3D reconstruction. The 'threshold titration' study shows that artifacts were present when the threshold was 5% or higher, and no significant differences of image quality were observed when the thresholds were less tha 1%, in which case 38% (21,849 of 57,600) of the total weight elements were set to zero. Restricting the view angle produced degradation in image quality, but, in all cases, clearly recognizable images were obtained.

  12. K-space reconstruction with anisotropic kernel support (KARAOKE) for ultrafast partially parallel imaging.

    PubMed

    Miao, Jun; Wong, Wilbur C K; Narayan, Sreenath; Wilson, David L

    2011-11-01

    Partially parallel imaging (PPI) greatly accelerates MR imaging by using surface coil arrays and under-sampling k-space. However, the reduction factor (R) in PPI is theoretically constrained by the number of coils (N(C)). A symmetrically shaped kernel is typically used, but this often prevents even the theoretically possible R from being achieved. Here, the authors propose a kernel design method to accelerate PPI faster than R = N(C). K-space data demonstrates an anisotropic pattern that is correlated with the object itself and to the asymmetry of the coil sensitivity profile, which is caused by coil placement and B(1) inhomogeneity. From spatial analysis theory, reconstruction of such pattern is best achieved by a signal-dependent anisotropic shape kernel. As a result, the authors propose the use of asymmetric kernels to improve k-space reconstruction. The authors fit a bivariate Gaussian function to the local signal magnitude of each coil, then threshold this function to extract the kernel elements. A perceptual difference model (Case-PDM) was employed to quantitatively evaluate image quality. A MR phantom experiment showed that k-space anisotropy increased as a function of magnetic field strength. The authors tested a K-spAce Reconstruction with AnisOtropic KErnel support ("KARAOKE") algorithm with both MR phantom and in vivo data sets, and compared the reconstructions to those produced by GRAPPA, a popular PPI reconstruction method. By exploiting k-space anisotropy, KARAOKE was able to better preserve edges, which is particularly useful for cardiac imaging and motion correction, while GRAPPA failed at a high R near or exceeding N(C). KARAOKE performed comparably to GRAPPA at low Rs. As a rule of thumb, KARAOKE reconstruction should always be used for higher quality k-space reconstruction, particularly when PPI data is acquired at high Rs and/or high field strength.

  13. K-space reconstruction with anisotropic kernel support (KARAOKE) for ultrafast partially parallel imaging

    PubMed Central

    Miao, Jun; Wong, Wilbur C. K.; Narayan, Sreenath; Wilson, David L.

    2011-01-01

    Purpose: Partially parallel imaging (PPI) greatly accelerates MR imaging by using surface coil arrays and under-sampling k-space. However, the reduction factor (R) in PPI is theoretically constrained by the number of coils (NC). A symmetrically shaped kernel is typically used, but this often prevents even the theoretically possible R from being achieved. Here, the authors propose a kernel design method to accelerate PPI faster than R = NC. Methods: K-space data demonstrates an anisotropic pattern that is correlated with the object itself and to the asymmetry of the coil sensitivity profile, which is caused by coil placement and B1 inhomogeneity. From spatial analysis theory, reconstruction of such pattern is best achieved by a signal-dependent anisotropic shape kernel. As a result, the authors propose the use of asymmetric kernels to improve k-space reconstruction. The authors fit a bivariate Gaussian function to the local signal magnitude of each coil, then threshold this function to extract the kernel elements. A perceptual difference model (Case-PDM) was employed to quantitatively evaluate image quality. Results: A MR phantom experiment showed that k-space anisotropy increased as a function of magnetic field strength. The authors tested a K-spAce Reconstruction with AnisOtropic KErnel support (“KARAOKE”) algorithm with both MR phantom and in vivo data sets, and compared the reconstructions to those produced by GRAPPA, a popular PPI reconstruction method. By exploiting k-space anisotropy, KARAOKE was able to better preserve edges, which is particularly useful for cardiac imaging and motion correction, while GRAPPA failed at a high R near or exceeding NC. KARAOKE performed comparably to GRAPPA at low Rs. Conclusions: As a rule of thumb, KARAOKE reconstruction should always be used for higher quality k-space reconstruction, particularly when PPI data is acquired at high Rs and∕or high field strength. PMID:22047378

  14. ADART: an adaptive algebraic reconstruction algorithm for discrete tomography.

    PubMed

    Maestre-Deusto, F Javier; Scavello, Giovanni; Pizarro, Joaquín; Galindo, Pedro L

    2011-08-01

    In this paper we suggest an algorithm based on the Discrete Algebraic Reconstruction Technique (DART) which is capable of computing high quality reconstructions from substantially fewer projections than required for conventional continuous tomography. Adaptive DART (ADART) goes a step further than DART on the reduction of the number of unknowns of the associated linear system achieving a significant reduction in the pixel error rate of reconstructed objects. The proposed methodology automatically adapts the border definition criterion at each iteration, resulting in a reduction of the number of pixels belonging to the border, and consequently of the number of unknowns in the general algebraic reconstruction linear system to be solved, being this reduction specially important at the final stage of the iterative process. Experimental results show that reconstruction errors are considerably reduced using ADART when compared to original DART, both in clean and noisy environments.

  15. Temporal compressive imaging for video

    NASA Astrophysics Data System (ADS)

    Zhou, Qun; Zhang, Linxia; Ke, Jun

    2018-01-01

    In many situations, imagers are required to have higher imaging speed, such as gunpowder blasting analysis and observing high-speed biology phenomena. However, measuring high-speed video is a challenge to camera design, especially, in infrared spectrum. In this paper, we reconstruct a high-frame-rate video from compressive video measurements using temporal compressive imaging (TCI) with a temporal compression ratio T=8. This means that, 8 unique high-speed temporal frames will be obtained from a single compressive frame using a reconstruction algorithm. Equivalently, the video frame rates is increased by 8 times. Two methods, two-step iterative shrinkage/threshold (TwIST) algorithm and the Gaussian mixture model (GMM) method, are used for reconstruction. To reduce reconstruction time and memory usage, each frame of size 256×256 is divided into patches of size 8×8. The influence of different coded mask to reconstruction is discussed. The reconstruction qualities using TwIST and GMM are also compared.

  16. Parameter selection in limited data cone-beam CT reconstruction using edge-preserving total variation algorithms

    NASA Astrophysics Data System (ADS)

    Lohvithee, Manasavee; Biguri, Ander; Soleimani, Manuchehr

    2017-12-01

    There are a number of powerful total variation (TV) regularization methods that have great promise in limited data cone-beam CT reconstruction with an enhancement of image quality. These promising TV methods require careful selection of the image reconstruction parameters, for which there are no well-established criteria. This paper presents a comprehensive evaluation of parameter selection in a number of major TV-based reconstruction algorithms. An appropriate way of selecting the values for each individual parameter has been suggested. Finally, a new adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm is presented, which implements the edge-preserving function for CBCT reconstruction with limited data. The proposed algorithm shows significant robustness compared to three other existing algorithms: ASD-POCS, AwASD-POCS and PCSD. The proposed AwPCSD algorithm is able to preserve the edges of the reconstructed images better with fewer sensitive parameters to tune.

  17. Evidence-Based Performance Measures: Quality Metrics for the Care of Patients Undergoing Breast Reconstruction.

    PubMed

    Manahan, Michele A; Wooden, William A; Becker, Stephen M; Cacioppo, Jason R; Edge, Stephen B; Grandinetti, Amanda C; Gray, Diedra D; Holley, Susan O; Karp, Nolan S; Kocak, Ergun; Rao, Roshni; Rosson, Gedge D; Schwartz, Jaime S; Sitzman, Thomas J; Soltanian, Hooman T; TerKonda, Sarvam P; Wallace, Anne M

    2017-12-01

    The American Society of Plastic Surgeons commissioned the Breast Reconstruction Performance Measure Development Work Group to identify and draft quality measures for the care of patients undergoing breast reconstruction surgery. Two outcome measures were identified. The first desired outcome was to reduce the number of returns to the operating room following reconstruction within 60 days of the initial reconstructive procedure. The second desired outcome was to reduce flap loss within 30 days of the initial reconstructive procedure. All measures in this report were approved by the American Society of Plastic Surgeons Breast Reconstruction Performance Measures Work Group and the American Society of Plastic Surgeons Executive Committee. The Work Group recommends the use of these measures for quality initiatives, Continuing Medical Education, Maintenance of Certification, American Society of Plastic Surgeons' Qualified Clinical Data Registry reporting, and national quality reporting programs.

  18. Assessment of the dose reduction potential of a model-based iterative reconstruction algorithm using a task-based performance metrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samei, Ehsan, E-mail: samei@duke.edu; Richard, Samuel

    2015-01-15

    Purpose: Different computed tomography (CT) reconstruction techniques offer different image quality attributes of resolution and noise, challenging the ability to compare their dose reduction potential against each other. The purpose of this study was to evaluate and compare the task-based imaging performance of CT systems to enable the assessment of the dose performance of a model-based iterative reconstruction (MBIR) to that of an adaptive statistical iterative reconstruction (ASIR) and a filtered back projection (FBP) technique. Methods: The ACR CT phantom (model 464) was imaged across a wide range of mA setting on a 64-slice CT scanner (GE Discovery CT750 HD,more » Waukesha, WI). Based on previous work, the resolution was evaluated in terms of a task-based modulation transfer function (MTF) using a circular-edge technique and images from the contrast inserts located in the ACR phantom. Noise performance was assessed in terms of the noise-power spectrum (NPS) measured from the uniform section of the phantom. The task-based MTF and NPS were combined with a task function to yield a task-based estimate of imaging performance, the detectability index (d′). The detectability index was computed as a function of dose for two imaging tasks corresponding to the detection of a relatively small and a relatively large feature (1.5 and 25 mm, respectively). The performance of MBIR in terms of the d′ was compared with that of ASIR and FBP to assess its dose reduction potential. Results: Results indicated that MBIR exhibits a variability spatial resolution with respect to object contrast and noise while significantly reducing image noise. The NPS measurements for MBIR indicated a noise texture with a low-pass quality compared to the typical midpass noise found in FBP-based CT images. At comparable dose, the d′ for MBIR was higher than those of FBP and ASIR by at least 61% and 19% for the small feature and the large feature tasks, respectively. Compared to FBP and ASIR, MBIR indicated a 46%–84% dose reduction potential, depending on task, without compromising the modeled detection performance. Conclusions: The presented methodology based on ACR phantom measurements extends current possibilities for the assessment of CT image quality under the complex resolution and noise characteristics exhibited with statistical and iterative reconstruction algorithms. The findings further suggest that MBIR can potentially make better use of the projections data to reduce CT dose by approximately a factor of 2. Alternatively, if the dose held unchanged, it can improve image quality by different levels for different tasks.« less

  19. Radiation dose reduction for CT lung cancer screening using ASIR and MBIR: a phantom study.

    PubMed

    Mathieu, Kelsey B; Ai, Hua; Fox, Patricia S; Godoy, Myrna Cobos Barco; Munden, Reginald F; de Groot, Patricia M; Pan, Tinsu

    2014-03-06

    The purpose of this study was to reduce the radiation dosage associated with computed tomography (CT) lung cancer screening while maintaining overall diagnostic image quality and definition of ground-glass opacities (GGOs). A lung screening phantom and a multipurpose chest phantom were used to quantitatively assess the performance of two iterative image reconstruction algorithms (adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR)) used in conjunction with reduced tube currents relative to a standard clinical lung cancer screening protocol (51 effective mAs (3.9 mGy) and filtered back-projection (FBP) reconstruction). To further assess the algorithms' performances, qualitative image analysis was conducted (in the form of a reader study) using the multipurpose chest phantom, which was implanted with GGOs of two densities. Our quantitative image analysis indicated that tube current, and thus radiation dose, could be reduced by 40% or 80% from ASIR or MBIR, respectively, compared with conventional FBP, while maintaining similar image noise magnitude and contrast-to-noise ratio. The qualitative portion of our study, which assessed reader preference, yielded similar results, indicating that dose could be reduced by 60% (to 20 effective mAs (1.6 mGy)) with either ASIR or MBIR, while maintaining GGO definition. Additionally, the readers' preferences (as indicated by their ratings) regarding overall image quality were equal or better (for a given dose) when using ASIR or MBIR, compared with FBP. In conclusion, combining ASIR or MBIR with reduced tube current may allow for lower doses while maintaining overall diagnostic image quality, as well as GGO definition, during CT lung cancer screening.

  20. Quality Analysis on 3d Buidling Models Reconstructed from Uav Imagery

    NASA Astrophysics Data System (ADS)

    Jarzabek-Rychard, M.; Karpina, M.

    2016-06-01

    Recent developments in UAV technology and structure from motion techniques have effected that UAVs are becoming standard platforms for 3D data collection. Because of their flexibility and ability to reach inaccessible urban parts, drones appear as optimal solution for urban applications. Building reconstruction from the data collected with UAV has the important potential to reduce labour cost for fast update of already reconstructed 3D cities. However, especially for updating of existing scenes derived from different sensors (e.g. airborne laser scanning), a proper quality assessment is necessary. The objective of this paper is thus to evaluate the potential of UAV imagery as an information source for automatic 3D building modeling at LOD2. The investigation process is conducted threefold: (1) comparing generated SfM point cloud to ALS data; (2) computing internal consistency measures of the reconstruction process; (3) analysing the deviation of Check Points identified on building roofs and measured with a tacheometer. In order to gain deep insight in the modeling performance, various quality indicators are computed and analysed. The assessment performed according to the ground truth shows that the building models acquired with UAV-photogrammetry have the accuracy of less than 18 cm for the plannimetric position and about 15 cm for the height component.

  1. Cost analysis of enhanced recovery after surgery in microvascular breast reconstruction.

    PubMed

    Oh, Christine; Moriarty, James; Borah, Bijan J; Mara, Kristin C; Harmsen, William S; Saint-Cyr, Michel; Lemaine, Valerie

    2018-06-01

    Enhanced recovery after surgery (ERAS) pathways have been shown in multiple surgical specialties to decrease hospital length of stay (LOS) after surgery. ERAS in breast reconstruction has been found to decrease hospital LOS and inpatient opioid use. ERAS protocols can facilitate a patient's recovery and can potentially increase the quality of care while decreasing costs. A standardized ERAS pathway was developed through multidisciplinary collaboration. It addressed all phases of surgical care for patients undergoing free-flap breast reconstruction utilizing an abdominal donor site. In this retrospective cohort study, clinical variables associated with hospitalization costs for patients who underwent free-flap breast reconstruction with the ERAS pathway were compared with those of historical controls, termed traditional recovery after surgery (TRAS). All patients included in the study underwent surgery between September 2010 and September 2014. Predicted costs of the study groups were compared using generalized linear modeling. A total of 200 patients were analyzed: 82 in the ERAS cohort and 118 in the TRAS cohort. Clinical variables that were identified to potentially affect costs were found to have a statistically significant difference between groups and included unilateral versus bilateral procedures (p = 0.04) and the need for postoperative blood transfusion (p = 0.03). The cost regression analysis on the two cohorts was adjusted for these significant variables. Adjusted mean costs of patients with ERAS were found to be $4,576 lesser than those of the TRAS control group ($38,688 versus $43,264). Implementation of the ERAS pathway was associated with significantly decreased costs when compared to historical controls. There has been a healthcare focus toward prudent resource allocation, which dictates the need for plastic surgeons to recognize economic evaluation of clinical practice. The ERAS pathway can increase healthcare accountability by improving quality of care while simultaneously decreasing the costs associated with autologous breast reconstruction. Copyright © 2018 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Quantitative evaluation of ASiR image quality: an adaptive statistical iterative reconstruction technique

    NASA Astrophysics Data System (ADS)

    Van de Casteele, Elke; Parizel, Paul; Sijbers, Jan

    2012-03-01

    Adaptive statistical iterative reconstruction (ASiR) is a new reconstruction algorithm used in the field of medical X-ray imaging. This new reconstruction method combines the idealized system representation, as we know it from the standard Filtered Back Projection (FBP) algorithm, and the strength of iterative reconstruction by including a noise model in the reconstruction scheme. It studies how noise propagates through the reconstruction steps, feeds this model back into the loop and iteratively reduces noise in the reconstructed image without affecting spatial resolution. In this paper the effect of ASiR on the contrast to noise ratio is studied using the low contrast module of the Catphan phantom. The experiments were done on a GE LightSpeed VCT system at different voltages and currents. The results show reduced noise and increased contrast for the ASiR reconstructions compared to the standard FBP method. For the same contrast to noise ratio the images from ASiR can be obtained using 60% less current, leading to a reduction in dose of the same amount.

  3. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience.

    PubMed

    Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang

    2017-01-01

    To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80 each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. • Automatic spectral imaging protocol selection provides appropriate scan protocols. • Abdominal CT is feasible using spectral imaging and 300 mgI/kg contrast agent. • 50-keV monochromatic images with 50 % ASIR provide optimal image quality.

  4. A protocol for generating a high-quality genome-scale metabolic reconstruction.

    PubMed

    Thiele, Ines; Palsson, Bernhard Ø

    2010-01-01

    Network reconstructions are a common denominator in systems biology. Bottom-up metabolic network reconstructions have been developed over the last 10 years. These reconstructions represent structured knowledge bases that abstract pertinent information on the biochemical transformations taking place within specific target organisms. The conversion of a reconstruction into a mathematical format facilitates a myriad of computational biological studies, including evaluation of network content, hypothesis testing and generation, analysis of phenotypic characteristics and metabolic engineering. To date, genome-scale metabolic reconstructions for more than 30 organisms have been published and this number is expected to increase rapidly. However, these reconstructions differ in quality and coverage that may minimize their predictive potential and use as knowledge bases. Here we present a comprehensive protocol describing each step necessary to build a high-quality genome-scale metabolic reconstruction, as well as the common trials and tribulations. Therefore, this protocol provides a helpful manual for all stages of the reconstruction process.

  5. A protocol for generating a high-quality genome-scale metabolic reconstruction

    PubMed Central

    Thiele, Ines; Palsson, Bernhard Ø.

    2011-01-01

    Network reconstructions are a common denominator in systems biology. Bottom-up metabolic network reconstructions have developed over the past 10 years. These reconstructions represent structured knowledge-bases that abstract pertinent information on the biochemical transformations taking place within specific target organisms. The conversion of a reconstruction into a mathematical format facilitates myriad computational biological studies including evaluation of network content, hypothesis testing and generation, analysis of phenotypic characteristics, and metabolic engineering. To date, genome-scale metabolic reconstructions for more than 30 organisms have been published and this number is expected to increase rapidly. However, these reconstructions differ in quality and coverage that may minimize their predictive potential and use as knowledge-bases. Here, we present a comprehensive protocol describing each step necessary to build a high-quality genome-scale metabolic reconstruction as well as common trials and tribulations. Therefore, this protocol provides a helpful manual for all stages of the reconstruction process. PMID:20057383

  6. Effect of automated tube voltage selection, integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of 3rd generation dual-source aortic CT angiography: An intra-individual comparison.

    PubMed

    Mangold, Stefanie; De Cecco, Carlo N; Wichmann, Julian L; Canstein, Christian; Varga-Szemes, Akos; Caruso, Damiano; Fuller, Stephen R; Bamberg, Fabian; Nikolaou, Konstantin; Schoepf, U Joseph

    2016-05-01

    To compare, on an intra-individual basis, the effect of automated tube voltage selection (ATVS), integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of aortic CTA studies using 2nd and 3rd generation dual-source CT (DSCT). We retrospectively evaluated 32 patients who had undergone CTA of the entire aorta with both 2nd generation DSCT at 120kV using filtered back projection (FBP) (protocol 1) and 3rd generation DSCT using ATVS, an integrated circuit detector and advanced iterative reconstruction (protocol 2). Contrast-to-noise ratio (CNR) was calculated. Image quality was subjectively evaluated using a five-point scale. Radiation dose parameters were recorded. All studies were considered of diagnostic image quality. CNR was significantly higher with protocol 2 (15.0±5.2 vs 11.0±4.2; p<.0001). Subjective image quality analysis revealed no significant differences for evaluation of attenuation (p=0.08501) but image noise was rated significantly lower with protocol 2 (p=0.0005). Mean tube voltage and effective dose were 94.7±14.1kV and 6.7±3.9mSv with protocol 2; 120±0kV and 11.5±5.2mSv with protocol 1 (p<0.0001, respectively). Aortic CTA performed with 3rd generation DSCT, ATVS, integrated circuit detector, and advanced iterative reconstruction allow a substantial reduction of radiation exposure while improving image quality in comparison to 120kV imaging with FBP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Quality of life and nutritional consequences after aboral pouch reconstruction following total gastrectomy for gastric cancer: randomized controlled trial CCG1101.

    PubMed

    Ito, Yuichi; Yoshikawa, Takaki; Fujiwara, Michitaka; Kojima, Hiroshi; Matsui, Takanori; Mochizuki, Yoshinari; Cho, Haruhiko; Aoyama, Toru; Ito, Seiji; Misawa, Kazunari; Nakayama, Hiroshi; Morioka, Yuki; Ishiyama, Akiharu; Tanaka, Chie; Morita, Satoshi; Sakamoto, Junichi; Kodera, Yasuhiro

    2016-07-01

    Total gastrectomy has detrimental effects on postoperative nutritional status and quality of life (QOL), but it is often unavoidable in the treatment of gastric cancer. Roux-en-Y (RY) is the most common reconstruction method following total gastrectomy. Trials to explore other means of reconstruction have been conducted but have failed to identify a method that is globally accepted. Aboral pouch reconstruction (AP), in which an anisoperistaltic jejunal pouch is created in the Y limb of the RY reconstruction, is considered effective and technically feasible. A prospective randomized trial was conducted to compare AP with RY. Gastric cancer patients requiring total gastrectomy for R0 resection were randomly assigned during surgery to receive either RY (n = 51) or AP (n = 49). Postoperative QOL as assessed by the EORTC QLQ-C30 and STO22, body composition, and morbidity were compared between the two reconstruction methods. The physical functioning score of the QLQ-C30 was selected as the primary endpoint. The incidences of postoperative complications were similar between the two groups (29 % in the RY group and 27 % in the AP group). No significant difference was observed in the physical functioning score, and the superiority of AP was demonstrated only for the nausea and vomiting score at 12 months (p = 0.041) and the reflux score at 1 month (p = 0.036). No significant differences were observed in body composition or serum biochemistry. Although AP was safely implemented, no increased benefits in nutritional or QOL-related parameters were observed for this method over RY within 12 months postoperatively.

  8. Optimisation of reconstruction--reprojection-based motion correction for cardiac SPECT.

    PubMed

    Kangasmaa, Tuija S; Sohlberg, Antti O

    2014-07-01

    Cardiac motion is a challenging cause of image artefacts in myocardial perfusion SPECT. A wide range of motion correction methods have been developed over the years, and so far automatic algorithms based on the reconstruction--reprojection principle have proved to be the most effective. However, these methods have not been fully optimised in terms of their free parameters and implementational details. Two slightly different implementations of reconstruction--reprojection-based motion correction techniques were optimised for effective, good-quality motion correction and then compared with each other. The first of these methods (Method 1) was the traditional reconstruction-reprojection motion correction algorithm, where the motion correction is done in projection space, whereas the second algorithm (Method 2) performed motion correction in reconstruction space. The parameters that were optimised include the type of cost function (squared difference, normalised cross-correlation and mutual information) that was used to compare measured and reprojected projections, and the number of iterations needed. The methods were tested with motion-corrupt projection datasets, which were generated by adding three different types of motion (lateral shift, vertical shift and vertical creep) to motion-free cardiac perfusion SPECT studies. Method 2 performed slightly better overall than Method 1, but the difference between the two implementations was small. The execution time for Method 2 was much longer than for Method 1, which limits its clinical usefulness. The mutual information cost function gave clearly the best results for all three motion sets for both correction methods. Three iterations were sufficient for a good quality correction using Method 1. The traditional reconstruction--reprojection-based method with three update iterations and mutual information cost function is a good option for motion correction in clinical myocardial perfusion SPECT.

  9. Low Dose PET Image Reconstruction with Total Variation Using Alternating Direction Method.

    PubMed

    Yu, Xingjian; Wang, Chenye; Hu, Hongjie; Liu, Huafeng

    2016-01-01

    In this paper, a total variation (TV) minimization strategy is proposed to overcome the problem of sparse spatial resolution and large amounts of noise in low dose positron emission tomography (PET) imaging reconstruction. Two types of objective function were established based on two statistical models of measured PET data, least-square (LS) TV for the Gaussian distribution and Poisson-TV for the Poisson distribution. To efficiently obtain high quality reconstructed images, the alternating direction method (ADM) is used to solve these objective functions. As compared with the iterative shrinkage/thresholding (IST) based algorithms, the proposed ADM can make full use of the TV constraint and its convergence rate is faster. The performance of the proposed approach is validated through comparisons with the expectation-maximization (EM) method using synthetic and experimental biological data. In the comparisons, the results of both LS-TV and Poisson-TV are taken into consideration to find which models are more suitable for PET imaging, in particular low-dose PET. To evaluate the results quantitatively, we computed bias, variance, and the contrast recovery coefficient (CRC) and drew profiles of the reconstructed images produced by the different methods. The results show that both Poisson-TV and LS-TV can provide a high visual quality at a low dose level. The bias and variance of the proposed LS-TV and Poisson-TV methods are 20% to 74% less at all counting levels than those of the EM method. Poisson-TV gives the best performance in terms of high-accuracy reconstruction with the lowest bias and variance as compared to the ground truth (14.3% less bias and 21.9% less variance). In contrast, LS-TV gives the best performance in terms of the high contrast of the reconstruction with the highest CRC.

  10. Low Dose PET Image Reconstruction with Total Variation Using Alternating Direction Method

    PubMed Central

    Yu, Xingjian; Wang, Chenye; Hu, Hongjie; Liu, Huafeng

    2016-01-01

    In this paper, a total variation (TV) minimization strategy is proposed to overcome the problem of sparse spatial resolution and large amounts of noise in low dose positron emission tomography (PET) imaging reconstruction. Two types of objective function were established based on two statistical models of measured PET data, least-square (LS) TV for the Gaussian distribution and Poisson-TV for the Poisson distribution. To efficiently obtain high quality reconstructed images, the alternating direction method (ADM) is used to solve these objective functions. As compared with the iterative shrinkage/thresholding (IST) based algorithms, the proposed ADM can make full use of the TV constraint and its convergence rate is faster. The performance of the proposed approach is validated through comparisons with the expectation-maximization (EM) method using synthetic and experimental biological data. In the comparisons, the results of both LS-TV and Poisson-TV are taken into consideration to find which models are more suitable for PET imaging, in particular low-dose PET. To evaluate the results quantitatively, we computed bias, variance, and the contrast recovery coefficient (CRC) and drew profiles of the reconstructed images produced by the different methods. The results show that both Poisson-TV and LS-TV can provide a high visual quality at a low dose level. The bias and variance of the proposed LS-TV and Poisson-TV methods are 20% to 74% less at all counting levels than those of the EM method. Poisson-TV gives the best performance in terms of high-accuracy reconstruction with the lowest bias and variance as compared to the ground truth (14.3% less bias and 21.9% less variance). In contrast, LS-TV gives the best performance in terms of the high contrast of the reconstruction with the highest CRC. PMID:28005929

  11. Accurate sparse-projection image reconstruction via nonlocal TV regularization.

    PubMed

    Zhang, Yi; Zhang, Weihua; Zhou, Jiliu

    2014-01-01

    Sparse-projection image reconstruction is a useful approach to lower the radiation dose; however, the incompleteness of projection data will cause degeneration of imaging quality. As a typical compressive sensing method, total variation has obtained great attention on this problem. Suffering from the theoretical imperfection, total variation will produce blocky effect on smooth regions and blur edges. To overcome this problem, in this paper, we introduce the nonlocal total variation into sparse-projection image reconstruction and formulate the minimization problem with new nonlocal total variation norm. The qualitative and quantitative analyses of numerical as well as clinical results demonstrate the validity of the proposed method. Comparing to other existing methods, our method more efficiently suppresses artifacts caused by low-rank reconstruction and reserves structure information better.

  12. A qualitative and quantitative analysis of radiation dose and image quality of computed tomography images using adaptive statistical iterative reconstruction.

    PubMed

    Hussain, Fahad Ahmed; Mail, Noor; Shamy, Abdulrahman M; Suliman, Alghamdi; Saoudi, Abdelhamid

    2016-05-08

    Image quality is a key issue in radiology, particularly in a clinical setting where it is important to achieve accurate diagnoses while minimizing radiation dose. Some computed tomography (CT) manufacturers have introduced algorithms that claim significant dose reduction. In this study, we assessed CT image quality produced by two reconstruction algorithms provided with GE Healthcare's Discovery 690 Elite positron emission tomography (PET) CT scanner. Image quality was measured for images obtained at various doses with both conventional filtered back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR) algorithms. A stan-dard CT dose index (CTDI) phantom and a pencil ionization chamber were used to measure the CT dose at 120 kVp and an exposure of 260 mAs. Image quality was assessed using two phantoms. CT images of both phantoms were acquired at tube voltage (kV) of 120 with exposures ranging from 25 mAs to 400 mAs. Images were reconstructed using FBP and ASIR ranging from 10% to 100%, then analyzed for noise, low-contrast detectability, contrast-to-noise ratio (CNR), and modulation transfer function (MTF). Noise was 4.6 HU in water phantom images acquired at 260 mAs/FBP 120 kV and 130 mAs/50% ASIR 120 kV. The large objects (fre-quency < 7 lp/cm) retained fairly acceptable image quality at 130 mAs/50% ASIR, compared to 260 mAs/FBP. The application of ASIR for small objects (frequency >7 lp/cm) showed poor visibility compared to FBP at 260 mAs and even worse for images acquired at less than 130 mAs. ASIR blending more than 50% at low dose tends to reduce contrast of small objects (frequency >7 lp/cm). We concluded that dose reduction and ASIR should be applied with close attention if the objects to be detected or diagnosed are small (frequency > 7 lp/cm). Further investigations are required to correlate the small objects (frequency > 7 lp/cm) to patient anatomy and clinical diagnosis.

  13. A biomechanical modeling guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction

    NASA Astrophysics Data System (ADS)

    Huang, Xiaokun; Zhang, You; Wang, Jing

    2017-03-01

    Four-dimensional (4D) cone-beam computed tomography (CBCT) enables motion tracking of anatomical structures and removes artifacts introduced by motion. However, the imaging time/dose of 4D-CBCT is substantially longer/higher than traditional 3D-CBCT. We previously developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, to reconstruct high-quality 4D-CBCT from limited number of projections to reduce the imaging time/dose. However, the accuracy of SMEIR is limited in reconstructing low-contrast regions with fine structure details. In this study, we incorporate biomechanical modeling into the SMEIR algorithm (SMEIR-Bio), to improve the reconstruction accuracy at low-contrast regions with fine details. The efficacy of SMEIR-Bio is evaluated using 11 lung patient cases and compared to that of the original SMEIR algorithm. Qualitative and quantitative comparisons showed that SMEIR-Bio greatly enhances the accuracy of reconstructed 4D-CBCT volume in low-contrast regions, which can potentially benefit multiple clinical applications including the treatment outcome analysis.

  14. Integrated Approach to Reconstruction of Microbial Regulatory Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodionov, Dmitry A; Novichkov, Pavel S

    2013-11-04

    This project had the goal(s) of development of integrated bioinformatics platform for genome-scale inference and visualization of transcriptional regulatory networks (TRNs) in bacterial genomes. The work was done in Sanford-Burnham Medical Research Institute (SBMRI, P.I. D.A. Rodionov) and Lawrence Berkeley National Laboratory (LBNL, co-P.I. P.S. Novichkov). The developed computational resources include: (1) RegPredict web-platform for TRN inference and regulon reconstruction in microbial genomes, and (2) RegPrecise database for collection, visualization and comparative analysis of transcriptional regulons reconstructed by comparative genomics. These analytical resources were selected as key components in the DOE Systems Biology KnowledgeBase (SBKB). The high-quality data accumulated inmore » RegPrecise will provide essential datasets of reference regulons in diverse microbes to enable automatic reconstruction of draft TRNs in newly sequenced genomes. We outline our progress toward the three aims of this grant proposal, which were: Develop integrated platform for genome-scale regulon reconstruction; Infer regulatory annotations in several groups of bacteria and building of reference collections of microbial regulons; and Develop KnowledgeBase on microbial transcriptional regulation.« less

  15. Comparison of clinical and physics scoring of PET images when image reconstruction parameters are varied.

    PubMed

    Walsh, C; Johnston, C; Sheehy, N; O' Reilly, G

    2013-02-01

    In this study the quantitative and qualitative image quality (IQ) measurements with clinical judgement of IQ in positron emission tomography (PET) were compared. The limitations of IQ metrics and the proposed criteria of acceptability for PET scanners are discussed. Phantom and patient images were reconstructed using seven different iterative reconstruction protocols. For each reconstructed set of images, IQ was scored based both on the visual analysis and on the quantitative metrics. The quantitative physics metrics did not rank the reconstruction protocols in the same order as the clinicians' scoring of perceived IQ (R(s)=-0.54). Better agreement was achieved when comparing the clinical perception of IQ to the physicist's visual assessment of IQ in the phantom images (R(s)=+0.59). The closest agreement was seen between the quantitative physics metrics and the measurement of the standard uptake values (SUVs) in small tumours (R(s)=+0.92). Given the disparity between the clinical perception of IQ and the physics metrics a cautious approach to use of IQ measurements for determining suspension levels is warranted.

  16. Reduced dose CT with model-based iterative reconstruction compared to standard dose CT of the chest, abdomen, and pelvis in oncology patients: intra-individual comparison study on image quality and lesion conspicuity.

    PubMed

    Morimoto, Linda Nayeli; Kamaya, Aya; Boulay-Coletta, Isabelle; Fleischmann, Dominik; Molvin, Lior; Tian, Lu; Fisher, George; Wang, Jia; Willmann, Jürgen K

    2017-09-01

    To compare image quality and lesion conspicuity of reduced dose (RD) CT with model-based iterative reconstruction (MBIR) compared to standard dose (SD) CT in patients undergoing oncological follow-up imaging. Forty-four cancer patients who had a staging SD CT within 12 months were prospectively included to undergo a weight-based RD CT with MBIR. Radiation dose was recorded and tissue attenuation and image noise of four tissue types were measured. Reproducibility of target lesion size measurements of up to 5 target lesions per patient were analyzed. Subjective image quality was evaluated for three readers independently utilizing 4- or 5-point Likert scales. Median radiation dose reduction was 46% using RD CT (P < 0.01). Median image noise across all measured tissue types was lower (P < 0.01) in RD CT. Subjective image quality for RD CT was higher (P < 0.01) in regard to image noise and overall image quality; however, there was no statistically significant difference regarding image sharpness (P = 0.59). There were subjectively more artifacts on RD CT (P < 0.01). Lesion conspicuity was subjectively better in RD CT (P < 0.01). Repeated target lesion size measurements were highly reproducible both on SD CT (ICC = 0.987) and RD CT (ICC = 0.97). RD CT imaging with MBIR provides diagnostic imaging quality and comparable lesion conspicuity on follow-up exams while allowing dose reduction by a median of 46% compared to SD CT imaging.

  17. Direct Patlak Reconstruction From Dynamic PET Data Using the Kernel Method With MRI Information Based on Structural Similarity.

    PubMed

    Gong, Kuang; Cheng-Liao, Jinxiu; Wang, Guobao; Chen, Kevin T; Catana, Ciprian; Qi, Jinyi

    2018-04-01

    Positron emission tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neuroscience. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information into image reconstruction. Previously, kernel learning has been successfully embedded into static and dynamic PET image reconstruction using either PET temporal or MRI information. Here, we combine both PET temporal and MRI information adaptively to improve the quality of direct Patlak reconstruction. We examined different approaches to combine the PET and MRI information in kernel learning to address the issue of potential mismatches between MRI and PET signals. Computer simulations and hybrid real-patient data acquired on a simultaneous PET/MR scanner were used to evaluate the proposed methods. Results show that the method that combines PET temporal information and MRI spatial information adaptively based on the structure similarity index has the best performance in terms of noise reduction and resolution improvement.

  18. Rotating single-shot acquisition (RoSA) with composite reconstruction for fast high-resolution diffusion imaging.

    PubMed

    Wen, Qiuting; Kodiweera, Chandana; Dale, Brian M; Shivraman, Giri; Wu, Yu-Chien

    2018-01-01

    To accelerate high-resolution diffusion imaging, rotating single-shot acquisition (RoSA) with composite reconstruction is proposed. Acceleration was achieved by acquiring only one rotating single-shot blade per diffusion direction, and high-resolution diffusion-weighted (DW) images were reconstructed by using similarities of neighboring DW images. A parallel imaging technique was implemented in RoSA to further improve the image quality and acquisition speed. RoSA performance was evaluated by simulation and human experiments. A brain tensor phantom was developed to determine an optimal blade size and rotation angle by considering similarity in DW images, off-resonance effects, and k-space coverage. With the optimal parameters, RoSA MR pulse sequence and reconstruction algorithm were developed to acquire human brain data. For comparison, multishot echo planar imaging (EPI) and conventional single-shot EPI sequences were performed with matched scan time, resolution, field of view, and diffusion directions. The simulation indicated an optimal blade size of 48 × 256 and a 30 ° rotation angle. For 1 × 1 mm 2 in-plane resolution, RoSA was 12 times faster than the multishot acquisition with comparable image quality. With the same acquisition time as SS-EPI, RoSA provided superior image quality and minimum geometric distortion. RoSA offers fast, high-quality, high-resolution diffusion images. The composite image reconstruction is model-free and compatible with various diffusion computation approaches including parametric and nonparametric analyses. Magn Reson Med 79:264-275, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Comparison of computation time and image quality between full-parallax 4G-pixels CGHs calculated by the point cloud and polygon-based method

    NASA Astrophysics Data System (ADS)

    Nakatsuji, Noriaki; Matsushima, Kyoji

    2017-03-01

    Full-parallax high-definition CGHs composed of more than billion pixels were so far created only by the polygon-based method because of its high performance. However, GPUs recently allow us to generate CGHs much faster by the point cloud. In this paper, we measure computation time of object fields for full-parallax high-definition CGHs, which are composed of 4 billion pixels and reconstruct the same scene, by using the point cloud with GPU and the polygon-based method with CPU. In addition, we compare the optical and simulated reconstructions between CGHs created by these techniques to verify the image quality.

  20. [Combined use of wide-detector and adaptive statistical iterative reconstruction-V technique in abdominal CT with low radiation dose].

    PubMed

    Wang, H X; Lü, P J; Yue, S W; Chang, L Y; Li, Y; Zhao, H P; Li, W R; Gao, J B

    2017-12-05

    Objective: To investigate the image quality and radiation dose with wide-detector(80 mm) and adaptive statistical iterative reconstruction-V (ASIR-V) technique at abdominal contrast enhanced CT scan. Methods: In the first phantom experiment part, the percentage of ASIR-V for half dose of combined wide detector with ASIR-V technique as compared with standard-detector (40 mm) technique was determined. The human experiment was performed based on the phantom study, 160 patients underwent contrast-enhanced abdominal CT scan were prospectively collected and divided into the control group ( n =40) with image reconstruction using 40% ASIR (group A) and the study group ( n =120) with random number table. According to pre-ASIR-V percentage, the study group was assigned into three groups[40 cases in each group, group B: 0 pre-ASIR-V scan with image reconstruction of 0-100% post-ASIR-V (interval 10%, subgroups B0-B10); group C: 20% pre-ASIR-V with 20%, 40% and 60% post-ASIR-V (subgroups C1-C3); group D: 40%pre-ASIR-V with 40% and 60% post-ASIR-V (subgroups D1-D2)]. Image noise, CT attenuation values and CNR of the liver, pancreas, aorta and portal vein were compared by using two sample t test and One-way ANOVA. Qualitative visual parameters (overall image quality as graded on a 5-point scale) was compared by Mann-Whitney U test and Kruskal-Wallis H test. Results: The phantom experiment showed that the percentage of pre-ASIR-V for half dose was 40%. With the 40% pre-ASIR-V, radiation dose in the study group was reduced by 35.5% as compared with the control group. Image noise in the subgroups of B2-B10, C2-C3 and D1-D2 were lower ( t =-14.681--3.046, all P <0.05) while CNR in the subgroups of B4-B10, C2-3 and D1-D2 were higher( t =2.048-9.248, all P <0.05)than those in group A, except the CNR of liver in the arterial phase (AP) in C2, D1 and D2 and the CNR of pancreas in AP in D1 ( t =0.574-1.327, all P >0.05). The subjective image quality scores increased gradually in the range of 0-60% post-ASIR-V and decreased with post-ASIR-V larger than 70%. The overall image quality of subgroup B3-B8, C2-C3 and D1-D2 were higher than that in group A ( Z =-2.229--6.533, all P <0.05). Conclusion: Compared with stand-detector together with ASIR technique, wide-detector combined with 40% pre-ASIR-V technique with 60% post-ASIR-V image reconstruction can reduce radiation dose while maintain good overall image quality.

  1. Abdominal CT with model-based iterative reconstruction (MBIR): initial results of a prospective trial comparing ultralow-dose with standard-dose imaging.

    PubMed

    Pickhardt, Perry J; Lubner, Meghan G; Kim, David H; Tang, Jie; Ruma, Julie A; del Rio, Alejandro Muñoz; Chen, Guang-Hong

    2012-12-01

    The purpose of this study was to report preliminary results of an ongoing prospective trial of ultralow-dose abdominal MDCT. Imaging with standard-dose contrast-enhanced (n = 21) and unenhanced (n = 24) clinical abdominal MDCT protocols was immediately followed by ultralow-dose imaging of a matched series of 45 consecutively registered adults (mean age, 57.9 years; mean body mass index, 28.5). The ultralow-dose images were reconstructed with filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR), and model-based iterative reconstruction (MBIR). Standard-dose series were reconstructed with FBP (reference standard). Image noise was measured at multiple predefined sites. Two blinded abdominal radiologists interpreted randomly presented ultralow-dose images for multilevel subjective image quality (5-point scale) and depiction of organ-based focal lesions. Mean dose reduction relative to the standard series was 74% (median, 78%; range, 57-88%; mean effective dose, 1.90 mSv). Mean multiorgan image noise for low-dose MBIR was 14.7 ± 2.6 HU, significantly lower than standard-dose FBP (28.9 ± 9.9 HU), low-dose FBP (59.2 ± 23.3 HU), and ASIR (45.6 ± 14.1 HU) (p < 0.001). The mean subjective image quality score for low-dose MBIR (3.0 ± 0.5) was significantly higher than for low-dose FBP (1.6 ± 0.7) and ASIR (1.8 ± 0.7) (p < 0.001). Readers identified 213 focal noncalcific lesions with standard-dose FBP. Pooled lesion detection was higher for low-dose MBIR (79.3% [169/213]) compared with low-dose FBP (66.2% [141/213]) and ASIR (62.0% [132/213]) (p < 0.05). MBIR shows great potential for substantially reducing radiation doses at routine abdominal CT. Both FBP and ASIR are limited in this regard owing to reduced image quality and diagnostic capability. Further investigation is needed to determine the optimal dose level for MBIR that maintains adequate diagnostic performance. In general, objective and subjective image quality measurements do not necessarily correlate with diagnostic performance at ultralow-dose CT.

  2. Median prior constrained TV algorithm for sparse view low-dose CT reconstruction.

    PubMed

    Liu, Yi; Shangguan, Hong; Zhang, Quan; Zhu, Hongqing; Shu, Huazhong; Gui, Zhiguo

    2015-05-01

    It is known that lowering the X-ray tube current (mAs) or tube voltage (kVp) and simultaneously reducing the total number of X-ray views (sparse view) is an effective means to achieve low-dose in computed tomography (CT) scan. However, the associated image quality by the conventional filtered back-projection (FBP) usually degrades due to the excessive quantum noise. Although sparse-view CT reconstruction algorithm via total variation (TV), in the scanning protocol of reducing X-ray tube current, has been demonstrated to be able to result in significant radiation dose reduction while maintain image quality, noticeable patchy artifacts still exist in reconstructed images. In this study, to address the problem of patchy artifacts, we proposed a median prior constrained TV regularization to retain the image quality by introducing an auxiliary vector m in register with the object. Specifically, the approximate action of m is to draw, in each iteration, an object voxel toward its own local median, aiming to improve low-dose image quality with sparse-view projection measurements. Subsequently, an alternating optimization algorithm is adopted to optimize the associative objective function. We refer to the median prior constrained TV regularization as "TV_MP" for simplicity. Experimental results on digital phantoms and clinical phantom demonstrated that the proposed TV_MP with appropriate control parameters can not only ensure a higher signal to noise ratio (SNR) of the reconstructed image, but also its resolution compared with the original TV method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The combination of a reduction in contrast agent dose with low tube voltage and an adaptive statistical iterative reconstruction algorithm in CT enterography: Effects on image quality and radiation dose.

    PubMed

    Feng, Cui; Zhu, Di; Zou, Xianlun; Li, Anqin; Hu, Xuemei; Li, Zhen; Hu, Daoyu

    2018-03-01

    To investigate the subjective and quantitative image quality and radiation exposure of CT enterography (CTE) examination performed at low tube voltage and low concentration of contrast agent with adaptive statistical iterative reconstruction (ASIR) algorithm, compared with conventional CTE.One hundred thirty-seven patients with suspected or proved gastrointestinal diseases underwent contrast enhanced CTE in a multidetector computed tomography (MDCT) scanner. All cases were assigned to 2 groups. Group A (n = 79) underwent CT with low tube voltage based on patient body mass index (BMI) (BMI < 23 kg/m, 80 kVp; BMI ≥ 23 kg/m, 100 kVp) and low concentration of contrast agent (270 mg I/mL), the images were reconstructed with standard filtered back projection (FBP) algorithm and 50% ASIR algorithm. Group B (n = 58) underwent conventional CTE with 120 kVp and 350 mg I/mL contrast agent, the images were reconstructed with FBP algorithm. The computed tomography dose index volume (CTDIvol), dose length product (DLP), effective dose (ED), and total iodine dosage were calculated and compared. The CT values, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) of the normal bowel wall, gastrointestinal lesions, and mesenteric vessels were assessed and compared. The subjective image quality was assessed independently and blindly by 2 radiologists using a 5-point Likert scale.The differences of values for CTDIvol (8.64 ± 2.72 vs 11.55 ± 3.95, P < .001), ED (6.34 ± 2.24 vs 8.52 ± 3.02, P < .001), and DLP (422.6 ± 149.40 vs 568.30 ± 213.90, P < .001) were significant between group A and group B, with a reduction of 25.2%, 25.7%, and 25.7% in group A, respectively. The total iodine dosage in group A was reduced by 26.1%. The subjective image quality did not differ between the 2 groups (P > .05) and all image quality scores were greater than or equal to 3 (moderate). Fifty percent ASIR-A group images provided lower image noise, but similar or higher quantitative image quality in comparison with FBP-B group images.Compared with the conventional protocol, CTE performed at low tube voltage, low concentration of contrast agent with 50% ASIR algorithm produce a diagnostically acceptable image quality with a mean ED of 6.34 mSv and a total iodine dose reduction of 26.1%.

  4. Robust sliding-window reconstruction for Accelerating the acquisition of MR fingerprinting.

    PubMed

    Cao, Xiaozhi; Liao, Congyu; Wang, Zhixing; Chen, Ying; Ye, Huihui; He, Hongjian; Zhong, Jianhui

    2017-10-01

    To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes. A sliding-window (SW) strategy was applied to MRF, in which signal and dictionary matching was conducted between fingerprints consisting of mixed-contrast image series reconstructed from consecutive data frames segmented by a sliding window, and a precalculated mixed-contrast dictionary. The effectiveness and performance of this new method, dubbed SW-MRF, was evaluated in both phantom and in vivo. Error quantifications were conducted on results obtained with various settings of SW reconstruction parameters. Compared with the original MRF strategy, the results of both phantom and in vivo experiments demonstrate that the proposed SW-MRF strategy either provided similar accuracy with reduced acquisition time, or improved accuracy with equal acquisition time. Parametric maps of T 1 , T 2 , and proton density of comparable quality could be achieved with a two-fold or more reduction in acquisition time. The effect of sliding-window width on dictionary sensitivity was also estimated. The novel SW-MRF recovers high quality image frames from highly undersampled MRF data, which enables more robust dictionary matching with reduced numbers of data frames. This time efficiency may facilitate MRF applications in time-critical clinical settings. Magn Reson Med 78:1579-1588, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Intra-patient comparison of reduced-dose model-based iterative reconstruction with standard-dose adaptive statistical iterative reconstruction in the CT diagnosis and follow-up of urolithiasis.

    PubMed

    Tenant, Sean; Pang, Chun Lap; Dissanayake, Prageeth; Vardhanabhuti, Varut; Stuckey, Colin; Gutteridge, Catherine; Hyde, Christopher; Roobottom, Carl

    2017-10-01

    To evaluate the accuracy of reduced-dose CT scans reconstructed using a new generation of model-based iterative reconstruction (MBIR) in the imaging of urinary tract stone disease, compared with a standard-dose CT using 30% adaptive statistical iterative reconstruction. This single-institution prospective study recruited 125 patients presenting either with acute renal colic or for follow-up of known urinary tract stones. They underwent two immediately consecutive scans, one at standard dose settings and one at the lowest dose (highest noise index) the scanner would allow. The reduced-dose scans were reconstructed using both ASIR 30% and MBIR algorithms and reviewed independently by two radiologists. Objective and subjective image quality measures as well as diagnostic data were obtained. The reduced-dose MBIR scan was 100% concordant with the reference standard for the assessment of ureteric stones. It was extremely accurate at identifying calculi of 3 mm and above. The algorithm allowed a dose reduction of 58% without any loss of scan quality. A reduced-dose CT scan using MBIR is accurate in acute imaging for renal colic symptoms and for urolithiasis follow-up and allows a significant reduction in dose. • MBIR allows reduced CT dose with similar diagnostic accuracy • MBIR outperforms ASIR when used for the reconstruction of reduced-dose scans • MBIR can be used to accurately assess stones 3 mm and above.

  6. Adaptive statistical iterative reconstruction and Veo: assessment of image quality and diagnostic performance in CT colonography at various radiation doses.

    PubMed

    Yoon, Min A; Kim, Se Hyung; Lee, Jeong Min; Woo, Hyoun Sik; Lee, Eun Sun; Ahn, Se Jin; Han, Joon Koo

    2012-01-01

    To evaluate the diagnostic performance of computed tomography (CT) colonography (CTC) reconstructed with different levels of adaptive statistical iterative reconstruction (ASiR, GE Healthcare) and Veo (model-based iterative reconstruction, GE Healthcare) at various tube currents in detection of polyps in porcine colon phantoms. Five porcine colon phantoms with 46 simulated polyps were scanned at different radiation doses (10, 30, and 50 mA s) and were reconstructed using filtered back projection (FBP), ASiR (20%, 40%, and 60%) and Veo. Eleven data sets for each phantom (10-mA s FBP, 10-mA s 20% ASiR, 10-mA s 40% ASiR, 10-mA s 60% ASiR, 10-mA s Veo, 30-mA s FBP, 30-mA s 20% ASiR, 30-mA s 40% ASiR, 30-mA s 60% ASiR, 30-mA s Veo, and 50-mA s FBP) yielded a total of 55 data sets. Polyp detection sensitivity and confidence level of 2 independent observers were evaluated with the McNemar test, the Fisher exact test, and receiver operating characteristic curve analysis. Comparative analyses of overall image quality score, measured image noise, and interpretation time were also performed. Per-polyp detection sensitivities and specificities were highest in 10-mA s Veo, 30-mA s FBP, 30-mA s 60% ASiR, and 50-mA s FBP (sensitivity, 100%; specificity, 100%). The area-under-the-curve values for the overall performance of each data set was also highest (1.000) at 50-mA s FBP, 30-mA s FBP, 30-mA s 60% ASiR, and 10-mA s Veo. Images reconstructed with ASiR showed statistically significant improvement in per-polyp detection sensitivity as the percent level of per-polyp sensitivity increased (10-mA s FBP vs 10-mA s 20% ASiR, P = 0.011; 10-mA s FBP vs 10-mA s 40% ASiR, P = 0.000; 10-mA s FBP vs 10-mA s 60% ASiR, P = 0.000; 10-mA s 20% ASiR vs 40% ASiR, P = 0.034). Overall image quality score was highest at 30-mA s Veo and 50-mA s FBP. The quantitative measurement of the image noise was lowest at 30-mA s Veo and second lowest at 10-mA s Veo. There was a trend of decrease in time required for image interpretation as the percent level of ASiR increased, and ASiR or Veo was used instead of FBP. However, differences from comparative analyses of overall image quality score, measured image noise, and interpretation time did not reach statistical significance. ASiR and Veo showed improved diagnostic performance with excellent sensitivity and specificity with less image noise and good image quality compared with FBP reconstruction of same radiation dose. Our study confirmed feasibility of low-dose CTC with iterative reconstruction as a promising screening tool with excellent diagnostic performance similar to that of the standard-dose CTC with FBP.

  7. Model-based Iterative Reconstruction: Effect on Patient Radiation Dose and Image Quality in Pediatric Body CT

    PubMed Central

    Dillman, Jonathan R.; Goodsitt, Mitchell M.; Christodoulou, Emmanuel G.; Keshavarzi, Nahid; Strouse, Peter J.

    2014-01-01

    Purpose To retrospectively compare image quality and radiation dose between a reduced-dose computed tomographic (CT) protocol that uses model-based iterative reconstruction (MBIR) and a standard-dose CT protocol that uses 30% adaptive statistical iterative reconstruction (ASIR) with filtered back projection. Materials and Methods Institutional review board approval was obtained. Clinical CT images of the chest, abdomen, and pelvis obtained with a reduced-dose protocol were identified. Images were reconstructed with two algorithms: MBIR and 100% ASIR. All subjects had undergone standard-dose CT within the prior year, and the images were reconstructed with 30% ASIR. Reduced- and standard-dose images were evaluated objectively and subjectively. Reduced-dose images were evaluated for lesion detectability. Spatial resolution was assessed in a phantom. Radiation dose was estimated by using volumetric CT dose index (CTDIvol) and calculated size-specific dose estimates (SSDE). A combination of descriptive statistics, analysis of variance, and t tests was used for statistical analysis. Results In the 25 patients who underwent the reduced-dose protocol, mean decrease in CTDIvol was 46% (range, 19%–65%) and mean decrease in SSDE was 44% (range, 19%–64%). Reduced-dose MBIR images had less noise (P > .004). Spatial resolution was superior for reduced-dose MBIR images. Reduced-dose MBIR images were equivalent to standard-dose images for lungs and soft tissues (P > .05) but were inferior for bones (P = .004). Reduced-dose 100% ASIR images were inferior for soft tissues (P < .002), lungs (P < .001), and bones (P < .001). By using the same reduced-dose acquisition, lesion detectability was better (38% [32 of 84 rated lesions]) or the same (62% [52 of 84 rated lesions]) with MBIR as compared with 100% ASIR. Conclusion CT performed with a reduced-dose protocol and MBIR is feasible in the pediatric population, and it maintains diagnostic quality. © RSNA, 2013 Online supplemental material is available for this article. PMID:24091359

  8. Technical Note: FreeCT_wFBP: A robust, efficient, open-source implementation of weighted filtered backprojection for helical, fan-beam CT.

    PubMed

    Hoffman, John; Young, Stefano; Noo, Frédéric; McNitt-Gray, Michael

    2016-03-01

    With growing interest in quantitative imaging, radiomics, and CAD using CT imaging, the need to explore the impacts of acquisition and reconstruction parameters has grown. This usually requires extensive access to the scanner on which the data were acquired and its workflow is not designed for large-scale reconstruction projects. Therefore, the authors have developed a freely available, open-source software package implementing a common reconstruction method, weighted filtered backprojection (wFBP), for helical fan-beam CT applications. FreeCT_wFBP is a low-dependency, GPU-based reconstruction program utilizing c for the host code and Nvidia CUDA C for GPU code. The software is capable of reconstructing helical scans acquired with arbitrary pitch-values, and sampling techniques such as flying focal spots and a quarter-detector offset. In this work, the software has been described and evaluated for reconstruction speed, image quality, and accuracy. Speed was evaluated based on acquisitions of the ACR CT accreditation phantom under four different flying focal spot configurations. Image quality was assessed using the same phantom by evaluating CT number accuracy, uniformity, and contrast to noise ratio (CNR). Finally, reconstructed mass-attenuation coefficient accuracy was evaluated using a simulated scan of a FORBILD thorax phantom and comparing reconstructed values to the known phantom values. The average reconstruction time evaluated under all flying focal spot configurations was found to be 17.4 ± 1.0 s for a 512 row × 512 column × 32 slice volume. Reconstructions of the ACR phantom were found to meet all CT Accreditation Program criteria including CT number, CNR, and uniformity tests. Finally, reconstructed mass-attenuation coefficient values of water within the FORBILD thorax phantom agreed with original phantom values to within 0.0001 mm(2)/g (0.01%). FreeCT_wFBP is a fast, highly configurable reconstruction package for third-generation CT available under the GNU GPL. It shows good performance with both clinical and simulated data.

  9. New scanning technique using Adaptive Statistical Iterative Reconstruction (ASIR) significantly reduced the radiation dose of cardiac CT.

    PubMed

    Tumur, Odgerel; Soon, Kean; Brown, Fraser; Mykytowycz, Marcus

    2013-06-01

    The aims of our study were to evaluate the effect of application of Adaptive Statistical Iterative Reconstruction (ASIR) algorithm on the radiation dose of coronary computed tomography angiography (CCTA) and its effects on image quality of CCTA and to evaluate the effects of various patient and CT scanning factors on the radiation dose of CCTA. This was a retrospective study that included 347 consecutive patients who underwent CCTA at a tertiary university teaching hospital between 1 July 2009 and 20 September 2011. Analysis was performed comparing patient demographics, scan characteristics, radiation dose and image quality in two groups of patients in whom conventional Filtered Back Projection (FBP) or ASIR was used for image reconstruction. There were 238 patients in the FBP group and 109 patients in the ASIR group. There was no difference between the groups in the use of prospective gating, scan length or tube voltage. In ASIR group, significantly lower tube current was used compared with FBP group, 550 mA (450-600) vs. 650 mA (500-711.25) (median (interquartile range)), respectively, P < 0.001. There was 27% effective radiation dose reduction in the ASIR group compared with FBP group, 4.29 mSv (2.84-6.02) vs. 5.84 mSv (3.88-8.39) (median (interquartile range)), respectively, P < 0.001. Although ASIR was associated with increased image noise compared with FBP (39.93 ± 10.22 vs. 37.63 ± 18.79 (mean ± standard deviation), respectively, P < 0.001), it did not affect the signal intensity, signal-to-noise ratio, contrast-to-noise ratio or the diagnostic quality of CCTA. Application of ASIR reduces the radiation dose of CCTA without affecting the image quality. © 2013 The Authors. Journal of Medical Imaging and Radiation Oncology © 2013 The Royal Australian and New Zealand College of Radiologists.

  10. Gradient-based Electrical Properties Tomography (gEPT): a Robust Method for Mapping Electrical Properties of Biological Tissues In Vivo Using Magnetic Resonance Imaging

    PubMed Central

    Liu, Jiaen; Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortele, Pierre-Francois; He, Bin

    2014-01-01

    Purpose To develop high-resolution electrical properties tomography (EPT) methods and investigate a gradient-based EPT (gEPT) approach which aims to reconstruct the electrical properties (EP), including conductivity and permittivity, of an imaged sample from experimentally measured B1 maps with improved boundary reconstruction and robustness against measurement noise. Theory and Methods Using a multi-channel transmit/receive stripline head coil, with acquired B1 maps for each coil element, by assuming negligible Bz component compared to transverse B1 components, a theory describing the relationship between B1 field, EP value and their spatial gradient has been proposed. The final EP images were obtained through spatial integration over the reconstructed EP gradient. Numerical simulation, physical phantom and in vivo human experiments at 7 T have been conducted to evaluate the performance of the proposed methods. Results Reconstruction results were compared with target EP values in both simulations and phantom experiments. Human experimental results were compared with EP values in literature. Satisfactory agreement was observed with improved boundary reconstruction. Importantly, the proposed gEPT method proved to be more robust against noise when compared to previously described non-gradient-based EPT approaches. Conclusion The proposed gEPT approach holds promises to improve EP mapping quality by recovering the boundary information and enhancing robustness against noise. PMID:25213371

  11. Reduced Radiation Dose with Model-based Iterative Reconstruction versus Standard Dose with Adaptive Statistical Iterative Reconstruction in Abdominal CT for Diagnosis of Acute Renal Colic.

    PubMed

    Fontarensky, Mikael; Alfidja, Agaïcha; Perignon, Renan; Schoenig, Arnaud; Perrier, Christophe; Mulliez, Aurélien; Guy, Laurent; Boyer, Louis

    2015-07-01

    To evaluate the accuracy of reduced-dose abdominal computed tomographic (CT) imaging by using a new generation model-based iterative reconstruction (MBIR) to diagnose acute renal colic compared with a standard-dose abdominal CT with 50% adaptive statistical iterative reconstruction (ASIR). This institutional review board-approved prospective study included 118 patients with symptoms of acute renal colic who underwent the following two successive CT examinations: standard-dose ASIR 50% and reduced-dose MBIR. Two radiologists independently reviewed both CT examinations for presence or absence of renal calculi, differential diagnoses, and associated abnormalities. The imaging findings, radiation dose estimates, and image quality of the two CT reconstruction methods were compared. Concordance was evaluated by κ coefficient, and descriptive statistics and t test were used for statistical analysis. Intraobserver correlation was 100% for the diagnosis of renal calculi (κ = 1). Renal calculus (τ = 98.7%; κ = 0.97) and obstructive upper urinary tract disease (τ = 98.16%; κ = 0.95) were detected, and differential or alternative diagnosis was performed (τ = 98.87% κ = 0.95). MBIR allowed a dose reduction of 84% versus standard-dose ASIR 50% (mean volume CT dose index, 1.7 mGy ± 0.8 [standard deviation] vs 10.9 mGy ± 4.6; mean size-specific dose estimate, 2.2 mGy ± 0.7 vs 13.7 mGy ± 3.9; P < .001) without a conspicuous deterioration in image quality (reduced-dose MBIR vs ASIR 50% mean scores, 3.83 ± 0.49 vs 3.92 ± 0.27, respectively; P = .32) or increase in noise (reduced-dose MBIR vs ASIR 50% mean, respectively, 18.36 HU ± 2.53 vs 17.40 HU ± 3.42). Its main drawback remains the long time required for reconstruction (mean, 40 minutes). A reduced-dose protocol with MBIR allowed a dose reduction of 84% without increasing noise and without an conspicuous deterioration in image quality in patients suspected of having renal colic.

  12. Ultralow-dose CT of the craniofacial bone for navigated surgery using adaptive statistical iterative reconstruction and model-based iterative reconstruction: 2D and 3D image quality.

    PubMed

    Widmann, Gerlig; Schullian, Peter; Gassner, Eva-Maria; Hoermann, Romed; Bale, Reto; Puelacher, Wolfgang

    2015-03-01

    OBJECTIVE. The purpose of this article is to evaluate 2D and 3D image quality of high-resolution ultralow-dose CT images of the craniofacial bone for navigated surgery using adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR) in comparison with standard filtered backprojection (FBP). MATERIALS AND METHODS. A formalin-fixed human cadaver head was scanned using a clinical reference protocol at a CT dose index volume of 30.48 mGy and a series of five ultralow-dose protocols at 3.48, 2.19, 0.82, 0.44, and 0.22 mGy using FBP and ASIR at 50% (ASIR-50), ASIR at 100% (ASIR-100), and MBIR. Blinded 2D axial and 3D volume-rendered images were compared with each other by three readers using top-down scoring. Scores were analyzed per protocol or dose and reconstruction. All images were compared with the FBP reference at 30.48 mGy. A nonparametric Mann-Whitney U test was used. Statistical significance was set at p < 0.05. RESULTS. For 2D images, the FBP reference at 30.48 mGy did not statistically significantly differ from ASIR-100 at 3.48 mGy, ASIR-100 at 2.19 mGy, and MBIR at 0.82 mGy. MBIR at 2.19 and 3.48 mGy scored statistically significantly better than the FBP reference (p = 0.032 and 0.001, respectively). For 3D images, the FBP reference at 30.48 mGy did not statistically significantly differ from all reconstructions at 3.48 mGy; FBP and ASIR-100 at 2.19 mGy; FBP, ASIR-100, and MBIR at 0.82 mGy; MBIR at 0.44 mGy; and MBIR at 0.22 mGy. CONCLUSION. MBIR (2D and 3D) and ASIR-100 (2D) may significantly improve subjective image quality of ultralow-dose images and may allow more than 90% dose reductions.

  13. Compressively sampled MR image reconstruction using generalized thresholding iterative algorithm

    NASA Astrophysics Data System (ADS)

    Elahi, Sana; kaleem, Muhammad; Omer, Hammad

    2018-01-01

    Compressed sensing (CS) is an emerging area of interest in Magnetic Resonance Imaging (MRI). CS is used for the reconstruction of the images from a very limited number of samples in k-space. This significantly reduces the MRI data acquisition time. One important requirement for signal recovery in CS is the use of an appropriate non-linear reconstruction algorithm. It is a challenging task to choose a reconstruction algorithm that would accurately reconstruct the MR images from the under-sampled k-space data. Various algorithms have been used to solve the system of non-linear equations for better image quality and reconstruction speed in CS. In the recent past, iterative soft thresholding algorithm (ISTA) has been introduced in CS-MRI. This algorithm directly cancels the incoherent artifacts produced because of the undersampling in k -space. This paper introduces an improved iterative algorithm based on p -thresholding technique for CS-MRI image reconstruction. The use of p -thresholding function promotes sparsity in the image which is a key factor for CS based image reconstruction. The p -thresholding based iterative algorithm is a modification of ISTA, and minimizes non-convex functions. It has been shown that the proposed p -thresholding iterative algorithm can be used effectively to recover fully sampled image from the under-sampled data in MRI. The performance of the proposed method is verified using simulated and actual MRI data taken at St. Mary's Hospital, London. The quality of the reconstructed images is measured in terms of peak signal-to-noise ratio (PSNR), artifact power (AP), and structural similarity index measure (SSIM). The proposed approach shows improved performance when compared to other iterative algorithms based on log thresholding, soft thresholding and hard thresholding techniques at different reduction factors.

  14. Quantifying the impact of immediate reconstruction in postmastectomy radiation: a large, dose-volume histogram-based analysis.

    PubMed

    Ohri, Nisha; Cordeiro, Peter G; Keam, Jennifer; Ballangrud, Ase; Shi, Weiji; Zhang, Zhigang; Nerbun, Claire T; Woch, Katherine M; Stein, Nicholas F; Zhou, Ying; McCormick, Beryl; Powell, Simon N; Ho, Alice Y

    2012-10-01

    To assess the impact of immediate breast reconstruction on postmastectomy radiation (PMRT) using dose-volume histogram (DVH) data. Two hundred forty-seven women underwent PMRT at our center, 196 with implant reconstruction and 51 without reconstruction. Patients with reconstruction were treated with tangential photons, and patients without reconstruction were treated with en-face electron fields and customized bolus. Twenty percent of patients received internal mammary node (IMN) treatment. The DVH data were compared between groups. Ipsilateral lung parameters included V20 (% volume receiving 20 Gy), V40 (% volume receiving 40 Gy), mean dose, and maximum dose. Heart parameters included V25 (% volume receiving 25 Gy), mean dose, and maximum dose. IMN coverage was assessed when applicable. Chest wall coverage was assessed in patients with reconstruction. Propensity-matched analysis adjusted for potential confounders of laterality and IMN treatment. Reconstruction was associated with lower lung V20, mean dose, and maximum dose compared with no reconstruction (all P<.0001). These associations persisted on propensity-matched analysis (all P<.0001). Heart doses were similar between groups (P=NS). Ninety percent of patients with reconstruction had excellent chest wall coverage (D95 >98%). IMN coverage was superior in patients with reconstruction (D95 >92.0 vs 75.7%, P<.001). IMN treatment significantly increased lung and heart parameters in patients with reconstruction (all P<.05) but minimally affected those without reconstruction (all P>.05). Among IMN-treated patients, only lower lung V20 in those without reconstruction persisted (P=.022), and mean and maximum heart doses were higher than in patients without reconstruction (P=.006, P=.015, respectively). Implant reconstruction does not compromise the technical quality of PMRT when the IMNs are untreated. Treatment technique, not reconstruction, is the primary determinant of target coverage and normal tissue doses. Published by Elsevier Inc.

  15. Clinical evaluation of 4D PET motion compensation strategies for treatment verification in ion beam therapy

    NASA Astrophysics Data System (ADS)

    Gianoli, Chiara; Kurz, Christopher; Riboldi, Marco; Bauer, Julia; Fontana, Giulia; Baroni, Guido; Debus, Jürgen; Parodi, Katia

    2016-06-01

    A clinical trial named PROMETHEUS is currently ongoing for inoperable hepatocellular carcinoma (HCC) at the Heidelberg Ion Beam Therapy Center (HIT, Germany). In this framework, 4D PET-CT datasets are acquired shortly after the therapeutic treatment to compare the irradiation induced PET image with a Monte Carlo PET prediction resulting from the simulation of treatment delivery. The extremely low count statistics of this measured PET image represents a major limitation of this technique, especially in presence of target motion. The purpose of the study is to investigate two different 4D PET motion compensation strategies towards the recovery of the whole count statistics for improved image quality of the 4D PET-CT datasets for PET-based treatment verification. The well-known 4D-MLEM reconstruction algorithm, embedding the motion compensation in the reconstruction process of 4D PET sinograms, was compared to a recently proposed pre-reconstruction motion compensation strategy, which operates in sinogram domain by applying the motion compensation to the 4D PET sinograms. With reference to phantom and patient datasets, advantages and drawbacks of the two 4D PET motion compensation strategies were identified. The 4D-MLEM algorithm was strongly affected by inverse inconsistency of the motion model but demonstrated the capability to mitigate the noise-break-up effects. Conversely, the pre-reconstruction warping showed less sensitivity to inverse inconsistency but also more noise in the reconstructed images. The comparison was performed by relying on quantification of PET activity and ion range difference, typically yielding similar results. The study demonstrated that treatment verification of moving targets could be accomplished by relying on the whole count statistics image quality, as obtained from the application of 4D PET motion compensation strategies. In particular, the pre-reconstruction warping was shown to represent a promising choice when combined with intra-reconstruction smoothing.

  16. Cranial CT with adaptive statistical iterative reconstruction: improved image quality with concomitant radiation dose reduction.

    PubMed

    Rapalino, O; Kamalian, Shervin; Kamalian, Shahmir; Payabvash, S; Souza, L C S; Zhang, D; Mukta, J; Sahani, D V; Lev, M H; Pomerantz, S R

    2012-04-01

    To safeguard patient health, there is great interest in CT radiation-dose reduction. The purpose of this study was to evaluate the impact of an iterative-reconstruction algorithm, ASIR, on image-quality measures in reduced-dose head CT scans for adult patients. Using a 64-section scanner, we analyzed 100 reduced-dose adult head CT scans at 6 predefined levels of ASIR blended with FBP reconstruction. These scans were compared with 50 CT scans previously obtained at a higher routine dose without ASIR reconstruction. SNR and CNR were computed from Hounsfield unit measurements of normal GM and WM of brain parenchyma. A blinded qualitative analysis was performed in 10 lower-dose CT datasets compared with higher-dose ones without ASIR. Phantom data analysis was also performed. Lower-dose scans without ASIR had significantly lower mean GM and WM SNR (P = .003) and similar GM-WM CNR values compared with higher routine-dose scans. However, at ASIR levels of 20%-40%, there was no statistically significant difference in SNR, and at ASIR levels of ≥60%, the SNR values of the reduced-dose scans were significantly higher (P < .01). CNR values were also significantly higher at ASIR levels of ≥40% (P < .01). Blinded qualitative review demonstrated significant improvements in perceived image noise, artifacts, and GM-WM differentiation at ASIR levels ≥60% (P < .01). These results demonstrate that the use of ASIR in adult head CT scans reduces image noise and increases low-contrast resolution, while allowing lower radiation doses without affecting spatial resolution.

  17. Value of a noise-optimized virtual monoenergetic reconstruction technique in dual-energy CT for planning of transcatheter aortic valve replacement.

    PubMed

    Martin, Simon S; Albrecht, Moritz H; Wichmann, Julian L; Hüsers, Kristina; Scholtz, Jan-Erik; Booz, Christian; Bodelle, Boris; Bauer, Ralf W; Metzger, Sarah C; Vogl, Thomas J; Lehnert, Thomas

    2017-02-01

    To evaluate objective and subjective image quality of a noise-optimized virtual monoenergetic imaging (VMI+) reconstruction technique in dual-energy computed tomography (DECT) angiography prior to transcatheter aortic valve replacement (TAVR). Datasets of 47 patients (35 men; 64.1 ± 10.9 years) who underwent DECT angiography of heart and vascular access prior to TAVR were reconstructed with standard linear blending (F_0.5), VMI+, and traditional monoenergetic (VMI) algorithms in 10-keV intervals from 40-100 keV. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of 564 arterial segments were evaluated. Subjective analysis was rated by three blinded observers using a Likert scale. Mean SNR and CNR were highest in 40 keV VMI+ series (SNR, 27.8 ± 13.0; CNR, 26.3 ± 12.7), significantly (all p < 0.001) superior to all VMI series, which showed highest values at 70 keV (SNR, 18.5 ± 7.6; CNR, 16.0 ± 7.4), as well as linearly-blended F_0.5 series (SNR, 16.8 ± 7.3; CNR, 13.6 ± 6.9). Highest subjective image quality scores were observed for 40, 50, and 60 keV VMI+ reconstructions (all p > 0.05), significantly superior to all VMI and standard linearly-blended images (all p < 0.01). Low-keV VMI+ reconstructions significantly increase CNR and SNR compared to VMI and standard linear-blending image reconstruction and improve subjective image quality in preprocedural DECT angiography in the context of TAVR planning. • VMI+ combines increased contrast with reduced image noise. • VMI+ shows substantially less image noise than traditional VMI. • 40-keV reconstructions show highest SNR/CNR of the aortic and iliofemoral access route. • Observers overall prefer 60 keV VMI+ images. • VMI+ DECT imaging helps improve image quality for TAVR planning.

  18. Polyenergetic known-component reconstruction without prior shape models

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Zbijewski, W.; Zhang, X.; Xu, S.; Stayman, J. W.

    2017-03-01

    Purpose: Previous work has demonstrated that structural models of surgical tools and implants can be integrated into model-based CT reconstruction to greatly reduce metal artifacts and improve image quality. This work extends a polyenergetic formulation of known-component reconstruction (Poly-KCR) by removing the requirement that a physical model (e.g. CAD drawing) be known a priori, permitting much more widespread application. Methods: We adopt a single-threshold segmentation technique with the help of morphological structuring elements to build a shape model of metal components in a patient scan based on initial filtered-backprojection (FBP) reconstruction. This shape model is used as an input to Poly-KCR, a formulation of known-component reconstruction that does not require a prior knowledge of beam quality or component material composition. An investigation of performance as a function of segmentation thresholds is performed in simulation studies, and qualitative comparisons to Poly-KCR with an a priori shape model are made using physical CBCT data of an implanted cadaver and in patient data from a prototype extremities scanner. Results: We find that model-free Poly-KCR (MF-Poly-KCR) provides much better image quality compared to conventional reconstruction techniques (e.g. FBP). Moreover, the performance closely approximates that of Poly- KCR with an a prior shape model. In simulation studies, we find that imaging performance generally follows segmentation accuracy with slight under- or over-estimation based on the shape of the implant. In both simulation and physical data studies we find that the proposed approach can remove most of the blooming and streak artifacts around the component permitting visualization of the surrounding soft-tissues. Conclusion: This work shows that it is possible to perform known-component reconstruction without prior knowledge of the known component. In conjunction with the Poly-KCR technique that does not require knowledge of beam quality or material composition, very little needs to be known about the metal implant and system beforehand. These generalizations will allow more widespread application of KCR techniques in real patient studies where the information of surgical tools and implants is limited or not available.

  19. Evaluation of Model Recognition for Grammar-Based Automatic 3d Building Model Reconstruction

    NASA Astrophysics Data System (ADS)

    Yu, Qian; Helmholz, Petra; Belton, David

    2016-06-01

    In recent years, 3D city models are in high demand by many public and private organisations, and the steadily growing capacity in both quality and quantity are increasing demand. The quality evaluation of these 3D models is a relevant issue both from the scientific and practical points of view. In this paper, we present a method for the quality evaluation of 3D building models which are reconstructed automatically from terrestrial laser scanning (TLS) data based on an attributed building grammar. The entire evaluation process has been performed in all the three dimensions in terms of completeness and correctness of the reconstruction. Six quality measures are introduced to apply on four datasets of reconstructed building models in order to describe the quality of the automatic reconstruction, and also are assessed on their validity from the evaluation point of view.

  20. Adaptive statistical iterative reconstruction use for radiation dose reduction in pediatric lower-extremity CT: impact on diagnostic image quality.

    PubMed

    Shah, Amisha; Rees, Mitchell; Kar, Erica; Bolton, Kimberly; Lee, Vincent; Panigrahy, Ashok

    2018-06-01

    For the past several years, increased levels of imaging radiation and cumulative radiation to children has been a significant concern. Although several measures have been taken to reduce radiation dose during computed tomography (CT) scan, the newer dose reduction software adaptive statistical iterative reconstruction (ASIR) has been an effective technique in reducing radiation dose. To our knowledge, no studies are published that assess the effect of ASIR on extremity CT scans in children. To compare radiation dose, image noise, and subjective image quality in pediatric lower extremity CT scans acquired with and without ASIR. The study group consisted of 53 patients imaged on a CT scanner equipped with ASIR software. The control group consisted of 37 patients whose CT images were acquired without ASIR. Image noise, Computed Tomography Dose Index (CTDI) and dose length product (DLP) were measured. Two pediatric radiologists rated the studies in subjective categories: image sharpness, noise, diagnostic acceptability, and artifacts. The CTDI (p value = 0.0184) and DLP (p value <0.0002) were significantly decreased with the use of ASIR compared with non-ASIR studies. However, the subjective ratings for sharpness (p < 0.0001) and diagnostic acceptability of the ASIR images (p < 0.0128) were decreased compared with standard, non-ASIR CT studies. Adaptive statistical iterative reconstruction reduces radiation dose for lower extremity CTs in children, but at the expense of diagnostic imaging quality. Further studies are warranted to determine the specific utility of ASIR for pediatric musculoskeletal CT imaging.

  1. Adaptive Statistical Iterative Reconstruction-V Versus Adaptive Statistical Iterative Reconstruction: Impact on Dose Reduction and Image Quality in Body Computed Tomography.

    PubMed

    Gatti, Marco; Marchisio, Filippo; Fronda, Marco; Rampado, Osvaldo; Faletti, Riccardo; Bergamasco, Laura; Ropolo, Roberto; Fonio, Paolo

    The aim of this study was to evaluate the impact on dose reduction and image quality of the new iterative reconstruction technique: adaptive statistical iterative reconstruction (ASIR-V). Fifty consecutive oncologic patients acted as case controls undergoing during their follow-up a computed tomography scan both with ASIR and ASIR-V. Each study was analyzed in a double-blinded fashion by 2 radiologists. Both quantitative and qualitative analyses of image quality were conducted. Computed tomography scanner radiation output was 38% (29%-45%) lower (P < 0.0001) for the ASIR-V examinations than for the ASIR ones. The quantitative image noise was significantly lower (P < 0.0001) for ASIR-V. Adaptive statistical iterative reconstruction-V had a higher performance for the subjective image noise (P = 0.01 for 5 mm and P = 0.009 for 1.25 mm), the other parameters (image sharpness, diagnostic acceptability, and overall image quality) being similar (P > 0.05). Adaptive statistical iterative reconstruction-V is a new iterative reconstruction technique that has the potential to provide image quality equal to or greater than ASIR, with a dose reduction around 40%.

  2. Patient involvement in the decision-making process improves satisfaction and quality of life in postmastectomy breast reconstruction.

    PubMed

    Ashraf, Azra A; Colakoglu, Salih; Nguyen, John T; Anastasopulos, Alexandra J; Ibrahim, Ahmed M S; Yueh, Janet H; Lin, Samuel J; Tobias, Adam M; Lee, Bernard T

    2013-09-01

    The patient-physician relationship has evolved from the paternalistic, physician-dominant model to the shared-decision-making and informed-consumerist model. The level of patient involvement in this decision-making process can potentially influence patient satisfaction and quality of life. In this study, patient-physician decision models are evaluated in patients undergoing postmastectomy breast reconstruction. All women who underwent breast reconstruction at an academic hospital from 1999-2007 were identified. Patients meeting inclusion criteria were mailed questionnaires at a minimum of 1 y postoperatively with questions about decision making, satisfaction, and quality of life. There were 707 women eligible for our study and 465 completed surveys (68% response rate). Patients were divided into one of three groups: paternalistic (n = 18), informed-consumerist (n = 307), shared (n = 140). There were differences in overall general satisfaction (P = 0.034), specifically comparing the informed group to the paternalistic group (66.7% versus 38.9%, P = 0.020) and the shared to the paternalistic group (69.3% versus 38.9%, P = 0.016). There were no differences in aesthetic satisfaction. There were differences found in the SF-12 physical component summary score across all groups (P = 0.033), and a difference was found between the informed and paternalistic groups (P < 0.05). There were no differences in the mental component score (P = 0.42). Women undergoing breast reconstruction predominantly used the informed model of decision making. Patients who adopted a more active role, whether using an informed or shared approach, had higher general patient satisfaction and physical component summary scores compared with patients whose decision making was paternalistic. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Radiation dose reduction for CT lung cancer screening using ASIR and MBIR: a phantom study

    PubMed Central

    Mathieu, Kelsey B.; Ai, Hua; Fox, Patricia S.; Godoy, Myrna Cobos Barco; Munden, Reginald F.; de Groot, Patricia M.

    2014-01-01

    The purpose of this study was to reduce the radiation dosage associated with computed tomography (CT) lung cancer screening while maintaining overall diagnostic image quality and definition of ground‐glass opacities (GGOs). A lung screening phantom and a multipurpose chest phantom were used to quantitatively assess the performance of two iterative image reconstruction algorithms (adaptive statistical iterative reconstruction (ASIR) and model‐based iterative reconstruction (MBIR)) used in conjunction with reduced tube currents relative to a standard clinical lung cancer screening protocol (51 effective mAs (3.9 mGy) and filtered back‐projection (FBP) reconstruction). To further assess the algorithms' performances, qualitative image analysis was conducted (in the form of a reader study) using the multipurpose chest phantom, which was implanted with GGOs of two densities. Our quantitative image analysis indicated that tube current, and thus radiation dose, could be reduced by 40% or 80% from ASIR or MBIR, respectively, compared with conventional FBP, while maintaining similar image noise magnitude and contrast‐to‐noise ratio. The qualitative portion of our study, which assessed reader preference, yielded similar results, indicating that dose could be reduced by 60% (to 20 effective mAs (1.6 mGy)) with either ASIR or MBIR, while maintaining GGO definition. Additionally, the readers' preferences (as indicated by their ratings) regarding overall image quality were equal or better (for a given dose) when using ASIR or MBIR, compared with FBP. In conclusion, combining ASIR or MBIR with reduced tube current may allow for lower doses while maintaining overall diagnostic image quality, as well as GGO definition, during CT lung cancer screening. PACS numbers: 87.57.Q‐, 87.57.nf PMID:24710436

  4. Advances in 6d diffraction contrast tomography

    NASA Astrophysics Data System (ADS)

    Viganò, N.; Ludwig, W.

    2018-04-01

    The ability to measure 3D orientation fields and to determine grain boundary character plays a key role in understanding many material science processes, including: crack formation and propagation, grain coarsening, and corrosion processes. X-ray diffraction imaging techniques offer the ability to retrieve such information in a non-destructive manner. Among them, Diffraction Contrast Tomography (DCT) is a monochromatic beam, near-field technique, that uses an extended beam and offers fast mapping of 3D sample volumes. It was previously shown that the six-dimensional extension of DCT can be applied to moderately deformed samples (<= 5% total strain), made from materials that exhibit low levels of elastic deformation of the unit cell (<= 1%). In this article, we improved over the previously proposed 6D-DCT reconstruction method, through the introduction of both a more advanced forward model and reconstruction algorithm. The results obtained with the proposed improvements are compared against the reconstructions previously published in [1], using Electron Backscatter Diffraction (EBSD) measurements as a reference. The result was a noticeably higher quality reconstruction of the grain boundary positions and local orientation fields. The achieved reconstruction quality, together with the low acquisition times, render DCT a valuable tool for the stop-motion study of polycrystalline microstructures, evolving as a function of applied strain or thermal annealing treatments, for selected materials.

  5. Residual Highway Convolutional Neural Networks for in-loop Filtering in HEVC.

    PubMed

    Zhang, Yongbing; Shen, Tao; Ji, Xiangyang; Zhang, Yun; Xiong, Ruiqin; Dai, Qionghai

    2018-08-01

    High efficiency video coding (HEVC) standard achieves half bit-rate reduction while keeping the same quality compared with AVC. However, it still cannot satisfy the demand of higher quality in real applications, especially at low bit rates. To further improve the quality of reconstructed frame while reducing the bitrates, a residual highway convolutional neural network (RHCNN) is proposed in this paper for in-loop filtering in HEVC. The RHCNN is composed of several residual highway units and convolutional layers. In the highway units, there are some paths that could allow unimpeded information across several layers. Moreover, there also exists one identity skip connection (shortcut) from the beginning to the end, which is followed by one small convolutional layer. Without conflicting with deblocking filter (DF) and sample adaptive offset (SAO) filter in HEVC, RHCNN is employed as a high-dimension filter following DF and SAO to enhance the quality of reconstructed frames. To facilitate the real application, we apply the proposed method to I frame, P frame, and B frame, respectively. For obtaining better performance, the entire quantization parameter (QP) range is divided into several QP bands, where a dedicated RHCNN is trained for each QP band. Furthermore, we adopt a progressive training scheme for the RHCNN where the QP band with lower value is used for early training and their weights are used as initial weights for QP band of higher values in a progressive manner. Experimental results demonstrate that the proposed method is able to not only raise the PSNR of reconstructed frame but also prominently reduce the bit-rate compared with HEVC reference software.

  6. Dynamic intensity-weighted region of interest imaging for conebeam CT

    PubMed Central

    Pearson, Erik; Pan, Xiaochuan; Pelizzari, Charles

    2017-01-01

    BACKGROUND Patient dose from image guidance in radiotherapy is small compared to the treatment dose. However, the imaging beam is untargeted and deposits dose equally in tumor and healthy tissues. It is desirable to minimize imaging dose while maintaining efficacy. OBJECTIVE Image guidance typically does not require full image quality throughout the patient. Dynamic filtration of the kV beam allows local control of CT image noise for high quality around the target volume and lower quality elsewhere, with substantial dose sparing and reduced scatter fluence on the detector. METHODS The dynamic Intensity-Weighted Region of Interest (dIWROI) technique spatially varies beam intensity during acquisition with copper filter collimation. Fluence is reduced by 95% under the filters with the aperture conformed dynamically to the ROI during cone-beam CT scanning. Preprocessing to account for physical effects of the collimator before reconstruction is described. RESULTS Reconstructions show image quality comparable to a standard scan in the ROI, with higher noise and streak artifacts in the outer region but still adequate quality for patient localization. Monte Carlo modeling shows dose reduction by 10–15% in the ROI due to reduced scatter, and up to 75% outside. CONCLUSIONS The presented technique offers a method to reduce imaging dose by accepting increased image noise outside the ROI, while maintaining full image quality inside the ROI. PMID:27257875

  7. MR image reconstruction via guided filter.

    PubMed

    Huang, Heyan; Yang, Hang; Wang, Kang

    2018-04-01

    Magnetic resonance imaging (MRI) reconstruction from the smallest possible set of Fourier samples has been a difficult problem in medical imaging field. In our paper, we present a new approach based on a guided filter for efficient MRI recovery algorithm. The guided filter is an edge-preserving smoothing operator and has better behaviors near edges than the bilateral filter. Our reconstruction method is consist of two steps. First, we propose two cost functions which could be computed efficiently and thus obtain two different images. Second, the guided filter is used with these two obtained images for efficient edge-preserving filtering, and one image is used as the guidance image, the other one is used as a filtered image in the guided filter. In our reconstruction algorithm, we can obtain more details by introducing guided filter. We compare our reconstruction algorithm with some competitive MRI reconstruction techniques in terms of PSNR and visual quality. Simulation results are given to show the performance of our new method.

  8. Matrix completion-based reconstruction for undersampled magnetic resonance fingerprinting data.

    PubMed

    Doneva, Mariya; Amthor, Thomas; Koken, Peter; Sommer, Karsten; Börnert, Peter

    2017-09-01

    An iterative reconstruction method for undersampled magnetic resonance fingerprinting data is presented. The method performs the reconstruction entirely in k-space and is related to low rank matrix completion methods. A low dimensional data subspace is estimated from a small number of k-space locations fully sampled in the temporal direction and used to reconstruct the missing k-space samples before MRF dictionary matching. Performing the iterations in k-space eliminates the need for applying a forward and an inverse Fourier transform in each iteration required in previously proposed iterative reconstruction methods for undersampled MRF data. A projection onto the low dimensional data subspace is performed as a matrix multiplication instead of a singular value thresholding typically used in low rank matrix completion, further reducing the computational complexity of the reconstruction. The method is theoretically described and validated in phantom and in-vivo experiments. The quality of the parameter maps can be significantly improved compared to direct matching on undersampled data. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Dynamic Reconstruction Algorithm of Three-Dimensional Temperature Field Measurement by Acoustic Tomography

    PubMed Central

    Li, Yanqiu; Liu, Shi; Inaki, Schlaberg H.

    2017-01-01

    Accuracy and speed of algorithms play an important role in the reconstruction of temperature field measurements by acoustic tomography. Existing algorithms are based on static models which only consider the measurement information. A dynamic model of three-dimensional temperature reconstruction by acoustic tomography is established in this paper. A dynamic algorithm is proposed considering both acoustic measurement information and the dynamic evolution information of the temperature field. An objective function is built which fuses measurement information and the space constraint of the temperature field with its dynamic evolution information. Robust estimation is used to extend the objective function. The method combines a tunneling algorithm and a local minimization technique to solve the objective function. Numerical simulations show that the image quality and noise immunity of the dynamic reconstruction algorithm are better when compared with static algorithms such as least square method, algebraic reconstruction technique and standard Tikhonov regularization algorithms. An effective method is provided for temperature field reconstruction by acoustic tomography. PMID:28895930

  10. Image quality in low-dose coronary computed tomography angiography with a new high-definition CT scanner.

    PubMed

    Kazakauskaite, Egle; Husmann, Lars; Stehli, Julia; Fuchs, Tobias; Fiechter, Michael; Klaeser, Bernd; Ghadri, Jelena R; Gebhard, Catherine; Gaemperli, Oliver; Kaufmann, Philipp A

    2013-02-01

    A new generation of high definition computed tomography (HDCT) 64-slice devices complemented by a new iterative image reconstruction algorithm-adaptive statistical iterative reconstruction, offer substantially higher resolution compared to standard definition CT (SDCT) scanners. As high resolution confers higher noise we have compared image quality and radiation dose of coronary computed tomography angiography (CCTA) from HDCT versus SDCT. Consecutive patients (n = 93) underwent HDCT, and were compared to 93 patients who had previously undergone CCTA with SDCT matched for heart rate (HR), HR variability and body mass index (BMI). Tube voltage and current were adapted to the patient's BMI, using identical protocols in both groups. The image quality of all CCTA scans was evaluated by two independent readers in all coronary segments using a 4-point scale (1, excellent image quality; 2, blurring of the vessel wall; 3, image with artefacts but evaluative; 4, non-evaluative). Effective radiation dose was calculated from DLP multiplied by a conversion factor (0.014 mSv/mGy × cm). The mean image quality score from HDCT versus SDCT was comparable (2.02 ± 0.68 vs. 2.00 ± 0.76). Mean effective radiation dose did not significantly differ between HDCT (1.7 ± 0.6 mSv, range 1.0-3.7 mSv) and SDCT (1.9 ± 0.8 mSv, range 0.8-5.5 mSv; P = n.s.). HDCT scanners allow low-dose 64-slice CCTA scanning with higher resolution than SDCT but maintained image quality and equally low radiation dose. Whether this will translate into higher accuracy of HDCT for CAD detection remains to be evaluated.

  11. Four-Dimensional Respiratory Motion-Resolved Whole Heart Coronary MR Angiography

    PubMed Central

    Piccini, Davide; Feng, Li; Bonanno, Gabriele; Coppo, Simone; Yerly, Jérôme; Lim, Ruth P.; Schwitter, Juerg; Sodickson, Daniel K.; Otazo, Ricardo; Stuber, Matthias

    2016-01-01

    Purpose Free-breathing whole-heart coronary MR angiography (MRA) commonly uses navigators to gate respiratory motion, resulting in lengthy and unpredictable acquisition times. Conversely, self-navigation has 100% scan efficiency, but requires motion correction over a broad range of respiratory displacements, which may introduce image artifacts. We propose replacing navigators and self-navigation with a respiratory motion-resolved reconstruction approach. Methods Using a respiratory signal extracted directly from the imaging data, individual signal-readouts are binned according to their respiratory states. The resultant series of undersampled images are reconstructed using an extradimensional golden-angle radial sparse parallel imaging (XD-GRASP) algorithm, which exploits sparsity along the respiratory dimension. Whole-heart coronary MRA was performed in 11 volunteers and four patients with the proposed methodology. Image quality was compared with that obtained with one-dimensional respiratory self-navigation. Results Respiratory-resolved reconstruction effectively suppressed respiratory motion artifacts. The quality score for XD-GRASP reconstructions was greater than or equal to self-navigation in 80/88 coronary segments, reaching diagnostic quality in 61/88 segments versus 41/88. Coronary sharpness and length were always superior for the respiratory-resolved datasets, reaching statistical significance (P < 0.05) in most cases. Conclusion XD-GRASP represents an attractive alternative for handling respiratory motion in free-breathing whole heart MRI and provides an effective alternative to self-navigation. PMID:27052418

  12. Cone beam computed tomography in veterinary dentistry.

    PubMed

    Van Thielen, Bert; Siguenza, Francis; Hassan, Bassam

    2012-01-01

    The purpose of this study was to assess the feasibility of cone beam computed tomography (CBCT) in imaging dogs and cats for diagnostic dental veterinary applications. CBCT scans of heads of six dogs and two cats were made. Dental panoramic and multi-planar reformatted (MPR) para-sagittal reconstructions were created using specialized software. Image quality and visibility of anatomical landmarks were subjectively assessed by two observers. Good image quality was obtained for the MPR para-sagittal reconstructions through multiple teeth. The image quality of the panoramic reconstructions of dogs was moderate while the panoramic reconstructions of cats were poor since the images were associated with an increased noise level. Segmental panoramic reconstructions of the mouth seem to be useful for studying the dental anatomy especially in dogs. The results of this study using human dental CBCT technology demonstrate the potential of this scanning technology in veterinary medicine. Unfortunately, the moderate image quality obtained with the CBCT technique reported here seems to be inferior to the diagnostic image quality obtained from 2-dimensional dental radiographs. Further research is required to optimize scanning and reconstruction protocols for veterinary applications.

  13. A biomechanical modeling-guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction

    NASA Astrophysics Data System (ADS)

    Huang, Xiaokun; Zhang, You; Wang, Jing

    2018-02-01

    Reconstructing four-dimensional cone-beam computed tomography (4D-CBCT) images directly from respiratory phase-sorted traditional 3D-CBCT projections can capture target motion trajectory, reduce motion artifacts, and reduce imaging dose and time. However, the limited numbers of projections in each phase after phase-sorting decreases CBCT image quality under traditional reconstruction techniques. To address this problem, we developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, an iterative method that can reconstruct higher quality 4D-CBCT images from limited projections using an inter-phase intensity-driven motion model. However, the accuracy of the intensity-driven motion model is limited in regions with fine details whose quality is degraded due to insufficient projection number, which consequently degrades the reconstructed image quality in corresponding regions. In this study, we developed a new 4D-CBCT reconstruction algorithm by introducing biomechanical modeling into SMEIR (SMEIR-Bio) to boost the accuracy of the motion model in regions with small fine structures. The biomechanical modeling uses tetrahedral meshes to model organs of interest and solves internal organ motion using tissue elasticity parameters and mesh boundary conditions. This physics-driven approach enhances the accuracy of solved motion in the organ’s fine structures regions. This study used 11 lung patient cases to evaluate the performance of SMEIR-Bio, making both qualitative and quantitative comparisons between SMEIR-Bio, SMEIR, and the algebraic reconstruction technique with total variation regularization (ART-TV). The reconstruction results suggest that SMEIR-Bio improves the motion model’s accuracy in regions containing small fine details, which consequently enhances the accuracy and quality of the reconstructed 4D-CBCT images.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naseri, M; Rajabi, H; Wang, J

    Purpose: Respiration causes lesion smearing, image blurring and quality degradation, affecting lesion contrast and the ability to define correct lesion size. The spatial resolution of current multi pinhole SPECT (MPHS) scanners is sub-millimeter. Therefore, the effect of motion is more noticeable in comparison to conventional SPECT scanner. Gated imaging aims to reduce motion artifacts. A major issue in gating is the lack of statistics and individual reconstructed frames are noisy. The increased noise in each frame, deteriorates the quantitative accuracy of the MPHS Images. The objective of this work, is to enhance the image quality in 4D-MPHS imaging, by 4Dmore » image reconstruction. Methods: The new algorithm requires deformation vector fields (DVFs) that are calculated by non-rigid Demons registration. The algorithm is based on the motion-incorporated version of ordered subset expectation maximization (OSEM) algorithm. This iterative algorithm is capable to make full use of all projections to reconstruct each individual frame. To evaluate the performance of the proposed algorithm a simulation study was conducted. A fast ray tracing method was used to generate MPHS projections of a 4D digital mouse phantom with a small tumor in liver in eight different respiratory phases. To evaluate the 4D-OSEM algorithm potential, tumor to liver activity ratio was compared with other image reconstruction methods including 3D-MPHS and post reconstruction registered with Demons-derived DVFs. Results: Image quality of 4D-MPHS is greatly improved by the 4D-OSEM algorithm. When all projections are used to reconstruct a 3D-MPHS, motion blurring artifacts are present, leading to overestimation of the tumor size and 24% tumor contrast underestimation. This error reduced to 16% and 10% for post reconstruction registration methods and 4D-OSEM respectively. Conclusion: 4D-OSEM method can be used for motion correction in 4D-MPHS. The statistics and quantification are improved since all projection data are combined together to update the image.« less

  15. Functional Performance Testing and Patient Reported Outcomes following ACL Reconstruction: A Systematic Scoping Review

    PubMed Central

    Herrington, Lee

    2014-01-01

    Objective. A systematic scoping review of the literature to identify functional performance tests and patient reported outcomes for patients who undergo anterior cruciate ligament (ACL) reconstruction and rehabilitation that are used in clinical practice and research during the last decade. Methods. A literature search was conducted. Electronic databases used included Medline, PubMed, Cochrane Library, EMBASE, CINAHL, SPORTDiscus, PEDro, and AMED. The inclusion criteria were English language, publication between April 2004 and April 2014, and primary ACL reconstruction with objective and/or subjective outcomes used. Two authors screened the selected papers for title, abstract, and full-text in accordance with predefined inclusion and exclusion criteria. The methodological quality of all papers was assessed by a checklist of the Critical Appraisal Skills Programme (CASP). Results. A total of 16 papers were included with full-text. Different authors used different study designs for functional performance testing which led to different outcomes that could not be compared. All papers used a measurement for quantity of functional performance except one study which used both quantity and quality outcomes. Several functional performance tests and patient reported outcomes were identified in this review. Conclusion. No extensive research has been carried out over the past 10 years to measure the quality of functional performance testing and control stability of patients following ACL reconstruction. However this study found that the measurement of functional performance following ACL reconstruction consisting of a one-leg hop for a set distance or a combination of different hops using limb symmetry index (LSI) was a main outcome parameter of several studies. A more extensive series of tests is suggested to measure both the quantitative and qualitative aspects of functional performance after the ACL reconstruction. The KOOS and the IKDC questionnaires are both measures that are increasingly being used for ACL reconstruction throughout the last decade. PMID:27379330

  16. GPU-accelerated Kernel Regression Reconstruction for Freehand 3D Ultrasound Imaging.

    PubMed

    Wen, Tiexiang; Li, Ling; Zhu, Qingsong; Qin, Wenjian; Gu, Jia; Yang, Feng; Xie, Yaoqin

    2017-07-01

    Volume reconstruction method plays an important role in improving reconstructed volumetric image quality for freehand three-dimensional (3D) ultrasound imaging. By utilizing the capability of programmable graphics processing unit (GPU), we can achieve a real-time incremental volume reconstruction at a speed of 25-50 frames per second (fps). After incremental reconstruction and visualization, hole-filling is performed on GPU to fill remaining empty voxels. However, traditional pixel nearest neighbor-based hole-filling fails to reconstruct volume with high image quality. On the contrary, the kernel regression provides an accurate volume reconstruction method for 3D ultrasound imaging but with the cost of heavy computational complexity. In this paper, a GPU-based fast kernel regression method is proposed for high-quality volume after the incremental reconstruction of freehand ultrasound. The experimental results show that improved image quality for speckle reduction and details preservation can be obtained with the parameter setting of kernel window size of [Formula: see text] and kernel bandwidth of 1.0. The computational performance of the proposed GPU-based method can be over 200 times faster than that on central processing unit (CPU), and the volume with size of 50 million voxels in our experiment can be reconstructed within 10 seconds.

  17. Low rank alternating direction method of multipliers reconstruction for MR fingerprinting.

    PubMed

    Assländer, Jakob; Cloos, Martijn A; Knoll, Florian; Sodickson, Daniel K; Hennig, Jürgen; Lattanzi, Riccardo

    2018-01-01

    The proposed reconstruction framework addresses the reconstruction accuracy, noise propagation and computation time for magnetic resonance fingerprinting. Based on a singular value decomposition of the signal evolution, magnetic resonance fingerprinting is formulated as a low rank (LR) inverse problem in which one image is reconstructed for each singular value under consideration. This LR approximation of the signal evolution reduces the computational burden by reducing the number of Fourier transformations. Also, the LR approximation improves the conditioning of the problem, which is further improved by extending the LR inverse problem to an augmented Lagrangian that is solved by the alternating direction method of multipliers. The root mean square error and the noise propagation are analyzed in simulations. For verification, in vivo examples are provided. The proposed LR alternating direction method of multipliers approach shows a reduced root mean square error compared to the original fingerprinting reconstruction, to a LR approximation alone and to an alternating direction method of multipliers approach without a LR approximation. Incorporating sensitivity encoding allows for further artifact reduction. The proposed reconstruction provides robust convergence, reduced computational burden and improved image quality compared to other magnetic resonance fingerprinting reconstruction approaches evaluated in this study. Magn Reson Med 79:83-96, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. High-Pitch, Low-Voltage and Low-Iodine-Concentration CT Angiography of Aorta: Assessment of Image Quality and Radiation Dose with Iterative Reconstruction

    PubMed Central

    Shen, Yanguang; Sun, Zhonghua; Xu, Lei; Li, Yu; Zhang, Nan; Yan, Zixu; Fan, Zhanming

    2015-01-01

    Objective To assess the image quality of aorta obtained by dual-source computed tomography angiography (DSCTA), performed with high pitch, low tube voltage, and low iodine concentration contrast medium (CM) with images reconstructed using iterative reconstruction (IR). Methods One hundred patients randomly allocated to receive one of two types of CM underwent DSCTA with the electrocardiogram-triggered Flash protocol. In the low-iodine group, 50 patients received CM containing 270 mg I/mL and were scanned at low tube voltage (100 kVp). In the high-iodine CM group, 50 patients received CM containing 370 mg I/mL and were scanned at the tube voltage (120 kVp). The filtered back projection (FBP) algorithm was used for reconstruction in both groups. In addition, the IR algorithm was used in the low-iodine group. Image quality of the aorta was analyzed subjectively by a 3-point grading scale and objectively by measuring the CT attenuation in terms of the signal- and contrast-to-noise ratios (SNR and CNR, respectively). Radiation and CM doses were compared. Results The CT attenuation, subjective image quality assessment, SNR, and CNR of various aortic regions of interest did not differ significantly between two groups. In the low-iodine group, images reconstructed by FBP and IR demonstrated significant differences in image noise, SNR, and CNR (p<0.05). The low-iodine group resulted in 34.3% less radiation (4.4 ± 0.5 mSv) than the high-iodine group (6.7 ± 0.6 mSv), and 27.3% less iodine weight (20.36 ± 2.65 g) than the high-iodine group (28 ± 1.98 g). Observers exhibited excellent agreement on the aortic image quality scores (κ = 0.904). Conclusions CT images of aorta could be obtained within 2 s by using a DSCT Flash protocol with low tube voltage, IR, and low-iodine-concentration CM. Appropriate contrast enhancement was achieved while maintaining good image quality and decreasing the radiation and iodine doses. PMID:25643353

  19. ELUCID—Exploring the Local Universe with the reConstructed Initial Density Field. II. Reconstruction Diagnostics, Applied to Numerical Halo Catalogs

    NASA Astrophysics Data System (ADS)

    Tweed, Dylan; Yang, Xiaohu; Wang, Huiyuan; Cui, Weiguang; Zhang, Youcai; Li, Shijie; Jing, Y. P.; Mo, H. J.

    2017-05-01

    The ELUCID project aims to build a series of realistic cosmological simulations that reproduce the spatial and mass distributions of the galaxies as observed in the Sloan Digital Sky Survey. This requires powerful reconstruction techniques to create constrained initial conditions (ICs). We test the reconstruction method by applying it to several N-body simulations. We use two medium-resolution simulations, which each produced three additional constrained N-body simulations. We compare the resulting friend-of-friend catalogs by using the particle indexes as tracers, and quantify the quality of the reconstruction by varying the main smoothing parameter. The cross-identification method we use proves to be efficient, and the results suggest that the most massive reconstructed halos are effectively traced from the same Lagrangian regions in the ICs. A preliminary time-dependence analysis indicates that high-mass-end halos converge only at a redshift close to the reconstruction redshift. This suggests that, for earlier snapshots, only collections of progenitors may be effectively cross-identified.

  20. Joint reconstruction of multiview compressed images.

    PubMed

    Thirumalai, Vijayaraghavan; Frossard, Pascal

    2013-05-01

    Distributed representation of correlated multiview images is an important problem that arises in vision sensor networks. This paper concentrates on the joint reconstruction problem where the distributively compressed images are decoded together in order to take benefit from the image correlation. We consider a scenario where the images captured at different viewpoints are encoded independently using common coding solutions (e.g., JPEG) with a balanced rate distribution among different cameras. A central decoder first estimates the inter-view image correlation from the independently compressed data. The joint reconstruction is then cast as a constrained convex optimization problem that reconstructs total-variation (TV) smooth images, which comply with the estimated correlation model. At the same time, we add constraints that force the reconstructed images to be as close as possible to their compressed versions. We show through experiments that the proposed joint reconstruction scheme outperforms independent reconstruction in terms of image quality, for a given target bit rate. In addition, the decoding performance of our algorithm compares advantageously to state-of-the-art distributed coding schemes based on motion learning and on the DISCOVER algorithm.

  1. A modified sparse reconstruction method for three-dimensional synthetic aperture radar image

    NASA Astrophysics Data System (ADS)

    Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin

    2018-03-01

    There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.

  2. Numerically correcting the joint misplacement of the sub-holograms in spatial synthetic aperture digital Fresnel holography.

    PubMed

    Jiang, Hongzhen; Zhao, Jianlin; Di, Jianglei; Qin, Chuan

    2009-10-12

    We propose an effective reconstruction method for correcting the joint misplacement of the sub-holograms caused by the displacement error of CCD in spatial synthetic aperture digital Fresnel holography. For every two adjacent sub-holograms along the motion path of CCD, we reconstruct the corresponding holographic images under different joint distances between the sub-holograms and then find out the accurate joint distance by evaluating the quality of the corresponding synthetic reconstructed images. Then the accurate relative position relationships of the sub-holograms can be confirmed according to all of the identified joint distances, with which the accurate synthetic reconstructed image can be obtained by superposing the reconstruction results of the sub-holograms. The numerical reconstruction results are in agreement with the theoretical analysis. Compared with the traditional reconstruction method, this method could be used to not only correct the joint misplacement of the sub-holograms without the limitation of the actually overlapping circumstances of the adjacent sub-holograms, but also make the joint precision of the sub-holograms reach sub-pixel accuracy.

  3. Evaluation of interpolation methods for surface-based motion compensated tomographic reconstruction for cardiac angiographic C-arm data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Kerstin; Schwemmer, Chris; Hornegger, Joachim

    2013-03-15

    Purpose: For interventional cardiac procedures, anatomical and functional information about the cardiac chambers is of major interest. With the technology of angiographic C-arm systems it is possible to reconstruct intraprocedural three-dimensional (3D) images from 2D rotational angiographic projection data (C-arm CT). However, 3D reconstruction of a dynamic object is a fundamental problem in C-arm CT reconstruction. The 2D projections are acquired over a scan time of several seconds, thus the projection data show different states of the heart. A standard FDK reconstruction algorithm would use all acquired data for a filtered backprojection and result in a motion-blurred image. In thismore » approach, a motion compensated reconstruction algorithm requiring knowledge of the 3D heart motion is used. The motion is estimated from a previously presented 3D dynamic surface model. This dynamic surface model results in a sparse motion vector field (MVF) defined at control points. In order to perform a motion compensated reconstruction, a dense motion vector field is required. The dense MVF is generated by interpolation of the sparse MVF. Therefore, the influence of different motion interpolation methods on the reconstructed image quality is evaluated. Methods: Four different interpolation methods, thin-plate splines (TPS), Shepard's method, a smoothed weighting function, and a simple averaging, were evaluated. The reconstruction quality was measured on phantom data, a porcine model as well as on in vivo clinical data sets. As a quality index, the 2D overlap of the forward projected motion compensated reconstructed ventricle and the segmented 2D ventricle blood pool was quantitatively measured with the Dice similarity coefficient and the mean deviation between extracted ventricle contours. For the phantom data set, the normalized root mean square error (nRMSE) and the universal quality index (UQI) were also evaluated in 3D image space. Results: The quantitative evaluation of all experiments showed that TPS interpolation provided the best results. The quantitative results in the phantom experiments showed comparable nRMSE of Almost-Equal-To 0.047 {+-} 0.004 for the TPS and Shepard's method. Only slightly inferior results for the smoothed weighting function and the linear approach were achieved. The UQI resulted in a value of Almost-Equal-To 99% for all four interpolation methods. On clinical human data sets, the best results were clearly obtained with the TPS interpolation. The mean contour deviation between the TPS reconstruction and the standard FDK reconstruction improved in the three human cases by 1.52, 1.34, and 1.55 mm. The Dice coefficient showed less sensitivity with respect to variations in the ventricle boundary. Conclusions: In this work, the influence of different motion interpolation methods on left ventricle motion compensated tomographic reconstructions was investigated. The best quantitative reconstruction results of a phantom, a porcine, and human clinical data sets were achieved with the TPS approach. In general, the framework of motion estimation using a surface model and motion interpolation to a dense MVF provides the ability for tomographic reconstruction using a motion compensation technique.« less

  4. Evaluation of noise and blur effects with SIRT-FISTA-TV reconstruction algorithm: Application to fast environmental transmission electron tomography.

    PubMed

    Banjak, Hussein; Grenier, Thomas; Epicier, Thierry; Koneti, Siddardha; Roiban, Lucian; Gay, Anne-Sophie; Magnin, Isabelle; Peyrin, Françoise; Maxim, Voichita

    2018-06-01

    Fast tomography in Environmental Transmission Electron Microscopy (ETEM) is of a great interest for in situ experiments where it allows to observe 3D real-time evolution of nanomaterials under operating conditions. In this context, we are working on speeding up the acquisition step to a few seconds mainly with applications on nanocatalysts. In order to accomplish such rapid acquisitions of the required tilt series of projections, a modern 4K high-speed camera is used, that can capture up to 100 images per second in a 2K binning mode. However, due to the fast rotation of the sample during the tilt procedure, noise and blur effects may occur in many projections which in turn would lead to poor quality reconstructions. Blurred projections make classical reconstruction algorithms inappropriate and require the use of prior information. In this work, a regularized algebraic reconstruction algorithm named SIRT-FISTA-TV is proposed. The performance of this algorithm using blurred data is studied by means of a numerical blur introduced into simulated images series to mimic possible mechanical instabilities/drifts during fast acquisitions. We also present reconstruction results from noisy data to show the robustness of the algorithm to noise. Finally, we show reconstructions with experimental datasets and we demonstrate the interest of fast tomography with an ultra-fast acquisition performed under environmental conditions, i.e. gas and temperature, in the ETEM. Compared to classically used SIRT and SART approaches, our proposed SIRT-FISTA-TV reconstruction algorithm provides higher quality tomograms allowing easier segmentation of the reconstructed volume for a better final processing and analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. First in vivo head-to-head comparison of high-definition versus standard-definition stent imaging with 64-slice computed tomography.

    PubMed

    Fuchs, Tobias A; Stehli, Julia; Fiechter, Michael; Dougoud, Svetlana; Sah, Bert-Ram; Gebhard, Cathérine; Bull, Sacha; Gaemperli, Oliver; Kaufmann, Philipp A

    2013-08-01

    The aim of this study was to compare image quality characteristics from 64-slice high definition (HDCT) versus 64-slice standard definition CT (SDCT) for coronary stent imaging. In twenty-five stents of 14 patients, undergoing contrast-enhanced CCTA both on 64-slice SDCT (LightSpeedVCT, GE Healthcare) and HDCT (Discovery HD750, GE Healthcare), radiation dose, contrast, noise and stent characteristics were assessed. Two blinded observers graded stent image quality (score 1 = no, 2 = mild, 3 = moderate, and 4 = severe artefacts). All scans were reconstructed with increasing contributions of adaptive statistical iterative reconstruction (ASIR) blending (0, 20, 40, 60, 80 and 100 %). Image quality was significantly superior in HDCT versus SDCT (score 1.7 ± 0.5 vs. 2.7 ± 0.7; p < 0.05). Image noise was significantly higher in HDCT compared to SDCT irrespective of ASIR contributions (p < 0.05). Addition of 40 % ASIR or more reduced image noise significantly in both HDCT and SDCT. In HDCT in-stent luminal attenuation was significantly lower and mean measured in-stent luminal diameter was significantly larger (1.2 ± 0.4 mm vs. 0.8 ± 0.4 mm; p < 0.05) compared to SDCT. Radiation dose from HDCT was comparable to SDCT (1.8 ± 0.7 mSv vs. 1.7 ± 0.7 mSv; p = ns). Use of HDCT for coronary stent imaging reduces partial volume artefacts from stents yielding improved image quality versus SDCT at a comparable radiation dose.

  6. Technical Note: FreeCT_ICD: An Open Source Implementation of a Model-Based Iterative Reconstruction Method using Coordinate Descent Optimization for CT Imaging Investigations.

    PubMed

    Hoffman, John M; Noo, Frédéric; Young, Stefano; Hsieh, Scott S; McNitt-Gray, Michael

    2018-06-01

    To facilitate investigations into the impacts of acquisition and reconstruction parameters on quantitative imaging, radiomics and CAD using CT imaging, we previously released an open source implementation of a conventional weighted filtered backprojection reconstruction called FreeCT_wFBP. Our purpose was to extend that work by providing an open-source implementation of a model-based iterative reconstruction method using coordinate descent optimization, called FreeCT_ICD. Model-based iterative reconstruction offers the potential for substantial radiation dose reduction, but can impose substantial computational processing and storage requirements. FreeCT_ICD is an open source implementation of a model-based iterative reconstruction method that provides a reasonable tradeoff between these requirements. This was accomplished by adapting a previously proposed method that allows the system matrix to be stored with a reasonable memory requirement. The method amounts to describing the attenuation coefficient using rotating slices that follow the helical geometry. In the initially-proposed version, the rotating slices are themselves described using blobs. We have replaced this description by a unique model that relies on tri-linear interpolation together with the principles of Joseph's method. This model offers an improvement in memory requirement while still allowing highly accurate reconstruction for conventional CT geometries. The system matrix is stored column-wise and combined with an iterative coordinate descent (ICD) optimization. The result is FreeCT_ICD, which is a reconstruction program developed on the Linux platform using C++ libraries and the open source GNU GPL v2.0 license. The software is capable of reconstructing raw projection data of helical CT scans. In this work, the software has been described and evaluated by reconstructing datasets exported from a clinical scanner which consisted of an ACR accreditation phantom dataset and a clinical pediatric thoracic scan. For the ACR phantom, image quality was comparable to clinical reconstructions as well as reconstructions using open-source FreeCT_wFBP software. The pediatric thoracic scan also yielded acceptable results. In addition, we did not observe any deleterious impact in image quality associated with the utilization of rotating slices. These evaluations also demonstrated reasonable tradeoffs in storage requirements and computational demands. FreeCT_ICD is an open-source implementation of a model-based iterative reconstruction method that extends the capabilities of previously released open source reconstruction software and provides the ability to perform vendor-independent reconstructions of clinically acquired raw projection data. This implementation represents a reasonable tradeoff between storage and computational requirements and has demonstrated acceptable image quality in both simulated and clinical image datasets. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Role of immediate recurrent laryngeal nerve reconstruction in surgery for thyroid cancers with fixed vocal cords.

    PubMed

    Iwaki, Shinobu; Maeda, Tatsuyoshi; Saito, Miki; Otsuki, Naoki; Takahashi, Miki; Wakui, Emi; Shinomiya, Hirotaka; Morimoto, Koichi; Inoue, Hiroyuki; Masuoka, Hiroo; Miyauchi, Akira; Nibu, Ken-Ichi

    2017-03-01

    Quality of voice after immediate recurrent laryngeal nerve (RLN) reconstruction in thyroid cancers has not been thoroughly studied. Thirteen patients with fixed vocal cords (fixed vocal cord group) and 8 patients with intact or impaired mobile vocal cords (mobile vocal cord group) who had immediate RLN reconstruction simultaneously with total thyroidectomy, and patients who had arytenoid adduction and thyroplasty for vocal cord paralysis caused by previous surgery (arytenoid adduction thyroplasty group) were enrolled in this study. Preoperative phonation efficiency index was significantly lower (p = .008) in the fixed vocal cord group than in the mobile vocal cord group. One year after surgery, all voice parameters of the patients in the fixed vocal cord group had improved, compared with their preoperative data. The fixed vocal cord group had attained satisfactory voice qualities equivalent to those of the mobile vocal cord group in terms of various voice parameters. The present results support the idea that immediate RLN reconstruction at the time of surgery for thyroid cancers may spare the need for subsequent arytenoid adduction thyroplasty even in the patients with preoperatively fixed vocal cords. © 2016 Wiley Periodicals, Inc. Head Neck 39: 427-431, 2017. © 2016 Wiley Periodicals, Inc.

  8. Regularization techniques on least squares non-uniform fast Fourier transform.

    PubMed

    Gibiino, Fabio; Positano, Vincenzo; Landini, Luigi; Santarelli, Maria Filomena

    2013-05-01

    Non-Cartesian acquisition strategies are widely used in MRI to dramatically reduce the acquisition time while at the same time preserving the image quality. Among non-Cartesian reconstruction methods, the least squares non-uniform fast Fourier transform (LS_NUFFT) is a gridding method based on a local data interpolation kernel that minimizes the worst-case approximation error. The interpolator is chosen using a pseudoinverse matrix. As the size of the interpolation kernel increases, the inversion problem may become ill-conditioned. Regularization methods can be adopted to solve this issue. In this study, we compared three regularization methods applied to LS_NUFFT. We used truncated singular value decomposition (TSVD), Tikhonov regularization and L₁-regularization. Reconstruction performance was evaluated using the direct summation method as reference on both simulated and experimental data. We also evaluated the processing time required to calculate the interpolator. First, we defined the value of the interpolator size after which regularization is needed. Above this value, TSVD obtained the best reconstruction. However, for large interpolator size, the processing time becomes an important constraint, so an appropriate compromise between processing time and reconstruction quality should be adopted. Copyright © 2013 John Wiley & Sons, Ltd.

  9. [Research advances in dendrochronology].

    PubMed

    Fang, Ke-Yan; Chen, Qiu-Yan; Liu, Chang-Zhi; Cao, Chun-Fu; Chen, Ya-Jun; Zhou, Fei-Fei

    2014-07-01

    Tree-ring studies in China have achieved great advances since the 1990s, particularly for the dendroclimatological studies which have made some influence around the world. However, because of the uneven development, limited attention has been currently paid on the other branches of dendrochronology. We herein briefly compared the advances of dendrochronology in China and of the world and presented suggestions on future dendrochronological studies. Large-scale tree-ring based climate reconstructions in China are highly needed by employing mathematical methods and a high quality tree-ring network of the ring-width, density, stable isotope and wood anatomy. Tree-ring based field climate reconstructions provide potentials on explorations of climate forcings during the reconstructed periods via climate diagnosis and process simulation.

  10. Impact of the Adaptive Statistical Iterative Reconstruction Technique on Radiation Dose and Image Quality in Bone SPECT/CT.

    PubMed

    Sibille, Louis; Chambert, Benjamin; Alonso, Sandrine; Barrau, Corinne; D'Estanque, Emmanuel; Al Tabaa, Yassine; Collombier, Laurent; Demattei, Christophe; Kotzki, Pierre-Olivier; Boudousq, Vincent

    2016-07-01

    The purpose of this study was to compare a routine bone SPECT/CT protocol using CT reconstructed with filtered backprojection (FBP) with an optimized protocol using low-dose CT images reconstructed with adaptive statistical iterative reconstruction (ASiR). In this prospective study, enrolled patients underwent bone SPECT/CT, with 1 SPECT acquisition followed by 2 randomized CT acquisitions: FBP CT (FBP; noise index, 25) and ASiR CT (70% ASiR; noise index, 40). The image quality of both attenuation-corrected SPECT and CT images was visually (5-point Likert scale, 2 interpreters) and quantitatively (contrast ratio [CR] and signal-to-noise ratio [SNR]) estimated. The CT dose index volume, dose-length product, and effective dose were compared. Seventy-five patients were enrolled in the study. Quantitative attenuation-corrected SPECT evaluation showed no inferiority for contrast ratio and SNR issued from FBP CT or ASiR CT (respectively, 13.41 ± 7.83 vs. 13.45 ± 7.99 and 2.33 ± 0.83 vs. 2.32 ± 0.84). Qualitative image analysis showed no difference between attenuation-corrected SPECT images issued from FBP CT or ASiR CT for both interpreters (respectively, 3.5 ± 0.6 vs. 3.5 ± 0.6 and 3.6 ± 0.5 vs. 3.6 ± 0.5). Quantitative CT evaluation showed no inferiority for SNR between FBP and ASiR CT images (respectively, 0.93 ± 0.16 and 1.07 ± 0.17). Qualitative image analysis showed no quality difference between FBP and ASiR CT images for both interpreters (respectively, 3.8 ± 0.5 vs. 3.6 ± 0.5 and 4.0 ± 0.1 vs. 4.0 ± 0.2). Mean CT dose index volume, dose-length product, and effective dose for ASiR CT (3.0 ± 2.0 mGy, 148 ± 85 mGy⋅cm, and 2.2 ± 1.3 mSv) were significantly lower than for FBP CT (8.5 ± 3.7 mGy, 365 ± 160 mGy⋅cm, and 5.5 ± 2.4 mSv). The use of 70% ASiR blending in bone SPECT/CT can reduce the CT radiation dose by 60%, with no sacrifice in attenuation-corrected SPECT and CT image quality, compared with the conventional protocol using FBP CT reconstruction technique. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  11. Filtered-backprojection reconstruction for a cone-beam computed tomography scanner with independent source and detector rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rit, Simon, E-mail: simon.rit@creatis.insa-lyon.fr; Clackdoyle, Rolf; Keuschnigg, Peter

    Purpose: A new cone-beam CT scanner for image-guided radiotherapy (IGRT) can independently rotate the source and the detector along circular trajectories. Existing reconstruction algorithms are not suitable for this scanning geometry. The authors propose and evaluate a three-dimensional (3D) filtered-backprojection reconstruction for this situation. Methods: The source and the detector trajectories are tuned to image a field-of-view (FOV) that is offset with respect to the center-of-rotation. The new reconstruction formula is derived from the Feldkamp algorithm and results in a similar three-step algorithm: projection weighting, ramp filtering, and weighted backprojection. Simulations of a Shepp Logan digital phantom were used tomore » evaluate the new algorithm with a 10 cm-offset FOV. A real cone-beam CT image with an 8.5 cm-offset FOV was also obtained from projections of an anthropomorphic head phantom. Results: The quality of the cone-beam CT images reconstructed using the new algorithm was similar to those using the Feldkamp algorithm which is used in conventional cone-beam CT. The real image of the head phantom exhibited comparable image quality to that of existing systems. Conclusions: The authors have proposed a 3D filtered-backprojection reconstruction for scanners with independent source and detector rotations that is practical and effective. This algorithm forms the basis for exploiting the scanner’s unique capabilities in IGRT protocols.« less

  12. High-definition computed tomography for coronary artery stents imaging: Initial evaluation of the optimal reconstruction algorithm.

    PubMed

    Cui, Xiaoming; Li, Tao; Li, Xin; Zhou, Weihua

    2015-05-01

    The aim of this study was to evaluate the in vivo performance of four image reconstruction algorithms in a high-definition CT (HDCT) scanner with improved spatial resolution for the evaluation of coronary artery stents and intrastent lumina. Thirty-nine consecutive patients with a total of 71 implanted coronary stents underwent coronary CT angiography (CCTA) on a HDCT (Discovery CT 750 HD; GE Healthcare) with the high-resolution scanning mode. Four different reconstruction algorithms (HD-stand, HD-detail; HD-stand-plus; HD-detail-plus) were applied to reconstruct the stented coronary arteries. Image quality for stent characterization was assessed. Image noise and intrastent luminal diameter were measured. The relationship between the measurement of inner stent diameter (ISD) and the true stent diameter (TSD) and stent type were analysed. The stent-dedicated kernel (HD-detail) offered the highest percentage (53.5%) of good image quality for stent characterization and the highest ratio (68.0±8.4%) of visible stent lumen/true stent lumen for luminal diameter measurement at the expense of an increased overall image noise. The Pearson correlation coefficient between the ISD and TSD measurement and spearman correlation coefficient between the ISD measurement and stent type were 0.83 and 0.48, respectively. Compared with standard reconstruction algorithms, high-definition CT imaging technique with dedicated high-resolution reconstruction algorithm provides more accurate stent characterization and intrastent luminal diameter measurement. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Automated selection of the optimal cardiac phase for single-beat coronary CT angiography reconstruction.

    PubMed

    Stassi, D; Dutta, S; Ma, H; Soderman, A; Pazzani, D; Gros, E; Okerlund, D; Schmidt, T G

    2016-01-01

    Reconstructing a low-motion cardiac phase is expected to improve coronary artery visualization in coronary computed tomography angiography (CCTA) exams. This study developed an automated algorithm for selecting the optimal cardiac phase for CCTA reconstruction. The algorithm uses prospectively gated, single-beat, multiphase data made possible by wide cone-beam imaging. The proposed algorithm differs from previous approaches because the optimal phase is identified based on vessel image quality (IQ) directly, compared to previous approaches that included motion estimation and interphase processing. Because there is no processing of interphase information, the algorithm can be applied to any sampling of image phases, making it suited for prospectively gated studies where only a subset of phases are available. An automated algorithm was developed to select the optimal phase based on quantitative IQ metrics. For each reconstructed slice at each reconstructed phase, an image quality metric was calculated based on measures of circularity and edge strength of through-plane vessels. The image quality metric was aggregated across slices, while a metric of vessel-location consistency was used to ignore slices that did not contain through-plane vessels. The algorithm performance was evaluated using two observer studies. Fourteen single-beat cardiac CT exams (Revolution CT, GE Healthcare, Chalfont St. Giles, UK) reconstructed at 2% intervals were evaluated for best systolic (1), diastolic (6), or systolic and diastolic phases (7) by three readers and the algorithm. Pairwise inter-reader and reader-algorithm agreement was evaluated using the mean absolute difference (MAD) and concordance correlation coefficient (CCC) between the reader and algorithm-selected phases. A reader-consensus best phase was determined and compared to the algorithm selected phase. In cases where the algorithm and consensus best phases differed by more than 2%, IQ was scored by three readers using a five point Likert scale. There was no statistically significant difference between inter-reader and reader-algorithm agreement for either MAD or CCC metrics (p > 0.1). The algorithm phase was within 2% of the consensus phase in 15/21 of cases. The average absolute difference between consensus and algorithm best phases was 2.29% ± 2.47%, with a maximum difference of 8%. Average image quality scores for the algorithm chosen best phase were 4.01 ± 0.65 overall, 3.33 ± 1.27 for right coronary artery (RCA), 4.50 ± 0.35 for left anterior descending (LAD) artery, and 4.50 ± 0.35 for left circumflex artery (LCX). Average image quality scores for the consensus best phase were 4.11 ± 0.54 overall, 3.44 ± 1.03 for RCA, 4.39 ± 0.39 for LAD, and 4.50 ± 0.18 for LCX. There was no statistically significant difference (p > 0.1) between the image quality scores of the algorithm phase and the consensus phase. The proposed algorithm was statistically equivalent to a reader in selecting an optimal cardiac phase for CCTA exams. When reader and algorithm phases differed by >2%, image quality as rated by blinded readers was statistically equivalent. By detecting the optimal phase for CCTA reconstruction, the proposed algorithm is expected to improve coronary artery visualization in CCTA exams.

  14. SU-E-J-133: Autosegmentation of Linac CBCT: Improved Accuracy Via Penalized Likelihood Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y

    2015-06-15

    Purpose: To improve the quality of kV X-ray cone beam CT (CBCT) for use in radiotherapy delivery assessment and re-planning by using penalized likelihood (PL) iterative reconstruction and auto-segmentation accuracy of the resulting CBCTs as an image quality metric. Methods: Present filtered backprojection (FBP) CBCT reconstructions can be improved upon by PL reconstruction with image formation models and appropriate regularization constraints. We use two constraints: 1) image smoothing via an edge preserving filter, and 2) a constraint minimizing the differences between the reconstruction and a registered prior image. Reconstructions of prostate therapy CBCTs were computed with constraint 1 alone andmore » with both constraints. The prior images were planning CTs(pCT) deformable-registered to the FBP reconstructions. Anatomy segmentations were done using atlas-based auto-segmentation (Elekta ADMIRE). Results: We observed small but consistent improvements in the Dice similarity coefficients of PL reconstructions over the FBP results, and additional small improvements with the added prior image constraint. For a CBCT with anatomy very similar in appearance to the pCT, we observed these changes in the Dice metric: +2.9% (prostate), +8.6% (rectum), −1.9% (bladder). For a second CBCT with a very different rectum configuration, we observed +0.8% (prostate), +8.9% (rectum), −1.2% (bladder). For a third case with significant lateral truncation of the field of view, we observed: +0.8% (prostate), +8.9% (rectum), −1.2% (bladder). Adding the prior image constraint raised Dice measures by about 1%. Conclusion: Efficient and practical adaptive radiotherapy requires accurate deformable registration and accurate anatomy delineation. We show here small and consistent patterns of improved contour accuracy using PL iterative reconstruction compared with FBP reconstruction. However, the modest extent of these results and the pattern of differences across CBCT cases suggest that significant further development will be required to make CBCT useful to adaptive radiotherapy.« less

  15. SU-F-BRCD-09: Total Variation (TV) Based Fast Convergent Iterative CBCT Reconstruction with GPU Acceleration.

    PubMed

    Xu, Q; Yang, D; Tan, J; Anastasio, M

    2012-06-01

    To improve image quality and reduce imaging dose in CBCT for radiation therapy applications and to realize near real-time image reconstruction based on use of a fast convergence iterative algorithm and acceleration by multi-GPUs. An iterative image reconstruction that sought to minimize a weighted least squares cost function that employed total variation (TV) regularization was employed to mitigate projection data incompleteness and noise. To achieve rapid 3D image reconstruction (< 1 min), a highly optimized multiple-GPU implementation of the algorithm was developed. The convergence rate and reconstruction accuracy were evaluated using a modified 3D Shepp-Logan digital phantom and a Catphan-600 physical phantom. The reconstructed images were compared with the clinical FDK reconstruction results. Digital phantom studies showed that only 15 iterations and 60 iterations are needed to achieve algorithm convergence for 360-view and 60-view cases, respectively. The RMSE was reduced to 10-4 and 10-2, respectively, by using 15 iterations for each case. Our algorithm required 5.4s to complete one iteration for the 60-view case using one Tesla C2075 GPU. The few-view study indicated that our iterative algorithm has great potential to reduce the imaging dose and preserve good image quality. For the physical Catphan studies, the images obtained from the iterative algorithm possessed better spatial resolution and higher SNRs than those obtained from by use of a clinical FDK reconstruction algorithm. We have developed a fast convergence iterative algorithm for CBCT image reconstruction. The developed algorithm yielded images with better spatial resolution and higher SNR than those produced by a commercial FDK tool. In addition, from the few-view study, the iterative algorithm has shown great potential for significantly reducing imaging dose. We expect that the developed reconstruction approach will facilitate applications including IGART and patient daily CBCT-based treatment localization. © 2012 American Association of Physicists in Medicine.

  16. A low-complexity 2-point step size gradient projection method with selective function evaluations for smoothed total variation based CBCT reconstructions

    NASA Astrophysics Data System (ADS)

    Song, Bongyong; Park, Justin C.; Song, William Y.

    2014-11-01

    The Barzilai-Borwein (BB) 2-point step size gradient method is receiving attention for accelerating Total Variation (TV) based CBCT reconstructions. In order to become truly viable for clinical applications, however, its convergence property needs to be properly addressed. We propose a novel fast converging gradient projection BB method that requires ‘at most one function evaluation’ in each iterative step. This Selective Function Evaluation method, referred to as GPBB-SFE in this paper, exhibits the desired convergence property when it is combined with a ‘smoothed TV’ or any other differentiable prior. This way, the proposed GPBB-SFE algorithm offers fast and guaranteed convergence to the desired 3DCBCT image with minimal computational complexity. We first applied this algorithm to a Shepp-Logan numerical phantom. We then applied to a CatPhan 600 physical phantom (The Phantom Laboratory, Salem, NY) and a clinically-treated head-and-neck patient, both acquired from the TrueBeam™ system (Varian Medical Systems, Palo Alto, CA). Furthermore, we accelerated the reconstruction by implementing the algorithm on NVIDIA GTX 480 GPU card. We first compared GPBB-SFE with three recently proposed BB-based CBCT reconstruction methods available in the literature using Shepp-Logan numerical phantom with 40 projections. It is found that GPBB-SFE shows either faster convergence speed/time or superior convergence property compared to existing BB-based algorithms. With the CatPhan 600 physical phantom, the GPBB-SFE algorithm requires only 3 function evaluations in 30 iterations and reconstructs the standard, 364-projection FDK reconstruction quality image using only 60 projections. We then applied the algorithm to a clinically-treated head-and-neck patient. It was observed that the GPBB-SFE algorithm requires only 18 function evaluations in 30 iterations. Compared with the FDK algorithm with 364 projections, the GPBB-SFE algorithm produces visibly equivalent quality CBCT image for the head-and-neck patient with only 180 projections, in 131.7 s, further supporting its clinical applicability.

  17. Submillisievert Radiation Dose Coronary CT Angiography: Clinical Impact of the Knowledge-Based Iterative Model Reconstruction.

    PubMed

    Iyama, Yuji; Nakaura, Takeshi; Kidoh, Masafumi; Oda, Seitaro; Utsunomiya, Daisuke; Sakaino, Naritsugu; Tokuyasu, Shinichi; Osakabe, Hirokazu; Harada, Kazunori; Yamashita, Yasuyuki

    2016-11-01

    The purpose of this study was to evaluate the noise and image quality of images reconstructed with a knowledge-based iterative model reconstruction (knowledge-based IMR) in ultra-low dose cardiac computed tomography (CT). We performed submillisievert radiation dose coronary CT angiography on 43 patients. We also performed a phantom study to evaluate the influence of object size with the automatic exposure control phantom. We reconstructed clinical and phantom studies with filtered back projection (FBP), hybrid iterative reconstruction (hybrid IR), and knowledge-based IMR. We measured effective dose of patients and compared CT number, image noise, and contrast noise ratio in ascending aorta of each reconstruction technique. We compared the relationship between image noise and body mass index for the clinical study, and object size for phantom study. The mean effective dose was 0.98 ± 0.25 mSv. The image noise of knowledge-based IMR images was significantly lower than those of FBP and hybrid IR images (knowledge-based IMR: 19.4 ± 2.8; FBP: 126.7 ± 35.0; hybrid IR: 48.8 ± 12.8, respectively) (P < .01). The contrast noise ratio of knowledge-based IMR images was significantly higher than those of FBP and hybrid IR images (knowledge-based IMR: 29.1 ± 5.4; FBP: 4.6 ± 1.3; hybrid IR: 13.1 ± 3.5, respectively) (P < .01). There were moderate correlations between image noise and body mass index in FBP (r = 0.57, P < .01) and hybrid IR techniques (r = 0.42, P < .01); however, these correlations were weak in knowledge-based IMR (r = 0.27, P < .01). Compared to FBP and hybrid IR, the knowledge-based IMR offers significant noise reduction and improvement in image quality in submillisievert radiation dose cardiac CT. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  18. A low-complexity 2-point step size gradient projection method with selective function evaluations for smoothed total variation based CBCT reconstructions.

    PubMed

    Song, Bongyong; Park, Justin C; Song, William Y

    2014-11-07

    The Barzilai-Borwein (BB) 2-point step size gradient method is receiving attention for accelerating Total Variation (TV) based CBCT reconstructions. In order to become truly viable for clinical applications, however, its convergence property needs to be properly addressed. We propose a novel fast converging gradient projection BB method that requires 'at most one function evaluation' in each iterative step. This Selective Function Evaluation method, referred to as GPBB-SFE in this paper, exhibits the desired convergence property when it is combined with a 'smoothed TV' or any other differentiable prior. This way, the proposed GPBB-SFE algorithm offers fast and guaranteed convergence to the desired 3DCBCT image with minimal computational complexity. We first applied this algorithm to a Shepp-Logan numerical phantom. We then applied to a CatPhan 600 physical phantom (The Phantom Laboratory, Salem, NY) and a clinically-treated head-and-neck patient, both acquired from the TrueBeam™ system (Varian Medical Systems, Palo Alto, CA). Furthermore, we accelerated the reconstruction by implementing the algorithm on NVIDIA GTX 480 GPU card. We first compared GPBB-SFE with three recently proposed BB-based CBCT reconstruction methods available in the literature using Shepp-Logan numerical phantom with 40 projections. It is found that GPBB-SFE shows either faster convergence speed/time or superior convergence property compared to existing BB-based algorithms. With the CatPhan 600 physical phantom, the GPBB-SFE algorithm requires only 3 function evaluations in 30 iterations and reconstructs the standard, 364-projection FDK reconstruction quality image using only 60 projections. We then applied the algorithm to a clinically-treated head-and-neck patient. It was observed that the GPBB-SFE algorithm requires only 18 function evaluations in 30 iterations. Compared with the FDK algorithm with 364 projections, the GPBB-SFE algorithm produces visibly equivalent quality CBCT image for the head-and-neck patient with only 180 projections, in 131.7 s, further supporting its clinical applicability.

  19. MO-G-17A-07: Improved Image Quality in Brain F-18 FDG PET Using Penalized-Likelihood Image Reconstruction Via a Generalized Preconditioned Alternating Projection Algorithm: The First Patient Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidtlein, CR; Beattie, B; Humm, J

    2014-06-15

    Purpose: To investigate the performance of a new penalized-likelihood PET image reconstruction algorithm using the 1{sub 1}-norm total-variation (TV) sum of the 1st through 4th-order gradients as the penalty. Simulated and brain patient data sets were analyzed. Methods: This work represents an extension of the preconditioned alternating projection algorithm (PAPA) for emission-computed tomography. In this new generalized algorithm (GPAPA), the penalty term is expanded to allow multiple components, in this case the sum of the 1st to 4th order gradients, to reduce artificial piece-wise constant regions (“staircase” artifacts typical for TV) seen in PAPA images penalized with only the 1stmore » order gradient. Simulated data were used to test for “staircase” artifacts and to optimize the penalty hyper-parameter in the root-mean-squared error (RMSE) sense. Patient FDG brain scans were acquired on a GE D690 PET/CT (370 MBq at 1-hour post-injection for 10 minutes) in time-of-flight mode and in all cases were reconstructed using resolution recovery projectors. GPAPA images were compared PAPA and RMSE-optimally filtered OSEM (fully converged) in simulations and to clinical OSEM reconstructions (3 iterations, 32 subsets) with 2.6 mm XYGaussian and standard 3-point axial smoothing post-filters. Results: The results from the simulated data show a significant reduction in the 'staircase' artifact for GPAPA compared to PAPA and lower RMSE (up to 35%) compared to optimally filtered OSEM. A simple power-law relationship between the RMSE-optimal hyper-parameters and the noise equivalent counts (NEC) per voxel is revealed. Qualitatively, the patient images appear much sharper and with less noise than standard clinical images. The convergence rate is similar to OSEM. Conclusions: GPAPA reconstructions using the 1{sub 1}-norm total-variation sum of the 1st through 4th-order gradients as the penalty show great promise for the improvement of image quality over that currently achieved with clinical OSEM reconstructions.« less

  20. A Novel Pairwise Comparison-Based Method to Determine Radiation Dose Reduction Potentials of Iterative Reconstruction Algorithms, Exemplified Through Circle of Willis Computed Tomography Angiography.

    PubMed

    Ellmann, Stephan; Kammerer, Ferdinand; Brand, Michael; Allmendinger, Thomas; May, Matthias S; Uder, Michael; Lell, Michael M; Kramer, Manuel

    2016-05-01

    The aim of this study was to determine the dose reduction potential of iterative reconstruction (IR) algorithms in computed tomography angiography (CTA) of the circle of Willis using a novel method of evaluating the quality of radiation dose-reduced images. This study relied on ReconCT, a proprietary reconstruction software that allows simulating CT scans acquired with reduced radiation dose based on the raw data of true scans. To evaluate the performance of ReconCT in this regard, a phantom study was performed to compare the image noise of true and simulated scans within simulated vessels of a head phantom. That followed, 10 patients scheduled for CTA of the circle of Willis were scanned according to our institute's standard protocol (100 kV, 145 reference mAs). Subsequently, CTA images of these patients were reconstructed as either a full-dose weighted filtered back projection or with radiation dose reductions down to 10% of the full-dose level and Sinogram-Affirmed Iterative Reconstruction (SAFIRE) with either strength 3 or 5. Images were marked with arrows pointing on vessels of different sizes, and image pairs were presented to observers. Five readers assessed image quality with 2-alternative forced choice comparisons. In the phantom study, no significant differences were observed between the noise levels of simulated and true scans in filtered back projection, SAFIRE 3, and SAFIRE 5 reconstructions.The dose reduction potential for patient scans showed a strong dependence on IR strength as well as on the size of the vessel of interest. Thus, the potential radiation dose reductions ranged from 84.4% for the evaluation of great vessels reconstructed with SAFIRE 5 to 40.9% for the evaluation of small vessels reconstructed with SAFIRE 3. This study provides a novel image quality evaluation method based on 2-alternative forced choice comparisons. In CTA of the circle of Willis, higher IR strengths and greater vessel sizes allowed higher degrees of radiation dose reduction.

  1. A Distributed Compressive Sensing Scheme for Event Capture in Wireless Visual Sensor Networks

    NASA Astrophysics Data System (ADS)

    Hou, Meng; Xu, Sen; Wu, Weiling; Lin, Fei

    2018-01-01

    Image signals which acquired by wireless visual sensor network can be used for specific event capture. This event capture is realized by image processing at the sink node. A distributed compressive sensing scheme is used for the transmission of these image signals from the camera nodes to the sink node. A measurement and joint reconstruction algorithm for these image signals are proposed in this paper. Make advantage of spatial correlation between images within a sensing area, the cluster head node which as the image decoder can accurately co-reconstruct these image signals. The subjective visual quality and the reconstruction error rate are used for the evaluation of reconstructed image quality. Simulation results show that the joint reconstruction algorithm achieves higher image quality at the same image compressive rate than the independent reconstruction algorithm.

  2. Adaptive zooming in X-ray computed tomography.

    PubMed

    Dabravolski, Andrei; Batenburg, Kees Joost; Sijbers, Jan

    2014-01-01

    In computed tomography (CT), the source-detector system commonly rotates around the object in a circular trajectory. Such a trajectory does not allow to exploit a detector fully when scanning elongated objects. Increase the spatial resolution of the reconstructed image by optimal zooming during scanning. A new approach is proposed, in which the full width of the detector is exploited for every projection angle. This approach is based on the use of prior information about the object's convex hull to move the source as close as possible to the object, while avoiding truncation of the projections. Experiments show that the proposed approach can significantly improve reconstruction quality, producing reconstructions with smaller errors and revealing more details in the object. The proposed approach can lead to more accurate reconstructions and increased spatial resolution in the object compared to the conventional circular trajectory.

  3. A qualitative and quantitative analysis of radiation dose and image quality of computed tomography images using adaptive statistical iterative reconstruction

    PubMed Central

    Mail, Noor; Shamy, Abdulrahman M.; Alghamdi, Suliman; Saoudi, Abdelhamid

    2016-01-01

    Image quality is a key issue in radiology, particularly in a clinical setting where it is important to achieve accurate diagnoses while minimizing radiation dose. Some computed tomography (CT) manufacturers have introduced algorithms that claim significant dose reduction. In this study, we assessed CT image quality produced by two reconstruction algorithms provided with GE Healthcare's Discovery 690 Elite positron emission tomography (PET) CT scanner. Image quality was measured for images obtained at various doses with both conventional filtered back‐projection (FBP) and adaptive statistical iterative reconstruction (ASIR) algorithms. A standard CT dose index (CTDI) phantom and a pencil ionization chamber were used to measure the CT dose at 120 kVp and an exposure of 260 mAs. Image quality was assessed using two phantoms. CT images of both phantoms were acquired at tube voltage (kV) of 120 with exposures ranging from 25 mAs to 400 mAs. Images were reconstructed using FBP and ASIR ranging from 10% to 100%, then analyzed for noise, low‐contrast detectability, contrast‐to‐noise ratio (CNR), and modulation transfer function (MTF). Noise was 4.6 HU in water phantom images acquired at 260 mAs/FBP 120 kV and 130 mAs/50% ASIR 120 kV. The large objects (frequency<7 lp/cm) retained fairly acceptable image quality at 130 mAs/50% ASIR, compared to 260 mAs/FBP. The application of ASIR for small objects (frequency>7 lp/cm) showed poor visibility compared to FBP at 260 mAs and even worse for images acquired at less than 130 mAs. ASIR blending more than 50% at low dose tends to reduce contrast of small objects (frequency>7 lp/cm). We concluded that dose reduction and ASIR should be applied with close attention if the objects to be detected or diagnosed are small (frequency>7 lp/cm). Further investigations are required to correlate the small objects (frequency>7 lp/cm) to patient anatomy and clinical diagnosis. PACS number(s): 87.57.‐s, 87.57.C, 87.57.cf, 87.57.cj, 87.57.cm, 87.57.cp, 87.57.N, 87.57.nf, 87.57.np, 87.57.nt, 87.57.Q, 87.59.‐e, 87.59.B PMID:27167261

  4. Cone-beam CT of traumatic brain injury using statistical reconstruction with a post-artifact-correction noise model

    NASA Astrophysics Data System (ADS)

    Dang, H.; Stayman, J. W.; Sisniega, A.; Xu, J.; Zbijewski, W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.

    2015-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability. The current front-line imaging modality for TBI detection is CT, which reliably detects intracranial hemorrhage (fresh blood contrast 30-50 HU, size down to 1 mm) in non-contrast-enhanced exams. Compared to CT, flat-panel detector (FPD) cone-beam CT (CBCT) systems offer lower cost, greater portability, and smaller footprint suitable for point-of-care deployment. We are developing FPD-CBCT to facilitate TBI detection at the point-of-care such as in emergent, ambulance, sports, and military applications. However, current FPD-CBCT systems generally face challenges in low-contrast, soft-tissue imaging. Model-based reconstruction can improve image quality in soft-tissue imaging compared to conventional filtered back-projection (FBP) by leveraging high-fidelity forward model and sophisticated regularization. In FPD-CBCT TBI imaging, measurement noise characteristics undergo substantial change following artifact correction, resulting in non-negligible noise amplification. In this work, we extend the penalized weighted least-squares (PWLS) image reconstruction to include the two dominant artifact corrections (scatter and beam hardening) in FPD-CBCT TBI imaging by correctly modeling the variance change following each correction. Experiments were performed on a CBCT test-bench using an anthropomorphic phantom emulating intra-parenchymal hemorrhage in acute TBI, and the proposed method demonstrated an improvement in blood-brain contrast-to-noise ratio (CNR = 14.2) compared to FBP (CNR = 9.6) and PWLS using conventional weights (CNR = 11.6) at fixed spatial resolution (1 mm edge-spread width at the target contrast). The results support the hypothesis that FPD-CBCT can fulfill the image quality requirements for reliable TBI detection, using high-fidelity artifact correction and statistical reconstruction with accurate post-artifact-correction noise models.

  5. Burnout and compassion fatigue: prevalence and associations among Israeli burn clinicians

    PubMed Central

    Haik, Josef; Brown, Stav; Liran, Alon; Visentin, Denis; Sokolov, Amit; Zilinsky, Isaac; Kornhaber, Rachel

    2017-01-01

    Acute health care environments can be stressful settings with clinicians experiencing deleterious effects of burnout and compassion fatigue affecting their mental health. Subsequently, the quality of patient care and outcomes may be threatened if clinicians experience burnout or compassion fatigue. Therefore, the aim of this descriptive, cross-sectional study was to evaluate the prevalence of burnout and compassion fatigue among burn clinicians in Israel. Fifty-five clinicians from Burns, Plastics and Reconstruction Surgery and Intensive Care completed four validated surveys to assess burnout (Maslach Burnout Inventory), depression (PRIME-MD), health-related quality of life (SF-8), and compassion fatigue (Professional Quality of Life version 5). Burn clinicians were compared with Plastics and Reconstruction Surgery and Intensive Care clinicians. This study identified a high prevalence of burnout (38.2%) among Intensive Care, Plastics and Reconstruction and Burns clinicians, with Burns clinicians having a greatly increased prevalence of burnout compared to Intensive Care clinicians (OR =24.3, P=0.017). Additional factors contributing to compassion fatigue were those without children (P=0.016), divorced (P=0.035), of a younger age (P=0.019), and a registered nurse (P=0.05). Burnout increased clinicians’ risk of adverse professional and personal outcomes and correlated with less free time (P<0.001), increased risk of experiencing work-home disputes (P=0.05), increased depression (P=0.001) and decreased career satisfaction (P=0.01). Burnout was also associated with higher physical (mean difference =3.8, P<0.001) and lower mental (mean difference =−3.5, P<0.001) Quality of Life scores. Caring for burn survivors can lead to burnout, compassion fatigue, and vicarious trauma. Identifying strategies to abate these issues is essential to ensure improved clinicial environments and patient outcomes. PMID:28670122

  6. Burnout and compassion fatigue: prevalence and associations among Israeli burn clinicians.

    PubMed

    Haik, Josef; Brown, Stav; Liran, Alon; Visentin, Denis; Sokolov, Amit; Zilinsky, Isaac; Kornhaber, Rachel

    2017-01-01

    Acute health care environments can be stressful settings with clinicians experiencing deleterious effects of burnout and compassion fatigue affecting their mental health. Subsequently, the quality of patient care and outcomes may be threatened if clinicians experience burnout or compassion fatigue. Therefore, the aim of this descriptive, cross-sectional study was to evaluate the prevalence of burnout and compassion fatigue among burn clinicians in Israel. Fifty-five clinicians from Burns, Plastics and Reconstruction Surgery and Intensive Care completed four validated surveys to assess burnout (Maslach Burnout Inventory), depression (PRIME-MD), health-related quality of life (SF-8), and compassion fatigue (Professional Quality of Life version 5). Burn clinicians were compared with Plastics and Reconstruction Surgery and Intensive Care clinicians. This study identified a high prevalence of burnout (38.2%) among Intensive Care, Plastics and Reconstruction and Burns clinicians, with Burns clinicians having a greatly increased prevalence of burnout compared to Intensive Care clinicians (OR =24.3, P =0.017). Additional factors contributing to compassion fatigue were those without children ( P =0.016), divorced ( P =0.035), of a younger age ( P =0.019), and a registered nurse ( P =0.05). Burnout increased clinicians' risk of adverse professional and personal outcomes and correlated with less free time ( P <0.001), increased risk of experiencing work-home disputes ( P =0.05), increased depression ( P =0.001) and decreased career satisfaction ( P =0.01). Burnout was also associated with higher physical (mean difference =3.8, P <0.001) and lower mental (mean difference =-3.5, P <0.001) Quality of Life scores. Caring for burn survivors can lead to burnout, compassion fatigue, and vicarious trauma. Identifying strategies to abate these issues is essential to ensure improved clinicial environments and patient outcomes.

  7. Radiation dose reduction with the adaptive statistical iterative reconstruction (ASIR) technique for chest CT in children: an intra-individual comparison.

    PubMed

    Lee, Seung Hyun; Kim, Myung-Joon; Yoon, Choon-Sik; Lee, Mi-Jung

    2012-09-01

    To retrospectively compare radiation dose and image quality of pediatric chest CT using a routine dose protocol reconstructed with filtered back projection (FBP) (the Routine study) and a low-dose protocol with 50% adaptive statistical iterative reconstruction (ASIR) (the ASIR study). We retrospectively reviewed chest CT performed in pediatric patients who underwent both the Routine study and the ASIR study on different days between January 2010 and August 2011. Volume CT dose indices (CTDIvol), dose length products (DLP), and effective doses were obtained to estimate radiation dose. The image quality was evaluated objectively as noise measured in the descending aorta and paraspinal muscle, and subjectively by three radiologists for noise, sharpness, artifacts, and diagnostic acceptability using a four-point scale. The paired Student's t-test and the Wilcoxon signed-rank test were used for statistical analysis. Twenty-six patients (M:F=13:13, mean age 11.7) were enrolled. The ASIR studies showed 60.3%, 56.2%, and 55.2% reductions in CTDIvol (from 18.73 to 7.43 mGy, P<0.001), DLP (from 307.42 to 134.51 mGy×cm, P<0.001), and effective dose (from 4.12 to 1.84 mSv, P<0.001), respectively, compared with the Routine studies. The objective noise was higher in the paraspinal muscle of the ASIR studies (20.81 vs. 16.67, P=0.004), but was not different in the aorta (18.23 vs. 18.72, P=0.726). The subjective image quality demonstrated no difference between the two studies. A low-dose protocol with 50% ASIR allows radiation dose reduction in pediatric chest CT by more than 55% while maintaining image quality. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Objective and subjective quality assessment of geometry compression of reconstructed 3D humans in a 3D virtual room

    NASA Astrophysics Data System (ADS)

    Mekuria, Rufael; Cesar, Pablo; Doumanis, Ioannis; Frisiello, Antonella

    2015-09-01

    Compression of 3D object based video is relevant for 3D Immersive applications. Nevertheless, the perceptual aspects of the degradation introduced by codecs for meshes and point clouds are not well understood. In this paper we evaluate the subjective and objective degradations introduced by such codecs in a state of art 3D immersive virtual room. In the 3D immersive virtual room, users are captured with multiple cameras, and their surfaces are reconstructed as photorealistic colored/textured 3D meshes or point clouds. To test the perceptual effect of compression and transmission, we render degraded versions with different frame rates in different contexts (near/far) in the scene. A quantitative subjective study with 16 users shows that negligible distortion of decoded surfaces compared to the original reconstructions can be achieved in the 3D virtual room. In addition, a qualitative task based analysis in a full prototype field trial shows increased presence, emotion, user and state recognition of the reconstructed 3D Human representation compared to animated computer avatars.

  9. Patient-specific geometrical modeling of orthopedic structures with high efficiency and accuracy for finite element modeling and 3D printing.

    PubMed

    Huang, Huajun; Xiang, Chunling; Zeng, Canjun; Ouyang, Hanbin; Wong, Kelvin Kian Loong; Huang, Wenhua

    2015-12-01

    We improved the geometrical modeling procedure for fast and accurate reconstruction of orthopedic structures. This procedure consists of medical image segmentation, three-dimensional geometrical reconstruction, and assignment of material properties. The patient-specific orthopedic structures reconstructed by this improved procedure can be used in the virtual surgical planning, 3D printing of real orthopedic structures and finite element analysis. A conventional modeling consists of: image segmentation, geometrical reconstruction, mesh generation, and assignment of material properties. The present study modified the conventional method to enhance software operating procedures. Patient's CT images of different bones were acquired and subsequently reconstructed to give models. The reconstruction procedures were three-dimensional image segmentation, modification of the edge length and quantity of meshes, and the assignment of material properties according to the intensity of gravy value. We compared the performance of our procedures to the conventional procedures modeling in terms of software operating time, success rate and mesh quality. Our proposed framework has the following improvements in the geometrical modeling: (1) processing time: (femur: 87.16 ± 5.90 %; pelvis: 80.16 ± 7.67 %; thoracic vertebra: 17.81 ± 4.36 %; P < 0.05); (2) least volume reduction (femur: 0.26 ± 0.06 %; pelvis: 0.70 ± 0.47, thoracic vertebra: 3.70 ± 1.75 %; P < 0.01) and (3) mesh quality in terms of aspect ratio (femur: 8.00 ± 7.38 %; pelvis: 17.70 ± 9.82 %; thoracic vertebra: 13.93 ± 9.79 %; P < 0.05) and maximum angle (femur: 4.90 ± 5.28 %; pelvis: 17.20 ± 19.29 %; thoracic vertebra: 3.86 ± 3.82 %; P < 0.05). Our proposed patient-specific geometrical modeling requires less operating time and workload, but the orthopedic structures were generated at a higher rate of success as compared with the conventional method. It is expected to benefit the surgical planning of orthopedic structures with less operating time and high accuracy of modeling.

  10. XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing.

    PubMed

    Feng, Li; Axel, Leon; Chandarana, Hersh; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo

    2016-02-01

    To develop a novel framework for free-breathing MRI called XD-GRASP, which sorts dynamic data into extra motion-state dimensions using the self-navigation properties of radial imaging and reconstructs the multidimensional dataset using compressed sensing. Radial k-space data are continuously acquired using the golden-angle sampling scheme and sorted into multiple motion-states based on respiratory and/or cardiac motion signals derived directly from the data. The resulting undersampled multidimensional dataset is reconstructed using a compressed sensing approach that exploits sparsity along the new dynamic dimensions. The performance of XD-GRASP is demonstrated for free-breathing three-dimensional (3D) abdominal imaging, two-dimensional (2D) cardiac cine imaging and 3D dynamic contrast-enhanced (DCE) MRI of the liver, comparing against reconstructions without motion sorting in both healthy volunteers and patients. XD-GRASP separates respiratory motion from cardiac motion in cardiac imaging, and respiratory motion from contrast enhancement in liver DCE-MRI, which improves image quality and reduces motion-blurring artifacts. XD-GRASP represents a new use of sparsity for motion compensation and a novel way to handle motions in the context of a continuous acquisition paradigm. Instead of removing or correcting motion, extra motion-state dimensions are reconstructed, which improves image quality and also offers new physiological information of potential clinical value. © 2015 Wiley Periodicals, Inc.

  11. XD-GRASP: Golden-Angle Radial MRI with Reconstruction of Extra Motion-State Dimensions Using Compressed Sensing

    PubMed Central

    Feng, Li; Axel, Leon; Chandarana, Hersh; Block, Kai Tobias; Sodickson, Daniel K.; Otazo, Ricardo

    2015-01-01

    Purpose To develop a novel framework for free-breathing MRI called XD-GRASP, which sorts dynamic data into extra motion-state dimensions using the self-navigation properties of radial imaging and reconstructs the multidimensional dataset using compressed sensing. Methods Radial k-space data are continuously acquired using the golden-angle sampling scheme and sorted into multiple motion-states based on respiratory and/or cardiac motion signals derived directly from the data. The resulting under-sampled multidimensional dataset is reconstructed using a compressed sensing approach that exploits sparsity along the new dynamic dimensions. The performance of XD-GRASP is demonstrated for free-breathing three-dimensional (3D) abdominal imaging, two-dimensional (2D) cardiac cine imaging and 3D dynamic contrast-enhanced (DCE) MRI of the liver, comparing against reconstructions without motion sorting in both healthy volunteers and patients. Results XD-GRASP separates respiratory motion from cardiac motion in cardiac imaging, and respiratory motion from contrast enhancement in liver DCE-MRI, which improves image quality and reduces motion-blurring artifacts. Conclusion XD-GRASP represents a new use of sparsity for motion compensation and a novel way to handle motions in the context of a continuous acquisition paradigm. Instead of removing or correcting motion, extra motion-state dimensions are reconstructed, which improves image quality and also offers new physiological information of potential clinical value. PMID:25809847

  12. Low-dose CT reconstruction with patch based sparsity and similarity constraints

    NASA Astrophysics Data System (ADS)

    Xu, Qiong; Mou, Xuanqin

    2014-03-01

    As the rapid growth of CT based medical application, low-dose CT reconstruction becomes more and more important to human health. Compared with other methods, statistical iterative reconstruction (SIR) usually performs better in lowdose case. However, the reconstructed image quality of SIR highly depends on the prior based regularization due to the insufficient of low-dose data. The frequently-used regularization is developed from pixel based prior, such as the smoothness between adjacent pixels. This kind of pixel based constraint cannot distinguish noise and structures effectively. Recently, patch based methods, such as dictionary learning and non-local means filtering, have outperformed the conventional pixel based methods. Patch is a small area of image, which expresses structural information of image. In this paper, we propose to use patch based constraint to improve the image quality of low-dose CT reconstruction. In the SIR framework, both patch based sparsity and similarity are considered in the regularization term. On one hand, patch based sparsity is addressed by sparse representation and dictionary learning methods, on the other hand, patch based similarity is addressed by non-local means filtering method. We conducted a real data experiment to evaluate the proposed method. The experimental results validate this method can lead to better image with less noise and more detail than other methods in low-count and few-views cases.

  13. Adrenal and nephrogenic hypertension: an image quality study of low tube voltage, low-concentration contrast media combined with adaptive statistical iterative reconstruction.

    PubMed

    Li, Zhen; Li, Qiong; Shen, Yaqi; Li, Anqin; Li, Haojie; Liang, Lili; Hu, Yao; Hu, Xuemei; Hu, Daoyu

    2016-09-01

    The aim of this study was to investigate the effect of using low tube voltage, low-concentration contrast media and adaptive statistical iterative reconstruction (ASIR) for reducing the radiation and iodine contrast doses in adrenal and nephrogenic hypertension patients. A total of 148 hypertension patients who were suspected for adrenal lesions or renal artery stenoses were assigned to two groups and. Group A (n=74) underwent a low tube voltage, low molecular weight dextran enhanced multi-detector row spiral CT (MDCT) (80 kVp, 270 mg I/mL contrast agent), and the raw data were reconstructed with standard filtered back projection (FBP) and ASIR at four different levels of blending (20%, 40%, 60% and 80%, respectively). The control group (Group B, n=74) underwent conventional MDCT (120 kVp, 370 mg I/mL contrast agent), and the data were reconstructed with FBP. The CT values, standard deviation (SD), signal-noise-ratio (SNR) and contrast-noise-ratio (CNR) were measured in the renal vessels, normal adrenal tissue, adrenal neoplasms and subcutaneous fat. The volume CT dose index (CTDIvol ) and dose length product (DLP) were recorded, and an effective dose (ED) was obtained. Two-tailed independent t-tests, paired Chi-square tests and Kappa consistency tests were used for statistical analysis of the data. The CTDIvol , DLP and total iodine dose in group A were decreased by 47.8%, 49.0% and 26.07%, respectively, compared to group B (P<.001). In the qualitative quality analysis, the radiologists rated the 60% ASIR the highest. The mean value of noise (SD) was significantly lower in the 40%, 60% and 80% ASIR-A groups compared with FBP-B for all comparisons. Compared to FBP-B, CNR was significantly higher, with 40%, 60% and 80% ASIR in renal artery stems (P<.05). Compared with FBP-B, a significant increase in the SNR of 40%, 60%, or 80% ASIR was observed in all cases (P<.05). Compared with conventional protocols, the use of low tube voltage, low-concentration contrast media and 60% ASIR provides similar enhancement and image quality with a reduced radiation dose and contrast iodine dose. © 2016 John Wiley & Sons Ltd.

  14. Direct Comparison of Respiration-Correlated Four-Dimensional Magnetic Resonance Imaging Reconstructed Using Concurrent Internal Navigator and External Bellows.

    PubMed

    Li, Guang; Wei, Jie; Olek, Devin; Kadbi, Mo; Tyagi, Neelam; Zakian, Kristen; Mechalakos, James; Deasy, Joseph O; Hunt, Margie

    2017-03-01

    To compare the image quality of amplitude-binned 4-dimensional magnetic resonance imaging (4DMRI) reconstructed using 2 concurrent respiratory (navigator and bellows) waveforms. A prospective, respiratory-correlated 4DMRI scanning program was used to acquire T2-weighted single-breath 4DMRI images with internal navigator and external bellows. After a 10-second training waveform of a surrogate signal, 2-dimensional MRI acquisition was triggered at a level (bin) and anatomic location (slice) until the bin-slice table was completed for 4DMRI reconstruction. The bellows signal was always collected, even when the navigator trigger was used, to retrospectively reconstruct a bellows-rebinned 4DMRI. Ten volunteers participated in this institutional review board-approved 4DMRI study. Four scans were acquired for each subject, including coronal and sagittal scans triggered by either navigator or bellows, and 6 4DMRI images (navigator-triggered, bellows-rebinned, and bellows-triggered) were reconstructed. The simultaneously acquired waveforms and resulting 4DMRI quality were compared using signal correlation, bin/phase shift, and binning motion artifacts. The consecutive bellows-triggered 4DMRI scan was used for indirect comparison. Correlation coefficients between the navigator and bellows signals were found to be patient-specific and inhalation-/exhalation-dependent, ranging from 0.1 to 0.9 because of breathing irregularities (>50% scans) and commonly observed bin/phase shifts (-1.1 ± 0.6 bin) in both 1-dimensional waveforms and diaphragm motion extracted from 4D images. Navigator-triggered 4DMRI contained many fewer binning motion artifacts at the diaphragm than did the bellows-rebinned and bellows-triggered 4DMRI scans. Coronal scans were faster than sagittal scans because of the fewer slices and higher achievable acceleration factors. Navigator-triggered 4DMRI contains substantially fewer binning motion artifacts than bellows-rebinned and bellows-triggered 4DMRI, primarily owing to the deviation of the external from the internal surrogate. The present study compared 2 concurrent surrogates during the same 4DMRI scan and their resulting 4DMRI quality. The navigator-triggered 4DMRI scanning protocol should be preferred to the bellows-based, especially for coronal scans, for clinical respiratory motion simulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Performance of 3DOSEM and MAP algorithms for reconstructing low count SPECT acquisitions.

    PubMed

    Grootjans, Willem; Meeuwis, Antoi P W; Slump, Cornelis H; de Geus-Oei, Lioe-Fee; Gotthardt, Martin; Visser, Eric P

    2016-12-01

    Low count single photon emission computed tomography (SPECT) is becoming more important in view of whole body SPECT and reduction of radiation dose. In this study, we investigated the performance of several 3D ordered subset expectation maximization (3DOSEM) and maximum a posteriori (MAP) algorithms for reconstructing low count SPECT images. Phantom experiments were conducted using the National Electrical Manufacturers Association (NEMA) NU2 image quality (IQ) phantom. The background compartment of the phantom was filled with varying concentrations of pertechnetate and indiumchloride, simulating various clinical imaging conditions. Images were acquired using a hybrid SPECT/CT scanner and reconstructed with 3DOSEM and MAP reconstruction algorithms implemented in Siemens Syngo MI.SPECT (Flash3D) and Hermes Hybrid Recon Oncology (Hyrid Recon 3DOSEM and MAP). Image analysis was performed by calculating the contrast recovery coefficient (CRC),percentage background variability (N%), and contrast-to-noise ratio (CNR), defined as the ratio between CRC and N%. Furthermore, image distortion is characterized by calculating the aspect ratio (AR) of ellipses fitted to the hot spheres. Additionally, the performance of these algorithms to reconstruct clinical images was investigated. Images reconstructed with 3DOSEM algorithms demonstrated superior image quality in terms of contrast and resolution recovery when compared to images reconstructed with filtered-back-projection (FBP), OSEM and 2DOSEM. However, occurrence of correlated noise patterns and image distortions significantly deteriorated the quality of 3DOSEM reconstructed images. The mean AR for the 37, 28, 22, and 17mm spheres was 1.3, 1.3, 1.6, and 1.7 respectively. The mean N% increase in high and low count Flash3D and Hybrid Recon 3DOSEM from 5.9% and 4.0% to 11.1% and 9.0%, respectively. Similarly, the mean CNR decreased in high and low count Flash3D and Hybrid Recon 3DOSEM from 8.7 and 8.8 to 3.6 and 4.2, respectively. Regularization with smoothing priors could suppress these noise patterns at the cost of reduced image contrast. The mean N% was 6.4% and 6.8% for low count QSP and MRP MAP reconstructed images. Alternatively, regularization with an anatomical Bowhser prior resulted in sharp images with high contrast, limited image distortion, and low N% of 8.3% in low count images, although some image artifacts did occur. Analysis of clinical images suggested that the same effects occur in clinical imaging. Image quality of low count SPECT acquisitions reconstructed with modern 3DOSEM algorithms is deteriorated by the occurrence of correlated noise patterns and image distortions. The artifacts observed in the phantom experiments can also occur in clinical imaging. Copyright © 2015. Published by Elsevier GmbH.

  16. Preclinical evaluation of parametric image reconstruction of [18F]FMISO PET: correlation with ex vivo immunohistochemistry

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoyin; Bayer, Christine; Maftei, Constantin-Alin; Astner, Sabrina T.; Vaupel, Peter; Ziegler, Sibylle I.; Shi, Kuangyu

    2014-01-01

    Compared to indirect methods, direct parametric image reconstruction (PIR) has the advantage of high quality and low statistical errors. However, it is not yet clear if this improvement in quality is beneficial for physiological quantification. This study aimed to evaluate direct PIR for the quantification of tumor hypoxia using the hypoxic fraction (HF) assessed from immunohistological data as a physiological reference. Sixteen mice with xenografted human squamous cell carcinomas were scanned with dynamic [18F]FMISO PET. Afterward, tumors were sliced and stained with H&E and the hypoxia marker pimonidazole. The hypoxic signal was segmented using k-means clustering and HF was specified as the ratio of the hypoxic area over the viable tumor area. The parametric Patlak slope images were obtained by indirect voxel-wise modeling on reconstructed images using filtered back projection and ordered-subset expectation maximization (OSEM) and by direct PIR (e.g., parametric-OSEM, POSEM). The mean and maximum Patlak slopes of the tumor area were investigated and compared with HF. POSEM resulted in generally higher correlations between slope and HF among the investigated methods. A strategy for the delineation of the hypoxic tumor volume based on thresholding parametric images at half maximum of the slope is recommended based on the results of this study.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stassi, D.; Ma, H.; Schmidt, T. G., E-mail: taly.gilat-schmidt@marquette.edu

    Purpose: Reconstructing a low-motion cardiac phase is expected to improve coronary artery visualization in coronary computed tomography angiography (CCTA) exams. This study developed an automated algorithm for selecting the optimal cardiac phase for CCTA reconstruction. The algorithm uses prospectively gated, single-beat, multiphase data made possible by wide cone-beam imaging. The proposed algorithm differs from previous approaches because the optimal phase is identified based on vessel image quality (IQ) directly, compared to previous approaches that included motion estimation and interphase processing. Because there is no processing of interphase information, the algorithm can be applied to any sampling of image phases, makingmore » it suited for prospectively gated studies where only a subset of phases are available. Methods: An automated algorithm was developed to select the optimal phase based on quantitative IQ metrics. For each reconstructed slice at each reconstructed phase, an image quality metric was calculated based on measures of circularity and edge strength of through-plane vessels. The image quality metric was aggregated across slices, while a metric of vessel-location consistency was used to ignore slices that did not contain through-plane vessels. The algorithm performance was evaluated using two observer studies. Fourteen single-beat cardiac CT exams (Revolution CT, GE Healthcare, Chalfont St. Giles, UK) reconstructed at 2% intervals were evaluated for best systolic (1), diastolic (6), or systolic and diastolic phases (7) by three readers and the algorithm. Pairwise inter-reader and reader-algorithm agreement was evaluated using the mean absolute difference (MAD) and concordance correlation coefficient (CCC) between the reader and algorithm-selected phases. A reader-consensus best phase was determined and compared to the algorithm selected phase. In cases where the algorithm and consensus best phases differed by more than 2%, IQ was scored by three readers using a five point Likert scale. Results: There was no statistically significant difference between inter-reader and reader-algorithm agreement for either MAD or CCC metrics (p > 0.1). The algorithm phase was within 2% of the consensus phase in 15/21 of cases. The average absolute difference between consensus and algorithm best phases was 2.29% ± 2.47%, with a maximum difference of 8%. Average image quality scores for the algorithm chosen best phase were 4.01 ± 0.65 overall, 3.33 ± 1.27 for right coronary artery (RCA), 4.50 ± 0.35 for left anterior descending (LAD) artery, and 4.50 ± 0.35 for left circumflex artery (LCX). Average image quality scores for the consensus best phase were 4.11 ± 0.54 overall, 3.44 ± 1.03 for RCA, 4.39 ± 0.39 for LAD, and 4.50 ± 0.18 for LCX. There was no statistically significant difference (p > 0.1) between the image quality scores of the algorithm phase and the consensus phase. Conclusions: The proposed algorithm was statistically equivalent to a reader in selecting an optimal cardiac phase for CCTA exams. When reader and algorithm phases differed by >2%, image quality as rated by blinded readers was statistically equivalent. By detecting the optimal phase for CCTA reconstruction, the proposed algorithm is expected to improve coronary artery visualization in CCTA exams.« less

  18. Introduction of a hybrid treatment delivery system used for quality assurance in multi-catheter interstitial brachytherapy

    NASA Astrophysics Data System (ADS)

    Kallis, Karoline; Kreppner, Stephan; Lotter, Michael; Fietkau, Rainer; Strnad, Vratislav; Bert, Christoph

    2018-05-01

    Multi-catheter interstitial brachytherapy (iBT) is a treatment option for breast cancer patients after breast conserving surgery. Typically, only a few additional quality interventions after the first irradiation have been introduced to ensure the planned treatment delivery. Therefore, the purpose of this study is to show the possibilities of an electromagnetic tracking (EMT) system integrated into the afterloader for quality assurance (QA) in high-dose rate (HDR) iBT of patients with breast cancer. The hybrid afterloader system equipped with an electromagnetic sensor was used for all phantom and patient measurements. Phantom measurements were conducted to estimate the quality of different evaluation schemes. After a coherent point drift registration of the EMT traces to the reconstructed catheters based on computed tomograms the dwell positions (DP) were defined. Different fitting and interpolation methods were analyzed for the reconstruction of DPs. All estimated DPs were compared to the DPs defined in treatment planning. Until now, the implant geometry of 20 patients treated with HDR brachytherapy was acquired and explored. Regarding the reconstruction techniques, both fitting and interpolation were able to detect manually introduced shifts and swaps. Nonetheless, interpolation showed superior results (RMSE  =  1.27 mm), whereas fitting seemed to be more stable to distortion and motion. The EMT system proved to be beneficial for QA in brachytherapy and furthermore, clinical feasibility was proven.

  19. Reconstruction-free sensitive wavefront sensor based on continuous position sensitive detectors.

    PubMed

    Godin, Thomas; Fromager, Michael; Cagniot, Emmanuel; Brunel, Marc; Aït-Ameur, Kamel

    2013-12-01

    We propose a new device that is able to perform highly sensitive wavefront measurements based on the use of continuous position sensitive detectors and without resorting to any reconstruction process. We demonstrate experimentally its ability to measure small wavefront distortions through the characterization of pump-induced refractive index changes in laser material. In addition, it is shown using computer-generated holograms that this device can detect phase discontinuities as well as improve the quality of sharp phase variations measurements. Results are compared to reference Shack-Hartmann measurements, and dramatic enhancements are obtained.

  20. Magnetic resonance imaging of the subthalamic nucleus for deep brain stimulation.

    PubMed

    Chandran, Arjun S; Bynevelt, Michael; Lind, Christopher R P

    2016-01-01

    The subthalamic nucleus (STN) is one of the most important stereotactic targets in neurosurgery, and its accurate imaging is crucial. With improving MRI sequences there is impetus for direct targeting of the STN. High-quality, distortion-free images are paramount. Image reconstruction techniques appear to show the greatest promise in balancing the issue of geometrical distortion and STN edge detection. Existing spin echo- and susceptibility-based MRI sequences are compared with new image reconstruction methods. Quantitative susceptibility mapping is the most promising technique for stereotactic imaging of the STN.

  1. Reconstruction design before tumour resection: A new concept of through-and-through cheek defect reconstruction.

    PubMed

    Gong, Zhao-Jian; Ren, Zhen-Hu; Wang, Kai; Tan, Hong-Yu; Zhang, Sheng; Wu, Han-Jiang

    2017-11-01

    To explore a new method of reconstruction of through-and-through cheek defects and to evaluate this method's efficacy and patient prognosis. This retrospective study included 70 patients who underwent reconstruction of through-and-through cheek defects. The surgical approach, design of facial skin incisions, selection and design of flaps, postoperative quality of life and prognosis of patients were recorded and reported. Postoperative quality of life gradually increased over time, and the mean scores of University of Washington Quality of Life (UW-QOL) Questionnaire was more than 80 at 1-year postoperatively. The appearance, oral competence, chewing, swallowing, speech and other oral functions were well recovered in about 90% of patients at 1-year postoperatively. This new idea of reconstruction before tumour resection, brings the effect of plastic and reconstructive surgery to a new height. Copyright © 2017. Published by Elsevier Ltd.

  2. A Simple Application of Compressed Sensing to Further Accelerate Partially Parallel Imaging

    PubMed Central

    Miao, Jun; Guo, Weihong; Narayan, Sreenath; Wilson, David L.

    2012-01-01

    Compressed Sensing (CS) and partially parallel imaging (PPI) enable fast MR imaging by reducing the amount of k-space data required for reconstruction. Past attempts to combine these two have been limited by the incoherent sampling requirement of CS, since PPI routines typically sample on a regular (coherent) grid. Here, we developed a new method, “CS+GRAPPA,” to overcome this limitation. We decomposed sets of equidistant samples into multiple random subsets. Then, we reconstructed each subset using CS, and averaging the results to get a final CS k-space reconstruction. We used both a standard CS, and an edge and joint-sparsity guided CS reconstruction. We tested these intermediate results on both synthetic and real MR phantom data, and performed a human observer experiment to determine the effectiveness of decomposition, and to optimize the number of subsets. We then used these CS reconstructions to calibrate the GRAPPA complex coil weights. In vivo parallel MR brain and heart data sets were used. An objective image quality evaluation metric, Case-PDM, was used to quantify image quality. Coherent aliasing and noise artifacts were significantly reduced using two decompositions. More decompositions further reduced coherent aliasing and noise artifacts but introduced blurring. However, the blurring was effectively minimized using our new edge and joint-sparsity guided CS using two decompositions. Numerical results on parallel data demonstrated that the combined method greatly improved image quality as compared to standard GRAPPA, on average halving Case-PDM scores across a range of sampling rates. The proposed technique allowed the same Case-PDM scores as standard GRAPPA, using about half the number of samples. We conclude that the new method augments GRAPPA by combining it with CS, allowing CS to work even when the k-space sampling pattern is equidistant. PMID:22902065

  3. The association between complications and quality of life after mastectomy and breast reconstruction for breast cancer.

    PubMed

    Browne, John P; Jeevan, Ranjeet; Gulliver-Clarke, Carmel; Pereira, Jerome; Caddy, Christopher M; van der Meulen, Jan H P

    2017-09-15

    Medical treatment for breast cancer is associated with substantial toxicity and patient burden. There is less known about the impact of surgical complications. Understanding this impact could provide important information for patients when they are considering surgical options. Between 2008 and 2009, the UK National Mastectomy and Breast Reconstruction Audit recorded surgical complications for a prospective cohort of 17,844 women treated for breast cancer at 270 hospitals; 6405 of these women were surveyed about their quality of life 18 months after surgery. Breast appearance, emotional well-being, and physical well-being were quantified on 0- to 100-point scales. Linear multiple regression models, controlling for a range of baseline prognostic factors, were used to compare the scores of patients who had complications with the scores of those who did not. The overall complication rate was 10.2%. Complications were associated with little or no impairment in women undergoing mastectomy without reconstruction or with delayed reconstruction. The association was much larger for flap-related complications suffered during immediate reconstruction. The breast-appearance scores (adjusted mean difference, -23.8; 95% confidence interval [CI], -31.0 to -16.6) and emotional well-being scores (adjusted mean difference, -14.0; 95% CI, -22.0 to -6.0) of these patients were much lower than those of any other patient group. Implant-related complications were not associated with a lower quality of life in any surgical group. There is a strong case for prospectively collecting flap-complication rates at the surgeon and surgical unit level and for allowing patients to access these data when they make choices about their breast cancer surgery. Cancer 2017;123:3460-7. © 2017 American Cancer Society. © 2017 American Cancer Society.

  4. Determination of optimal imaging settings for urolithiasis CT using filtered back projection (FBP), statistical iterative reconstruction (IR) and knowledge-based iterative model reconstruction (IMR): a physical human phantom study

    PubMed Central

    Choi, Se Y; Ahn, Seung H; Choi, Jae D; Kim, Jung H; Lee, Byoung-Il; Kim, Jeong-In

    2016-01-01

    Objective: The purpose of this study was to compare CT image quality for evaluating urolithiasis using filtered back projection (FBP), statistical iterative reconstruction (IR) and knowledge-based iterative model reconstruction (IMR) according to various scan parameters and radiation doses. Methods: A 5 × 5 × 5 mm3 uric acid stone was placed in a physical human phantom at the level of the pelvis. 3 tube voltages (120, 100 and 80 kV) and 4 current–time products (100, 70, 30 and 15 mAs) were implemented in 12 scans. Each scan was reconstructed with FBP, statistical IR (Levels 5–7) and knowledge-based IMR (soft-tissue Levels 1–3). The radiation dose, objective image quality and signal-to-noise ratio (SNR) were evaluated, and subjective assessments were performed. Results: The effective doses ranged from 0.095 to 2.621 mSv. Knowledge-based IMR showed better objective image noise and SNR than did FBP and statistical IR. The subjective image noise of FBP was worse than that of statistical IR and knowledge-based IMR. The subjective assessment scores deteriorated after a break point of 100 kV and 30 mAs. Conclusion: At the setting of 100 kV and 30 mAs, the radiation dose can be decreased by approximately 84% while keeping the subjective image assessment. Advances in knowledge: Patients with urolithiasis can be evaluated with ultralow-dose non-enhanced CT using a knowledge-based IMR algorithm at a substantially reduced radiation dose with the imaging quality preserved, thereby minimizing the risks of radiation exposure while providing clinically relevant diagnostic benefits for patients. PMID:26577542

  5. Reduction of effective dose and organ dose to the eye lens in head MDCT using iterative image reconstruction and automatic tube current modulation.

    PubMed

    Ryska, Pavel; Kvasnicka, Tomas; Jandura, Jiri; Klzo, Ludovit; Grepl, Jakub; Zizka, Jan

    2014-06-01

    To compare the effective and eye lens radiation dose in helical MDCT brain examinations using automatic tube current modulation in conjunction with either standard filtered back projection (FBP) technique or iterative reconstruction in image space (IRIS). Of 400 adult brain MDCT examinations, 200 were performed using FBP and 200 using IRIS with the following parameters: tube voltage 120 kV, rotation period 1 second, pitch factor 0.55, automatic tube current modulation in both transverse and longitudinal planes with reference mAs 300 (FBP) and 200 (IRIS). Doses were calculated from CT dose index and dose length product values utilising ImPACT software; the organ dose to the lens was derived from the actual tube current-time product value applied to the lens. Image quality was assessed by two independent readers blinded to the type of image reconstruction technique. The average effective scan dose was 1.47±0.26 mSv (FBP) and 0.98±0.15 mSv (IRIS), respectively (33.3% decrease). The average organ dose to the eye lens decreased from 40.0±3.3 mGy (FBP) to 26.6±2.0 mGy (IRIS, 33.5% decrease). No significant change in diagnostic image quality was noted between IRIS and FBP scans (P=0.17). Iterative reconstruction of cerebral MDCT examinations enables reduction of both effective and organ eye lens dose by one third without signficant loss of image quality.

  6. Four-dimensional respiratory motion-resolved whole heart coronary MR angiography.

    PubMed

    Piccini, Davide; Feng, Li; Bonanno, Gabriele; Coppo, Simone; Yerly, Jérôme; Lim, Ruth P; Schwitter, Juerg; Sodickson, Daniel K; Otazo, Ricardo; Stuber, Matthias

    2017-04-01

    Free-breathing whole-heart coronary MR angiography (MRA) commonly uses navigators to gate respiratory motion, resulting in lengthy and unpredictable acquisition times. Conversely, self-navigation has 100% scan efficiency, but requires motion correction over a broad range of respiratory displacements, which may introduce image artifacts. We propose replacing navigators and self-navigation with a respiratory motion-resolved reconstruction approach. Using a respiratory signal extracted directly from the imaging data, individual signal-readouts are binned according to their respiratory states. The resultant series of undersampled images are reconstructed using an extradimensional golden-angle radial sparse parallel imaging (XD-GRASP) algorithm, which exploits sparsity along the respiratory dimension. Whole-heart coronary MRA was performed in 11 volunteers and four patients with the proposed methodology. Image quality was compared with that obtained with one-dimensional respiratory self-navigation. Respiratory-resolved reconstruction effectively suppressed respiratory motion artifacts. The quality score for XD-GRASP reconstructions was greater than or equal to self-navigation in 80/88 coronary segments, reaching diagnostic quality in 61/88 segments versus 41/88. Coronary sharpness and length were always superior for the respiratory-resolved datasets, reaching statistical significance (P < 0.05) in most cases. XD-GRASP represents an attractive alternative for handling respiratory motion in free-breathing whole heart MRI and provides an effective alternative to self-navigation. Magn Reson Med 77:1473-1484, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Quality of Patient Decisions About Breast Reconstruction After Mastectomy.

    PubMed

    Lee, Clara Nan-Hi; Deal, Allison M; Huh, Ruth; Ubel, Peter Anthony; Liu, Yuen-Jong; Blizard, Lillian; Hunt, Caprice; Pignone, Michael Patrick

    2017-08-01

    Breast reconstruction has the potential to improve a person's body image and quality of life but has important risks. Variations in who undergoes breast reconstruction have led to questions about the quality of patient decisions. To assess the quality of patient decisions about breast reconstruction. A prospective, cross-sectional survey study was conducted from June 27, 2012, to February 28, 2014, at a single, academic, multidisciplinary oncology clinic among women planning to undergo mastectomy for stage I to III invasive ductal or lobular breast cancer, ductal carcinoma in situ, or prophylaxis. Mastectomy only and mastectomy with reconstruction. Knowledge, as ascertained using the Decision Quality Instrument; preference concordance, based on rating and ranking of key attributes; and decision quality, defined as having knowledge of 50% or more and preference concordance. During the 20-month period, 214 patients were eligible, 182 were approached, and 32 missed. We enrolled 145 patients (79.7% enrollment rate), and received surveys from 131 patients (72.0% participation rate). Five participants became ineligible. The final study population was 126 patients. Among the 126 women in the study (mean [SD] age, 53.2 [12.1] years), the mean (SD) knowledge score was 58.5% (16.2%) and did not differ by treatment group (mastectomy only, 55.2% [15.0%]; mastectomy with reconstruction, 60.5% [16.5%]). A total of 82 of 123 participants (66.7%) had a calculated treatment preference of mastectomy only; 39 of these women (47.6%) underwent mastectomy only. A total of 41 participants (32.5%) had a calculated treatment preference of mastectomy with reconstruction; 36 of these women (87.8%) underwent mastectomy with reconstruction. Overall, 52 of 120 participants (43.3%) made a high-quality decision. In multivariable analysis, white race/ethnicity (odds ratio [OR], 2.72; 95% CI, 1.00-7.38; P = .05), having private insurance (OR, 1.61; 95% CI, 1.35-1.93; P < .001), having a high school education or less (vs some college) (OR, 4.84; 95% CI, 1.22-19.21; P = .02), having a college degree (vs some college) (OR, 1.95; 95% CI, 1.53-2.49; P < .001), and not having a malignant neoplasm (eg, BRCA carriers) (OR, 3.13; 95% CI, 1.25-7.85; P = .01) were independently associated with making a high-quality decision. A minority of patients undergoing mastectomy in a single academic center made a high-quality decision about reconstruction. Shared decision making is needed to support decisions about breast reconstruction.

  8. Evaluating the effect of a third-party implementation of resolution recovery on the quality of SPECT bone scan imaging using visual grading regression.

    PubMed

    Hay, Peter D; Smith, Julie; O'Connor, Richard A

    2016-02-01

    The aim of this study was to evaluate the benefits to SPECT bone scan image quality when applying resolution recovery (RR) during image reconstruction using software provided by a third-party supplier. Bone SPECT data from 90 clinical studies were reconstructed retrospectively using software supplied independent of the gamma camera manufacturer. The current clinical datasets contain 120×10 s projections and are reconstructed using an iterative method with a Butterworth postfilter. Five further reconstructions were created with the following characteristics: 10 s projections with a Butterworth postfilter (to assess intraobserver variation); 10 s projections with a Gaussian postfilter with and without RR; and 5 s projections with a Gaussian postfilter with and without RR. Two expert observers were asked to rate image quality on a five-point scale relative to our current clinical reconstruction. Datasets were anonymized and presented in random order. The benefits of RR on image scores were evaluated using ordinal logistic regression (visual grading regression). The application of RR during reconstruction increased the probability of both observers of scoring image quality as better than the current clinical reconstruction even where the dataset contained half the normal counts. Type of reconstruction and observer were both statistically significant variables in the ordinal logistic regression model. Visual grading regression was found to be a useful method for validating the local introduction of technological developments in nuclear medicine imaging. RR, as implemented by the independent software supplier, improved bone SPECT image quality when applied during image reconstruction. In the majority of clinical cases, acquisition times for bone SPECT intended for the purposes of localization can safely be halved (from 10 s projections to 5 s) when RR is applied.

  9. Optimization, evaluation, and comparison of standard algorithms for image reconstruction with the VIP-PET.

    PubMed

    Mikhaylova, E; Kolstein, M; De Lorenzo, G; Chmeissani, M

    2014-07-01

    A novel positron emission tomography (PET) scanner design based on a room-temperature pixelated CdTe solid-state detector is being developed within the framework of the Voxel Imaging PET (VIP) Pathfinder project [1]. The simulation results show a great potential of the VIP to produce high-resolution images even in extremely challenging conditions such as the screening of a human head [2]. With unprecedented high channel density (450 channels/cm 3 ) image reconstruction is a challenge. Therefore optimization is needed to find the best algorithm in order to exploit correctly the promising detector potential. The following reconstruction algorithms are evaluated: 2-D Filtered Backprojection (FBP), Ordered Subset Expectation Maximization (OSEM), List-Mode OSEM (LM-OSEM), and the Origin Ensemble (OE) algorithm. The evaluation is based on the comparison of a true image phantom with a set of reconstructed images obtained by each algorithm. This is achieved by calculation of image quality merit parameters such as the bias, the variance and the mean square error (MSE). A systematic optimization of each algorithm is performed by varying the reconstruction parameters, such as the cutoff frequency of the noise filters and the number of iterations. The region of interest (ROI) analysis of the reconstructed phantom is also performed for each algorithm and the results are compared. Additionally, the performance of the image reconstruction methods is compared by calculating the modulation transfer function (MTF). The reconstruction time is also taken into account to choose the optimal algorithm. The analysis is based on GAMOS [3] simulation including the expected CdTe and electronic specifics.

  10. Reconstructing Face Image from the Thermal Infrared Spectrum to the Visible Spectrum †

    PubMed Central

    Kresnaraman, Brahmastro; Deguchi, Daisuke; Takahashi, Tomokazu; Mekada, Yoshito; Ide, Ichiro; Murase, Hiroshi

    2016-01-01

    During the night or in poorly lit areas, thermal cameras are a better choice instead of normal cameras for security surveillance because they do not rely on illumination. A thermal camera is able to detect a person within its view, but identification from only thermal information is not an easy task. The purpose of this paper is to reconstruct the face image of a person from the thermal spectrum to the visible spectrum. After the reconstruction, further image processing can be employed, including identification/recognition. Concretely, we propose a two-step thermal-to-visible-spectrum reconstruction method based on Canonical Correlation Analysis (CCA). The reconstruction is done by utilizing the relationship between images in both thermal infrared and visible spectra obtained by CCA. The whole image is processed in the first step while the second step processes patches in an image. Results show that the proposed method gives satisfying results with the two-step approach and outperforms comparative methods in both quality and recognition evaluations. PMID:27110781

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tweed, Dylan; Yang, Xiaohu; Li, Shijie

    The ELUCID project aims to build a series of realistic cosmological simulations that reproduce the spatial and mass distributions of the galaxies as observed in the Sloan Digital Sky Survey. This requires powerful reconstruction techniques to create constrained initial conditions (ICs). We test the reconstruction method by applying it to several N -body simulations. We use two medium-resolution simulations, which each produced three additional constrained N -body simulations. We compare the resulting friend-of-friend catalogs by using the particle indexes as tracers, and quantify the quality of the reconstruction by varying the main smoothing parameter. The cross-identification method we use provesmore » to be efficient, and the results suggest that the most massive reconstructed halos are effectively traced from the same Lagrangian regions in the ICs. A preliminary time-dependence analysis indicates that high-mass-end halos converge only at a redshift close to the reconstruction redshift. This suggests that, for earlier snapshots, only collections of progenitors may be effectively cross-identified.« less

  12. Imaging of Arthroplasties: Improved Image Quality and Lesion Detection With Iterative Metal Artifact Reduction, a New CT Metal Artifact Reduction Technique.

    PubMed

    Subhas, Naveen; Polster, Joshua M; Obuchowski, Nancy A; Primak, Andrew N; Dong, Frank F; Herts, Brian R; Iannotti, Joseph P

    2016-08-01

    The purpose of this study was to compare iterative metal artifact reduction (iMAR), a new single-energy metal artifact reduction technique, with filtered back projection (FBP) in terms of attenuation values, qualitative image quality, and streak artifacts near shoulder and hip arthroplasties and observer ability with these techniques to detect pathologic lesions near an arthroplasty in a phantom model. Preoperative and postoperative CT scans of 40 shoulder and 21 hip arthroplasties were reviewed. All postoperative scans were obtained using the same technique (140 kVp, 300 quality reference mAs, 128 × 0.6 mm detector collimation) on one of three CT scanners and reconstructed with FBP and iMAR. The attenuation differences in bones and soft tissues between preoperative and postoperative scans at the same location were compared; image quality and streak artifact for both reconstructions were qualitatively graded by two blinded readers. Observer ability and confidence to detect lesions near an arthroplasty in a phantom model were graded. For both readers, iMAR had more accurate attenuation values (p < 0.001), qualitatively better image quality (p < 0.001), and less streak artifact (p < 0.001) in all locations near arthroplasties compared with FBP. Both readers detected more lesions (p ≤ 0.04) with higher confidence (p ≤ 0.01) with iMAR than with FBP in the phantom model. The iMAR technique provided more accurate attenuation values, better image quality, and less streak artifact near hip and shoulder arthroplasties than FBP; iMAR also increased observer ability and confidence to detect pathologic lesions near arthroplasties in a phantom model.

  13. An iterative reduced field-of-view reconstruction for periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI.

    PubMed

    Lin, Jyh-Miin; Patterson, Andrew J; Chang, Hing-Chiu; Gillard, Jonathan H; Graves, Martin J

    2015-10-01

    To propose a new reduced field-of-view (rFOV) strategy for iterative reconstructions in a clinical environment. Iterative reconstructions can incorporate regularization terms to improve the image quality of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI. However, the large amount of calculations required for full FOV iterative reconstructions has posed a huge computational challenge for clinical usage. By subdividing the entire problem into smaller rFOVs, the iterative reconstruction can be accelerated on a desktop with a single graphic processing unit (GPU). This rFOV strategy divides the iterative reconstruction into blocks, based on the block-diagonal dominant structure. A near real-time reconstruction system was developed for the clinical MR unit, and parallel computing was implemented using the object-oriented model. In addition, the Toeplitz method was implemented on the GPU to reduce the time required for full interpolation. Using the data acquired from the PROPELLER MRI, the reconstructed images were then saved in the digital imaging and communications in medicine format. The proposed rFOV reconstruction reduced the gridding time by 97%, as the total iteration time was 3 s even with multiple processes running. A phantom study showed that the structure similarity index for rFOV reconstruction was statistically superior to conventional density compensation (p < 0.001). In vivo study validated the increased signal-to-noise ratio, which is over four times higher than with density compensation. Image sharpness index was improved using the regularized reconstruction implemented. The rFOV strategy permits near real-time iterative reconstruction to improve the image quality of PROPELLER images. Substantial improvements in image quality metrics were validated in the experiments. The concept of rFOV reconstruction may potentially be applied to other kinds of iterative reconstructions for shortened reconstruction duration.

  14. BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions

    PubMed Central

    2010-01-01

    Background Genome-scale metabolic reconstructions under the Constraint Based Reconstruction and Analysis (COBRA) framework are valuable tools for analyzing the metabolic capabilities of organisms and interpreting experimental data. As the number of such reconstructions and analysis methods increases, there is a greater need for data uniformity and ease of distribution and use. Description We describe BiGG, a knowledgebase of Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions. BiGG integrates several published genome-scale metabolic networks into one resource with standard nomenclature which allows components to be compared across different organisms. BiGG can be used to browse model content, visualize metabolic pathway maps, and export SBML files of the models for further analysis by external software packages. Users may follow links from BiGG to several external databases to obtain additional information on genes, proteins, reactions, metabolites and citations of interest. Conclusions BiGG addresses a need in the systems biology community to have access to high quality curated metabolic models and reconstructions. It is freely available for academic use at http://bigg.ucsd.edu. PMID:20426874

  15. Sparse-view photoacoustic tomography using virtual parallel-projections and spatially adaptive filtering

    NASA Astrophysics Data System (ADS)

    Wang, Yihan; Lu, Tong; Wan, Wenbo; Liu, Lingling; Zhang, Songhe; Li, Jiao; Zhao, Huijuan; Gao, Feng

    2018-02-01

    To fully realize the potential of photoacoustic tomography (PAT) in preclinical and clinical applications, rapid measurements and robust reconstructions are needed. Sparse-view measurements have been adopted effectively to accelerate the data acquisition. However, since the reconstruction from the sparse-view sampling data is challenging, both of the effective measurement and the appropriate reconstruction should be taken into account. In this study, we present an iterative sparse-view PAT reconstruction scheme where a virtual parallel-projection concept matching for the proposed measurement condition is introduced to help to achieve the "compressive sensing" procedure of the reconstruction, and meanwhile the spatially adaptive filtering fully considering the a priori information of the mutually similar blocks existing in natural images is introduced to effectively recover the partial unknown coefficients in the transformed domain. Therefore, the sparse-view PAT images can be reconstructed with higher quality compared with the results obtained by the universal back-projection (UBP) algorithm in the same sparse-view cases. The proposed approach has been validated by simulation experiments, which exhibits desirable performances in image fidelity even from a small number of measuring positions.

  16. Denoised ordered subset statistically penalized algebraic reconstruction technique (DOS-SPART) in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Garrett, John; Li, Yinsheng; Li, Ke; Chen, Guang-Hong

    2017-03-01

    Digital breast tomosynthesis (DBT) is a three dimensional (3D) breast imaging modality in which projections are acquired over a limited angular span around the compressed breast and reconstructed into image slices parallel to the detector. DBT has been shown to help alleviate the breast tissue overlapping issues of two dimensional (2D) mammography. Since the overlapping tissues may simulate cancer masses or obscure true cancers, this improvement is critically important for improved breast cancer screening and diagnosis. In this work, a model-based image reconstruction method is presented to show that spatial resolution in DBT volumes can be maintained while dose is reduced using the presented method when compared to that of a state-of-the-art commercial reconstruction technique. Spatial resolution was measured in phantom images and subjectively in a clinical dataset. Noise characteristics were explored in a cadaver study. In both the quantitative and subjective results the image sharpness was maintained and overall image quality was maintained at reduced doses when the model-based iterative reconstruction was used to reconstruct the volumes.

  17. An extended algebraic reconstruction technique (E-ART) for dual spectral CT.

    PubMed

    Zhao, Yunsong; Zhao, Xing; Zhang, Peng

    2015-03-01

    Compared with standard computed tomography (CT), dual spectral CT (DSCT) has many advantages for object separation, contrast enhancement, artifact reduction, and material composition assessment. But it is generally difficult to reconstruct images from polychromatic projections acquired by DSCT, because of the nonlinear relation between the polychromatic projections and the images to be reconstructed. This paper first models the DSCT reconstruction problem as a nonlinear system problem; and then extend the classic ART method to solve the nonlinear system. One feature of the proposed method is its flexibility. It fits for any scanning configurations commonly used and does not require consistent rays for different X-ray spectra. Another feature of the proposed method is its high degree of parallelism, which means that the method is suitable for acceleration on GPUs (graphic processing units) or other parallel systems. The method is validated with numerical experiments from simulated noise free and noisy data. High quality images are reconstructed with the proposed method from the polychromatic projections of DSCT. The reconstructed images are still satisfactory even if there are certain errors in the estimated X-ray spectra.

  18. Full-color high-definition CGH reconstructing hybrid scenes of physical and virtual objects

    NASA Astrophysics Data System (ADS)

    Tsuchiyama, Yasuhiro; Matsushima, Kyoji; Nakahara, Sumio; Yamaguchi, Masahiro; Sakamoto, Yuji

    2017-03-01

    High-definition CGHs can reconstruct high-quality 3D images that are comparable to that in conventional optical holography. However, it was difficult to exhibit full-color images reconstructed by these high-definition CGHs, because three CGHs for RGB colors and a bulky image combiner were needed to produce full-color images. Recently, we reported a novel technique for full-color reconstruction using RGB color filters, which are similar to that used for liquid-crystal panels. This technique allows us to produce full-color high-definition CGHs composed of a single plate and place them on exhibition. By using the technique, we demonstrate full-color CGHs that reconstruct hybrid scenes comprised of real-existing physical objects and CG-modeled virtual objects in this paper. Here, the wave field of the physical object are obtained from dense multi-viewpoint images by employing the ray-sampling (RS) plane technique. In addition to the technique for full-color capturing and reconstruction of real object fields, the principle and simulation technique for full- color CGHs using RGB color filters are presented.

  19. Three-dimensional focus of attention for iterative cone-beam micro-CT reconstruction

    NASA Astrophysics Data System (ADS)

    Benson, T. M.; Gregor, J.

    2006-09-01

    Three-dimensional iterative reconstruction of high-resolution, circular orbit cone-beam x-ray CT data is often considered impractical due to the demand for vast amounts of computer cycles and associated memory. In this paper, we show that the computational burden can be reduced by limiting the reconstruction to a small, well-defined portion of the image volume. We first discuss using the support region defined by the set of voxels covered by all of the projection views. We then present a data-driven preprocessing technique called focus of attention that heuristically separates both image and projection data into object and background before reconstruction, thereby further reducing the reconstruction region of interest. We present experimental results for both methods based on mouse data and a parallelized implementation of the SIRT algorithm. The computational savings associated with the support region are substantial. However, the results for focus of attention are even more impressive in that only about one quarter of the computer cycles and memory are needed compared with reconstruction of the entire image volume. The image quality is not compromised by either method.

  20. Characteristic image quality of a third generation dual-source MDCT scanner: Noise, resolution, and detectability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Justin, E-mail: justin.solomon@duke.edu; Wilson, Joshua; Samei, Ehsan

    2015-08-15

    Purpose: The purpose of this work was to assess the inherent image quality characteristics of a new multidetector computed tomography system in terms of noise, resolution, and detectability index as a function of image acquisition and reconstruction for a range of clinically relevant settings. Methods: A multisized image quality phantom (37, 30, 23, 18.5, and 12 cm physical diameter) was imaged on a SOMATOM Force scanner (Siemens Medical Solutions) under variable dose, kVp, and tube current modulation settings. Images were reconstructed with filtered back projection (FBP) and with advanced modeled iterative reconstruction (ADMIRE) with iterative strengths of 3, 4, andmore » 5. Image quality was assessed in terms of the noise power spectrum (NPS), task transfer function (TTF), and detectability index for a range of detection tasks (contrasts of approximately 45, 90, 300, −900, and 1000 HU, and 2–20 mm diameter) based on a non-prewhitening matched filter model observer with eye filter. Results: Image noise magnitude decreased with decreasing phantom size, increasing dose, and increasing ADMIRE strength, offering up to 64% noise reduction relative to FBP. Noise texture in terms of the NPS was similar between FBP and ADMIRE (<5% shift in peak frequency). The resolution, based on the TTF, improved with increased ADMIRE strength by an average of 15% in the TTF 50% frequency for ADMIRE-5. The detectability index increased with increasing dose and ADMIRE strength by an average of 55%, 90%, and 163% for ADMIRE 3, 4, and 5, respectively. Assessing the impact of mA modulation for a fixed average dose over the length of the phantom, detectability was up to 49% lower in smaller phantom sections and up to 26% higher in larger phantom sections for the modulated scan compared to a fixed tube current scan. Overall, the detectability exhibited less variability with phantom size for modulated scans compared to fixed tube current scans. Conclusions: Image quality increased with increasing dose and decreasing phantom size. The CT system exhibited nonlinear noise and resolution properties, especially at very low-doses, large phantom sizes, and for low-contrast objects. Objective image quality metrics generally increased with increasing dose and ADMIRE strength, and with decreasing phantom size. The ADMIRE algorithm could offer comparable image quality at reduced doses or improved image quality at the same dose. The use of tube current modulation resulted in more consistent image quality with changing phantom size.« less

  1. Impact of knowledge-based iterative model reconstruction on myocardial late iodine enhancement in computed tomography and comparison with cardiac magnetic resonance.

    PubMed

    Tanabe, Yuki; Kido, Teruhito; Kurata, Akira; Fukuyama, Naoki; Yokoi, Takahiro; Kido, Tomoyuki; Uetani, Teruyoshi; Vembar, Mani; Dhanantwari, Amar; Tokuyasu, Shinichi; Yamashita, Natsumi; Mochizuki, Teruhito

    2017-10-01

    We evaluated the image quality and diagnostic performance of late iodine enhancement computed tomography (LIE-CT) with knowledge-based iterative model reconstruction (IMR) for the detection of myocardial infarction (MI) in comparison with late gadolinium enhancement magnetic resonance imaging (LGE-MRI). The study investigated 35 patients who underwent a comprehensive cardiac CT protocol and LGE-MRI for the assessment of coronary artery disease. The CT protocol consisted of stress dynamic myocardial CT perfusion, coronary CT angiography (CTA) and LIE-CT using 256-slice CT. LIE-CT scans were acquired 5 min after CTA without additional contrast medium and reconstructed with filtered back projection (FBP), a hybrid iterative reconstruction (HIR), and IMR. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were assessed. Sensitivity and specificity of LIE-CT for detecting MI were assessed according to the 16-segment model. Image quality scores, and diagnostic performance were compared among LIE-CT with FBP, HIR and IMR. Among the 35 patients, 139 of 560 segments showed MI in LGE-MRI. On LIE-CT with FBP, HIR, and IMR, the median SNRs were 2.1, 2.9, and 6.1; and the median CNRs were 1.7, 2.2, and 4.7, respectively. Sensitivity and specificity were 56 and 93% for FBP, 62 and 91% for HIR, and 80 and 91% for IMR. LIE-CT with IMR showed the highest image quality and sensitivity (p < 0.05). The use of IMR enables significant improvement of image quality and diagnostic performance of LIE-CT for detecting MI in comparison with FBP and HIR.

  2. Accelerated Optical Projection Tomography Applied to In Vivo Imaging of Zebrafish

    PubMed Central

    Correia, Teresa; Yin, Jun; Ramel, Marie-Christine; Andrews, Natalie; Katan, Matilda; Bugeon, Laurence; Dallman, Margaret J.; McGinty, James; Frankel, Paul; French, Paul M. W.; Arridge, Simon

    2015-01-01

    Optical projection tomography (OPT) provides a non-invasive 3-D imaging modality that can be applied to longitudinal studies of live disease models, including in zebrafish. Current limitations include the requirement of a minimum number of angular projections for reconstruction of reasonable OPT images using filtered back projection (FBP), which is typically several hundred, leading to acquisition times of several minutes. It is highly desirable to decrease the number of required angular projections to decrease both the total acquisition time and the light dose to the sample. This is particularly important to enable longitudinal studies, which involve measurements of the same fish at different time points. In this work, we demonstrate that the use of an iterative algorithm to reconstruct sparsely sampled OPT data sets can provide useful 3-D images with 50 or fewer projections, thereby significantly decreasing the minimum acquisition time and light dose while maintaining image quality. A transgenic zebrafish embryo with fluorescent labelling of the vasculature was imaged to acquire densely sampled (800 projections) and under-sampled data sets of transmitted and fluorescence projection images. The under-sampled OPT data sets were reconstructed using an iterative total variation-based image reconstruction algorithm and compared against FBP reconstructions of the densely sampled data sets. To illustrate the potential for quantitative analysis following rapid OPT data acquisition, a Hessian-based method was applied to automatically segment the reconstructed images to select the vasculature network. Results showed that 3-D images of the zebrafish embryo and its vasculature of sufficient visual quality for quantitative analysis can be reconstructed using the iterative algorithm from only 32 projections—achieving up to 28 times improvement in imaging speed and leading to total acquisition times of a few seconds. PMID:26308086

  3. Dual-energy computed tomography in patients with cutaneous malignant melanoma: Comparison of noise-optimized and traditional virtual monoenergetic imaging.

    PubMed

    Martin, Simon S; Wichmann, Julian L; Weyer, Hendrik; Albrecht, Moritz H; D'Angelo, Tommaso; Leithner, Doris; Lenga, Lukas; Booz, Christian; Scholtz, Jan-Erik; Bodelle, Boris; Vogl, Thomas J; Hammerstingl, Renate

    2017-10-01

    The aim of this study was to investigate the impact of noise-optimized virtual monoenergetic imaging (VMI+) reconstructions on quantitative and qualitative image parameters in patients with cutaneous malignant melanoma at thoracoabdominal dual-energy computed tomography (DECT). Seventy-six patients (48 men; 66.6±13.8years) with metastatic cutaneous malignant melanoma underwent DECT of the thorax and abdomen. Images were post-processed with standard linear blending (M_0.6), traditional virtual monoenergetic (VMI), and VMI+ technique. VMI and VMI+ images were reconstructed in 10-keV intervals from 40 to 100keV. Attenuation measurements were performed in cutaneous melanoma lesions, as well as in regional lymph node, subcutaneous and in-transit metastases to calculate objective signal-to-noise (SNR) and contrast-to-noise (CNR) ratios. Five-point scales were used to evaluate overall image quality and lesion delineation by three radiologists with different levels of experience. Objective indices SNR and CNR were highest at 40-keV VMI+ series (5.6±2.6 and 12.4±3.4), significantly superior to all other reconstructions (all P<0.001). Qualitative image parameters showed highest values for 50-keV and 60-keV VMI+ reconstructions (median 5, respectively; P≤0.019) regarding overall image quality. Moreover, qualitative assessment of lesion delineation peaked in 40-keV VMI+ (median 5) and 50-keV VMI+ (median 4; P=0.055), significantly superior to all other reconstructions (all P<0.001). Low-keV noise-optimized VMI+ reconstructions substantially increase quantitative and qualitative image parameters, as well as subjective lesion delineation compared to standard image reconstruction and traditional VMI in patients with cutaneous malignant melanoma at thoracoabdominal DECT. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Research on assessment and improvement method of remote sensing image reconstruction

    NASA Astrophysics Data System (ADS)

    Sun, Li; Hua, Nian; Yu, Yanbo; Zhao, Zhanping

    2018-01-01

    Remote sensing image quality assessment and improvement is an important part of image processing. Generally, the use of compressive sampling theory in remote sensing imaging system can compress images while sampling which can improve efficiency. A method of two-dimensional principal component analysis (2DPCA) is proposed to reconstruct the remote sensing image to improve the quality of the compressed image in this paper, which contain the useful information of image and can restrain the noise. Then, remote sensing image quality influence factors are analyzed, and the evaluation parameters for quantitative evaluation are introduced. On this basis, the quality of the reconstructed images is evaluated and the different factors influence on the reconstruction is analyzed, providing meaningful referential data for enhancing the quality of remote sensing images. The experiment results show that evaluation results fit human visual feature, and the method proposed have good application value in the field of remote sensing image processing.

  5. Accelerated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam CT image reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qiaofeng; Sawatzky, Alex; Anastasio, Mark A., E-mail: anastasio@wustl.edu

    Purpose: The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT. Methods: Algorithm acceleration was achieved by replacing the original gradient-descent step in the FISTAs by a subproblem that ismore » solved by use of the ordered subset simultaneous algebraic reconstruction technique (OS-SART). Due to the preconditioning matrix adopted in the OS-SART method, two new weighted proximal problems were introduced and corresponding fast gradient projection-type algorithms were developed for solving them. We also provided efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units. Results: The improved rates of convergence of the proposed algorithms were quantified in computer-simulation studies and by use of clinical projection data corresponding to an IGRT study. The accelerated FISTAs were shown to possess dramatically improved convergence properties as compared to the standard FISTAs. For example, the number of iterations to achieve a specified reconstruction error could be reduced by an order of magnitude. Volumetric images reconstructed from clinical data were produced in under 4 min. Conclusions: The FISTA achieves a quadratic convergence rate and can therefore potentially reduce the number of iterations required to produce an image of a specified image quality as compared to first-order methods. We have proposed and investigated accelerated FISTAs for use with two nonsmooth penalty functions that will lead to further reductions in image reconstruction times while preserving image quality. Moreover, with the help of a mixed sparsity-regularization, better preservation of soft-tissue structures can be potentially obtained. The algorithms were systematically evaluated by use of computer-simulated and clinical data sets.« less

  6. Accelerated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam CT image reconstruction.

    PubMed

    Xu, Qiaofeng; Yang, Deshan; Tan, Jun; Sawatzky, Alex; Anastasio, Mark A

    2016-04-01

    The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT. Algorithm acceleration was achieved by replacing the original gradient-descent step in the FISTAs by a subproblem that is solved by use of the ordered subset simultaneous algebraic reconstruction technique (OS-SART). Due to the preconditioning matrix adopted in the OS-SART method, two new weighted proximal problems were introduced and corresponding fast gradient projection-type algorithms were developed for solving them. We also provided efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units. The improved rates of convergence of the proposed algorithms were quantified in computer-simulation studies and by use of clinical projection data corresponding to an IGRT study. The accelerated FISTAs were shown to possess dramatically improved convergence properties as compared to the standard FISTAs. For example, the number of iterations to achieve a specified reconstruction error could be reduced by an order of magnitude. Volumetric images reconstructed from clinical data were produced in under 4 min. The FISTA achieves a quadratic convergence rate and can therefore potentially reduce the number of iterations required to produce an image of a specified image quality as compared to first-order methods. We have proposed and investigated accelerated FISTAs for use with two nonsmooth penalty functions that will lead to further reductions in image reconstruction times while preserving image quality. Moreover, with the help of a mixed sparsity-regularization, better preservation of soft-tissue structures can be potentially obtained. The algorithms were systematically evaluated by use of computer-simulated and clinical data sets.

  7. Accelerated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam CT image reconstruction

    PubMed Central

    Xu, Qiaofeng; Yang, Deshan; Tan, Jun; Sawatzky, Alex; Anastasio, Mark A.

    2016-01-01

    Purpose: The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT. Methods: Algorithm acceleration was achieved by replacing the original gradient-descent step in the FISTAs by a subproblem that is solved by use of the ordered subset simultaneous algebraic reconstruction technique (OS-SART). Due to the preconditioning matrix adopted in the OS-SART method, two new weighted proximal problems were introduced and corresponding fast gradient projection-type algorithms were developed for solving them. We also provided efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units. Results: The improved rates of convergence of the proposed algorithms were quantified in computer-simulation studies and by use of clinical projection data corresponding to an IGRT study. The accelerated FISTAs were shown to possess dramatically improved convergence properties as compared to the standard FISTAs. For example, the number of iterations to achieve a specified reconstruction error could be reduced by an order of magnitude. Volumetric images reconstructed from clinical data were produced in under 4 min. Conclusions: The FISTA achieves a quadratic convergence rate and can therefore potentially reduce the number of iterations required to produce an image of a specified image quality as compared to first-order methods. We have proposed and investigated accelerated FISTAs for use with two nonsmooth penalty functions that will lead to further reductions in image reconstruction times while preserving image quality. Moreover, with the help of a mixed sparsity-regularization, better preservation of soft-tissue structures can be potentially obtained. The algorithms were systematically evaluated by use of computer-simulated and clinical data sets. PMID:27036582

  8. Study of CT image texture using deep learning techniques

    NASA Astrophysics Data System (ADS)

    Dutta, Sandeep; Fan, Jiahua; Chevalier, David

    2018-03-01

    For CT imaging, reduction of radiation dose while improving or maintaining image quality (IQ) is currently a very active research and development topic. Iterative Reconstruction (IR) approaches have been suggested to be able to offer better IQ to dose ratio compared to the conventional Filtered Back Projection (FBP) reconstruction. However, it has been widely reported that often CT image texture from IR is different compared to that from FBP. Researchers have proposed different figure of metrics to quantitate the texture from different reconstruction methods. But there is still a lack of practical and robust method in the field for texture description. This work applied deep learning method for CT image texture study. Multiple dose scans of a 20cm diameter cylindrical water phantom was performed on Revolution CT scanner (GE Healthcare, Waukesha) and the images were reconstructed with FBP and four different IR reconstruction settings. The training images generated were randomly allotted (80:20) to a training and validation set. An independent test set of 256-512 images/class were collected with the same scan and reconstruction settings. Multiple deep learning (DL) networks with Convolution, RELU activation, max-pooling, fully-connected, global average pooling and softmax activation layers were investigated. Impact of different image patch size for training was investigated. Original pixel data as well as normalized image data were evaluated. DL models were reliably able to classify CT image texture with accuracy up to 99%. Results show that the deep learning techniques suggest that CT IR techniques may help lower the radiation dose compared to FBP.

  9. Computed tomography coronary stent imaging with iterative reconstruction: a trade-off study between medium kernel and sharp kernel.

    PubMed

    Zhou, Qijing; Jiang, Biao; Dong, Fei; Huang, Peiyu; Liu, Hongtao; Zhang, Minming

    2014-01-01

    To evaluate the improvement of iterative reconstruction in image space (IRIS) technique in computed tomographic (CT) coronary stent imaging with sharp kernel, and to make a trade-off analysis. Fifty-six patients with 105 stents were examined by 128-slice dual-source CT coronary angiography (CTCA). Images were reconstructed using standard filtered back projection (FBP) and IRIS with both medium kernel and sharp kernel applied. Image noise and the stent diameter were investigated. Image noise was measured both in background vessel and in-stent lumen as objective image evaluation. Image noise score and stent score were performed as subjective image evaluation. The CTCA images reconstructed with IRIS were associated with significant noise reduction compared to that of CTCA images reconstructed using FBP technique in both of background vessel and in-stent lumen (the background noise decreased by approximately 25.4% ± 8.2% in medium kernel (P

  10. Effectiveness of Adaptive Statistical Iterative Reconstruction for 64-Slice Dual-Energy Computed Tomography Pulmonary Angiography in Patients With a Reduced Iodine Load: Comparison With Standard Computed Tomography Pulmonary Angiography.

    PubMed

    Lee, Ji Won; Lee, Geewon; Lee, Nam Kyung; Moon, Jin Il; Ju, Yun Hye; Suh, Young Ju; Jeong, Yeon Joo

    2016-01-01

    The aim of the study was to assess the effectiveness of the adaptive statistical iterative reconstruction (ASIR) for dual-energy computed tomography pulmonary angiography (DE-CTPA) with a reduced iodine load. One hundred forty patients referred for chest CT were randomly divided into a DE-CTPA group with a reduced iodine load or a standard CTPA group. Quantitative and qualitative image qualities of virtual monochromatic spectral (VMS) images with filtered back projection (VMS-FBP) and those with 50% ASIR (VMS-ASIR) in the DE-CTPA group were compared. Image qualities of VMS-ASIR images in the DE-CTPA group and ASIR images in the standard CTPA group were also compared. All quantitative and qualitative indices, except attenuation value of pulmonary artery in the VMS-ASIR subgroup, were superior to those in the VMS-FBP subgroup (all P < 0.001). Noise and signal-to-noise ratio of VMS-ASIR images were superior to those of ASIR images in the standard CTPA group (P < 0.001 and P = 0.007, respectively). Regarding qualitative indices, noise was significantly lower in VMS-ASIR images of the DE-CTPA group than in ASIR images of the standard CTPA group (P = 0.001). The ASIR technique tends to improve the image quality of VMS imaging. Dual-energy computed tomography pulmonary angiography with ASIR can reduce contrast medium volume and produce images of comparable quality with those of standard CTPA.

  11. Accelerated 1 H MRSI using randomly undersampled spiral-based k-space trajectories.

    PubMed

    Chatnuntawech, Itthi; Gagoski, Borjan; Bilgic, Berkin; Cauley, Stephen F; Setsompop, Kawin; Adalsteinsson, Elfar

    2014-07-30

    To develop and evaluate the performance of an acquisition and reconstruction method for accelerated MR spectroscopic imaging (MRSI) through undersampling of spiral trajectories. A randomly undersampled spiral acquisition and sensitivity encoding (SENSE) with total variation (TV) regularization, random SENSE+TV, is developed and evaluated on single-slice numerical phantom, in vivo single-slice MRSI, and in vivo three-dimensional (3D)-MRSI at 3 Tesla. Random SENSE+TV was compared with five alternative methods for accelerated MRSI. For the in vivo single-slice MRSI, random SENSE+TV yields up to 2.7 and 2 times reduction in root-mean-square error (RMSE) of reconstructed N-acetyl aspartate (NAA), creatine, and choline maps, compared with the denoised fully sampled and uniformly undersampled SENSE+TV methods with the same acquisition time, respectively. For the in vivo 3D-MRSI, random SENSE+TV yields up to 1.6 times reduction in RMSE, compared with uniform SENSE+TV. Furthermore, by using random SENSE+TV, we have demonstrated on the in vivo single-slice and 3D-MRSI that acceleration factors of 4.5 and 4 are achievable with the same quality as the fully sampled data, as measured by RMSE of reconstructed NAA map, respectively. With the same scan time, random SENSE+TV yields lower RMSEs of metabolite maps than other methods evaluated. Random SENSE+TV achieves up to 4.5-fold acceleration with comparable data quality as the fully sampled acquisition. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  12. The Impact of Facial Aesthetic and Reconstructive Surgeries on Patients' Quality of Life.

    PubMed

    Yıldız, Tülin; Selimen, Deniz

    2015-12-01

    The aim of the present prospective and descriptive study was to assess the impact of facial aesthetic and reconstructive surgeries on quality of life. Ninety-one patients, of whom 43 had aesthetic surgery and 48 had reconstructive surgery, were analysed. The data were collected using the patient information form, body cathexis scale, and short form (SF)-36 quality of life scale. There were significant differences between before and after the surgery in both groups in terms of body cathexis scale and quality of life (p < 0.05 for both). It was observed that problems regarding the body image perception were encountered more, and the quality of life was poorer in both aesthetic and reconstructive surgery patients before the surgery. However, the problems were decreased, and the quality of life was enhanced after the surgery. Among the parameters of SF-36 quality of life scale, particularly the mean scores of social functioning, physical role functioning, emotional role functioning, mental health, and vitality/fatigue were found low before the surgery, whereas the mean scores were significantly improved after the surgery. The results revealed that facial aesthetic and reconstructive surgical interventions favourably affected the body image perception and self-esteem and that positive reflections in emotional, social, and mental aspects were effective in enhancing self-confidence and quality of life of the individual.

  13. Compressed sensing of hyperspectral images based on scrambled block Hadamard ensemble

    NASA Astrophysics Data System (ADS)

    Wang, Li; Feng, Yan

    2016-11-01

    A fast measurement matrix based on scrambled block Hadamard ensemble for compressed sensing (CS) of hyperspectral images (HSI) is investigated. The proposed measurement matrix offers several attractive features. First, the proposed measurement matrix possesses Gaussian behavior, which illustrates that the matrix is universal and requires a near-optimal number of samples for exact reconstruction. In addition, it could be easily implemented in the optical domain due to its integer-valued elements. More importantly, the measurement matrix only needs small memory for storage in the sampling process. Experimental results on HSIs reveal that the reconstruction performance of the proposed measurement matrix is comparable or better than Gaussian matrix and Bernoulli matrix using different reconstruction algorithms while consuming less computational time. The proposed matrix could be used in CS of HSI, which would save the storage memory on board, improve the sampling efficiency, and ameliorate the reconstruction quality.

  14. Evaluation of Aesthetic and Quality-of-Life Results after Immediate Breast Reconstruction with Definitive Form-Stable Anatomical Implants.

    PubMed

    Kuroda, Flavia; Urban, Cicero; Zucca-Matthes, Gustavo; de Oliveira, Vilmar Marques; Arana, Gabriel Hubner; Iera, Marco; Rietjens, Mario; Santos, Gabriela; Spagnol, Caroline; de Lima, Rubens Silveira

    2016-02-01

    Although there are many reports on different techniques in breast reconstruction, there are few data regarding immediate breast reconstruction with definitive form-stable anatomical implants in terms of aesthetics and quality-of-life outcomes. Ninety-four patients underwent mastectomy with immediate breast reconstruction using anatomical implants and contralateral symmetrization. Aesthetic results were evaluated by three different methods: the patient's self-report, the assessment of four independent specialists (two breast surgeons and two plastic surgeons from different institutions), and the BCCT.core software. Quality of life was evaluated by means of the BREAST-Q instrument. Average age ± SD was 52.1 ± 11.6 years. Most of patients had medium size breasts and T1 tumors. Patients had evaluated their aesthetic results better than did software and specialists. There was no significant difference in the comparison between software and specialist's evaluation. Multifactorial analysis showed that age older than 70 years and radiotherapy were significant risk factors for poor aesthetic outcomes after immediate breast reconstruction with implants. Considering quality of life, most of the patients were satisfied with their outcome and psychosocial and sexual well-being. Immediate breast reconstruction with implants and contralateral symmetrization had a positive impact on the quality of life and showed satisfactory outcomes when evaluated by subjective and objective methods.

  15. Flexible mini gamma camera reconstructions of extended sources using step and shoot and list mode.

    PubMed

    Gardiazabal, José; Matthies, Philipp; Vogel, Jakob; Frisch, Benjamin; Navab, Nassir; Ziegler, Sibylle; Lasser, Tobias

    2016-12-01

    Hand- and robot-guided mini gamma cameras have been introduced for the acquisition of single-photon emission computed tomography (SPECT) images. Less cumbersome than whole-body scanners, they allow for a fast acquisition of the radioactivity distribution, for example, to differentiate cancerous from hormonally hyperactive lesions inside the thyroid. This work compares acquisition protocols and reconstruction algorithms in an attempt to identify the most suitable approach for fast acquisition and efficient image reconstruction, suitable for localization of extended sources, such as lesions inside the thyroid. Our setup consists of a mini gamma camera with precise tracking information provided by a robotic arm, which also provides reproducible positioning for our experiments. Based on a realistic phantom of the thyroid including hot and cold nodules as well as background radioactivity, the authors compare "step and shoot" (SAS) and continuous data (CD) acquisition protocols in combination with two different statistical reconstruction methods: maximum-likelihood expectation-maximization (ML-EM) for time-integrated count values and list-mode expectation-maximization (LM-EM) for individually detected gamma rays. In addition, the authors simulate lower uptake values by statistically subsampling the experimental data in order to study the behavior of their approach without changing other aspects of the acquired data. All compared methods yield suitable results, resolving the hot nodules and the cold nodule from the background. However, the CD acquisition is twice as fast as the SAS acquisition, while yielding better coverage of the thyroid phantom, resulting in qualitatively more accurate reconstructions of the isthmus between the lobes. For CD acquisitions, the LM-EM reconstruction method is preferable, as it yields comparable image quality to ML-EM at significantly higher speeds, on average by an order of magnitude. This work identifies CD acquisition protocols combined with LM-EM reconstruction as a prime candidate for the wider introduction of SPECT imaging with flexible mini gamma cameras in the clinical practice.

  16. Study on possibilities of reconstructive--plastic surgery in patients with stage III breast cancer.

    PubMed

    Ismagilov, A K; Khasanov, R S; Navrusov, S N; Beknazarov, Z P

    2011-01-01

    This population based study aimed to use reconstructive-plastic surgery with autologous tissue as a treatment of patients with stage III breast cancer. We identified women (374) diagnosed with stage III breast cancer between 2000 and 2009 years. We compared radical operations with and without a plastic step, where 29 patients underwent the surgery in combination with an immediate radical resection with LD-flap replacement, mastectomy concurrently to TRAM-flap reconstruction in 103 patients. We examined the immediate and remote results of therapy. In data analysis, there were higher summarized indices of physical and mental health rates in patients who underwent the reconstruction plastic surgery compared to patients with mastectomy. All treated women 5 -year survival rate was 77.4+3.6 %, 63.5+3.2% and 40.1+3.1 % in stages IIIa, IIIb, IIIc respectively. In the control group, the rates were 78.6+3.4 %, 64.0+3.3 %, and 39.3+3.1 % (p<0.05) respectively. Our results showed that women with stage III breast cancer who underwent reconstructive-plastic surgeries had a chance to improve their quality of life, and did not increase the frequency, neither did reduce 5 year survival (Tab. 2, Fig. 4, Ref. 19). Full Text in free PDF www.bmj.sk.

  17. Fast and low-dose computed laminography using compressive sensing based technique

    NASA Astrophysics Data System (ADS)

    Abbas, Sajid; Park, Miran; Cho, Seungryong

    2015-03-01

    Computed laminography (CL) is well known for inspecting microstructures in the materials, weldments and soldering defects in high density packed components or multilayer printed circuit boards. The overload problem on x-ray tube and gross failure of the radio-sensitive electronics devices during a scan are among important issues in CL which needs to be addressed. The sparse-view CL can be one of the viable option to overcome such issues. In this work a numerical aluminum welding phantom was simulated to collect sparsely sampled projection data at only 40 views using a conventional CL scanning scheme i.e. oblique scan. A compressive-sensing inspired total-variation (TV) minimization algorithm was utilized to reconstruct the images. It is found that the images reconstructed using sparse view data are visually comparable with the images reconstructed using full scan data set i.e. at 360 views on regular interval. We have quantitatively confirmed that tiny structures such as copper and tungsten slags, and copper flakes in the reconstructed images from sparsely sampled data are comparable with the corresponding structure present in the fully sampled data case. A blurring effect can be seen near the edges of few pores at the bottom of the reconstructed images from sparsely sampled data, despite the overall image quality is reasonable for fast and low-dose NDT.

  18. A comparison of free autologous breast reconstruction with and without the use of laser-assisted indocyanine green angiography: a cost-effectiveness analysis.

    PubMed

    Chatterjee, Abhishek; Krishnan, Naveen M; Van Vliet, Michael M; Powell, Stephen G; Rosen, Joseph M; Ridgway, Emily B

    2013-05-01

    Laser-assisted indocyanine green angiography is a U.S. Food and Drug Administration-approved technology used to assess tissue viability and perfusion. Its use in plastic and reconstructive surgery to assess flap perfusion in autologous breast reconstruction is relatively new. There have been no previous studies evaluating the cost-effectiveness of this new technology compared with the current practice of clinical judgment in evaluating tissue perfusion and viability in free autologous breast reconstruction in patients who have undergone mastectomy. A comprehensive literature review was performed to identify the complication rate of the most common complications with and without laser-assisted indocyanine green angiography in free autologous breast reconstruction after mastectomy. These probabilities were combined with Medicare Current Procedural Terminology provider reimbursement codes (cost) and utility estimates for common complications from a survey of 10 plastic surgeons to fit into a decision model to evaluate the cost-effectiveness of laser-assisted indocyanine green angiography. The decision model revealed a baseline cost difference of $773.66 and a 0.22 difference in the quality-adjusted life-years, yielding an incremental cost-utility ratio of $3516.64 per quality-adjusted life year favoring laser-assisted indocyanine green angiography. Sensitivity analysis showed that using laser-assisted indocyanine green angiography was more cost-effective when the complication rate without using laser-assisted indocyanine green angiography (clinical judgment alone) was 4 percent or higher. The authors' study demonstrates that laser-assisted indocyanine green angiography is a cost-effective technology under the most stringent acceptable thresholds when used in immediate free autologous breast reconstruction.

  19. Iterative reconstruction in single source dual-energy CT pulmonary angiography: Is it sufficient to achieve a radiation dose as low as state-of-the-art single-energy CTPA?

    PubMed

    Ohana, M; Labani, A; Jeung, M Y; El Ghannudi, S; Gaertner, S; Roy, C

    2015-11-01

    Dual-energy (DE) brings numerous significant improvements in pulmonary CT angiography (CTPA), but is associated with a 15-50% increase in radiation dose that prevents its widespread use. We hypothesize that thanks to iterative reconstruction (IR), single source DE-CTPA acquired at the same radiation dose that a single-energy examination will maintain an equivalent quantitative and qualitative image quality, allowing a more extensive use of the DE technique in the clinical routine. Fifty patients (58% men, mean age 64.8yo ± 16.2, mean BMI 25.6 ± 4.5) were prospectively included and underwent single source DE-CTPA with acquisition parameters (275 mA fixed tube current, 50% IR) tweaked to target a radiation dose similar to a 100 kV single-energy CTPA (SE-CTPA), i.e., a DLP of 260 mGy cm. Thirty patients (47% men, 64.4yo ± 18.6, BMI 26.2 ± 4.6) from a previous prospective study on DE-CTPA (375 mA fixed tube current, reconstruction with filtered-back projection) were used as the reference group. Thirty-five consecutive patients (57% men, 65.8yo ± 15.5, BMI 25.7 ± 4.4) who underwent SE-CTPA on the same scanner (automated tube current modulation, 50% IR) served as a comparison. Subjective image quality was scored by two radiologists using a 5-level scale and compared with a Kruskal-Wallis nonparametric test. Density measurements on the 65 keV monochromatic reconstructions were used to calculate signal-to-noise (SNR) and contrast-to-noise (CNR) ratios that were compared using a Student's t test. Correlations between image quality, SNR, CNR and BMI were sought using a Pearson's test. p<0.05 was considered significant. All examinations were of diagnostic quality (score ≥ 3). In comparison with the reference DE-CTPA and the SE-CTPA protocols, the DE-IR group exhibited a non-inferior image quality (p=0.95 and p=0.21, respectively) and a significantly lower mean image noise (p<0.01 and p=0.01) thus slightly improving the SNR (p=0.09 and p=0.47) and the CNR (p=0.12 and p=0.51). There was a strong negative relationship between BMI and SNR/CNR (ρ=-0.59 and -0.55 respectively), but only a moderate negative relationship between BMI and image quality (ρ=-0.27). With iterative reconstruction, objective and subjective image quality of single source DE-CTPA are preserved even though the radiation dose is lowered to that of a single-energy examination, overcoming a major limitation of the DE technique and allowing a widespread use in the clinical routine. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Synthetic Augmented Suture Anchor Reconstruction for a Complete Traumatic Distal Triceps Tendon Rupture in a Male Professional Bodybuilder with Postoperative Biomechanical Assessment

    PubMed Central

    Nikolaidou, Maria-Elissavet; Banke, Ingo J.; Laios, Thomas; Petsogiannis, Konstantinos; Mourikis, Anastasios

    2014-01-01

    Bodybuilding is a high-risk sport for distal triceps tendon ruptures. Management, especially in high-demanding athletes, is operative with suture anchor refixation technique being frequently used. However, the rate of rerupture is high due to underlying poor tendon quality. Thus, additional augmentation could be useful. This case report presents a reconstruction technique for a complete traumatic distal triceps tendon rupture in a bodybuilder with postoperative biomechanical assessment. A 28-year-old male professional bodybuilder was treated with a synthetic augmented suture anchor reconstruction for a complete triceps tendon rupture of his right dominant elbow. Postoperative biomechanical assessment included isokinetic elbow strength and endurance testing by using multiple angular velocities to simulate the “off-season” and “precompetition” phases of training. Eighteen months postoperatively and after full return to training, the biomechanical assessment indicated that the strength and endurance of the operated elbow joint was fully restored with even higher ratings compared to the contralateral healthy arm. The described reconstruction technique can be considered as an advisable option in high-performance athletes with underlying poor tendon quality due to high tensile strength and lack of donor site morbidity, thus enabling them to restore preinjury status and achieve safe return to sports. PMID:24711944

  1. Enabling comparative modeling of closely related genomes: Example genus Brucella

    DOE PAGES

    Faria, José P.; Edirisinghe, Janaka N.; Davis, James J.; ...

    2014-03-08

    For many scientific applications, it is highly desirable to be able to compare metabolic models of closely related genomes. In this study, we attempt to raise awareness to the fact that taking annotated genomes from public repositories and using them for metabolic model reconstructions is far from being trivial due to annotation inconsistencies. We are proposing a protocol for comparative analysis of metabolic models on closely related genomes, using fifteen strains of genus Brucella, which contains pathogens of both humans and livestock. This study lead to the identification and subsequent correction of inconsistent annotations in the SEED database, as wellmore » as the identification of 31 biochemical reactions that are common to Brucella, which are not originally identified by automated metabolic reconstructions. We are currently implementing this protocol for improving automated annotations within the SEED database and these improvements have been propagated into PATRIC, Model-SEED, KBase and RAST. This method is an enabling step for the future creation of consistent annotation systems and high-quality model reconstructions that will support in predicting accurate phenotypes such as pathogenicity, media requirements or type of respiration.« less

  2. Enabling comparative modeling of closely related genomes: Example genus Brucella

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faria, José P.; Edirisinghe, Janaka N.; Davis, James J.

    For many scientific applications, it is highly desirable to be able to compare metabolic models of closely related genomes. In this study, we attempt to raise awareness to the fact that taking annotated genomes from public repositories and using them for metabolic model reconstructions is far from being trivial due to annotation inconsistencies. We are proposing a protocol for comparative analysis of metabolic models on closely related genomes, using fifteen strains of genus Brucella, which contains pathogens of both humans and livestock. This study lead to the identification and subsequent correction of inconsistent annotations in the SEED database, as wellmore » as the identification of 31 biochemical reactions that are common to Brucella, which are not originally identified by automated metabolic reconstructions. We are currently implementing this protocol for improving automated annotations within the SEED database and these improvements have been propagated into PATRIC, Model-SEED, KBase and RAST. This method is an enabling step for the future creation of consistent annotation systems and high-quality model reconstructions that will support in predicting accurate phenotypes such as pathogenicity, media requirements or type of respiration.« less

  3. Reconstruction of large diaphyseal bone defect by simplified bone transport over nail technique: A 7-case series.

    PubMed

    Ferchaud, F; Rony, L; Ducellier, F; Cronier, P; Steiger, V; Hubert, L

    2017-11-01

    Reconstruction of large diaphyseal bone defect is complex and the complications rate is high. This study aimed to assess a simplified technique of segmental bone transport by monorail external fixator over an intramedullary nail.A prospective study included 7 patients: 2 femoral and 5 tibial defects. Mean age was 31years (range: 16-61years). Mean follow-up was 62 months (range: 46-84months). Defects were post-traumatic, with a mean length of 7.2cm (range: 4 to 9.5cm). For 3 patients, reconstruction followed primary failure. In 4 cases, a covering flap was necessary. Transport used an external fixator guided by an intramedullary nail, at a rate of 1mm per day. One pin was implanted on either side of the distraction zone. The external fixator was removed 1 month after bone contact at the docking site. Mean bone transport time was 11 weeks (range: 7-15 weeks). Mean external fixation time was 5.1months (range: 3.5 to 8months). Full weight-bearing was allowed 5.7months (range: 3.5-13months) after initiation of transport. In one patient, a pin had to be repositioned. In 3 patients, the transported segment re-ascended after external fixatorablation, requiring repeat external fixation and resumption of transport. There was just 1 case of superficial pin infection. Reconstruction quality was considered "excellent" on the Paley-Marr criteria in 6 cases. The present technique provided excellent reconstruction quality in 6 of the 7 cases. External fixation time was shorter and resumption of weight-bearing earlier than with other reconstruction techniques, notably including bone autograft, vascularized bone graft or the induced membrane technique. Nailing facilitated control of limb axis and length. The complications rate was 50%, comparable to other techniques. This study raises the question of systematic internal fixation of the docking site, to avoid any mobilization of the transported segment. The bone quality, axial control and rapidity shown by the present technique make it well-adapted to reconstruction of diaphyseal bone defect. Four-case series. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scaduto, DA; Hu, Y-H; Zhao, W

    Purpose: Spatial resolution in digital breast tomosynthesis (DBT) is affected by inherent/binned detector resolution, oblique entry of x-rays, and focal spot size/motion; the limited angular range further limits spatial resolution in the depth-direction. While DBT is being widely adopted clinically, imaging performance metrics and quality control protocols have not been standardized. AAPM Task Group 245 on Tomosynthesis Quality Control has been formed to address this deficiency. Methods: Methods of measuring spatial resolution are evaluated using two prototype quality control phantoms for DBT. Spatial resolution in the detector plane is measured in projection and reconstruction domains using edge-spread function (ESF), point-spreadmore » function (PSF) and modulation transfer function (MTF). Spatial resolution in the depth-direction and effective slice thickness are measured in the reconstruction domain using slice sensitivity profile (SSP) and artifact spread function (ASF). An oversampled PSF in the depth-direction is measured using a 50 µm angulated tungsten wire, from which the MTF is computed. Object-dependent PSF is derived and compared with ASF. Sensitivity of these measurements to phantom positioning, imaging conditions and reconstruction algorithms is evaluated. Results are compared from systems of varying acquisition geometry (9–25 projections over 15–60°). Dependence of measurements on feature size is investigated. Results: Measurements of spatial resolution using PSF and LSF are shown to depend on feature size; depth-direction spatial resolution measurements are shown to similarly depend on feature size for ASF, though deconvolution with an object function removes feature size-dependence. A slanted wire may be used to measure oversampled PSFs, from which MTFs may be computed for both in-plane and depth-direction resolution. Conclusion: Spatial resolution measured using PSF is object-independent with sufficiently small object; MTF is object-independent. Depth-direction spatial resolution may be measured directly using MTF or indirectly using ASF or SSP as surrogate measurements. While MTF is object-independent, it is invalid for nonlinear reconstructions.« less

  5. Statistical reconstruction for cone-beam CT with a post-artifact-correction noise model: application to high-quality head imaging

    NASA Astrophysics Data System (ADS)

    Dang, H.; Stayman, J. W.; Sisniega, A.; Xu, J.; Zbijewski, W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.

    2015-08-01

    Non-contrast CT reliably detects fresh blood in the brain and is the current front-line imaging modality for intracranial hemorrhage such as that occurring in acute traumatic brain injury (contrast ~40-80 HU, size  >  1 mm). We are developing flat-panel detector (FPD) cone-beam CT (CBCT) to facilitate such diagnosis in a low-cost, mobile platform suitable for point-of-care deployment. Such a system may offer benefits in the ICU, urgent care/concussion clinic, ambulance, and sports and military theatres. However, current FPD-CBCT systems face significant challenges that confound low-contrast, soft-tissue imaging. Artifact correction can overcome major sources of bias in FPD-CBCT but imparts noise amplification in filtered backprojection (FBP). Model-based reconstruction improves soft-tissue image quality compared to FBP by leveraging a high-fidelity forward model and image regularization. In this work, we develop a novel penalized weighted least-squares (PWLS) image reconstruction method with a noise model that includes accurate modeling of the noise characteristics associated with the two dominant artifact corrections (scatter and beam-hardening) in CBCT and utilizes modified weights to compensate for noise amplification imparted by each correction. Experiments included real data acquired on a FPD-CBCT test-bench and an anthropomorphic head phantom emulating intra-parenchymal hemorrhage. The proposed PWLS method demonstrated superior noise-resolution tradeoffs in comparison to FBP and PWLS with conventional weights (viz. at matched 0.50 mm spatial resolution, CNR = 11.9 compared to CNR = 5.6 and CNR = 9.9, respectively) and substantially reduced image noise especially in challenging regions such as skull base. The results support the hypothesis that with high-fidelity artifact correction and statistical reconstruction using an accurate post-artifact-correction noise model, FPD-CBCT can achieve image quality allowing reliable detection of intracranial hemorrhage.

  6. Sparsity-promoting orthogonal dictionary updating for image reconstruction from highly undersampled magnetic resonance data.

    PubMed

    Huang, Jinhong; Guo, Li; Feng, Qianjin; Chen, Wufan; Feng, Yanqiu

    2015-07-21

    Image reconstruction from undersampled k-space data accelerates magnetic resonance imaging (MRI) by exploiting image sparseness in certain transform domains. Employing image patch representation over a learned dictionary has the advantage of being adaptive to local image structures and thus can better sparsify images than using fixed transforms (e.g. wavelets and total variations). Dictionary learning methods have recently been introduced to MRI reconstruction, and these methods demonstrate significantly reduced reconstruction errors compared to sparse MRI reconstruction using fixed transforms. However, the synthesis sparse coding problem in dictionary learning is NP-hard and computationally expensive. In this paper, we present a novel sparsity-promoting orthogonal dictionary updating method for efficient image reconstruction from highly undersampled MRI data. The orthogonality imposed on the learned dictionary enables the minimization problem in the reconstruction to be solved by an efficient optimization algorithm which alternately updates representation coefficients, orthogonal dictionary, and missing k-space data. Moreover, both sparsity level and sparse representation contribution using updated dictionaries gradually increase during iterations to recover more details, assuming the progressively improved quality of the dictionary. Simulation and real data experimental results both demonstrate that the proposed method is approximately 10 to 100 times faster than the K-SVD-based dictionary learning MRI method and simultaneously improves reconstruction accuracy.

  7. Influence of the Pixel Sizes of Reference Computed Tomography on Single-photon Emission Computed Tomography Image Reconstruction Using Conjugate-gradient Algorithm.

    PubMed

    Okuda, Kyohei; Sakimoto, Shota; Fujii, Susumu; Ida, Tomonobu; Moriyama, Shigeru

    The frame-of-reference using computed-tomography (CT) coordinate system on single-photon emission computed tomography (SPECT) reconstruction is one of the advanced characteristics of the xSPECT reconstruction system. The aim of this study was to reveal the influence of the high-resolution frame-of-reference on the xSPECT reconstruction. 99m Tc line-source phantom and National Electrical Manufacturers Association (NEMA) image quality phantom were scanned using the SPECT/CT system. xSPECT reconstructions were performed with the reference CT images in different sizes of the display field-of-view (DFOV) and pixel. The pixel sizes of the reconstructed xSPECT images were close to 2.4 mm, which is acquired as originally projection data, even if the reference CT resolution was varied. The full width at half maximum (FWHM) of the line-source, absolute recovery coefficient, and background variability of image quality phantom were independent on the sizes of DFOV in the reference CT images. The results of this study revealed that the image quality of the reconstructed xSPECT images is not influenced by the resolution of frame-of-reference on SPECT reconstruction.

  8. SU-F-J-74: High Z Geometric Integrity and Beam Hardening Artifact Assessment Using a Retrospective Metal Artifact Reduction (MAR) Reconstruction Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, K; DiCostanzo, D; Gupta, N

    Purpose: To test the efficacy of a retrospective metal artifact reduction (MAR) reconstruction algorithm for a commercial computed tomography (CT) scanner for radiation therapy purposes. Methods: High Z geometric integrity and artifact reduction analysis was performed with three phantoms using General Electric’s (GE) Discovery CT. The three phantoms included: a Computerized Imaging Reference Systems (CIRS) electron density phantom (Model 062) with a 6.5 mm diameter titanium rod insert, a custom spine phantom using Synthes Spine hardware submerged in water, and a dental phantom with various high Z fillings submerged in water. Each phantom was reconstructed using MAR and compared againstmore » the original scan. Furthermore, each scenario was tested using standard and extended Hounsfield Unit (HU) ranges. High Z geometric integrity was performed using the CIRS phantom, while the artifact reduction was performed using all three phantoms. Results: Geometric integrity of the 6.5 mm diameter rod was slightly overestimated for non-MAR scans for both standard and extended HU. With MAR reconstruction, the rod was underestimated for both standard and extended HU. For artifact reduction, the mean and standard deviation was compared in a volume of interest (VOI) in the surrounding material (water and water equivalent material, ∼0HU). Overall, the mean value of the VOI was closer to 0 HU for the MAR reconstruction compared to the non-MAR scan for most phantoms. Additionally, the standard deviations for all phantoms were greatly reduced using MAR reconstruction. Conclusion: GE’s MAR reconstruction algorithm improves image quality with the presence of high Z material with minimal degradation of its geometric integrity. High Z delineation can be carried out with proper contouring techniques. The effects of beam hardening artifacts are greatly reduced with MAR reconstruction. Tissue corrections due to these artifacts can be eliminated for simple high Z geometries and greatly reduced for more complex geometries.« less

  9. Radiation Therapy Versus No Radiation Therapy to the Neo-breast Following Skin-Sparing Mastectomy and Immediate Autologous Free Flap Reconstruction for Breast Cancer: Patient-Reported and Surgical Outcomes at 1 Year-A Mastectomy Reconstruction Outcomes Consortium (MROC) Substudy.

    PubMed

    Cooke, Andrew L; Diaz-Abele, Julian; Hayakawa, Tom; Buchel, Ed; Dalke, Kimberly; Lambert, Pascal

    2017-09-01

    To determine whether adjuvant radiation therapy (RT) is associated with adverse patient-reported outcomes and surgical complications 1 year after skin-sparing mastectomy and immediate autologous free flap reconstruction for breast cancer. We compared 24 domains of patient-reported outcome measures 1 year after autologous reconstruction between patients who received adjuvant RT and those who did not. A total of 125 patients who underwent surgery between 2012 and 2015 at our institution were included from the Mastectomy Reconstruction Outcomes Consortium study database. Adjusted multivariate models were created incorporating RT technical data, age, cancer stage, estrogen receptor, chemotherapy, breast size, body mass index, and income to determine whether RT was associated with outcomes. At 1 year after surgery, European Organisation for Research and Treatment of Cancer (EORTC) Breast Cancer-Specific Quality of Life Questionnaire breast symptoms were significantly greater in 64 patients who received RT (8-point difference on 100-point ordinal scale, P<.0001) versus 61 who did not receive RT in univariate and multivariate models. EORTC arm symptoms (20-point difference on 100-point ordinal scale, P=.0200) differed on univariate analysis but not on multivariate analysis. All other outcomes-including Numerical Pain Rating Scale, BREAST-Q (Post-operative Reconstruction Module), Patient-Report Outcomes Measurement Information System Profile 29, McGill Pain Questionnaire-Short Form (MPQ-SF) score, Generalized Anxiety Disorder Scale, and Patient Health Questionnaire-were not statistically different between groups. Surgical complications were uncommon and did not differ by treatment. RT to the neo-breast compared with no RT following immediate autologous free flap reconstruction for breast cancer is well tolerated at 1 year following surgery despite patients undergoing RT also having a higher cancer stage and more intensive surgical and systemic treatment. Neo-breast symptoms are more common in patients receiving RT by the EORTC Breast Cancer-Specific Quality of Life Questionnaire but not by the BREAST-Q. Patient-reported results at 1 year after surgery suggest RT following immediate autologous free flap breast reconstruction is well tolerated. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Estimation of relative effectiveness of phylogenetic programs by machine learning.

    PubMed

    Krivozubov, Mikhail; Goebels, Florian; Spirin, Sergei

    2014-04-01

    Reconstruction of phylogeny of a protein family from a sequence alignment can produce results of different quality. Our goal is to predict the quality of phylogeny reconstruction basing on features that can be extracted from the input alignment. We used Fitch-Margoliash (FM) method of phylogeny reconstruction and random forest as a predictor. For training and testing the predictor, alignments of orthologous series (OS) were used, for which the result of phylogeny reconstruction can be evaluated by comparison with trees of corresponding organisms. Our results show that the quality of phylogeny reconstruction can be predicted with more than 80% precision. Also, we tried to predict which phylogeny reconstruction method, FM or UPGMA, is better for a particular alignment. With the used set of features, among alignments for which the obtained predictor predicts a better performance of UPGMA, 56% really give a better result with UPGMA. Taking into account that in our testing set only for 34% alignments UPGMA performs better, this result shows a principal possibility to predict the better phylogeny reconstruction method basing on features of a sequence alignment.

  11. Integration of prior CT into CBCT reconstruction for improved image quality via reconstruction of difference: first patient studies

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Gang, Grace J.; Lee, Junghoon; Wong, John; Stayman, J. Webster

    2017-03-01

    Purpose: There are many clinical situations where diagnostic CT is used for an initial diagnosis or treatment planning, followed by one or more CBCT scans that are part of an image-guided intervention. Because the high-quality diagnostic CT scan is a rich source of patient-specific anatomical knowledge, this provides an opportunity to incorporate the prior CT image into subsequent CBCT reconstruction for improved image quality. We propose a penalized-likelihood method called reconstruction of difference (RoD), to directly reconstruct differences between the CBCT scan and the CT prior. In this work, we demonstrate the efficacy of RoD with clinical patient datasets. Methods: We introduce a data processing workflow using the RoD framework to reconstruct anatomical changes between the prior CT and current CBCT. This workflow includes processing steps to account for non-anatomical differences between the two scans including 1) scatter correction for CBCT datasets due to increased scatter fractions in CBCT data; 2) histogram matching for attenuation variations between CT and CBCT; and 3) registration for different patient positioning. CBCT projection data and CT planning volumes for two radiotherapy patients - one abdominal study and one head-and-neck study - were investigated. Results: In comparisons between the proposed RoD framework and more traditional FDK and penalized-likelihood reconstructions, we find a significant improvement in image quality when prior CT information is incorporated into the reconstruction. RoD is able to provide additional low-contrast details while correctly incorporating actual physical changes in patient anatomy. Conclusions: The proposed framework provides an opportunity to either improve image quality or relax data fidelity constraints for CBCT imaging when prior CT studies of the same patient are available. Possible clinical targets include CBCT image-guided radiotherapy and CBCT image-guided surgeries.

  12. Comparison of the health-related quality of life in patients with narrow gastric tube and whole stomach reconstruction after oncologic esophagectomy: a prospective randomized study.

    PubMed

    Zhang, M; Wu, Q C; Li, Q; Jiang, Y J; Zhang, C; Chen, D

    2013-01-01

    To compare the health-related quality of life in patients with narrow gastric tube and whole stomach reconstructions after oncologic esophagectomy. In a prospective randomized single-center study from 2007 to 2008, 104 patients underwent esophagectomy for cancer. To assess health-related quality of life, the questionnaire (European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 30 and the Oesophagus-Specific Quality of Life Questionnaire 18) was administered at 3 weeks, 6 months, 1 year, and 2 years after surgery. The perioperative complication rate was 26.9% in narrow gastric tube group and 48.1% in whole stomach group (P = 0.31). At the time of 3 weeks after surgery, the reflux and dyspnea scores were higher in whole stomach group than in narrow gastric tube group, which meant that the patients in whole stomach group suffered more severe problem. At the time of 6 months and 1 year after surgery, the reflux scores were lower in narrow gastric tube group than in whole stomach group, which revealed that there were less problems of reflux in the patients of narrow gastric tube group; meanwhile, the score of physical function scale in narrow gastric tube group was higher conversely, which suggested that the patients gain a better status in physical function. Nausea and vomiting is the only notable symptom that was worse in whole stomach group at the time of 2 years after surgery, which suggested that patients in whole stomach group suffered more severe nausea and vomiting. Narrow gastric tube reconstruction may be a good alternative choice for patients undergoing oncologic esophagectomy in view of better health-related quality of life after the surgery.

  13. Metal artifact reduction software used with abdominopelvic dual-energy CT of patients with metal hip prostheses: assessment of image quality and clinical feasibility.

    PubMed

    Han, Seung Chol; Chung, Yong Eun; Lee, Young Han; Park, Kwan Kyu; Kim, Myeong Jin; Kim, Ki Whang

    2014-10-01

    The objective of our study was to determine the feasibility of using Metal Artifact Reduction (MAR) software for abdominopelvic dual-energy CT in patients with metal hip prostheses. This retrospective study included 33 patients (male-female ratio, 19:14; mean age, 63.7 years) who received total hip replacements and 20 patients who did not have metal prostheses as the control group. All of the patients underwent dual-energy CT. The quality of the images reconstructed using the MAR algorithm and of those reconstructed using the standard reconstruction was evaluated in terms of the visibility of the bladder wall, pelvic sidewall, rectal shelf, and bone-prosthesis interface and the overall diagnostic image quality with a 4-point scale. The mean and SD attenuation values in Hounsfield units were measured in the bladder, pelvic sidewall, and rectal shelf. For validation of the MAR interpolation algorithm, pelvis phantoms with small bladder "lesions" and metal hip prostheses were made, and images of the phantoms both with and without MAR reconstruction were evaluated. Image quality was significantly better with MAR reconstruction than without at all sites except the rectal shelf, where the image quality either had not changed or had worsened after MAR reconstruction. The mean attenuation value was changed after MAR reconstruction to its original expected value at the pelvic sidewall (p < 0.001) and inside the bladder (p < 0.001). The SD attenuation value was significantly decreased after MAR reconstruction at the pelvic sidewall (p = 0.019) but did not show significant differences at the bladder (p = 0.173) or rectal shelf (p = 0.478). In the phantom study, all lesions obscured by metal artifacts on the standard reconstruction images were visualized after MAR reconstruction; however, new artifacts had developed in other parts of the MAR reconstruction images. The use of MAR software with dual-energy CT decreases metal artifacts and increases diagnostic confidence in the assessment of the pelvic cavity but also introduces new artifacts that can obscure pelvic structures.

  14. Impact of Adaptive Statistical Iterative Reconstruction (ASIR) on radiation dose and image quality in aortic dissection studies: a qualitative and quantitative analysis.

    PubMed

    Cornfeld, Daniel; Israel, Gary; Detroy, Ezra; Bokhari, Jamal; Mojibian, Hamid

    2011-03-01

    The purpose of the study was to quantify the radiation dose reduction achieved when imaging the aorta using Adaptive Statistical Iterative Reconstruction (ASIR) and to determine if this has an effect on image quality. We retrospectively reviewed 31 CT angiography examinations of the thoracic and abdominal aorta performed with ASIR and 32 consecutive similar examinations performed without ASIR. Volume CT dose index (CTDI(vol)), dose-length product (DLP), aortic enhancement at multiple levels, aorta-to-muscle contrast-to-noise ratio at multiple levels, and subjective image quality were compared between the two groups. The mean CTDI(vol) and DLP were significantly lower for the studies performed with ASIR versus studies without ASIR (15.6 vs 21.5 mGy, with an average difference of 5.8 mGy [95% CI 2.3-9.4 mGy] and 818 vs 1075 mGy × cm with an average difference of -257 mGy × cm [54-460 mGy × cm], respectively). Aortic enhancement, aortic signal-to-noise ratio, and aortic to muscle contrast-to-noise ratio were not different between the two groups. Subjectively, one reviewer preferred the non-ASIR images and one found the images equivalent. Both reviewers believed the images were of diagnostic quality. A 29% decrease in CTDI(vol) and a 20% decrease in DLP were obtained in scans with ASIR compared with scans without ASIR, without a quantitative loss of image quality.

  15. dPIRPLE: a joint estimation framework for deformable registration and penalized-likelihood CT image reconstruction using prior images

    NASA Astrophysics Data System (ADS)

    Dang, H.; Wang, A. S.; Sussman, Marc S.; Siewerdsen, J. H.; Stayman, J. W.

    2014-09-01

    Sequential imaging studies are conducted in many clinical scenarios. Prior images from previous studies contain a great deal of patient-specific anatomical information and can be used in conjunction with subsequent imaging acquisitions to maintain image quality while enabling radiation dose reduction (e.g., through sparse angular sampling, reduction in fluence, etc). However, patient motion between images in such sequences results in misregistration between the prior image and current anatomy. Existing prior-image-based approaches often include only a simple rigid registration step that can be insufficient for capturing complex anatomical motion, introducing detrimental effects in subsequent image reconstruction. In this work, we propose a joint framework that estimates the 3D deformation between an unregistered prior image and the current anatomy (based on a subsequent data acquisition) and reconstructs the current anatomical image using a model-based reconstruction approach that includes regularization based on the deformed prior image. This framework is referred to as deformable prior image registration, penalized-likelihood estimation (dPIRPLE). Central to this framework is the inclusion of a 3D B-spline-based free-form-deformation model into the joint registration-reconstruction objective function. The proposed framework is solved using a maximization strategy whereby alternating updates to the registration parameters and image estimates are applied allowing for improvements in both the registration and reconstruction throughout the optimization process. Cadaver experiments were conducted on a cone-beam CT testbench emulating a lung nodule surveillance scenario. Superior reconstruction accuracy and image quality were demonstrated using the dPIRPLE algorithm as compared to more traditional reconstruction methods including filtered backprojection, penalized-likelihood estimation (PLE), prior image penalized-likelihood estimation (PIPLE) without registration, and prior image penalized-likelihood estimation with rigid registration of a prior image (PIRPLE) over a wide range of sampling sparsity and exposure levels.

  16. Region-of-interest image reconstruction in circular cone-beam microCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Seungryong; Bian, Junguo; Pelizzari, Charles A.

    2007-12-15

    Cone-beam microcomputed tomography (microCT) is one of the most popular choices for small animal imaging which is becoming an important tool for studying animal models with transplanted diseases. Region-of-interest (ROI) imaging techniques in CT, which can reconstruct an ROI image from the projection data set of the ROI, can be used not only for reducing imaging-radiation exposure to the subject and scatters to the detector but also for potentially increasing spatial resolution of the reconstructed images. Increasing spatial resolution in microCT images can facilitate improved accuracy in many assessment tasks. A method proposed previously for increasing CT image spatial resolutionmore » entails the exploitation of the geometric magnification in cone-beam CT. Due to finite detector size, however, this method can lead to data truncation for a large geometric magnification. The Feldkamp-Davis-Kress (FDK) algorithm yields images with artifacts when truncated data are used, whereas the recently developed backprojection filtration (BPF) algorithm is capable of reconstructing ROI images without truncation artifacts from truncated cone-beam data. We apply the BPF algorithm to reconstructing ROI images from truncated data of three different objects acquired by our circular cone-beam microCT system. Reconstructed images by use of the FDK and BPF algorithms from both truncated and nontruncated cone-beam data are compared. The results of the experimental studies demonstrate that, from certain truncated data, the BPF algorithm can reconstruct ROI images with quality comparable to that reconstructed from nontruncated data. In contrast, the FDK algorithm yields ROI images with truncation artifacts. Therefore, an implication of the studies is that, when truncated data are acquired with a configuration of a large geometric magnification, the BPF algorithm can be used for effective enhancement of the spatial resolution of a ROI image.« less

  17. Federal Health Coverage Mandates and Health Care Utilization: The Case of the Women's Health and Cancer Rights Act and Use of Breast Reconstruction Surgery.

    PubMed

    Xie, Yang; Tang, Yuexin; Wehby, George L

    2015-08-01

    Utilization of breast reconstruction services remains low among women who underwent mastectomy despite the improvement in quality of life associated with this treatment. The objective of this study is to identify the effect of the Women's Health and Cancer Rights Act (WHCRA)-an understudied ongoing federal law that mandated insurance coverage of breast reconstruction following mastectomy beginning in 1999-on use of reconstructive surgery after mastectomy. We use a difference-in-differences (DD) approach to identify the change in breast reconstruction utilization induced by WHCRA by comparing the pre- and post-policy changes in utilization between states that did not have existing laws mandating coverage before the WHCRA (treatment group) and those that had such state laws (control group). The data are from the Surveillance, Epidemiology, and End Results program. The main sample includes 15,737 female patients who were under the age of 64 and underwent mastectomy within 4 months of diagnosis of early stage breast cancer during 1998 and 2000. Based on the DD model, the odds of using reconstruction services in the states without preexisting laws increased after the WHCRA by 31% in 1999 and 36% in 2000 (compared with 1998 before the WHCRA). These effects are masked in a simple pre/post model for change in reconstruction across all states. Additional analyses through 2007 indicate that the WHCRA had long-term effects on utilization. Furthermore, analyses by state indicate that most states in the treatment group experienced a significance increase in utilization. The use of breast reconstruction after mastectomy significantly increased after the WHCRA. At a minimum, our estimates may be considered the lower bound of the real policy effect.

  18. Integrating multisensor satellite data merging and image reconstruction in support of machine learning for better water quality management.

    PubMed

    Chang, Ni-Bin; Bai, Kaixu; Chen, Chi-Farn

    2017-10-01

    Monitoring water quality changes in lakes, reservoirs, estuaries, and coastal waters is critical in response to the needs for sustainable development. This study develops a remote sensing-based multiscale modeling system by integrating multi-sensor satellite data merging and image reconstruction algorithms in support of feature extraction with machine learning leading to automate continuous water quality monitoring in environmentally sensitive regions. This new Earth observation platform, termed "cross-mission data merging and image reconstruction with machine learning" (CDMIM), is capable of merging multiple satellite imageries to provide daily water quality monitoring through a series of image processing, enhancement, reconstruction, and data mining/machine learning techniques. Two existing key algorithms, including Spectral Information Adaptation and Synthesis Scheme (SIASS) and SMart Information Reconstruction (SMIR), are highlighted to support feature extraction and content-based mapping. Whereas SIASS can support various data merging efforts to merge images collected from cross-mission satellite sensors, SMIR can overcome data gaps by reconstructing the information of value-missing pixels due to impacts such as cloud obstruction. Practical implementation of CDMIM was assessed by predicting the water quality over seasons in terms of the concentrations of nutrients and chlorophyll-a, as well as water clarity in Lake Nicaragua, providing synergistic efforts to better monitor the aquatic environment and offer insightful lake watershed management strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Communication system analysis for manned space flight

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1977-01-01

    One- and two-dimensional adaptive delta modulator (ADM) algorithms are discussed and compared. Results are shown for bit rates of two bits/pixel, one bit/pixel and 0.5 bits/pixel. Pictures showing the difference between the encoded-decoded pictures and the original pictures are presented. The effect of channel errors on the reconstructed picture is illustrated. A two-dimensional ADM using interframe encoding is also presented. This system operates at the rate of two bits/pixel and produces excellent quality pictures when there is little motion. The effect of large amounts of motion on the reconstructed picture is described.

  20. Novel edge treatment method for improving the transmission reconstruction quality in Tomographic Gamma Scanning.

    PubMed

    Han, Miaomiao; Guo, Zhirong; Liu, Haifeng; Li, Qinghua

    2018-05-01

    Tomographic Gamma Scanning (TGS) is a method used for the nondestructive assay of radioactive wastes. In TGS, the actual irregular edge voxels are regarded as regular cubic voxels in the traditional treatment method. In this study, in order to improve the performance of TGS, a novel edge treatment method is proposed that considers the actual shapes of these voxels. The two different edge voxel treatment methods were compared by computing the pixel-level relative errors and normalized mean square errors (NMSEs) between the reconstructed transmission images and the ideal images. Both methods were coupled with two different interative algorithms comprising Algebraic Reconstruction Technique (ART) with a non-negativity constraint and Maximum Likelihood Expectation Maximization (MLEM). The results demonstrated that the traditional method for edge voxel treatment can introduce significant error and that the real irregular edge voxel treatment method can improve the performance of TGS by obtaining better transmission reconstruction images. With the real irregular edge voxel treatment method, MLEM algorithm and ART algorithm can be comparable when assaying homogenous matrices, but MLEM algorithm is superior to ART algorithm when assaying heterogeneous matrices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Joint Chroma Subsampling and Distortion-Minimization-Based Luma Modification for RGB Color Images With Application.

    PubMed

    Chung, Kuo-Liang; Hsu, Tsu-Chun; Huang, Chi-Chao

    2017-10-01

    In this paper, we propose a novel and effective hybrid method, which joins the conventional chroma subsampling and the distortion-minimization-based luma modification together, to improve the quality of the reconstructed RGB full-color image. Assume the input RGB full-color image has been transformed to a YUV image, prior to compression. For each 2×2 UV block, one 4:2:0 subsampling is applied to determine the one subsampled U and V components, U s and V s . Based on U s , V s , and the corresponding 2×2 original RGB block, a main theorem is provided to determine the ideally modified 2×2 luma block in constant time such that the color peak signal-to-noise ratio (CPSNR) quality distortion between the original 2×2 RGB block and the reconstructed 2×2 RGB block can be minimized in a globally optimal sense. Furthermore, the proposed hybrid method and the delivered theorem are adjusted to tackle the digital time delay integration images and the Bayer mosaic images whose Bayer CFA structure has been widely used in modern commercial digital cameras. Based on the IMAX, Kodak, and screen content test image sets, the experimental results demonstrate that in high efficiency video coding, the proposed hybrid method has substantial quality improvement, in terms of the CPSNR quality, visual effect, CPSNR-bitrate trade-off, and Bjøntegaard delta PSNR performance, of the reconstructed RGB images when compared with existing chroma subsampling schemes.

  2. Parameter Search Algorithms for Microwave Radar-Based Breast Imaging: Focal Quality Metrics as Fitness Functions.

    PubMed

    O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin

    2017-12-06

    Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.

  3. A maximum entropy reconstruction technique for tomographic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Bilsky, A. V.; Lozhkin, V. A.; Markovich, D. M.; Tokarev, M. P.

    2013-04-01

    This paper studies a novel approach for reducing tomographic PIV computational complexity. The proposed approach is an algebraic reconstruction technique, termed MENT (maximum entropy). This technique computes the three-dimensional light intensity distribution several times faster than SMART, using at least ten times less memory. Additionally, the reconstruction quality remains nearly the same as with SMART. This paper presents the theoretical computation performance comparison for MENT, SMART and MART, followed by validation using synthetic particle images. Both the theoretical assessment and validation of synthetic images demonstrate significant computational time reduction. The data processing accuracy of MENT was compared to that of SMART in a slot jet experiment. A comparison of the average velocity profiles shows a high level of agreement between the results obtained with MENT and those obtained with SMART.

  4. Dense Matching Comparison Between Census and a Convolutional Neural Network Algorithm for Plant Reconstruction

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Tian, J.; d'Angelo, P.; Reinartz, P.

    2018-05-01

    3D reconstruction of plants is hard to implement, as the complex leaf distribution highly increases the difficulty level in dense matching. Semi-Global Matching has been successfully applied to recover the depth information of a scene, but may perform variably when different matching cost algorithms are used. In this paper two matching cost computation algorithms, Census transform and an algorithm using a convolutional neural network, are tested for plant reconstruction based on Semi-Global Matching. High resolution close-range photogrammetric images from a handheld camera are used for the experiment. The disparity maps generated based on the two selected matching cost methods are comparable with acceptable quality, which shows the good performance of Census and the potential of neural networks to improve the dense matching.

  5. A 3D ultrasound scanner: real time filtering and rendering algorithms.

    PubMed

    Cifarelli, D; Ruggiero, C; Brusacà, M; Mazzarella, M

    1997-01-01

    The work described here has been carried out within a collaborative project between DIST and ESAOTE BIOMEDICA aiming to set up a new ultrasonic scanner performing 3D reconstruction. A system is being set up to process and display 3D ultrasonic data in a fast, economical and user friendly way to help the physician during diagnosis. A comparison is presented among several algorithms for digital filtering, data segmentation and rendering for real time, PC based, three-dimensional reconstruction from B-mode ultrasonic biomedical images. Several algorithms for digital filtering have been compared as relates to processing time and to final image quality. Three-dimensional data segmentation techniques and rendering has been carried out with special reference to user friendly features for foreseeable applications and reconstruction speed.

  6. Contribution of cardiac-induced brain pulsation to the noise of the diffusion tensor in Turboprop diffusion tensor imaging (DTI).

    PubMed

    Gui, Minzhi; Tamhane, Ashish A; Arfanakis, Konstantinos

    2008-05-01

    To assess the effects of cardiac-induced brain pulsation on the noise of the diffusion tensor in Turboprop (a form of periodically rotated overlapping parallel lines with enhanced reconstruction [PROPELLER] imaging) diffusion tensor imaging (DTI). A total of six healthy human subjects were imaged with cardiac-gated as well as nongated Turboprop DTI. Gated and nongated Turboprop DTI datasets were also simulated using actual data acquired exclusively during the diastolic or systolic period of the cardiac cycle. The total variance of the diffusion tensor (TVDT) was measured and compared between acquisitions. The TVDT near the ventricles was significantly reduced in cardiac-gated compared to nongated Turboprop DTI acquisitions. Furthermore, the effects of brain pulsation were reduced, but not eliminated, when increasing the amount of data collected. Finally, data corrupted by cardiac-induced pulsation were not consistently detected by the step of the conventional Turboprop reconstruction algorithm that evaluates the quality of data in different blades. Thus, the inherent quality weighting of the conventional Turboprop reconstruction algorithm was unable to compensate for the increased noise in the diffusion tensor due to brain pulsation. Cardiac-induced brain pulsation increases the TVDT in Turboprop DTI. Use of cardiac gating to limit data acquisition to the diastolic period of the cardiac cycle reduces the TVDT at the expense of imaging time. (c) 2008 Wiley-Liss, Inc.

  7. Ultralow-dose computed tomography imaging for surgery of midfacial and orbital fractures using ASIR and MBIR.

    PubMed

    Widmann, G; Dalla Torre, D; Hoermann, R; Schullian, P; Gassner, E M; Bale, R; Puelacher, W

    2015-04-01

    The influence of dose reductions on diagnostic quality using a series of high-resolution ultralow-dose computed tomography (CT) scans for computer-assisted planning and surgery including the most recent iterative reconstruction algorithms was evaluated and compared with the fracture detectability of a standard cranial emergency protocol. A human cadaver head including the mandible was artificially prepared with midfacial and orbital fractures and scanned using a 64-multislice CT scanner. The CT dose index volume (CTDIvol) and effective doses were calculated using application software. Noise was evaluated as the standard deviation in Hounsfield units within an identical region of interest in the posterior fossa. Diagnostic quality was assessed by consensus reading of a craniomaxillofacial surgeon and radiologist. Compared with the emergency protocol at CTDIvol 35.3 mGy and effective dose 3.6 mSv, low-dose protocols down to CTDIvol 1.0 mGy and 0.1 mSv (97% dose reduction) may be sufficient for the diagnosis of dislocated craniofacial fractures. Non-dislocated fractures may be detected at CTDIvol 2.6 mGy and 0.3 mSv (93% dose reduction). Adaptive statistical iterative reconstruction (ASIR) 50 and 100 reduced average noise by 30% and 56%, and model-based iterative reconstruction (MBIR) by 93%. However, the detection rate of fractures could not be improved due to smoothing effects. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  8. "One-Stop Shop": Free-Breathing Dynamic Contrast-Enhanced Magnetic Resonance Imaging of the Kidney Using Iterative Reconstruction and Continuous Golden-Angle Radial Sampling.

    PubMed

    Riffel, Philipp; Zoellner, Frank G; Budjan, Johannes; Grimm, Robert; Block, Tobias K; Schoenberg, Stefan O; Hausmann, Daniel

    2016-11-01

    The purpose of the present study was to evaluate a recently introduced technique for free-breathing dynamic contrast-enhanced renal magnetic resonance imaging (MRI) applying a combination of radial k-space sampling, parallel imaging, and compressed sensing. The technique allows retrospective reconstruction of 2 motion-suppressed sets of images from the same acquisition: one with lower temporal resolution but improved image quality for subjective image analysis, and one with high temporal resolution for quantitative perfusion analysis. In this study, 25 patients underwent a kidney examination, including a prototypical fat-suppressed, golden-angle radial stack-of-stars T1-weighted 3-dimensional spoiled gradient-echo examination (GRASP) performed after contrast agent administration during free breathing. Images were reconstructed at temporal resolutions of 55 spokes per frame (6.2 seconds) and 13 spokes per frame (1.5 seconds). The GRASP images were evaluated by 2 blinded radiologists. First, the reconstructions with low temporal resolution underwent subjective image analysis: the radiologists assessed the best arterial phase and the best renal phase and rated image quality score for each patient on a 5-point Likert-type scale.In addition, the diagnostic confidence was rated according to a 3-point Likert-type scale. Similarly, respiratory motion artifacts and streak artifacts were rated according to a 3-point Likert-type scale.Then, the reconstructions with high temporal resolution were analyzed with a voxel-by-voxel deconvolution approach to determine the renal plasma flow, and the results were compared with values reported in previous literature. Reader 1 and reader 2 rated the overall image quality score for the best arterial phase and the best renal phase with a median image quality score of 4 (good image quality) for both phases, respectively. A high diagnostic confidence (median score of 3) was observed. There were no respiratory motion artifacts in any of the patients. Streak artifacts were present in all of the patients, but did not compromise diagnostic image quality.The estimated renal plasma flow was slightly higher (295 ± 78 mL/100 mL per minute) than reported in previous MRI-based studies, but also closer to the physiologically expected value. Dynamic, motion-suppressed contrast-enhanced renal MRI can be performed in high diagnostic quality during free breathing using a combination of golden-angle radial sampling, parallel imaging, and compressed sensing. Both morphologic and quantitative functional information can be acquired within a single acquisition.

  9. Improving Weak Lensing Mass Map Reconstructions using Gaussian and Sparsity Priors: Application to DES SV

    NASA Astrophysics Data System (ADS)

    Jeffrey, N.; Abdalla, F. B.; Lahav, O.; Lanusse, F.; Starck, J.-L.; Leonard, A.; Kirk, D.; Chang, C.; Baxter, E.; Kacprzak, T.; Seitz, S.; Vikram, V.; Whiteway, L.; Abbott, T. M. C.; Allam, S.; Avila, S.; Bertin, E.; Brooks, D.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; De Vicente, J.; Desai, S.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; Hoyle, B.; James, D. J.; Jarvis, M.; Kuehn, K.; Lima, M.; Lin, H.; March, M.; Melchior, P.; Menanteau, F.; Miquel, R.; Plazas, A. A.; Reil, K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2018-05-01

    Mapping the underlying density field, including non-visible dark matter, using weak gravitational lensing measurements is now a standard tool in cosmology. Due to its importance to the science results of current and upcoming surveys, the quality of the convergence reconstruction methods should be well understood. We compare three methods: Kaiser-Squires (KS), Wiener filter, and GLIMPSE. KS is a direct inversion, not accounting for survey masks or noise. The Wiener filter is well-motivated for Gaussian density fields in a Bayesian framework. GLIMPSE uses sparsity, aiming to reconstruct non-linearities in the density field. We compare these methods with several tests using public Dark Energy Survey (DES) Science Verification (SV) data and realistic DES simulations. The Wiener filter and GLIMPSE offer substantial improvements over smoothed KS with a range of metrics. Both the Wiener filter and GLIMPSE convergence reconstructions show a 12% improvement in Pearson correlation with the underlying truth from simulations. To compare the mapping methods' abilities to find mass peaks, we measure the difference between peak counts from simulated ΛCDM shear catalogues and catalogues with no mass fluctuations (a standard data vector when inferring cosmology from peak statistics); the maximum signal-to-noise of these peak statistics is increased by a factor of 3.5 for the Wiener filter and 9 for GLIMPSE. With simulations we measure the reconstruction of the harmonic phases; the phase residuals' concentration is improved 17% by GLIMPSE and 18% by the Wiener filter. The correlation between reconstructions from data and foreground redMaPPer clusters is increased 18% by the Wiener filter and 32% by GLIMPSE.

  10. Initial results of a new generation dual source CT system using only an in-plane comb filter for ultra-high resolution temporal bone imaging.

    PubMed

    Meyer, Mathias; Haubenreisser, Holger; Raupach, Rainer; Schmidt, Bernhard; Lietzmann, Florian; Leidecker, Christianne; Allmendinger, Thomas; Flohr, Thomas; Schad, Lothar R; Schoenberg, Stefan O; Henzler, Thomas

    2015-01-01

    To prospectively evaluate radiation dose and image quality of a third generation dual-source CT (DSCT) without z-axis filter behind the patient for temporal bone CT. Forty-five patients were either examined on a first, second, or third generation DSCT in an ultra-high-resolution (UHR) temporal bone-imaging mode. On the third generation DSCT system, the tighter focal spot of 0.2 mm(2) removes the necessity for an additional z-axis-filter, leading to an improved z-axis radiation dose efficiency. Images of 0.4 mm were reconstructed using standard filtered-back-projection or iterative reconstruction (IR) technique for previous generations of DSCT and a novel IR algorithm for the third generation DSCT. Radiation dose and image quality were compared between the three DSCT systems. The statistically significantly highest subjective and objective image quality was evaluated for the third generation DSCT when compared to the first or second generation DSCT systems (all p < 0.05). Total effective dose was 63%/39% lower for the third generation examination as compared to the first and second generation DSCT. Temporal bone imaging without z-axis-UHR-filter and a novel third generation IR algorithm allows for significantly higher image quality while lowering effective dose when compared to the first two generations of DSCTs. • Omitting the z-axis-filter allows a reduction in radiation dose of 50% • A smaller focal spot of 0.2 mm (2) significantly improves spatial resolution • Ultra-high-resolution temporal-bone-CT helps to gain diagnostic information of the middle/inner ear.

  11. Radiation dose reduction with chest computed tomography using adaptive statistical iterative reconstruction technique: initial experience.

    PubMed

    Prakash, Priyanka; Kalra, Mannudeep K; Digumarthy, Subba R; Hsieh, Jiang; Pien, Homer; Singh, Sarabjeet; Gilman, Matthew D; Shepard, Jo-Anne O

    2010-01-01

    To assess radiation dose reduction and image quality for weight-based chest computed tomographic (CT) examination results reconstructed using adaptive statistical iterative reconstruction (ASIR) technique. With local ethical committee approval, weight-adjusted chest CT examinations were performed using ASIR in 98 patients and filtered backprojection (FBP) in 54 weight-matched patients on a 64-slice multidetector CT. Patients were categorized into 3 groups: 60 kg or less (n = 32), 61 to 90 kg (n = 77), and 91 kg or more (n = 43) for weight-based adjustment of noise indices for automatic exposure control (Auto mA; GE Healthcare, Waukesha, Wis). Remaining scan parameters were held constant at 0.984:1 pitch, 120 kilovolts (peak), 40-mm table feed per rotation, and 2.5-mm section thickness. Patients' weight, scanning parameters, and CT dose index volume were recorded. Effective doses (EDs) were estimated. Image noise was measured in the descending thoracic aorta at the level of the carina. Data were analyzed using analysis of variance. Compared with FBP, ASIR was associated with an overall mean (SD) decrease of 27.6% in ED (ASIR, 8.8 [2.3] mSv; FBP, 12.2 [2.1] mSv; P < 0.0001). With the use of ASIR, the ED values were 6.5 (1.8) mSv (28.8% decrease), 7.3 (1.6) mSv (27.3% decrease), and 12.8 (2.3) mSv (26.8% decrease) for the weight groups of 60 kg or less, 61 to 90 kg, and 91 kg or more, respectively, compared with 9.2 (2.3) mSv, 10.0 (2.0) mSv, and 17.4 (2.1) mSv with FBP (P < 0.0001). Despite dose reduction, there was less noise with ASIR (12.6 [2.9] mSv) than with FBP (16.6 [6.2] mSv; P < 0.0001). Adaptive statistical iterative reconstruction helps reduce chest CT radiation dose and improve image quality compared with the conventionally used FBP image reconstruction.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreyev, A.

    Purpose: Compton cameras (CCs) use electronic collimation to reconstruct the images of activity distribution. Although this approach can greatly improve imaging efficiency, due to complex geometry of the CC principle, image reconstruction with the standard iterative algorithms, such as ordered subset expectation maximization (OSEM), can be very time-consuming, even more so if resolution recovery (RR) is implemented. We have previously shown that the origin ensemble (OE) algorithm can be used for the reconstruction of the CC data. Here we propose a method of extending our OE algorithm to include RR. Methods: To validate the proposed algorithm we used Monte Carlomore » simulations of a CC composed of multiple layers of pixelated CZT detectors and designed for imaging small animals. A series of CC acquisitions of small hot spheres and the Derenzo phantom placed in air were simulated. Images obtained from (a) the exact data, (b) blurred data but reconstructed without resolution recovery, and (c) blurred and reconstructed with resolution recovery were compared. Furthermore, the reconstructed contrast-to-background ratios were investigated using the phantom with nine spheres placed in a hot background. Results: Our simulations demonstrate that the proposed method allows for the recovery of the resolution loss that is due to imperfect accuracy of event detection. Additionally, tests of camera sensitivity corresponding to different detector configurations demonstrate that the proposed CC design has sensitivity comparable to PET. When the same number of events were considered, the computation time per iteration increased only by a factor of 2 when OE reconstruction with the resolution recovery correction was performed relative to the original OE algorithm. We estimate that the addition of resolution recovery to the OSEM would increase reconstruction times by 2–3 orders of magnitude per iteration. Conclusions: The results of our tests demonstrate the improvement of image resolution provided by the OE reconstructions with resolution recovery. The quality of images and their contrast are similar to those obtained from the OE reconstructions from scans simulated with perfect energy and spatial resolutions.« less

  13. Resolution recovery for Compton camera using origin ensemble algorithm.

    PubMed

    Andreyev, A; Celler, A; Ozsahin, I; Sitek, A

    2016-08-01

    Compton cameras (CCs) use electronic collimation to reconstruct the images of activity distribution. Although this approach can greatly improve imaging efficiency, due to complex geometry of the CC principle, image reconstruction with the standard iterative algorithms, such as ordered subset expectation maximization (OSEM), can be very time-consuming, even more so if resolution recovery (RR) is implemented. We have previously shown that the origin ensemble (OE) algorithm can be used for the reconstruction of the CC data. Here we propose a method of extending our OE algorithm to include RR. To validate the proposed algorithm we used Monte Carlo simulations of a CC composed of multiple layers of pixelated CZT detectors and designed for imaging small animals. A series of CC acquisitions of small hot spheres and the Derenzo phantom placed in air were simulated. Images obtained from (a) the exact data, (b) blurred data but reconstructed without resolution recovery, and (c) blurred and reconstructed with resolution recovery were compared. Furthermore, the reconstructed contrast-to-background ratios were investigated using the phantom with nine spheres placed in a hot background. Our simulations demonstrate that the proposed method allows for the recovery of the resolution loss that is due to imperfect accuracy of event detection. Additionally, tests of camera sensitivity corresponding to different detector configurations demonstrate that the proposed CC design has sensitivity comparable to PET. When the same number of events were considered, the computation time per iteration increased only by a factor of 2 when OE reconstruction with the resolution recovery correction was performed relative to the original OE algorithm. We estimate that the addition of resolution recovery to the OSEM would increase reconstruction times by 2-3 orders of magnitude per iteration. The results of our tests demonstrate the improvement of image resolution provided by the OE reconstructions with resolution recovery. The quality of images and their contrast are similar to those obtained from the OE reconstructions from scans simulated with perfect energy and spatial resolutions.

  14. Adaptive slab laser beam quality improvement using a weighted least-squares reconstruction algorithm.

    PubMed

    Chen, Shanqiu; Dong, LiZhi; Chen, XiaoJun; Tan, Yi; Liu, Wenjin; Wang, Shuai; Yang, Ping; Xu, Bing; Ye, YuTang

    2016-04-10

    Adaptive optics is an important technology for improving beam quality in solid-state slab lasers. However, there are uncorrectable aberrations in partial areas of the beam. In the criterion of the conventional least-squares reconstruction method, it makes the zones with small aberrations nonsensitive and hinders this zone from being further corrected. In this paper, a weighted least-squares reconstruction method is proposed to improve the relative sensitivity of zones with small aberrations and to further improve beam quality. Relatively small weights are applied to the zones with large residual aberrations. Comparisons of results show that peak intensity in the far field improved from 1242 analog digital units (ADU) to 2248 ADU, and beam quality β improved from 2.5 to 2.0. This indicates the weighted least-squares method has better performance than the least-squares reconstruction method when there are large zonal uncorrectable aberrations in the slab laser system.

  15. Parallel Reconstruction Using Null Operations (PRUNO)

    PubMed Central

    Zhang, Jian; Liu, Chunlei; Moseley, Michael E.

    2011-01-01

    A novel iterative k-space data-driven technique, namely Parallel Reconstruction Using Null Operations (PRUNO), is presented for parallel imaging reconstruction. In PRUNO, both data calibration and image reconstruction are formulated into linear algebra problems based on a generalized system model. An optimal data calibration strategy is demonstrated by using Singular Value Decomposition (SVD). And an iterative conjugate- gradient approach is proposed to efficiently solve missing k-space samples during reconstruction. With its generalized formulation and precise mathematical model, PRUNO reconstruction yields good accuracy, flexibility, stability. Both computer simulation and in vivo studies have shown that PRUNO produces much better reconstruction quality than autocalibrating partially parallel acquisition (GRAPPA), especially under high accelerating rates. With the aid of PRUO reconstruction, ultra high accelerating parallel imaging can be performed with decent image quality. For example, we have done successful PRUNO reconstruction at a reduction factor of 6 (effective factor of 4.44) with 8 coils and only a few autocalibration signal (ACS) lines. PMID:21604290

  16. Muscle Activity Map Reconstruction from High Density Surface EMG Signals With Missing Channels Using Image Inpainting and Surface Reconstruction Methods.

    PubMed

    Ghaderi, Parviz; Marateb, Hamid R

    2017-07-01

    The aim of this study was to reconstruct low-quality High-density surface EMG (HDsEMG) signals, recorded with 2-D electrode arrays, using image inpainting and surface reconstruction methods. It is common that some fraction of the electrodes may provide low-quality signals. We used variety of image inpainting methods, based on partial differential equations (PDEs), and surface reconstruction methods to reconstruct the time-averaged or instantaneous muscle activity maps of those outlier channels. Two novel reconstruction algorithms were also proposed. HDsEMG signals were recorded from the biceps femoris and brachial biceps muscles during low-to-moderate-level isometric contractions, and some of the channels (5-25%) were randomly marked as outliers. The root-mean-square error (RMSE) between the original and reconstructed maps was then calculated. Overall, the proposed Poisson and wave PDE outperformed the other methods (average RMSE 8.7 μV rms ± 6.1 μV rms and 7.5 μV rms ± 5.9 μV rms ) for the time-averaged single-differential and monopolar map reconstruction, respectively. Biharmonic Spline, the discrete cosine transform, and the Poisson PDE outperformed the other methods for the instantaneous map reconstruction. The running time of the proposed Poisson and wave PDE methods, implemented using a Vectorization package, was 4.6 ± 5.7 ms and 0.6 ± 0.5 ms, respectively, for each signal epoch or time sample in each channel. The proposed reconstruction algorithms could be promising new tools for reconstructing muscle activity maps in real-time applications. Proper reconstruction methods could recover the information of low-quality recorded channels in HDsEMG signals.

  17. Computed tomography imaging with the Adaptive Statistical Iterative Reconstruction (ASIR) algorithm: dependence of image quality on the blending level of reconstruction.

    PubMed

    Barca, Patrizio; Giannelli, Marco; Fantacci, Maria Evelina; Caramella, Davide

    2018-06-01

    Computed tomography (CT) is a useful and widely employed imaging technique, which represents the largest source of population exposure to ionizing radiation in industrialized countries. Adaptive Statistical Iterative Reconstruction (ASIR) is an iterative reconstruction algorithm with the potential to allow reduction of radiation exposure while preserving diagnostic information. The aim of this phantom study was to assess the performance of ASIR, in terms of a number of image quality indices, when different reconstruction blending levels are employed. CT images of the Catphan-504 phantom were reconstructed using conventional filtered back-projection (FBP) and ASIR with reconstruction blending levels of 20, 40, 60, 80, and 100%. Noise, noise power spectrum (NPS), contrast-to-noise ratio (CNR) and modulation transfer function (MTF) were estimated for different scanning parameters and contrast objects. Noise decreased and CNR increased non-linearly up to 50 and 100%, respectively, with increasing blending level of reconstruction. Also, ASIR has proven to modify the NPS curve shape. The MTF of ASIR reconstructed images depended on tube load/contrast and decreased with increasing blending level of reconstruction. In particular, for low radiation exposure and low contrast acquisitions, ASIR showed lower performance than FBP, in terms of spatial resolution for all blending levels of reconstruction. CT image quality varies substantially with the blending level of reconstruction. ASIR has the potential to reduce noise whilst maintaining diagnostic information in low radiation exposure CT imaging. Given the opposite variation of CNR and spatial resolution with the blending level of reconstruction, it is recommended to use an optimal value of this parameter for each specific clinical application.

  18. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system.

    PubMed

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J; Sawant, Amit; Ruan, Dan

    2015-11-01

    To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. On phantom point clouds, their method achieved submillimeter reconstruction RMSE under different configurations, demonstrating quantitatively the faith of the proposed method in preserving local structural properties of the underlying surface in the presence of noise and missing measurements, and its robustness toward variations of such characteristics. On point clouds from the human subject, the proposed method successfully reconstructed all patient surfaces, filling regions where raw point coordinate readings were missing. Within two comparable regions of interest in the chest area, similar mean curvature distributions were acquired from both their reconstructed surface and CT surface, with mean and standard deviation of (μrecon=-2.7×10(-3) mm(-1), σrecon=7.0×10(-3) mm(-1)) and (μCT=-2.5×10(-3) mm(-1), σCT=5.3×10(-3) mm(-1)), respectively. The agreement of local geometry properties between the reconstructed surfaces and the CT surface demonstrated the ability of the proposed method in faithfully representing the underlying patient surface. The authors have integrated and developed an accurate level-set based continuous surface reconstruction method on point clouds acquired by a 3D surface photogrammetry system. The proposed method has generated a continuous representation of the underlying phantom and patient surfaces with good robustness against noise and missing measurements. It serves as an important first step for further development of motion tracking methods during radiotherapy.

  19. Motion vector field phase-to-amplitude resampling for 4D motion-compensated cone-beam CT

    NASA Astrophysics Data System (ADS)

    Sauppe, Sebastian; Kuhm, Julian; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc

    2018-02-01

    We propose a phase-to-amplitude resampling (PTAR) method to reduce motion blurring in motion-compensated (MoCo) 4D cone-beam CT (CBCT) image reconstruction, without increasing the computational complexity of the motion vector field (MVF) estimation approach. PTAR is able to improve the image quality in reconstructed 4D volumes, including both regular and irregular respiration patterns. The PTAR approach starts with a robust phase-gating procedure for the initial MVF estimation and then switches to a phase-adapted amplitude gating method. The switch implies an MVF-resampling, which makes them amplitude-specific. PTAR ensures that the MVFs, which have been estimated on phase-gated reconstructions, are still valid for all amplitude-gated reconstructions. To validate the method, we use an artificially deformed clinical CT scan with a realistic breathing pattern and several patient data sets acquired with a TrueBeamTM integrated imaging system (Varian Medical Systems, Palo Alto, CA, USA). Motion blurring, which still occurs around the area of the diaphragm or at small vessels above the diaphragm in artifact-specific cyclic motion compensation (acMoCo) images based on phase-gating, is significantly reduced by PTAR. Also, small lung structures appear sharper in the images. This is demonstrated both for simulated and real patient data. A quantification of the sharpness of the diaphragm confirms these findings. PTAR improves the image quality of 4D MoCo reconstructions compared to conventional phase-gated MoCo images, in particular for irregular breathing patterns. Thus, PTAR increases the robustness of MoCo reconstructions for CBCT. Because PTAR does not require any additional steps for the MVF estimation, it is computationally efficient. Our method is not restricted to CBCT but could rather be applied to other image modalities.

  20. Optimized energy of spectral CT for infarct imaging: Experimental validation with human validation.

    PubMed

    Sandfort, Veit; Palanisamy, Srikanth; Symons, Rolf; Pourmorteza, Amir; Ahlman, Mark A; Rice, Kelly; Thomas, Tom; Davies-Venn, Cynthia; Krauss, Bernhard; Kwan, Alan; Pandey, Ankur; Zimmerman, Stefan L; Bluemke, David A

    Late contrast enhancement visualizes myocardial infarction, but the contrast to noise ratio (CNR) is low using conventional CT. The aim of this study was to determine if spectral CT can improve imaging of myocardial infarction. A canine model of myocardial infarction was produced in 8 animals (90-min occlusion, reperfusion). Later, imaging was performed after contrast injection using CT at 90 kVp/150 kVpSn. The following reconstructions were evaluated: Single energy 90 kVp, mixed, iodine map, multiple monoenergetic conventional and monoenergetic noise optimized reconstructions. Regions of interest were measured in infarct and remote regions to calculate contrast to noise ratio (CNR) and Bhattacharya distance (a metric of the differentiation between regions). Blinded assessment of image quality was performed. The same reconstruction methods were applied to CT scans of four patients with known infarcts. For animal studies, the highest CNR for infarct vs. myocardium was achieved in the lowest keV (40 keV) VMo images (CNR 4.42, IQR 3.64-5.53), which was superior to 90 kVp, mixed and iodine map (p = 0.008, p = 0.002, p < 0.001, respectively). Compared to 90 kVp and iodine map, the 40 keV VMo reconstructions showed significantly higher histogram separation (p = 0.042 and p < 0.0001, respectively). The VMo reconstructions showed the highest rate of excellent quality scores. A similar pattern was seen in human studies, with CNRs for infarct maximized at the lowest keV optimized reconstruction (CNR 4.44, IQR 2.86-5.94). Dual energy in conjunction with noise-optimized monoenergetic post-processing improves CNR of myocardial infarct delineation by approximately 20-25%. Published by Elsevier Inc.

  1. Plenoptic particle image velocimetry with multiple plenoptic cameras

    NASA Astrophysics Data System (ADS)

    Fahringer, Timothy W.; Thurow, Brian S.

    2018-07-01

    Plenoptic particle image velocimetry was recently introduced as a viable three-dimensional, three-component velocimetry technique based on light field cameras. One of the main benefits of this technique is its single camera configuration allowing the technique to be applied in facilities with limited optical access. The main drawback of this configuration is decreased accuracy in the out-of-plane dimension. This work presents a solution with the addition of a second plenoptic camera in a stereo-like configuration. A framework for reconstructing volumes with multiple plenoptic cameras including the volumetric calibration and reconstruction algorithms, including: integral refocusing, filtered refocusing, multiplicative refocusing, and MART are presented. It is shown that the addition of a second camera improves the reconstruction quality and removes the ‘cigar’-like elongation associated with the single camera system. In addition, it is found that adding a third camera provides minimal improvement. Further metrics of the reconstruction quality are quantified in terms of a reconstruction algorithm, particle density, number of cameras, camera separation angle, voxel size, and the effect of common image noise sources. In addition, a synthetic Gaussian ring vortex is used to compare the accuracy of the single and two camera configurations. It was determined that the addition of a second camera reduces the RMSE velocity error from 1.0 to 0.1 voxels in depth and 0.2 to 0.1 voxels in the lateral spatial directions. Finally, the technique is applied experimentally on a ring vortex and comparisons are drawn from the four presented reconstruction algorithms, where it was found that MART and multiplicative refocusing produced the cleanest vortex structure and had the least shot-to-shot variability. Filtered refocusing is able to produce the desired structure, albeit with more noise and variability, while integral refocusing struggled to produce a coherent vortex ring.

  2. Is reconstruction the best management strategy for anterior cruciate ligament rupture? A systematic review and meta-analysis comparing anterior cruciate ligament reconstruction versus non-operative treatment.

    PubMed

    Smith, T O; Postle, K; Penny, F; McNamara, I; Mann, C J V

    2014-03-01

    The purpose of this study was to determine the optimal clinical and cost-effective strategy for managing people following ACL rupture. A systematic review of the published (AMED, CINAHL, MEDLINE, EMBASE, PubMed, psycINFO and the Cochrane Library) and unpublished literature (OpenGrey, the WHO International Clinical Trials Registry Platform, Current Controlled Trials and the UK National Research Register Archive) was conducted on April 2013. All randomised and non-randomised controlled trials evaluating clinical or health economic outcomes of isolated ligament reconstruction versus non-surgical management following ACL rupture were included. Methodological quality was assessed using the PEDro appraisal tool. When appropriate, meta-analysis was conducted to pool data. From a total of 943 citations, sixteen studies met the eligibility criteria. These included 1397 participants, 825 who received ACL reconstruction versus 592 who were managed non-surgically. The methodological quality of the literature was poor. The findings indicated that whilst reconstructed ACL offers significantly greater objective tibiofemoral stability (p<0.001), there appears limited evidence to suggest a superiority between reconstruction versus non-surgical management in functional outcomes. There was a small difference between the management strategies in respect to the development of osteoarthritis during the initial 20 years following index management strategy (Odds Ratio 1.56; p=0.05). The current literature is insufficient to base clinical decision-making with respect to treatment opinions for people following ACL rupture. Whilst based on a poor evidence, the current evidence would indicate that people following ACL rupture should receive non-operative interventions before surgical intervention is considered. © 2013.

  3. Emerging Techniques for Dose Optimization in Abdominal CT

    PubMed Central

    Platt, Joel F.; Goodsitt, Mitchell M.; Al-Hawary, Mahmoud M.; Maturen, Katherine E.; Wasnik, Ashish P.; Pandya, Amit

    2014-01-01

    Recent advances in computed tomographic (CT) scanning technique such as automated tube current modulation (ATCM), optimized x-ray tube voltage, and better use of iterative image reconstruction have allowed maintenance of good CT image quality with reduced radiation dose. ATCM varies the tube current during scanning to account for differences in patient attenuation, ensuring a more homogeneous image quality, although selection of the appropriate image quality parameter is essential for achieving optimal dose reduction. Reducing the x-ray tube voltage is best suited for evaluating iodinated structures, since the effective energy of the x-ray beam will be closer to the k-edge of iodine, resulting in a higher attenuation for the iodine. The optimal kilovoltage for a CT study should be chosen on the basis of imaging task and patient habitus. The aim of iterative image reconstruction is to identify factors that contribute to noise on CT images with use of statistical models of noise (statistical iterative reconstruction) and selective removal of noise to improve image quality. The degree of noise suppression achieved with statistical iterative reconstruction can be customized to minimize the effect of altered image quality on CT images. Unlike with statistical iterative reconstruction, model-based iterative reconstruction algorithms model both the statistical noise and the physical acquisition process, allowing CT to be performed with further reduction in radiation dose without an increase in image noise or loss of spatial resolution. Understanding these recently developed scanning techniques is essential for optimization of imaging protocols designed to achieve the desired image quality with a reduced dose. © RSNA, 2014 PMID:24428277

  4. Panoramic cone beam computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Jenghwa; Zhou Lili; Wang Song

    2012-05-15

    Purpose: Cone-beam computed tomography (CBCT) is the main imaging tool for image-guided radiotherapy but its functionality is limited by a small imaging volume and restricted image position (imaged at the central instead of the treatment position for peripheral lesions to avoid collisions). In this paper, the authors present the concept of ''panoramic CBCT,'' which can image patients at the treatment position with an imaging volume as large as practically needed. Methods: In this novel panoramic CBCT technique, the target is scanned sequentially from multiple view angles. For each view angle, a half scan (180 deg. + {theta}{sub cone} where {theta}{submore » cone} is the cone angle) is performed with the imaging panel positioned in any location along the beam path. The panoramic projection images of all views for the same gantry angle are then stitched together with the direct image stitching method (i.e., according to the reported imaging position) and full-fan, half-scan CBCT reconstruction is performed using the stitched projection images. To validate this imaging technique, the authors simulated cone-beam projection images of the Mathematical Cardiac Torso (MCAT) thorax phantom for three panoramic views. Gaps, repeated/missing columns, and different exposure levels were introduced between adjacent views to simulate imperfect image stitching due to uncertainties in imaging position or output fluctuation. A modified simultaneous algebraic reconstruction technique (modified SART) was developed to reconstruct CBCT images directly from the stitched projection images. As a gold standard, full-fan, full-scan (360 deg. gantry rotation) CBCT reconstructions were also performed using projection images of one imaging panel large enough to encompass the target. Contrast-to-noise ratio (CNR) and geometric distortion were evaluated to quantify the quality of reconstructed images. Monte Carlo simulations were performed to evaluate the effect of scattering on the image quality and imaging dose for both standard and panoramic CBCT. Results: Truncated images with artifacts were observed for the CBCT reconstruction using projection images of the central view only. When the image stitching was perfect, complete reconstruction was obtained for the panoramic CBCT using the modified SART with the image quality similar to the gold standard (full-scan, full-fan CBCT using one large imaging panel). Imperfect image stitching, on the other hand, lead to (streak, line, or ring) reconstruction artifacts, reduced CNR, and/or distorted geometry. Results from Monte Carlo simulations showed that, for identical imaging quality, the imaging dose was lower for the panoramic CBCT than that acquired with one large imaging panel. For the same imaging dose, the CNR of the three-view panoramic CBCT was 50% higher than that of the regular CBCT using one big panel. Conclusions: The authors have developed a panoramic CBCT technique and demonstrated with simulation data that it can image tumors of any location for patients of any size at the treatment position with comparable or less imaging dose and time. However, the image quality of this CBCT technique is sensitive to the reconstruction artifacts caused by imperfect image stitching. Better algorithms are therefore needed to improve the accuracy of image stitching for panoramic CBCT.« less

  5. Towards disparity joint upsampling for robust stereoscopic endoscopic scene reconstruction in robotic prostatectomy

    NASA Astrophysics Data System (ADS)

    Luo, Xiongbiao; McLeod, A. Jonathan; Jayarathne, Uditha L.; Pautler, Stephen E.; Schlacta, Christopher M.; Peters, Terry M.

    2016-03-01

    Three-dimensional (3-D) scene reconstruction from stereoscopic binocular laparoscopic videos is an effective way to expand the limited surgical field and augment the structure visualization of the organ being operated in minimally invasive surgery. However, currently available reconstruction approaches are limited by image noise, occlusions, textureless and blurred structures. In particular, an endoscope inside the body only has the limited light source resulting in illumination non-uniformities in the visualized field. These limitations unavoidably deteriorate the stereo image quality and hence lead to low-resolution and inaccurate disparity maps, resulting in blurred edge structures in 3-D scene reconstruction. This paper proposes an improved stereo correspondence framework that integrates cost-volume filtering with joint upsampling for robust disparity estimation. Joint bilateral upsampling, joint geodesic upsampling, and tree filtering upsampling were compared to enhance the disparity accuracy. The experimental results demonstrate that joint upsampling provides an effective way to boost the disparity estimation and hence to improve the surgical endoscopic scene 3-D reconstruction. Moreover, the bilateral upsampling generally outperforms the other two upsampling methods in disparity estimation.

  6. Analysis on the Effect of Sensor Views in Image Reconstruction Produced by Optical Tomography System Using Charge-Coupled Device.

    PubMed

    Jamaludin, Juliza; Rahim, Ruzairi Abdul; Fazul Rahiman, Mohd Hafiz; Mohd Rohani, Jemmy

    2018-04-01

    Optical tomography (OPT) is a method to capture a cross-sectional image based on the data obtained by sensors, distributed around the periphery of the analyzed system. This system is based on the measurement of the final light attenuation or absorption of radiation after crossing the measured objects. The number of sensor views will affect the results of image reconstruction, where the high number of sensor views per projection will give a high image quality. This research presents an application of charge-coupled device linear sensor and laser diode in an OPT system. Experiments in detecting solid and transparent objects in crystal clear water were conducted. Two numbers of sensors views, 160 and 320 views are evaluated in this research in reconstructing the images. The image reconstruction algorithms used were filtered images of linear back projection algorithms. Analysis on comparing the simulation and experiments image results shows that, with 320 image views giving less area error than 160 views. This suggests that high image view resulted in the high resolution of image reconstruction.

  7. Outcomes for jejunal interposition reconstruction compared with Roux-en-Y anastomosis: A meta-analysis.

    PubMed

    Fan, Kai-Xi; Xu, Zhong-Fa; Wang, Mei-Rong; Li, Dao-Tang; Yang, Xiang-Shan; Guo, Jing

    2015-03-14

    To compare the clinical outcomes between jejunal interposition reconstruction and Roux-en-Y anastomosis after total gastrostomy in patients with gastric cancer. A systematic literature search was conducted by two independent researchers on PubMed, EMBASE, the Cochrane Library, Google Scholar, and other English literature databases, as well as the Chinese Academic Journal, Chinese Biomedical Literature Database, and other Chinese literature databases using "Gastrostomy", "Roux-en-Y", and "Interposition" as keywords. Data extraction and verification were performed on the literature included in this study. RevMan 5.2 software was used for data processing. A fixed-effects model was applied in the absence of heterogeneity between studies. A random effects model was applied in the presence of heterogeneity between studies. Ten studies with a total of 762 gastric cancer patients who underwent total gastrostomy were included in this study. Among them, 357 received jejunal interposition reconstruction after total gastrostomy, and 405 received Roux-en-Y anastomosis. Compared with Roux-en-Y anastomosis, jejunal interposition reconstruction significantly decreased the incidence of dumping syndrome (OR = 0.18, 95%CI: 0.10-0.31; P < 0.001), increased the prognostic nutritional index [weighted mean difference (WMD) = 6.02, 95%CI: 1.82-10.22; P < 0.001], and improved the degree of postoperative weight loss [WMD = 2.47, 95%CI: -3.19-(-1.75); P < 0.001]. However, there is no statistically significant difference in operative time, hospital stay, or incidence of reflux esophagitis. Compared with Roux-en-Y anastomosis, patients who underwent jejunal interposition reconstruction after total gastrostomy had a lower risk of postoperative long-term complications and improved life quality.

  8. Ultrafast Comparison of Personal Genomes via Precomputed Genome Fingerprints.

    PubMed

    Glusman, Gustavo; Mauldin, Denise E; Hood, Leroy E; Robinson, Max

    2017-01-01

    We present an ultrafast method for comparing personal genomes. We transform the standard genome representation (lists of variants relative to a reference) into "genome fingerprints" via locality sensitive hashing. The resulting genome fingerprints can be meaningfully compared even when the input data were obtained using different sequencing technologies, processed using different pipelines, represented in different data formats and relative to different reference versions. Furthermore, genome fingerprints are robust to up to 30% missing data. Because of their reduced size, computation on the genome fingerprints is fast and requires little memory. For example, we could compute all-against-all pairwise comparisons among the 2504 genomes in the 1000 Genomes data set in 67 s at high quality (21 μs per comparison, on a single processor), and achieved a lower quality approximation in just 11 s. Efficient computation enables scaling up a variety of important genome analyses, including quantifying relatedness, recognizing duplicative sequenced genomes in a set, population reconstruction, and many others. The original genome representation cannot be reconstructed from its fingerprint, effectively decoupling genome comparison from genome interpretation; the method thus has significant implications for privacy-preserving genome analytics.

  9. Fast dictionary-based reconstruction for diffusion spectrum imaging.

    PubMed

    Bilgic, Berkin; Chatnuntawech, Itthi; Setsompop, Kawin; Cauley, Stephen F; Yendiki, Anastasia; Wald, Lawrence L; Adalsteinsson, Elfar

    2013-11-01

    Diffusion spectrum imaging reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using MATLAB running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using principal component analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm.

  10. Fast Dictionary-Based Reconstruction for Diffusion Spectrum Imaging

    PubMed Central

    Bilgic, Berkin; Chatnuntawech, Itthi; Setsompop, Kawin; Cauley, Stephen F.; Yendiki, Anastasia; Wald, Lawrence L.; Adalsteinsson, Elfar

    2015-01-01

    Diffusion Spectrum Imaging (DSI) reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation (TV) transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using Matlab running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using Principal Component Analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm. PMID:23846466

  11. Image reconstruction: an overview for clinicians.

    PubMed

    Hansen, Michael S; Kellman, Peter

    2015-03-01

    Image reconstruction plays a critical role in the clinical use of magnetic resonance imaging (MRI). The MRI raw data is not acquired in image space and the role of the image reconstruction process is to transform the acquired raw data into images that can be interpreted clinically. This process involves multiple signal processing steps that each have an impact on the image quality. This review explains the basic terminology used for describing and quantifying image quality in terms of signal-to-noise ratio and point spread function. In this context, several commonly used image reconstruction components are discussed. The image reconstruction components covered include noise prewhitening for phased array data acquisition, interpolation needed to reconstruct square pixels, raw data filtering for reducing Gibbs ringing artifacts, Fourier transforms connecting the raw data with image space, and phased array coil combination. The treatment of phased array coils includes a general explanation of parallel imaging as a coil combination technique. The review is aimed at readers with no signal processing experience and should enable them to understand what role basic image reconstruction steps play in the formation of clinical images and how the resulting image quality is described. © 2014 Wiley Periodicals, Inc.

  12. Improved image decompression for reduced transform coding artifacts

    NASA Technical Reports Server (NTRS)

    Orourke, Thomas P.; Stevenson, Robert L.

    1994-01-01

    The perceived quality of images reconstructed from low bit rate compression is severely degraded by the appearance of transform coding artifacts. This paper proposes a method for producing higher quality reconstructed images based on a stochastic model for the image data. Quantization (scalar or vector) partitions the transform coefficient space and maps all points in a partition cell to a representative reconstruction point, usually taken as the centroid of the cell. The proposed image estimation technique selects the reconstruction point within the quantization partition cell which results in a reconstructed image which best fits a non-Gaussian Markov random field (MRF) image model. This approach results in a convex constrained optimization problem which can be solved iteratively. At each iteration, the gradient projection method is used to update the estimate based on the image model. In the transform domain, the resulting coefficient reconstruction points are projected to the particular quantization partition cells defined by the compressed image. Experimental results will be shown for images compressed using scalar quantization of block DCT and using vector quantization of subband wavelet transform. The proposed image decompression provides a reconstructed image with reduced visibility of transform coding artifacts and superior perceived quality.

  13. Cost-effectiveness analysis of the most common orthopaedic surgery procedures: knee arthroscopy and knee anterior cruciate ligament reconstruction.

    PubMed

    Lubowitz, James H; Appleby, David

    2011-10-01

    The purpose of this study was to determine the cost-effectiveness of knee arthroscopy and anterior cruciate ligament (ACL) reconstruction. Retrospective analysis of prospectively collected data from a single-surgeon, institutional review board-approved outcomes registry included 2 cohorts: surgically treated knee arthroscopy and ACL reconstruction patients. Our outcome measure is cost-effectiveness (cost of a quality-adjusted life-year [QALY]). The QALY is calculated by multiplying difference in health-related quality of life, before and after treatment, by life expectancy. Health-related quality of life is measured by use of the Quality of Well-Being scale, which has been validated for cost-effectiveness analysis. Costs are facility charges per the facility cost-to-charges ratio plus surgeon fee. Sensitivity analyses are performed to determine the effect of variations in costs or outcomes. There were 93 knee arthroscopy and 35 ACL reconstruction patients included at a mean follow-up of 2.1 years. Cost per QALY was $5,783 for arthroscopy and $10,326 for ACL reconstruction (2009 US dollars). Sensitivity analysis shows that our results are robust (relatively insensitive) to variations in costs or outcomes. Knee arthroscopy and knee ACL reconstruction are very cost-effective. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  14. Reconstructing cone-beam CT with spatially varying qualities for adaptive radiotherapy: a proof-of-principle study.

    PubMed

    Lu, Wenting; Yan, Hao; Gu, Xuejun; Tian, Zhen; Luo, Ouyang; Yang, Liu; Zhou, Linghong; Cervino, Laura; Wang, Jing; Jiang, Steve; Jia, Xun

    2014-10-21

    With the aim of maximally reducing imaging dose while meeting requirements for adaptive radiation therapy (ART), we propose in this paper a new cone beam CT (CBCT) acquisition and reconstruction method that delivers images with a low noise level inside a region of interest (ROI) and a relatively high noise level outside the ROI. The acquired projection images include two groups: densely sampled projections at a low exposure with a large field of view (FOV) and sparsely sampled projections at a high exposure with a small FOV corresponding to the ROI. A new algorithm combining the conventional filtered back-projection algorithm and the tight-frame iterative reconstruction algorithm is also designed to reconstruct the CBCT based on these projection data. We have validated our method on a simulated head-and-neck (HN) patient case, a semi-real experiment conducted on a HN cancer patient under a full-fan scan mode, as well as a Catphan phantom under a half-fan scan mode. Relative root-mean-square errors (RRMSEs) of less than 3% for the entire image and ~1% within the ROI compared to the ground truth have been observed. These numbers demonstrate the ability of our proposed method to reconstruct high-quality images inside the ROI. As for the part outside ROI, although the images are relatively noisy, it can still provide sufficient information for radiation dose calculations in ART. Dose distributions calculated on our CBCT image and on a standard CBCT image are in agreement, with a mean relative difference of 0.082% inside the ROI and 0.038% outside the ROI. Compared with the standard clinical CBCT scheme, an imaging dose reduction of approximately 3-6 times inside the ROI was achieved, as well as an 8 times outside the ROI. Regarding computational efficiency, it takes 1-3 min to reconstruct a CBCT image depending on the number of projections used. These results indicate that the proposed method has the potential for application in ART.

  15. Experimental evaluation of the optical quality of DMD SLM for its application as Fourier holograms displaying device

    NASA Astrophysics Data System (ADS)

    Molodtsov, D. Y.; Cheremkhin, P. A.; Krasnov, V. V.; Rodin, V. G.

    2016-04-01

    In this paper, the optical quality of micromirror DMD spatial light modulator (SLM) is evaluated and its applicability as an output device for holographic filters in dispersive correlators is analyzed. The possibility of using of DMD SLM extracted from consumer DLP-projector was experimentally evaluated by displaying of Fourier holograms. Software for displaying of holograms was developed. Experiments on holograms reconstruction was conducted with a different number of holograms pixels (and different placement on SLM). Reduction of number of pixels of output hologram (i.e. size of minimum resolvable element) led to improvement of reconstructed image quality. The evaluation shows that not every DMD-chip has acceptable optical quality for its application as display device for Fourier holograms. It was determined that major factor of reconstructed image quality degradation is a curvature of surface of SLM or its safety glass. Ranging hologram size allowed to estimate approximate size of sufficiently flat area of SLM matrix. For tested SLM it was about 1.5 mm. Further hologram size increase led to significant reconstructed image quality degradation. Developed and applied a technique allows to quickly estimate maximum size of holograms that can be displayed with specific SLM without significant degradation of reconstructed image. Additionally it allows to identify areas on the SLM with increased curvature of the surface.

  16. Fast and low-dose computed laminography using compressive sensing based technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, Sajid, E-mail: scho@kaist.ac.kr; Park, Miran, E-mail: scho@kaist.ac.kr; Cho, Seungryong, E-mail: scho@kaist.ac.kr

    2015-03-31

    Computed laminography (CL) is well known for inspecting microstructures in the materials, weldments and soldering defects in high density packed components or multilayer printed circuit boards. The overload problem on x-ray tube and gross failure of the radio-sensitive electronics devices during a scan are among important issues in CL which needs to be addressed. The sparse-view CL can be one of the viable option to overcome such issues. In this work a numerical aluminum welding phantom was simulated to collect sparsely sampled projection data at only 40 views using a conventional CL scanning scheme i.e. oblique scan. A compressive-sensing inspiredmore » total-variation (TV) minimization algorithm was utilized to reconstruct the images. It is found that the images reconstructed using sparse view data are visually comparable with the images reconstructed using full scan data set i.e. at 360 views on regular interval. We have quantitatively confirmed that tiny structures such as copper and tungsten slags, and copper flakes in the reconstructed images from sparsely sampled data are comparable with the corresponding structure present in the fully sampled data case. A blurring effect can be seen near the edges of few pores at the bottom of the reconstructed images from sparsely sampled data, despite the overall image quality is reasonable for fast and low-dose NDT.« less

  17. Penalized maximum likelihood simultaneous longitudinal PET image reconstruction with difference-image priors.

    PubMed

    Ellis, Sam; Reader, Andrew J

    2018-04-26

    Many clinical contexts require the acquisition of multiple positron emission tomography (PET) scans of a single subject, for example, to observe and quantitate changes in functional behaviour in tumors after treatment in oncology. Typically, the datasets from each of these scans are reconstructed individually, without exploiting the similarities between them. We have recently shown that sharing information between longitudinal PET datasets by penalizing voxel-wise differences during image reconstruction can improve reconstructed images by reducing background noise and increasing the contrast-to-noise ratio of high-activity lesions. Here, we present two additional novel longitudinal difference-image priors and evaluate their performance using two-dimesional (2D) simulation studies and a three-dimensional (3D) real dataset case study. We have previously proposed a simultaneous difference-image-based penalized maximum likelihood (PML) longitudinal image reconstruction method that encourages sparse difference images (DS-PML), and in this work we propose two further novel prior terms. The priors are designed to encourage longitudinal images with corresponding differences which have (a) low entropy (DE-PML), and (b) high sparsity in their spatial gradients (DTV-PML). These two new priors and the originally proposed longitudinal prior were applied to 2D-simulated treatment response [ 18 F]fluorodeoxyglucose (FDG) brain tumor datasets and compared to standard maximum likelihood expectation-maximization (MLEM) reconstructions. These 2D simulation studies explored the effects of penalty strengths, tumor behaviour, and interscan coupling on reconstructed images. Finally, a real two-scan longitudinal data series acquired from a head and neck cancer patient was reconstructed with the proposed methods and the results compared to standard reconstruction methods. Using any of the three priors with an appropriate penalty strength produced images with noise levels equivalent to those seen when using standard reconstructions with increased counts levels. In tumor regions, each method produces subtly different results in terms of preservation of tumor quantitation and reconstruction root mean-squared error (RMSE). In particular, in the two-scan simulations, the DE-PML method produced tumor means in close agreement with MLEM reconstructions, while the DTV-PML method produced the lowest errors due to noise reduction within the tumor. Across a range of tumor responses and different numbers of scans, similar results were observed, with DTV-PML producing the lowest errors of the three priors and DE-PML producing the lowest bias. Similar improvements were observed in the reconstructions of the real longitudinal datasets, although imperfect alignment of the two PET images resulted in additional changes in the difference image that affected the performance of the proposed methods. Reconstruction of longitudinal datasets by penalizing difference images between pairs of scans from a data series allows for noise reduction in all reconstructed images. An appropriate choice of penalty term and penalty strength allows for this noise reduction to be achieved while maintaining reconstruction performance in regions of change, either in terms of quantitation of mean intensity via DE-PML, or in terms of tumor RMSE via DTV-PML. Overall, improving the image quality of longitudinal datasets via simultaneous reconstruction has the potential to improve upon currently used methods, allow dose reduction, or reduce scan time while maintaining image quality at current levels. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  18. Estimation of 3D reconstruction errors in a stereo-vision system

    NASA Astrophysics Data System (ADS)

    Belhaoua, A.; Kohler, S.; Hirsch, E.

    2009-06-01

    The paper presents an approach for error estimation for the various steps of an automated 3D vision-based reconstruction procedure of manufactured workpieces. The process is based on a priori planning of the task and built around a cognitive intelligent sensory system using so-called Situation Graph Trees (SGT) as a planning tool. Such an automated quality control system requires the coordination of a set of complex processes performing sequentially data acquisition, its quantitative evaluation and the comparison with a reference model (e.g., CAD object model) in order to evaluate quantitatively the object. To ensure efficient quality control, the aim is to be able to state if reconstruction results fulfill tolerance rules or not. Thus, the goal is to evaluate independently the error for each step of the stereo-vision based 3D reconstruction (e.g., for calibration, contour segmentation, matching and reconstruction) and then to estimate the error for the whole system. In this contribution, we analyze particularly the segmentation error due to localization errors for extracted edge points supposed to belong to lines and curves composing the outline of the workpiece under evaluation. The fitting parameters describing these geometric features are used as quality measure to determine confidence intervals and finally to estimate the segmentation errors. These errors are then propagated through the whole reconstruction procedure, enabling to evaluate their effect on the final 3D reconstruction result, specifically on position uncertainties. Lastly, analysis of these error estimates enables to evaluate the quality of the 3D reconstruction, as illustrated by the shown experimental results.

  19. Value of 100 kVp scan with sinogram-affirmed iterative reconstruction algorithm on a single-source CT system during whole-body CT for radiation and contrast medium dose reduction: an intra-individual feasibility study.

    PubMed

    Nagayama, Y; Nakaura, T; Oda, S; Tsuji, A; Urata, J; Furusawa, M; Tanoue, S; Utsunomiya, D; Yamashita, Y

    2018-02-01

    To perform an intra-individual investigation of the usefulness of a contrast medium (CM) and radiation dose-reduction protocol using single-source computed tomography (CT) combined with 100 kVp and sinogram-affirmed iterative reconstruction (SAFIRE) for whole-body CT (WBCT; chest-abdomen-pelvis CT) in oncology patients. Forty-three oncology patients who had undergone WBCT under both 120 and 100 kVp protocols at different time points (mean interscan intervals: 98 days) were included retrospectively. The CM doses for the 120 and 100 kVp protocols were 600 and 480 mg iodine/kg, respectively; 120 kVp images were reconstructed with filtered back-projection (FBP), whereas 100 kVp images were reconstructed with FBP (100 kVp-F) and the SAFIRE (100 kVp-S). The size-specific dose estimate (SSDE), iodine load and image quality of each protocol were compared. The SSDE and iodine load of 100 kVp protocol were 34% and 21%, respectively, lower than of 120 kVp protocol (SSDE: 10.6±1.1 versus 16.1±1.8 mGy; iodine load: 24.8±4versus 31.5±5.5 g iodine, p<0.01). Contrast enhancement, objective image noise, contrast-to-noise-ratio, and visual score of 100 kVp-S were similar to or better than of 120 kVp protocol. Compared with the 120 kVp protocol, the combined use of 100 kVp and SAFIRE in WBCT for oncology assessment with an SSCT facilitated substantial reduction in the CM and radiation dose while maintaining image quality. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  20. A deblocking algorithm based on color psychology for display quality enhancement

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Hung; Tseng, Wen-Yu; Huang, Kai-Lin

    2012-12-01

    This article proposes a post-processing deblocking filter to reduce blocking effects. The proposed algorithm detects blocking effects by fusing the results of Sobel edge detector and wavelet-based edge detector. The filtering stage provides four filter modes to eliminate blocking effects at different color regions according to human color vision and color psychology analysis. Experimental results show that the proposed algorithm has better subjective and objective qualities for H.264/AVC reconstructed videos when compared to several existing methods.

  1. Setup calibration and optimization for comparative digital holography

    NASA Astrophysics Data System (ADS)

    Baumbach, Torsten; Osten, Wolfgang; Kebbel, Volker; von Kopylow, Christoph; Jueptner, Werner

    2004-08-01

    With increasing globalization many enterprises decide to produce the components of their products at different locations all over the world. Consequently, new technologies and strategies for quality control are required. In this context the remote comparison of objects with regard to their shape or response on certain loads is getting more and more important for a variety of applications. For such a task the novel method of comparative digital holography is a suitable tool with interferometric sensitivity. With this technique the comparison in shape or deformation of two objects does not require the presence of both objects at the same place. In contrast to the well known incoherent techniques based on inverse fringe projection this new approach uses a coherent mask for the illumination of the sample object. The coherent mask is created by digital holography to enable the instant access to the complete optical information of the master object at any wanted place. The reconstruction of the mask is done by a spatial light modulator (SLM). The transmission of the digital master hologram to the place of comparison can be done via digital telecommunication networks. Contrary to other interferometric techniques this method enables the comparison of objects with different microstructure. In continuation of earlier reports our investigations are focused here on the analysis of the constraints of the setup with respect to the quality of the hologram reconstruction with a spatial light modulator. For successful measurements the selection of the appropriate reconstruction method and the adequate optical set-up is mandatory. In addition, the use of a SLM for the reconstruction requires the knowledge of its properties for the accomplishment of this method. The investigation results for the display properties such as display curvature, phase shift and the consequences for the technique will be presented. The optimization and the calibration of the set-up and its components lead to improved results in comparative digital holography with respect to the resolution. Examples of measurements before and after the optimization and calibration will be presented.

  2. Combining Acceleration Techniques for Low-Dose X-Ray Cone Beam Computed Tomography Image Reconstruction.

    PubMed

    Huang, Hsuan-Ming; Hsiao, Ing-Tsung

    2017-01-01

    Over the past decade, image quality in low-dose computed tomography has been greatly improved by various compressive sensing- (CS-) based reconstruction methods. However, these methods have some disadvantages including high computational cost and slow convergence rate. Many different speed-up techniques for CS-based reconstruction algorithms have been developed. The purpose of this paper is to propose a fast reconstruction framework that combines a CS-based reconstruction algorithm with several speed-up techniques. First, total difference minimization (TDM) was implemented using the soft-threshold filtering (STF). Second, we combined TDM-STF with the ordered subsets transmission (OSTR) algorithm for accelerating the convergence. To further speed up the convergence of the proposed method, we applied the power factor and the fast iterative shrinkage thresholding algorithm to OSTR and TDM-STF, respectively. Results obtained from simulation and phantom studies showed that many speed-up techniques could be combined to greatly improve the convergence speed of a CS-based reconstruction algorithm. More importantly, the increased computation time (≤10%) was minor as compared to the acceleration provided by the proposed method. In this paper, we have presented a CS-based reconstruction framework that combines several acceleration techniques. Both simulation and phantom studies provide evidence that the proposed method has the potential to satisfy the requirement of fast image reconstruction in practical CT.

  3. Linearized image reconstruction method for ultrasound modulated electrical impedance tomography based on power density distribution

    NASA Astrophysics Data System (ADS)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2017-04-01

    Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results.

  4. Efficacy of model-based iterative reconstruction technique in non-enhanced CT of the renal tracts for ureteric calculi.

    PubMed

    Tan, T J; Lau, Kenneth K; Jackson, Dana; Ardley, Nicholas; Borasu, Adina

    2017-04-01

    The purpose of this study was to assess the efficacy of model-based iterative reconstruction (MBIR), statistical iterative reconstruction (SIR), and filtered back projection (FBP) image reconstruction algorithms in the delineation of ureters and overall image quality on non-enhanced computed tomography of the renal tracts (NECT-KUB). This was a prospective study of 40 adult patients who underwent NECT-KUB for investigation of ureteric colic. Images were reconstructed using FBP, SIR, and MBIR techniques and individually and randomly assessed by two blinded radiologists. Parameters measured were overall image quality, presence of ureteric calculus, presence of hydronephrosis or hydroureters, image quality of each ureteric segment, total length of ureters unable to be visualized, attenuation values of image noise, and retroperitoneal fat content for each patient. There were no diagnostic discrepancies between image reconstruction modalities for urolithiasis. Overall image qualities and for each ureteric segment were superior using MBIR (67.5 % rated as 'Good to Excellent' vs. 25 % in SIR and 2.5 % in FBP). The lengths of non-visualized ureteric segments were shortest using MBIR (55.0 % measured 'less than 5 cm' vs. ASIR 33.8 % and FBP 10 %). MBIR was able to reduce overall image noise by up to 49.36 % over SIR and 71.02 % over FBP. MBIR technique improves overall image quality and visualization of ureters over FBP and SIR.

  5. Performance evaluation of algebraic reconstruction technique (ART) for prototype chest digital tomosynthesis (CDT) system

    NASA Astrophysics Data System (ADS)

    Lee, Haenghwa; Choi, Sunghoon; Jo, Byungdu; Kim, Hyemi; Lee, Donghoon; Kim, Dohyeon; Choi, Seungyeon; Lee, Youngjin; Kim, Hee-Joung

    2017-03-01

    Chest digital tomosynthesis (CDT) is a new 3D imaging technique that can be expected to improve the detection of subtle lung disease over conventional chest radiography. Algorithm development for CDT system is challenging in that a limited number of low-dose projections are acquired over a limited angular range. To confirm the feasibility of algebraic reconstruction technique (ART) method under variations in key imaging parameters, quality metrics were conducted using LUNGMAN phantom included grand-glass opacity (GGO) tumor. Reconstructed images were acquired from the total 41 projection images over a total angular range of +/-20°. We evaluated contrast-to-noise ratio (CNR) and artifacts spread function (ASF) to investigate the effect of reconstruction parameters such as number of iterations, relaxation parameter and initial guess on image quality. We found that proper value of ART relaxation parameter could improve image quality from the same projection. In this study, proper value of relaxation parameters for zero-image (ZI) and back-projection (BP) initial guesses were 0.4 and 0.6, respectively. Also, the maximum CNR values and the minimum full width at half maximum (FWHM) of ASF were acquired in the reconstructed images after 20 iterations and 3 iterations, respectively. According to the results, BP initial guess for ART method could provide better image quality than ZI initial guess. In conclusion, ART method with proper reconstruction parameters could improve image quality due to the limited angular range in CDT system.

  6. Improving Weak Lensing Mass Map Reconstructions using Gaussian and Sparsity Priors: Application to DES SV

    DOE PAGES

    Jeffrey, N.; Abdalla, F. B.; Lahav, O.; ...

    2018-05-15

    Mapping the underlying density field, including non-visible dark matter, using weak gravitational lensing measurements is now a standard tool in cosmology. Due to its importance to the science results of current and upcoming surveys, the quality of the convergence reconstruction methods should be well understood. We compare three different mass map reconstruction methods: Kaiser-Squires (KS), Wiener filter, and GLIMPSE. KS is a direct inversion method, taking no account of survey masks or noise. The Wiener filter is well motivated for Gaussian density fields in a Bayesian framework. The GLIMPSE method uses sparsity, with the aim of reconstructing non-linearities in themore » density field. We compare these methods with a series of tests on the public Dark Energy Survey (DES) Science Verification (SV) data and on realistic DES simulations. The Wiener filter and GLIMPSE methods offer substantial improvement on the standard smoothed KS with a range of metrics. For both the Wiener filter and GLIMPSE convergence reconstructions we present a 12% improvement in Pearson correlation with the underlying truth from simulations. To compare the mapping methods' abilities to find mass peaks, we measure the difference between peak counts from simulated {\\Lambda}CDM shear catalogues and catalogues with no mass fluctuations. This is a standard data vector when inferring cosmology from peak statistics. The maximum signal-to-noise value of these peak statistic data vectors was increased by a factor of 3.5 for the Wiener filter and by a factor of 9 using GLIMPSE. With simulations we measure the reconstruction of the harmonic phases, showing that the concentration of the phase residuals is improved 17% by GLIMPSE and 18% by the Wiener filter. We show that the correlation between the reconstructions from data and the foreground redMaPPer clusters is increased 18% by the Wiener filter and 32% by GLIMPSE. [Abridged]« less

  7. Improving Weak Lensing Mass Map Reconstructions using Gaussian and Sparsity Priors: Application to DES SV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey, N.; et al.

    2018-01-26

    Mapping the underlying density field, including non-visible dark matter, using weak gravitational lensing measurements is now a standard tool in cosmology. Due to its importance to the science results of current and upcoming surveys, the quality of the convergence reconstruction methods should be well understood. We compare three different mass map reconstruction methods: Kaiser-Squires (KS), Wiener filter, and GLIMPSE. KS is a direct inversion method, taking no account of survey masks or noise. The Wiener filter is well motivated for Gaussian density fields in a Bayesian framework. The GLIMPSE method uses sparsity, with the aim of reconstructing non-linearities in themore » density field. We compare these methods with a series of tests on the public Dark Energy Survey (DES) Science Verification (SV) data and on realistic DES simulations. The Wiener filter and GLIMPSE methods offer substantial improvement on the standard smoothed KS with a range of metrics. For both the Wiener filter and GLIMPSE convergence reconstructions we present a 12% improvement in Pearson correlation with the underlying truth from simulations. To compare the mapping methods' abilities to find mass peaks, we measure the difference between peak counts from simulated {\\Lambda}CDM shear catalogues and catalogues with no mass fluctuations. This is a standard data vector when inferring cosmology from peak statistics. The maximum signal-to-noise value of these peak statistic data vectors was increased by a factor of 3.5 for the Wiener filter and by a factor of 9 using GLIMPSE. With simulations we measure the reconstruction of the harmonic phases, showing that the concentration of the phase residuals is improved 17% by GLIMPSE and 18% by the Wiener filter. We show that the correlation between the reconstructions from data and the foreground redMaPPer clusters is increased 18% by the Wiener filter and 32% by GLIMPSE. [Abridged]« less

  8. Improving Weak Lensing Mass Map Reconstructions using Gaussian and Sparsity Priors: Application to DES SV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey, N.; Abdalla, F. B.; Lahav, O.

    Mapping the underlying density field, including non-visible dark matter, using weak gravitational lensing measurements is now a standard tool in cosmology. Due to its importance to the science results of current and upcoming surveys, the quality of the convergence reconstruction methods should be well understood. We compare three different mass map reconstruction methods: Kaiser-Squires (KS), Wiener filter, and GLIMPSE. KS is a direct inversion method, taking no account of survey masks or noise. The Wiener filter is well motivated for Gaussian density fields in a Bayesian framework. The GLIMPSE method uses sparsity, with the aim of reconstructing non-linearities in themore » density field. We compare these methods with a series of tests on the public Dark Energy Survey (DES) Science Verification (SV) data and on realistic DES simulations. The Wiener filter and GLIMPSE methods offer substantial improvement on the standard smoothed KS with a range of metrics. For both the Wiener filter and GLIMPSE convergence reconstructions we present a 12% improvement in Pearson correlation with the underlying truth from simulations. To compare the mapping methods' abilities to find mass peaks, we measure the difference between peak counts from simulated {\\Lambda}CDM shear catalogues and catalogues with no mass fluctuations. This is a standard data vector when inferring cosmology from peak statistics. The maximum signal-to-noise value of these peak statistic data vectors was increased by a factor of 3.5 for the Wiener filter and by a factor of 9 using GLIMPSE. With simulations we measure the reconstruction of the harmonic phases, showing that the concentration of the phase residuals is improved 17% by GLIMPSE and 18% by the Wiener filter. We show that the correlation between the reconstructions from data and the foreground redMaPPer clusters is increased 18% by the Wiener filter and 32% by GLIMPSE. [Abridged]« less

  9. A synthetic bioactive resorbable graft for predictable implant reconstruction: part one.

    PubMed

    Valen, Maurice; Ganz, Scott D

    2002-01-01

    Animal studies were conducted to evaluate the cell response and chemical potentiality of a synthetic bioactive resorbable graft (SBRG) made of nonceramic cluster particulate of low-temperature HA material. The study evaluated bone-bridging of the SBRG particulates in 1-mm wide implant channels of 5 x 8 mm long roughened titanium interface in 6 dogs and compared results to the same implant channels left empty as controls at 6- and 12-week intervals. Resorption rate capacity and cell response were evaluated with an assessment of the chemical characterization of the synthetic nonceramic material next to the titanium implant interfaces. Results of the animal studies were compared with human histologic biopsies of the SBRG for bone quality, density, and bone growth into defect sites concurrent with resorption time of the graft. One human biopsy consisted of a graft mixture of the SBRG and dense bovine-derived HA, compared under the electron microscope, including histology by H and E staining. Part 1 of this paper presents evidence of the predictability and efficacy of the SBRG osteoconductive, particulate chemical potentiality to aid in the regeneration of lost bone anatomy next to titanium implant interfaces. Recent technological innovations in computer hardware and software have given clinicians the tools to determine 3-dimensional quality and density of bone, including anatomical discrepancies, which can aid in the diagnosis and treatment planning for grafting procedures. When teeth are extracted, the surrounding bone and soft tissue are challenged as a result of the natural resorptive process. The diminished structural foundation for prosthetic reconstruction, with or without implants, can be compromised. A synthetic bioactive resorbable graft material having osteoconductive biochemical and biomechanical qualities similar to the host bone provides the means to improve compromised bone topography for ridge preservation, ridge augmentation, or to enhance the bony site for implant placement and subsequent prosthetic rehabilitation. Part two of this paper will demonstrate clinical applications of the SBRG material for purposes of implant placement and prosthetic reconstruction.

  10. ATLAS offline data quality monitoring

    NASA Astrophysics Data System (ADS)

    Adelman, J.; Baak, M.; Boelaert, N.; D'Onofrio, M.; Frost, J. A.; Guyot, C.; Hauschild, M.; Hoecker, A.; Leney, K. J. C.; Lytken, E.; Martinez-Perez, M.; Masik, J.; Nairz, A. M.; Onyisi, P. U. E.; Roe, S.; Schaetzel, S.; Wilson, M. G.

    2010-04-01

    The ATLAS experiment at the Large Hadron Collider reads out 100 Million electronic channels at a rate of 200 Hz. Before the data are shipped to storage and analysis centres across the world, they have to be checked to be free from irregularities which render them scientifically useless. Data quality offline monitoring provides prompt feedback from full first-pass event reconstruction at the Tier-0 computing centre and can unveil problems in the detector hardware and in the data processing chain. Detector information and reconstructed proton-proton collision event characteristics are distilled into a few key histograms and numbers which are automatically compared with a reference. The results of the comparisons are saved as status flags in a database and are published together with the histograms on a web server. They are inspected by a 24/7 shift crew who can notify on-call experts in case of problems and in extreme cases signal data taking abort.

  11. Improved look-up table method of computer-generated holograms.

    PubMed

    Wei, Hui; Gong, Guanghong; Li, Ni

    2016-11-10

    Heavy computation load and vast memory requirements are major bottlenecks of computer-generated holograms (CGHs), which are promising and challenging in three-dimensional displays. To solve these problems, an improved look-up table (LUT) method suitable for arbitrarily sampled object points is proposed and implemented on a graphics processing unit (GPU) whose reconstructed object quality is consistent with that of the coherent ray-trace (CRT) method. The concept of distance factor is defined, and the distance factors are pre-computed off-line and stored in a look-up table. The results show that while reconstruction quality close to that of the CRT method is obtained, the on-line computation time is dramatically reduced compared with the LUT method on the GPU and the memory usage is lower than that of the novel-LUT considerably. Optical experiments are carried out to validate the effectiveness of the proposed method.

  12. Characterization of a CT unit for the detection of low contrast structures

    NASA Astrophysics Data System (ADS)

    Viry, Anais; Racine, Damien; Ba, Alexandre; Becce, Fabio; Bochud, François O.; Verdun, Francis R.

    2017-03-01

    Major technological advances in CT enable the acquisition of high quality images while minimizing patient exposure. The goal of this study was to objectively compare two generations of iterative reconstruction (IR) algorithms for the detection of low contrast structures. An abdominal phantom (QRM, Germany), containing 8, 6 and 5mm-diameter spheres (with a nominal contrast of 20HU) was scanned using our standard clinical noise index settings on a GE CT: "Discovery 750 HD". Two additional rings (2.5 and 5 cm) were also added to the phantom. Images were reconstructed using FBP, ASIR-50%, and VEO (full statistical Model Based Iterative Reconstruction, MBIR). The reconstructed slice thickness was 2.5 mm except 0.625 mm for VEO reconstructions. NPS was calculated to highlight the potential noise reduction of each IR algorithm. To assess LCD (low Contrast Detectability), a Channelized Hotelling Observer (CHO) with 10 DDoG channels was used with the area under the curve (AUC) as a figure of merit. Spheres contrast was also measured. ASIR-50% allowed a noise reduction by a factor two when compared to FBP without an improvement of the LCD. VEO allowed an additional noise reduction with a thinner slice thickness compared to ASIR-50% but with a major improvement of the LCD especially for the large-sized phantom and small lesions. Contrast decreased up to 10% with the phantom size increase for FBP and ASIR-50% and remained constant with VEO. VEO is particularly interesting for LCD when dealing with large patients and small lesion sizes and when the detection task is difficult.

  13. WE-EF-207-09: Single-Scan Dual-Energy CT Using Primary Modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrongolo, M; Zhu, L

    Purpose: Compared with conventional CT, dual energy CT (DECT) provides better material differentiation but requires projection data with two different effective x-ray spectra. Current DECT scanners use either a two-scan setting or costly imaging components, which are not feasible or available on open-gantry cone-beam CT systems. We propose a hardware-based method which utilizes primary modulation to enable single-scan DECT on a conventional CT scanner. The CT imaging geometry of primary modulation is identical to that used in our previous method for scatter removal, making it possible for future combination with effective scatter correction on the same CT scanner. Methods: Wemore » insert an attenuation sheet with a spatially-varying pattern - primary modulator-between the x-ray source and the imaged object. During the CT scan, the modulator selectively hardens the x-ray beam at specific detector locations. Thus, the proposed method simultaneously acquires high and low energy data. High and low energy CT images are then reconstructed from projections with missing data via an iterative CT reconstruction algorithm with gradient weighting. Proof-of-concept studies are performed using a copper modulator on a cone-beam CT system. Results: Our preliminary results on the Catphan(c) 600 phantom indicate that the proposed method for single-scan DECT is able to successfully generate high-quality high and low energy CT images and distinguish different materials through basis material decomposition. By applying correction algorithms and using all of the acquired projection data, we can reconstruct a single CT image of comparable image quality to conventional CT images, i.e., without primary modulation. Conclusion: This work shows great promise in using a primary modulator to perform high-quality single-scan DECT imaging. Future studies will test method performance on anthropomorphic phantoms and perform quantitative analyses on image qualities and DECT decomposition accuracy. We will use simulations to optimize the modulator material and geometry parameters.« less

  14. Effectiveness and safety of cryotherapy after arthroscopic anterior cruciate ligament reconstruction. A systematic review of the literature.

    PubMed

    Martimbianco, Ana Luiza Cabrera; Gomes da Silva, Brenda Nazaré; de Carvalho, Alan Pedrosa Viegas; Silva, Valter; Torloni, Maria Regina; Peccin, Maria Stella

    2014-11-01

    Cryotherapy is widely used in rehabilitation; however, its effectiveness after anterior cruciate ligament (ACL) reconstruction remains uncertain. To investigate the effectiveness and safety of cryotherapy following ACL reconstruction through a systematic review, randomized and quasi-randomized clinical trials were searched in the databases: MEDLINE, EMBASE, CENTRAL, PEDro, SportDiscus, CINAHL, LILACS (June 2013). The primary outcomes measures were pain, edema and adverse events; the secondary outcomes were knee function, analgesic medication use, range of motion, blood loss, hospital stay, quality of life and patient satisfaction. The methodological quality of studies was evaluated using the Cochrane Collaboration risk-of-bias tool. Ten trials (a total of 573 patients) were included. Results of meta-analysis showed that the use of cold compression devices produced a significant reduction in pain scores 48 h after surgery (p < 0.00001), compared to no cryotherapy. The risk for adverse events did not differ between patients receiving cryotherapy versus no treatment (p = 1.00). The limited evidence currently available is insufficient to draw definitive conclusions on the effectiveness of cryotherapy for other outcomes. There is a need for well designed, good quality randomized trials to answer other questions related to this intervention and increase the precision of future systematic reviews. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Online geometric calibration of cone-beam computed tomography for arbitrary imaging objects.

    PubMed

    Meng, Yuanzheng; Gong, Hui; Yang, Xiaoquan

    2013-02-01

    A novel online method based on the symmetry property of the sum of projections (SOP) is proposed to obtain the geometric parameters in cone-beam computed tomography (CBCT). This method requires no calibration phantom and can be used in circular trajectory CBCT with arbitrary cone angles. An objective function is deduced to illustrate the dependence of the symmetry of SOP on geometric parameters, which will converge to its minimum when the geometric parameters achieve their true values. Thus, by minimizing the objective function, we can obtain the geometric parameters for image reconstruction. To validate this method, numerical phantom studies with different noise levels are simulated. The results show that our method is insensitive to the noise and can determine the skew (in-plane rotation angle of the detector), the roll (rotation angle around the projection of the rotation axis on the detector), and the rotation axis with high accuracy, while the mid-plane and source-to-detector distance will be obtained with slightly lower accuracy. However, our simulation studies validate that the errors of the latter two parameters brought by our method will hardly degrade the quality of reconstructed images. The small animal studies show that our method is able to deal with arbitrary imaging objects. In addition, the results of the reconstructed images in different slices demonstrate that we have achieved comparable image quality in the reconstructions as some offline methods.

  16. Model-based iterative reconstruction in low-dose CT colonography-feasibility study in 65 patients for symptomatic investigation.

    PubMed

    Vardhanabhuti, Varut; James, Julia; Nensey, Rehaan; Hyde, Christopher; Roobottom, Carl

    2015-05-01

    To compare image quality on computed tomographic colonography (CTC) acquired at standard dose (STD) and low dose (LD) using filtered-back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction (MBIR) techniques. A total of 65 symptomatic patients were prospectively enrolled for the study and underwent STD and LD CTC with filtered-back projection, adaptive statistical iterative reconstruction, and MBIR to allow direct per-patient comparison. Objective image noise, subjective image analyses, and polyp detection were assessed. Objective image noise analysis demonstrates significant noise reduction using MBIR technique (P < .05) despite being acquired at lower doses. Subjective image analyses were superior for LD MBIR in all parameters except visibility of extracolonic lesions (two-dimensional) and visibility of colonic wall (three-dimensional) where there were no significant differences. There was no significant difference in polyp detection rates (P > .05). Doses: LD (dose-length product, 257.7), STD (dose-length product, 483.6). LD MBIR CTC objectively shows improved image noise using parameters in our study. Subjectively, image quality is maintained. Polyp detection shows no significant difference but because of small numbers needs further validation. Average dose reduction of 47% can be achieved. This study confirms feasibility of using MBIR in this context of CTC in symptomatic population. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  17. Iterative image reconstruction that includes a total variation regularization for radial MRI.

    PubMed

    Kojima, Shinya; Shinohara, Hiroyuki; Hashimoto, Takeyuki; Hirata, Masami; Ueno, Eiko

    2015-07-01

    This paper presents an iterative image reconstruction method for radial encodings in MRI based on a total variation (TV) regularization. The algebraic reconstruction method combined with total variation regularization (ART_TV) is implemented with a regularization parameter specifying the weight of the TV term in the optimization process. We used numerical simulations of a Shepp-Logan phantom, as well as experimental imaging of a phantom that included a rectangular-wave chart, to evaluate the performance of ART_TV, and to compare it with that of the Fourier transform (FT) method. The trade-off between spatial resolution and signal-to-noise ratio (SNR) was investigated for different values of the regularization parameter by experiments on a phantom and a commercially available MRI system. ART_TV was inferior to the FT with respect to the evaluation of the modulation transfer function (MTF), especially at high frequencies; however, it outperformed the FT with regard to the SNR. In accordance with the results of SNR measurement, visual impression suggested that the image quality of ART_TV was better than that of the FT for reconstruction of a noisy image of a kiwi fruit. In conclusion, ART_TV provides radial MRI with improved image quality for low-SNR data; however, the regularization parameter in ART_TV is a critical factor for obtaining improvement over the FT.

  18. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto; Hansen, Olfred; Brink, Carsten

    2016-08-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five lung cancer patients. Projection image based artefact corrections of image lag, detector scatter, body scatter and beam hardening are described and applied to CBCT images of five lung cancer patients. Image quality is evaluated through visual appearance of the reconstructed images, HU-correspondence with the planning CT images, and total volume HU error. Artefacts are reduced and CT-like HUs are recovered in the artefact corrected CBCT images. Visual inspection confirms that artefacts are indeed suppressed by the proposed method, and the HU root mean square difference between reconstructed CBCTs and the reference CT images are reduced by 31% when using the artefact corrections compared to the standard clinical CBCT reconstruction. A versatile artefact correction method for clinical CBCT images acquired for IGRT has been developed. HU values are recovered in the corrected CBCT images. The proposed method relies on post processing of clinical projection images, and does not require patient specific optimisation. It is thus a powerful tool for image quality improvement of large numbers of CBCT images.

  19. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure.

    PubMed

    Maier, Joscha; Sawall, Stefan; Kachelrieß, Marc

    2014-05-01

    Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levels from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the HDTV algorithm shows the best performance. At 50 mGy, the deviation from the reference obtained at 500 mGy were less than 4%. Also the LDPC algorithm provides reasonable results with deviation less than 10% at 50 mGy while PCF and MKB reconstruction show larger deviations even at higher dose levels. LDPC and HDTV increase CNR and allow for quantitative evaluations even at dose levels as low as 50 mGy. The left ventricular volumes exemplarily illustrate that cardiac parameters can be accurately estimated at lowest dose levels if sophisticated algorithms are used. This allows to reduce dose by a factor of 10 compared to today's gold standard and opens new options for longitudinal studies of the heart.

  20. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, Joscha, E-mail: joscha.maier@dkfz.de; Sawall, Stefan; Kachelrieß, Marc

    2014-05-15

    Purpose: Phase-correlated microcomputed tomography (micro-CT) imaging plays an important role in the assessment of mouse models of cardiovascular diseases and the determination of functional parameters as the left ventricular volume. As the current gold standard, the phase-correlated Feldkamp reconstruction (PCF), shows poor performance in case of low dose scans, more sophisticated reconstruction algorithms have been proposed to enable low-dose imaging. In this study, the authors focus on the McKinnon-Bates (MKB) algorithm, the low dose phase-correlated (LDPC) reconstruction, and the high-dimensional total variation minimization reconstruction (HDTV) and investigate their potential to accurately determine the left ventricular volume at different dose levelsmore » from 50 to 500 mGy. The results were verified in phantom studies of a five-dimensional (5D) mathematical mouse phantom. Methods: Micro-CT data of eight mice, each administered with an x-ray dose of 500 mGy, were acquired, retrospectively gated for cardiac and respiratory motion and reconstructed using PCF, MKB, LDPC, and HDTV. Dose levels down to 50 mGy were simulated by using only a fraction of the projections. Contrast-to-noise ratio (CNR) was evaluated as a measure of image quality. Left ventricular volume was determined using different segmentation algorithms (Otsu, level sets, region growing). Forward projections of the 5D mouse phantom were performed to simulate a micro-CT scan. The simulated data were processed the same way as the real mouse data sets. Results: Compared to the conventional PCF reconstruction, the MKB, LDPC, and HDTV algorithm yield images of increased quality in terms of CNR. While the MKB reconstruction only provides small improvements, a significant increase of the CNR is observed in LDPC and HDTV reconstructions. The phantom studies demonstrate that left ventricular volumes can be determined accurately at 500 mGy. For lower dose levels which were simulated for real mouse data sets, the HDTV algorithm shows the best performance. At 50 mGy, the deviation from the reference obtained at 500 mGy were less than 4%. Also the LDPC algorithm provides reasonable results with deviation less than 10% at 50 mGy while PCF and MKB reconstruction show larger deviations even at higher dose levels. Conclusions: LDPC and HDTV increase CNR and allow for quantitative evaluations even at dose levels as low as 50 mGy. The left ventricular volumes exemplarily illustrate that cardiac parameters can be accurately estimated at lowest dose levels if sophisticated algorithms are used. This allows to reduce dose by a factor of 10 compared to today's gold standard and opens new options for longitudinal studies of the heart.« less

  1. Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Miao, Jianwei; Hodgson, Keith O.; Ishikawa, Tetsuya; Larabell, Carolyn A.; Legros, Mark A.; Nishino, Yoshinori

    2003-01-01

    We report the first experimental recording, to our knowledge, of the diffraction pattern from intact Escherichia coli bacteria using coherent x-rays with a wavelength of 2 Å. By using the oversampling phasing method, a real space image at a resolution of 30 nm was directly reconstructed from the diffraction pattern. An R factor used for characterizing the quality of the reconstruction was in the range of 5%, which demonstrated the reliability of the reconstruction process. The distribution of proteins inside the bacteria labeled with manganese oxide has been identified and this distribution confirmed by fluorescence microscopy images. Compared with lens-based microscopy, this diffraction-based imaging approach can examine thicker samples, such as whole cultured cells, in three dimensions with resolution limited only by radiation damage. Looking forward, the successful recording and reconstruction of diffraction patterns from biological samples reported here represent an important step toward the potential of imaging single biomolecules at near-atomic resolution by combining single-particle diffraction with x-ray free electron lasers.

  2. A Comparison of Compressed Sensing and Sparse Recovery Algorithms Applied to Simulation Data

    DOE PAGES

    Fan, Ya Ju; Kamath, Chandrika

    2016-09-01

    The move toward exascale computing for scientific simulations is placing new demands on compression techniques. It is expected that the I/O system will not be able to support the volume of data that is expected to be written out. To enable quantitative analysis and scientific discovery, we are interested in techniques that compress high-dimensional simulation data and can provide perfect or near-perfect reconstruction. In this paper, we explore the use of compressed sensing (CS) techniques to reduce the size of the data before they are written out. Using large-scale simulation data, we investigate how the sufficient sparsity condition and themore » contrast in the data affect the quality of reconstruction and the degree of compression. Also, we provide suggestions for the practical implementation of CS techniques and compare them with other sparse recovery methods. Finally, our results show that despite longer times for reconstruction, compressed sensing techniques can provide near perfect reconstruction over a range of data with varying sparsity.« less

  3. A Comparison of Compressed Sensing and Sparse Recovery Algorithms Applied to Simulation Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ya Ju; Kamath, Chandrika

    The move toward exascale computing for scientific simulations is placing new demands on compression techniques. It is expected that the I/O system will not be able to support the volume of data that is expected to be written out. To enable quantitative analysis and scientific discovery, we are interested in techniques that compress high-dimensional simulation data and can provide perfect or near-perfect reconstruction. In this paper, we explore the use of compressed sensing (CS) techniques to reduce the size of the data before they are written out. Using large-scale simulation data, we investigate how the sufficient sparsity condition and themore » contrast in the data affect the quality of reconstruction and the degree of compression. Also, we provide suggestions for the practical implementation of CS techniques and compare them with other sparse recovery methods. Finally, our results show that despite longer times for reconstruction, compressed sensing techniques can provide near perfect reconstruction over a range of data with varying sparsity.« less

  4. Reconstruction of electrical impedance tomography (EIT) images based on the expectation maximum (EM) method.

    PubMed

    Wang, Qi; Wang, Huaxiang; Cui, Ziqiang; Yang, Chengyi

    2012-11-01

    Electrical impedance tomography (EIT) calculates the internal conductivity distribution within a body using electrical contact measurements. The image reconstruction for EIT is an inverse problem, which is both non-linear and ill-posed. The traditional regularization method cannot avoid introducing negative values in the solution. The negativity of the solution produces artifacts in reconstructed images in presence of noise. A statistical method, namely, the expectation maximization (EM) method, is used to solve the inverse problem for EIT in this paper. The mathematical model of EIT is transformed to the non-negatively constrained likelihood minimization problem. The solution is obtained by the gradient projection-reduced Newton (GPRN) iteration method. This paper also discusses the strategies of choosing parameters. Simulation and experimental results indicate that the reconstructed images with higher quality can be obtained by the EM method, compared with the traditional Tikhonov and conjugate gradient (CG) methods, even with non-negative processing. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  5. MR Guided PET Image Reconstruction

    PubMed Central

    Bai, Bing; Li, Quanzheng; Leahy, Richard M.

    2013-01-01

    The resolution of PET images is limited by the physics of positron-electron annihilation and instrumentation for photon coincidence detection. Model based methods that incorporate accurate physical and statistical models have produced significant improvements in reconstructed image quality when compared to filtered backprojection reconstruction methods. However, it has often been suggested that by incorporating anatomical information, the resolution and noise properties of PET images could be improved, leading to better quantitation or lesion detection. With the recent development of combined MR-PET scanners, it is possible to collect intrinsically co-registered MR images. It is therefore now possible to routinely make use of anatomical information in PET reconstruction, provided appropriate methods are available. In this paper we review research efforts over the past 20 years to develop these methods. We discuss approaches based on the use of both Markov random field priors and joint information or entropy measures. The general framework for these methods is described and their performance and longer term potential and limitations discussed. PMID:23178087

  6. Advanced Imaging Methods for Long-Baseline Optical Interferometry

    NASA Astrophysics Data System (ADS)

    Le Besnerais, G.; Lacour, S.; Mugnier, L. M.; Thiebaut, E.; Perrin, G.; Meimon, S.

    2008-11-01

    We address the data processing methods needed for imaging with a long baseline optical interferometer. We first describe parametric reconstruction approaches and adopt a general formulation of nonparametric image reconstruction as the solution of a constrained optimization problem. Within this framework, we present two recent reconstruction methods, Mira and Wisard, representative of the two generic approaches for dealing with the missing phase information. Mira is based on an implicit approach and a direct optimization of a Bayesian criterion while Wisard adopts a self-calibration approach and an alternate minimization scheme inspired from radio-astronomy. Both methods can handle various regularization criteria. We review commonly used regularization terms and introduce an original quadratic regularization called ldquosoft support constraintrdquo that favors the object compactness. It yields images of quality comparable to nonquadratic regularizations on the synthetic data we have processed. We then perform image reconstructions, both parametric and nonparametric, on astronomical data from the IOTA interferometer, and discuss the respective roles of parametric and nonparametric approaches for optical interferometric imaging.

  7. Optimized image acquisition for breast tomosynthesis in projection and reconstruction space.

    PubMed

    Chawla, Amarpreet S; Lo, Joseph Y; Baker, Jay A; Samei, Ehsan

    2009-11-01

    Breast tomosynthesis has been an exciting new development in the field of breast imaging. While the diagnostic improvement via tomosynthesis is notable, the full potential of tomosynthesis has not yet been realized. This may be attributed to the dependency of the diagnostic quality of tomosynthesis on multiple variables, each of which needs to be optimized. Those include dose, number of angular projections, and the total angular span of those projections. In this study, the authors investigated the effects of these acquisition parameters on the overall diagnostic image quality of breast tomosynthesis in both the projection and reconstruction space. Five mastectomy specimens were imaged using a prototype tomosynthesis system. 25 angular projections of each specimen were acquired at 6.2 times typical single-view clinical dose level. Images at lower dose levels were then simulated using a noise modification routine. Each projection image was supplemented with 84 simulated 3 mm 3D lesions embedded at the center of 84 nonoverlapping ROIs. The projection images were then reconstructed using a filtered backprojection algorithm at different combinations of acquisition parameters to investigate which of the many possible combinations maximizes the performance. Performance was evaluated in terms of a Laguerre-Gauss channelized Hotelling observer model-based measure of lesion detectability. The analysis was also performed without reconstruction by combining the model results from projection images using Bayesian decision fusion algorithm. The effect of acquisition parameters on projection images and reconstructed slices were then compared to derive an optimization rule for tomosynthesis. The results indicated that projection images yield comparable but higher performance than reconstructed images. Both modes, however, offered similar trends: Performance improved with an increase in the total acquisition dose level and the angular span. Using a constant dose level and angular span, the performance rolled off beyond a certain number of projections, indicating that simply increasing the number of projections in tomosynthesis may not necessarily improve its performance. The best performance for both projection images and tomosynthesis slices was obtained for 15-17 projections spanning an angular are of approximately 45 degrees--the maximum tested in our study, and for an acquisition dose equal to single-view mammography. The optimization framework developed in this framework is applicable to other reconstruction techniques and other multiprojection systems.

  8. Prospective ECG-Triggered Coronary CT Angiography: Clinical Value of Noise-Based Tube Current Reduction Method with Iterative Reconstruction

    PubMed Central

    Shen, Junlin; Du, Xiangying; Guo, Daode; Cao, Lizhen; Gao, Yan; Yang, Qi; Li, Pengyu; Liu, Jiabin; Li, Kuncheng

    2013-01-01

    Objectives To evaluate the clinical value of noise-based tube current reduction method with iterative reconstruction for obtaining consistent image quality with dose optimization in prospective electrocardiogram (ECG)-triggered coronary CT angiography (CCTA). Materials and Methods We performed a prospective randomized study evaluating 338 patients undergoing CCTA with prospective ECG-triggering. Patients were randomly assigned to fixed tube current with filtered back projection (Group 1, n = 113), noise-based tube current with filtered back projection (Group 2, n = 109) or with iterative reconstruction (Group 3, n = 116). Tube voltage was fixed at 120 kV. Qualitative image quality was rated on a 5-point scale (1 = impaired, to 5 = excellent, with 3–5 defined as diagnostic). Image noise and signal intensity were measured; signal-to-noise ratio was calculated; radiation dose parameters were recorded. Statistical analyses included one-way analysis of variance, chi-square test, Kruskal-Wallis test and multivariable linear regression. Results Image noise was maintained at the target value of 35HU with small interquartile range for Group 2 (35.00–35.03HU) and Group 3 (34.99–35.02HU), while from 28.73 to 37.87HU for Group 1. All images in the three groups were acceptable for diagnosis. A relative 20% and 51% reduction in effective dose for Group 2 (2.9 mSv) and Group 3 (1.8 mSv) were achieved compared with Group 1 (3.7 mSv). After adjustment for scan characteristics, iterative reconstruction was associated with 26% reduction in effective dose. Conclusion Noise-based tube current reduction method with iterative reconstruction maintains image noise precisely at the desired level and achieves consistent image quality. Meanwhile, effective dose can be reduced by more than 50%. PMID:23741444

  9. Feasibility Study of Radiation Dose Reduction in Adult Female Pelvic CT Scan with Low Tube-Voltage and Adaptive Statistical Iterative Reconstruction

    PubMed Central

    Wang, Xinlian; Chen, Jianghong; Hu, Zhihai; Zhao, Liqin

    2015-01-01

    Objective To evaluate image quality of female pelvic computed tomography (CT) scans reconstructed with the adaptive statistical iterative reconstruction (ASIR) technique combined with low tube-voltage and to explore the feasibility of its clinical application. Materials and Methods Ninety-four patients were divided into two groups. The study group used 100 kVp, and images were reconstructed with 30%, 50%, 70%, and 90% ASIR. The control group used 120 kVp, and images were reconstructed with 30% ASIR. The noise index was 15 for the study group and 11 for the control group. The CT values and noise levels of different tissues were measured. The contrast to noise ratio (CNR) was calculated. A subjective evaluation was carried out by two experienced radiologists. The CT dose index volume (CTDIvol) was recorded. Results A 44.7% reduction in CTDIvol was observed in the study group (8.18 ± 3.58 mGy) compared with that in the control group (14.78 ± 6.15 mGy). No significant differences were observed in the tissue noise levels and CNR values between the 70% ASIR group and the control group (p = 0.068-1.000). The subjective scores indicated that visibility of small structures, diagnostic confidence, and the overall image quality score in the 70% ASIR group was the best, and were similar to those in the control group (1.87 vs. 1.79, 1.26 vs. 1.28, and 4.53 vs. 4.57; p = 0.122-0.585). No significant difference in diagnostic accuracy was detected between the study group and the control group (42/47 vs. 43/47, p = 1.000). Conclusion Low tube-voltage combined with automatic tube current modulation and 70% ASIR allowed the low CT radiation dose to be reduced by 44.7% without losing image quality on female pelvic scan. PMID:26357499

  10. Task-based image quality evaluation of iterative reconstruction methods for low dose CT using computer simulations

    NASA Astrophysics Data System (ADS)

    Xu, Jingyan; Fuld, Matthew K.; Fung, George S. K.; Tsui, Benjamin M. W.

    2015-04-01

    Iterative reconstruction (IR) methods for x-ray CT is a promising approach to improve image quality or reduce radiation dose to patients. The goal of this work was to use task based image quality measures and the channelized Hotelling observer (CHO) to evaluate both analytic and IR methods for clinical x-ray CT applications. We performed realistic computer simulations at five radiation dose levels, from a clinical reference low dose D0 to 25% D0. A fixed size and contrast lesion was inserted at different locations into the liver of the XCAT phantom to simulate a weak signal. The simulated data were reconstructed on a commercial CT scanner (SOMATOM Definition Flash; Siemens, Forchheim, Germany) using the vendor-provided analytic (WFBP) and IR (SAFIRE) methods. The reconstructed images were analyzed by CHOs with both rotationally symmetric (RS) and rotationally oriented (RO) channels, and with different numbers of lesion locations (5, 10, and 20) in a signal known exactly (SKE), background known exactly but variable (BKEV) detection task. The area under the receiver operating characteristic curve (AUC) was used as a summary measure to compare the IR and analytic methods; the AUC was also used as the equal performance criterion to derive the potential dose reduction factor of IR. In general, there was a good agreement in the relative AUC values of different reconstruction methods using CHOs with RS and RO channels, although the CHO with RO channels achieved higher AUCs than RS channels. The improvement of IR over analytic methods depends on the dose level. The reference dose level D0 was based on a clinical low dose protocol, lower than the standard dose due to the use of IR methods. At 75% D0, the performance improvement was statistically significant (p < 0.05). The potential dose reduction factor also depended on the detection task. For the SKE/BKEV task involving 10 lesion locations, a dose reduction of at least 25% from D0 was achieved.

  11. Non-contrast CT at comparable dose to an abdominal radiograph in patients with acute renal colic; impact of iterative reconstruction on image quality and diagnostic performance.

    PubMed

    McLaughlin, P D; Murphy, K P; Hayes, S A; Carey, K; Sammon, J; Crush, L; O'Neill, F; Normoyle, B; McGarrigle, A M; Barry, J E; Maher, M M

    2014-04-01

    The aim was to assess the performance of low-dose non-contrast CT of the urinary tract (LD-CT) acquired at radiation exposures close to that of abdominal radiography using adaptive statistical iterative reconstruction (ASiR). Thirty-three patients with clinically suspected renal colic were prospectively included. Conventional dose (CD-CT) and LD-CT data sets were contemporaneously acquired. LD-CT images were reconstructed with 40 %, 70 % and 90 % ASiR. Image quality was subjectively and objectively measured. Images were also clinically interpreted. Mean ED was 0.48 ± 0.07 mSv for LD-CT compared with 4.43 ± 3.14 mSv for CD-CT. Increasing the percentage ASiR resulted in a step-wise reduction in mean objective noise (p < 0.001 for all comparisons). Seventy % ASiR LD-CT images had higher diagnostic acceptability and spatial resolution than 90 % ASiR LD-CT images (p < 0.001). Twenty-seven calculi (diameter = 5.5 ± 1.7 mm), including all ureteric stones, were correctly identified using 70 % ASiR LD-CT with two false positives and 16 false negatives (diameter = 2.3 ± 0.7 mm) equating to a sensitivity and specificity of 72 % and 94 %. Seventy % ASiR LD-CT had a sensitivity and specificity of 87 % and 100 % for detection of calculi >3 mm. Reconstruction of LD-CT images with 70 % ASiR resulted in superior image quality than FBP, 40 % ASIR and 90 % ASIR. LD-CT with ASIR demonstrates high sensitivity and specificity for detection of calculi >3 mm. • Low-dose CT studies for urinary calculus detection were performed with a mean dose of 0.48 ± 0.07 mSv • Low-dose CT with 70 % ASiR detected calculi >3 mm with a sensitivity and specificity of 87 % and 100 % • Reconstruction with 70 % ASiR was superior to filtered back projection, 40 % ASiR and 90 % ASiR images.

  12. Efficient radial tagging CMR exam: A coherent k-space reading and image reconstruction approach.

    PubMed

    Golshani, Shokoufeh; Nasiraei-Moghaddam, Abbas

    2017-04-01

    Cardiac MR tagging techniques, which facilitate the strain evaluation, have not yet been widely adopted in clinics due to inefficiencies in acquisition and postprocessing. This problem may be alleviated by exploiting the coherency in the three steps of tagging: preparation, acquisition, and reconstruction. Herein, we propose a fully polar-based tagging approach that may lead to real-time strain mapping. Radial readout trajectories were used to acquire radial tagging images and a Hankel-based algorithm, referred to as Polar Fourier Transform (PFT), has been adapted for reconstruction of the acquired raw data. In both phantom and human subjects, the overall performance of the method was investigated against radial undersampling and compared with the conventional reconstruction methods. Radially tagged images were reconstructed by the proposed PFT method from as few as 24 spokes with normalized root-mean-square-error of less than 3%. The reconstructed images showed a central focusing behavior, where the undersampling effects were pushed to the peripheral areas out of the central region of interest. Comparing the results with the re-gridding reconstruction technique, superior image quality and high robustness of the method were further established. In addition, a relative increase of 68 ± 2.5% in tagline sharpness was achieved for the PFT images and also higher tagging contrast (72 ± 5.6%), resulted from the well-tolerated undersampling artifacts, was observed in all reconstructions. The proposed approach led to the acceleration of the acquisition process, which was evaluated for up to eight-fold retrospectively from the fully sampled data. This is promising toward real-time imaging, and in contrast to iterative techniques, the method is consistent with online reconstruction. Magn Reson Med 77:1459-1472, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  13. Head CT: Image quality improvement with ASIR-V using a reduced radiation dose protocol for children.

    PubMed

    Kim, Hyun Gi; Lee, Ho-Joon; Lee, Seung-Koo; Kim, Hyun Ji; Kim, Myung-Joon

    2017-09-01

    To investigate the quality of images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V), using pediatric head CT protocols. A phantom was scanned at decreasing 20% mA intervals using our standard pediatric head CT protocols. Each study was then reconstructed at 10% ASIR-V intervals. After the phantom study, we reduced mA by 10% in the protocol for <3-year-old patients and applied 30% ASIR-V and by 30% in the protocol for 3- to 15-year-old patients and applied 40% ASIR-V. Increasing the percentage of ASIR-V resulted in lower noise and higher contrast-to-noise ratio (CNR) and preserved spatial resolution in the phantom study. Compared to a conventional-protocol, reduced-dose protocol with ASIR-V achieved 12.8% to 34.0% of dose reduction and showed images of lower noise (9.22 vs. 10.73, P = 0.043) and higher CNR in different levels (centrum semiovale, 2.14 vs. 1.52, P = 0.003; basal ganglia, 1.46 vs. 1.07, P = 0.001; and cerebellum, 2.18 vs. 1.33, P < 0.001). Qualitative analysis showed higher gray-white matter differentiation and sharpness and preserved overall diagnostic quality in the images with ASIR-V. Use of ASIR-V allowed a 12.8% to 34.0% dose reduction in each age group with potential to improve image quality. • It is possible to reduce radiation dose and improve image quality with ASIR-V. • We improved noise and CNR and decreased radiation dose. • Sharpness improved with ASIR-V. • Total radiation dose was decreased by 12.8% to 34.0%.

  14. Use of a hybrid iterative reconstruction technique to reduce image noise and improve image quality in obese patients undergoing computed tomographic pulmonary angiography.

    PubMed

    Kligerman, Seth; Mehta, Dhruv; Farnadesh, Mahmmoudreza; Jeudy, Jean; Olsen, Kathryn; White, Charles

    2013-01-01

    To determine whether an iterative reconstruction (IR) technique (iDose, Philips Healthcare) can reduce image noise and improve image quality in obese patients undergoing computed tomographic pulmonary angiography (CTPA). The study was Health Insurance Portability and Accountability Act compliant and approved by our institutional review board. A total of 33 obese patients (average body mass index: 42.7) underwent CTPA studies following standard departmental protocols. The data were reconstructed with filtered back projection (FBP) and 3 iDose strengths (iDoseL1, iDoseL3, and iDoseL5) for a total of 132 studies. FBP data were collected from 33 controls (average body mass index: 22) undergoing CTPA. Regions of interest were drawn at 6 identical levels in the pulmonary artery (PA), from the main PA to a subsegmental branch, in both the control group and study groups using each algorithm. Noise and attenuation were measured at all PA levels. Three thoracic radiologists graded each study on a scale of 1 (very poor) to 5 (ideal) by 4 categories: image quality, noise, PA enhancement, and "plastic" appearance. Statistical analysis was performed using an unpaired t test, 1-way analysis of variance, and linear weighted κ. Compared with the control group, there was significantly higher noise with FBP, iDoseL1, and iDoseL3 algorithms (P<0.001) in the study group. There was no significant difference between the noise in the control group and iDoseL5 algorithm in the study group. Analysis within the study group showed a significant and progressive decrease in noise and increase in the contrast-to-noise ratio as the level of IR was increased (P<0.001). Compared with FBP, readers graded overall image quality as being higher using iDoseL1 (P=0.0018), iDoseL3 (P<0.001), and iDoseL5 (P<0.001). Compared with FBP, there was subjective improvement in image noise and PA enhancement with increasing levels of iDose. The use of an IR technique leads to qualitative and quantitative improvements in image noise and image quality in obese patients undergoing CTPA.

  15. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water.

    PubMed

    Glaser, Adam K; Andreozzi, Jacqueline M; Zhang, Rongxiao; Pogue, Brian W; Gladstone, David J

    2015-07-01

    To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp-Davis-Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm(3) volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%-99% pass fraction depending on the chosen threshold dose. The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  16. Adaptive optics image restoration algorithm based on wavefront reconstruction and adaptive total variation method

    NASA Astrophysics Data System (ADS)

    Li, Dongming; Zhang, Lijuan; Wang, Ting; Liu, Huan; Yang, Jinhua; Chen, Guifen

    2016-11-01

    To improve the adaptive optics (AO) image's quality, we study the AO image restoration algorithm based on wavefront reconstruction technology and adaptive total variation (TV) method in this paper. Firstly, the wavefront reconstruction using Zernike polynomial is used for initial estimated for the point spread function (PSF). Then, we develop our proposed iterative solutions for AO images restoration, addressing the joint deconvolution issue. The image restoration experiments are performed to verify the image restoration effect of our proposed algorithm. The experimental results show that, compared with the RL-IBD algorithm and Wiener-IBD algorithm, we can see that GMG measures (for real AO image) from our algorithm are increased by 36.92%, and 27.44% respectively, and the computation time are decreased by 7.2%, and 3.4% respectively, and its estimation accuracy is significantly improved.

  17. 76 FR 9787 - NIOSH Dose Reconstruction Program Ten Year Review-Phase I Report on Quality of Science; Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention NIOSH Dose Reconstruction Program Ten Year Review--Phase I Report on Quality of Science; Request for Public Review and... Ten Year Review--Phase I Report on Quality of Science.'' This publication is part of a review by NIOSH...

  18. Adaptive Statistical Iterative Reconstruction-V: Impact on Image Quality in Ultralow-Dose Coronary Computed Tomography Angiography.

    PubMed

    Benz, Dominik C; Gräni, Christoph; Mikulicic, Fran; Vontobel, Jan; Fuchs, Tobias A; Possner, Mathias; Clerc, Olivier F; Stehli, Julia; Gaemperli, Oliver; Pazhenkottil, Aju P; Buechel, Ronny R; Kaufmann, Philipp A

    The clinical utility of a latest generation iterative reconstruction algorithm (adaptive statistical iterative reconstruction [ASiR-V]) has yet to be elucidated for coronary computed tomography angiography (CCTA). This study evaluates the impact of ASiR-V on signal, noise and image quality in CCTA. Sixty-five patients underwent clinically indicated CCTA on a 256-slice CT scanner using an ultralow-dose protocol. Data sets from each patient were reconstructed at 6 different levels of ASiR-V. Signal intensity was measured by placing a region of interest in the aortic root, LMA, and RCA. Similarly, noise was measured in the aortic root. Image quality was visually assessed by 2 readers. Median radiation dose was 0.49 mSv. Image noise decreased with increasing levels of ASiR-V resulting in a significant increase in signal-to-noise ratio in the RCA and LMA (P < 0.001). Correspondingly, image quality significantly increased with higher levels of ASiR-V (P < 0.001). ASiR-V yields substantial noise reduction and improved image quality enabling introduction of ultralow-dose CCTA.

  19. Flap reconstruction for soft-tissue defects with exposed hardware following deep infection after internal fixation of ankle fractures.

    PubMed

    Ovaska, Mikko T; Madanat, Rami; Tukiainen, Erkki; Pulliainen, Lea; Sintonen, Harri; Mäkinen, Tatu J

    2014-12-01

    The aim of the present study was to determine the outcome for patients treated with flap reconstruction following deep ankle fracture infection with exposed hardware. Out of 3041 consecutive ankle fracture operations in 3030 patients from 2006 to 2011, we identified 56 patients requiring flap reconstruction following deep infection. Thirty-two of these patients could be examined at a follow-up visit. Olerud-Molander Ankle (OMA) score, 15D score, Numeric Rating Scale (NRS), and clinical examination were used to assess the outcome. A total of 58 flap reconstructions were performed in 56 patients with a mean age of 57 years (range 25–93 years) and mean follow-up time of 52 months. The most commonly used reconstruction was a distally based peroneus brevis muscle flap with a split-thickness skin graft. A microvascular free flap was required in only one patient. 22 (39%) patients required subsequent surgical interventions because of a flap-related complication. With flap reconstruction, hardware could eventually be salvaged in 53% of patients with a non-consolidated fracture. The mean OMA score was fair or poor in 53% of the patients, and only 56% had recovered their pre-injury level of function. Half of the patients had shoe wear limitations. The 15D score showed a significantly poorer health-related quality of life compared to an age-standardised sample of the general population. The mean pain NRS was 2.1 (range 0–6), and the mean satisfaction NRS was 6.6 (range 0–10). Our study showed that successful treatment of a soft-tissue defect with exposed hardware following ankle fracture infections can be achieved with local flaps. Despite eventual reconstructive success, complications are common. Patients perceive a poorer health-related quality of life, have shoe wear limitations, and only half of them achieve their pre-injury level of function.

  20. Low-dose 4D cardiac imaging in small animals using dual source micro-CT

    NASA Astrophysics Data System (ADS)

    Holbrook, M.; Clark, D. P.; Badea, C. T.

    2018-01-01

    Micro-CT is widely used in preclinical studies, generating substantial interest in extending its capabilities in functional imaging applications such as blood perfusion and cardiac function. However, imaging cardiac structure and function in mice is challenging due to their small size and rapid heart rate. To overcome these challenges, we propose and compare improvements on two strategies for cardiac gating in dual-source, preclinical micro-CT: fast prospective gating (PG) and uncorrelated retrospective gating (RG). These sampling strategies combined with a sophisticated iterative image reconstruction algorithm provide faster acquisitions and high image quality in low-dose 4D (i.e. 3D  +  Time) cardiac micro-CT. Fast PG is performed under continuous subject rotation which results in interleaved projection angles between cardiac phases. Thus, fast PG provides a well-sampled temporal average image for use as a prior in iterative reconstruction. Uncorrelated RG incorporates random delays during sampling to prevent correlations between heart rate and sampling rate. We have performed both simulations and animal studies to validate these new sampling protocols. Sampling times for 1000 projections using fast PG and RG were 2 and 3 min, respectively, and the total dose was 170 mGy each. Reconstructions were performed using a 4D iterative reconstruction technique based on the split Bregman method. To examine undersampling robustness, subsets of 500 and 250 projections were also used for reconstruction. Both sampling strategies in conjunction with our iterative reconstruction method are capable of resolving cardiac phases and provide high image quality. In general, for equal numbers of projections, fast PG shows fewer errors than RG and is more robust to undersampling. Our results indicate that only 1000-projection based reconstruction with fast PG satisfies a 5% error criterion in left ventricular volume estimation. These methods promise low-dose imaging with a wide range of preclinical applications in cardiac imaging.

Top