Science.gov

Sample records for recording scattered light

  1. Single-shot real-time video recording of a photonic Mach cone induced by a scattered light pulse

    PubMed Central

    Liang, Jinyang; Ma, Cheng; Zhu, Liren; Chen, Yujia; Gao, Liang; Wang, Lihong V.

    2017-01-01

    Ultrafast video recording of spatiotemporal light distribution in a scattering medium has a significant impact in biomedicine. Although many simulation tools have been implemented to model light propagation in scattering media, existing experimental instruments still lack sufficient imaging speed to record transient light-scattering events in real time. We report single-shot ultrafast video recording of a light-induced photonic Mach cone propagating in an engineered scattering plate assembly. This dynamic light-scattering event was captured in a single camera exposure by lossless-encoding compressed ultrafast photography at 100 billion frames per second. Our experimental results are in excellent agreement with theoretical predictions by time-resolved Monte Carlo simulation. This technology holds great promise for next-generation biomedical imaging instrumentation. PMID:28116357

  2. Advances in recording scattered light changes in crustacean nerve with electrical activation

    SciTech Connect

    Carter, K. M.; Rector, D. M.; Martinez, A. T.; Guerra, F. M.; George, J. S.

    2002-01-01

    We investigated optical changes associated with crustacean nerve stimulation using birefringent and large angle scattered light. Improved detection schemes disclosed high temporal structure of the optical signals and allowed further investigations of biophysical mechanisms responsible for such changes. Most studies of physiological activity in neuronal tissue use techniques that measure the electrical behavior or ionic permeability of the nerve, such as voltage or ion sensitive dyes injected into cells, or invasive electric recording apparatus. While these techniques provide high resolution, they are detrimental to tissue and do not easily lend themselves to clinical applications in humans. Electrical and chemical components of neural excitation evoke physical responses observed through changes in scattered and absorbed light. This method is suited for in-vivo applications. Intrinsic optical changes have shown themselves to be multifaceted in nature and point to several different physiological processes that occur with different time courses during neural excitation. Fast changes occur concomitantly with electrical events, and slow changes parallel metabolic events including changes in blood flow and oxygenation. Previous experiments with isolated crustacean nerves have been used to study the biophysical mechanisms of fast optical changes. However, they have been confounded by multiple superimposed action potentials which make it difficult to discriminate the temporal signatures of individual optical responses. Often many averages were needed to adequately resolve the signal. More recently, optical signals have been observed in single trials. Initially large angle scattering measurements were used to record these events with much of the signal coming from cellular swelling associated with water influx during activation. By exploiting the birefringent properties derived from the molecular stiucture of nerve membranes, signals appear larger with a greater contrast

  3. Laser light scattering review

    NASA Technical Reports Server (NTRS)

    Schaetzel, Klaus

    1989-01-01

    Since the development of laser light sources and fast digital electronics for signal processing, the classical discipline of light scattering on liquid systems experienced a strong revival plus an enormous expansion, mainly due to new dynamic light scattering techniques. While a large number of liquid systems can be investigated, ranging from pure liquids to multicomponent microemulsions, this review is largely restricted to applications on Brownian particles, typically in the submicron range. Static light scattering, the careful recording of the angular dependence of scattered light, is a valuable tool for the analysis of particle size and shape, or of their spatial ordering due to mutual interactions. Dynamic techniques, most notably photon correlation spectroscopy, give direct access to particle motion. This may be Brownian motion, which allows the determination of particle size, or some collective motion, e.g., electrophoresis, which yields particle mobility data. Suitable optical systems as well as the necessary data processing schemes are presented in some detail. Special attention is devoted to topics of current interest, like correlation over very large lag time ranges or multiple scattering.

  4. Controlling light scattering and emission at subwavelength scale with plasmonic nanopatch antennas (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Wu, Zilong; Zheng, Yuebing

    2015-09-01

    Controlling light scattering and emission at subwavelength scale has significant implications for solar energy conversion, sensing, and nanophotonic devices. Plasmonic nanopatch antennas (PNAs), which consist of plasmonic nanoparticle coupled with metallic films, have shown directionality of radiation and large emission rate enhancement due to the strong plasmonic waveguide modes within the spacer layer. Herein, we comparatively study the light scattering and emission behaviors of a series of plasmonic nanopatch antennas (PNAs) with different plasmonic nanoparticles (i.e., nanosquare, nanotriangle, nanorod, and nanodisk) to develop the design rules of the PNAs. Using finite-difference time-domain (FDTD) simulations, we show that the shape and size of plasmonic nanoparticles can be tuned to control the resonance peak, intensity, directionality, and spatial distribution of the scattering light as well as the directionality, spatial distribution, spontaneous emission rate, quantum efficiency, and radiation enhancement factor of light emission. For example, high radiative quantum efficiency (0.74) and radiation enhancement factor (>20) can be achieved by disk PNA, while triangle PNA shows remarkable spontaneous emission rate enhancement of over 2,500. The effects of locations of emitters relative to the PNAs on the emission properties are also examined. Our results pave the way towards the rational design of PNAs for the optimal light scattering and emission as required by targeted applications.

  5. Inelastic Light Scattering Processes

    NASA Technical Reports Server (NTRS)

    Fouche, Daniel G.; Chang, Richard K.

    1973-01-01

    Five different inelastic light scattering processes will be denoted by, ordinary Raman scattering (ORS), resonance Raman scattering (RRS), off-resonance fluorescence (ORF), resonance fluorescence (RF), and broad fluorescence (BF). A distinction between fluorescence (including ORF and RF) and Raman scattering (including ORS and RRS) will be made in terms of the number of intermediate molecular states which contribute significantly to the scattered amplitude, and not in terms of excited state lifetimes or virtual versus real processes. The theory of these processes will be reviewed, including the effects of pressure, laser wavelength, and laser spectral distribution on the scattered intensity. The application of these processes to the remote sensing of atmospheric pollutants will be discussed briefly. It will be pointed out that the poor sensitivity of the ORS technique cannot be increased by going toward resonance without also compromising the advantages it has over the RF technique. Experimental results on inelastic light scattering from I(sub 2) vapor will be presented. As a single longitudinal mode 5145 A argon-ion laser line was tuned away from an I(sub 2) absorption line, the scattering was observed to change from RF to ORF. The basis, of the distinction is the different pressure dependence of the scattered intensity. Nearly three orders of magnitude enhancement of the scattered intensity was measured in going from ORF to RF. Forty-seven overtones were observed and their relative intensities measured. The ORF cross section of I(sub 2) compared to the ORS cross section of N2 was found to be 3 x 10(exp 6), with I(sub 2) at its room temperature vapor pressure.

  6. Scattering Of Light Nuclei

    SciTech Connect

    Quaglioni, S; Navratil, P; Roth, R

    2009-12-15

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.

  7. Fluorescence and Light Scattering

    ERIC Educational Resources Information Center

    Clarke, Ronald J.; Oprysa, Anna

    2004-01-01

    The aim of the mentioned experiment is to aid students in developing tactics for distinguishing between signals originating from fluorescence and light scattering. Also, the experiment provides students with a deeper understanding of the physicochemical bases of each phenomenon and shows that the techniques are actually related.

  8. Light Scattering by Spheroids

    NASA Astrophysics Data System (ADS)

    Xie, Ya-Ming; Ji, Xia

    Nowadays, with the development of technology, particles with size at nanoscale have been synthesized in experiments. It is noticed that anisotropy is an unavoidable problem in the production of nanospheres. Besides, nonspherical nanoparticles have also been extensively used in experiments. Comparing with spherical model, spheroidal model can give a better description for the characteristics of nonspherical particles. Thus the study of analytical solution for light scattering by spheroidal particles has practical implications. By expanding incident, scattered, and transmitted electromagnetic fields in terms of appropriate vector spheroidal wave functions, an analytic solution is obtained to the problem of light scattering by spheroids. Unknown field expansion coefficients can be determined with the combination of boundary conditions and rotational-translational addition theorems for vector spheroidal wave functions. Based on the theoretical derivation, a Fortran code has been developed to calculate the extinction cross section and field distribution, whose results agree well with those obtain by FDTD simulation. This research is supported by the National Natural Science Foundation of China No. 91230203.

  9. Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors.

    PubMed Central

    Pepperberg, D R; Kahlert, M; Krause, A; Hofmann, K P

    1988-01-01

    On stimulation by green flashes, the isolated, aspartate-treated bovine retina exhibits transient changes in the scattering of near-infrared (880 nm) light. A single component, termed the "ATR" (a flash-induced scattering signal, where ATR designates amplified transient-retina), dominates the amplitude and rising-phase kinetics of the initial peak of the light-scattering response. Superfusion with physiological solution containing low Na+ concentration reversibly abolishes the photoreceptor electroretinographic response but preserves the ATR signal, indicating a receptoral origin for the ATR. The increase of ATR amplitude (A/Amax) with flash intensity (R*/R, where R indicates rhodopsin) is described by A/Amax = (1- e-kR*/R), with R*/R = k-1 occurring on generation of approximately two photoactivated rhodopsins (R*s) per disc surface in the rod outer segment. Weak background light and bright flashes reversibly depress the ATR. Kinetic and sensitivity data suggest a basis of the ATR in stochastic, unit activation events, each initiated by a single R*. They further suggest an essential invariance of the unit event under differing conditions of illumination. A delay, apparently governed by the lifetime of a light-activated substance regulating ATR generation, precedes ATR recovery after a bright flash. The flash dependence of the delay period indicates an upper limit of 3 s for the lifetime of R* in the ATR-generating process. The unit event appears to be an R*-catalyzed and disc-localized reaction of phototransduction. PMID:3399504

  10. Bidirectional scattering of light from tree leaves

    NASA Technical Reports Server (NTRS)

    Brakke, Thomas W.; Smith, James A.; Harnden, Joann M.

    1989-01-01

    A laboratory goniometer consisting of an He-Ne laser (632.8 nm), vertical leaf holder, and silicon photovoltaic detector was used to measure the bidirectional scattering (both transmittance and reflectance) of red oak and red maple. The illumination angles were 0, 30, and 60 deg, and the scattering was recorded approximately every 10 deg in the principal plane. The scattering profiles obtained show the non-Lambertian characteristics of the scattering, particularly for the off-nadir illumination directions. The transmitted light was more isotropic than the reflected light.

  11. Review of light scattering literature

    NASA Astrophysics Data System (ADS)

    Potts, Marie K.

    1994-06-01

    This report reviews the recent literature of static and dynamic light scattering of dilute and semidilute polymer solutions and gels, as obtained from the Chemical Abstracts Macromolecular Sections, and an electronic literature search. In general, this review has been confined to the interests of the Polymer Research Branch, specifically experimental light scattering studies of synthetic polymers in solution. In order to further limit the size of this review, light scattering for phase separation studies or particle size analysis have been excluded, as well as light scattering used strictly for size exclusion chromatography detection.

  12. Resonance enhanced dynamic light scattering.

    PubMed

    Plum, Markus A; Menges, Bernhard; Fytas, George; Butt, Hans-Jürgen; Steffen, Werner

    2011-01-01

    We present a novel light scattering setup that enables probing of dynamics near solid surfaces. An evanescent wave generated by a surface plasmon resonance in a metal layer is the incident light field in the dynamic light scattering experiment. The combination of surface plasmon resonance spectroscopy and dynamic light scattering leads to a spatiotemporal resolution extending a few hundred nanometers from the surface and from microseconds to seconds. The comparison with evanescent wave dynamic light scattering identifies the advantages of the presented technique, e.g., surface monitoring, use of metal surfaces, and biorelevant systems. For both evanescent wave geometries, we define the scattering wave vector necessary for the analysis of the experimental relaxation functions.

  13. Synthetic Fourier transform light scattering.

    PubMed

    Lee, Kyeoreh; Kim, Hyeon-Don; Kim, Kyoohyun; Kim, Youngchan; Hillman, Timothy R; Min, Bumki; Park, Yongkeun

    2013-09-23

    We present synthetic Fourier transform light scattering, a method for measuring extended angle-resolved light scattering (ARLS) from individual microscopic samples. By measuring the light fields scattered from the sample plane and numerically synthesizing them in Fourier space, the angle range of the ARLS patterns is extended up to twice the numerical aperture of the imaging system with unprecedented sensitivity and precision. Extended ARLS patterns of individual microscopic polystyrene beads, healthy human red blood cells (RBCs), and Plasmodium falciparum-parasitized RBCs are presented.

  14. Light Scattering in Exoplanet Transits

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Fortney, Jonathan J.

    2016-10-01

    Transit spectroscopy is currently the leading technique for studying exoplanet atmospheric composition, and has led to the detection of molecular species, clouds, and/or hazes for numerous worlds outside the Solar System. The field of exoplanet transit spectroscopy will be revolutionized with the anticipated launch of NASA's James Webb Space Telescope (JWST) in 2018. Over the course of the design five year mission for JWST, the observatory is expected to provide in-depth observations of many tens of transiting exoplanets, including some worlds in the poorly understood 2-4 Earth-mass regime. As the quality of transit spectrum observations continues to improve, so should models of exoplanet transits. Thus, certain processes initially thought to be of second-order importance should be revisited and possibly added to modeling tools. For example, atmospheric refraction, which was commonly omitted from early transit spectrum models, has recently been shown to be of critical importance in some terrestrial exoplanet transits. Beyond refraction, another process that has seen little study with regards to exoplanet transits is light multiple scattering. In most cases, scattering opacity in exoplanet transits has been treated as equivalent to absorption opacity. However, this equivalence cannot always hold, such as in the case of a strongly forward scattering, weakly absorbing aerosol. In this presentation, we outline a theory of exoplanet transit spectroscopy that spans the geometric limit (used in most modern models) to a fully multiple scattering approach. We discuss a new technique for improving model efficiency that effectively separates photon paths, which tend to vary slowly in wavelength, from photon absorption, which can vary rapidly in wavelength. Using this newly developed approach, we explore situations where cloud or haze scattering may be important to JWST observations of gas giants, and comment on the conditions necessary for scattering to become a major

  15. COHERENT LIGHT-RECORDING TECHNIQUES.

    DTIC Science & Technology

    On the basis of diffraction theory, quantum-mechanics and information theory, it is shown that the principle of coherent light recording is the...mechanical, magnetic or electric approaches. Photographic coherent light recording tests were made by the dynamic sweep tests on 16 mm Recordak Micro-File

  16. Dynamic light scattering homodyne probe

    NASA Technical Reports Server (NTRS)

    Meyer, William V. (Inventor); Cannell, David S. (Inventor); Smart, Anthony E. (Inventor)

    2002-01-01

    An optical probe for analyzing a sample illuminated by a laser includes an input optical fiber operably connectable to the laser where the input optical fiber has an entrance end and an exit end. The probe also includes a first beam splitter where the first beam splitter is adapted to transmit an alignment portion of a light beam from the input fiber exit end and to reflect a homodyning portion of the light beam from the input fiber. The probe also includes a lens between the input fiber exit end and the first beam splitter and a first and a second output optical fiber, each having an entrance end and an exit end, each exit end being operably connectable to respective optical detectors. The probe also includes a second beam splitter which is adapted to reflect at least a portion of the reflected homodyning portion into the output fiber entrance ends and to transmit light from the laser scattered by the sample into the entrance ends.

  17. Biological cell classification by multiangle light scattering

    DOEpatents

    Salzman, G.C.; Crowell, J.M.; Mullaney, P.F.

    1975-06-03

    The specification is directed to an apparatus and method for detecting light scattering from a biological cell. Light, preferably from a coherent source of radiation, intercepts an individual biological cell in a stream of cells passing through the beam. Light scattered from the cell is detected at a selected number of angles between 0 and 90/sup 0/ to the longitudinal axis of the beam with a circular array of light responsive elements which produce signals representative of the intensity of light incident thereon. Signals from the elements are processed to determine the light-scattering pattern of the cell and therefrom its identity.

  18. COHERENT-LIGHT RECORDING TECHNIQUES.

    DTIC Science & Technology

    The purpose of this report is to summarize, define and demonstrate techniques necessary for the application of coherent light to the problems of...Investigations into such areas as the coherent light source itself, modulation, deflection or scanning techniques, readout techniques and the evaluation of recording media are reported.

  19. Directional light scattering from individual Au nanocup

    NASA Astrophysics Data System (ADS)

    Bai, Jinjun; Li, Yong; Zhao, Bo

    2017-03-01

    We investigate the optical scattering properties of gold nanocup with different orientation and fractional height by full vector finite element method. All of the scattering cross section, the distribution of electric field intensity, and the ability of directional light scattering are simulated, respectively. It is demonstrated that the scattering cross section of Au nanocup is a superposition of scattering spectrum of a transverse mode and an axial mode. The wavelength and the intensity of the maximum value of the scattering cross section increase initially then reduce with the fractional height increasing for transverse mode, while they increase monotonously with the fractional height increasing for axial mode. Furthermore, the calculation results show that the ability of redirecting incident light of Au nanocup mainly depends on the transverse mode. And the deflected angle of scattering increases with the fractional height of Au nanocup decreasing. These results indicate that Au nanocup has a promising application in the planar plasmon devices.

  20. Atom-interferometric studies of light scattering

    NASA Astrophysics Data System (ADS)

    Beattie, S.; Barrett, B.; Chan, I.; Mok, C.; Yavin, I.; Kumarakrishnan, A.

    2009-07-01

    We have used an echo-type atom interferometer that manipulates laser-cooled atoms in a single ground state to investigate the effect of light scattering from pulsed and continuous-wave light. The interferometer uses two off-resonant standing-wave pulses applied at times t=0 and t=T to diffract and recombine momentum states separated by 2ℏk at t=2T . Matter wave interference is associated with the formation of a density grating with period λ/2 in the vicinity of this echo time. The grating contrast is measured by recording the intensity of coherently backscattered light. The interferometer is perturbed by an additional pulse applied at t=2T-δT or by continuous-wave background light. If the additional pulse is a standing wave, the momentum states interfering at t=2T are displaced and the grating contrast can be completely recovered due to constructive interference. In this case, the contrast shows a periodic modulation at the atomic recoil frequency as a function of δT . In a recent work, it was shown that the atomic recoil frequency can be measured easily and precisely when using coherence functions to model the signal shape. This paper provides an alternative description of the signal shape through an analytical calculation of echo formation in the presence of an additional standing-wave pulse. Using this treatment, it is possible to model the effects of spontaneous emission and spatial profile of the laser beam on the signal shape. Additionally, the theory predicts scaling laws as a function of the pulse area and the number of additional standing-wave pulses. These scaling laws are investigated experimentally and can be exploited to improve precision measurements of the atomic recoil frequency. We also show that coherence functions can be used to make a direct measurement of the populations of momentum states associated with the ground state under conditions where the Doppler-broadened velocity distribution of the sample is much larger than the recoil

  1. Semi-imaging light pipe for collecting weakly scattered light

    NASA Astrophysics Data System (ADS)

    Hopkins, George W.; Simons, Tad D.

    1998-09-01

    A simple reflective light pipe, formed from a cylindrical tube with an external reflective coating and a small central aperture, can be a highly efficient optical element for collecting light from molecular scattering processes along the path of a laser beam. When the laser beam is co-linear with the axis of the light pipe, scattered light from any location along the interaction region (near the pipe axis) re-images repeatedly to another location along the axis of the pipe. This semi-imaging property of the light pipe permits a large fraction of the total scattered light to re- image along the entire length of the interaction region. If one observes through the small central aperture, scattered light from the single segment of the laser beam in view appears to come from all the locations along the interaction length, as well as from the single segment. In this manner, one can have the advantage of collecting scattered light from a small segment (and thus onto a small detector), while observing an effective interaction length that is many times longer than the segment. Measurements from practical light pipes confirm effective gains of about 10X with light pipes a few centimeters long (Effective gain is defined as the ratio of light collected with the light pipe divided by the light collected from a direct image of the beam using the collection optics).

  2. Correction of sunspot intensities for scattered light

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1973-01-01

    Correction of sunspot intensities for scattered light usually involves fitting theoretical curves to observed aureoles (Zwaan, 1965; Staveland, 1970, 1972). In this paper we examine the inaccuracies in the determination of scattered light by this method. Earlier analyses are extended to examine uncertainties due to the choice of the expression for limb darkening. For the spread function, we consider Lorentzians and Gaussians for which analytic expressions for the aureole can be written down. Lorentzians lead to divergence and normalization difficulties, and should not be used in scattered light determinations. Gaussian functions are more suitable.

  3. Structured light, transmission, and scattering

    NASA Astrophysics Data System (ADS)

    Andrews, David L.

    2011-03-01

    Numerous theoretical and experimental studies have established the principle that beams conveying orbital angular momentum offer a rich scope for information transfer. However, it is not clear how far it is practicable to operate such a concept at the single-photon level - especially when such a beam propagates through a system in which scattering can occur. In cases where scattering leads to photon deflection, it produces losses; however in terms of the retention of information content, there should be more concern over forward scattering. Based on a quantum electrodynamical formulation of theory, this paper aims to frame and resolve the key issues. A quantum amplitude is constructed for the representation of single and multiple scattering events in the propagation an individual photon, from a suitably structured beam. The analysis identifies potential limitations of principle, undermining complete fidelity of quantum information transmission.

  4. Microscopic Imaging and Spectroscopy with Scattered Light

    PubMed Central

    Boustany, Nada N.; Boppart, Stephen A.; Backman, Vadim

    2012-01-01

    Optical contrast based on elastic scattering interactions between light and matter can be used to probe cellular structure and dynamics, and image tissue architecture. The quantitative nature and high sensitivity of light scattering signals to subtle alterations in tissue morphology, as well as the ability to visualize unstained tissue in vivo, has recently generated significant interest in optical scatter based biosensing and imaging. Here we review the fundamental methodologies used to acquire and interpret optical scatter data. We report on recent findings in this field and present current advances in optical scatter techniques and computational methods. Cellular and tissue data enabled by current advances in optical scatter spectroscopy and imaging stand to impact a variety of biomedical applications including clinical tissue diagnosis, in vivo imaging, drug discovery and basic cell biology. PMID:20617940

  5. Differential Light Scattering from Spherical Mammalian Cells

    PubMed Central

    Brunsting, Albert; Mullaney, Paul F.

    1974-01-01

    The differential scattered light intensity patterns of spherical mammalian cells were measured with a new photometer which uses high-speed film as the light detector. The scattering objects, interphase and mitotic Chinese hamster ovary cells and HeLa cells, were modeled as (a) a coated sphere, accounting for nucleus and cytoplasm, and (b) a homogeneous sphere when no cellular nucleus was present. The refractive indices and size distribution of the cells were measured for an accurate comparison of the theoretical model with the light-scattering measurements. The light scattered beyond the forward direction is found to contain information about internal cellular morphology, provided the size distribution of the cells is not too broad. ImagesFIGURE 1 PMID:4134589

  6. Deep Water Cherenkov Light Scatter Meter

    SciTech Connect

    Pappalardo, L; Petta, C.; Russo, G.V.

    2000-12-31

    The relevant parameters for the site choice of an underwater neutrino's telescope are discussed. The in situ measurement of the scattering distribution of the cherenkov light requires a suitable experimental setup. Its main features are described here.

  7. The Amsterdam-Granada Light Scattering Database

    NASA Astrophysics Data System (ADS)

    Muñoz, O.; Moreno, F.; Guirado, D.; Dabrowska, D. D.; Volten, H.; Hovenier, J. W.

    2012-02-01

    The Amsterdam Light Scattering Database proved to be a very successful way of promoting the use of the data obtained with the Amsterdam Light Scattering apparatus at optical wavelengths. Many different research groups around the world made use of the experimental data. After the closing down of the Dutch scattering apparatus, a modernized and improved descendant, the IAA Cosmic Dust Laboratory (CoDuLab), has been constructed at the Instituto de Astrofísica de Andalucía (IAA) in Granada, Spain. The first results of this instrument for water droplets and for two samples of clay particles have been published. We would now like to make these data also available to the community in digital form by introducing a new light scattering database, the Amsterdam-Granada Light Scattering Database (www.iaa.es/scattering). By combining the data from the two instruments in one database we ensure the continued availability of the old data, and we prevent fragmentation of important data over different databases. In this paper we present the Amsterdam-Granada Light Scattering Database.

  8. Microscope spectrometer for light scattering investigations

    SciTech Connect

    Barbara, Aude; Lopez-Rios, Tomas; Dumont, Sylvain; Gay, Frederic; Quemerais, Pascal

    2010-08-01

    We describe a setup including a microscope to study volumes of a few {mu}m{sup 3} by static and dynamic light scattering (DLS) in a backscattering configuration. Light scattered by individual objects of micrometric size can be analyzed in the 400-800 nm spectral range. This setup can also be employed to study both diluted and concentrated colloidal solutions by DLS measurements. For diluted solutions we found evidence of the fluctuations of the number of particles in a confocal volume. We discuss their contribution to the autocorrelation function of the scattered intensity measured as a function of time.

  9. Expressive Single Scattering for Light Shaft Stylization.

    PubMed

    Kol, Timothy R; Klehm, Oliver; Seidel, Hans-Peter; Eisemann, Elmar

    2016-04-14

    Light scattering in participating media is a natural phenomenon that is increasingly featured in movies and games, as it is visually pleasing and lends realism to a scene. In art, it may further be used to express a certain mood or emphasize objects. Here, artists often rely on stylization when creating scattering effects, not only because of the complexity of physically correct scattering, but also to increase expressiveness. Little research, however, focuses on artistically influencing the simulation of the scattering process in a virtual 3D scene. We propose novel stylization techniques, enabling artists to change the appearance of single scattering effects such as light shafts. Users can add, remove, or enhance light shafts using occluder manipulation. The colors of the light shafts can be stylized and animated using easily modifiable transfer functions. Alternatively, our system can optimize a light map given a simple user input for a number of desired views in the 3D world. Finally, we enable artists to control the heterogeneity of the underlying medium. Our stylized scattering solution is easy to use and compatible with standard rendering pipelines. It works for animated scenes and can be executed in real time to provide the artist with quick feedback.

  10. Hadronic light-by-light scattering in muonium hyperfine splitting

    SciTech Connect

    Karshenboim, S. G.; Shelyuto, V. A.; Vainshtein, A. I.

    2008-09-15

    We consider an impact of hadronic light-by-light scattering on the muonium hyperfine structure. A shift of the hyperfine interval {delta}{nu}(Mu){sub HLBL} is calculated with the light-by-light scattering approximated by the exchange of pseudoscalar and pseudovector mesons. Constraints from the operator product expansion in QCD are used to fix parameters of the model similar to the one used earlier for the hadronic light-by-light scattering in calculations of the muon anomalous magnetic moment. The pseudovector exchange is dominant in the resulting shift, {delta}{nu}(Mu){sub HLBL}=-0.0065(10) Hz. Although the effect is tiny it is useful in understanding the level of hadronic uncertainties.

  11. Shear Brillouin light scattering microscope

    PubMed Central

    Kim, Moonseok; Besner, Sebastien; Ramier, Antoine; Kwok, Sheldon J. J.; An, Jeesoo; Scarcelli, Giuliano; Yun, Seok Hyun

    2016-01-01

    Brillouin spectroscopy has been used to characterize shear acoustic phonons in materials. However, conventional instruments had slow acquisition times over 10 min per 1 mW of input optical power, and they required two objective lenses to form a 90° scattering geometry necessary for polarization coupling by shear phonons. Here, we demonstrate a confocal Brillouin microscope capable of detecting both shear and longitudinal phonons with improved speeds and with a single objective lens. Brillouin scattering spectra were measured from polycarbonate, fused quartz, and borosilicate in 1-10 s at an optical power level of 10 mW. The elastic constants, phonon mean free path and the ratio of the Pockels coefficients were determined at microscopic resolution. PMID:26832263

  12. Fiber optic probe for light scattering measurements

    DOEpatents

    Nave, S.E.; Livingston, R.R.; Prather, W.S.

    1993-01-01

    This invention is comprised of a fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman- scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  13. Fiber optic probe for light scattering measurements

    DOEpatents

    Nave, Stanley E.; Livingston, Ronald R.; Prather, William S.

    1995-01-01

    A fiber optic probe and a method for using the probe for light scattering analyses of a sample. The probe includes a probe body with an inlet for admitting a sample into an interior sample chamber, a first optical fiber for transmitting light from a source into the chamber, and a second optical fiber for transmitting light to a detector such as a spectrophotometer. The interior surface of the probe carries a coating that substantially prevents non-scattered light from reaching the second fiber. The probe is placed in a region where the presence and concentration of an analyte of interest are to be detected, and a sample is admitted into the chamber. Exciting light is transmitted into the sample chamber by the first fiber, where the light interacts with the sample to produce Raman-scattered light. At least some of the Raman-scattered light is received by the second fiber and transmitted to the detector for analysis. Two Raman spectra are measured, at different pressures. The first spectrum is subtracted from the second to remove background effects, and the resulting sample Raman spectrum is compared to a set of stored library spectra to determine the presence and concentration of the analyte.

  14. The Whiteness of Things and Light Scattering

    ERIC Educational Resources Information Center

    Gratton, L. M.; Lopez-Arias, T.; Calza, G.; Oss, S.

    2009-01-01

    We discuss some simple experiments dealing with intriguing properties of light and its interaction with matter. In particular, we show how to emphasize that light reflection, refraction and scattering can provide a proper, physical description of human perception of the "colour" white. These experiments can be used in the classroom with an enquiry…

  15. Scattered light mapping of protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Stolker, T.; Dominik, C.; Min, M.; Garufi, A.; Mulders, G. D.; Avenhaus, H.

    2016-12-01

    Context. High-contrast scattered light observations have revealed the surface morphology of several dozen protoplanetary disks at optical and near-infrared wavelengths. Inclined disks offer the opportunity to measure part of the phase function of the dust grains that reside in the disk surface which is essential for our understanding of protoplanetary dust properties and the early stages of planet formation. Aims: We aim to construct a method which takes into account how the flaring shape of the scattering surface of an optically thick protoplanetary disk projects onto the image plane of the observer. This allows us to map physical quantities (e.g., scattering radius and scattering angle) onto scattered light images and retrieve stellar irradiation corrected images (r2-scaled) and dust phase functions. Methods: The scattered light mapping method projects a power law shaped disk surface onto the detector plane after which the observed scattered light image is interpolated backward onto the disk surface. We apply the method on archival polarized intensity images of the protoplanetary disk around HD 100546 that were obtained with VLT/SPHERE in the R' band and VLT/NACO in the H and Ks bands. Results: The brightest side of the r2-scaled R' band polarized intensity image of HD 100546 changes from the far to the near side of the disk when a flaring instead of a geometrically flat disk surface is used for the r2-scaling. The decrease in polarized surface brightness in the scattering angle range of 40°-70° is likely a result of the dust phase function and degree of polarization which peak in different scattering angle regimes. The derived phase functions show part of a forward scattering peak, which indicates that large, aggregate dust grains dominate the scattering opacity in the disk surface. Conclusions: Projection effects of a protoplanetary disk surface need to be taken into account to correctly interpret scattered light images. Applying the correct scaling for the

  16. Light scattering study of rheumatoid arthritis

    SciTech Connect

    Beuthan, J; Netz, U; Minet, O; Mueller, G; Scheel, A; Henniger, J

    2002-11-30

    The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient {mu}{sub s}, absorption coefficient {mu}{sub a}, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the finger cross section. Model tests of the quality of this reconstruction method show good results. (laser biology and medicine)

  17. Laser light scattering instrument advanced technology development

    NASA Technical Reports Server (NTRS)

    Wallace, J. F.

    1993-01-01

    The objective of this advanced technology development (ATD) project has been to provide sturdy, miniaturized laser light scattering (LLS) instrumentation for use in microgravity experiments. To do this, we assessed user requirements, explored the capabilities of existing and prospective laser light scattering hardware, and both coordinated and participated in the hardware and software advances needed for a flight hardware instrument. We have successfully breadboarded and evaluated an engineering version of a single-angle glove-box instrument which uses solid state detectors and lasers, along with fiber optics, for beam delivery and detection. Additionally, we have provided the specifications and written verification procedures necessary for procuring a miniature multi-angle LLS instrument which will be used by the flight hardware project which resulted from this work and from this project's interaction with the laser light scattering community.

  18. Polarization of scattered light in biological tissue

    NASA Astrophysics Data System (ADS)

    Abubaker, Hamed M.; Tománek, Pavel

    2012-02-01

    The real-time nondestructive inspection of biological tissues begins to be one of important tools which could contribute to better human life not only in medical diagnosis but also in everyday mankind activities. A biological tissue is considered as a turbid medium in which light is scattered. Although single or multiple scattering in tissue multiple randomizes polarization states of incident light, linear, circular and elliptical polarization states in the medium are considered, and there are circumstances when appreciable degree of polarization can be observed in diffusive scattering. Our work shows that with a sufficient degree of sensitivity is possible to detect structural changes due to the aging of processed meat by using Mueller matrix polarimeter. Moreover, it demonstrated that the degree of polarization of the backscattered light is sensitive to the optical properties of specimen material and to its thickness.

  19. Polarization of scattered light in biological tissue

    NASA Astrophysics Data System (ADS)

    Abubaker, Hamed M.; Tománek, Pavel

    2011-09-01

    The real-time nondestructive inspection of biological tissues begins to be one of important tools which could contribute to better human life not only in medical diagnosis but also in everyday mankind activities. A biological tissue is considered as a turbid medium in which light is scattered. Although single or multiple scattering in tissue multiple randomizes polarization states of incident light, linear, circular and elliptical polarization states in the medium are considered, and there are circumstances when appreciable degree of polarization can be observed in diffusive scattering. Our work shows that with a sufficient degree of sensitivity is possible to detect structural changes due to the aging of processed meat by using Mueller matrix polarimeter. Moreover, it demonstrated that the degree of polarization of the backscattered light is sensitive to the optical properties of specimen material and to its thickness.

  20. Light scattering by aggregated red blood cells

    NASA Astrophysics Data System (ADS)

    Tsinopoulos, Stephanos V.; Sellountos, Euripides J.; Polyzos, Demosthenes

    2002-03-01

    In low flow rates, red blood cells (RBCs) fasten together along their axis of symmetry and form a so-called rouleaux. The scattering of He-Ne laser light by a rouleau consisting of n (2 less-than-or-equal n less-than-or-equal 8) average-sized RBCs is investigated. The interaction problem is treated numerically by means of an advanced axisymmetric boundary element--fast Fourier transform methodology. The scattering problem of one RBC was solved first, and the results showed that the influence of the RBC's membrane on the scattering patterns is negligible. Thus the rouleau is modeled as an axisymmetric, homogeneous, low-contrast dielectric cylinder, on the surface of which appears, owing to aggregated RBCs, a periodic roughness along the direction of symmetry. The direction of the incident laser light is considered to be perpendicular to the scatterer's axis of symmetry. The differential scattering cross sections in both perpendicular and parallel scattering planes and for all the scattering angles are calculated and presented in detail.

  1. Lattice QCD Calculation of Hadronic Light-by-Light Scattering.

    PubMed

    Green, Jeremy; Gryniuk, Oleksii; von Hippel, Georg; Meyer, Harvey B; Pascalutsa, Vladimir

    2015-11-27

    We perform a lattice QCD calculation of the hadronic light-by-light scattering amplitude in a broad kinematical range. At forward kinematics, the results are compared to a phenomenological analysis based on dispersive sum rules for light-by-light scattering. The size of the pion pole contribution is investigated for momenta of typical hadronic size. The presented numerical methods can be used to compute the hadronic light-by-light contribution to the anomalous magnetic moment of the muon. Our calculations are carried out in two-flavor QCD with the pion mass in the range of 270-450 MeV and contain so far only the diagrams with fully connected quark lines.

  2. Light-like scattering in quantum gravity

    NASA Astrophysics Data System (ADS)

    Bjerrum-Bohr, N. E. J.; Donoghue, John F.; Holstein, Barry R.; Planté, Ludovic; Vanhove, Pierre

    2016-11-01

    We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin- 1/2 , spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method.

  3. Light Scattering based detection of food pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current methods for detecting foodborne pathogens are mostly destructive (i.e., samples need to be pretreated), and require time, personnel, and laboratories for analyses. Optical methods including light scattering based techniques have gained a lot of attention recently due to its their rapid a...

  4. Distinguishing morphological changes with polarized light scattering

    SciTech Connect

    Johnson, T. M.; Aida, T.; Carpenter, S.; Freyer, J. P.; Mourant, J. R.

    2002-01-01

    Results of work determining how different biological structures contribute to light scattering will be presented. Further, measurements of phantoms that mimic structural changes expected in vivo will be presented. It is found that polarized measurements can discriminate between phantoms with similar properties.

  5. Cooperative light scattering in any dimension

    NASA Astrophysics Data System (ADS)

    Hill, Tyler; Sanders, Barry C.; Deng, Hui

    2017-03-01

    We present a theory of cooperative light scattering valid in any dimension: connecting theories for an open line, open plane, and open space in the nonrelativistic regime. This theory includes near-field and dipole-orientation effects, highlighting how field-mode confinement controls the phenomena. We present an experimental implementation for planar collective effects.

  6. Quasi-Elastic Light Scattering in Ophthalmology

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.

    The eye is not just a "window to the soul"; it can also be a "window to the human body." The eye is built like a camera. Light which travels from the cornea to the retina traverses through tissues that are representative of nearly every tissue type and fluid type in the human body. Therefore, it is possible to diagnose ocular and systemic diseases through the eye. Quasi-elastic light scattering (QELS) also known as dynamic light scattering (DLS) is a laboratory technique routinely used in the characterization of macromolecular dispersions. QELS instrumentation has now become more compact, sensitive, flexible, and easy to use. These developments have made QELS/DLS an important tool in ophthalmic research where disease can be detected early and noninvasively before the clinical symptoms appear.

  7. Use of dynamic light scattering to determine second virial coefficient in a semidilute concentration regime.

    PubMed

    Yadav, Sandeep; Scherer, Thomas M; Shire, Steven J; Kalonia, Devendra S

    2011-04-15

    The present work discusses an alternative procedure to obtain static light scattering (SLS) parameters in a dilute and semidilute concentration regime from a dynamic light scattering (DLS) instrument that uses an avalanche photodiode (APD) for recording the scattered intensity signal. An APD enables one to perform both SLS and DLS measurements by photon counting and photon correlation, respectively. However, due to the associated recovery time, the APDs are susceptible to saturation (above 1000 kcps), which may limit the measurements in systems that scatter too much light. We propose an alternative way of obtaining the SLS parameters with instruments that use APD for recording signal intensities.

  8. Using neural networks for dynamic light scattering time series processing

    NASA Astrophysics Data System (ADS)

    Chicea, Dan

    2017-04-01

    A basic experiment to record dynamic light scattering (DLS) time series was assembled using basic components. The DLS time series processing using the Lorentzian function fit was considered as reference. A Neural Network was designed and trained using simulated frequency spectra for spherical particles in the range 0–350 nm, assumed to be scattering centers, and the neural network design and training procedure are described in detail. The neural network output accuracy was tested both on simulated and on experimental time series. The match with the DLS results, considered as reference, was good serving as a proof of concept for using neural networks in fast DLS time series processing.

  9. Scattered light in the STIS echelle modes

    NASA Technical Reports Server (NTRS)

    Landsman, W.; Bowers, C.

    1997-01-01

    The Space Telescope Imaging Spectrograph (STIS) echelle spectra obtained during the Early Release Observations have non-zero residuals in the cores of saturated interstellar lines, indicating the need for a scattered light correction. A rough measure of the magnitude of the needed correction shows the ratio of the interorder to the in-order flux in different echelle modes in both pre-launch calibration images of a continuum lamp source and in post-launch images of stellar continuum sources. The interorder and in-order fluxes are computed by averaging the central 200 pixels in the dispersion direction. The amount of scattered light in the interorder region rises toward shorter wavelengths for two reasons: (1) the order separation decreases toward shorter wavelengths; and (2) the amount of echelle scattering is expected to have an inverse dependence on wavelength. At the shortest wavelengths the fraction of light scattered into the interorder region can be 10% for the Near-ultraviolet-Multi-Anode Microchannel Array (NUV-MAMA) and 15% for the Far-ultraviolet-Multi-Anode Microchannel Array (FUV-MAMA).

  10. Multiple Light Scattering Probes of Soft Materials

    NASA Astrophysics Data System (ADS)

    Scheffold, Frank

    2007-02-01

    I will discuss both static and dynamic properties of diffuse waves. In practical applications the optical properties of colloidal systems play an important role, for example in commercial products such as sunscreen lotions, food (drinks), coatings but also in medicine for example in cataract formation (eye lens turbidity). It is thus of importance to know the key parameters governing optical turbidity from the single to the multiple scattering regime. Temporal fluctuations of multiply scattered light are studied with photon correlation spectroscopy (Diffusing Wave Spectroscopy). This DWS method and its various implementations will be treated.

  11. Atmospheric particulate analysis using angular light scattering

    NASA Technical Reports Server (NTRS)

    Hansen, M. Z.

    1980-01-01

    Using the light scattering matrix elements measured by a polar nephelometer, a procedure for estimating the characteristics of atmospheric particulates was developed. A theoretical library data set of scattering matrices derived from Mie theory was tabulated for a range of values of the size parameter and refractive index typical of atmospheric particles. Integration over the size parameter yielded the scattering matrix elements for a variety of hypothesized particulate size distributions. A least squares curve fitting technique was used to find a best fit from the library data for the experimental measurements. This was used as a first guess for a nonlinear iterative inversion of the size distributions. A real index of 1.50 and an imaginary index of -0.005 are representative of the smoothed inversion results for the near ground level atmospheric aerosol in Tucson.

  12. Focusing light through scattering media by full-polarization digital optical phase conjugation.

    PubMed

    Shen, Yuecheng; Liu, Yan; Ma, Cheng; Wang, Lihong V

    2016-03-15

    Digital optical phase conjugation (DOPC) is an emerging technique for focusing light through or within scattering media such as biological tissue. Since DOPC systems are based on time reversal, they benefit from collecting as much information about the scattered light as possible. However, existing DOPC techniques record and subsequently phase-conjugate the scattered light in only a single-polarization state, limited by the operating principle of spatial light modulators. Here, we develop the first, to the best of our knowledge, full-polarization DOPC system that records and phase-conjugates scattered light along two orthogonal polarizations. When focusing light through thick scattering media, such as 2 mm and 4 mm-thick chicken breast tissue, our full-polarization DOPC system on average doubles the focal peak-to-background ratio achieved by single-polarization DOPC systems and improves the phase-conjugation fidelity.

  13. Focusing light through scattering media by full-polarization digital optical phase conjugation

    PubMed Central

    Shen, Yuecheng; Liu, Yan; Ma, Cheng; Wang, Lihong V.

    2016-01-01

    Digital optical phase conjugation (DOPC) is an emerging technique for focusing light through or within scattering media such as biological tissue. Since DOPC systems are based on time reversal, they benefit from collecting as much information about the scattered light as possible. However, existing DOPC techniques record and subsequently phase-conjugate the scattered light in only a single polarization state, limited by the operating principle of spatial light modulators. Here, we develop the first full-polarization DOPC system which records and phase-conjugates scattered light along two orthogonal polarizations. When focusing light through thick scattering media, such as 2 mm and 4 mm thick chicken breast tissue, our full-polarization DOPC system on average doubles the focal peak-to-background ratio achieved by single-polarization DOPC systems and improves the phase conjugation fidelity. PMID:26977651

  14. Zeno: Critical Fluid Light Scattering Experiment

    NASA Technical Reports Server (NTRS)

    Gammon, Robert W.; Shaumeyer, J. N.; Briggs, Matthew E.; Boukari, Hacene; Gent, David A.; Wilkinson, R. Allen

    1996-01-01

    The Zeno (Critical Fluid Light Scattering) experiment is the culmination of a long history of critical fluid light scattering in liquid-vapor systems. The major limitation to making accurate measurements closer to the critical point was the density stratification which occurs in these extremely compressible fluids. Zeno was to determine the critical density fluctuation decay rates at a pair of supplementary angles in the temperature range 100 mK to 100 (mu)K from T(sub c) in a sample of xenon accurately loaded to the critical density. This paper gives some highlights from operating the instrument on two flights March, 1994 on STS-62 and February, 1996 on STS-75. More detail of the experiment Science Requirements, the personnel, apparatus, and results are displayed on the Web homepage at http://www.zeno.umd.edu.

  15. Inelastic light scattering from correlated electrons

    NASA Astrophysics Data System (ADS)

    Devereaux, Thomas P.; Hackl, Rudi

    2007-01-01

    Inelastic light scattering is an intensively used tool in the study of electronic properties of solids. Triggered by the discovery of high-temperature superconductivity in the cuprates and by new developments in instrumentation, light scattering in both the visible (Raman effect) and x-ray part of the electromagnetic spectrum has become a method complementary to optical (infrared) spectroscopy while providing additional and relevant information. The main purpose of the review is to position Raman scattering with regard to single-particle methods like angle-resolved photoemission spectroscopy, and other transport and thermodynamic measurements in correlated materials. Particular focus will be placed on photon polarizations and the role of symmetry to elucidate the dynamics of electrons in different regions of the Brillouin zone. This advantage over conventional transport (usually measuring averaged properties) provides new insights into anisotropic and complex many-body behavior of electrons in various systems. Recent developments in the theory of electronic Raman scattering in correlated systems and experimental results in paradigmatic materials such as the A15 superconductors, magnetic and paramagnetic insulators, compounds with competing orders, as well as the cuprates with high superconducting transition temperatures are reviewed. An overview of the manifestations of complexity in the Raman response due to the impact of correlations and developing competing orders is presented. In a variety of materials, observations which may be understood and a summary of important open questions that pave the way to a detailed understanding of correlated electron systems, are discussed.

  16. Laser Light Scattering by Shock Waves

    NASA Technical Reports Server (NTRS)

    Panda, J.; Adamovsky, G.

    1995-01-01

    Scattering of coherent light as it propagates parallel to a shock wave, formed in front of a bluff cylindrical body placed in a supersonic stream, is studied experimentally and numerically. Two incident optical fields are considered. First, a large diameter collimated beam is allowed to pass through the shock containing flow. The light intensity distribution in the resultant shadowgraph image, measured by a low light CCD camera, shows well-defined fringes upstream and downstream of the shadow cast by the shock. In the second situation, a narrow laser beam is brought to a grazing incidence on the shock and the scattered light, which appears as a diverging sheet from the point of interaction, is visualized and measured on a screen placed normal to the laser path. Experiments are conducted on shocks formed at various free-stream Mach numbers, M, and total pressures, P(sub 0). It is found that the widths of the shock shadows in a shadowgraph image become independent of M and P(sub 0) when plotted against the jump in the refractive index, (Delta)n, created across the shock. The total scattered light measured from the narrow laser beam and shock interaction also follows the same trend. In the numerical part of the study, the shock is assumed to be a 'phase object', which introduces phase difference between the upstream and downstream propagating parts of the light disturbances. For a given shape and (Delta)n of the bow shock the phase and amplitude modulations are first calculated by ray tracing. The wave front is then propagated to the screen using the Fresnet diffraction equation. The calculated intensity distribution, for both of the incident optical fields, shows good agreement with the experimental data.

  17. Influence of convection on the stimulated concentration light scattering

    NASA Astrophysics Data System (ADS)

    Burkhanov, I. S.; Krivokhizha, S. V.; Chaikov, L. L.

    2016-08-01

    A non-linear growth of the scattering intensity and the frequency shift of the spectral lines of scattered light close to the half-width of the spontaneous scattering in the back scattering of light in the suspensions of latex nanoparticles in water were found. It proves that we observed a stimulated scattering of light on the particle concentration variations. Influence of convection is taken into account using Doppler measurements of fluid flow.

  18. Light scattering measurement of sodium polyacrylate products

    NASA Astrophysics Data System (ADS)

    Lama, Nisha; Norwood, David; Boone, Steven; Massie-Boyer, Valerie

    2015-03-01

    In the presentation, we will describe the use of a multi-detector HPLC incorporating the DAWN EOS multi-angle laser light scattering (MALLS) detector to measure the properties such as molecular weight, RMS radius, contour and persistence length and polydispersity of sodium polyacrylate products. The samples of sodium polyacrylate are used in various industries as thickening agents, coating dispersants, artificial snow, laundry detergent and disposable diapers. Data and results obtained from the experiment will be presented.

  19. Visible Inelastic Light Scattering from Metals

    NASA Astrophysics Data System (ADS)

    Wilkinson, Roger Allen

    In this work we studied the spectral shape of the intense continuum of light scattered inelastically from "bare" metals used in Surface Enhanced Raman Scattering. We derived cross sections, presented their spectral properties, and experimentally sought to characterize the observable spectral shape. Three scattering cross sections are derived. The development includes exposure of assumptions and limitations in the derivation. Elucidated are: contributions due to the few angstrom drastic spatial and polarization variations of the applied electromagnetic field at jellium metal surfaces; fluctuation induced light scattering, such as, spin density, charge density (plasmon and single electron), and current density fluctuations; and the light coupling operators that arise from a choice of gauge used in photoemission rather than the customary Coulomb gauge. The result is a set of matrix elements that carry the important physics of light scattering by metallic electrons, and that is more complete than is found in the Surface Enhanced Raman literature. Using one of these matrix elements in the electric dipole approximation we have developed a quantum chemistry computer algorithm to evaluate the strength of light interaction with any metal surface which can be modeled as a cluster. The algorithm uses spd Slater-type bases and can study transition and noble metals. It was tested on some model systems. A formalism is presented for further developing the algorithm to calculate adsorbed molecular vibrational Raman cross sections in the limit of the long wavelength electric dipole approximation. We further present known continuum spectral shapes from familiar light coupling operators (a subset of those we derived) and associate them with our experimentally observed spectral shapes. In the experimental study of spectral shapes we found the mechanical disorder, due to cold working smooth metals during polishing, to correlate with the strength of the continuum. Using microscopic

  20. Bacterial Identification Using Light Scattering Measurements: a Preliminary Report

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.

    1971-01-01

    The light scattering properties of single bacterial cells were examined as a possible means of identification. Three species were studied with streptococcus faecalis exhibiting a unique pattern; the light-scattering traces for staphylococcus aureus and escherichia coli were quite similar although differences existed. Based on preliminary investigations, the light scattering approach appeared promising with additional research needed to include a wide variety of bacterial species, computer capability to handle and analyze data, and expansion of light scattering theory to include bacterial cells.

  1. Improved Optics For Quasi-Elastic Light Scattering

    NASA Technical Reports Server (NTRS)

    Cheung, Harry Michael

    1995-01-01

    Improved optical train devised for use in light-scattering measurements of quasi-elastic light scattering (QELS) and laser spectroscopy. Measurements performed on solutions, microemulsions, micellular solutions, and colloidal dispersions. Simultaneous measurements of total intensity and fluctuations in total intensity of light scattered from sample at various angles provides data used, in conjunction with diffusion coefficients, to compute sizes of particles in sample.

  2. Measurement of light scattering in deep sea

    NASA Astrophysics Data System (ADS)

    Maragos, N.; Balasi, K.; Domvoglou, T.; Kiskiras, I.; Lenis, D.; Maniatis, M.; Stavropoulos, G.

    2016-04-01

    The deep-sea neutrino telescope in the Mediterranean Sea, being prepared by the KM3NET collaboration, will contain thousands of optical sensors to readout. The accurate knowledge of the optical properties of deep-sea water is of great importance for the neutrino event reconstruction process. In this study we describe our progress in designing an experimental setup and studying a method to measure the parameters describing the absorption and scattering characteristics of deep-sea water. Three PMTs will be used to measure in situ the scattered light emitted from six laser diodes in three different wavelengths covering the Cherenkov radiation spectrum. The technique for the evaluation of the parameters is based on Monte Carlo simulations and our results show that we are able to determine these parameters with satisfying precision.

  3. Light Scattering Study of Titania Aerosols

    NASA Astrophysics Data System (ADS)

    Oh, Choonghoon; Sorensen, Chris

    1997-03-01

    We studied the fractal morphology of titania aerosols by light scattering. Titania aerosols were generated by the thermal decomposition of titanium tetraisopropoxide (TTIP) in a silica tube furnace. TTIP was evaporated at temperatures up to 80^circC and its vapor was carried by dry nitrogen to a furnace with temperature in the range of 400 - 600^circC. A TEM analysis of the generated particles showed a typical DLCA structure with a monomer diameter about 50 nm. The particles were then made to flow through a narrow outlet as a laminar stream. The light scattering from these particles was measured using a He-Ne laser as a light source. The measured structure factor clearly showed the Rayleigh, Guinier, and fractal regimes. The fractal morphological parameters, such as the cluster radius of gyration, the fractal dimension, and the fractal prefactor were studied from the structure factor as a function of particle generation conditions. The cluster radius of gyration was about 1 μm and showed a modest dependency on the generation conditions. The fractal dimension was about 1.7 in all cases. These results are in good agreement with the TEM analysis.

  4. Light Scattering from Exoplanet Oceans and Atmospheres

    NASA Astrophysics Data System (ADS)

    Zugger, Michael; Kasting, J. F.; Williams, D. M.; Kane, T. J.; Philbrick, C. R.

    2011-01-01

    Orbital variation in reflected starlight from exoplanets could eventually be used to detect surface oceans. Exoplanets with rough surfaces, or dominated by atmospheric Rayleigh scattering, should reach peak brightness in full phase, orbital longitude = 180deg, whereas ocean planets with transparent atmospheres should reach peak brightness in crescent phase near OL = 30deg. Application of Fresnel theory to a planet with no atmosphere covered by a calm ocean predicts a peak polarization fraction of 1 at OL = 74deg; however, our model shows that clouds, wind-driven waves, aerosols, absorption, and Rayleigh scattering in the atmosphere and within the water column, dilute the polarization fraction and shift the peak to other OLs. Observing at longer wavelengths reduces the obfuscation of the water polarization signature by Rayleigh scattering but does not mitigate the other effects. Planets with thick Rayleigh scattering atmospheres reach peak polarization near OL = 90deg, but clouds and Lambertian surface scattering dilute and shift this peak to smaller OL. A shifted Rayleigh peak might be mistaken for a water signature unless data from multiple wavelength bands are available. Our calculations suggest that polarization alone may not positively identify the presence of an ocean under an Earth-like atmosphere; however polarization adds another dimension which can be used, in combination with unpolarized orbital light curves and contrast ratios, to detect extrasolar oceans, atmospheric water aerosols, and water clouds. Additionally, the presence and direction of the polarization vector could be used to determine planet association with the star, and constrain orbit inclination. This research was funded by the NASA Astrobiology Institute, the University of Washington Virtual Planetary Laboratory, and the Penn State Astrobiology Institute. Authors M. Zugger, J. Kasting, and D. Williams are members of the Penn State Center for Exoplanets and Habitable Worlds.

  5. Scattering of light on rippled surfaces

    NASA Astrophysics Data System (ADS)

    Hilarov, V. L.; Korsukov, V. E.; Korsukova, M. M.; Shcherbakov, I. P.

    2015-06-01

    Thin platinum foils and ribbons of the amorphous alloy Fe77Ni1Si9B13 with fractal surfaces made of unidirectional multiscale surface ripples have been prepared. The surface relief and atomic structure of these foils have been investigated by low-energy electron diffraction, atomic force microscopy, and scanning tunnelling microscopy. It has been shown that Pt foils with a fractal surface relief have the prospect for application as reflective diffraction gratings. A model has been proposed and used to calculate the light scattering on unidirectional rippled surface structures of Pt foils.

  6. Light scattering from dense cold atomic media

    NASA Astrophysics Data System (ADS)

    Zhu, Bihui; Cooper, John; Ye, Jun; Rey, Ana Maria

    2016-08-01

    We theoretically study the propagation of light through a cold atomic medium, where the effects of motion, laser intensity, atomic density, and polarization can all modify the properties of the scattered light. We present two different microscopic models: the "coherent dipole model" and the "random-walk model", both suitable for modeling recent experimental work done in large atomic arrays in the low-light-intensity regime. We use them to compute relevant observables such as the linewidth, peak intensity, and line center of the emitted light. We further develop generalized models that explicitly take into account atomic motion. Those are relevant for hotter atoms and beyond the low-intensity regime. We show that atomic motion can lead to drastic dephasing and to a reduction of collective effects, together with a distortion of the line shape. Our results are applicable to model a full gamut of quantum systems that rely on atom-light interactions, including atomic clocks, quantum simulators, and nanophotonic systems.

  7. Light scattering in artificial fog and simulated with light scattering filter.

    PubMed

    Ikaunieks, Gatis; Colomb, Michéle; Ozolinsh, Maris

    2009-05-01

    Disability glare, affecting e.g. road safety at night, may result either from intraocular light scattering or from external conditions such as fog. Measurements were made of light scattering in fog and compared with intraocular straylight data for normal eyes and eyes with simulated cataract. All measurements were made with a direct compensation flicker method. To estimate light scattering levels in fog, straylight measurements were carried in a fog chamber for different densities of fog. Density was characterized by the meteorological term visibility V and ranged from 7 to 25. Test distance for measurements in the fog was constant at 5 m. Cataract eye conditions were simulated by placing a light scattering polymer dispersed liquid crystal (PDLC) filter with scatterers of submicron size in front of the normal eye. All measurements were made using each of three broad-band color stimuli - red, green and blue (produced either with LEDs or a color CRT monitor). Differences were found in both the level and the spectral characteristics of scattering under the different conditions. The measured values of the straylight parameter, s, in artificial fog showed no noticeable spectral dependence at any visibility range. Increasing the visibility range caused an exponential decrease in the straylight. Intraocular straylight measured with the clear eye showed an increase at the red and blue ends of the spectrum as compared to the green. Straylight measured using PDLC plates with different transparency levels showed a spectral dependence which decreased with wavelength. The scattering introduced by the PDLC plate therefore failed to give a valid simulation of cataract and fog conditions for polychromatic stimuli, due to its erroneous spectral dependence.

  8. Industrial Particle Size Measurement Using Light Scattering

    NASA Astrophysics Data System (ADS)

    Muly, E. C.; Frock, H. N.

    1980-12-01

    The precise knowledge of particle size and particle size distribution is fundamental to the control of a wide variety of industrial processes. Processing steps as diverse as crystallization, grinding, emulsification, and atomization, produce particles in the size range .1 to 1000 micrometers in diameter. While the object of some processes may be the production of particles of specified sizes, e.g., abrasives and glass beads, other processes may require particle size control for process efficiency, e.g., crystallization, and still others for control of final product quality, e.g., minerals, cement, and ceramics. In many processes more than one of these reasons may be important. A line of instruments has been developed using light scattering to measure various parameters of particulate distributions. These instruments employ laser illumination of a flowing stream of particles, producing Fraunhofer diffraction patterns which are processed both optically and electronically with unique, proprietary techniques. Various parameters of the particle size distribution are measured. The measurement is both rapid and precise. This paper will cover the importance of particle size measurements in various processes, different types of measurement methods, and the application of light scattering technology to size determinations in wet slurries and dry powders. A number of specific applications will be discussed encompassing minerals grinding, Portland cement, and rolling mill emulsions. Some references will be made to energy savings through automation.

  9. Fourier transform light scattering angular spectroscopy using digital inline holography.

    PubMed

    Kim, Kyoohyun; Park, YongKeun

    2012-10-01

    A simple and practical method for measuring the angle-resolved light scattering (ARLS) from individual objects is reported. Employing the principle of inline holography and a Fourier transform light scattering technique, both the static and dynamic scattering patterns from individual micrometer-sized objects can be effectively and quantitatively obtained. First, the light scattering measurements were performed on individual polystyrene beads, from which the refractive index and diameter of each bead were retrieved. Also, the measurements of the static and dynamic light scattering from intact human red blood cells are demonstrated. Using the present method, an existing microscope can be directly transformed into a precise instrument for ARLS measurements.

  10. Photon Correlation Spectroscopy and Electrophoretic Light Scattering Using Optical Fibres.

    NASA Astrophysics Data System (ADS)

    MacFadyen, Allan John

    Available from UMI in association with The British Library. In photon correlation spectroscopy, the fast local fluctuations in the intensity of the light scattered by submicron particles in suspension are recorded and analysed in terms of the particle motion. These may then be related to the particle size, or, when the particles are subjected to an electric field, the electrophoretic mobility. Light scattering apparatus traditionally incorporates a fixed goniometer arrangement. Recently, however, systems have been reported which incorporate optical fibres for use in remote or on-line situations. In this thesis, recent advances in the development of fibre-based photon correlation systems are reviewed and the design and construction of two novel optical fibre apparatus prototypes, incorporating "SELFOC" lenses, miniature prisms and single mode detection fibre, is discussed. The final outcome, an optical fibre sensor, which combines both photon correlation and electrophoretic light scattering measurements in a single, compact dip -in probe for the first time, is described. Results are presented for a variety of colloidal particles in suspension including polystyrene and "Microsilica" spheres, PTFE ellipsoids and kaolinite platelets, all of which demonstrate the viability of the apparatus.

  11. LIGHT SCATTERING: Fast path-integration technique in simulation of light propagation through highly scattering objects

    NASA Astrophysics Data System (ADS)

    Voronov, Aleksandr V.; Tret'yakov, Evgeniy V.; Shuvalov, Vladimir V.

    2004-06-01

    Based on the path-integration technique and the Metropolis method, the original calculation scheme is developed for solving the problem of light propagation through highly scattering objects. The elimination of calculations of 'unnecessary' realisations and the phenomenological description of processes of multiple small-angle scattering provided a drastic increase (by nine and more orders of magnitude) in the calculation rate, retaining the specific features of the problem (consideration of spatial inhomogeneities, boundary conditions, etc.). The scheme allows one to verify other fast calculation algorithms and to obtain information required to reconstruct the internal structure of highly scattering objects (of size ~1000 scattered lengths and more) by the method of diffusion optical tomography.

  12. Determination of light absorption, scattering and anisotropy factor of a highly scattering medium using backscattered circularly polarized light

    NASA Astrophysics Data System (ADS)

    Xu, M.; Alrubaiee, M.; Gayen, S. K.; Alfano, R. R.

    2007-02-01

    The absorption coefficient, the scattering coefficient and the anisotropy factor of a highly scattering medium are determined using the diffuse reflectance of an obliquely incident beam of circularly polarized light. This approach determines both the anisotropy factor and the cutoff size parameter for the fractal continuous scattering medium such as biological tissue and tissue phantoms from depolarization of the backscattered light.

  13. Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model.

    PubMed

    Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2009-08-14

    Measurement of intrinsic optical signals (IOSs) is an attractive technique for monitoring tissue viability in brains since it enables noninvasive, real-time monitoring of morphological characteristics as well as physiological and biochemical characteristics of tissue. We previously showed that light scattering signals reflecting cellular morphological characteristics were closely related to the IOSs associated with the redox states of cytochrome c oxidase in the mitochondrial respiratory chain. In the present study, we examined the relationship between light scattering and energy metabolism. Light scattering signals were transcranially measured in rat brains after oxygen and glucose deprivation, and the results were compared with concentrations of cerebral adenosine triphosphate (ATP) measured by luciferin-luciferase bioluminescence assay. Electrophysiological signal was also recorded simultaneously. After starting saline infusion, EEG activity ceased at 108+/-17s, even after which both the light scattering signal and ATP concentration remained at initial levels. However, light scattering started to change in three phases at 236+/-15s and then cerebral ATP concentration started to decrease at about 260s. ATP concentration significantly decreased during the triphasic scattering change, indicating that the start of scattering change preceded the loss of cerebral ATP. The mean time difference between the start of triphasic scattering change and the onset of ATP loss was about 24s in the present model. DC potential measurement showed that the triphasic scattering change was associated with anoxic depolarization. These findings suggest that light scattering signal can be used as an indicator of loss of tissue viability in brains.

  14. Modeling of light scattering by icy bodies

    NASA Astrophysics Data System (ADS)

    Kolokolova, L.; Mackowski, D.; Pitman, K.; Verbiscer, A.; Buratti, B.; Momary, T.

    2014-07-01

    As a result of ground-based, space-based, and in-situ spacecraft mission observations, a great amount of photometric, polarimetric, and spectroscopic data of icy bodies (satellites of giant planets, Kuiper Belt objects, comet nuclei, and icy particles in cometary comae and rings) has been accumulated. These data have revealed fascinating light-scattering phenomena, such as the opposition surge resulting from coherent backscattering and shadow hiding and the negative polarization associated with them. Near-infrared (NIR) spectra of these bodies are especially informative as the depth, width, and shape of the absorption bands of ice are sensitive not only to the ice abundance but also to the size of icy grains. Numerous NIR spectra obtained by Cassini's Visual and Infrared Mapping Spectrometer (VIMS) have been used to map the microcharacteristics of the icy satellites [1] and rings of Saturn [2]. VIMS data have also permitted a study of the opposition surge for icy satellites of Saturn [3], showing that coherent backscattering affects not only brightness and polarization of icy bodies but also their spectra [4]. To study all of the light-scattering phenomena that affect the photopolarimetric and spectroscopic characteristics of icy bodies, including coherent backscattering, requires computer modeling that rigorously considers light scattering by a large number of densely packed small particles that form either layers (in the case of regolith) or big clusters (ring and comet particles) . Such opportunity has appeared recently with a development of a new version MSTM4 of the Multi-Sphere T-Matrix code [5]. Simulations of reflectance and absorbance spectra of a ''target'' (particle layer or cluster) require that the dimensions of the target be significantly larger than the wavelength, sphere radius, and layer thickness. For wavelength-sized spheres and packing fractions typical of regolith, targets can contain dozens of thousands of spheres that, with the original MSTM

  15. Fourier-transform light scattering of individual colloidal clusters.

    PubMed

    Yu, HyeonSeung; Park, HyunJoo; Kim, Youngchan; Kim, Mahn Won; Park, YongKeun

    2012-07-01

    We present measurements of the scalar-field light scattering of individual dimer, trimer, and tetrahedron shapes among colloidal clusters. By measuring the electric field with quantitative phase imaging at the sample plane and then numerically propagating to the far-field scattering plane, the two-dimensional light-scattering patterns from individual colloidal clusters are effectively and precisely retrieved. The measured scattering patterns are consistent with simulated patterns calculated from the generalized multiparticle Mie solution.

  16. A Study of Brownian Motion Using Light Scattering

    ERIC Educational Resources Information Center

    Clark, Noel A.; Lunacek, Joseph H.

    1969-01-01

    Describes an apparatus designed to investigate molecular motion by means of light scattering. Light from a He-Ne laser is focused into a cell containing a suspension of polystyrene spheres. The scattered light, collected on the photosurface of a photomultiplier tube, is analyzed. The apparatus won first prize in Demonstration Lecture Apparatus in…

  17. A novel full-angle scanning light scattering profiler to quantitatively evaluate forward and backward light scattering from intraocular lenses

    SciTech Connect

    Walker, Bennett N.; James, Robert H.; Ilev, Ilko K.; Calogero, Don

    2015-09-15

    Glare, glistenings, optical defects, dysphotopsia, and poor image quality are a few of the known deficiencies of intraocular lenses (IOLs). All of these optical phenomena are related to light scatter. However, the specific direction that light scatters makes a critical difference between debilitating glare and a slightly noticeable decrease in image quality. Consequently, quantifying the magnitude and direction of scattered light is essential to appropriately evaluate the safety and efficacy of IOLs. In this study, we introduce a full-angle scanning light scattering profiler (SLSP) as a novel approach capable of quantitatively evaluating the light scattering from IOLs with a nearly 360° view. The SLSP method can simulate in situ conditions by controlling the parameters of the light source including angle of incidence. This testing strategy will provide a more effective nonclinical approach for the evaluation of IOL light scatter.

  18. LIGHT SCATTERING: Observation of multiple scattering of laser radiation from a light-induced jet of microparticles in suspension

    NASA Astrophysics Data System (ADS)

    Kondrat'ev, Andrei V.

    2004-06-01

    Variation in the correlation function of light multiply scattered by a random medium was observed with increasing the incident beam power. The light-induced motion of microparticles in suspension, caused by a high-power laser radiation, serves as an additional factor in the decorrelation of the scattered light. The experimental data are in good agreement with the results of theoretical analysis.

  19. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering.

    PubMed

    Jo, YoungJu; Jung, JaeHwang; Lee, Jee Woong; Shin, Della; Park, HyunJoo; Nam, Ki Tae; Park, Ji-Ho; Park, YongKeun

    2014-05-28

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  20. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    PubMed Central

    Jo, YoungJu; Jung, JaeHwang; Lee, Jee Woong; Shin, Della; Park, HyunJoo; Nam, Ki Tae; Park, Ji-Ho; Park, YongKeun

    2014-01-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from −70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth. PMID:24867385

  1. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    NASA Astrophysics Data System (ADS)

    Jo, Youngju; Jung, Jaehwang; Lee, Jee Woong; Shin, Della; Park, Hyunjoo; Nam, Ki Tae; Park, Ji-Ho; Park, Yongkeun

    2014-05-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  2. Fractal mechanisms of light scattering in biological tissue and cells

    NASA Astrophysics Data System (ADS)

    Xu, M.; Alfano, R. R.

    2005-11-01

    We use fractal continuous random media to model visible and near-infrared light scattering by biological tissue and cell suspensions. The power law of the reduced scattering coefficient, the anisotropy factor of scattering, and the phase function are derived with good agreement with experimental results. Implications for spectroscopic tissue diagnosis are discussed.

  3. Multiple-Fiber-Optic Probe For Light-Scattering Measurements

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans Singh; Ansari, Rafat R.

    1996-01-01

    Multiple-fiber-optical probe developed for use in measuring light scattered at various angles from specimens of materials. Designed for both static and dynamic light-scattering measurements of colloidal dispersions. Probe compact, rugged unit containing no moving parts and remains stationary during operation. Not restricted to operation in controlled, research-laboratory environment. Positioned inside or outside light-scattering chamber. Provides simultaneous measurements at small angular intervals over range of angles, made to include small scattering angles by orienting probe in appropriate direction.

  4. Recovering the vorticity of a light beam after scattering

    SciTech Connect

    Salla, Gangi Reddy Perumangattu, Chithrabhanu; Anwar, Ali; Prabhakar, Shashi; Singh, Ravindra P.

    2015-07-13

    We generate optical vortices and scatter them through a rough surface. However, the scattered light passing through a lens shows the same vorticity when probed at the Fourier plane. The vorticity is measured using a nonseparable state of polarization and orbital angular momentum of light as it cannot be confirmed by the standard interferometric technique. The observed vorticity is found to be independent of the amount of scattered light collected. Therefore, vortices can be used as information carriers even in the presence of scattering media. The experimental results are well supported by the theoretical results.

  5. NASA Laser Light Scattering Advanced Technology Development Workshop, 1988

    NASA Technical Reports Server (NTRS)

    Meyer, William V. (Editor)

    1989-01-01

    The major objective of the workshop was to explore the capabilities of existing and prospective laser light scattering hardware and to assess user requirements and needs for a laser light scattering instrument in a reduced gravity environment. The workshop addressed experimental needs and stressed hardware development.

  6. Utility of light scatter in the morphological analysis of sperm

    EPA Science Inventory

    We were able to differentiate the morphologically diverse sperm nuclei of four animal species by using an Ortho flow cytometer to detect the forward light scatter from a red (helium-neon) laser. Cytograms depicting the axial light loss and forward red scatter signals revealed uni...

  7. Light scattering by marine heterotrophic bacteria

    NASA Technical Reports Server (NTRS)

    Ulloa, Osvaldo; Sathyendranath, Shubha; Platt, Trevor; Quinones, Renato A.

    1992-01-01

    Mie theory is applied to estimate scattering by polydispersions of marine heterotrophic bacteria, and a simple expression is derived for the bacterial scattering coefficient. The error incurred in deriving bacterial optical properties by use of the van de Hulst approximations is computed. The scattering properties of natural bacterial assemblages in three marine environments, Georges Bank, Northeast Channel, and Sargasso Sea, are assessed by applying Mie theory to field data on bacterial size and abundance. Results are used to examine the potential contribution of bacteria to the scattering properties of seawater. The utility of using pigment data to predict the magnitude of scattering by bacteria is discussed.

  8. Scattering of Light and Surface Plasmon Polaritons from Rough Surfaces

    DTIC Science & Technology

    2013-06-14

    AFRL-RV-PS- AFRL-RV-PS- TR-2013-0049 TR-2013-0049 SCATTERING OF LIGHT AND SURFACE PLASMON POLARITONS FROM ROUGH SURFACES Alexei A...2013 4. TITLE AND SUBTITLE Scattering of Light and Surface Plasmon Polaritons from Rough Surfaces 5a. CONTRACT NUMBER FA9453-08-C-0230 5b...of several properties of surface plasmon polaritons on structured surfaces are described, together with results for the scattering of surface plasmon

  9. Dynamic light scattering can determine platelet function

    NASA Astrophysics Data System (ADS)

    Lee, Nathan

    2011-10-01

    Platelet transfusions are life-saving procedures for patients who are bleeding or undergoing chemotherapy. The effectiveness of transfusions depends on the number of platelets transfused and the platelet function. Platelet function correlates with proportion of discoid to activated platelets, morphology response to temperature stress, and inversely correlates with microparticle content. ThromboLUX is a novel device that determines platelet function by measuring all of these characteristics using dynamic light scattering (DLS). During periods of stress, such as decreased temperature, cytoskeletal rearrangements will cause normal, discoid platelets to activate and become spiny spheres. The formation of pseudopods of various lengths facilitates the clotting cascade and also increases the apparent size of platelets. ThromboLUX uses a 37-20-37 C temperature cycle that mimics the bleeding, storage, and transfusion process. As the temperature fluctuates, DLS will measure the changing platelet hydrodynamic radius and the size of any microparticles present. ThromboLUX analysis of platelet concentrates in vitro would allow determination of high platelet function units before transfusion and would therefore improve transfusion outcomes and patient safety. This study examined how DLS is able to distinguish between discoid and activated platelets as well as measure the parameters that contribute to high platelet function.

  10. Anisotropic light scattering of individual sickle red blood cells

    NASA Astrophysics Data System (ADS)

    Kim, Youngchan; Higgins, John M.; Dasari, Ramachandra R.; Suresh, Subra; Park, YongKeun

    2012-04-01

    We present the anisotropic light scattering of individual red blood cells (RBCs) from a patient with sickle cell disease (SCD). To measure light scattering spectra along two independent axes of elongated-shaped sickle RBCs with arbitrary orientation, we introduce the anisotropic Fourier transform light scattering (aFTLS) technique and measured both the static and dynamic anisotropic light scattering. We observed strong anisotropy in light scattering patterns of elongated-shaped sickle RBCs along its major axes using static aFTLS. Dynamic aFTLS analysis reveals the significantly altered biophysical properties in individual sickle RBCs. These results provide evidence that effective viscosity and elasticity of sickle RBCs are significantly different from those of the healthy RBCs.

  11. Study of erythrocyte membrane fluctuation using light scattering analysis

    NASA Astrophysics Data System (ADS)

    Lee, Hoyoon; Lee, Sangyun; Park, YongKeun; Shin, Sehyun

    2016-03-01

    It is commonly known that alteration of erythrocyte deformability lead to serious microcirculatory diseases such as retinopathy, nephropathy, etc. Various methods and technologies have been developed to diagnose such membrane properties of erythrocytes. In this study, we developed an innovative method to measure hemorheological characteristics of the erythrocyte membrane using a light scattering analysis with simplified optic setting and multi-cell analysis as well. Light scattering intensity through multiple erythrocytes and its power density spectrum were obtained. The results of light scattering analyses were compared in healthy control and artificially hardened sample which was treated with glutaraldehyde. These results were further compared with conventional assays to measure deformable property in hemorheology. We found that light scattering information would reflect the disturbance of membrane fluctuation in artificially damaged erythrocytes. Therefore, measuring fluctuation of erythrocyte membrane using light scattering signal could facilitate simple and precise diagnose of pathological state on erythrocyte as well as related complications.

  12. Changes in hemodynamics and light scattering during cortical spreading depression

    NASA Astrophysics Data System (ADS)

    Li, Pengcheng; Yang, Yuanyuan; Luo, Qingming

    2005-01-01

    Cortical spreading depression (CSD) has been known to play an important role in the mechanism of migraine, stroke and brain injure. Optical imaging of intrinsic signals has been shown a powerful method for characterizing the spatial and temporal pattern of the propagation of CSD. However, the possible physiological mechanisms underlying the intrinsic optical signal (IOS) during CSD still remain incompletely understood. In this study, a spectroscopic recording of the change in optical intrinsic signal during CSD was performed and an analysis method based on the modified Beer-Lambert law was used to estimate the changes in the concentration of HbO2 and Hb, and changes in light scattering from the spectra data. The CSD were induced by pinprick in 10 α-chloralose/urethane anesthetized Sprague-Dawley rats. In all experiments, four-phasic changes in optical reflectance were observed at 450 nm ~ 570 nm, and triphasic changes in optical reflectance were observed in the range of 570 nm ~750 nm. But at 750 nm ~ 850 nm, only biphasic changes of optical signal were detected. Converting the spectra data to the changes in light scattering and concentration of Hb and HbO2, we found that the CSD induced an initial increase in concentration of HbO2 (amplitude: 9.0+/-3.7%), which was 26.2+/-18.6 s earlier than the onset of increase of Hb concentration. Furthermore, the concentration of HbO2 showed a four-phasic change, whereas the concentration of Hb only showed a biphasic change. For the changes in light scattering during CSD, a triphasic change was observed.

  13. Limitations for heterodyne detection of Brillouin scattered light

    SciTech Connect

    Allemeier, R.T.; Wagner, J.W.; Telschow, K.L.

    1995-01-01

    One means by which elastic properties of a material may be determined is measuring sound wave velocities in the material, from which elastic moduli of interest can be computed. Velocity can be measured by conventional piezoelectric transduction techniques, by applying laser ultrasonics, or by using Brillouin-scattering methods. Brillouin-scattering techniques for determining the sound wave velocity are particularly attractive since they are completely noninvasive. Only a probe beam of light is required since the thermal energy in the material provides the elastic motion. Heterodyne methods for detection of Brillouin-scattered light are considered one possible means to increase the speed of the scattered light frequency detection. Results of experiments with simulated Brillouin scattering suggest that heterodyne detection of the Brillouin-scattered light is feasible. Experiments to detect Brillouin-scattered light, with water as the scattering medium, were designed and interpreted using the results of the simulated scattering experiments. Overall, results showed that it is difficult to narrow the linewidth for Brillouin scattering to an acceptable level. The results given indicate that heterodyne detection of the Brillouin components requires detection bandwidths that are quite small, perhaps 10 Hz or lower. These small bandwidths can be routinely achieved using lock-in amplifier techniques.

  14. Laser Light Scattering with Multiple Scattering Suppression Used to Measure Particle Sizes

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Tin, Padetha; Lock, James A.; Cannell, David S.; Smart, Anthony E.; Taylor, Thomas W.

    1999-01-01

    Laser light scattering is the technique of choice for noninvasively sizing particles in a fluid. The members of the Advanced Technology Development (ATD) project in laser light scattering at the NASA Lewis Research Center have invented, tested, and recently enhanced a simple and elegant way to extend the concentration range of this standard laboratory particle-sizing technique by several orders of magnitude. With this technique, particles from 3 nm to 3 mm can be measured in a solution. Recently, laser light scattering evolved to successfully size particles in both clear solutions and concentrated milky-white solutions. The enhanced technique uses the property of light that causes it to form tall interference patterns at right angles to the scattering plane (perpendicular to the laser beam) when it is scattered from a narrow laser beam. Such multiple-scattered light forms a broad fuzzy halo around the focused beam, which, in turn, forms short interference patterns. By placing two fiber optics on top of each other and perpendicular to the laser beam (see the drawing), and then cross-correlating the signals they produce, only the tall interference patterns formed by singly scattered light are detected. To restate this, unless the two fiber optics see the same interference pattern, the scattered light is not incorporated into the signal. With this technique, only singly scattered light is seen (multiple-scattered light is rejected) because only singly scattered light has an interference pattern tall enough to span both of the fiber-optic pickups. This technique is simple to use, easy to align, and works at any angle. Placing a vertical slit in front of the signal collection fibers enhanced this approach. The slit serves as an optical mask, and it significantly shortens the time needed to collect good data by selectively masking out much of the unwanted light before cross-correlation is applied.

  15. Light scattering characterization of optical components: BRDF, BTDF, and scatter losses

    NASA Astrophysics Data System (ADS)

    Schröder, Sven; Finck, Alexander; Katsir, Dina; Zeitner, Uwe; Duparré, Angela

    2014-11-01

    Light scattering caused by imperfections of optical components can critically affect the performance of optical systems in terms of losses and image degradation. Because of the numerous potential sources of scattering such as roughness, surface and sub-surface defects, bulk inhomogeneities, as well as coatings, scattering properties must be carefully specified and measured at the wavelengths of application. Bidirectional Reflectance and Transmittance Distribution Functions (BRDF / BTDF) are used to quantify the angle resolved scattering properties. The data can be used as an input for optical engineering software just as FRED, ASAP, ZEMAX for stray light modeling. In addition, analyzing the scattered light can provide valuable information about the relevant imperfections. The presentation provides an overview of instrumentation for light scattering measurements at wavelengths ranging from the visible to the extreme ultraviolet and the infrared spectral regions. Examples of applications will be discussed ranging from superpolished mirrors to diffraction gratings, interference coatings, and black absorbing coatings.

  16. An analysis of scattered light in low dispersion IUE spectra

    NASA Technical Reports Server (NTRS)

    Basri, G.; Clarke, J. T.; Haisch, B. M.

    1985-01-01

    A detailed numerical simulation of light scattering from the low-resolution grating in the short wavelength spectrograph of the IUE Observatory was developed, in order to quantitatively analyze the effects of scattering on both continuum and line emission spectra. It is found that: (1) the redistribution of light by grating scattering did not appreciably alter either the shape or the absolute flux level of continuum spectra for A-F stars; (2) late-type stellar continua showed a tendency to flatten when observed in scattered light toward the shorter wavelengths; and (3) the effect of grating scattering on emission lines is to decrease measured line intensities by an increasing percentage toward the shorter wavelengths. The spectra obtained from scattering experiments for solar-type and late type stars are reproduced in graphic form.

  17. Projection screen having reduced ambient light scattering

    DOEpatents

    Sweatt, William C.

    2010-05-11

    An apparatus and method for improving the contrast between incident projected light and ambient light reflected from a projection screen are described. The efficiency of the projection screen for reflection of the projected light remains high, while permitting the projection screen to be utilized in a brightly lighted room. Light power requirements from the projection system utilized may be reduced.

  18. Dynamic Light Scattering of Diabetic Vitreopathy

    NASA Technical Reports Server (NTRS)

    Sebag, J.; Ansari, Rafat R.; Dunker, Stephan; Suh, Kwang I.

    1999-01-01

    Diabetes induces pathology throughout the body via nonenzymatic glycation of proteins. Vitreous, which is replete with type 11 collagen, undergoes significant changes in diabetes. The resultant diabetic vitreopathy plays an important role in diabetic retinopathy. Detecting these molecular changes could provide insight into diabetic eye disease as well as molecular effects elsewhere in the body. Human eyes were obtained at autopsy and studied in the fresh, unfixed state. Sclera, choroid, and retina were dissected off the vitreous for dark-field slit microscopy and dynamic light scattering (DLS). For the former, the entire vitreous was exposed. For the latter, only a window at the equator was dissected in some specimens, and the anterior segment was removed leaving the posterior lens capsule intact in others. DLS was performed to determine particle sizes at multiple sites 0.5 mm apart, spanning the globe at the equator (window dissections) and along the antero-posterior axis. Dark-field slit microscopy in diabetic subjects detected findings typical of age-related vitreous degeneration, but at much younger ages than nondiabetic controls. Noninvasive DLS measurements found a greater heterogeneity and larger particle sizes in vitreous of subjects with diabetes as compared to age-matched controls. DLS can detect and quantify the early molecular effects that cause vitreous collagen fibrils to cross-link and aggregate. This could provide valuable insight into ocular and systemic effects of hyperglycemia, because the molecular changes in diabetic vitreopathy could serve as an index of such effects throughout the body. In addition to the diagnostic implications, this methodology could provide a rapid, reproducible way to monitor the response to therapy with novel agents intended to prevent the complications of diabetes on a molecular level.

  19. Light-Scattering Characteristics of Optical Surfaces

    DTIC Science & Technology

    1975-01-01

    UNCLASSIFIED Psd) Accession For NTIS GRA&I DTIC TAB Unannounced d ] Justificatio By - Distributon/_ Availability Codes JAvail and/or_ CHAPTER 1...rejection systems, evaluation of machined metal mirrors for high- energy laser applications , laser-radar backscatter signature programs, and a host of...other applications requiring extensive scattering data. If the scattering mechanism were completely understood, surface prepa- ration techniques or

  20. Correlating the morphological and light scattering properties of biological cells

    NASA Astrophysics Data System (ADS)

    Moran, Marina

    The scattered light pattern from a biological cell is greatly influenced by the internal structure and optical properties of the cell. This research project examines the relationships between the morphological and scattering properties of biological cells through numerical simulations. The mains goals are: (1) to develop a procedure to analytically model biological cells, (2) to quantitatively study the effects of a range of cell characteristics on the features of the light scattering patterns, and (3) to classify cells based on the features of their light scattering patterns. A procedure to create an analytical cell model was developed which extracted structural information from the confocal microscopic images of cells and allowed for the alteration of the cell structure in a controlled and systematic way. The influence of cell surface roughness, nuclear size, and mitochondrial volume density, spatial distribution, size and shape on the light scattering patterns was studied through numerical simulations of light scattering using the Discrete Dipole Approximation. It was found that the light scattering intensity in the scattering angle range of 25° to 45° responded to changes in the surface fluctuation of the cell and the range of 90° to 110° was well suited for characterization of mitochondrial density and nuclear size. A comparison of light scattering pattern analysis methods revealed that the angular distribution of the scattered light and Gabor filters were most helpful in differentiating between the cell characteristics. In addition, a measured increase in the Gabor energy of the light scattering patterns in response to an increase in the complexity of the cell models suggested that a complex nuclear structure and mitochondria should be included when modeling biological cells for light scattering simulations. Analysis of the scattering pattern features with Gabor filters resulted in discrimination of the cell models according to cell surface roughness

  1. Measurements and interpretations of light scattering from intact biological cells

    NASA Astrophysics Data System (ADS)

    Wilson, Jeremy D.

    Visible light interacts with biological cells primarily through elastic scattering. The details of how cells scatter light depend on their morphology and their substructures. In this thesis we first present a series of experiments and models to discern the specific contributions of certain sub-cellular constituents to whole-cell scattering. Exploiting the findings of those studies, we report on experiments within model systems of cell death that demonstrate the potential of light scattering measurements as a tool in modern biology. Instrumentation capable of exploiting the findings of this thesis from a biology-relevant microscopy platform is designed and developed. A Mie theory based interpretation of light scattering signals originating from a collection of particles with a broad size distribution is developed. Upon applying this model to scattering data from intact cells, we find that it robustly extracts the size scale of dominant light scattering particles, suggests that scattering measurements are sensitive primarily to mitochondrial and lysosomal morphology, and unites conflicting results in the literature. Using this model as a basis, we present a collection of studies in which we use various strategies of photodynamic therapy (PDT) as a biophysical tool to perturb mitochondria and lysosomes, and observe the effects of these perturbations on whole-cell scattering. Through these experiments, we are able to discern the individual contributions of mitochondria and lysosomes to whole-cell light scattering, and demonstrate that mitochondria are responsible for roughly 80% of the scattering signal. Results of experiments aimed at demonstrating the potential role that light scattering measurements have to play in future studies of cell death biology are presented. We first show that mitochondrial-PDT-induced morphology changes measured with light scattering map into the cell killing efficacy of the therapy. We next demonstrate that mitochondrial

  2. Investigation of the effect of scattering agent and scattering albedo on modulated light propagation in water.

    PubMed

    Mullen, Linda; Alley, Derek; Cochenour, Brandon

    2011-04-01

    A recent paper described experiments completed to study the effect of scattering on the propagation of modulated light in laboratory tank water [Appl. Opt.48, 2607 (2009)APOPAI0003-693510.1364/AO.48.002607]. Those measurements were limited to a specific scattering agent (Maalox antacid) with a fixed scattering albedo (0.95). The purpose of this paper is to study the effects of different scattering agents and scattering albedos on modulated light propagation in water. The results show that the scattering albedo affects the number of attenuation lengths that the modulated optical signal propagates without distortion, while the type of scattering agent affects the degree to which the modulation is distorted with increasing attenuation length.

  3. Bright-White Beetle Scales Optimise Multiple Scattering of Light

    NASA Astrophysics Data System (ADS)

    Burresi, Matteo; Cortese, Lorenzo; Pattelli, Lorenzo; Kolle, Mathias; Vukusic, Peter; Wiersma, Diederik S.; Steiner, Ullrich; Vignolini, Silvia

    2014-08-01

    Whiteness arises from diffuse and broadband reflection of light typically achieved through optical scattering in randomly structured media. In contrast to structural colour due to coherent scattering, white appearance generally requires a relatively thick system comprising randomly positioned high refractive-index scattering centres. Here, we show that the exceptionally bright white appearance of Cyphochilus and Lepidiota stigma beetles arises from a remarkably optimised anisotropy of intra-scale chitin networks, which act as a dense scattering media. Using time-resolved measurements, we show that light propagating in the scales of the beetles undergoes pronounced multiple scattering that is associated with the lowest transport mean free path reported to date for low-refractive-index systems. Our light transport investigation unveil high level of optimisation that achieves high-brightness white in a thin low-mass-per-unit-area anisotropic disordered nanostructure.

  4. Bright-White Beetle Scales Optimise Multiple Scattering of Light

    PubMed Central

    Burresi, Matteo; Cortese, Lorenzo; Pattelli, Lorenzo; Kolle, Mathias; Vukusic, Peter; Wiersma, Diederik S.; Steiner, Ullrich; Vignolini, Silvia

    2014-01-01

    Whiteness arises from diffuse and broadband reflection of light typically achieved through optical scattering in randomly structured media. In contrast to structural colour due to coherent scattering, white appearance generally requires a relatively thick system comprising randomly positioned high refractive-index scattering centres. Here, we show that the exceptionally bright white appearance of Cyphochilus and Lepidiota stigma beetles arises from a remarkably optimised anisotropy of intra-scale chitin networks, which act as a dense scattering media. Using time-resolved measurements, we show that light propagating in the scales of the beetles undergoes pronounced multiple scattering that is associated with the lowest transport mean free path reported to date for low-refractive-index systems. Our light transport investigation unveil high level of optimisation that achieves high-brightness white in a thin low-mass-per-unit-area anisotropic disordered nanostructure. PMID:25123449

  5. Light scattering in dense and cold 87Rb

    NASA Astrophysics Data System (ADS)

    Haga, Kasie; Roof, S. J.; Balik, S.; Havey, M. D.; Sokolov, Igor; Kupriyanov, Dimitriy

    2013-05-01

    Quantum optics in ultracold and high-density, but non quantum degenerate, atomic gases is a promising area of research. Studies of quantum hologram creation in optically dressed samples, enhanced molecule formation, and ultracold plasma physics in the strongly coupled regime are intriguing areas of current activity. Exploration of the role of spatial disorder on light propagation in such systems and disorder-mediated formation and manipulation of subradiant and superradiant configurations are topics of considerable interest. In this paper we present experimental results on light scattering in a cold and quite high density gas of 87Rb atoms. The sample is prepared in an optical dipole trap, and has a peak density ~ 6 . 1013 atoms/cm3 and a temperature ~ 60 μK . Here the F = 2 -->F' = 3 nearly closed hyperfine transition is studied. We discuss two experimental geometries. In one, near-resonance radiation is directed towards the sample; the response is recorded as a function of time and frequency. In a second, the probe beam is overlapped with a far off resonance light shift laser, which reduces the optical depth through the central region of the sample, allowing for generation of a quasi one dimensional configuration. Supported by NSF.

  6. Modelling of classical ghost images obtained using scattered light

    NASA Astrophysics Data System (ADS)

    Crosby, S.; Castelletto, S.; Aruldoss, C.; Scholten, R. E.; Roberts, A.

    2007-08-01

    The images obtained in ghost imaging with pseudo-thermal light sources are highly dependent on the spatial coherence properties of the incident light. Pseudo-thermal light is often created by reducing the coherence length of a coherent source by passing it through a turbid mixture of scattering spheres. We describe a model for simulating ghost images obtained with such partially coherent light, using a wave-transport model to calculate the influence of the scattering on initially coherent light. The model is able to predict important properties of the pseudo-thermal source, such as the coherence length and the amplitude of the residual unscattered component of the light which influence the resolution and visibility of the final ghost image. We show that the residual ballistic component introduces an additional background in the reconstructed image, and the spatial resolution obtainable depends on the size of the scattering spheres.

  7. Selective scattering polymer dispersed liquid crystal film for light enhancement of organic light emitting diode.

    PubMed

    Jiang, Jinghua; McGraw, Greg; Ma, Ruiqing; Brown, Julie; Yang, Deng-Ke

    2017-02-20

    We developed a novel light enhancing film for an organic light emitting diode (OLED) based on polymer dispersed liquid crystal (PDLC). In the film, the liquid crystal droplets are unidirectionally aligned along the film normal direction and exhibit selective scattering. The film scatters light emitted only in directions with large incident angles but not light emitted in directions with small incident angles. When the light is scattered, it changes propagation direction and exits the OLED. The PDLC film reduces the total internal reflection and thus can significantly increase the light efficiency of the OLED.

  8. A light-scattering characterization of membrane vesicles.

    PubMed Central

    Selser, J C; Yeh, Y; Baskin, R J

    1976-01-01

    A technique has been developed in this paper which enables quasi-elastic laser light scattering to be used to accurately and quantitatively measure the average vesicle diffusion coefficient and the relative dispersion in the diffusion coefficient about this average for dilute polydisperse vesicle suspensions. This technique relies on a theoretical analysis of a modified form of the Z-averaged diffusion coefficient. This modified Z-averaged diffusion coefficient explicitly incorporates vesicle size, structure, and polydispersity in a description of the scattered light autocorrelation spectrum. Light-scattering experiments were performed on a dilute, lobster sarcoplasmic reticulum vesicle suspension and the measured average diffusion coefficient and the diffusion coefficient relative dispersion about this average were determined with accuracies of 2 and 10%, respectively. A comparison of vesicle size inferred from light-scattering results was made with size results from electron microscopic analysis of the same sample. Images FIGURE 2 FIGURE 3 FIGURE 4 PMID:1252585

  9. Light scattering from nonspherical airborne particles: Experimental and theoretical comparisons

    NASA Astrophysics Data System (ADS)

    Hirst, Edwin; Kaye, Paul H.; Guppy, John R.

    1994-10-01

    Spatial intensity distribution of laser light scattered by airborne hazardous particles such as asbestos fiber is studied to classify particles shape and size. Theoretical treatment is based on Rayleigh-Gans formalism. Theoretical and experimental data are in good agreement.

  10. Propagation and scattering of light in fluctuating media

    NASA Astrophysics Data System (ADS)

    Kuz'min, V. L.; Romanov, V. P.; Zubkov, L. A.

    1994-11-01

    The monograph deals with the problems of the propagation and scattering of light in molecular media. The explicit statistical mechanical averaging procedure for the equations of electrodynamics is developed. It permits to transform the molecular level description into the macroscopic one for the electrodynamics of the fluctuating media. In the framework of such an approach, the problems of the molecular correlation contribution into the dielectric permeability, of the calculation of the reflection coefficients with an account of surface layers and of the multiple light scattering are considered. The developed theory is applied to the description of the critical opalescence, the coherent backscattering enhancement, the light scattering depolarization phenomena and the propagation and scattering of light in anisotropic media, including the case of liquid crystals.

  11. Evaluation of advanced light scattering technology for microgravity experiments

    NASA Technical Reports Server (NTRS)

    Fredericks, W. J.; Rosenblum, W. M.

    1990-01-01

    The capabilities of modern light scattering equipment and the uses it might have in studying processes in microgravity are evaluated. Emphasis is on the resolution of polydisperse systems. This choice was made since a major use of light scattering was expected to be the study of crystal growth of macromolecules in low gravity environments. An evaluation of a modern photon correlation spectrometer and a Mie spectrometer is presented.

  12. Efficient light propagation for multiple anisotropic volume scattering

    SciTech Connect

    Max, N. |

    1993-12-01

    Realistic rendering of participating media like clouds requires multiple anisotropic light scattering. This paper presents a propagation approximation for light scattered into M direction bins, which reduces the ``ray effect`` problem in the traditional ``discrete ordinates`` method. For a volume of n{sup 3} elements, it takes O(M n{sup 3} log n + M{sup 2} n{sup 3}) time and O(M n{sup 3}) space.

  13. Nonlinear light scattering by a dipole monolayer

    NASA Astrophysics Data System (ADS)

    Averbukh, B. B.; Averbukh, I. B.

    2013-08-01

    Scattering of a strong p-polarized monochromatic field by a dipole monolayer is considered. It is shown that a triplet should be observed at incident angles (between the wave vector of the incident wave and the normal to the monolayer surface) not too close to π/2 in the spectrum of the scattered radiation. For grazing incidence of a strong field on the monolayer, waves with frequencies of the strong field and the high-frequency component of the triplet scatter forward and backward. In this case, radiation with frequency of the low-frequency component of the triplet propagates in the form of two inhomogeneous waves along the monolayer on both sides of it, exponentially decaying with distance from the monolayer.

  14. Light scattering from Sickle Cell Hemoglobin: Polarized and Unpolarized

    NASA Astrophysics Data System (ADS)

    Chen, Kejing; Hantgan, Roy R.; Kim-Shapiro, Daniel B.

    1999-11-01

    Sickle cell polymers form due to aggregation of a mutant form of hemoglobin (HbS). The polymerization of HbS leads to microvascular occlusion characteristic of Sickle Cell Disease. A good understanding of HbS polymerization requires a way to quantify the degree of polymerization. As our calculations show, total intensity light scattering is not always linearly dependent on the amount of polymer. Polarized light scattering has been proposed as a more accurate way to measure polymer content. We use a new modulation method to measure all 16 Mueller Matrix elements, which completely describe how the Polarization State of light is altered upon scattering. Preliminary results of light scattering measurements from spheres and hemoglobin show that the instrument works properly. In future experiments, we will attempt to use polarized light scattering as an accurate measure of polymerization. In addition, Polarized light scattering may provide information on the higher order structure of sickle polymer bundles that has not been obtainable by other means.

  15. Scattering of light by bispheres with touching and separated components.

    PubMed

    Mishchenko, M I; Mackowski, D W; Travis, L D

    1995-07-20

    We use the T-matrix method as described by Mishchenko and Mackowski [Opt. Lett. 19, 1604 (1994)] to compute light scattering by bispheres in fixed and random orientations extensively. For all our computations the index of refraction is fixed at a value 1.5 + 0.005i, which is close to the refractive index of mineral tropospheric aerosols and was used in previous extensive studies of light scattering by spheroids and Chebyshev particles. For monodisperse bispheres with touching components in a fixed orientation, electromagnetic interactions between the constituent spheres result in a considerably more complicated interference structure in the scattering patterns than that for single monodisperse spheres. However, this increased structure is largely washed out by orientational averaging and results in scattering patterns for randomly oriented bispheres that are close to those for single spheres with size equal to the size of the bisphere components. Unlike other nonspherical particles such as cubes and spheroids, randomly oriented bispheres do not exhibit pronounced enhancement of side scattering and reduction of backscattering and positive polarization at side-scattering angles. Thus the dominant feature of light scattering by randomly oriented bispheres is the single scattering from the component spheres, whereas the effects of cooperative scattering and concavity of the bisphere shape play a minor role. The only distinct manifestations of nonsphericity and cooperative scattering effects for randomly oriented bispheres are the departure of the ratio F(22)/F(11) of the elements of the scattering matrix from unity, the inequality of the ratios F(33)/F(11) and F(44)/F(11), and nonzero linear and circular backscattering depolarization ratios. Our computations for randomly oriented bispheres with separated wavelengthsized components show that the component spheres become essentially independent scatterers at as small a distance between their centers as 4 times their

  16. Determination of wood grain direction from laser light scattering pattern

    NASA Astrophysics Data System (ADS)

    Simonaho, Simo-Pekka; Palviainen, Jari; Tolonen, Yrjö; Silvennoinen, Raimo

    2004-01-01

    Laser light scattering patterns from the grains of wood are investigated in detail to gain information about the characteristics of scattering patterns related to the direction of the grains. For this purpose, wood samples of Scots pine ( Pinus sylvestris L.) and silver birch ( Betula pubescens) were investigated. The orientation and shape of the scattering pattern of laser light in wood was found to correlate well with the direction of grain angles in a three-dimensional domain. The proposed method was also experimentally verified.

  17. Backward elastic light scattering of malaria infected red blood cells

    NASA Astrophysics Data System (ADS)

    Lee, Seungjun; Lu, Wei

    2011-08-01

    We investigated the backward light scattering pattern of healthy and malaria (Plasmodium falciparum) parasitized red blood cells. The spectrum could clearly distinguish between predominant ring stage infected blood cells and healthy blood cells. Further, we found that infected samples mixed with different stages of P. falciparum showed different signals, suggesting that even variance in parasite stages could also be detected by the spectrum. These results together with the backward scattering technique suggest the potential of non-invasive diagnosis of malaria through light scattering of blood cells near the surface of human body, such as using eyes or skin surface.

  18. 2D light scattering label-free cytometry using light-sheet illumination

    NASA Astrophysics Data System (ADS)

    Lin, Meiai; Su, Xuantao

    2016-10-01

    Two-dimensional (2D) light scattering cytometry has been demonstrated as an effective label-free technology for cell analysis. Here we develop the light-sheet illumination in 2D light scattering static cytometry. In our cytometer, a cylindrical lens is used to form the light-sheet for better excitation of the static cells under an inverted microscope. The thickness of the light-sheet measured in fluorescent solution is about 13 μm. Two-dimensional light scattering patterns of standard microspheres and yeast cells are obtained by using a complementary metal oxide semiconductor (CMOS) detector via a low numerical aperture (NA 0.4) optical objective. The experimental patterns characterized with fringe structures agree well with Mie theory simulated ones. Our results suggest that the light-sheet illumination is an effective excitation method for 2D light scattering label-free cytometry.

  19. Fiber optic light-scattering measurement system for evaluation of embryo viability: light-scattering characteristics from live mouse embryo

    NASA Astrophysics Data System (ADS)

    Itoh, Harumi; Arai, Tsunenori; Kikuchi, Makoto

    1997-06-01

    We measured angular distribution of the light scattering from live mouse embryo with 632.8nm in wavelength to evaluate the embryo viability. We aim to measure the mitochondrial density in human embryo which have relation to the embryo viability. We have constructed the light scattering measurement system to detect the mitochondrial density non-invasively. We have employed two optical fibers for the illumination and sensing to change the angle between these fibers. There were two dips on the scattering angular distribution from the embryo. These dips existed on 30 and 85 deg. We calculated the scattering angular pattern by Mie theory to fit the measured scattering estimated scattering size and density. The best fitting was obtained when the particle size and density were 0.9 micrometers and 1010 particles per ml, respectively. These values coincided with the approximated values of mitochondrial in the embryo. The measured light scattering may mainly originated from mitochondria in spite of the existence of the various scattering particles in the embryo. Since our simple scattering measurement may offer the mitochondrial density in the embryo, it might become the practical method of human embryo on in vitro fertilization-embryo transfer.

  20. Light scattering by surface acoustic waves on corrugated metal surfaces

    SciTech Connect

    Robertson, W.M.; Grimsditch, M. ); Moretti, A.L.; Kaufman, R.G.; Hulse, G.R. ); Fullerton, E.; Schuller, I.K. )

    1990-03-15

    We report the results of a Brillouin-scattering study of corrugated Ag surfaces. The corrugation plays a dramatic role in the wave-vector--selection rules governing coupling to surface phonons, and this effect is substantially different when the effective wave vector of the surface corrugation is collinear or perpendicular to the scattering plane. In processes that involve the grating wave vector, we show that the coupling mechanism between light and phonons is governed by surface plasmons which introduce a new scattering interaction with unusual polarization features in the Brillouin-scattering process.

  1. Light scattering modeling of bacteria using spheroids and cylinders

    NASA Astrophysics Data System (ADS)

    Feng, Chunxia; Huang, Lihua; Han, Jie; Zhou, Guangchao; Zeng, Aijun; Zhao, Yongkai; Huang, Huijie

    2009-11-01

    Numerical simulations of light scattering by irregularly shaped bacteria are carried out using the T-matrix method. A previously developed T-matrix code for the study of light scattering by randomly oriented non-spherical particles is used for the current purpose and it is validated against Mie-theory using coccus. Simplified particle shapes of spheroids and cylinders for simulating scattering by irregularly shaped bacteria are studied. The results for the angular distributions of the scattering matrix elements of B.Subtilis at wavelength 0.6328μm are presented. Their dependence on shape and model are discussed. Analysis suggests that spheroids perform better than cylinders for B.Subtilis. Calculations of the scatter matrix elements to determine bacteria sizes as well as shapes may be an accurate method and may be used to determine what the bacteria are.

  2. Decreasing Brillouin and Raman scattering by alternating-polarization light

    NASA Astrophysics Data System (ADS)

    Liu, Z. J.; Zheng, C. Y.; Cao, L. H.; Li, B.; Xiang, J.; Hao, L.

    2017-03-01

    A new method to reduce the scattering levels of stimulated Raman scattering (SRS) and stimulated Brillouin (SBS) scattering is proposed using alternating-polarization light. The effect of the new technique is related to the alternating time. If the alternating time is smaller than the growth time, the scattering level of SRS or SBS can be decreased. The SBS process is simulated by the fluid method, and the SRS process is verified by the particle-in-cell method. This method is also compared with the spike trains of uneven duration and delay (STUD) technique. Combining STUD pulses with alternating-polarization light is also discussed. Under proper alternating-polarization parameters, the scattering level of SRS and SBS can be dramatically reduced by more than one order of magnitude.

  3. Angle- and Spectral-Dependent Light Scattering from Plasmonic Nanocups

    SciTech Connect

    King, Nicholas S.; Li, Yang; Ayala-Orozco, Ciceron; Brannan, Travis; Nordlander, Peter; Halas, Naomi J.

    2011-09-27

    As optical frequency nanoantennas, reduced-symmetry plasmonic nanoparticles have light-scattering properties that depend strongly on geometry, orientation, and variations in dielectric environment. Here we investigate how these factors influence the spectral and angular dependence of light scattered by Au nanocups. A simple dielectric substrate causes the axial, electric dipole mode of the nanocup to deviate substantially from its characteristic cos² θ free space scattering profile, while the transverse, magnetic dipole mode remains remarkably insensitive to the presence of the substrate. Nanoscale irregularities of the nanocup rim and the local substrate permittivity have a surprisingly large effect on the spectral- and angle-dependent light-scattering properties of these structures.

  4. Experimental studies of laser light scattering in turbid media

    NASA Astrophysics Data System (ADS)

    Campbell, Sawyer; Grobe, Rainer; Su, Charles

    2006-05-01

    We inject an angularly collimated laser beam into a scattering medium of a non-dairy creamer-water solution and examine the distribution of the scattered light along the optical axis as a function of the source-detector spacing. The experimental and simulated data obtained from a Monte Carlo simulation on the optical axis suggest four regimes characterizing the transition from un-scattered to diffusive light. We compare the data with theoretical predictions based on a first-order scattering theory for regions close to the source, and with diffusion-like theories for larger source-detector spacings. We comment on the impact of the measurement on the light distribution and show that the regime of validity of these theories can depend on the experimental parameters such as the diameter and acceptance angle of the detection fiber.

  5. Wide-angle light scattering (WALS) for soot aggregate characterization

    SciTech Connect

    Oltmann, Hergen; Reimann, Joerg; Will, Stefan

    2010-03-15

    A novel set-up for the experimental determination of aggregate morphology in combustion processes based on elastic light scattering has been designed and realized. A key feature of this wide-angle light scattering (WALS) approach is an ellipsoidal mirror which is used to collect scattered light over a wide angular range of about 10-170 . The set-up employs a cw solid-state laser as light source and an intensified CCD-camera as detector. By means of the mirror the scattered light is imaged onto the detector allowing for a simultaneous acquisition of a full scattering diagram with a high angular resolution of about 0.6 . To demonstrate the performance of the approach, measurements for various sooting flames produced by premixed combustion in a flat flame burner were carried out, where the burner was operated with different equivalence ratios and fuels. It is shown that radii of gyration of soot particles may efficiently be obtained from an analysis of the scattering diagrams. (author)

  6. Light scattering in optical CT scanning of Presage dosimeters

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Adamovics, J.; Cheeseborough, J. C.; Chao, K. S.; Wuu, C. S.

    2010-11-01

    The intensity of the scattered light from the Presage dosimeters was measured using a Thorlabs PM100D optical power meter (Thorlabs Inc, Newton, NJ) with an optical sensor of 1 mm diameter sensitive area. Five Presage dosimeters were made as cylinders of 15.2 cm, 10 cm, 4 cm diameters and irradiated with 6 MV photons using a Varian Clinac 2100EX. Each dosimeter was put into the scanning tank of an OCTOPUS" optical CT scanner (MGS Research Inc, Madison, CT) filled with a refractive index matching liquid. A laser diode was positioned at one side of the water tank to generate a stationary laser beam of 0.8 mm width. On the other side of the tank, an in-house manufactured positioning system was used to move the optical sensor in the direction perpendicular to the outgoing laser beam from the dosimeters at an increment of 1 mm. The amount of scattered photons was found to be more than 1% of the primary light signal within 2 mm from the laser beam but decreases sharply with increasing off-axis distance. The intensity of the scattered light increases with increasing light attenuations and/or absorptions in the dosimeters. The scattered light at the same off-axis distance was weaker for dosimeters of larger diameters and for larger detector-to-dosimeter distances. Methods for minimizing the effect of the light scattering in different types of optical CT scanners are discussed.

  7. Comparative Study of Light Scattering from Hepatoma Cells and Hepatocytes

    NASA Astrophysics Data System (ADS)

    Lin, Xiaogang; Wang, Rongrong; Guo, Yongcai; Gao, Chao; Guo, Xiaoen

    2012-11-01

    Primary liver cancer is one of the highest mortality malignant tumors in the world. China is a high occurrence area of primary liver cancer. Diagnosis of liver cancer, especially early diagnosis, is essential for improving patients' survival. Light scattering and measuring method is an emerging technology developed in recent decades, which has attracted a large number of biomedical researchers due to its advantages, such as fast, simple, high accuracy, good repeatability, and non-destructive. The hypothesis of this project is that there may be some different light scattering information between hepatoma cells and hepatocyte. Combined with the advantages of the dynamic light scattering method and the biological cytology, an experimental scheme to measure the light scattering information of cells was formulated. Hepatoma cells and hepatic cells were irradiated by a semiconductor laser (532 nm). And the Brookhaven BI-200SM wide-angle light scattering device and temperature control apparatus were adopted. The light scattering information of hepatoma cells and hepatic cells in vitro within the 15°C to 30°C temperature range was processed by a BI-9000AT digital autocorrelator. The following points were found: (a) the scattering intensities of human hepatic cells and hepatoma cells are nearly not affected by the temperature factor, and the former is always greater than the latter and (b) the relaxation time of hepatoma cells is longer than that of hepatic cells, and both the relaxation time are shortened with increasing temperature from 15°C to 25°C. It can be concluded that hepatoma cells could absorb more incident light than hepatic cells. The reason may be that there exists more protein and nucleic acid in cancerous cells than normal cells. Furthermore, based on the length relaxation time, a conclusion can be inferred that the Brownian movement of cancer cells is greater.

  8. Modeling of light scattering from features on and within films and light scatter from epitaxial silicon defects

    NASA Astrophysics Data System (ADS)

    Zhang, Haiping

    The detection of particles and defects on or within films deposited on wafers using light scattering is of great interest to the semiconductor industry. Numerical calculation of light scattering characteristics from these features is very useful to the development and calibration of wafer inspection tools. A model and associated code is developed by using a modification of the discrete-dipole approximation (DDA) method to compute the light scattering from a feature with arbitrary shape on or within a filmed surface. The reflection interaction matrix is modified with the Sommerfeld integrals for filmed surfaces. Three-dimensional fast Fourier transform technique is used for accelerating the computation of light scatter from features associated with layered surfaces using the DDA method. Far field scatter is calculated approximately based on the reaction theorem. Model predictions of scattering signatures are compared with experimental results and other numerical models. Comparisons show good agreement for the cases considered, which demonstrates the accuracy and validity of the model. An epitaxial silicon wafer defect sample was fabricated containing typical epitaxial wafer defects such as epitaxial stacking faults, spikes and mounds. Atomic force microscopy was used to determine their physical sizes and shapes. The optical scattering characteristics of these epitaxial silicon wafer defects were studied using the numerical model. A method to discriminate epitaxial crystalline defects and particles is proposed.

  9. Cell light scattering characteristic research based on FDTD algorithm

    NASA Astrophysics Data System (ADS)

    Lin, Xiaogang; Zhu, Hao; Li, Wenchao; Ye, Changbin

    2015-10-01

    As with the number of cancer increases year by year, so it is important to be found and treated earlier. With biological cells and tissues are sensitive to infrared and visible light, cell morphology and physical structure of the optical properties can easily obtain, we can provide theoretical basis for the early diagnosis of cancer by observing the difference of optical properties between normal and cancerous cells. Compared with Mie scattering theory, finite difference time domain (FDTD) algorithm can analyze any complex structure model. In this paper we use mathematical modeling method to establish the single cell mathematical model and with finite difference time domain algorithm to simulate the propagation and scattering of light in the biological cells, you can calculate the scattering of electromagnetic field distribution at anytime and anywhere. With radar cross section (RCS) to measure the results of the scattering characteristics. Due to the difference between normal cells and cancerous cells are embodied in cell shape, size and the refractive index, through the simulation we can get different cell parameters of light scattering information, Find out the cell parameters change the changing rule of the influence on the scattering characteristics and find out change regularity of scattering characteristics. These data can judge very accurate of the cells is normal or cancerous cells.

  10. Hybrid graphene nematic liquid crystal light scattering device

    NASA Astrophysics Data System (ADS)

    Qasim, M. M.; Khan, A. A.; Kostanyan, A.; Kidambi, P. R.; Cabrero-Vilatela, A.; Braeuninger-Weimer, P.; Gardiner, D. J.; Hofmann, S.; Wilkinson, T. D.

    2015-08-01

    A hybrid graphene nematic liquid crystal (LC) light scattering device is presented. This device exploits the inherent poly-crystallinity of chemical vapour deposited (CVD) graphene films to induce directional anchoring and formation of LC multi-domains. This thereby enables efficient light scattering without the need for crossed polarisers or separate alignment layers/additives. The hybrid LC device exhibits switching thresholds at very low electric fields (< 1 V μm-1) and repeatable, hysteresis free characteristics. This exploitation of LC alignment effects on CVD graphene films enables a new generation of highly efficient nematic LC scattering displays as well as many other possible applications.A hybrid graphene nematic liquid crystal (LC) light scattering device is presented. This device exploits the inherent poly-crystallinity of chemical vapour deposited (CVD) graphene films to induce directional anchoring and formation of LC multi-domains. This thereby enables efficient light scattering without the need for crossed polarisers or separate alignment layers/additives. The hybrid LC device exhibits switching thresholds at very low electric fields (< 1 V μm-1) and repeatable, hysteresis free characteristics. This exploitation of LC alignment effects on CVD graphene films enables a new generation of highly efficient nematic LC scattering displays as well as many other possible applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04094a

  11. Reconstruction of Rain Microstructure From Spectrum of Scattering Light

    NASA Astrophysics Data System (ADS)

    Sterlyadkin, V.; Gluschenko, A.

    Night photoregistration of light, scattered by drops had proved that practically all drops oscillate as they fall. As drop oscillation frequency W monotony diminish with drop volume V rise, so different fractions of rain form different parts of spectrum. Thereby it is possible to reconstruct rain microstructure from remote optical measure- ments. In common case the form of spectrum depends not only on drop size distri- bution N(V) but also on oscillation amplitudes function, scattering phase function for oscillating drops and on frequency dependence W(V). The statistical treatment of our field data had shown that average oscillation amplitude rise with drop volume V as , where A is a some constant. This result allows to solve the inverse problem: to re- construct drop size distribution N(V) from the power spectrum of light, scattering by rain. Scattering phase function for nonspherical and oscillating drops was calculated in straight-line approximation. Analysis of optical properties of oscillating water drop had shown some optimal measurement geometry for registration of rain microstruc- ture. For low intensity rains it is reasonable to use the effect of abnormal high modu- lation of light scattered by oscillating drops, which we discovered earlier in laboratory condition and under field measurements. (The effect of abnormal high modulation al- lows us to detect 2-3 mm raindrop deformations from 5 m distance). The results of reconstruction of drop size distributions from spectra of light, scattered by rains are presented and discussed.

  12. Interferometric apparatus and method for detection and characterization of particles using light scattered therefrom

    DOEpatents

    Johnston, Roger G.

    1988-01-01

    Interferometric apparatus and method for detection and characterization of particles using light scattered therefrom. Differential phase measurements on scattered light from particles are possible using the two-frequency Zeeman effect laser which emits two frequencies of radiation 250 kHz apart. Excellent discrimination and reproducibility for various pure pollen and bacterial samples in suspension have been observed with a single polarization element. Additionally, a 250 kHz beat frequency was recorded from an individual particle traversing the focused output from the laser in a flow cytometer.

  13. Apparatus and method for detection and characterization of particles using light scattered therefrom

    DOEpatents

    Johnston, R.G.

    1987-03-23

    Apparatus and method for detection and characterization of particles using light scattered therefrom. Differential phase measurements on scattered light from particles are possible using the two-frequency Zeeman effect laser which emits two frequencies of radiation 250 kHz apart. Excellent discrimination and reproducibility for various pure pollen and bacterial samples in suspension have been observed with a single polarization element. Additionally, a 250 kHz beat frequency was recorded from an individual particle traversing the focused output from the laser in a flow cytometer. 13 figs.

  14. Effects of dust particle internal structure on light scattering

    NASA Astrophysics Data System (ADS)

    Kemppinen, O.; Nousiainen, T.; Jeong, G. Y.

    2015-10-01

    There is a large variety of internal structures inside atmospheric dust particles, making them inherently inhomogeneous. Such structures may have a large effect on ground-level and atmospheric radiation. So far, dust particle internal structures and their effect on the light scattering properties have proved to be hard to quantify, in part due to challenges in obtaining information about these structures. Recently, internal structures of individual dust particles were revealed through focused ion beam milling and analyzed. Here, we perform a sensitivity study to evaluate the optical impacts of some of the typical internal structures revealed. To obtain suitable model particles, the first step is to generate inhomogeneous particles with varying internal structures by using an algorithm that is based on three-dimensional Voronoi tessellation. The parameters for the particle generation are obtained from studies of real-world Asian dust particles. The second step is to generate homogeneous versions of the generated particles by using an effective-medium approximation, for comparison. Third, light scattering by both versions of these particles is simulated with discrete dipole approximation code. This allows us to see how different internal structures affect light scattering, and how important it is to account for these structures explicitly. Further, this allows us to estimate the potential inaccuracies caused by using only homogeneous model particles for atmospheric studies and remote-sensing measurements. The results show that the effects vary greatly between different kinds of internal structures and single-scattering quantity considered, but for most structure types the effects are overall notable. Most significantly, hematite inclusions in particles impact light scattering heavily. Furthermore, internal pores and hematite-rich coating both affect some form of light scattering noticeably. Based on this work, it seems that it is exceedingly important that the

  15. Effects of dust particle internal structure on light scattering

    NASA Astrophysics Data System (ADS)

    Kemppinen, O.; Nousiainen, T.; Jeong, G. Y.

    2015-07-01

    There is a large variety of internal structures inside atmospheric dust particles, making them inherently inhomogeneous. Such structures may have a large effect on ground-level and atmospheric radiation. So far, dust particle internal structures and their effect on the light scattering properties have proved to be hard to quantify, in part due to challenges in obtaining information about these structures. Recently, internal structures of individual dust particles were revealed through focused ion beam milling and analyzed. Here, we perform a sensitivity study to evaluate the optical impacts of some of the typical internal structures revealed. To obtain suitable model particles, the first step is to generate inhomogeneous particles with varying internal structures by using an algorithm that is based on three-dimensional Voronoi tessellation. The parameters for the particle generation are obtained from studies of real-world Asian dust particles. The second step is to generate homogeneous versions of the generated particles by using an effective-medium approximation, for comparison. Third, light scattering by both versions of these particles is simulated with discrete-dipole approximation code. This allows us to see how different internal structures affect light scattering, and how important it is to account for these structures explicitly. Further, this allows us to estimate the potential inaccuracies caused by using only homogeneous model particles for atmospheric studies and remote sensing measurements. The results show that the effects vary greatly between different kinds of internal structures and single-scattering quantity considered, but for most structure types the effects are overall notable. Most significantly, hematite inclusions in particles impact light scattering heavily. Furthermore, internal pores and hematite-rich coating both affect some form of light scattering noticeably. Based on this work, it seems that it is exceedingly important that the

  16. Light fields in complex media: Mesoscopic scattering meets wave control

    NASA Astrophysics Data System (ADS)

    Rotter, Stefan; Gigan, Sylvain

    2017-01-01

    The newly emerging field of wave front shaping in complex media has recently seen enormous progress. The driving force behind these advances has been the experimental accessibility of the information stored in the scattering matrix of a disordered medium, which can nowadays routinely be exploited to focus light as well as to image or to transmit information even across highly turbid scattering samples. An overview of these new techniques, their experimental implementations, and the underlying theoretical concepts following from mesoscopic scattering theory is provided. In particular, the intimate connections between quantum transport phenomena and the scattering of light fields in disordered media, which can both be described by the same theoretical concepts, are highlighted. Particular emphasis is put on how these topics relate to application-oriented research fields such as optical imaging, sensing, and communication.

  17. Scattered light in the IUE spectra of Epsilon Aurigae

    NASA Technical Reports Server (NTRS)

    Aitner, B.; Chapman, R. D.; Kondo, Y.; Stencel, R. E.

    1985-01-01

    As a result of this work it was found that light scattered from the longer wavelengths constitutes a small but non-negligible, wavelength and time dependent fraction of the measured flux in the far UV. The reality of the UV excess has not been unambigiously ruled out. However, it is noted that there are still uncertainties in the assumed scattering profile. New measurements of the scattering properties of the cross disperser grating are planned in order to verify the results of Mount and Fastie and extend the wavelength coverage into the far wings of the profile. The results of these measurements will no doubt reduce some of these uncertainties. For the present, it is felt that the BCH approach is a significant improvement over the methods heretofore available for the treatment of scattered light in IUE spectra.

  18. LASER BIOLOGY AND MEDICINE: Light scattering study of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Beuthan, J.; Netz, U.; Minet, O.; Klose, Annerose D.; Hielscher, A. H.; Scheel, A.; Henniger, J.; Müller, G.

    2002-11-01

    The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient μs, absorption coefficient μa, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the finger cross section. Model tests of the quality of this reconstruction method show good results.

  19. Surface Roughness Metrology By Angular Distributions Of Scattered Light

    NASA Astrophysics Data System (ADS)

    Gilsinn, David E.; Vorburger, Theodore V.; Teague, E. Clayton; MeLay, Michael J.; Giauque, Charles; Scire, Fredric E.

    1985-09-01

    On-line industrial inspection of batch manufactured parts requires fast measurement techniques for surface finish quality. In order to develop the measurement basis for these techniques, a system has been built to determine surface roughness by measuring the angular distributions of scattered light. The system incorporates data gathered from the angular distribution instrument and traditional surface stylus instruments. These data are used both as input and as comparison data in order to test various mathematical models of optical scattering phenomena. The object is to develop a mathematical model that uses the angular distribution of scattered light to deduce surface roughness parameters such as Ra and surface wavelength. This paper describes the results of an experiment in which angular scattered data from surfaces with sinusoidal profiles was used to compute the surface R and wavelength. Stylus measurements of these parameters were made separately. A comparative table is given of the computed and measured values. Estimates of uncertainties are also given.

  20. Light Scattering by Inhomogeneous Composite Particles.

    NASA Astrophysics Data System (ADS)

    Srivastava, Vandana

    The scattering characteristics of various composites is calculated using the effective medium approximations. There are several effective medium theories that can be applied, each leading to a different result. Experimentally, a set of scattering data for well defined composite spheres is obtained. The effective medium approximations are tested against the experimental results. The Bruggeman (1935) mixing rule and Maxwell Garnett (1904) theory, with proper inclusion and matrix model, lead to good agreement with the measurements. A generalized theory has also been derived (Chylek and Srivastava, 1983) which gives an iterative scheme for calculating the effective refractive index for composite medium. The Chylek-Srivastava iterative rule that takes into account all the electric and magnetic interactions for the absorbing component also leads to a good agreement with the measurements. This generalized theory can be applied to composites that contain a highly absorbing component with particle sizes comparable to the wavelength of incident radiation. Application of the Chylek-Srivastava iterative method to carbon-snow composites leads to calculated snow albedos that are in very good agreement with the measured albedos, eliminating the discrepancies that have existed for many years between calculated and measured albedos. Therefore, small amounts of absorbing impurities like carbon can significantly alter the scattering characteristics of composite particles. Carbon content of snow is also measured at different sites categorized as urban, rural, or remote, depending upon their location and elevation. The content varies according to the location of the site and the time of snow collection. However, ice from Camp Century, Greenland, that is several thousand years old contains the same order of graphitic carbon as does the remote polar surface snow at present. Backscattering of water-ice composites like hailstones depends upon the liquid water content and the topological

  1. Resonance light scattering determination of metallothioneins using levofloxacin-palladium complex as a light scattering probe

    NASA Astrophysics Data System (ADS)

    Xue, Jin-Hua; Qian, Qiu-Mei; Wang, Yong-Sheng; Meng, Xia-Ling; Liu, Lu

    2013-02-01

    A novel method of resonance light scattering (RLS) was developed for the analysis of trace metallothioneins (MTs) in human urine. In a CH3COOH-CH3COONa buffer solution of pH 4.5, the formation of a complex between levofloxacin (LEV)-Pd and MTs led to enhance the RLS intensity of the system, and the enhanced RLS intensity at 468 nm was proportional to the concentration of MTs in the range of 0.059-22.4 μg mL-1. The linear regression equation was ΔI = 127.5 ρ (μg mL-1)-88.02 with a correlation coefficient of 0.9992, and the detection limit of 17.8 ng mL-1. The relative standard deviation and the average recovery were 3.8-5.4% (n = 11) and 92.15%, respectively. The proposed method is convenient, reliable and sensitive, and has been used successfully for the determination of trace MTs in human urine samples.

  2. An experimental study of light scattering by large, irregular particles

    NASA Technical Reports Server (NTRS)

    Mcguire, Audrey F.; Hapke, Bruce W.

    1995-01-01

    The intensity and polarization of light scattered by a variety of types of artificial partices large compared to the wavelength were measured as a function of phase angle. Shape, surface roughness, absorption coefficient, and internal scattering coefficient were varied systematically and their effects studied. Scattering by clear, smooth-surfaced spheres is in quantitative agreement with the predictions of the geometrical optics (ray theory) approximation to physical optics (Mie theory). The phase functions of almost all of the particles measured have both forward and backward scattering lobes. A two-parameter, double Henyey-Greenstein function generally provides reasonably good descriptions of the data, while keeping the number of free parameters to the minimum necessary. On a double Henyey- Greenstein parameter plot all of the particles fall into an L-shaped area of restricted size in which the location is characteristic of the particle type. Formalisms based on the equivalent slab model are also given for estimating the scattering efficiency of a large, irregular particle. For most dielectric particles the transmitted, forward scattered light is partially negatively polarized. It is this component that is respopnsible for the well-known maximum in the polarization curves of planetary regoliths at phase angles around 100 deg. For phase angles between about 30 deg and 70 deg the internally scattered light is found to be randomly polarized in the particles studied here, so that the only contribution to the second component of the Stokes vector is by Fresnel reflection from the particle surface. If this empirical result is general, measurement of the second Stokes vector of the light scattered from a regolith at these angles may provide a method of remotely measuring the mean refractive index.

  3. Radiant intensity of light scattered from clouds.

    PubMed

    Plass, G N; Kattawar, G W

    1968-04-01

    A Monte Carlo method that accurately allows for the numerous small angle scattering events is used to calculate the reflected and transmitted radiance and flux of visible radiation that has interacted with cumulus clouds. The variation of these quantities with solar zenith angle, optical thickness of the cloud, and surface albedo is studied. When the surface albedo is zero, the reflected radiance has a relative maximum at the horizon (except for very thick clouds and incident beam near zenith). When the incident beam is near the horizon, there is a strong maximum in the reflected radiance on the solar horizon and a pronounced minimum near the zenith. There is a relative maximum in the transmitted radiance around the direction of the incident beam until the cloud becomes thick in that direction. In most instances, the variations are greatly decreased when the surface albedo is unity.

  4. Scattered light: improving photoacoustic spectral measurement with a drug tablet

    NASA Astrophysics Data System (ADS)

    Yu, Rong; Jiang, Yue-song; Yu, Lan; Wen, Dong-hai; Hua, Hou-qiang; Wu, Xiao-fang

    2013-08-01

    Photoacoustic spectroscopy (PAS) is a powerful tool for the study of the absorption spectra of solid samples. Scattered light, which used to be a main error source in conventional absorption spectroscopy, is not a problem for PAS, and furthermore, in this paper it is helpful for photoacoustic spectroscopy measurement. In this work, the photoacoustic spectra of an olanzapine tablet and its powder have been investigated. Differential analysis was used to eliminate the background signal generated by the photoacoustic cell. It is found that the photoacoustic spectrum of olanzapine in the powdered olanzapine tablet has the same spectral features as that of the pure olanzapine powder, while the photoacoustic spectrum of the olanzapine tablet does not have, although the ingredients in both are completely the same. This phenomenon can be interpreted as the light scattering effects in the powdered olanzapine tablet. The light scattering effects in a solid mixture amplify the photoacoustic spectral features of the main light-absorbing ingredient in the mixture, rather than enhance the measured photoacoustic signal over the whole measured wavelength range, which is different from the influence of light scattering effects on a single-ingredient solid powder. Based on this work, a method is proposed to preliminarily fast identify the light-absorbing ingredient in a solid mixture. Using the method, a drug tablet can be measured directly in solid state and hardly need sample preprocessing, and thus the time for composition analyses will be reduced significantly.

  5. Implementation of focusing and redirecting light through highly scattering media

    NASA Astrophysics Data System (ADS)

    Coyotl-Ocelotl, B.; Porras-Aguilar, R.; Ramos-Garcia, R.; Ramirez-San-Juan, J. C.

    2015-08-01

    Optical imaging through highly scattering media such as biological tissue is limited by light scattering. Recently, it has been shown that wavefront shaping is a powerful tool to overcome this problem. In this work, wavefront shaping using spatial light modulators is used to compensate static scattering media (piece of translucent tape) to allow focusing of different intensity distributions. Light propagation is engineered into a specific region of interest. For this purpose, a sequential phase shape algorithm was implemented experimentally. This algorithm is used to encode a phase distribution on an incident beam to pre-compensate phase distortions acquired by the beam after propagating through the tape. The sequential algorithm combined with a spatial light modulator is used to synthesize a phase distribution required for redirecting light using wavefront shaping. The scattered light was re-directed at the detector plane, in order to be: i) focused at a single pixel, ii) at squared regions of 3×3 and 5×5 pixeles and iii) a line pattern of 41 pixels of the camera. Furthermore, the region of interest was placed outside the central area of the camera opening the possibility of image formation.

  6. Nonlinear light scattering in a carbon nanotube suspension

    SciTech Connect

    Mikheev, Gen M; Mogileva, T N; Bulatov, D L; Vanyukov, V V; Okotrub, Aleksandr V

    2010-01-31

    Nonlinear scattering of 1064-nm laser light in an aqueous suspension of purified carbon nanotubes has been studied in relation to their optical power limiting behaviour using z-scan measurements to simultaneously determine the energy and shape of the transmitted and 90{sup 0} circ-scattered pulses. The results indicate that the reduction in transmitted laser pulse energy with increasing incident power density is mainly due to the associated increase in scattered pulse energy. The shape, duration and time shift of the transmitted and 90{sup 0} circ-scattered pulses are intricate functions of incident power density. The data are interpreted in terms of thermally induced nonlinear and Rayleigh scattering processes at high and low incident power densities, respectively. (nonlinear optics phenomena)

  7. A Theory of Exoplanet Transits with Light Scattering

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.

    2017-02-01

    Exoplanet transit spectroscopy enables the characterization of distant worlds, and will yield key results for NASA's James Webb Space Telescope. However, transit spectra models are often simplified, omitting potentially important processes like refraction and multiple scattering. While the former process has seen recent development, the effects of light multiple scattering on exoplanet transit spectra have received little attention. Here, we develop a detailed theory of exoplanet transit spectroscopy that extends to the full refracting and multiple scattering case. We explore the importance of scattering for planet-wide cloud layers, where the relevant parameters are the slant scattering optical depth, the scattering asymmetry parameter, and the angular size of the host star. The latter determines the size of the “target” for a photon that is back-mapped from an observer. We provide results that straightforwardly indicate the potential importance of multiple scattering for transit spectra. When the orbital distance is smaller than 10–20 times the stellar radius, multiple scattering effects for aerosols with asymmetry parameters larger than 0.8–0.9 can become significant. We provide examples of the impacts of cloud/haze multiple scattering on transit spectra of a hot Jupiter-like exoplanet. For cases with a forward and conservatively scattering cloud/haze, differences due to multiple scattering effects can exceed 200 ppm, but shrink to zero at wavelength ranges corresponding to strong gas absorption or when the slant optical depth of the cloud exceeds several tens. We conclude with a discussion of types of aerosols for which multiple scattering in transit spectra may be important.

  8. Static laser light scattering (SLLS) investigations of the scattering parameters of a synthetic polymer

    NASA Astrophysics Data System (ADS)

    Ghazy, R.; El-Baradie, B.; El-Shaer, A.; El-Mekawey, F.

    1999-09-01

    A laser light scattering system was built to study the scattering parameters of some materials in solution form. The light source used was an argon-ion laser at wavelength 488 nm (all lines). The investigated material was a synthetic polymer which has a wide range of applications in the field of teeth medicine applications. This is polymethyl-methacrylate (PMMA) which is used for the formation of artificial clamps. The PMMA was solved in both acetone and methyl-ethyl-ketone (MEK). The acetone solvent is chosen for its high specific refractive index increment dn/dc at the same wavelength 488 nm as the argon laser source. The angular distribution of the scattered laser light intensities of PMMA dissolved in acetone was measured at different scattering angles from 30 to 150° for each concentration. The angular distributions have a symmetrical behavior about the scattering angle π/2; by using the scattered intensities the Zimm plot was formed. The weight average molecular weight (WAMW) was determined, the two other scattering parameters like as radius of gyration, h, and the second verial coefficient, A2 were determined.

  9. Inferring mixture Gibbs free energies from static light scattering data

    NASA Astrophysics Data System (ADS)

    Ross, David; Wahle, Christopher; Thurston, George

    We describe a light scattering partial differential equation for the free energy of mixing that applies to connected, isotropic ternary and quaternary liquid composition domains, including restricted domains which may not touch all binary axes. For restricted domains, contrasting light scattering efficiency patterns obtained at different wavelengths can correspond to the same underlying free energy, and supplement the available information. We discuss well-posed problems for this fully nonlinear, degenerate elliptic partial differential equation. Using Monte Carlo simulations, we provide estimates of the overall system measurement time and sample spacing needed to determine the free energy to a desired degree of accuracy, and indicate how measurement time depends on instrument throughput. These methods provide a way to use static light scattering to measure, directly, mixing free energies of many systems that contain liquid domains. Supported by NIH EY018249.

  10. Laser light scattering as a probe of fractal colloid aggregates

    NASA Technical Reports Server (NTRS)

    Weitz, David A.; Lin, M. Y.

    1989-01-01

    The extensive use of laser light scattering is reviewed, both static and dynamic, in the study of colloid aggregation. Static light scattering enables the study of the fractal structure of the aggregates, while dynamic light scattering enables the study of aggregation kinetics. In addition, both techniques can be combined to demonstrate the universality of the aggregation process. Colloidal aggregates are now well understood and therefore represent an excellent experimental system to use in the study of the physical properties of fractal objects. However, the ultimate size of fractal aggregates is fundamentally limited by gravitational acceleration which will destroy the fractal structure as the size of the aggregates increases. This represents a great opportunity for spaceborne experimentation, where the reduced g will enable the growth of fractal structures of sufficient size for many interesting studies of their physical properties.

  11. Light scattering regimes along the optical axis in turbid media

    NASA Astrophysics Data System (ADS)

    Campbell, S. D.; O'Connell, A. K.; Menon, S.; Su, Q.; Grobe, R.

    2006-12-01

    We inject an angularly collimated laser beam into a scattering medium of a nondairy creamer-water solution and examine the distribution of the scattered light along the optical axis as a function of the source-detector spacing. The experimental and simulated data obtained from a Monte Carlo simulation suggest four regimes characterizing the transition from unscattered to diffusive light. We compare the data also with theoretical predictions based on a first-order scattering theory for regions close to the source, and with diffusionlike theories for larger source-detector spacings. We demonstrate the impact of the measurement process and the effect of the unavoidable absorption of photons by the detection fiber on the light distribution inside the medium. We show that the range of validity of these theories can depend on the experimental parameters such as the diameter and acceptance angle of the detection fiber.

  12. Light scattering regimes along the optical axis in turbid media.

    PubMed

    Campbell, S D; O'connell, A K; Menon, S; Su, Q; Grobe, R

    2006-12-01

    We inject an angularly collimated laser beam into a scattering medium of a nondairy creamer-water solution and examine the distribution of the scattered light along the optical axis as a function of the source-detector spacing. The experimental and simulated data obtained from a Monte Carlo simulation suggest four regimes characterizing the transition from unscattered to diffusive light. We compare the data also with theoretical predictions based on a first-order scattering theory for regions close to the source, and with diffusionlike theories for larger source-detector spacings. We demonstrate the impact of the measurement process and the effect of the unavoidable absorption of photons by the detection fiber on the light distribution inside the medium. We show that the range of validity of these theories can depend on the experimental parameters such as the diameter and acceptance angle of the detection fiber.

  13. Optical model of transient light scattering in ferroelectric liquid crystals

    SciTech Connect

    Loiko, V. A. Konkolovich, A. V.; Miskevich, A. A.

    2009-03-15

    A static optical model is developed for the effect of field-induced transient scattering on coherent light transmission through ferroelectric liquid crystals. Scattering processes are described by introducing an optically anisotropic medium containing scatterers (transient domains). The results presented in the paper are obtained for a plane parallel layer of ferroelectric liquid crystals with a planar helicoidal structure under normal illumination with a linearly polarized plane wave. An analysis is presented of the coherent transmittance of the layer in static applied electric fields.

  14. Dynamic Laser-Light Scattering Study on Bacterial Growth

    NASA Astrophysics Data System (ADS)

    Miike, Hidetoshi; Hideshima, Masao; Hashimoto, Hajime; Ebina, Yoshio

    1984-08-01

    The motility changes in growing bacteria in a culture medium were observed with a dynamic light-scattering technique used to analyse the frequency spectrum of the scattered light intensity. Two typical enterobacteriaceae, E. coil and P. morganii, were examined, and the change in the velocity distribution of the bacteria with time was analysed using the observed spectrum. The distribution pattern was found to change from a Gaussian-type to a Saclay-type with time, and the mean speed of the bacteria had a maximum value at around the turning point of the growth curve.

  15. Nonspherical nanoparticles characterization by partially depolarized dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Levin, Alexander D.; Shmytkova, Ekaterina A.

    2015-06-01

    The realization of improved depolarized dynamic light scattering method is presented. This technique supports measurement of non-spherical nanoparticals dimensions in liquids. The relations between translational and rotational diffusion coefficients and autocorrelation function of scattered light with polarized and depolarized components in various proportions are derived. Thus measurement of very weak cross-polarized component can be avoided. This improvement permits to reduce measurement time, to improve signal to noise ratio and results precision. The technique was applied for sizing of gold nanorods and multiwalled carbon nanotubes in liquids.

  16. Pressure injury prediction using diffusely scattered light

    NASA Astrophysics Data System (ADS)

    Diaz, David; Lafontant, Alec; Neidrauer, Michael; Weingarten, Michael S.; DiMaria-Ghalili, Rose Ann; Scruggs, Ericka; Rece, Julianne; Fried, Guy W.; Kuzmin, Vladimir L.; Zubkov, Leonid

    2017-02-01

    Pressure injuries (PIs) originate beneath the surface of the skin at the interface between bone and soft tissue. We used diffuse correlation spectroscopy (DCS) and diffuse near-infrared spectroscopy (DNIRS) to predict the development of PIs by measuring dermal and subcutaneous red cell motion and optical absorption and scattering properties in 11 spinal cord injury subjects with only nonbleachable redness in the sacrococcygeal area in a rehabilitation hospital and 20 healthy volunteers. A custom optical probe was developed to obtain continuous DCS and DNIRS data from sacrococcygeal tissue while the subjects were placed in supine and lateral positions to apply pressure from body weight and to release pressure, respectively. Rehabilitation patients were measured up to four times over a two-week period. Three rehabilitation patients developed open PIs (POs) within four weeks and eight patients did not (PNOs). Temporal correlation functions in the area of redness were significantly different (p<0.01) during both baseline and applied pressure stages for POs and PNOs. The results show that our optical method may be used for the early prediction of ulcer progression.

  17. Coherent anti-Stokes Raman scattering imaging under ambient light

    PubMed Central

    Zhang, Yinxin; Liao, Chien-Sheng; Hong, Weili; Huang, Kai-Chih; Yang, Huaidong; Jin, Guofan; Cheng, Ji-Xin

    2017-01-01

    We demonstrate ambient light coherent anti-Stokes Raman scattering (AL-CARS) microscopy that allows CARS imaging to be operated under environment light for field use. CARS signal is modulated at megahertz frequency and detected by a photodiode equipped with a lab-built resonant amplifier, then extracted through a lock-in amplifier. Filters in both spectral domain and frequency domain effectively blocked room light contamination of the CARS image. In situ hyperspectral CARS imaging of tumor tissue under ambient light is demonstrated. PMID:27519113

  18. Investigation of light scattering on a single dust grain

    NASA Astrophysics Data System (ADS)

    Pavlu, Jiri; Nemecek, Zdenek; Safrankova, Jana; Barton, Petr

    2016-07-01

    Complex phenomenon of light scattering by dust grains plays an important role in all dust--light interactions, especially in space, e.g., light passing through dense dusty clouds in the space as well as in the upper atmosphere, dust charging by photoemission, etc. When the wavelength of the incident light is about the size of the grain, the Mie theory is often used to characterize the scattering process. Unfortunately, we have only very limited knowledge of necessary material constants for most of the space-related materials and also the solution of Mie equations for general grain shapes is difficult or unknown. We develop an apparatus for observations of light scattering on small (micrometer-sized) arbitrary shaped dust grains. We directly measure the scattering by levitating grains in the field created by the standing-wave ultrasonic trap, where we can study single grains or small grain clusters. The experiment is performed at atmospheric air --- unlike other experiments, where grains were measured in water or other liquids. Therefore, the background effects are significantly reduced. Currently, the trap is under development and first tests are carried out. Besides initial results, we focus on theoretical computations of the ultrasonic field of the selected trap.

  19. Study of resonance light scattering for remote optical probing

    NASA Technical Reports Server (NTRS)

    Penney, C. M.; Morey, W. W.; St. Peters, R. L.; Silverstein, S. D.; Lapp, M.; White, D. R.

    1973-01-01

    Enhanced scattering and fluorescence processes in the visible and UV were investigated which will enable improved remote measurements of gas properties. The theoretical relationship between scattering and fluorescence from an isolated molecule in the approach to resonance is examined through analysis of the time dependence of re-emitted light following excitation of pulsed incident light. Quantitative estimates are developed for the relative and absolute intensities of fluorescence and resonance scattering. New results are obtained for depolarization of scattering excited by light at wavelengths within a dissociative continuum. The experimental work was performed in two separate facilities. One of these utilizes argon and krypton lasers, single moded by a tilted etalon, and a 3/4 meter double monochromator. This facility was used to determine properties of the re-emission from NO2, I2 and O3 excited by visible light. The second facility involves a narrow-line dye laser, and a 3/4 meter single monochromator. The dye laser produces pulsed light with 5 nsec pulse duration and 0.005 nm spectral width.

  20. Fiber optic probes for laser light scattering: Ground based evaluation for micgrogravity flight experimentation. Integrated coherent imaging fiber optic systems for laser light scattering and other applications

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans Singh

    1994-01-01

    The research work presented in this report has established a new class of backscatter fiber optics probes for remote dynamic light scattering capability over a range of scattering angles from 94 degrees to 175 degrees. The fiber optic probes provide remote access to scattering systems, and can be utilized in either a noninvasive or invasive configuration. The fiber optics create an interference free data channel to inaccessible and harsh environments. Results from several studies of concentrated suspension, microemulsions, and protein systems are presented. The second part of the report describes the development of a new technology of wavefront processing within the optical fiber, that is, integrated fiber optics. Results have been very encouraging and the technology promises to have significant impact on the development of fiber optic sensors in a variety of fields ranging from environmental monitoring to optical recording, from biomedical sensing to photolithography.

  1. Polarized Light Scattering from Perfect and Perturbed Surfaces and Fundamental Scattering Systems

    DTIC Science & Technology

    1992-02-29

    Final Report 01 Mar 90 to 29 Feb 92 4. TITLE AND SUBTITLE 5...... . FUNDING NUMBERS" Polarized light scattering from perfect and perturbed surfaces...and fundamental scattering systems 6. AUTHOR(S) 2306/A3 Professor William S. Bickel 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING...NOTES J UL 19 9 2 12a. DISTRIBUTION AVAILABILITY STATEMENT • W ). DISTRIBUTION CODE APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED 13

  2. Light-by-light scattering sum rules in light of new data

    NASA Astrophysics Data System (ADS)

    Danilkin, Igor; Vanderhaeghen, Marc

    2017-01-01

    We evaluate the light-quark meson contributions to three exact light-by-light scattering sum rules in light of new data by the Belle Collaboration, which recently has extracted the transition form factors of the tensor meson f2(1270 ) as well as of the scalar meson f0(980 ). We confirm a previous finding that the η ,η' and helicity-2 f2(1270 ) contributions saturate one of these sum rules up to photon virtualities around 1 Ge V2 . At larger virtualities, our sum rule analysis shows an important contribution of the f2(1565 ) meson and provides a first empirical extraction of its helicity-2 transition form factor. Two further sum rules allow us to predict the helicity-0 and helicity-1 transition form factors of the f2(1270 ) meson. Furthermore, our analysis also provides an update for the scalar and tensor meson hadronic light-by-light contributions to the muon's anomalous magnetic moment.

  3. The artefacts of radiochromic film dosimetry with flatbed scanners and their causation by light scattering from radiation-induced polymers.

    PubMed

    Schoenfeld, Andreas A; Poppinga, Daniela; Harder, Dietrich; Doerner, Karl-Joachim; Poppe, Bjoern

    2014-07-07

    Optical experiments and theoretical considerations have been undertaken in order to understand the causes of the 'orientation effect' and the 'parabola effect', the artefacts impairing the desired light absorption measurement on radiochromic EBT3 films with flatbed scanners. EBT3 films exposed to doses up to 20.9 Gy were scanned with an Epson Expression 10000XL flatbed scanner in landscape and portrait orientation. The horizontally and vertically polarized light components of the scanner were determined, and another Epson Expression 10000XL flatbed scanner was disassembled to examine its optical components. The optical properties of exposed and unexposed EBT3 films were studied with incident polarized and unpolarized white light, and the transmitted red light was investigated for its polarization and scattering properties including the distribution of the scattering angles. Neutral density filters were studied for comparison. Guidance was sought from the theory of light scattering from rod-like macromolecular structures. The drastic dose-dependent variation of the transmitted total light current as function of the orientation of front and rear polarizers, interpreted by light scattering theory, shows that the radiation-induced polymerization of the monomers of EBT3 films produces light scattering oscillators preferably polarized at right angles with the coating direction of the film. The directional distribution of the scattered light is partly anisotropic, with a preferred scattering plane at right angles with the coating direction, indicating light scattering from stacks of coherently vibrating oscillators piled up along the monomer crystals. The polyester carrier film also participates in these effects. The 'orientation' and 'parabola' artefacts due to flatbed scanning of radiochromic films can be explained by the interaction of the polarization-dependent and anisotropic light scattering from exposed and unexposed EBT3 films with the quantitative difference

  4. The impact of dust particle morphological details on light scattering

    NASA Astrophysics Data System (ADS)

    Kemppinen, Osku; Nousiainen, Timo; Lindqvist, Hannakaisa; Jeong, Gi Young

    2016-04-01

    We investigate the impact of dust particle surface roughness and internal structure on light scattering. Starting from digital representation of realistically shaped dust particles, we vary the particle morphology, and perform light scattering simulations to both the original and the modified particles. By mapping the changes in morphology to the changes in scattering, we will get information of how strongly and in which way a particular change affects scattering. All investigations have been done with complex, irregular particle shapes. For surface roughness studies we have kept the particle total volume virtually constant during the roughening process, and the roughness element size small enough to keep the overall shape relatively unchanged. For internal structure studies, the size and the external shape are kept constant. These safety measures help ensure that the effects seen are in fact due to the feature studied. The work is notable for model development, because some models can not include surface roughness, for example. In that case, the people who use such models have to adjust for the fact that the results are inaccurate, and by knowing how surface roughness typically changes the scattering results, the adjustment can be made. As a corollary, if it is shown that a particular feature does not change scattering results in any noticeable way, the model developers can confidently ignore or simplify it.

  5. Influences of refractive index on forward light scattering

    NASA Astrophysics Data System (ADS)

    Han, Xueshan; Shen, Jianqi; Yin, Pengteng; Hu, Shiyu; Bi, Duo

    2014-04-01

    The influence of the relative refractive index (RRI) of the particles to the surrounding medium on the small-angle forward scattering signals is studied, based on the Mie theory, the Debye series expansion (DSE) and the Fraunhofer diffraction theory. It comes to the conclusion that, for small particles, the influence on the forward scattering signals is mainly due to the part of the internal reflection if the RRI deviates from 1. However, when the RRI is close to 1, the effects on the forward scattered light from both the surface reflection and the internal reflection are great. For large particles, the contributions of the surface reflection and the internal reflection to the forward scattered light are much weaker than the diffraction when the RRI deviates from 1. When the RRI is very close to 1, the effects on the forward scattered light from the internal reflection are great. To determine the influence of the RRI in detail, the modified Chahine algorithm is employed. The inversion results cannot give the correct PSD for small particles if the RRI used in the inversion procedure does not match the one of the sample. The result shows that it is necessary to determine the exact value of the RRI and one should avoid the RRI close to 1 by choosing dispersion with proper refractive index in practice.

  6. Development of bacterial colony phenotyping instrument using reflected scatter light

    NASA Astrophysics Data System (ADS)

    Doh, Iyll-Joon

    Bacterial rapid detection using optical scattering technology (BARDOT) involves in differentiating elastic scattering pattern of bacterial colony. This elastic light scatter technology has shown promising label-free classification rate. However, there is limited success in certain circumstances where either a growth media or a colony has higher opacity. This situation is due to the physical principles of the current BARDOT which mainly relies on optical patterns generated by transmitted signals. Incoming light is obstructed and cannot be transmitted through the dense bacterial colonies, such as Lactobacillus, Yeast, mold and soil bacteria. Moreover, a blood agar, widely used in clinical field, is an example of an opaque media that does not allow light to be transmitted through. Therefore, in this research, a newly designed reflection type scatterometer is presented. The reflection type scatterometer measures the elastic scattering pattern generated by reflected signal. A theoretical model to study the optical pattern characteristic with respect to bacterial colony morphology is presented. Both theoretical and experiment results show good agreement that the size of backward scattering pattern has positive correlation to colony aspect ratio, a colony elevation to diameter ratio. Four pathogenic bacteria on blood agar, Escherichia coli K12, Listeria innocua, Salmonella Typhimurium, and Staphylococcus aureus, are tested and measured with proposed instrument. The measured patterns are analyzed with a classification software, and high classification rate can be achieved.

  7. Light and lunar cycle as cues to diel migration of a sound-scattering layer

    NASA Astrophysics Data System (ADS)

    Benoit-Bird, Kelly J.; Au, Whitlow W. L.

    2001-05-01

    The Hawaiian mesopelagic boundary community is an island-associated midwater scattering layer comprised of small fishes, shrimps, and squids that undergoes diel vertical as well as horizontal migrations. It has been hypothesized that light levels are an important cue or trigger for vertical migration and presumably, horizontal migration. The migration pattern of the scattering layer was measured over complete lunar cycles while the incident light levels were recorded. Due to differences in the rise and set times of the moon and cloud cover, light and lunar cycle were not completely coupled, allowing separation of the light effects of moon phase and other cues associated with lunar cycle. Four calibrated echosounder moorings were deployed with approximately even spacing, perpendicular to the leeward coast of Oahu. Moorings were deployed for one complete lunar cycle at each of three locations, recording 10 echoes every 15 min. Light sensors measured the nocturnal light intensity at 30-s intervals. Statistical analysis revealed significant effects of both light and other lunar cycle cues. Overall, the effect size was very low considering the light transmission characteristics of the subtropical Pacific, making measurement from stationary acoustic platforms critical.

  8. Monte carlo calculations of light scattering from clouds.

    PubMed

    Plass, G N; Kattawar, G W

    1968-03-01

    The scattering of visible light by clouds is calculated from an efficient Monte Carlo code which follows the multiple scattered path of the photon. The single scattering function is obtained from the Mie theory by integration over a particle size distribution appropriate for cumulus clouds at 0.7-micro wavelength. The photons are followed through a sufficient number of collisions and reflections from the lower surface (which may have any desired albedo) until they make a negligible contribution to the intensity. Various variance reduction techniques are used to improve the statistics. The cloud albedo and the mean optical path of the transmitted and reflected photons are given as a function of the solar zenith angle, optical thickness, and surface albedo. The numerous small angle scatterings of the photon in the direction of the incident beam are followed accurately and produce a greater penetration into the cloud than is obtained with a more isotropic and less realistic phase function.

  9. Light Scattering by Polymers: Two Experiments for Advanced Undergraduates.

    ERIC Educational Resources Information Center

    Matthews, G. P.

    1984-01-01

    Background information, procedures, equipment, and results for two experiments are presented. The first involves the measurement of the mass-average and degree of coiling of polystyrene and is interpreted by the full mathematical theory of light scattering. The second is the study of transitions in gelatin. (JN)

  10. A Study of Structural Phase Transitions Using Light Scattering Techniques.

    DTIC Science & Technology

    1981-12-01

    n.g (a" &"I* L TYPE OF REPORT a PERID COVER=o rinal Report, A Study of structural phase transitions using October 1981 light scattering tenchniques S...SWWJUTY CLPWICATION OP ThIS PAGE (VIM1- Sum • . i i - • .. . . . ’ ’ .... . . . ’ ’ ’ . . L .. .. . ’.. . Table of contents 1) Results Page (a

  11. Disordered Cellulose-Based Nanostructures for Enhanced Light Scattering

    PubMed Central

    2017-01-01

    Cellulose is the most abundant biopolymer on Earth. Cellulose fibers, such as the one extracted form cotton or woodpulp, have been used by humankind for hundreds of years to make textiles and paper. Here we show how, by engineering light–matter interaction, we can optimize light scattering using exclusively cellulose nanocrystals. The produced material is sustainable, biocompatible, and when compared to ordinary microfiber-based paper, it shows enhanced scattering strength (×4), yielding a transport mean free path as low as 3.5 μm in the visible light range. The experimental results are in a good agreement with the theoretical predictions obtained with a diffusive model for light propagation. PMID:28191920

  12. Multiple light scattering and absorption in reef-building corals.

    PubMed

    Terán, Emiliano; Méndez, Eugenio R; Enríquez, Susana; Iglesias-Prieto, Roberto

    2010-09-20

    We present an experimental and numerical study of the effects of multiple scattering on the optical properties of reef-building corals. For this, we propose a simplified optical model of the coral and describe in some detail methods for characterizing the coral skeleton and the layer containing the symbiotic algae. The model is used to study the absorption of light by the layer of tissue containing the microalgae by means of Monte Carlo simulations. The results show that, through scattering, the skeleton homogenizes and enhances the light environment in which the symbionts live. We also present results that illustrate the modification of the internal light environment when the corals loose symbionts or pigmentation.

  13. Functional Imaging of Tissue Morphology with Polarized Light Scattering Spectroscopy

    NASA Astrophysics Data System (ADS)

    Backman, Vadim

    2001-03-01

    We report a new imaging technique to study the morphology of living epithelial cells in vivo. The method is based on light scattering spectroscopy with polarized light (PLSS) and makes it possible to distinguish between single backscattering from epithelial cell nuclei and multiply scattered light. The spectrum of the single backscattering component is further analyzed to provide quantitative histological information about the epithelial cells such as the size distribution, refractive index, and chromatin content of the cell nuclei. The measurement of cell nuclear morphology is crucial for detection and diagnosis of cancerous and precancerous conditions in many human tissues. The method was successfully applied to image precancerous regions of several tissues. Clinical studies in five organs (esophagus, colon, bladder, oral cavity, and uterine cervix) showed the generality and efficacy of the technique.

  14. Probing dynamics at interfaces: resonance enhanced dynamic light scattering.

    PubMed

    Plum, Markus A; Steffen, Werner; Fytas, George; Knoll, Wolfgang; Menges, Bernhard

    2009-06-08

    Experiments addressing supramolecular dynamics at interfaces are of paramount importance for the understanding of the dynamic behaviour of polymers, particles, or cells at interfaces, transport phenomena to and from surfaces, thin films or membranes. However, there are only few reports in the literature due to the paucity of experimental methods that offer the required spatial and time resolution. Evanescent wave dynamic light scattering originally developed to meet these needs has limited sensitivity and is restricted to glass substrates. Here we report the first experimental realization of a dynamic light scattering experiment close to an interface using surface plasmon polaritons as light source offering a strong increase in the signal to noise ratio and allowing for the use of metallic interfaces. As a proof of concept, we consider the diffusion of particles with radii down to 10nm in dilute dispersions close to a gold surface.

  15. 47 CFR 17.49 - Recording of antenna structure light inspections in the owner record.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Recording of antenna structure light... GENERAL CONSTRUCTION, MARKING, AND LIGHTING OF ANTENNA STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.49 Recording of antenna structure light inspections in...

  16. 47 CFR 17.49 - Recording of antenna structure light inspections in the owner record.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Recording of antenna structure light... GENERAL CONSTRUCTION, MARKING, AND LIGHTING OF ANTENNA STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.49 Recording of antenna structure light inspections in...

  17. 47 CFR 17.49 - Recording of antenna structure light inspections in the owner record.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Recording of antenna structure light... GENERAL CONSTRUCTION, MARKING, AND LIGHTING OF ANTENNA STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.49 Recording of antenna structure light inspections in...

  18. 47 CFR 17.49 - Recording of antenna structure light inspections in the owner record.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Recording of antenna structure light... GENERAL CONSTRUCTION, MARKING, AND LIGHTING OF ANTENNA STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.49 Recording of antenna structure light inspections in...

  19. 47 CFR 17.49 - Recording of antenna structure light inspections in the owner record.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Recording of antenna structure light... GENERAL CONSTRUCTION, MARKING, AND LIGHTING OF ANTENNA STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.49 Recording of antenna structure light inspections in...

  20. Shape-dependent light scattering properties of subwavelength silicon nanoblocks.

    PubMed

    Ee, Ho-Seok; Kang, Ju-Hyung; Brongersma, Mark L; Seo, Min-Kyo

    2015-03-11

    We explore the shape-dependent light scattering properties of silicon (Si) nanoblocks and their physical origin. These high-refractive-index nanostructures are easily fabricated using planar fabrication technologies and support strong, leaky-mode resonances that enable light manipulation beyond the optical diffraction limit. Dark-field microscopy and a numerical modal analysis show that the nanoblocks can be viewed as truncated Si waveguides, and the waveguide dispersion strongly controls the resonant properties. This explains why the lowest-order transverse magnetic (TM01) mode resonance can be widely tuned over the entire visible wavelength range depending on the nanoblock length, whereas the wavelength-scale TM11 mode resonance does not change greatly. For sufficiently short lengths, the TM01 and TM11 modes can be made to spectrally overlap, and a substantial scattering efficiency, which is defined as the ratio of the scattering cross section to the physical cross section of the nanoblock, of ∼9.95, approaching the theoretical lowest-order single-channel scattering limit, is achievable. Control over the subwavelength-scale leaky-mode resonance allows Si nanoblocks to generate vivid structural color, manipulate forward and backward scattering, and act as excellent photonic artificial atoms for metasurfaces.

  1. A Theoretical Light Scattering Model of Nanoparticle Laser Tweezers

    NASA Technical Reports Server (NTRS)

    Lock, James A.

    2003-01-01

    Accomplishments this reporting period include: 1. derived, programmed, checked, and tested the Mie light scattering theory formulas for the radiation trapping force for both the on-axis and off-axis geometry of the trapping beam plus trapped spherical particle; 2. verified that the computed radiation trapping force for a freely propagating focused Gaussian laser beam incident on a spherical particle agrees with previous published calculations; 3. compared the small particle size and large particle size limits of the Mie calculation with the results of Rayleigh scattering theory and ray scattering theory, respectively and verified that the comparison is correct for Rayleigh scattering theory but found that ray theory omits an important light scattering effect included in the Mie theory treatment; 4. generalized the calculation of the radiation trapping force on a spherical particle in the on-axis geometry from a freely propagating focused Gaussian laser beam to the realistic situation of a Gaussian beam truncated and focused by a high numerical aperture oil-immersion microscope objective lens and aberrated by the interface between the microscope cover slip and the liquid-filled sample volume; and 5. compared the calculated radiation trapping force for this geometry with the results of previously published experiments and found that the agreement is better than when using previously developed theories.

  2. Surface texture characterization by angular distributions of scattered light

    NASA Technical Reports Server (NTRS)

    Gilsinn, D. E.; Vorburger, T. V.; Scire, F. E.; Teague, E. C.; Mclay, M. J.

    1985-01-01

    Work at the National Bureau of Standards to develop an on-line optical measurement device and attendant algorithms for automated optical scattering measurements of machined metal surfaces are described. The surfaces could be milled, ground or lapped, and the system is intended to categorize the resulting surface characteristics. The optical device consists of a He-Ne laser which is shone on a surface. The scattered light is captured by a semicircular array of 87 detector elements rotated over the scanned area. The light signals are processed through a digital voltmeter and then an A/D converter. The signals are then stored for later comparisons with optical scattering data obtained by optical instruments used with stylus instruments for characterizing surface topographies. A theoretical model has been defined which relates light scattering and the characteristics of the surface roughness. Initial experimental results with a sinusoidal surface have indicated that although the system can follow the trend of the roughness, the roughness amplitude is as yet uncertainly defined and the computations require excessive time.

  3. Scattering of light by polydisperse, randomly oriented, finite circular cylinders.

    PubMed

    Mishchenko, M I; Travis, L D; Macke, A

    1996-08-20

    We use the T-matrix method, as described by Mishchenko [Appl. Opt. 32, 4652 (1993)], to compute rigorously light scattering by finite circular cylinders in random orientation. First we discuss numerical aspects of T -matrix computations specific for finite cylinders and present results of benchmark computations for a simple cylinder model. Then we report results of extensive computations for polydisperse, randomly oriented cylinders with a refractive index of 1.53 + 0.008i, diameter-to-length ratios of 1/2, 1/1.4, 1, 1.4, and 2, and effective size parameters ranging from 0 to 25. These computations parallel our recent study of light scattering by polydisperse, randomly oriented spheroids and are used to compare scattering properties of the two classes of simple convex particles. Despite the significant difference in shape between the two particle types (entirely smooth surface for spheroids and sharp rectangular edges for cylinders), the comparison shows rather small differences in the integral photometric characteristics (total optical cross sections, single-scattering albedo, and asymmetry parameter of the phase function) and the phase function. The general patterns of the other elements of the scattering matrix for cylinders and aspect-ratio-equivalent spheroids are also qualitatively similar, although noticeable quantitative differences can be found in some particular cases. In general, cylinders demonstrate much less shape dependence of the elements of the scattering matrix than do spheroids. Our computations show that, like spheroids and bispheres, cylinders with surface-equivalent radii smaller than a wavelength can strongly depolarize backscattered light, thus suggesting that backscattering depolarization for nonspherical particles cannot be universally explained by using only geometric-optics considerations.

  4. Free-form thin lens design with light scattering surfaces for practical LED down light illumination

    NASA Astrophysics Data System (ADS)

    Lin, Raychiy J.; Sun, Ching-Cherng

    2016-05-01

    The free-form optical quasilens surface technology was utilized to develop and design a solid transparent plastic optical lens for the LED down light with the narrow angular light distribution requirement in the LED lighting applications. In order to successfully complete the mission, the precise mid-field angular distribution model of the LED light source was established and built. And also the optical scattering surface property of the Harvey BSDF scattering model was designed, measured, and established. Then, the optical simulation for the entire optical system was performed to develop and design this solid transparent plastic optical lens system. Finally, the goals of 40 deg angular light distribution pattern defined at full width half maximum with glare reduced in the areas of interest and the optical performance of nearly 82% light energy transmission optics were achieved for the LED down light illumination.

  5. RBC aggregation effects on light scattering from blood

    NASA Astrophysics Data System (ADS)

    Shvartsman, Leonid D.; Fine, Ilya

    2000-11-01

    We consider a number of diffusive and transport models of light transmission through whole blood, targeting better understanding of nature of optical transmission pulsations for blood flow modulated by heartbeats. We claim the existence of scattering- associated mechanism rather than the absorption-associated one. Single erythrocytes and their aggregates are considered to be the main centers of scattering in the red- near infrared spectral region. The shape and size of aggregates change in time due to blood flow changes. The corresponding changes of optical transmission are simulated.

  6. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    NASA Astrophysics Data System (ADS)

    Jacobson, C. M.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A.

    2016-11-01

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  7. Propagating light through a scattering medium with specific amplitude and phase (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tseng, Snow H.; Kung, Te-Jen; Yu, Min-Lun

    2016-03-01

    By means of numerical solutions of Maxwell's equations, we model the complex light scattering phenomenon. Light propagation through scattering medium is a deterministic process; with specific amplitude and phase, light can propagate to the target position via multiple scattering. By means of numerical solutions of Maxwell's equations, the complex light scattering phenomenon can be accurately analyzed. The reported simulation enables qualitative and quantitative analyses of the effectiveness of directing light through turbid media to a targeted position

  8. Light scattering from impurity enhanced liquid layers in polycrystalline ice

    NASA Astrophysics Data System (ADS)

    Thomson, E. S.; Wettlaufer, J. S.; Wilen, L. A.

    2009-12-01

    Impurity enhanced grain boundary premelting underlies a wide range of geophysical phenomena throughout the cryosphere. In particular, it is known that when water droplets freeze in the atmosphere they are highly polycrystalline and impurities are rejected into grain boundaries. The predicted character and sensitivity of grain boundaries to impurities close to the melting point precludes the use of standard techniques for imaging the interface. Unlike their larger more macroscopic relatives such as veins (3 grain intersections) and nodes (4 grain intersections), grain boundaries do not submit to optical microscopy. However, using an experimental light scattering method grain boundary changes can be measured as a function of thermodynamic variables. Accurate analysis of the light scattering data generated using this method requires a full theory of light propagation through the grain boundary layer straddled by ice crystals. Here we present a theory for light scattering from such a boundary, experimental data using NaCl as a dopant, and dicsuss atmospheric implications from the troposphere to the stratosphere.

  9. In situ measurement of inelastic light scattering in natural waters

    NASA Astrophysics Data System (ADS)

    Hu, Chuanmin

    Variation in the shape of solar absorption (Fraunhofer) lines are used to study the inelastic scattering in natural waters. In addition, oxygen absorption lines near 689nm are used to study the solar stimulated chlorophyll fluorescence. The prototype Oceanic Fraunhofer Line Discriminator (OFLD) has been further developed and improved by using a well protected fiber optic - wire conductor cable and underwater electronic housing. A Monte-Carlo code and a simple code have been modified to simulate the Raman scattering, DOM fluorescence and chlorophyll fluorescence. A series of in situ measurements have been conducted in clear ocean waters in the Florida Straits, in the turbid waters of Florida Bay, and in the vicinity of a coral reef in the Dry Tortugas. By comparing the reduced data with the model simulation results, the Raman scattering coefficient, b r with an excitation wavelength at 488nm, has been verified to be 2.6 × 10-4m-1 (Marshall and Smith, 1990), as opposed to 14.4 × 10- 4m-1 (Slusher and Derr, 1975). The wavelength dependence of b r cannot be accurately determined from the data set as the reported values (λ m-4 to λ m- 5) have an insignificant effect in the natural underwater light field. Generally, in clear water, the percentage of inelastic scattered light in the total light field at /lambda < 510nm is negligible for the whole water column, and this percentage increases with depth at /lambda > 510nm. At low concentrations (a y(/lambda = 380nm) less than 0.1m-1), DOM fluorescence plays a small role in the inelastic light field. However, chlorophyll fluorescence is much stronger than Raman scattering at 685nm. In shallow waters where a sea bottom affects the ambient light field, inelastic light is negligible for the whole visible band. Since Raman scattering is now well characterized, the new OFLD can be used to measure the solar stimulated in situ fluorescence. As a result, the fluorescence signals of various bottom surfaces, from coral to

  10. Simulations of light-light scattering in quantum vacuum

    NASA Astrophysics Data System (ADS)

    Carneiro, Pedro; Grismayer, Thomas; Silva, LuíS.; Fonseca, Ricardo

    2016-10-01

    Facilities such as the Extreme Light Infrastructure (ELI) or the VULCAN 20 PW project, as well as the Petta-Watt SLAC project, coupled with the x-ray LCLSII source will allow to perform the first experiments on the probing of quantum vacuum. In our work, we developed a numerical method to self-consistently solve the nonlinear system of Maxwell's equations including quantum corrections of vacuum polarization. The robustness of our algorithm allied to the ability to integrate this tool within a particle-in-cell (PIC) method, represents an important milestone in modeling future planned experiments to prove the existence of the quantum vacuum. Such experiments aim to measure the induced ellipticity on a x-ray pulse after probing a strong optical pump due to the quantum vacuum fluctuations. We present simulation results of both the ellipticity induced and polarization rotation, using realistic laser parameters of the Petta-Watt SLAC project, and the x-ray LCLSII source, whilst taking into account all finite-size multi-dimensional effects. We show how the ellipticity induced varies as a function of the distance to the axis of the beam, proving the importance of taking into account finite-size effects. This work serves as an important tool to complement existing efforts within the community to probe the effects of the quantum vacuum, in the strong field regime, for the first time.

  11. Characterization of highly scattering media by measurement of diffusely backscattered polarized light

    DOEpatents

    Hielscher, Andreas H.; Mourant, Judith R.; Bigio, Irving J.

    2000-01-01

    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  12. Characterization of highly scattering media by measurement of diffusely backscattered polarized light

    SciTech Connect

    Hielscher, A.H.; Mourant, J.R.; Bigio, I.J.

    2000-01-04

    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser ({lambda} = 543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4 x 4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  13. Orientation-preserving transfer and directional light scattering from individual light-bending nanoparticles.

    PubMed

    Zhang, Yu; Barhoumi, Aoune; Lassiter, J Britt; Halas, Naomi J

    2011-04-13

    A nanocup, or semishell, is an asymmetric plasmonic "Janus" nanoparticle with electric and magnetic plasmon modes; the latter scatters light in a direction controlled by nanoparticle orientation, making it the nanoscale analog of a parabolic antenna. Here we report a method for transferring nanocups from their growth substrate to oxide-terminated substrates that precisely preserves their three-dimensional orientation, enabling their use as nanophotonic components. This enables us to selectively excite and probe the electric and magnetic plasmon modes of individual nanocups, showing how the scattered light depends on the direction of incoming light and the orientation of this nanoparticle antenna.

  14. Orientation-Preserving Transfer and Directional Light Scattering from Individual Light-Bending Nanoparticles

    SciTech Connect

    Zhang, Yu; Barhoumi, Aoune; Lassiter, J. Britt; Halas, Naomi J.

    2011-04-13

    A nanocup, or semishell, is an asymmetric plasmonic “Janus” nanoparticle with electric and magnetic plasmon modes; the latter scatters light in a direction controlled by nanoparticle orientation, making it the nanoscale analog of a parabolic antenna. Here we report a method for transferring nanocups from their growth substrate to oxide-terminated substrates that precisely preserves their three-dimensional orientation, enabling their use as nanophotonic components. This enables us to selectively excite and probe the electric and magnetic plasmon modes of individual nanocups, showing how the scattered light depends on the direction of incoming light and the orientation of this nanoparticle antenna.

  15. Paper area density measurement from forward transmitted scattered light

    DOEpatents

    Koo, Jackson C.

    2001-01-01

    A method whereby the average paper fiber area density (weight per unit area) can be directly calculated from the intensity of transmitted, scattered light at two different wavelengths, one being a non-absorpted wavelength. Also, the method makes it possible to derive the water percentage per fiber area density from a two-wavelength measurement. In the optical measuring technique optical transmitted intensity, for example, at 2.1 microns cellulose absorption line is measured and compared with another scattered, optical transmitted intensity reference in the nearby spectrum region, such as 1.68 microns, where there is no absorption. From the ratio of these two intensities, one can calculate the scattering absorption coefficient at 2.1 microns. This absorption coefficient at this wavelength is, then, experimentally correlated to the paper fiber area density. The water percentage per fiber area density can be derived from this two-wavelength measurement approach.

  16. Light scattering from acoustic vibrational modes in confined structures

    NASA Astrophysics Data System (ADS)

    Bandhu, Rudra Shyam

    The acoustic vibrational modes and their light scattering intensities in confined structures such as supported films, double layer free-standing membrane and sub-micron sized wires on a free-standing membrane have been studied using Brillouin Light Scattering (BLS). Standing wave type acoustic phonons were recently observed in supported thin films of silicon oxy-nitride. We build upon this finding to study the acoustic modes in thin zinc selenide (ZnSe) films on gallium arsenide (GaAs). The surprising behaviour of the Brillouin intensities of the standing wave modes in ZnSe are explained in terms of interference of the elasto-optic scattering amplitudes from the film and substrate. Numerical calculations of the scattering cross-section, which takes into account ripple and elasto-optic scattering mechanism, agrees well with the experimental data. Light scattering studies of standing wave type modes in free-standing polymethyl methacrylate (PMMA) layer on Si3N4 were carried out. In these bilayer structures PMMA is much softer than Si3N 4, a property that leads to confinement of low frequency modes associated with the PMMA layer to within its boundaries. In addition, the flexural and the dilatational modes from the Si3N4 layer are observed and are found to hybridize with the standing wave modes from the PMMA layer. Our study of phonon modes in PMMA wires supported on a free-standing Si3N4 membrane extends our work on free-standing double layer membranes. In recent years there is much interest in the study of phonon modes in nano-scale structures such as wires or dots. Although much theoretical work has been carried out in this direction, no experiments exist that explore the dispersion of the phonon modes in such structures. Brillouin Light scattering is ideally suited for studying phonons in such reduced dimensions and our work represents the first effort in this direction. The spectra reveal modes which are quantized both along the width, as well along the thickness

  17. Cylindrical light pipes for collecting light scattered from a Gaussian beam

    NASA Astrophysics Data System (ADS)

    Hopkins, George W.; Simons, Tad D.

    1999-10-01

    An investigation to enhance the efficiency of Raman- scattered light showed that cylindrical light pipes can significantly increase light collection from a Gaussian beam. Further, the enhanced signal from the light pipe retains the image of the laser beam, permitting the use of smaller detectors and resulting in a favorable signal-to- noise ratios. This investigation focussed on real-time measurements of gaseous media in a laser buildup cavity; however, the imaging properties of the light pipe apply to all measurements of molecular scattering. The light pipe matched the constraints of our measurement system: spectral separation and detection with an optical spectrograph, the need to reduce background light, the need to minimize cost, and stimulation by a laser beam in an optical cavity. After initial experiments collecting light from the ends of light pipes, we developed light pipes with a window on the cylindrical surface. Light emitted from these windows is much more intense than the direct image of the laser beam (typically 10X for light pipes 50 - 100 mm long), and the signal retains the image of the beam. Computer ray tracing modeled this side collection using Monte Carlo techniques, which are discussed in detail. We fabricated and tested light pipes using several different coatings.

  18. Screen anticancer drug in vitro using resonance light scattering technique.

    PubMed

    Chen, Zhanguang; Liu, Guoliang; Chen, Meizhen; Xu, Benjie; Peng, Yurui; Chen, Maohuai; Wu, Mingyao

    2009-02-15

    An in vitro screening model using resonance light scattering (RLS) technique with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reagent as the reactive probe to target cancer cell was firstly developed. In this model, MTT was reduced by viable cancer cells to produce a purple formazan. Cell viability was proportional to the number of formazan induced strong light scattering signal. The inhibition rate of anticancer drug was found to vary inversely with the H(22)-MTT system RLS intensity. So it was intuitive to see the sequence of the tumor suppressive activity of six anticancer drugs without data processing by RLS/MTT screening spectra. Compared with the traditional MTT method, this method has high sensitivity, low detection limit and quite intuitive screening results which were identical to those obtained from the MTT colorimetric assay.

  19. Space telescope low scattered light camera - A model

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Kuper, T. G.; Shack, R. V.

    1982-01-01

    A design approach for a camera to be used with the space telescope is given. Camera optics relay the system pupil onto an annular Gaussian ring apodizing mask to control scattered light. One and two dimensional models of ripple on the primary mirror were calculated. Scattered light calculations using ripple amplitudes between wavelength/20 wavelength/200 with spatial correlations of the ripple across the primary mirror between 0.2 and 2.0 centimeters indicate that the detection of an object a billion times fainter than a bright source in the field is possible. Detection of a Jovian type planet in orbit about alpha Centauri with a camera on the space telescope may be possible.

  20. Light-scattering and dispersion behavior of multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Saltiel, Craig; Manickavasagam, Siva; Pinar Mengüc, M.; Andrews, Rodney

    2005-08-01

    Elliptically polarized light-scattering measurements were performed to investigate the dispersion behavior of multiwalled carbon nanotubes (MWNT). Xylene- and pyridine-derived MWNT powders were dispersed in water and ethanol in separate optic cells and allowed to sit undisturbed over a two-week time period after probe sonication. Continuous light-scattering measurements taken between scattering angles of 10-170 deg and repeated over several days showed that the nanotubes formed fractal-like networks. The pyridine-derived MWNTs showed greater dispersion variation over time, tending to aggregate and clump much faster than the xylene-derived tubes. The water suspensions appeared much more stable than the ethanol suspensions, which transformed into nonfractal morphology after a few hours. We relate the dispersion stability to size and fringe patterns on the outer surface of the nanotubes. Measured values of fractal dimension were distinctly lower than those in previous studies of single-walled carbon nanotubes. Profiles of both diagonal and off-diagonal scattering matrix elements are presented.

  1. Scattered light in a DMD based multi-object spectrometer

    NASA Astrophysics Data System (ADS)

    Fourspring, Kenneth D.; Ninkov, Zoran; Kerekes, John P.

    2010-07-01

    The DMD (Digital Micromirror Device) has an important future in both ground and space based multi-object spectrometers. A series of laboratory measurements have been performed to determine the scattered light properties of a DMD. The DMD under test had a 17 μm pitch and 1 μm gap between adjacent mirrors. Prior characterization of this device has focused on its use in DLP (TI Digital Light Processing) projector applications in which a whole pixel is illuminated by a uniform collimated source. The purpose of performing these measurements is to determine the limiting signal to noise ratio when utilizing the DMD as a slit mask in a spectrometer. The DMD pixel was determined to scatter more around the pixel edge and central via, indicating the importance of matching the telescope point spread function to the DMD. Also, the generation of DMD tested here was determined to have a significant mirror curvature. A maximum contrast ratio was determined at several wavelengths. Further measurements are underway on a newer generation DMD device, which has a smaller mirror pitch and likely different scatter characteristics. A previously constructed instrument, RITMOS (RIT Multi-Object Spectrometer) will be used to validate these scatter models and signal to noise ratio predications through imaging a star field.

  2. SCATTERED NEBULAR LIGHT IN THE EXTENDED ORION NEBULA

    SciTech Connect

    O'Dell, C. R.; Goss, W. M.

    2009-11-15

    We have combined 327.5 MHz radio observations and optical spectroscopy to study conditions in the Extended Orion Nebula (EON). We see a steady progression of characteristics with increasing distance from the dominant photoionizing star {theta}{sup 1}Ori C. This progression includes a decrease in the F(H{alpha})/F(H{beta}) ratio, an increase in the relative strength of scattered stellar continuum, decrease in electron density determined from the [S II] doublet, and increase in the ratio of emission measures derived from the H{beta} line and the 327.5 MHz radio continuum. We conclude that beyond about 5' south of {theta}{sup 1}Ori C that scattered light from the much brighter central Huygens region of the nebula significantly contaminates local emission. This strengthens earlier arguments that wavelength and model-dependent scattering of emission-line radiation imposes a fundamental limit on our ability to determine the physical conditions and abundances in this and arguably other similar Galactic Nebulae. The implications for the study of extragalactic H II regions are even more severe. We confirm the result of an earlier study that at least the eastern boundary of the EON is dominated by scattered light from the Huygens region.

  3. Light scattering measurements supporting helical structures for chromatin in solution.

    PubMed

    Campbell, A M; Cotter, R I; Pardon, J F

    1978-05-01

    Laser light scattering measurements have been made on a series of polynucleosomes containing from 50 to 150 nucleosomes. Radii of gyration have been determined as a function of polynucleosome length for different ionic strength solutions. The results suggest that at low ionic strength the chromatin adopts a loosely helical structure rather than a random coil. The helix becomes more regular on increasing the ionic strength, the dimension resembling those proposed by Finch and Klug for their solenoid model.

  4. Light scattering studies of an electrorheological fluid in oscillatory shear

    SciTech Connect

    Martin, J.E.; Odinek, J.

    1995-12-31

    We have conducted a real time, two-dimensional light scattering study of the nonlinear dynamics of field-induced structures in an electrorheological fluid subjected to oscillatory shear. We have developed a kinetic chain model of the observed dynamics by considering the response of a fragmenting/aggregating particle chain to the prevailing hydrodynamic and electrostatic forces. This structural theory is then used to describe the nonlinear rheology of ER fluids.

  5. Chahine algorithm to invert light scattering spectroscopy of epithelial dysplasia

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Hua; Li, Zhen-Hua; Lai, Jian-Cheng; He, An-Zhi

    2007-09-01

    To perceive the epithelial dysplasia from the light scattering spectroscopy (LSS) is an inverse problem, which can be transformed into the inversion of the size distribution of epithelial-cell nuclei. Based on the simulation of single polarized LSS for epithelial-cell nuclei, Chahine algorithm is adopted to retrieve the size distribution. Numerical results show that Chahine algorithm has high inversion precision for both single-peaked and bimodal models, which implies the potential to increase diagnostic resolution of LSS.

  6. Controlling Inelastic Light Scattering Quantum Pathways in Graphene

    DTIC Science & Technology

    2011-03-31

    applications. METHODS SUMMARY In this study we use large area graphene grown by chemical vapour deposition30. Graphene is grown on copper films using...the copper film by FeCl3. The PMMA support is dissolved in acetone solution. Subsequently, Ti (10 nm) and Au (40nm) were deposited in vacuum through...change of wave-length in light scattering.Nature 121, 619 (1928). 2. Landsberg, G. & Mandelstam, L. Eine neue Erscheinung bei der Lichtzerstreuung in

  7. Development of a versatile laser light scattering instrument

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Ansari, Rafat R.

    1992-01-01

    NASA Lewis Research Center is providing and coordinating the technology for placing a compact Laser Light Scattering (LLS) instrument in a microgravity environment. This will be accomplished by defining and assessing user requirements for microgravity experiments, coordinating needed technological developments, and filling technical gaps. This effort is striving to brassboard and evaluate a miniature multi-angle LLS instrument. The progress of the program is reported.

  8. Metamaterials. Invisibility cloaking in a diffusive light scattering medium.

    PubMed

    Schittny, Robert; Kadic, Muamer; Bückmann, Tiemo; Wegener, Martin

    2014-07-25

    In vacuum, air, and other surroundings that support ballistic light propagation according to Maxwell's equations, invisibility cloaks that are macroscopic, three-dimensional, broadband, passive, and that work for all directions and polarizations of light are not consistent with the laws of physics. We show that the situation is different for surroundings leading to multiple light scattering, according to Fick's diffusion equation. We have fabricated cylindrical and spherical invisibility cloaks made of thin shells of polydimethylsiloxane doped with melamine-resin microparticles. The shells surround a diffusively reflecting hollow core, in which arbitrary objects can be hidden. We find good cloaking performance in a water-based diffusive surrounding throughout the entire visible spectrum and for all illumination conditions and incident polarizations of light.

  9. Light scattering by adjacent red blood cells: a mathematical model

    NASA Astrophysics Data System (ADS)

    Uzunoglou, Nikolaos K.; Stamatakos, Georgios; Koutsouris, Dimitrios; Yova-Loukas, Dido M.

    1995-01-01

    Simple approximate scattering theories such as the Rayleigh-Gans theory are not generally applicable to the case of light scattering by red blood cell (RBC) aggregates, including thrombus. This is mainly due to the extremely short distance separating erythrocytes in the aggregates (of the order of 25 nm) as well as to the substantial size of the aggregates. Therefore, in this paper a new mathematical model predicting the electromagnetic field produced by the scattering of a plane electromagnetic wave by a system of two adjacent RBCs is presented. Each RBC is modeled as a homogeneous dielectric ellipsoid of complex index of refraction surrounded by transparent plasma. The relative position and orientation of the ellipsoids are arbitrary. Scattering is formulated in terms of an integral equation which, however, contains two singular kernels. The singular equation is transformed into a pair of nonsingular integral equations for the Fourier transform of the internal field of each RBC. The latter equations are solved by reducing them by quadrature into a matrix equation. The resulting solutions are used to estimate the scattering amplitude. Convergence aspects concerning the numerical calculation of the matrix elements originating from the interaction between the RBCs are also presented.

  10. Designs and Reliability Evaluations of a Scattered Light Measurement System

    NASA Astrophysics Data System (ADS)

    Lee, Kang-Min

    The purpose of my work was to develop an in-plane stray light measurement system having the advantage of being easily applicable in both motion control and optical configurations. First of all, mechanical designs were conducted based on both 3D modeling and structural analysis through a finite element method (FEM). Optical configurations for both the incident source and the detector were designed to achieve minimum observed source convergence angle of the system. The control panel and micro stepping system were programmed for automated measurement. Finally, the designed system was calibrated and aligned. In order to evaluate the system reliability for scatter measurements from various surface conditions, a total of 9 samples were used. Scattering analysis for bidirectional scatter distribution functions of the samples were conducted: rough surface, smooth surface and small particles. ABg model, Rayleigh-Rice theory and Generalized Harvey-Shack theory were used to verify the scatter measurements. The results indicate that the designed system was appropriately developed for measuring scattering phenomena by rough surface, smooth surface and small particles.

  11. The self-association of acebutolol: Conductometry and light scattering

    NASA Astrophysics Data System (ADS)

    Ruso, Juan M.; López-Fontán, José L.; Prieto, Gerardo; Sarmiento, Félix

    2003-04-01

    The association characteristics of an amphiphilic beta-blocker drug, acebutolol hydrochloride, in aqueous solution containing high concentrations of electrolyte and at different temperatures have been examined by static and dynamic light scattering and electrical conductivity. Time averaged light scattering measurements on aqueous solutions of acebutolol at 298.15 K in the presence of added electrolyte (0.4-1.0 mol kg-1 NaCl) have shown discontinuities which reflect the appearance of aggregates. The critical micelle concentration, aggregation numbers, effective micelle charges, and degree of micellar ionization were calculated. Dynamic light scattering has shown an increase in micellar size with increase in concentration of added electrolyte. Data have been interpreted using the DLVO theory to quantify the interaction between the drug aggregates and the colloidal stability. Critical micelle concentrations in water have been calculated from conductivity measurements over the temperature range 288.15-313.15 K. The variation in critical concentration with temperature passes through a minimum close to 294 K. Thermodynamic parameters of aggregate formation (ΔGm0,ΔHm0,ΔSm0) were obtained from a variation of the mass action model applicable to systems of low aggregation number.

  12. Measurement of relative humidity dependent light scattering of aerosols

    NASA Astrophysics Data System (ADS)

    Fierz-Schmidhauser, R.; Zieger, P.; Wehrle, G.; Jefferson, A.; Ogren, J. A.; Baltensperger, U.; Weingartner, E.

    2009-09-01

    Relative humidity (RH) influences the water content of aerosol particles and therefore has an important impact on the particles' ability to scatter visible light. The RH dependence of the particle light scattering coefficient (σsp) is therefore an important measure for climate forcing calculations. We built a humidification system for a nephelometer which allows the measurement of σsp at a defined RH in the range of 40-90%. This RH conditioner consists of a humidifier followed by a dryer, which enables us to measure the hysteresis behavior of deliquescent aerosol particles. In this paper we present the set-up of a new humidified nephelometer, a detailed characterization with well defined laboratory generated aerosols, and a first application in the field by comparing our instrument to another humidified nephelometer. Monodisperse ammonium sulfate and sodium chloride particles were measured at four different dry particle sizes. Agreement between measurement and prediction based on Mie theory was found for both σsp and f(RH)=σsp(RH)/σsp(dry) within the range of uncertainty. The two humidified nephelometers measuring at a rural site in the Black Forest (Germany) often detected different f(RH), probably caused by the aerosol hysteresis behavior: when the aerosol was metastable, therefore was scattering more light, only one instrument detected the higher f(RH).

  13. Measurement of relative humidity dependent light scattering of aerosols

    NASA Astrophysics Data System (ADS)

    Fierz-Schmidhauser, R.; Zieger, P.; Wehrle, G.; Jefferson, A.; Ogren, J. A.; Baltensperger, U.; Weingartner, E.

    2010-01-01

    Relative humidity (RH) influences the water content of aerosol particles and therefore has an important impact on the particles' ability to scatter visible light. The RH dependence of the particle light scattering coefficient (σsp is therefore an important measure for climate forcing calculations. We built a humidification system for a nephelometer which allows the measurement of σsp at a defined RH in the range of 40-90%. This RH conditioner consists of a humidifier followed by a dryer, which enables us to measure the hysteresis behavior of deliquescent aerosol particles. In this paper we present the set-up of a new humidified nephelometer, a detailed characterization with well defined laboratory generated aerosols, and a first application in the field by comparing our instrument to another humidified nephelometer. Monodisperse ammonium sulfate and sodium chloride particles were measured at four different dry particle sizes. Agreement between measurement and prediction based on Mie theory was found for both σsp and f(RH)=σsp(RH)/σsp(dry) within the range of uncertainty. The two humidified nephelometers measuring at a rural site in the Black Forest (Germany) often detected different f(RH), probably caused by the aerosol hysteresis behavior: when the aerosol was metastable, therefore was scattering more light, only one instrument detected the higher f(RH).

  14. Analysis of light scattered by turbid media in cylindrical geometry.

    PubMed

    Tromp, R Hans; Liemert, André; Meinders, Marcel B J

    2014-07-22

    The angle dependence of the transmitted light through a cylindrical turbid sample (latex suspension, developing milk gel, draining/coarsening milk, and protein foams) in a standard light scattering setup was analyzed in terms of the transport mean free path length or scattering length l* (a measure for the turbidity) and the absorption length labs. By variation of the concentration of an absorbing dye, the independence of l* and labs was demonstrated. The resulting value of the specific extinction coefficient of the dye was found to be in fair agreement with direct spectroscopic determination and practically identical in milk and latex suspensions. The validity of this technique for obtaining l* was demonstrated by monitoring the acid-induced gelation of milk. The possibility to simultaneously determine l* and labs was used to follow the time development of a draining and coarsening protein foam which contained an absorbing dye. It was shown that labs can be used as a measure for the volume fraction of air in the foam. This method of monitoring the transmission of multiple light scattering provides an easy way to determine l* and, specifically for foams, quantitative data dominated by the bulk of the foam.

  15. Determination of reversible protein equilibrium association coefficients using light scattering

    NASA Astrophysics Data System (ADS)

    Larkin, Michael

    2009-03-01

    The characterization in solution of reversible protein associations as well as associations between proteins and small molecules is essential in many areas of science. Understanding cellular function or developing and formulating pharmaceuticals or other biologically active materials often requires quantitation of such associations. Most pharmaceuticals have functionality due solely to association with molecules within the body, and the discovery and accurate characterization of these associations is a key element for pharmaceutical development. Unfortunately, most methods used to measure associations of proteins require either immobilizing the protein on a surface (e.g. surface plasmon resonance), which potentially alters the protein characteristics, or require considerable time and effort and large quantities of sample (e.g. analytical ultracentrifugation, isothermal titration calorimetry). Light scattering based measurements of reversible association coefficients require much less sample and may be performed much more rapidly than other free solution techniques. In this talk I describe how static and dynamic light scattering may each independently be used to measure equilibrium association coefficients between proteins in free solution, and may also be used to observe and quantitate the association of small molecules with them. I present background theory for both static and dynamic light scattering measurements of equilibrium associations, and examples of measurements made of both model systems and of systems with commercial relevance in the pharmaceutical industry.

  16. Photovoltaic structures having a light scattering interface layer and methods of making the same

    DOEpatents

    Liu, Xiangxin; Compaan, Alvin D.; Paudel, Naba Raj

    2015-10-13

    Photovoltaic (PV) cell structures having an integral light scattering interface layer configured to diffuse or scatter light prior to entering a semiconductor material and methods of making the same are described.

  17. Propagation and scattering of vector light beam in turbid scattering medium

    NASA Astrophysics Data System (ADS)

    Doronin, Alexander; Milione, Giovanni; Meglinski, Igor; Alfano, Robert R.

    2014-03-01

    Due to its high sensitivity to subtle alterations in medium morphology the vector light beams have recently gained much attention in the area of photonics. This leads to development of a new non-invasive optical technique for tissue diagnostics. Conceptual design of the particular experimental systems requires careful selection of various technical parameters, including beam structure, polarization, coherence, wavelength of incident optical radiation, as well as an estimation of how the spatial and temporal structural alterations in biological tissues can be distinguished by variations of these parameters. Therefore, an accurate realistic description of vector light beams propagation within tissue-like media is required. To simulate and mimic the propagation of vector light beams within the turbid scattering media the stochastic Monte Carlo (MC) technique has been used. In current report we present the developed MC model and the results of simulation of different vector light beams propagation in turbid tissue-like scattering media. The developed MC model takes into account the coherent properties of light, the influence of reflection and refraction at the medium boundary, helicity flip of vortexes and their mutual interference. Finally, similar to the concept of higher order Poincaŕe sphere (HOPS), to link the spatial distribution of the intensity of the backscattered vector light beam and its state of polarization on the medium surface we introduced the color-coded HOPS.

  18. Light organization of small particles by multiple scattering

    NASA Astrophysics Data System (ADS)

    Hang, Zhi Hong

    Optical manipulation is of broad interest in physics, chemistry, and biology. In the literature, most of the studies are focused on the optical trapping on a single object. In this thesis, we investigated the light-induced interaction of a collection of particles. The light-induced interaction between small particles was studied by a hierarchy of methods including the dipole theory, the multiple scattering and Maxwell stress tensor formalism, and the finite-difference-time-domain method. We showed that the multiple scattering between small particles could induce a binding mechanism to stabilize optically organized structures, but at the same time induced an intrinsic unbinding mechanism. The stability of optically organized structure was studied and a concept of "optical density" was introduced to gauge the destabilizing effect. We found that light-induced forces could bind dielectric spheres into extended structures through two mechanisms, each with its own length scale which could be adjusted by the configuration of the external light source. By manipulating the commensurability of the two length scales, these two mechanisms cooperated to bind a large number of spheres. When the two length scales became incommensurate for some particular incident angle, the competition between the two mechanisms led to modulated structures and other complex phenomena such as re-entrant stability. We searched for the possibility for stabilizing larger clusters. For this purpose, we found that circularly polarized light bound dielectric spheres into large-scale two-dimensional hexagonal lattice and multiple scattering also induced a rotation of optically bound structures. We searched for configurations that could induce optical trapping by field enhancement. Enhanced transmission on perforated metallic film system was studied. Surface modes bound on multi perforated perfect metal plate system were analytical solved and related to different high transmittance modes. Near

  19. Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers

    SciTech Connect

    Rothberg, Lewis

    2012-11-30

    Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential to be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.

  20. Light scattering in colloidal solution of magnetite in electric and magnetic fields.

    PubMed

    Yerin, Constantine V

    2007-04-15

    Light scattering by magnetite particles in kerosene under the simultaneous action of crossed electric and magnetic fields was studied. Decreasing of variation of light scattering intensity at some values of electric and magnetic fields have been found. Values of fields at which a minimum of light scattering intensity occur depend on the angle between laser beam and the plane of crossed fields.

  1. Light Scattering and Absorption Studies of Sickle Cell Hemoglobin

    NASA Astrophysics Data System (ADS)

    Kim-Shapiro, Daniel

    1997-11-01

    The use of physical techniques has been very important in understanding the pathophysiology of sickle cell disease. In particular, light scattering and absorption studies have been used to measure the kinetics of sickle cell hemoglobin polymerization and depolymerization (melting). The theory of sickle cell polymerization that has been derived and tested by these methods has not only led to an increased understanding of the pathophysiology of the disease but has also led to improved treatment strategies. Sickle cell disease effects about 1 out of 600 people of African descent born in the United States. The disease is caused by a mutant form of hemoglobin (the oxygen transporting molecule in the blood), hemoglobin S (HbS), which differs from normal adult hemoglobin by the substitution of a single amino acid for another. The polymerization of HbS, which occurs under conditions of low oxygen pressure, causes distortion and increased rigidity of the sickle red blood cell that leads to blockage of the capillaries and a host of resulting complications. The disease is associated with tissue damage, severe painful crises and a high degree of mortality. Light scattering studies of purified HbS and whole cells (conducted by F.A. Ferrone, J. Hofrichter, W.A. Eaton, and their associates) have been used to determine the mechanism of HbS polymerization. Polymerization will generally not occur when the hemoglobin is in an oxygen-rich environment. The question is, when HbS is rapidly deoxygenated (as it is when going from the lungs to the tissues) what is the kinetics of polymerization? Photolysis methods were used to rapidly deoxygenate HbS and light scattering was used as a function of time to measure the kinetics of polymerization. Polarized light scattering may be a more effective way to measure polymer content than total intensity light scattering. It was found that no polymerization occurs during a period of time called the delay time and subsequent polymerization occurs

  2. Scattered light corrections to Sun photometry: analytical results for single and multiple scattering regimes.

    PubMed

    Kokhanovsky, Alexander A

    2007-04-01

    Analytical equations for the diffused scattered light correction factor of Sun photometers are derived and analyzed. It is shown that corrections are weakly dependent on the atmospheric optical thickness. They are influenced mostly by the size of aerosol particles encountered by sunlight on its way to a Sun photometer. In addition, the accuracy of the small-angle approximation used in the work is studied with numerical calculations based on the exact radiative transfer equation.

  3. LIGHT SOURCE: TW Laser system for Thomson scattering X-ray light source at Tsinghua University

    NASA Astrophysics Data System (ADS)

    Yan, Li-Xm; Du, Ying-Chao; Du, Qiang; Li, Ren-Kai; Hua, Jian-Fei; Huang, Wen-Hui; Tang, Chuan-Xiang

    2009-06-01

    A TW (Tera Watt) laser system based on Ti:sapphire mainly for the Tsinghua Thomson scattering X-ray light source (TTX) is being built. Both UV (ultraviolet) laser pulse for driving the photocathode radio-frequency (RF) gun and the IR (infrared) laser pulse as the electron-beam-scattered-light are provided by the system. Efforts have also been made in laser pulse shaping and laser beam transport to optimize the high-brightness electron beam production by the photocathode RF gun.

  4. Quantifying morphological alteration of RBC population from light scattering data.

    PubMed

    Mishra, Raghwendra; Sarkar, Debasish; Bhattacharya, Sourav; Mallick, Sanjaya; Chakraborty, Mousumi; Mukherjee, Debarati; Kar, Manoj; Mishra, Roshnara

    2015-01-01

    Studies of RBC morphological alterations, despite their potential clinical and experimental application, are compromised due to lack of simple and rapid techniques. As a complementary approach toward quantitative microscopy, we have reconstituted morphological information from light scattering data obtained from flow cytometer. Normal and poikilocytic agent treated samples were analyzed by microscopy and respective morphological index (MI) was calculated from the morphology based scores assigned to RBC. The samples were simultaneously analyzed by flowcytometer and the scatter data were obtained. Accordingly, the best correlated parameters of both forward scatter and side scatter were chosen to formulate a suitable regression model with MI as response. Flow cytometry data was also verified with another instrument (BD FACS Verse) and the equation obtained was validated with separate set of samples. The multivariate regression analysis yields a quadratic model with MI as response (R2 = 0.96, p <  0.001). The flow cytometric data from both instruments were in good agreement (Intra class correlation ∼0.9, p <  0.001). The model was found to simulate the sample MI with high accuracy (R2 = 0.97, p <  0.001). This proposed method was verified to be simple, rapid, quantitative and cost effective for the measurement of morphological alteration of RBC.

  5. Profiling and light scattering studies of Si surfaces

    SciTech Connect

    Church, E.L.; Takacs, P.Z.; Stover, J.C.

    1994-10-01

    There is great interest in the semiconductor industry in developing light-scattering techniques for detecting ``killer particles`` on Si wafer surfaces. The surface power spectral density (PSD) is important since it determines the intensity and angular dependence of the background scattering; understanding it will lead to a deeper understanding of finishing processes. Scattering measurements showed that Si wafer surfaces have the radiation-wavelength and angular dependences expected for weak topographic scattering. The data and independent profile measurements were used to deduce consistent values of the surface PSDs over the wavelength range 50 nm to 1 mm. The profile PSDs were found to consist of a sum of inverse power-law components, i.e., the surfaces are fractal-like. There is an analogy between the results and spontaneous thermodynamic roughening of solid surfaces: Below the critical roughening temperature, the surface topography is determined by the underlying crystal structure, while above it, the surface ``melts`` and the roughness is determined by capillary-wave excitations of the surface. Capillary waves have the well-known 1/f{sub x} profile power spectrum.

  6. Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells

    NASA Astrophysics Data System (ADS)

    Park, Yongkeun; Diez-Silva, Monica; Fu, Dan; Popescu, Gabriel; Choi, Wonshik; Barman, Ishan; Suresh, Subra; Feld, Michael S.

    2010-03-01

    We present the light scattering of individual Plasmodium falciparum-parasitized human red blood cells (Pf-RBCs), and demonstrate progressive alterations to the scattering signal arising from the development of malaria-inducing parasites. By selectively imaging the electric fields using quantitative phase microscopy and a Fourier transform light scattering technique, we calculate the light scattering maps of individual Pf-RBCs. We show that the onset and progression of pathological states of the Pf-RBCs can be clearly identified by the static scattering maps. Progressive changes to the biophysical properties of the Pf-RBC membrane are captured from dynamic light scattering.

  7. Stray-light suppression with high-collection efficiency in laser light-scattering experiments

    NASA Technical Reports Server (NTRS)

    Deilamian, K.; Gillaspy, J. D.; Kelleher, D. E.

    1992-01-01

    An optical system is described for collecting a large fraction of fluorescent light emitted isotropically from a cylindrical interaction region. While maintaining an overall detection efficiency of 9 percent, the system rejects, by more than 12 orders of magnitude, incident laser light along a single axis that intersects the interaction region. Such a system is useful for a wide variety of light-scattering experiments in which high-collection efficiency is desirable, but in which light from an incident laser beam must be rejected without resorting to spectral filters.

  8. The muon g-2: Dyson-Schwinger status on hadronic light-by-light scattering

    SciTech Connect

    Eichmann, Gernot; Fischer, Christian S.; Heupel, Walter; Williams, Richard

    2016-01-22

    We give a status report on the hadronic light-by-light scattering contribution to the muon’s anomalous magnetic moment from the Dyson-Schwinger approach. We discuss novel, model-independent properties of the light-by-light amplitude: we give its covariant decomposition in view of electromagnetic gauge invariance and Bose symmetry, and we identify the relevant kinematic regions that are probed under the integral. The decomposition of the amplitude at the quark level and the importance of its various diagrams are discussed and related to model approaches.

  9. Spectroscopy of diffuse light in dust clouds. Scattered light and the solar neighbourhood radiation field

    NASA Astrophysics Data System (ADS)

    Lehtinen, K.; Mattila, K.

    2013-01-01

    Context. The optical surface brightness of dark nebulae is mainly due to scattering of integrated starlight by classical dust grains. It contains information on the impinging interstellar radiation field, cloud structure, and grain scattering properties. We have obtained spectra of the scattered light from 3500 to 9000 Å in two globules, the Thumbprint Nebula and DC 303.8-14.2. Aims. We use observations of the scattered light to study the impinging integrated starlight spectrum as well as the scattered Hα and other line emissions from all over the sky. We search also for the presence of other than scattered light in the two globules. Methods. We obtained long-slit spectra encompassing the whole globule plus adjacent sky in a one-slit setting, thus enabling efficient elimination of airglow and other foreground sky components. We calculated synthetic integrated starlight spectra for the solar neighbourhood using HIPPARCOS-based stellar distributions and the spectral library of Pickles. Results. Spectra are presented separately for the bright rims and dark cores of the globules. The continuum spectral energy distributions and absorption line spectra can be well modelled with the synthetic integrated starlight spectra. Emission lines of Hα +[N II], Hβ, and [S II] are detected and are interpreted in terms of scattered light plus an in situ warm ionized medium component behind the globules. We detected an excess of emission over the wavelength range 5200-8000 Å in DC 303.8-14.2 but the nature of this emission remains open. Based on observations collected at the European Southern Observatory, Chile, under programme ESO No. 073.C-0239(A). Appendix A is available in electronic form at http://www.aanda.org.

  10. Variational principle for scattering of light by dielectric particles

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.

    1978-01-01

    Consideration is given to the work of Purcell and Pennypacker (1973) where a dielectric particle is taken to be an aggregate of N polarizable elements mounted on a cubic lattice. The simultaneous equations which result from the scattering problem are presented. This theory has been discussed in the case of nonspherical and inhomogeneous objects whose dimensions are smaller than or comparable to the wavelength of incident light. A more precise numerical treatment is derived for further progress. The variational principle is invoked and the practical limit for the current version of the scheme is a dipole array on the order of 10,000 atoms. Limits to the scattering parameter due to the phase difference between neighboring atoms are discussed.

  11. Light dark matter scattering in outer neutron star crusts

    NASA Astrophysics Data System (ADS)

    Cermeño, Marina; Pérez-García, M. Ángeles; Silk, Joseph

    2016-09-01

    We calculate for the first time the phonon excitation rate in the outer crust of a neutron star due to scattering from light dark matter (LDM) particles gravitationally boosted into the star. We consider dark matter particles in the sub-GeV mass range scattering off a periodic array of nuclei through an effective scalar-vector interaction with nucleons. We find that LDM effects cause a modification of the net number of phonons in the lattice as compared to the standard thermal result. In addition, we estimate the contribution of LDM to the ion-ion thermal conductivity in the outer crust and find that it can be significantly enhanced at large densities. Our results imply that for magnetized neutron stars the LDM-enhanced global conductivity in the outer crust will tend to reduce the anisotropic heat conduction between perpendicular and parallel directions to the magnetic field.

  12. Desmin filaments studied by quasi-elastic light scattering.

    PubMed Central

    Hohenadl, M; Storz, T; Kirpal, H; Kroy, K; Merkel, R

    1999-01-01

    We studied polymers of desmin, a muscle-specific type III intermediate filament protein, using quasi-elastic light scattering. Desmin was purified from chicken gizzard. Polymerization was induced either by 2 mM MgCl(2) or 150 mM NaCl. The polymer solutions were in the semidilute regime. We concluded that the persistence length of the filaments is between 0.1 and 1 microm. In all cases, we found a hydrodynamic diameter of desmin filaments of 16-18 nm. The filament dynamics exhibits a characteristic frequency in the sense that correlation functions measured on one sample but at different scattering vectors collapse onto a single master curve when time is normalized by the experimentally determined initial decay rate. PMID:10512839

  13. Cavity-enhanced coherent light scattering from a quantum dot.

    PubMed

    Bennett, Anthony J; Lee, James P; Ellis, David J P; Meany, Thomas; Murray, Eoin; Floether, Frederik F; Griffths, Jonathan P; Farrer, Ian; Ritchie, David A; Shields, Andrew J

    2016-04-01

    The generation of coherent and indistinguishable single photons is a critical step for photonic quantum technologies in information processing and metrology. A promising system is the resonant optical excitation of solid-state emitters embedded in wavelength-scale three-dimensional cavities. However, the challenge here is to reject the unwanted excitation to a level below the quantum signal. We demonstrate this using coherent photon scattering from a quantum dot in a micropillar. The cavity is shown to enhance the fraction of light that is resonantly scattered toward unity, generating antibunched indistinguishable photons that are 16 times narrower than the time-bandwidth limit, even when the transition is near saturation. Finally, deterministic excitation is used to create two-photon N00N states with which we make superresolving phase measurements in a photonic circuit.

  14. A Light Scattering Layer for Internal Light Extraction of Organic Light-Emitting Diodes Based on Silver Nanowires.

    PubMed

    Lee, Keunsoo; Shin, Jin-Wook; Park, Jun-Hwan; Lee, Jonghee; Joo, Chul Woong; Lee, Jeong-Ik; Cho, Doo-Hee; Lim, Jong Tae; Oh, Min-Cheol; Ju, Byeong-Kwon; Moon, Jaehyun

    2016-07-13

    We propose and fabricate a random light scattering layer for light extraction in organic light-emitting diodes (OLEDs) with silver nanodots, which were obtained by melting silver nanowires. The OLED with the light scattering layer as an internal light extraction structure was enhanced by 49.1% for the integrated external quantum efficiency (EQE). When a wrinkle structure is simultaneously used for an external light extraction structure, the total enhancement of the integrated EQE was 65.3%. The EQE is maximized to 65.3% at a current level of 2.0 mA/cm(2). By applying an internal light scattering layer and wrinkle structure to an OLED, the variance in the emission spectra was negligible over a broad viewing angle. Power mode analyses with finite difference time domain (FDTD) simulations revealed that the use of a scattering layer effectively reduced the waveguiding mode while introducing non-negligible absorption. Our method offers an effective yet simple approach to achieve both efficiency enhancement and spectral stability for a wide range of OLED applications.

  15. Dynamic and static light scattering analysis of DNA ejection from the phage λ

    NASA Astrophysics Data System (ADS)

    Löf, David; Schillén, Karin; Jönsson, Bengt; Evilevitch, Alex

    2007-07-01

    With the aid of time-resolved dynamic light scattering (DLS) and static light scattering (SLS), we have analyzed the ejection kinetics from the bacterial virus bacteriophage (or phage) λ , triggered in vitro by its receptor. We have used DLS to investigate the kinetics in such a system. Furthermore, we have shown that both SLS and DLS can be interchangeably used to study the process of phage DNA release. DLS is superior to SLS in that it also allows the change in the light scattering arising from each of the components in the system to be monitored under conditions such that the relaxation times are separable. With help of these two methods we present a model explaining the reason for the observed decrease in the scattering intensity accompanying DNA ejection from phage. We emphasize that ejection from phage capsid occurs through a very long tail (which is nearly three times longer than the capsid diameter), which significantly separates ejected DNA from the scattering volume of the capsid. The scattering intensity recorded during the DNA ejection process is the result of a change in the form factor of the phage particle, i.e., the change in the interference effects between the phage capsid and the DNA confined in the phage particle. When the DNA molecule is completely ejected it remains in the proximity of the phage for some time, thus contributing to the scattering signal as it diffuses away from the phage capsid, into the scattering volume and returns to its unperturbed chain conformation in bulk solution. The free DNA chain does not contribute to the scattered intensity, when measured at a large angle, due to the DNA form factor and the low concentration. Although the final diffusion-controlled step can lead to overestimation of the real ejection time, we can still use both scattering methods to estimate the initial DNA ejection rates, which are mainly dependent on the pressure-driven DNA ejection from the phage, allowing studies of the effects of various

  16. Use of fluorescence signals generated by elastic scattering under monochromatic incident light for determining the scattering efficiencies of various plasmonic nanoparticles.

    PubMed

    Song, Ji Eun; Park, Ji Hoon; La, Ju A; Park, Seyeon; Jeong, Min Kuk; Cho, Eun Chul

    2016-08-07

    We present a route that estimates the scattering/absorption characteristics of plasmonic nanoparticles by using fluorescence and UV-visible spectroscopy. Because elastic scattering of nanoparticles caused by a monochromatic incident light is reflected in fluorescence emission spectra when recording at the excitation wavelength, the scattering intensities at the excitation wavelength during fluorescence emission scans are used to compare the scattering characteristics of various plasmonic nanoparticles under conditions where the extinction values of all of the nanoparticles are kept constant at this wavelength. For the two excitation wavelengths (519 and 560 nm) we investigated, the scattering intensities of spherical gold nanoparticles increase with increasing size (15, 33, 51, 73, and 103 nm in diameter). These results are correlated with the nanoparticles' scattering efficiencies (the ratios of scattering to the extinction cross-sections), which are theoretically calculated in the literature using Mie theory. Then, linear calibration equations at each wavelength are derived to estimate the scattering efficiencies of two Au nanorods, Au nanocages, and spherical Ag nanoparticles (15, 25, 37, and 62 nm). The values are very comparable with literature values. For various purposes such as biomedicine and optoelectronics, the present method could be beneficial to those who wish to easily compare and determine the scattering characteristics of various plasmonic nanoparticles at a certain wavelength by using commercially-available spectroscopic techniques.

  17. A biophysical study of clathrin utilizing light scattering, neutron scattering and structure based computer modeling

    NASA Astrophysics Data System (ADS)

    Ferguson, Matthew Lee

    A principal component in the protein coats of certain post-golgi and endocytic vesicles is clathrin, which appears as a three-legged heteropolymer (known as a triskelion) that assembles into polyhedral baskets principally made up of pentagonal and hexagonal faces. In vitro, this assembly depends on the pH, with baskets forming more readily at low pH and less readily at high pH. We have developed procedures, based on static and dynamic light scattering, to determine the radius of gyration, Rg, and hydrodynamic radius, RH, of isolated triskelia under conditions where basket assembly occurs. Calculations based on rigid molecular bead models of a triskelion show that the measured values can be accounted for by bending of the legs and a puckering at the vertex. We also show that the values of Rg and R H measured for clathrin triskelia in solution are qualitatively consistent with the conformation of an individual triskelion that is part of a "D6 barrel" basket assembly measured by cryo-EM tomography. We extended this study by performing small angle neutron scattering (SANS) experiments on isolated triskelia in solution under conditions where baskets do not assemble. SANS experiments were consistent with previous static light scattering experiments but showed a shoulder in the scattering function at intermediate q-values just beyond the central diffraction peak (the Guinier regime). Theoretical calculations based on rigid bead models of a triskelion showed well-defined features in this region different from the experiment. A flexible bead-spring model of a triskelion and Brownian dynamics simulations were used to generate a time averaged scattering function. This model adequately described the experimental data for flexibilities close to previous estimates from the analysis of electron micrographs.

  18. Enhanced Light Scattering of Secondary Organic Aerosols by Multiphase Reactions.

    PubMed

    Li, Kun; Li, Junling; Liggio, John; Wang, Weigang; Ge, Maofa; Liu, Qifan; Guo, Yucong; Tong, Shengrui; Li, Jiangjun; Peng, Chao; Jing, Bo; Wang, Dong; Fu, Pingqing

    2017-02-07

    Secondary organic aerosol (SOA) plays a pivotal role in visibility and radiative forcing, both of which are intrinsically linked to the refractive index (RI). While previous studies have focused on the RI of SOA from traditional formation processes, the effect of multiphase reactions on the RI has not been considered. Here, we investigate the effects of multiphase processes on the RI and light-extinction of m-xylene-derived SOA, a common type of anthropogenic SOA. We find that multiphase reactions in the presence of liquid water lead to the formation of oligomers from intermediate products such as glyoxal and methylglyoxal, resulting in a large enhancement in the RI and light-scattering of this SOA. These reactions will result in increases in light-scattering efficiency and direct radiative forcing of approximately 20%-90%. These findings improve our understanding of SOA optical properties and have significant implications for evaluating the impacts of SOA on the rapid formation of regional haze, global radiative balance, and climate change.

  19. Light scattering application for bacterial cell monitoring during cultivation process

    NASA Astrophysics Data System (ADS)

    Kotsyumbas, Igor Ya.; Kushnir, Igor M.; Bilyy, Rostyslav O.; Yarynovska, Ivanna H.; Getman, Vasyl'B.; Bilyi, Alexander I.

    2007-07-01

    Monitoring of bacterial cell numbers is of great importance not only in microbiological industry but also for control of liquids contamination in the food and pharmaceutical industries. Here we describe a novel low-cost and highly efficient technology for bacterial cell monitoring during cultivation process. The technology incorporates previously developed monitoring device and algorithm of its action. The devise analyses light scattered by suspended bacterial cells. Current stage utilizes monochromatic coherent light and detects amplitudes and durations of scattered light impulses, it does not require any labeling of bacterial cell. The system is calibrated using highly purificated bacteria-free water as standard. Liquid medial are diluted and analyzed by the proposed technology to determine presence of bacteria. Detection is done for a range of particle size from 0.1 to 10 μm, and thus particles size distribution is determined. We analyzed a set of different bacterial suspensions and also their changes in quantity and size distribution during cultivation. Based on the obtained results we conclude that proposed technology can be very effective for bacteria monitoring during cultivation process, providing benefits of low simplicity and low cost of analysis with simultaneous high detection precision.

  20. Dynamic light scattering in veterinary medicine: refinement of diagnostic criteria

    NASA Astrophysics Data System (ADS)

    Dubin, Stephen; Zietz, Stanley; Gabriel, Karl L.; Gabriel, David; DellaVecchia, Michael A.; Ansari, Rafat R.

    2001-05-01

    In dynamic light scattering (DLS), the structure or material of interest, suspended in a fluid, is illuminated by a beam of laser light and the scattered light is interpreted in terms of diffusion coefficient, particle size or its distribution. DLS has shown clear promise as a non-invasive, objective and precise diagnostic modality for investigation of lens opacity (cataract) and other medical and toxicological problems. The clinical potential of LDS has been demonstrated in several species both in vivo and in vitro. In many clinical cases, discernment between normal and diseased patients is possible by simple inspection of the particle size distribution. However a more rigorous and sensitive classification scheme is needed, particularly for evaluation of therapy and estimation of tissue injury. The data supplied by DLS investigation is inherently multivariate and its most efficient interpretation requires a multivariate approach which includes the variability among specimens as well as any correlation among the variables (e.g. across the particle size distribution). We present a brief review of DLS methodology, illustrative data and our efforts toward a diagnostic classification scheme. In particular we will describe application of the Mahalanobis distance and related statistical methods to DLS data.

  1. Light-by-light scattering in the Lamb shift and the bound electron g factor

    NASA Astrophysics Data System (ADS)

    Czarnecki, Andrzej; Szafron, Robert

    2016-12-01

    We compute an O ( α2(Zα ) 6) contribution to the hydrogen-atom Lamb shift arising from light-by-light scattering. Analogous diagrams, with one atomic electric field insertion replaced by an external magnetic field, contribute to the gyromagnetic factor of the bound electron at O ( α2(Zα ) 4) . We also calculate the contribution to the gyromagnetic factor from the muon magnetic loop.

  2. Mandel'shtam-Brillouin scattering of laser light as a remote sensing tool.

    NASA Technical Reports Server (NTRS)

    Daniels, A.

    1972-01-01

    The mathematical relations regarding the intensity of scattered light are derived. The nature of density inhomogeneities in air is discussed together with scattering due to moving isothermal pressure fluctuations, the spectral distribution of scattering from static isobaric density fluctuations, and applications of Mandel'shtam-Brillouin (M-B) scattering to atmospheric sensing. It is concluded that M-B scattering of laser light from the atmosphere has an outstanding potential for remote atmospheric sensing.

  3. Ultrafast image-based dynamic light scattering for nanoparticle sizing

    NASA Astrophysics Data System (ADS)

    Zhou, Wu; Zhang, Jie; Liu, Lili; Cai, Xiaoshu

    2015-11-01

    An ultrafast sizing method for nanoparticles is proposed, called as UIDLS (Ultrafast Image-based Dynamic Light Scattering). This method makes use of the intensity fluctuation of scattered light from nanoparticles in Brownian motion, which is similar to the conventional DLS method. The difference in the experimental system is that the scattered light by nanoparticles is received by an image sensor instead of a photomultiplier tube. A novel data processing algorithm is proposed to directly get correlation coefficient between two images at a certain time interval (from microseconds to milliseconds) by employing a two-dimensional image correlation algorithm. This coefficient has been proved to be a monotonic function of the particle diameter. Samples of standard latex particles (79/100/352/482/948 nm) were measured for validation of the proposed method. The measurement accuracy of higher than 90% was found with standard deviations less than 3%. A sample of nanosilver particle with nominal size of 20 ± 2 nm and a sample of polymethyl methacrylate emulsion with unknown size were also tested using UIDLS method. The measured results were 23.2 ± 3.0 nm and 246.1 ± 6.3 nm, respectively, which is substantially consistent with the transmission electron microscope results. Since the time for acquisition of two successive images has been reduced to less than 1 ms and the data processing time in about 10 ms, the total measuring time can be dramatically reduced from hundreds seconds to tens of milliseconds, which provides the potential for real-time and in situ nanoparticle sizing.

  4. Ultrafast image-based dynamic light scattering for nanoparticle sizing

    SciTech Connect

    Zhou, Wu; Zhang, Jie; Liu, Lili; Cai, Xiaoshu

    2015-11-15

    An ultrafast sizing method for nanoparticles is proposed, called as UIDLS (Ultrafast Image-based Dynamic Light Scattering). This method makes use of the intensity fluctuation of scattered light from nanoparticles in Brownian motion, which is similar to the conventional DLS method. The difference in the experimental system is that the scattered light by nanoparticles is received by an image sensor instead of a photomultiplier tube. A novel data processing algorithm is proposed to directly get correlation coefficient between two images at a certain time interval (from microseconds to milliseconds) by employing a two-dimensional image correlation algorithm. This coefficient has been proved to be a monotonic function of the particle diameter. Samples of standard latex particles (79/100/352/482/948 nm) were measured for validation of the proposed method. The measurement accuracy of higher than 90% was found with standard deviations less than 3%. A sample of nanosilver particle with nominal size of 20 ± 2 nm and a sample of polymethyl methacrylate emulsion with unknown size were also tested using UIDLS method. The measured results were 23.2 ± 3.0 nm and 246.1 ± 6.3 nm, respectively, which is substantially consistent with the transmission electron microscope results. Since the time for acquisition of two successive images has been reduced to less than 1 ms and the data processing time in about 10 ms, the total measuring time can be dramatically reduced from hundreds seconds to tens of milliseconds, which provides the potential for real-time and in situ nanoparticle sizing.

  5. Light Scattering by Stochastic Solids, Aggregates and Regoliths

    NASA Astrophysics Data System (ADS)

    Lumme, K.; Rahola, J.

    1999-09-01

    We use our well-tested light scattering code based on a numerical solution of the electromagnetic integral equation to complete the full four by four Muller matrix for light scattering. Our code is very versatile as to the geometry of particles. One of our goals is doing light scattering by various particle forms to understand the two ubiquitous photopolarimetric phenomena of the atmosphereless solar system bodies, comets and interplanetary dust. These are: the universal brightening of the object towards the planetary opposition (opposition effect or spike) and the reversal of linear polarization taking place at the phase angles of about 20(o) . First, we generate stochastically deformed spheres with two different radius covariance functions in the size parameter range from 1 to 7 and apply the power law size distribution to their individual contributions. Our computations quite naturally produce both the opposition effect and the reversal of linear polarization. Second, we create with the diffusion-limited aggregation code closely packed clusters with a power law size distributed particles. Again the above mentioned two phenomena quite naturally follow. These two different particle geometries seem to indicate that an unambiguous inversion of the photopolarimetric data is not possible. This is even more so because the typical cosmic dust particles are almost certainly much bigger than allowed in our code. Finally, we model a planetary regolith by randomly placing several hundred sheres in a cylidrical geometry with a varying packing density. Once again those two phenomena follow. We also compare our computations to our Monte-Carlo code for a horizontally finite cylinder in the radiative transfer regime to see the effects fo close packing. Both the intensity and linear polarization are fairly well reproduced, excluding the forward and backward directions by the ray-optical, radiattive transfer model.

  6. Laser light scattering in diagnostics of widespread diseases

    NASA Astrophysics Data System (ADS)

    Petrova, Galina P.; Petrusevich, Yurii M.; Alexeev, Sergei G.; Ivanov, Andrei V.

    2002-08-01

    The multiparametric physical method for diagnosing of widespread diseases including oncological disease based on Rayleigh light scattering is proposed. There was studied simultaneously dynamic and static parameters of blood plasma proteins. This method is the product of extensive research conducted on a molecular level on the indicative fields of the human body such as blood serum or lymph. Comprehensive measurements at molecular level and determinations of parameters related to these fluids, especially blood serum, have revealed significant differences in the values of certain parameters in patients with oncological diseases and for healthy individuals.

  7. Spectral analysis of scattered light from flowers' petals

    NASA Astrophysics Data System (ADS)

    Ozawa, Atsumi; Uehara, Tomomi; Sekiguchi, Fumihiko; Imai, Hajime

    2009-07-01

    A new method was developed for studying absorption characteristics of opaque samples based on the light scattering spectroscopy. Measurements were made in white, red and violet petals of Petunia hybrida, and gave the absorption spectra in a non-destructive manner without damaging the cell structures of the petal. The red petal has absorption peak at 550 nm and the violet has three absorption peaks: at 450, 670, and 550 nm. The results were discussed in correlation with the microscopic cell structures of the petal observed with optical microscope and transmission electron microscopy (TEM). Only the cells placed in the surface have the pigments giving the color of the petal.

  8. Multiple scattering of light in three-dimensional photonic quasicrystals.

    PubMed

    Ledermann, Alexandra; Wiersma, Diederik S; Wegener, Martin; von Freymann, Georg

    2009-02-02

    Recent experiments on three-dimensional icosahedral dielectric photonic quasicrystals have shown several unexpected features: transmitted femtosecond pulses developed a trailing "diffusive" exponential tail and the sum of (zeroth-order) transmittance and reflectance was well below unity. These experimental findings have previously been ascribed to sample imperfections. Here, we analyze these findings by using 3D periodic approximants of the ideal photonic quasicrystals. We show that the experimental observations can be explained in terms of multiple scattering of light within these structures, i.e., in terms of intrinsic rather than purely extrinsic quasicrystal properties.

  9. POLARIZED LIGHT REFLECTED AND TRANSMITTED BY THICK RAYLEIGH SCATTERING ATMOSPHERES

    SciTech Connect

    Natraj, Vijay; Hovenier, J. W.

    2012-03-20

    Accurate values for the intensity and polarization of light reflected and transmitted by optically thick Rayleigh scattering atmospheres with a Lambert surface underneath are presented. A recently reported new method for solving integral equations describing Chandrasekhar's X- and Y-functions is used. The results have been validated using various tests and techniques, including the doubling-adding method, and are accurate to within one unit in the eighth decimal place. Tables are stored electronically and expected to be useful as benchmark results for the (exo)planetary science and astrophysics communities. Asymptotic expressions to obtain Stokes parameters for a thick layer from those of a semi-infinite atmosphere are also provided.

  10. A preview of a microgravity laser light scattering instrument

    NASA Astrophysics Data System (ADS)

    Meyer, W. V.; Ansari, R. R.

    1991-01-01

    The development of a versatile, miniature, modular light scattering instrument to be used in microgravity is described. The instrument will measure microscopic particles in the size range of thirty angstroms to above three microns. This modular instrument permits several configurations, each optimized for a particular experiment. In particular, a multiangle instrument will probably be mounted in a rack in the Space Shuttle and on the Space Station. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations.

  11. HD100546 multi-epoch scattered light observations

    SciTech Connect

    Avenhaus, Henning; Quanz, Sascha P.; Meyer, Michael R.; Brittain, Sean D.; Carr, John S.; Najita, Joan R.

    2014-07-20

    We present H, K{sub s}, and L' filter polarimetric differential imaging (PDI) data for the transitional disk around HD100546 obtained in 2013, together with an improved re-reduction of previously published 2006 data. We reveal the disk in polarized scattered light in all three filters, achieving an inner working angle of ∼0.''1. Additional, short-exposure observations in the H and K{sub s} filters probe the surroundings of the star down to ∼0.''03 (∼3 AU). HD100546 is fascinating because of its variety of sub-structures possibly related to forming planets in the disk, and PDI is currently the best technique for imaging them in the near-IR. For the first time ever, we detect a disk in L-band PDI data, and we constrain the outer radius of the inner hole to 14 ± 2 AU and its eccentricity to <0.133. A dark lane is detected between ∼0.''2-0.''6 AU in the front side of the disk, which is likely an effect of the scattering angle and the scattering function of the grains. We find a spiral arm in the northeast that has no obvious connection to spiral arms seen before by other authors further out in the disk, but winds are in the same direction (clockwise). The two bright scattering peaks along the semi-major axis are asymmetric, with the southeastern one being significantly brighter. This could be related to the inner companion candidate that is close to the brighter side of the disk at the time of the observations. The scattering color is close to gray between the H and K{sub s} filters ([H]–[K{sub s}] = 0.19 ± 0.11), but the scattering in the L' filter is significantly weaker ([H]–[L'] = –1.08 ± 0.35, [K{sub s}]–[L'] = –1.27 ± 0.35). We measure the position angle of the disk to be 138° ± 3°, consistent with previous observations, and we derive the dust scattering function in the H and K{sub s} filters between ∼35° and ∼130° at two different radii (30-50 and 80-110 AU) and show that our results are consistent with a disk that is more strongly

  12. Extinction paradox and actual power scattered in light beam scattering: a two-dimensional study.

    PubMed

    Lai, H M; Wong, W Y; Wong, W H

    2004-12-01

    The extinction paradox is examined by applying partial-wave analysis to a two-dimensional light beam interacting with a long transverse cylinder without absorption, assuming always short wavelengths. We show that the (conventional) power scattered, Psca, except for a very narrow beam hitting a transparent cylinder on axis, is always double the power directly intercepted by the scatterer, Pitc, including a zero result for Psca when the incident beam is basically off the material surface. This contradicts the interpretation that attributes one half of Psca to edge diffraction by the scatterer. Furthermore, we identify the shadow-forming wave (SFW) from the partial-wave sum in the forward direction and show that the actual power scattered or, equivalently, the power depleted from the incident beam is equal to one unit of Pitc for a narrow beam, gets larger for a broader beam, and approaches 2Pitc for a very broad beam. The larger value in the latter cases is due to the extent of divergence of the SFW beam out of the incident beam at distances well beyond the Rayleigh range.

  13. Correction of motion artefacts and pseudo colour visualization of multispectral light scattering images for optical diagnosis of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Minet, Olaf; Scheibe, Patrick; Beuthan, Jürgen; Zabarylo, Urszula

    2010-02-01

    State-of-the-art image processing methods offer new possibilities for diagnosing diseases using scattered light. The optical diagnosis of rheumatism is taken as an example to show that the diagnostic sensitivity can be improved using overlapped pseudo-coloured images of different wavelengths, provided that multispectral images are recorded to compensate for any motion related artefacts which occur during examination.

  14. Correction of motion artefacts and pseudo colour visualization of multispectral light scattering images for optical diagnosis of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Minet, Olaf; Scheibe, Patrick; Beuthan, Jürgen; Zabarylo, Urszula

    2009-10-01

    State-of-the-art image processing methods offer new possibilities for diagnosing diseases using scattered light. The optical diagnosis of rheumatism is taken as an example to show that the diagnostic sensitivity can be improved using overlapped pseudo-coloured images of different wavelengths, provided that multispectral images are recorded to compensate for any motion related artefacts which occur during examination.

  15. Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution.

    PubMed

    Berrocal, Edouard; Sedarsky, David L; Paciaroni, Megan E; Meglinski, Igor V; Linne, Mark A

    2007-08-20

    We investigate the scattering and multiple scattering of a typical laser beam (lambda = 800 nm) in the intermediate scattering regime. The turbid media used in this work are homogeneous solutions of monodisperse polystyrene spheres in distilled water. The two-dimensional distribution of light intensity is recorded experimentally, and calculated via Monte Carlo simulation for both forward and side scattering. The contribution of each scattering order to the total detected light intensity is quantified for a range of different scattering phase functions, optical depths, and detection acceptance angles. The Lorentz-Mie scattering phase function for individual particles is varied by using different sphere diameters (D = 1 and 5 mum). The optical depth of the turbid medium is varied (OD = 2, 5, and 10) by employing different concentrations of polystyrene spheres. Detection angles of theta(a) = 1.5 degrees and 8.5 degrees are considered. A novel approach which realistically models the experimental laser source is employed in this paper, and very good agreement between the experimental and simulated results is demonstrated. The data presented here can be of use to validate any other modern Monte Carlo models which generate spatially resolved light intensity distributions. Finally, an effective correction procedure to the Beer-Lambert law is proposed based on the Monte Carlo calculation of the ballistic photon contribution to the total detected light intensity.

  16. Light-scattering study of petroleum asphaltene aggregation.

    PubMed

    Burya, Y G; Yudin, I K; Dechabo, V A; Kosov, V I; Anisimov, M A

    2001-08-20

    Dynamic light scattering with an original optical scheme has been used for the investigation of opaque (strongly light-absorbing) asphaltene colloids in crude oils and hydrocarbon mixtures. Diffusion-limited aggregation and reaction-limited aggregation as well as a crossover between these two regimes have been observed. A simple interpolation for the crossover kinetics is proposed. Asphaltene colloidal structures, originally persisting in crude oils, have been detected. Addition of a precipitant above a threshold induces asphaltene aggregation. Depending on the nature of the precipitant, different crude oils respond differently on its addition: (a) exponential-in-time growth of aggregates to huge flocks or (b) fast formation of stable-in-size particles.

  17. Light-scattering Characteristics of Metal Nanoparticles on a Single Bacterial Cell.

    PubMed

    Kinoshita, Takamasa; Kiso, Keita; LE, Dung Q; Shiigi, Hiroshi; Nagaoka, Tsutomu

    2016-01-01

    Metal nanoparticles express unique light-scattering characteristics based on the localized surface plasmon resonance, which depends on the metal species, particle size, and aggregation state of the nanoparticles. Therefore, we focused on the light-scattering characteristics of metal nanoparticles, such as silver, gold, and copper oxide, adsorbed on a bacterium. Monodisperse silver nanoparticles expressed the strongest scattered light among them, and showed various colors of scattered light. Although a monodisperse gold nanoparticle produced monochromatic light (green color), the color of the scattered light strongly depended on the aggregation state of the nanoparticles on a bacterium. On the other hand, copper oxide nanoparticles expressed monochromatic light (blue color), regardless of their aggregation states on a bacterium. We examined details concerning the light-scattering characteristics of metal nanoparticles, and discussed the possibility of their applications to bacterial cell imaging.

  18. Study of Scattered Light from Known Debris Disks

    NASA Technical Reports Server (NTRS)

    Rodriguez, Joseph E.; Weinberger, Alycia J.; Roberge, Aki

    2011-01-01

    Using the Spitzer Space Telescope, a group of edge on debris disks, surrounding main-sequence shell stars have been discovered in the infrared. These disks are of high interest because they not only have dust, but an observed amount of circumstellar gas. HD158352 was an ideal target to try and image the disk because it was one of the closest stars in this group. Using the Hubble Space Telescope's Space Telescope Imaging Spectrograph (STIS), we attempted to take a direct image of the light scattered from the known disk in a broad optical bandpass. Studying these particular type of disks in high detail will allow us to learn more about gas-dust interactions. In particular, this will allow us to learn how the circumstellar gas evolves during the planet-forming phase. Even though it was predicted that the disk should have a magnitude of 20.5 at 3", no disk was seen in any of the optical images. This suggests that the parameters used to predict the brightness of the disk are not what we first anticipated and adjustments to the model must be performed. We also present the blue visible light spectrum of the scattered light from the debris disk surrounding Beta Pictoris. We are analyzing archival observations taken by Heap, using Hubble Space Telescope's STIS instrument. A long slit with a bar was used to occult Beta Pictoris as well as the PSF star. This was done because it is necessary to subtract a PSF observed the same way at the target to detect the disk. It appears that we have detected light from the disk but the work was in progress at the time of the abstract deadline.

  19. Permanent recording of light helicity on optically inactive metal surfaces.

    PubMed

    Wang, Jincheng; Guo, Chunlei

    2006-12-15

    We report on an unusual permanent recording of light helicity on optically achiral metals. Following a number of circularly polarized (CP) or elliptically polarized (EP) femtosecond laser pulses, well-defined periodic surface structures are found on metal surfaces. These surface structures show different orientation when formed by left CP/EP compared with right CP/EP light. The formation of these structures is attributed to the interference between the incident light and the excited surface plasmons. To our knowledge, this is the only phenomenon that can permanently record light helicity with an optically inactive material.

  20. Total internal reflection and dynamic light scattering microscopy of gels

    NASA Astrophysics Data System (ADS)

    Gregor, Brian F.

    Two different techniques which apply optical microscopy in novel ways to the study of biological systems and materials were built and applied to several samples. The first is a system for adapting the well-known technique of dynamic light scattering (DLS) to an optical microscope. This can detect and scatter light from very small volumes, as compared to standard DLS which studies light scattering from volumes 1000x larger. The small scattering volume also allows for the observation of nonergodic dynamics in appropriate samples. Porcine gastric mucin (PGM) forms a gel at low pH which lines the epithelial cell layer and acts as a protective barrier against the acidic stomach environment. The dynamics and microscopic viscosity of PGM at different pH levels is studied using polystyrene microspheres as tracer particles. The microscopic viscosity and microrheological properties of the commercial basement membrane Matrigel are also studied with this instrument. Matrigel is frequently used to culture cells and its properties remain poorly determined. Well-characterized and purely synthetic Matrigel substitutes will need to have the correct rheological and morphological characteristics. The second instrument designed and built is a microscope which uses an interferometry technique to achieve an improvement in resolution 2.5x better in one dimension than the Abbe diffraction limit. The technique is based upon the interference of the evanescent field generated on the surface of a prism by a laser in a total internal reflection geometry. The enhanced resolution is demonstrated with fluorescent samples. Additionally. Raman imaging microscopy is demonstrated using the evanescent field in resonant and non-resonant samples, although attempts at applying the enhanced resolution technique to the Raman images were ultimately unsuccessful. Applications of this instrument include high resolution imaging of cell membranes and macroscopic structures in gels and proteins. Finally, a third

  1. Probing a Spray Using Frequency-Analyzed Light Scattering

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard; Lee, Michael H.; Rhys, Noah O.

    2008-01-01

    Frequency-analyzed laser-light scattering (FALLS) is a relatively simple technique that can be used to measure principal characteristics of a sheet of sprayed liquid as it breaks up into ligaments and then the ligaments break up into droplets. In particular, through frequency analysis of laser light scattered from a spray, it is possible to determine whether the laser-illuminated portion of the spray is in the intact-sheet region, the ligament region, or the droplet region. By logical extension, it is possible to determine the intact length from the location of the laser beam at the transition between the intact-sheet and ligament regions and to determine a breakup frequency from the results of the frequency analysis. Hence, FALLS could likely be useful both as a means of performing research on sprays in general and as a means of diagnostic sensing in diverse applications in which liquid fuels are sprayed. Sprays are also used for drying and to deposit paints and other coating materials.

  2. Online submicron particle sizing by dynamic light scattering using autodilution

    NASA Technical Reports Server (NTRS)

    Nicoli, David F.; Elings, V. B.

    1989-01-01

    Efficient production of a wide range of commercial products based on submicron colloidal dispersions would benefit from instrumentation for online particle sizing, permitting real time monitoring and control of the particle size distribution. Recent advances in the technology of dynamic light scattering (DLS), especially improvements in algorithms for inversion of the intensity autocorrelation function, have made it ideally suited to the measurement of simple particle size distributions in the difficult submicron region. Crucial to the success of an online DSL based instrument is a simple mechanism for automatically sampling and diluting the starting concentrated sample suspension, yielding a final concentration which is optimal for the light scattering measurement. A proprietary method and apparatus was developed for performing this function, designed to be used with a DLS based particle sizing instrument. A PC/AT computer is used as a smart controller for the valves in the sampler diluter, as well as an input-output communicator, video display and data storage device. Quantitative results are presented for a latex suspension and an oil-in-water emulsion.

  3. Particle sizing by weighted measurements of scattered light

    NASA Technical Reports Server (NTRS)

    Buchele, Donald R.

    1988-01-01

    A description is given of a measurement method, applicable to a poly-dispersion of particles, in which the intensity of scattered light at any angle is weighted by a factor proportional to that angle. Determination is then made of four angles at which the weighted intensity is four fractions of the maximum intensity. These yield four characteristic diameters, i.e., the diameters of the volume/area mean (D sub 32 the Sauter mean) and the volume/diameter mean (D sub 31); the diameters at cumulative volume fractions of 0.5 (D sub v0.5 the volume median) and 0.75 (D sub v0.75). They also yield the volume dispersion of diameters. Mie scattering computations show that an average diameter less than three micrometers cannot be accurately measured. The results are relatively insensitive to extraneous background light and to the nature of the diameter distribution. Also described is an experimental method of verifying the conclusions by using two microscopic slides coated with polystyrene microspheres to simulate the particles and the background.

  4. Scattering of circularly polarized light by a rotating black hole

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.; Shoom, Andrey A.

    2012-07-01

    We study scattering of polarized light by a rotating (Kerr) black hole of mass M and angular momentum J. In order to keep trace of the polarization dependence of photon trajectories one can use the following dimensionless parameter: ɛ=±(ωM)-1, where ω is the photon frequency and the sign + (-) corresponds to the right (left) circular polarization. We assume that |ɛ|≪1 and use the modified geometric optics approximation developed in [Phys. Rev. D 84, 044026 (2011)]; that is, we include the first order in ɛ polarization-dependent terms into the eikonal equation. These corrections modify late-time behavior of photons. We demonstrate that the photon moves along a null curve, which in the limit ɛ=0 becomes a null geodesic. We focus on the scattering problem for polarized light. Namely, we consider the following problems: (i) How does the photon’s bending angle depend on its polarization? (ii) How does the position of the image of a pointlike source depend on its polarization? (iii) How does the arrival time of photons depend on their polarization? We perform the numerical calculations that illustrate these effects for an extremely rotating black hole and discuss their possible applications.

  5. DUST EVOLUTION CAN PRODUCE SCATTERED LIGHT GAPS IN PROTOPLANETARY DISKS

    SciTech Connect

    Birnstiel, Tilman; Andrews, Sean M.; Pinilla, Paola; Kama, Mihkel E-mail: sandrews@cfa.harvard.edu E-mail: mkama@strw.leidenuniv.nl

    2015-11-01

    Recent imaging of protoplanetary disks with high resolution and contrast have revealed a striking variety of substructure. Of particular interest are cases where near-infrared scattered light images show evidence for low-intensity annular “gaps.” The origins of such structures are still uncertain, but the interaction of the gas disk with planets is a common interpretation. We study the impact that the evolution of the solid material can have on the observable properties of disks in a simple scenario without any gravitational or hydrodynamical disturbances to the gas disk structure. Even with a smooth and continuous gas density profile, we find that the scattered light emission produced by small dust grains can exhibit ring-like depressions similar to those presented in recent observations. The physical mechanisms responsible for these features rely on the inefficient fragmentation of dust particles. The occurrence and position of the proposed “gap” features depend most strongly on the dust-to-gas ratio, the fragmentation threshold velocity, the strength of the turbulence, and the age of the disk, and should be generic (at some radius) for typically adopted disk parameters. The same physical processes can affect the thermal emission at optically thin wavelengths (∼1 mm), although the behavior can be more complex; unlike for disk–planet interactions, a “gap” should not be present at these longer wavelengths.

  6. Studies on Light Scattering and Absorption Properties of Ice Clouds for Visible and Infrared Laser Wavelengths.

    DTIC Science & Technology

    1983-08-08

    view on the multiple backscattered return, depolarization and polarization characteristics. Three papers are associated with the study of light ...scattering phase function, degree of linear polarization and depolarization ratio for randomly oriented columns and plates with experi- mental scattering...fundamental contribution to the field of light scattering by nonspherical particles . Using the computational technique developed in this paper, we further

  7. A versatile, low-cost approach to dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Pristinski, Denis; Chastek, Thomas Q.

    2009-04-01

    We describe a method for constructing a fiber-optic-based dynamic light scattering (DLS) instrument from commonly available components, without a need for custom-made parts. Details are provided that allow for academic researchers from diverse backgrounds to build this DLS instrument with minimal effort and at a low cost. This approach, while providing good sensitivity and high accuracy (e.g., measuring the size of latex standards to within 1% relative standard deviation), possesses several advantages not found, in their entirety, in existing DLS instrumentation. It was observed that, even though an arbitrary scattering angle could be selected, aligning this instrument to obtain optimal detection efficiency can be completed in as little as a few minutes. Also, complications associated with light refraction at the sample cell interface are avoided. Small volumes (<10 µL) can be measured, for example, by hanging a solution droplet from the fiber optic probe tips. In addition, use of fiber optic probes allows the beam path length to be as short as 1.6 mm while measuring at 90°, which reduces the likelihood of multiple scattering. With minimal customization, compact submersible probes and a portable battery-operated DLS instrument were made as examples of potential implementation. Finally, this approach is versatile, and can be incorporated into a wide variety of reactors, for in situ characterization, and other instrumentation for hybrid measurements. This type of in situ measurement was conducted after mounting the DLS probes inside a standard three-neck flask. This allowed for direct monitoring of the growth of silica nanoparticles prepared via Stöber synthesis.

  8. Modeling diffuse reflectance measurements of light scattered by layered tissues

    NASA Astrophysics Data System (ADS)

    Rohde, Shelley B.

    In this dissertation, we first present a model for the diffuse reflectance due to a continuous beam incident normally on a half space composed of a uniform scattering and absorbing medium. This model is the result of an asymptotic analysis of the radiative transport equation for strong scattering, weak absorption and a defined beam width. Through comparison with the diffuse reflectance computed using the numerical solution of the radiative transport equation, we show that this diffuse reflectance model gives results that are accurate for small source-detector separation distances. We then present an explicit model for the diffuse reflectance due to a collimated beam of light incident normally on layered tissues. This model is derived using the corrected diffusion approximation applied to a layered medium, and it takes the form of a convolution with an explicit kernel and the incident beam profile. This model corrects the standard diffusion approximation over all source-detector separation distances provided the beam is sufficiently wide compared to the scattering mean-free path. We validate this model through comparison with Monte Carlo simulations. Then we use this model to estimate the optical properties of an epithelial layer from Monte Carlo simulation data. Using measurements at small source-detector separations and this model, we are able to estimate the absorption coefficient, scattering coefficient and anisotropy factor of epithelial tissues efficiently with reasonable accuracy. Finally, we present an extension of the corrected diffusion approximation for an obliquely incident beam. This model is formed through a Fourier Series representation in the azimuthal angle which allows us to exhibit the break in axisymmetry when combined with the previous analysis. We validate this model with Monte Carlo simulations. This model can also be written in the form of a convolution of an explicit kernel with the incident beam profile. Additionally, it can be used to

  9. Particle distribution and dynamics in a complex fluid suspension studied by an image-analysis light-scattering technique

    NASA Astrophysics Data System (ADS)

    Algarni, Saad; Kashuri, H.; Iannacchione, Germano

    2011-03-01

    A relatively unique approach is described to analyze the scattered laser light from a complex fluid suspension for both static and dynamic behavior. Recent development of speckle analysis using CCD recorded direct imaging of the scattered coherent light has opened many new avenues for the application of static and dynamic light scattering experiments. The straightforward nature of this approach is somewhat offset by the constraints of the CCD chip size and placement to probe wide (or narrow) ranges of the wave vector. An alternative, and greatly simplified variation of this technique, is to convert the scattered light into diffuse scattering using a translucent screen placed at a desired location down beam then imaging the resulting pattern on the screen. A thru-beam stop and axis scales can be easily placed on the screen and recorded to improve the image quality and later analysis. One of many possible applications is the study of the particle (7nm diam aerosil SiO2 spheres) distribution and dynamics due to Brownian motion as well as sedimentation in a complex fluid (glycerol).

  10. Characterization of individual ultrasound microbubble dynamics with a light-scattering system

    PubMed Central

    Hsu, Mark J.; Eghtedari, Mohammad; Goodwin, Andrew P.; Hall, David J.; Mattrey, Robert F.; Esener, Sadik C.

    2011-01-01

    Ultrasound microbubbles are contrast agents used for diagnostic ultrasound imaging and as carriers for noninvasive payload delivery. Understanding the acoustic properties of individual microbubble formulations is important for optimizing the ultrasound imaging parameters for improved image contrast and efficient payload delivery. We report here a practical and simple optical tool for direct real-time characterization of ultrasound contrast microbubble dynamics based on light scattering. Fourier transforms of raw linear and nonlinear acoustic oscillations, and microbubble cavitations are directly recorded. Further, the power of this tool is demonstrated by comparing clinically relevant microbubble cycle-to-cycle dynamics and their corresponding Fourier transforms. PMID:21721823

  11. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots

    PubMed Central

    Alonso-González, P.; Albella, P.; Schnell, M.; Chen, J.; Huth, F.; García-Etxarri, A.; Casanova, F.; Golmar, F.; Arzubiaga, L.; Hueso, L.E.; Aizpurua, J.; Hillenbrand, R.

    2012-01-01

    Light scattering at nanoparticles and molecules can be dramatically enhanced in the 'hot spots' of optical antennas, where the incident light is highly concentrated. Although this effect is widely applied in surface-enhanced optical sensing, spectroscopy and microscopy, the underlying electromagnetic mechanism of the signal enhancement is challenging to trace experimentally. Here we study elastically scattered light from an individual object located in the well-defined hot spot of single antennas, as a new approach to resolve the role of the antenna in the scattering process. We provide experimental evidence that the intensity elastically scattered off the object scales with the fourth power of the local field enhancement provided by the antenna, and that the underlying electromagnetic mechanism is identical to the one commonly accepted in surface-enhanced Raman scattering. We also measure the phase shift of the scattered light, which provides a novel and unambiguous fingerprint of surface-enhanced light scattering. PMID:22353715

  12. Inelastic light scattering spectroscopy in Si/SiGe nanostructures: Strain, chemical composition and thermal properties

    NASA Astrophysics Data System (ADS)

    Tsybeskov, L.; Mala, S. A.; Wang, X.; Baribeau, J.-M.; Wu, X.; Lockwood, D. J.

    2016-11-01

    We present a review of recent studies of inelastic light scattering spectroscopy in two types of Si/SiGe nanostructures: planar superlattices and cluster (dot) multilayers including first- and second-order Raman scattering, polarized Raman scattering and low-frequency inelastic light scattering associated with folded acoustic phonons. The results are used in semi-quantitative analysis of chemical composition, strain and thermal conductivity in these technologically important materials for electronic and optoelectronic devices.

  13. Extracting and directing light out of organic light emitting diodes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lemmer, Uli; Egel, Amos; Hecht, Matthias; Preinfalk, Jan B.; Gomard, Guillaume

    2015-10-01

    Light extraction from organic light emitting diodes (OLEDs) is attracting considerable interest as being crucial for enhancing the energy efficiency in lighting applications. Light extraction can be realized by lithographically defined internal diffraction gratings or stochastic scattering centers. The former approach needs in addition an external optical layer for scrambling the angularly dependent emission spectra in order to avoid color shifts [1]. Micro lens arrays cannot only be used for fulfilling this task but they can also be used for enhancing the luminosity into a specific direction. We demonstrate recent advances towards high efficiency OLEDs with high directionality. In addition to the relevant technologies we have also developed a comprehensive simulation software for the quantitative description of the light propagation inside the devices. Here, a particular challenging task is the description of multiple and coherent optical scattering. We have recently developed a software for the exact simulation based on a scattering matrix formalism [2]. [1] T. Bocksrocker, J. B. Preinfalk, J. Asche-Tauscher, A. Pargner, C. Eschenbaum, F. Maier-Flaig and U. Lemmer, White organic light emitting diodes with enhanced internal and external outcoupling for ultra-efficient light extraction and Lambertian emission Opt. Expr. 20, A932 (2012). [2] A. Egel, U. Lemmer, Dipole emission in stratified media with multiple spherical scatterers: Enhanced outcoupling from OLEDs, Journal of Quantitative Spectroscopy and Radiative Transfer 148, 165 (2014).

  14. Phase separation of polymer mixtures induced by light and heat: a comparative study by light scattering

    NASA Astrophysics Data System (ADS)

    Ochi, Yuki; Kawakubo, Rie; Van-Pham, Dan-Thuy; Kitamura, Yuki; Nakanishi, Hideyuki; Norisuye, Tomohisa; Tran-Cong-Miyata, Qui

    2015-12-01

    Phase separation of binary blends composed of a polystyrene derivative (PS) and poly (vinyl methyl ether) (PVME) with a lower critical solution temperature (LCST) was experimentally induced by two different methods: heating and UV light irradiation. Using laser light scattering combined with the temperature jump (T-jump) technique, it was demonstrated that in the case of heating, the mixture undergoes phase separation via the nucleation-and-growth (NG) and the spinodal decomposition (SN) processes under shallow and deep quenches, respectively. Particularly, the crossover from the spinodal decomposition to the nucleation-and-growth process was observed at long time under a deep T-jump by light-scattering experiments. On the other hand, in the photo-crosslink case, the PS/PVME blends undergo a nucleation-and-growth process upon irradiation with weak light intensity, whereas the mixture exhibits the spinodal decomposition under irradiation with strong light intensity. From the analysis of the light-scattering data obtained for the blends under the photo-crosslink, the kinetic data reveal the suppression of morphologies having large characteristic length scales. This feature clearly differs from the phase separation induced by heating where no mode-suppression process was observed. It was also found that distribution of the characteristic length scales (the regularity) of the morphology becomes narrow as the phase separation proceeds for reacting blends, whereas it becomes broader as the phase separation proceeds by heating, revealing the important roles of reaction in the suppression of fluctuations with long wavelengths. These experimental results establish a method to control the length scales and the regularity of the morphology of polymer blends by chemical reaction.

  15. Development of a versatile laser light scattering instrument

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Ansari, Rafat R.

    1990-01-01

    A versatile laser light scattering (LLS) instrument is developed for use in microgravity to measure microscopic particles of 30 A to above 3 microns. Since it is an optical technique, LLS does not affect the sample being studied. A LLS instrument built from modules allows several configurations, each optimized for a particular experiment. The multiangle LLS instrument can be mounted in the rack in the Space Shuttle and on Space Station Freedom. It is possible that a Space Shuttle glove-box and a lap-top computer containing a correlator card can be used to perform a number of experiments and to demonstrate the technology needed for more elaborate investigations. This offers simple means of flying a great number of experiments without the additional requirements of full-scale flight hardware experiments.

  16. Detection of circular polarization in light scattered from photosynthetic microbes

    PubMed Central

    Sparks, William B.; Hough, James; Germer, Thomas A.; Chen, Feng; DasSarma, Shiladitya; DasSarma, Priya; Robb, Frank T.; Manset, Nadine; Kolokolova, Ludmilla; Reid, Neill; Macchetto, F. Duccio; Martin, William

    2009-01-01

    The identification of a universal biosignature that could be sensed remotely is critical to the prospects for success in the search for life elsewhere in the universe. A candidate universal biosignature is homochirality, which is likely to be a generic property of all biochemical life. Because of the optical activity of chiral molecules, it has been hypothesized that this unique characteristic may provide a suitable remote sensing probe using circular polarization spectroscopy. Here, we report the detection of circular polarization in light scattered by photosynthetic microbes. We show that the circular polarization appears to arise from circular dichroism of the strong electronic transitions of photosynthetic absorption bands. We conclude that circular polarization spectroscopy could provide a powerful remote sensing technique for generic life searches. PMID:19416893

  17. Integrated fiber optic probe for dynamic light scattering

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Khan, Romel R.; Suh, Kwang

    1993-01-01

    An integrated fiber optic probe, comprising a monomode optical fiber fusion spliced to a short length of a graded-index multimode fiber, is fabricated for use as a coherent receiver in dynamic light scattering. The multimode fiber is cleaved to provide a gradient-index fiber lens with a focal length of 125 microns and an f-number close to unity. An integrated fiber receiver is used to measure the intensity-intensity autocorrelation data from a 0.05 percent by weight concentration of an aqueous suspension of polystyrene latex spheres. Analysis of 100 independent data sets indicates that the particle size can be recovered with an accuracy of +/- 1 percent.

  18. Physicochemical and Light Scattering Studies on Ribosome Particles

    PubMed Central

    Scafati, Anna Reale; Stornaiuolo, Maria Rosaria; Novaro, Patrizia

    1971-01-01

    The light scattering technique has been used to measure the molecular weight of Escherichia coli ribosomes. The 30S, 50S, and 70S components have been isolated and purified. The refractive index increment dn/dc was found to have the same value, (0.20 ±0.01) cm3/g, for the three species. The molecular weights are (1.0 ±0.1)·106, (1.7 ±0.1)·106, and (2.9 ±0.3)·106 daltons respectively. Some information about the dimensions in solution (radius of gyration) and the interaction constant (second virial coefficient) have been obtained, and their significance is discussed. PMID:4931397

  19. Preliminary Remediation of Scattered Light in NEAR MSI Images

    NASA Astrophysics Data System (ADS)

    Li, Han; Robinson, Mark S.; Murchie, Scott

    2002-01-01

    During a failed Eros orbit insertion maneuver on 20 December 1998, more than 28 kg of hydrazine were expended by attitude control jets on the NEAR Shoemaker spacecraft. Deposition of burn products on the outer optic of the multispectral imager, or MSI, resulted in a wavelength-dependent degradation of the system point-spread function (PSF). The scattered light is progressively worse in the shortest and longest wavelength filters, especially at 450 and 1050 nm. The degraded PSF was characterized using numerous images of Canopus acquired subsequent to the anomaly. There is no evidence for temporal change in the PSF since the burn abort incident. A fast Fourier transform-based image restoration method using the optimal filter recovers most of the spatial resolution of the original images while preserving radiometric accuracy for the 550- to 1000-nm images. This procedure has enabled nearly unimpeded monochrome imaging of asteroid morphology and select 5-color measurements at a scale of ∼5 pixels.

  20. Brillouin light scattering studies of 2D magnonic crystals.

    PubMed

    Tacchi, S; Gubbiotti, G; Madami, M; Carlotti, G

    2017-02-22

    Magnonic crystals, materials with periodic modulation of their magnetic properties, represent the magnetic counterpart of photonic, phononic and plasmonic crystals, and have been largely investigated in recent years because of the possibility of using spin waves as a new means for carrying and processing information over a very large frequency bandwidth. Here, we review recent Brillouin light scattering studies of 2D magnonic crystals consisting of single- and bi-component arrays of interacting magnetic dots or antidot lattices. In particular, we discuss the principal properties of the magnonic band diagram of such systems, with emphasis given to its dependence on both magnetic and the geometrical parameters. Thanks to the possibility of tailoring their band structure by means of several degrees of freedom, planar magnonic crystals offer a good opportunity to design an innovative class of nanoscale microwave devices.

  1. Preface: Electromagnetic and Light Scattering by Nonspherical Particles XIV

    NASA Technical Reports Server (NTRS)

    Dubovik, Oleg; Labonnete, Laurent; Litvinov, Pavel; Parol, Frederic; Mischenko, Michael

    2014-01-01

    The 14th Electromagnetic and Light Scattering Conference (ELS-XIV) was held at the Universit de Lille 1, Villeneuve d'Ascq, France on 17-21 June 2013. The conference was attended by 200 scientists from 26 countries. The scientific program included one plenary lecture, 12 invited reviews, 100 contributed oral talks, and 86 poster presentations. The program, the abstracts, and the slides of the oral presentations are available at the conference web site http:www-loa.univ-lille1.frELS-XIV. To highlight one of the traditional ELS themes, the ELS-XIV featured a special session on Remote sensing of aerosols and clouds using polarimetric observations. This session was sponsored and co-organized by the French space agency CNES and attracted representatives from nearly all research teams word-wide involved in the development and active use of space-borne, in situ, and ground-based polarimetric observations.

  2. Brillouin light scattering studies of 2D magnonic crystals

    NASA Astrophysics Data System (ADS)

    Tacchi, S.; Gubbiotti, G.; Madami, M.; Carlotti, G.

    2017-02-01

    Magnonic crystals, materials with periodic modulation of their magnetic properties, represent the magnetic counterpart of photonic, phononic and plasmonic crystals, and have been largely investigated in recent years because of the possibility of using spin waves as a new means for carrying and processing information over a very large frequency bandwidth. Here, we review recent Brillouin light scattering studies of 2D magnonic crystals consisting of single- and bi-component arrays of interacting magnetic dots or antidot lattices. In particular, we discuss the principal properties of the magnonic band diagram of such systems, with emphasis given to its dependence on both magnetic and the geometrical parameters. Thanks to the possibility of tailoring their band structure by means of several degrees of freedom, planar magnonic crystals offer a good opportunity to design an innovative class of nanoscale microwave devices.

  3. Characterization of magnetic nanoparticle by dynamic light scattering

    PubMed Central

    2013-01-01

    Here we provide a complete review on the use of dynamic light scattering (DLS) to study the size distribution and colloidal stability of magnetic nanoparticles (MNPs). The mathematical analysis involved in obtaining size information from the correlation function and the calculation of Z-average are introduced. Contributions from various variables, such as surface coating, size differences, and concentration of particles, are elaborated within the context of measurement data. Comparison with other sizing techniques, such as transmission electron microscopy and dark-field microscopy, revealed both the advantages and disadvantages of DLS in measuring the size of magnetic nanoparticles. The self-assembly process of MNP with anisotropic structure can also be monitored effectively by DLS. PMID:24011350

  4. Light scattering by lunar-like particle size distributions

    NASA Technical Reports Server (NTRS)

    Goguen, Jay D.

    1991-01-01

    A fundamental input to models of light scattering from planetary regoliths is the mean phase function of the regolith particles. Using the known size distribution for typical lunar soils, the mean phase function and mean linear polarization for a regolith volume element of spherical particles of any composition were calculated from Mie theory. The two contour plots given here summarize the changes in the mean phase function and linear polarization with changes in the real part of the complex index of refraction, n - ik, for k equals 0.01, the visible wavelength 0.55 micrometers, and the particle size distribution of the typical mature lunar soil 72141. A second figure is a similar index-phase surface, except with k equals 0.1. The index-phase surfaces from this survey are a first order description of scattering by lunar-like regoliths of spherical particles of arbitrary composition. They form the basis of functions that span a large range of parameter-space.

  5. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD

    DOE PAGES

    Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; ...

    2015-01-07

    The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.

  6. Detecting skin malignancy using elastic light scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Akman, Ayşe; Çiftçioğlu, M. Akif; Alpsoy, Erkan

    2007-07-01

    We have used elastic light scattering spectroscopy to differentiate between malign and benign skin lesions. The system consists of a UV spectrometer, a single optical fiber probe and a laptop. The single optical fiber probe was used for both delivery and detection of white light to tissue and from the tissue. The single optical fiber probe received singly scattered photons rather than diffused photons in tissue. Therefore, the spectra are correlated with morphological differences of the cells. It has been shown that spectra of malign skin lesions are different than spectra of benign skin lesions. While slopes of the spectra taken on benign lesions or normal skin tissues were positive, slopes of the spectra taken on malign skin lesions tissues were negative. In vivo experiments were conducted on 20 lesions from 18 patients (11 men with mean age of 68 +/- 9 years and 7 women with mean age of 52 +/- 20 years) applied to the Department of Dermatology and Venerology. Before the biopsy, spectra were taken on the lesion and adjacent (approximately 1 cm distant) normal-appearing skin. Spectra of the normal skin were used as a control group. The spectra were correlated to the pathology results with sensitivity and specificity of 82% and 89%, respectively. Due to small diameter of fiber probe and limited number of sampling (15), some positive cases are missed, which is lowered the sensitivity of the system. The results are promising and could suggest that the system may be able to detect malignant skin lesion non-invasively and in real time.

  7. A TECHNIQUE FOR THE STUDY OF SPHERULITE DEFORMATION: LIGHT SCATTERING MOVIES,

    DTIC Science & Technology

    TEST METHODS, POLYMERS), (*POLYMERS, CRYSTAL STRUCTURE), (*CRYSTALS, DEFORMATION), (* MOTION PICTURE CAMERAS, MONITORS), (*LASERS, GAS DISCHARGES), LIGHT, SCATTERING, SPHERES, POLYETHYLENE PLASTICS, RELAXATION TIME

  8. Particle sizing by measurement of forward-scattered light at two angles

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1983-01-01

    Fundamental and practical limitations to particle sizing by measurement of forward scattered light are presented. Methods to minimize the limitations are described. Two types of instruments are compared.

  9. Nanoparticle free polymer blends for light scattering films in liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Mochiduki, Kazuhide; Kubo, Naoya; Yokoyama, Yoshiyuki

    2012-06-01

    This paper reports an approach using nanoparticle free polymer blends for light scattering films in liquid crystal displays. The ability to create the regularly structured circle of approximately 200 nm diameter in the light scattering film by blending two specified polymers with carboxylic acid groups and epoxy groups was demonstrated. The developed light scattering film based on thermosetting system indicated regularly structured nanomorphology, high light scattering rates of more than 3.9% at 300-600 nm of wavelength, and fast thermal cross-linking reaction at 150 °C and 60 s in thermosetting conditions for high productivity.

  10. Modeling stray light from rough surfaces and subsurface scatter

    NASA Astrophysics Data System (ADS)

    Harvey, James E.; Goshy, John J.; Pfisterer, Richard N.

    2014-09-01

    Over the years we have developed an adequate theory and understanding of surface scatter from smooth optical surfaces (Rayleigh-Rice), moderately rough surfaces with paraxial incident and scattered angles (Beckmann- Kirchhoff) and even for moderately rough surfaces with arbitrary incident and scattered angles where a linear systems formulation requiring a two-parameter family of surface transfer functions is required to characterize the surface scatter process (generalized Harvey-Shack). However, there is always some new material or surface manufacturing process that provides non-intuitive scatter behavior. The linear systems formulation of surface scatter is potentially useful even for these situations. In this paper we will present empirical models of several classes of rough surfaces or materials (subsurface scatter) that allow us to accurately model the scattering behavior at any incident angle from limited measured scatter data. In particular, scattered radiance appears to continue being the natural quantity that exhibits simple, elegant behavior only in direction cosine space.

  11. Light transmission channels in random scattering media (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cao, Hui

    2016-03-01

    Recently it has been shown that shaping the wavefront of an incident laser beam can significantly enhance the total transmission of light through strong scattering media [1]. This is done by coupling light to high transmission channels. However, optical absorption would modify such transmission channels. In a disordered system with uniform absorption, the maximal transmission channel changes from diffusive to ballistic-like transport [2]. This ballistic-like transport may enable new modes of imaging in absorbing media. If the absorption is distributed non-uniformly in space, the high transmission channels redirect the energy flows to circumvent the absorbing regions to minimize loss. Thus the attenuation of high transmission channels by inhomogeneous absorption becomes lower than that by homogeneous absorption [3]. Since the maximum transmission channel is the most efficient in bypassing the absorbing region, the ratio of its transmittance to the average transmittance increases with absorption, eventually exceeds the ratio without absorption. The finding that inhomogeneous absorption may have a weaker impact on open channels than homogeneous absorption is promising for practical applications. [1] S. M. Popoff, A. Goetschy, S. F. Liew, A. D. Stone, and H. Cao. Phys. Rev. Lett. 112, 133903 (2014). [2] S. F. Liew, S. M. Popoff, A. P. Mosk, W. L. Vos, and H. Cao. Phys. Rev. B 89, 224202 (2014). [3] S. F. Liew and H. Cao. Opt. Express 23, 11043 (2015).

  12. Light tracking through ice and water—Scattering and absorption in heterogeneous media with PHOTONICS

    NASA Astrophysics Data System (ADS)

    Lundberg, J.; Miočinović, P.; Woschnagg, K.; Burgess, T.; Adams, J.; Hundertmark, S.; Desiati, P.; Niessen, P.

    2007-11-01

    In the field of neutrino astronomy, large volumes of optically transparent matter like glacial ice, lake water, or deep ocean water are used as detector media. Elementary particle interactions are studied using in situ detectors recording time distributions and fluxes of the faint photon fields of Cherenkov radiation generated by ultra-relativistic charged particles, typically muons or electrons. The PHOTONICS software package was developed to determine photon flux and time distributions throughout a volume containing a light source through Monte Carlo simulation. Photons are propagated and time distributions are recorded throughout a cellular grid constituting the simulation volume, and Mie scattering and absorption are realised using wavelength and position dependent parameterisations. The photon tracking results are stored in binary tables for transparent access through ANSI-C and C++ interfaces. For higher-level physics applications, like simulation or reconstruction of particle events, it is then possible to quickly acquire the light yield and time distributions for a pre-specified set of light source and detector properties and geometries without real-time photon propagation. In this paper the PHOTONICS light propagation routines and methodology are presented and applied to the IceCube and ANTARES neutrino telescopes. The way in which inhomogeneities of the Antarctic glacial ice distort the signatures of elementary particle interactions, and how PHOTONICS can be used to account for these effects, is described.

  13. Research on the illumination model based on light scattering properties of steel surface

    NASA Astrophysics Data System (ADS)

    Liu, Yuanjiong; Kong, Jianyi; Xu, Pan; Liu, Cancan; Zheng, Guo

    2015-12-01

    Experimental scheme was designed based on the steel production process, surface optical characteristics and BRDF (Bidirectional Reflectance Distribution Function) illumination model theory. The relationship between the light incidence angle, surface roughness and laws of light scattering under a particular light-source conditions were found through a series of light scattering characteristics experiments for different steel plate surface. The results showed that there was an apparent specular reflection peak on steel surface. surface light scattering was influenced greatly by light incidence angle and surface roughness, and it showed the law of exponential distribution functions. Thus the improved semi-empirical light scattering mathematical model which based on roughness factor and surface Gaussian distribution of micro-plane components has been formed through non-linear model fitting and optimization. The surface illumination model has been proposed to accurately describe the light intensity distribution of steel plate surface and provide a theoretical method for the design of optimal imaging system.

  14. Frequency-modulated light scattering interferometry used for assessment of optical properties in turbid media

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2013-02-01

    Frequency-modulated light scattering interferometry, which employs a frequency-modulated coherent light source and examines the intensity fluctuation of the resulting scattered light using a heterodyne detection scheme, was utilized to evaluate the optical properties of liquid phantoms made of Intralipid® and Indian ink. Based on the diffusion theory, nonlinear fits to the power spectrum of the heterodyne-detected light intensity are performed and discussed in detail, and the optical properties of liquid phantoms are consequently retrieved.

  15. Influence of forward and multiple light scatter on the measurement of beam attenuation in highly scattering marine environments.

    PubMed

    Piskozub, Jacek; Stramski, Dariusz; Terrill, Eric; Melville, W Kendall

    2004-08-20

    Using three-dimensional Monte Carlo radiative transfer simulations, we examine the effect of beam transmissometer geometry on the relative error in the measurement of the beam-attenuation coefficient in an aquatic environment characterized by intense light scattering, especially within submerged bubble clouds entrained by surface-wave breaking. We discuss the forward-scattering error associated with the detection of photons scattered at small angles (< 1 degrees) and the multiple-scattering error associated with the detection of photons scattered more than once along the path length of the instrument. Several scattering phase functions describing bubble clouds at different bubble void fractions in the water are considered. Owing to forward-scattering error, a beam-attenuation meter (beam transmissometer) with a half-angle of receiver acceptance of 1.0 degrees and a path length of 0.1 m can underestimate the true beam attenuation within the bubble cloud by more than 50%. For bubble clouds with a beam attenuation of as much as 100 m(-1), the multiple-scattering error is no more than a few percent. These results are compared with simulations for some example phase functions that are representative of other scattering regimes found in natural waters. The forward-scattering error for the Petzold phase function of turbid waters is 16% for a typical instrument geometry, whereas for the Henyey-Greenstein phase function with the asymmetry parameter of 0.7 and 0.9 the error range is 8-28%.

  16. Scattering of guided light by a single hole in a dielectric slab.

    PubMed

    Mariani, F; van Exter, M P

    2015-06-29

    We study the scattering of waveguided light by a single hole in a dielectric slab with FDTD simulations and investigate two scattering processes: two dimensional (2D) scattering into slab modes and three-dimensional (3D) scattering into the surroundings. We find that 2D scattering typically dominates over the 3D losses. We find important quantitative differences between the single hole scattering and the case of scattering from an infinite Mie cylinder. Additionally, we find that a hole cannot be simply modelled as a dipolar object even in the limit of small scatterers (Rayleigh approximation). This is visible from the angular dependence of the 2D scattered intensity. We discuss the relevance of our findings in the modeling of two dimensional random scattering media.

  17. Sideways scattering in double resonant plasmonic nanostructures for light harvesting applications.

    PubMed

    Achermann, Marc

    2016-12-26

    Numerical simulations of light scattering by elongated metal nanoparticles in an asymmetric arrangement show resonant scattering in two near-infrared wavelength ranges associated with different surface plasmon modes. The main scattering directions of the two plasmon modes are in opposite diagonal directions and almost perpendicular to each other. At wavelengths in-between the two plasmon resonances our simulations showed for the first time strong scattering at approximately ± 90°, which is parallel to the incident electric field direction. Since enhanced sideways scattering exists over a significant wavelength range, the proposed nanoparticle assemblies could be beneficial for light harvesting applications such as solar windows.

  18. Probing multi-scale self-similarity of tissue structures using light scattering spectroscopy: prospects in pre-cancer detection

    NASA Astrophysics Data System (ADS)

    Chatterjee, Subhasri; Das, Nandan K.; Kumar, Satish; Mohapatra, Sonali; Pradhan, Asima; Panigrahi, Prasanta K.; Ghosh, Nirmalya

    2013-02-01

    Multi-resolution analysis on the spatial refractive index inhomogeneities in the connective tissue regions of human cervix reveals clear signature of multifractality. We have thus developed an inverse analysis strategy for extraction and quantification of the multifractality of spatial refractive index fluctuations from the recorded light scattering signal. The method is based on Fourier domain pre-processing of light scattering data using Born approximation, and its subsequent analysis through Multifractal Detrended Fluctuation Analysis model. The method has been validated on several mono- and multi-fractal scattering objects whose self-similar properties are user controlled and known a-priori. Following successful validation, this approach has initially been explored for differentiating between different grades of precancerous human cervical tissues.

  19. Doppler effect's contribution to ultrasonic modulation of multiply scattered coherent light: Monte Carlo modeling.

    PubMed

    Elazar, Jovan M; Steshenko, Oleg

    2008-01-15

    Modulation of light by ultrasound in turbid media is investigated by modified public domain software based on the Monte Carlo algorithm. Apart from the recognized modulation mechanisms, originating in scatterers' displacements and refractive index modulation, an additional mechanism, evolving from Doppler shift during photon scattering, is considered. Comparison of the relative contributions from all three mechanisms to light modulation by ultrasound is performed for different medium scattering properties and ultrasound frequencies. Refractive index modulation remains the strongest mechanism for light modulation by ultrasound, but for high ultrasound frequencies and for large scattering coefficients the Doppler effect can become dominant.

  20. Small-angle light scattering from polymer-dispersed liquid-crystal films

    SciTech Connect

    Loiko, V. A. Maschke, U.; Zyryanov, V. Ya.; Konkolovich, A. V.; Misckevich, A. A.

    2008-10-15

    A method is developed for modeling and computing the angular distribution of light scattered forward from a single-layer polymer-dispersed liquid-crystal (PDLC) film. The method is based on effective-medium approximation, anomalous diffraction approximation, and far-field single-scattering approximation. The angular distribution of forward-scattered light is analyzed for PDLC films with droplet size larger than the optical wavelength. The method can be used to study field-and temperature-induced phase transitions in LC droplets with cylindrical symmetry by measuring polarized scattered light intensity.

  1. Stimulated concentration (diffusion) light scattering on nanoparticles in a liquid suspension

    NASA Astrophysics Data System (ADS)

    Burkhanov, I. S.; Krivokhizha, S. V.; Chaikov, L. L.

    2016-06-01

    A nonlinear growth of the light scattering intensity has been observed and the frequency shift of the spectral line of scattered light has been measured in light backscattered in suspensions of diamond and latex nanoparticles in water. The shift corresponds to the HWHM of the line of spontaneous scattering on particles. We may conclude that there exists stimulated concentration (diffusion) light scattering on variations of the particle concentration, which is also called the stimulated Mie scattering. In a fibre probe scheme, the growth of the shift of the scattered spectral line is observed with an increase in the exciting beam power. The variation of the frequency shift with an increase in the exciting power is explained by convection in liquid.

  2. Characterization of Mixed Polypeptide Colloidal Particles by Light Scattering

    NASA Astrophysics Data System (ADS)

    Shuman, Hannah E.; Gaeckle, Grace K.; Gavin, John; Holland, Nolan B.; Streletzky, Kiril A.

    2014-03-01

    Temperature-dependent polymer surfactants have been developed by connecting three elastin-like polypeptide (ELP) chains to a charged protein domain (foldon), forming a three-armed star polymer. At low temperatures the polymer is soluble, while at higher temperatures it forms micelles. The behavior of mixtures of the three-armed star ELP (E20-Foldon) and H40-Linear ELP chains was analyzed under different salt and protein concentrations and various foldon to linear ELP ratio using Depolarized Dynamic Light Scattering. It was expected that under certain conditions the pure E20-Foldon would form spherical micelles, which upon adding the linear ELP would change in size and possibly shape. The pure E20-Foldon indeed formed largely spherical micelles with Rh of 10-20nm in solutions with 15-100mM salt and protein concentration between 10 μM and 100 μM. For the mixtures of 50 μM E20-Foldon and varying concentrations of H40-Linear in 25mM of salt, it was discovered that low and high H40-Linear concentration (4 μM and 50 μM) had only one transition. For the mixtures with of 10 and 25 μM of H40-Linear the two distinct transition temperatures were observed by spectrophotometry. The first transition corresponded to significantly elongated diffusive particles of apparent Rh of 30-50nm, while the second transition corresponded to slightly anisotropic diffusive particles with apparent Rh of about 20nm. At all H40-Linear concentrations studied, diffusive particles were seen above the second transition. Their radius and ability to depolarize light increased with the increase of H40-Linear concentration.

  3. Linear correlation between bacterial overexpression of recombinant peptides and cell light scatter.

    PubMed Central

    Lavergne-Mazeau, F; Maftah, A; Cenatiempo, Y; Julien, R

    1996-01-01

    Fusion of multiple copies of a test peptide leads to insoluble inclusion bodies. Their presence within bacteria increases either forward-angle light scattering or, to a lesser extent, right-angle light scattering. A linear correlation has been established between cell forward-angle scattering and the level of overexpression of atrial natriuretic peptide. The correlation is valid only for unlysed cells and is protein product specific. PMID:8702299

  4. Lidar receiver spatial filters for recording multiple scattering

    NASA Astrophysics Data System (ADS)

    Abramochkin, Alexander I.; Abramochkin, Serge A.; Tikhomirov, Alexander A.

    1999-11-01

    For lidar receivers, spatial filtration problems with separate recording of the multiply backscattered flux incident at different angles relative to the optical axis of the receiving lens are considered. Beam separation is performed with spatial filters selecting image fragments within the lidar receiver field of view, which greatly exceeds the transmitted beam divergence. Various instrumental realizations of spatial filter-separators are examined, such as multielement photodetectors with concentric rings, multifiber and refractive separators, and changeable diaphragms. Possibilities and peculiarities of simultaneous and sequential recording of image fragments are considered.

  5. Dynamic light scattering of xanthan gum biopolymer in colloidal dispersion.

    PubMed

    Rahdar, Abbas; Almasi-Kashi, Mohammad

    2016-09-01

    The dynamical properties of nanogels of xanthan gum (XG) with hydrodynamic radius controlled in a size range from 5 nm to 35 nm, were studied at the different XG concentrations in water/sodium bis-2-ethylhexyl-sulfosuccinate (AOT)/decane reverse micelles (RMs) vs. mass fraction of nano-droplet (MFD) at W = 40, using dynamic light scattering (DLS). The diffusion study of nanometer-sized droplets by DLS technique indicated that enhancing concentration of the XG polysaccharide resulted in exchanging the attractive interaction between nano-gels to repulsive interaction, as the mass fraction of nano-droplets increased. The reorientation time (τr ) of water nanodroplets decreased with MFD for water-in-oil AOT micro-emulsion comprising high concentration (0.0000625) of XG. On the other hand, decreasing concentration of biopolymer led to increasing the rotational correlation time of water nanodroplets with MFD. In conclusion, a single relaxation curve was observed for AOT inverse microemulsions containing different XG concentrations. Furthermore, the interaction between nanogels was changed from attractive to repulsive versus concentration of XG in the AOT RMs.

  6. Physiological and pathological clinical conditions and light scattering in brain

    NASA Astrophysics Data System (ADS)

    Kurata, Tsuyoshi; Iwata, Sachiko; Tsuda, Kennosuke; Kinoshita, Masahiro; Saikusa, Mamoru; Hara, Naoko; Oda, Motoki; Ohmae, Etsuko; Araki, Yuko; Sugioka, Takashi; Takashima, Sachio; Iwata, Osuke

    2016-08-01

    MRI of preterm infants at term commonly reveals subtle brain lesions such as diffuse white matter injury, which are linked with later cognitive impairments. The timing and mechanism of such injury remains unclear. The reduced scattering coefficient of near-infrared light (μs’) has been shown to correlate linearly with gestational age in neonates. To identify clinical variables associated with brain μs’, 60 preterm and full-term infants were studied within 7 days of birth. Dependence of μs’ obtained from the frontal head on clinical variables was assessed. In the univariate analysis, smaller μs’ was associated with antenatal glucocorticoid, emergency Caesarean section, requirement for mechanical ventilation, smaller gestational age, smaller body sizes, low 1- and 5-minute Apgar scores, higher cord blood pH and PO2, and higher blood HCO3‑ at the time of study. Multivariate analysis revealed that smaller gestational age, requirement for mechanical ventilation, and higher HCO3‑ at the time of study were correlated with smaller μs’. Brain μs’ depended on variables associated with physiological maturation and pathological conditions of the brain. Further longitudinal studies may help identify pathological events and clinical conditions responsible for subtle brain injury and subsequent cognitive impairments following preterm birth.

  7. An ultra-efficient energy transfer beyond plasmonic light scattering

    SciTech Connect

    Fu, Sze-Ming; Zhong, Yan-Kai; Lin, Albert

    2014-11-14

    The energy transfer between nano-particles is of great importance for, solar cells, light-emitting diodes, nano-particle waveguides, and other photonic devices. This study shows through novel design and algorithm optimization, the energy transfer efficiency between plasmonic and dielectric nano-particles can be greatly improved. Using versatile designs including core-shell wrapping, supercells and dielectric mediated plasmonic scattering, 0.05 dB/μm attenuation can be achieved, which is 20-fold reduction over the baseline plasmonic nano-particle chain, and 8-fold reduction over the baseline dielectric nano-particle chain. In addition, it is also found that the dielectric nano-particle chains can actually be more efficient than the plasmonic ones, at their respective optimized geometry. The underlying physics is that although plasmonic nano-particles provide stronger coupling and field emission, the effect of plasmonic absorption loss is actually more dominant resulting in high attenuation. Finally, the group velocity for all design schemes proposed in this work is shown to be maintained above 0.4c, and it is found that the geometry optimization for transmission also boosts the group velocity.

  8. Study of Brij Micelles Using Dynamic Light Scattering Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Karen; Lekan, Mike; Streletzky, Kiril

    2007-10-01

    We studied properties of Brij-35 surfactant micelles using Dynamic Light Scattering (DLS) and Optical Probe Diffusion method. Aqueous solutions of Brij-35 with concentrations ranging from 2 to 100g/L were prepared, both with and without polystyrene latex probes of diameters 24, 50, 282, and 792nm. Solutions were studied at four temperatures of 10, 25, 40, and 70^oC with DLS to obtain micelle and probe diffusion coefficients (Dm, Dp). Using both diffusion coefficients we deduced micelle radius (am), micelle water content (δ), and number of surfactant molecules per micelle (N) using two different models. First, we used the hard sphere model of micelle/probe interaction to analyze the data by two methods. In this model, am is obtained from Stokes-Einstein equation using the intercept of Dm(c). The first method of the model uses the slope of Dm(c) and the size of probes to determine N and δ. The second method of the model uses the linear least-squares fit of Dp(c) for different probe sizes to determine N and δ. Both methods reveal that with solution temperature increase, am increases by 10%, N increases and δ decreases by a factor of 2. Two hard sphere methods yield somewhat different trends, but overall agree with published data on Brij micelles. The second model treats micelles as core-shell particles and uses Dm(c) to determine not only am, δ, and N, but also micelle corona radius ac.

  9. Speckle size of light scattered from 3D rough objects.

    PubMed

    Zhang, Geng; Wu, Zhensen; Li, Yanhui

    2012-02-13

    From scalar Helmholtz integral relation and by coordinate system transformation, this paper begins with a derivation of the far-zone speckle field in the observation plane perpendicular to the scattering direction from an arbitrarily shaped conducting rough object illuminated by a plane wave illumination, followed by the spatial correlation function of the speckle intensity to obtain the speckle size from the objects. Especially, the specific expressions for the speckle sizes of light backscattered from spheres, cylinders and cones are obtained in detail showing that the speckle size along one direction in the observation plane is proportional to the incident wavelength and the distance between the object and the observation plane, and is inverse proportional to the maximal illuminated dimension of the object parallel to the direction. In addition, the shapes of the speckle of the rough objects with different shapes are different. The investigation on the speckle size in this paper will be useful for the statistical properties of speckle from complicated rough objects and the speckle imaging to target detection and identification.

  10. RBC Aggregation Effect on Light Scattering from Blood.

    NASA Astrophysics Data System (ADS)

    Shvartsman, L. D.; Fine, Ilya

    2000-03-01

    We consider a number of diffusive and transport models of light transmission through whole blood. Single erythrocytes and their aggregates are considered to be the main centers of scattering in the red - near infrared spectral region. The shape and the size of aggregates change in time due to blood flow changes. Two important particular cases of time dependencies of blood flow have been considered, i.e.: the pulsatile dependence simulating the regular heartbeats and the sudden stop corresponding to the vessel occlusion. Various assumptions on aggregate geometry have been made and the results have been compared with the results of in vivo and in vitro optical transmission measurements. Time evolution of the optical transmission after vessel occlusion looks differently for various wavelengths. Based on the comparison of predicted and observed time dependencies of optical transmission, the optimal model of RBC aggregates geometry has been chosen. The resulting dependencies may serve as a basis for both a new explanation of the nature of pulsatile signal in pulse oximetry, and a physical basis for a number of novel non-invasive optical measurements of blood parameters.

  11. Fringe visibility of multimode laser light scattered through turbid water.

    PubMed

    Swanson, N L; Pham, C N; VanWinkle, D H

    1997-12-20

    Several years ago Swanson [Proc. SPIE 1750, 397 (1992)] performed a simple Michelson interferometric determination of the coherence length of a multimode argon-ion laser after the light passed through a tank of water. As colloidal particles were added to the water the observed coherence length (as measured by twice the distance the mirror moved for fringes to disappear) decreased. Subsequently, a series of careful experiments were performed with a single-mode laser to more accurately measure this change. In these experiments it was found that the 1.5-MHz width of the 514.5-nm line of a single-mode argon-ion laser broadened by as much as 1.3 +/- 0.2 MHz when small colloidal particles were added. At first glance such a broadening should not have resulted in any discernible change in the original Michelson experiment because the gain curve for the multimode laser is of the order of a few gigahertz. The zeros in the fringe visibility function depend on the spectral characteristics of the modes. Upon scattering, the spectral characteristics of the individual laser modes change from Voigt functions, containing both Lorentzian and Gaussian components, to primarily Gaussian. It is this change in the statistical properties of the modes, not the broadening, that accounts for the change in the fringe visibility for a multimode source.

  12. Maximum likelihood techniques applied to quasi-elastic light scattering

    NASA Technical Reports Server (NTRS)

    Edwards, Robert V.

    1992-01-01

    There is a necessity of having an automatic procedure for reliable estimation of the quality of the measurement of particle size from QELS (Quasi-Elastic Light Scattering). Getting the measurement itself, before any error estimates can be made, is a problem because it is obtained by a very indirect measurement of a signal derived from the motion of particles in the system and requires the solution of an inverse problem. The eigenvalue structure of the transform that generates the signal is such that an arbitrarily small amount of noise can obliterate parts of any practical inversion spectrum. This project uses the Maximum Likelihood Estimation (MLE) as a framework to generate a theory and a functioning set of software to oversee the measurement process and extract the particle size information, while at the same time providing error estimates for those measurements. The theory involved verifying a correct form of the covariance matrix for the noise on the measurement and then estimating particle size parameters using a modified histogram approach.

  13. Characterization of Platelet Concentrates Using Dynamic Light Scattering

    PubMed Central

    Labrie, Audrey; Marshall, Andrea; Bedi, Harjot; Maurer-Spurej, Elisabeth

    2013-01-01

    Summary Background Each year, millions of platelet transfusions save the lives of cancer patients and patients with bleeding complications. However, between 10 and 30% of all platelet transfusions are clinically ineffective as measured by corrected count increments, but no test is currently used to identify and avoid these transfusions. ThromboLUX® is the first platelet test intended to routinely characterize platelet concentrates prior to transfusion. Methods ThromboLUX is a non-invasive, optical test utilizing dynamic light scattering to characterize a platelet sample by the relative quantity of platelets, microparticles, and other particles present in the sample. ThromboLUX also determines the response of platelets to temperature changes. From this information the ThromboLUX score is calculated. Increasing scores indicate increasing numbers of discoid platelets and fewer microparticles. ThromboLUX uses calibrated polystyrene beads as a quality control standard, and accurately measures the size of the beads at multiple temperatures. Results Results from apheresis concentrates showed that ThromboLUX can determine the microparticle content in unmodified samples of platelet concentrates which correlates well with the enumeration by flow cytometry. ThromboLUX detection of microparticles and microaggregates was confirmed by microscopy. Conclusion ThromboLUX provides a comprehensive and novel analysis of platelet samples and has potential as a noninvasive routine test to characterize platelet products to identify and prevent ineffective transfusions. PMID:23652319

  14. Quasi-ballistic light scattering - analytical models versus Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Turcu, Ioan; Kirillin, Mikhail

    2009-08-01

    Approximate analytical solutions for the light scattering in a plan parallel geometry, where each scattering behaves according to a Henyey-Greenstein (HG) phase function, are presented and compared with Monte Carlo simulations. Analyzing each nth order scattered flux, the obtained angular spreading is very well described also by a HG phase function. However, the total scattered flux deviates from the HG type dependence revealing the limits of the approximations.

  15. Measuring temperature in the lens during experimental heat load indirectly as light scattering increase rate

    NASA Astrophysics Data System (ADS)

    Yu, Zhaohua; Talebizadeh, Nooshin; Kronschläger, Martin; Söderberg, Per

    2017-01-01

    The current study aims to experimentally estimate the temperature in the lens due to heat load indirectly from the measurement of increases in the rate of temperature-induced light scattering. The lens was extracted from Sprague-Dawley rats and put into a temperature-controlled cuvette filled with a balanced salt solution. Altogether, 80 lenses were equally divided into four temperature groups. Each lens was exposed for 5 min to temperature depending on the group to which it belonged while the intensity of forward light scattering was recorded. The inclination coefficients of light scattering increase at the temperature of 37°C, 40°C, 43°C, and 46°C were estimated as a CI(0.95), 3.1±0.8, 4.4±0.8, 5.5±0.9, and 7.0±0.8×10-4 tEDC/s, respectively. The Arrhenius equation implies that the natural logarithm of the inclination coefficient is linearly dependent on the inverse of the temperature. The proportionality constant and the intercept were 9.6±2.4×10 K and 22.8±7.7, respectively. The activation energy was 8.0±2.0×101 kJ·mol-1. The current experiment implies that if averaging 20 measurements of inclination coefficients in a new experiment at constant heat load, the confidence limits for predicted temperature correspond to ± 1.9°C. With the proportionality constant and the intercept estimated in the current experiment, the in vivo temperature in the lens can be determined retrospectively with sufficient resolution.

  16. High-definition imaging system based on spatial light modulators with light-scattering mode.

    PubMed

    Kikuchi, Hiroshi; Fujii, Takanori; Kawakita, Masahiro; Hirano, Yoshiyuki; Fujikake, Hideo; Sato, Fumio; Takizawa, Kuniharu

    2004-01-01

    We have developed a prototype high-definition imaging system using polymer-dispersed liquid-crystal (PDLC) light valves, which can modulate unpolarized light with high spatial resolution and exhibit a high optical efficiency, based on the light-scattering effect. We fabricated high-definition light valves with a fine polymer-matrix structure in a PDLC film by controlling the curing conditions used during the photopolymerization-induced phase separation and formation process. This device has excellent characteristics, such as a high resolution, with 50 lp/mm for a limiting resolution and greater than 20 lp/mm at the 50% modulation transfer function point, and a reflectivity of greater than 60%. An optically addressable full-color projection display was designed, consisting of three PDLC light valves, a schlieren optical system based on shift-decentralization optics with a xenon lamp illumination and input-image sources with 1.5 million pixels, including electrical image compensation of the gamma characteristics. We succeeded in displaying pictures on a 110-inch screen with a resolution of 810 TV lines and a luminous flux of 1900-2100 American National Standards Institute lumens.

  17. Modulation of Light-Enhancement to Symbiotic Algae by Light-Scattering in Corals and Evolutionary Trends in Bleaching

    PubMed Central

    Marcelino, Luisa A.; Westneat, Mark W.; Stoyneva, Valentina; Henss, Jillian; Rogers, Jeremy D.; Radosevich, Andrew; Turzhitsky, Vladimir; Siple, Margaret; Fang, Andrew; Swain, Timothy D.; Fung, Jennifer; Backman, Vadim

    2013-01-01

    Calcium carbonate skeletons of scleractinian corals amplify light availability to their algal symbionts by diffuse scattering, optimizing photosynthetic energy acquisition. However, the mechanism of scattering and its role in coral evolution and dissolution of algal symbioses during “bleaching” events are largely unknown. Here we show that differences in skeletal fractal architecture at nano/micro-lengthscales within 96 coral taxa result in an 8-fold variation in light-scattering and considerably alter the algal light environment. We identified a continuum of properties that fall between two extremes: (1) corals with low skeletal fractality that are efficient at transporting and redistributing light throughout the colony with low scatter but are at higher risk of bleaching and (2) corals with high skeletal fractality that are inefficient at transporting and redistributing light with high scatter and are at lower risk of bleaching. While levels of excess light derived from the coral skeleton is similar in both groups, the low-scatter corals have a higher rate of light-amplification increase when symbiont concentration is reduced during bleaching, thus creating a positive feedback-loop between symbiont concentration and light-amplification that exposes the remaining symbionts to increasingly higher light intensities. By placing our findings in an evolutionary framework, in conjunction with a novel empirical index of coral bleaching susceptibility, we find significant correlations between bleaching susceptibility and light-scattering despite rich homoplasy in both characters; suggesting that the cost of enhancing light-amplification to the algae is revealed in decreased resilience of the partnership to stress. PMID:23630594

  18. Modulation of light-enhancement to symbiotic algae by light-scattering in corals and evolutionary trends in bleaching.

    PubMed

    Marcelino, Luisa A; Westneat, Mark W; Stoyneva, Valentina; Henss, Jillian; Rogers, Jeremy D; Radosevich, Andrew; Turzhitsky, Vladimir; Siple, Margaret; Fang, Andrew; Swain, Timothy D; Fung, Jennifer; Backman, Vadim

    2013-01-01

    Calcium carbonate skeletons of scleractinian corals amplify light availability to their algal symbionts by diffuse scattering, optimizing photosynthetic energy acquisition. However, the mechanism of scattering and its role in coral evolution and dissolution of algal symbioses during "bleaching" events are largely unknown. Here we show that differences in skeletal fractal architecture at nano/micro-lengthscales within 96 coral taxa result in an 8-fold variation in light-scattering and considerably alter the algal light environment. We identified a continuum of properties that fall between two extremes: (1) corals with low skeletal fractality that are efficient at transporting and redistributing light throughout the colony with low scatter but are at higher risk of bleaching and (2) corals with high skeletal fractality that are inefficient at transporting and redistributing light with high scatter and are at lower risk of bleaching. While levels of excess light derived from the coral skeleton is similar in both groups, the low-scatter corals have a higher rate of light-amplification increase when symbiont concentration is reduced during bleaching, thus creating a positive feedback-loop between symbiont concentration and light-amplification that exposes the remaining symbionts to increasingly higher light intensities. By placing our findings in an evolutionary framework, in conjunction with a novel empirical index of coral bleaching susceptibility, we find significant correlations between bleaching susceptibility and light-scattering despite rich homoplasy in both characters; suggesting that the cost of enhancing light-amplification to the algae is revealed in decreased resilience of the partnership to stress.

  19. LIGHT BEAMS: Peculiarities of propagation of quasi-diffraction-free light beams in strongly scattering absorbing media

    NASA Astrophysics Data System (ADS)

    Katsev, I. L.; Prikhach, A. S.; Kazak, N. S.; Kroening, M.

    2006-04-01

    Based on the relation between the theory of light field coherence and theory of radiation transfer in scattering media, a method is proposed for calculating the illumination distribution produced by coherent quasi-diffraction-free beams at different penetration depths of radiation into scattering media such as biological tissues. The method uses the optical transfer function or the point spread function (PSF) of the medium. A simple and convenient analytic PSF model is described. Examples of the illumination distribution produced by a Bessel light beam in a medium with optical parameters typical of real biological tissues are presented. It is shown that the half-width of the axial maximum of a Bessel light beam scattered due to scattering almost does not increase up to optical depths where the contribution of multiple scattering is already considerable.

  20. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Glena, Richard E.; Featherstone, John D. B.; Seka, Wolf

    1995-03-01

    The light-scattering properties of dental enamel and dentin were measured at 543, 632, and 1053 nm. Angularly resolved scattering distributions for these materials were measured from 0 deg to 180 deg using a rotating goniometer. Surface scattering was minimized by immersing the samples in an index-matching bath. The scattering and absorption coefficients and the scattering phase function were deduced by comparing the measured scattering data with angularly resolved Monte Carlo light-scattering simulations. Enamel and dentin were best represented by a linear combination of a highly forward-peaked Henyey-Greenstein (HG) phase function and an isotropic phase function. Enamel weakly scatters light between 543 nm and 1.06 mu m, with the scattering coefficient ( mu s) ranging from mu s = 15 to 105 cm-1. The phase function is a combination of a HG function with g = 0.96 and a 30-60% isotropic phase function. For enamel, absorption is negligible. Dentin scatters strongly in the visible and near IR ( mu s approximately equals 260 cm-1) and absorbs weakly ( mu a approximately equals 4 cm-1). The scattering phase function for dentin is described by a HG function with g = 0.93 and a very weak isotropic scattering component ( approximately 2%).

  1. Light scattering and cell volumes in osmotically stressed and frozen-thawed cells.

    PubMed

    McGann, L E; Walterson, M L; Hogg, L M

    1988-01-01

    Recent reports, indicating that under some conditions the intensity of light scattering from cells is a nonlinear function of cell volume, have led to the widespread generalization that intensity of low-angle light scattering indicates cell size. This study was performed to measure the relationships between light scattering and cell volumes in an-isotonic solutions and after a freeze-thaw stress. Cell volumes in isolated human lymphocytes, human granulocytes, and hamster fibroblasts were deliberately altered by exposure to anisotonic solutions. Boyle-vant Hoff plots of cell volume as a function of inverse osmotic pressure showed that the cells behaved as osmometers. Similar plots of right-angle and low-angle light scattering showed that the intensity of light scattering varied inversely with cell volume. In other experiments where cells were frozen without cryoprotectant at various sub zero temperatures to -25 degrees C and then thawed rapidly, cell viability decreased progressively with decreasing temperature, as did the intensity of both low-angle and right-angle light scattering, although cell volumes remained relatively constant. The intensity of both low- and high-angle light scattering varied inversely with cell volumes in hypertonic and hypotonic solutions, but cell damage induced by freezing and thawing resulted in significant reductions in the intensity of low-angle light scattering with little change in cell volume. These observations show that light scattering and cell volumes can vary independently, and they underline the need for a better understanding of the phenomenon of light scattering from living cells.

  2. Analysis of light propagation in highly scattering media by path-length-assigned Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Ishii, Katsuhiro; Nishidate, Izumi; Iwai, Toshiaki

    2014-05-01

    Numerical analysis of optical propagation in highly scattering media is investigated when light is normally incident to the surface and re-emerges backward from the same point. This situation corresponds to practical light scattering setups, such as in optical coherence tomography. The simulation uses the path-length-assigned Monte Carlo method based on an ellipsoidal algorithm. The spatial distribution of the scattered light is determined and the dependence of its width and penetration depth on the path-length is found. The backscattered light is classified into three types, in which ballistic, snake, and diffuse photons are dominant.

  3. Light-scattering polarization measurements as a new parameter in flow cytometry

    SciTech Connect

    de Grooth, B.G.; Terstappen, L.W.; Puppels, G.J.; Greve, J.

    1987-11-01

    Polarization measurement of orthogonal light scattering is introduced as a new optical parameter in flow cytometry. In the experimental setup, the electrical field of the incident laser beam is polarized in the direction of the sample flow. The intensity of the orthogonal light scattering polarized along the direction of the incoming laser beam is called depolarized orthogonal light scattering. Theoretical analysis shows that for small values of the detection aperture, the measured depolarization is caused by anisotropic cell structures and multiple scattering processes inside the cell. Measurements of the orthogonal depolarized light scattering in combination with the normal orthogonal light scattering of human leucocytes revealed two populations of granulocytes. By means of cell sorting it was shown that the granulocytes with a relatively high depolarization are eosinophilic granulocytes. Similar experiments with human lymphocytes revealed a minor subpopulation of yet-unidentified lymphocytes with a relative large orthogonal light-scattering depolarization. The results were obtained with an argon ion laser tuned at different wavelengths as well as with a 630-nm helium neon laser. These results show that measurement of depolarized orthogonal light scattering is a useful new parameter for flow-cytometric cell differentiation.

  4. Light scattering from human corneal grafts: Bulk and surface contribution

    NASA Astrophysics Data System (ADS)

    Latour, Gaël; Georges, Gaëlle; Lamoine, Laure Siozade; Deumié, Carole; Conrath, John; Hoffart, Louis

    2010-09-01

    The cornea is the only transparent tissue in the body. The transparency is the main characteristic of the corneal tissue, and depends not only on the transmission coefficient but also on the losses by scattering and absorption. The scattering properties of the cornea tissues become one of the most important parameters in the case of the corneal graft. These scattering properties are studied in this paper in the reflected half area, similar to the diagnosis configuration. We quantify the influence of the cornea thickness and of the epithelial layer on scattering level. The technique of ellipsometry on scattered field is also used to analyze the polarization properties in order to determine the origin of scattering (surface and/or bulk).

  5. Experimental demonstration and modeling of the internal light scattering profile within solar cells due to random dielectric scatterers

    NASA Astrophysics Data System (ADS)

    Murray, Joseph; Munday, Jeremy N.

    2016-01-01

    Many photovoltaic technologies are shifting toward thin-film devices to simultaneously reduce costs and improve carrier collection efficiencies; however, the need for nearly complete light absorption within the semiconductor to achieve large short-circuit currents constrains this thickness reduction. Light trapping strategies can be employed to increase absorption in thinner devices. Random scattering coatings offer a simple, cost-effective way to increase solar cell absorption without the drawback of increased surface recombination or reduced bandwidth that occurs when using surface texturing or gratings. However, coatings that show excellent performance as scatterers in free space generally do not enhance device absorption as much as an ideal Lambertian scatterer. Here, we present an experimental technique and theoretical model that accurately describes the absorption improvement that is achievable with coatings based on random ensembles of dielectric scatterers. We find that the ideal Lambertian model substantially overestimates the experimental scattering results, but significant path length enhancements are still achievable. The experimental techniques presented here should enable the testing of various optical models that attempt to surpass the ray optics light trapping limit, which have in many cases been hindered by the experimental difficulty of coupling the incident light into the optical modes of the absorber.

  6. Polarized light imaging specifies the anisotropy of light scattering in the superficial layer of a tissue

    NASA Astrophysics Data System (ADS)

    Jacques, Steven L.; Roussel, Stéphane; Samatham, Ravikant

    2016-07-01

    This report describes how optical images acquired using linearly polarized light can specify the anisotropy of scattering (g) and the ratio of reduced scattering [μs‧=μs(1-g)] to absorption (μa), i.e., N‧=μs‧/μa. A camera acquired copolarized (HH) and crosspolarized (HV) reflectance images of a tissue (skin), which yielded images based on the intensity (I=HH+HV) and difference (Q=HH-HV) of reflectance images. Monte Carlo simulations generated an analysis grid (or lookup table), which mapped Q and I into a grid of g versus N‧, i.e., g(Q,I) and N‧(Q,I). The anisotropy g is interesting because it is sensitive to the submicrometer structure of biological tissues. Hence, polarized light imaging can monitor shifts in the submicrometer (50 to 1000 nm) structure of tissues. The Q values for forearm skin on two subjects (one Caucasian, one pigmented) were in the range of 0.046±0.007 (24), which is the mean±SD for 24 measurements on 8 skin sites×3 visible wavelengths, 470, 524, and 625 nm, which indicated g values of 0.67±0.07 (24).

  7. Simulation of light scattering by a pressure deformed red blood cell with a parallel FDTD method

    NASA Astrophysics Data System (ADS)

    Brock, Robert S.; Hu, Xin-Hua; Yang, Ping; Lu, Jun Q.

    2005-03-01

    Mature human red blood cells (RBCs) are light scatterers with homogeneous bodies enclosed by membranes and have attracted significant attention for optical diagnosis of disorders related to blood. RBCs possess viscoelastic structures and tend to deform from biconcave shapes isovolumetrically in blood flow in response to pressure variations. Elastic scattering of light by a deformed RBC provides a means to determine their shapes because of the presence of strong light scattering signals, and development of efficient modeling tools is important for developing bed-side instrumentation. The size parameters α, defined as α=2πα/λ with 2α as the characteristic size of the scatterer and λ as the light wavelength in the host medium, of the scatterer of RBCs are in the range of 10 to 50 for wavelengths of light in visible and near-infrared regions, and no analytical solutions have been reported for light scattering from deformed RBCs. We developed a parallel Finite-Difference-Time-Domain (FDTD) method to numerically simulate light scattering by a deformed RBC in a carrier fluid under different flow pressures. The use of parallel computing techniques significantly reduced the computation time of the FDTD method on a low-cost PC cluster. The deformed RBC is modeled in the 3D space as a homogeneous body characterized by a complex dielectric constant at the given wavelength of the incident light. The angular distribution of the light scattering signal was obtained in the form of the Mueller scattering matrix elements and their dependence on shape change due to pressure variation and orientation was studied. Also calculated were the scattering and absorption efficiencies and the potential for using these results to probe the shape change of RBCs will be discussed.

  8. Ultraslow-light effects in symmetric and asymmetric waveguide structures with moon-like scatterers

    NASA Astrophysics Data System (ADS)

    Wan, Yong; Ge, Xiao-Hui; Xu, Sheng; Guo, Yue; Yuan, Feng

    2017-02-01

    Ultraslow-light effects in two-dimensional hexagonal-lattice coupled waveguide with moon-like scatterers were theoretically studied using the plane-wave expansion method. For symmetric structures, simulations showed that slow light with high group index can be achieved by shifting the scatterers and adjusting the radius of moon-like scatterers. The maximum group index was over 8:0 × 104. For asymmetric structures, simulations showed that slow light with flat band and high group index can be obtained by shifting the scatterers, adjusting the radius of moon-like scatterers, and rotating the scatterers. The maximum group index was over 5:7 × 105 with a "saddle-like" relationship between the frequency and group index.

  9. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD.

    PubMed

    Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; Izubuchi, Taku

    2015-01-09

    The most compelling possibility for a new law of nature beyond the four fundamental forces comprising the standard model of high-energy physics is the discrepancy between measurements and calculations of the muon anomalous magnetic moment. Until now a key part of the calculation, the hadronic light-by-light contribution, has only been accessible from models of QCD, the quantum description of the strong force, whose accuracy at the required level may be questioned. A first principles calculation with systematically improvable errors is needed, along with the upcoming experiments, to decisively settle the matter. For the first time, the form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in such a framework, lattice QCD+QED and QED. A nonperturbative treatment of QED is used and checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed for which statistically significant signals are obtained. Initial results are promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.

  10. Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; Izubuchi, Taku

    2015-01-01

    The most compelling possibility for a new law of nature beyond the four fundamental forces comprising the standard model of high-energy physics is the discrepancy between measurements and calculations of the muon anomalous magnetic moment. Until now a key part of the calculation, the hadronic light-by-light contribution, has only been accessible from models of QCD, the quantum description of the strong force, whose accuracy at the required level may be questioned. A first principles calculation with systematically improvable errors is needed, along with the upcoming experiments, to decisively settle the matter. For the first time, the form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in such a framework, lattice QCD +QED and QED. A nonperturbative treatment of QED is used and checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed for which statistically significant signals are obtained. Initial results are promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.

  11. Literature survey for suppression of scattered light in large space telescopes

    NASA Technical Reports Server (NTRS)

    Tifft, W. G.; Fannin, B. B.

    1973-01-01

    A literature survey is presented of articles dealing with all aspects of predicting, measuring, and controlling unwanted scattered (stray) light. The survey is divided into four broad classifications: (1) existing baffle/telescope designs; (2) computer programs for the analysis/design of light suppression systems; (3) the mechanism, measurement, and control of light scattering; and (4) the advantages and problems introduced by the space environment for the operation of diffraction-limited optical systems.

  12. Dynamic light-scattering measurement comparability of nanomaterial suspensions

    NASA Astrophysics Data System (ADS)

    Nickel, Carmen; Angelstorf, Judith; Bienert, Ralf; Burkart, Corinna; Gabsch, Stephan; Giebner, Sabrina; Haase, Andrea; Hellack, Bryan; Hollert, Henner; Hund-Rinke, Kerstin; Jungmann, Dirk; Kaminski, Heinz; Luch, Andreas; Maes, Hanna M.; Nogowski, André; Oetken, Matthias; Schaeffer, Andreas; Schiwy, Andreas; Schlich, Karsten; Stintz, Michael; von der Kammer, Frank; Kuhlbusch, Thomas A. J.

    2014-02-01

    Increased use of nanomaterials in everyday products leads to their environmental release and therefore, the information need on their fate and behaviour. Nanomaterials have to be suspended with high repeatability and comparability for studies on environmental effects. They also have to be well characterised with a focus on the state of agglomeration and particle size distribution. Dynamic light-scattering (DLS) is a common technique used for these measurements. If suspensions are prepared in different laboratories, then concern has risen about the comparability of the measured results, especially when different DLS instruments are used. Therefore, for quality assurance, a round-robin test was conducted to assess the comparability of different DLS instruments and a dispersion protocol in ten independent laboratories. Polystyrene and TiO2 were chosen as test (nano)materials. For the comparability of the DLS instruments, the average sizes of the PSL and a stabilised TiO2 suspension were measured. The measured average hydrodynamic diameter shows an overall good inter-laboratory comparability. For the PSL suspension, an average hydrodynamic diameter of 201 ± 13 nm and for the TiO2 suspension an average diameter of 224 ± 24 nm were detected. For the TiO2 suspension that was prepared at each laboratory following an established suspension preparation protocol, an average hydrodynamic diameter of 211 ± 11 nm was detected. The measured average particle size (mode) increased up to 284 nm with a high standard deviation of 119 nm if the preparation protocol could not established and different procedures or different equipment were employed. This study shows that no significant differences between the employed DLS instrument types were determined. It was also shown that comparable measurements and suspension preparation could be achieved if well-defined suspension preparation protocols and comparable equipment can be used.

  13. Dynamic Light Scattering Based Microelectrophoresis: Main Prospects and Limitations

    PubMed Central

    Uskoković, Vuk

    2013-01-01

    Microelectrophoresis based on the dynamic light scattering (DLS) effect has been a major tool for assessing and controlling the conditions for stability of colloidal systems. However, both the DLS methods for characterization of the hydrodynamic size of dispersed submicron particles and the theory behind the electrokinetic phenomena are associated with fundamental and practical approximations that limit their sensitivity and information output. Some of these fundamental limitations, including the spherical approximation of DLS measurements and an inability of microelectrophoretic analyses of colloidal systems to detect discrete charges and differ between differently charged particle surfaces due to rotational diffusion and particle orientation averaging, are revisited in this work. Along with that, the main prospects of these two analytical methods are mentioned. A detailed review of the role of zeta potential in processes of biochemical nature is given too. It is argued that although zeta potential has been used as one of the main parameters in controlling the stability of colloidal dispersions, its application potentials are much broader. Manipulating surface charges of interacting species in designing complex soft matter morphologies using the concept of zeta potential, intensively investigated recently, is given as one of the examples. Branching out from the field of colloid chemistry, DLS and zeta potential analyses are now increasingly finding application in drug delivery, biotechnologies, physical chemistry of nanoscale phenomena and other research fields that stand on the frontier of the contemporary science. Coupling the DLS-based microelectrophoretic systems with complementary characterization methods is mentioned as one of the prosperous paths for increasing the information output of these two analytical techniques. PMID:23904690

  14. Peculiarities of propagation of quasi-diffraction-free light beams in strongly scattering absorbing media

    SciTech Connect

    Katsev, I L; Prikhach, A S; Kazak, N S; Kroening, M

    2006-04-30

    Based on the relation between the theory of light field coherence and theory of radiation transfer in scattering media, a method is proposed for calculating the illumination distribution produced by coherent quasi-diffraction-free beams at different penetration depths of radiation into scattering media such as biological tissues. The method uses the optical transfer function or the point spread function (PSF) of the medium. A simple and convenient analytic PSF model is described. Examples of the illumination distribution produced by a Bessel light beam in a medium with optical parameters typical of real biological tissues are presented. It is shown that the half-width of the axial maximum of a Bessel light beam scattered due to scattering almost does not increase up to optical depths where the contribution of multiple scattering is already considerable. (light beams)

  15. Measuring the dynamics of structural changes in biological macromolecules from light scattering data

    NASA Technical Reports Server (NTRS)

    Johnson, Adriel D.

    1993-01-01

    Examining techniques to study the dynamics of structural changes in various molecules has been an ongoing goal of the space program. Knowing how these phenomena occur in biological systems is fundamental to understanding what is necessary for life to remain functional in the space environment. A hierarchy of biological organization is functionally described when cells join together small organic molecules to form larger and more complex molecules. Characterizing the architecture of a particular macromolecule helps determine how that molecule works in the living cell and is basic to the diversity of life. Understanding this arrangement involves the correlation of the structure of macromolecules with their functions. A light scattering photometer was developed for detecting continuous measurement of the angular spectrum of light scattered by dynamically changing systems. The analysis of light scattered by biological macromolecules can be used to determine concentration, size, shape, molecular weight, and structural changes of cells, such as erythrocytes. Some light scattering photometers can collect and store 120 angular scattering spectra per minute, with an angular resolution of 0.2 deg which can be displayed with computer graphics. The light scattering photometer does the following: functions to produce and detect scattered light; determines scatter angles; and collects, stores, and analyzes data.

  16. Light scattering by radially inhomogeneous fuel droplets in a high-temperature environment

    NASA Astrophysics Data System (ADS)

    Schneider, Michael; Hirleman, E. Dan; Saleheen, Hasan I.; Chowdhury, Dipakbin Q.; Hill, Steven C.

    1993-05-01

    Light scattering by radially inhomogeneous fuel droplets has been calculated using both geometrical optics (GO) and the exact separation of variables (SV) solutions. The refractive index profiles of the fuel droplets were those calculated by Kneer et al. The GO and SV solutions agree very well in the forward direction (for scattering angles between 30 and 60 degrees), and less well in the backward direction (for scattering angles between 140 and 170 degrees). Both amplitudes and phases of the scattered light are compared. The agreement in the backward direction is much better for 40 micrometers diameter droplets than for 20 micrometers diameter droplets.

  17. New scheme of the Discrete Sources Method for light scattering analysis of a particle breaking interface

    NASA Astrophysics Data System (ADS)

    Eremin, Yuri; Wriedt, Thomas

    2014-12-01

    The Discrete Sources Method (DSM) has been modified to analyze polarized light scattering by an axial symmetric penetrable nanoparticle partially embedded into a substrate. The new numerical scheme of the DSM enables to consider scattering from such substrate defects as flat particles, mounds, pits and voids. A detailed description of the numerical scheme is provided. The developed computer model has been employed to investigate scattering from a shallow particle and pit. Simulation results corresponding to the Differential Scattering Cross-Section and the integral response for P/S polarized light are presented.

  18. Light scattering by irregular particles much larger than the wavelength with wavelength-scale surface roughness.

    PubMed

    Grynko, Yevgen; Shkuratov, Yuriy; Förstner, Jens

    2016-08-01

    We simulate light scattering by random irregular particles that have dimensions much larger than the wavelength of incident light at the size parameter of X=200 using the discontinuous Galerkin time domain method. A comparison of the DGTD solution for smoothly faceted particles with that obtained with a geometric optics model shows good agreement for the scattering angle curves of intensity and polarization. If a wavelength-scale surface roughness is introduced, diffuse scattering at rough interface results in smooth and featureless curves for all scattering matrix elements which is consistent with the laboratory measurements of real samples.

  19. All-optical magnetic recording with circularly polarized light.

    PubMed

    Stanciu, C D; Hansteen, F; Kimel, A V; Kirilyuk, A; Tsukamoto, A; Itoh, A; Rasing, Th

    2007-07-27

    We experimentally demonstrate that the magnetization can be reversed in a reproducible manner by a single 40 femtosecond circularly polarized laser pulse, without any applied magnetic field. This optically induced ultrafast magnetization reversal previously believed impossible is the combined result of femtosecond laser heating of the magnetic system to just below the Curie point and circularly polarized light simultaneously acting as a magnetic field. The direction of this opto-magnetic switching is determined only by the helicity of light. This finding reveals an ultrafast and efficient pathway for writing magnetic bits at record-breaking speeds.

  20. Q-space analysis of light scattering by ice crystals

    NASA Astrophysics Data System (ADS)

    Heinson, Yuli W.; Maughan, Justin B.; Ding, Jiachen; Chakrabarti, Amitabha; Yang, Ping; Sorensen, Christopher M.

    2016-12-01

    Q-space analysis is applied to extensive simulations of the single-scattering properties of ice crystals with various habits/shapes over a range of sizes. The analysis uncovers features common to all the shapes: a forward scattering regime with intensity quantitatively related to the Rayleigh scattering by the particle and the internal coupling parameter, followed by a Guinier regime dependent upon the particle size, a complex power law regime with incipient two dimensional diffraction effects, and, in some cases, an enhanced backscattering regime. The effects of significant absorption on the scattering profile are also studied. The overall features found for the ice crystals are similar to features in scattering from same sized spheres.

  1. Coherent backscattering of light with nonlinear atomic scatterers

    SciTech Connect

    Wellens, T.; Gremaud, B.; Delande, D.; Miniatura, C.

    2006-01-15

    We study coherent backscattering of a monochromatic laser by a dilute gas of cold two-level atoms in the weakly nonlinear regime. The nonlinear response of the atoms results in a modification of both the average field propagation (nonlinear refractive index) and the scattering events. Using a perturbative approach, the nonlinear effects arise from inelastic two-photon scattering processes. We present a detailed diagrammatic derivation of the elastic and inelastic components of the backscattering signal for both scalar and vectorial photons. In particular, we show that the coherent backscattering phenomenon originates in some cases from the interference between three different scattering amplitudes. This is in marked contrast with the linear regime where it is due to the interference between two different scattering amplitudes. In particular we show that, if elastically scattered photons are filtered out from the photodetection signal, the nonlinear backscattering enhancement factor exceeds the linear barrier of 2, consistently with a three-amplitude interference effect.

  2. Influence of surface light scattering in hydrophobic acrylic intraocular lenses on laser beam transmittance.

    PubMed

    Shiraya, Tomoyasu; Kato, Satoshi; Minami, Keiichiro; Miyata, Kazunori

    2017-02-01

    The aim of this study was to experimentally examine the changes in the transmittances of photocoagulation lasers when surface light scattering increases in AcrySof intraocular lenses (IOLs). SA60AT IOLs (Alcon) were acceleratingly aging for 0, 3, 5, and 10 years to simulate surface light scattering, and the surface light-scattering intensities of both IOL surfaces were measured using a Scheimpflug photographer. The powers of laser beams that passed from a laser photocoagulator through the aged IOLs were measured at 532, 577, and 647 nm. Changes in the laser power and transmittance with the years of aging and the intensities of surface light scattering were examined. Although the intensity of surface light scattering increased with the years of aging, the laser power did not change with the years of aging (P > 0.30, Kruskal-Wallis test). There were no significant changes in the laser transmittance with the years of aging or the laser wavelength (P > 0.30 and 0.57, respectively). The intensity of surface light scattering revealed no significant association with the laser transmittance at any wavelength (P > 0.37, liner regression). The increases in the surface light scattering of the AcrySof IOLs would not influence retinal photocoagulation treatments for up to 10 years after implantation.

  3. Hyper-Rayleigh light scattering from an aqueous suspension of purple membrane.

    PubMed

    Schmidt, P K; Rayfield, G W

    1994-07-01

    Here we report the first observation of hyper-Rayleigh light scattering from bacteriorhodopsin in the form of an aqueous suspension of unoriented purple membranes. A typical purple membrane suspension used in our experiments contains approximately 10(8) randomly oriented purple membranes. Each purple membrane contains approximately 10(5) bacteriorhodopsin molecules in a two-dimensional crystallinearray. Hyper-Rayleigh light scattering is observed when the purple membrane suspension is illuminated with light that has a wavelength of 1064 nm. We propose that the 532-nm scattered light from each of the bacteriorhodopsin molecules in a single purple membrane is coherent, and that the scattered light from different purple membranes is incoherent. This proposal is supported by the following experimental observations: (a) the 532-nm light intensity is proportional to the square of the incident power, (b) the intensity of the 532-nm signal is linearly proportional to the concentration of purple membrane in solution, (c) the scattered 532-nm light is incoherent, (d) the scattered 532-nm light intensity decreases if the size of the purple membranes is reduced while the bacteriorhodopsin concentration is kept constant, and (e) the 532-nm light is due to the retinal chromophore of the bacteriorhodopsin molecule. The ratio of horizontal polarized hyper-Rayleigh scattered light to vertically polarized hyper-Rayleigh scattered light gives the angle (23 ± 4°) of the retinal axis with respect to the plane of the purple membrane. The hyperpolarizability of the bacteriorhodopsin molecule is found to be 5 ± 0.4 × 10(-27) esu.

  4. Single and multiple light scattering studies of PDLC films in the presence of electric fields

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    Light scattering from Polymer Dispersed Liquid Crystal (PDLC) films is studied in four major respects: the differential scattering cross-section of a single liquid crystal droplet; the total scattering cross-section and film transmittance; multiple scattering effects; and scattering by absorbing droplets (PDLC doped with dichroic dye). The effects of applied electric field, light wavelength and the liquid crystal droplet size on the scattering behavior are examined. PDLC scattering properties under electric field are described by combining the Anomalous Diffraction Approach (ADA) with PDLC electro-optical response theory. Numerical computation results directly demonstrate how the total scattering cross section relates to the incident light wavelength, the droplet size and the applied electric field. Transmittance measurements are used to study the total scattering cross-section. Analyses of the transmittance characteristics show good agreement with the theoretical predictions. PDLC samples with a practical contrast ratio exhibit strong multiple scattering effects. Studies of the single scattering differential cross section provide a foundation for the modeling and experimental work on the multiple scattering effects. Single scattering characteristics of a bipolar droplet director configuration are derived for a highly symmetric situation. The results offer qualitative explanations for some experimental observations, such as the presence of off-normal maxima and breakdown of rotational symmetry in the scattering pattern. As a novel approach, we propose a multiple scattering model for PDLC based on successive order and Monte Carlo methods. This model, along with ADA and electro-optical response theories, was used to calculate the angular distribution of scattered light and electric field switching response. The predictions demonstrate close quantitative agreement with experimental results. Incorporating complex refractive indices to treat dye- doped PDLC

  5. Development of wide-angle 2D light scattering static cytometry

    NASA Astrophysics Data System (ADS)

    Xie, Linyan; Liu, Qiao; Shao, Changshun; Su, Xuantao

    2016-10-01

    We have recently developed a 2D light scattering static cytometer for cellular analysis in a label-free manner, which measures side scatter (SSC) light in the polar angular range from 79 to 101 degrees. Compared with conventional flow cytometry, our cytometric technique requires no fluorescent labeling of the cells, and static cytometry measurements can be performed without flow control. In this paper we present an improved label-free static cytometer that can obtain 2D light scattering patterns in a wider angular range. By illuminating the static microspheres on chip with a scanning optical fiber, wide-angle 2D light scattering patterns of single standard microspheres with a mean diameter of 3.87 μm are obtained. The 2D patterns of 3.87 μm microspheres contain both large-angle forward scatter (FSC) and SSC light in the polar angular range from 40 to 100 degrees, approximately. Experimental 2D patterns of 3.87 μm microspheres are in good agreement with Mie theory simulated ones. The wide-angle light scattering measurements may provide a better resolution for particle analysis as compared with the SSC measurements. Two dimensional light scattering patterns of HL-60 human acute leukemia cells are obtained by using our static cytometer. Compared with SSC 2D light scattering patterns, wide-angle 2D patterns contain richer information of the HL-60 cells. The obtaining of 2D light scattering patterns in a wide angular range could help to enhance the capabilities of our label-free static cytometry for cell analysis.

  6. Localized dynamic light scattering: a new approach to dynamic measurements in optical microscopy.

    PubMed

    Meller, A; Bar-Ziv, R; Tlusty, T; Moses, E; Stavans, J; Safran, S A

    1998-03-01

    We present a new approach to probing single-particle dynamics that uses dynamic light scattering from a localized region. By scattering a focused laser beam from a micron-size particle, we measure its spatial fluctuations via the temporal autocorrelation of the scattered intensity. We demonstrate the applicability of this approach by measuring the three-dimensional force constants of a single bead and a pair of beads trapped by laser tweezers. The scattering equations that relate the scattered intensity autocorrelation to the particle position correlation function are derived. This technique has potential applications for measurement of biomolecular force constants and probing viscoelastic properties of complex media.

  7. Stimulated Light Emission and Inelastic Scattering by a Classical Linear System of Rotating Particles

    SciTech Connect

    Asenjo-Garcia, Ana; Manjavacas, Alejandro; Garcia de Abajo, F. Javier

    2011-05-27

    The rotational dynamics of particles subject to external illumination is found to produce light amplification and inelastic scattering at high rotation velocities. Light emission at frequencies shifted with respect to the incident light by twice the rotation frequency dominates over elastic scattering within a wide range of light and rotation frequencies. Remarkably, net amplification of the incident light is produced in this classical linear system via stimulated emission. Large optically induced acceleration rates are predicted in vacuum accompanied by moderate heating of the particle, thus supporting the possibility of observing these effects under extreme rotation conditions.

  8. Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi-elastic light scattering for characterization of polymersomes: comparison with classical techniques.

    PubMed

    Till, Ugo; Gaucher-Delmas, Mireille; Saint-Aguet, Pascale; Hamon, Glenn; Marty, Jean-Daniel; Chassenieux, Christophe; Payré, Bruno; Goudounèche, Dominique; Mingotaud, Anne-Françoise; Violleau, Frédéric

    2014-12-01

    Polymersomes formed from amphiphilic block copolymers, such as poly(ethyleneoxide-b-ε-caprolactone) (PEO-b-PCL) or poly(ethyleneoxide-b-methylmethacrylate), were characterized by asymmetrical flow field-flow fractionation coupled with quasi-elastic light scattering (QELS), multi-angle light scattering (MALS), and refractive index detection, leading to the determination of their size, shape, and molecular weight. The method was cross-examined with more classical ones, like batch dynamic and static light scattering, electron microscopy, and atomic force microscopy. The results show good complementarities between all the techniques; asymmetrical flow field-flow fractionation being the most pertinent one when the sample exhibits several different types of population.

  9. Calculations of scattered light from rigid polymers by Shifrin and Rayleigh-Debye approximations.

    PubMed Central

    Bishop, M F

    1989-01-01

    We show that the commonly used Rayleigh-Debye method for calculating light scattering can lead to significant errors when used for describing scattering from dilute solutions of long rigid polymers, errors that can be overcome by use of the easily applied Shifrin approximation. In order to show the extent of the discrepancies between the two methods, we have performed calculations at normal incidence both for polarized and unpolarized incident light with the scattering intensity determined as a function of polarization angle and of scattering angle, assuming that the incident light is in a spectral region where the absorption of hemoglobin is small. When the Shifrin method is used, the calculated intensities using either polarized or unpolarized scattered light give information about the alignment of polymers, a feature that is lost in the Rayleigh-Debye approximation because the effect of the asymmetric shape of the scatterer on the incoming polarized electric field is ignored. Using sickle hemoglobin polymers as an example, we have calculated the intensity of light scattering using both approaches and found that, for totally aligned polymers within parallel planes, the difference can be as large as 25%, when the incident electric field is perpendicular to the polymers, for near forward or near backward scattering (0 degrees or 180 degrees scattering angle), but becomes zero as the scattering angle approaches 90 degrees. For randomly oriented polymers within a plane, or for incident unpolarized light for either totally oriented or randomly oriented polymers, the difference between the two results for near forward or near backward scattering is approximately 15%. PMID:2605302

  10. Retinal image degradation by optical aberrations and light scatter in normal and albino chick eyes

    NASA Astrophysics Data System (ADS)

    Tian, Yibin; Shieh, Kevin; Wildsoet, Christine F.

    2007-02-01

    Comprehensive evaluation of retinal image quality requires that light scatter as well as optical aberrations be considered. In investigating how retinal image degradation affects eye growth in the chick model of myopia, we developed a simple method based on Shack-Hartmann images for evaluating the effects of both monochromatic aberrations and light scatter on retinal image quality. We further evaluated our method in the current study by applying it to data collected from both normal chick eyes and albino eyes that were expected to show increased intraocular light scatter. To analyze light scatter in our method, each Shack-Hartmann dot is treated as a local point spread function (PSF) that is the convolution of a local scatter PSF and a lenslet diffraction PSF. The local scatter PSF is obtained by de-convolution, and is fitted with a circularly symmetric Gaussian function using nonlinear regressions. A whole-eye scatter PSF also can be derived from the local scatter PSFs for the analyzed pupil. Aberrations are analyzed using OSA standard Zernike polynomials, and aberration-related PSF calculated from reconstructed wavefront using fast Fourier transform. Modulation transfer functions (MTFs) are computed separately for aberration and scatter PSFs, and a whole-eye MTF is derived as the product of the two. This method was applied to 4 normal and 4 albino eyes. Compared to normal eyes, albino eyes were more aberrated and showed greater light scatter. As a result, overall retinal image degradation was much greater in albino eyes than in normal eyes, with the relative contribution to retinal image degradation of light scatter compared to aberrations also being greater for albino eyes.

  11. Ribosome formation from subunits studied by stopped-flow and Rayleigh light scattering

    PubMed Central

    Antoun, Ayman; Pavlov, Michael Y.; Tenson, Tanel

    2004-01-01

    Light scattering and standard stopped-flow techniques were used to monitor rapid association of ribosomal subunits during initiation of eubacterial protein synthesis. The effects of the initiation factors IF1, IF2, IF3 and buffer conditions on subunit association were studied along with the role of GTP in this process. The part of light scattering theory that is essential for kinetic measurements is high-lighted in the main text and a more general treatment of Rayleigh scattering from macromolecules is given in an appendix. PMID:15103398

  12. Influence of Forward and Multiple Light Scatter on the Measurement of Beam Attenuation in Highly Scattering Marine Environments

    NASA Astrophysics Data System (ADS)

    Piskozub, Jacek; Stramski, Dariusz; Terrill, Eric; Melville, W. Kendall

    2004-08-01

    Using three-dimensional Monte Carlo radiative transfer simulations, we examine the effect of beam transmissometer geometry on the relative error in the measurement of the beam-attenuation coefficient in an aquatic environment characterized by intense light scattering, especially within submerged bubble clouds entrained by surface-wave breaking. We discuss the forward-scattering error associated with the detection of photons scattered at small angles (< 1°) and the multiple-scattering error associated with the detection of photons scattered more than once along the path length of the instrument. Several scattering phase functions describing bubble clouds at different bubble void fractions in the water are considered. Owing to forward-scattering error, a beam-attenuation meter (beam transmissometer) with a half-angle of receiver acceptance of 1.0° and a path length of 0.1 m can underestimate the true beam attenuation within the bubble cloud by more than 50%. For bubble clouds with a beam attenuation of as much as 100 m^-1, the multiple-scattering error is no more than a few percent. These results are compared with simulations for some example phase functions that are representative of other scattering regimes found in natural waters. The forward-scattering error for the Petzold phase function of turbid waters is 16% for a typical instrument geometry, whereas for the Henyey-Greenstein phase function with the asymmetry parameter of 0.7 and 0.9 the error range is 8-28%.

  13. Differences in forward angular light scattering distributions between M1 and M2 macrophages.

    PubMed

    Halaney, David L; Zahedivash, Aydin; Phipps, Jennifer E; Wang, Tianyi; Dwelle, Jordan; Saux, Claude Jourdan Le; Asmis, Reto; Milner, Thomas E; Feldman, Marc D

    2015-11-01

    The ability to distinguish macrophage subtypes noninvasively could have diagnostic potential in cancer, atherosclerosis, and diabetes, where polarized M1 and M2 macrophages play critical and often opposing roles. Current methods to distinguish macrophage subtypes rely on tissue biopsy. Optical imaging techniques based on light scattering are of interest as they can be translated into biopsy-free strategies. Because mitochondria are relatively strong subcellular light scattering centers, and M2 macrophages are known to have enhanced mitochondrial biogenesis compared to M1, we hypothesized that M1 and M2 macrophages may have different angular light scattering profiles. To test this, we developed an in vitro angle-resolved forward light scattering measurement system. We found that M1 and M2 macrophage monolayers scatter relatively unequal amounts of light in the forward direction between 1.6 deg and 3.2 deg with M2 forward scattering significantly more light than M1 at increasing angles. The ratio of forward scattering can be used to identify the polarization state of macrophage populations in culture.

  14. A study of the polarization of light scattered by vegetation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Woessner, P. N.

    1985-01-01

    This study was undertaken in order to better understand the factors that govern the polarization of light scattered from vegetation and soils. The intensity and polarization of light scattered by clover and grass in vivo and soil were measured at a number of different angles of incidence and reflectance. Both individual leaves and natural patches of leaves were measured. The light transmitted through the leaves was found to be negatively polarized. The light scattered from the upper leaf surface was found to be positively polarized in a manner which could be accounted for qualitatively but not quantitatively by the Fresnel reflection coefficients modified by a shadowing function of the form cos sup2 (g/2), where g is the phase angle. Findings indicate that the polarization of light scattered by vegetation is a more complex process than previously thought, and that besides the surface-scattered component of light, the volume-scattered and multiply-scattered components also contribute significantly to the polarization.

  15. Differences in forward angular light scattering distributions between M1 and M2 macrophages

    NASA Astrophysics Data System (ADS)

    Halaney, David L.; Zahedivash, Aydin; Phipps, Jennifer E.; Wang, Tianyi; Dwelle, Jordan; Saux, Claude Jourdan Le; Asmis, Reto; Milner, Thomas E.; Feldman, Marc D.

    2015-11-01

    The ability to distinguish macrophage subtypes noninvasively could have diagnostic potential in cancer, atherosclerosis, and diabetes, where polarized M1 and M2 macrophages play critical and often opposing roles. Current methods to distinguish macrophage subtypes rely on tissue biopsy. Optical imaging techniques based on light scattering are of interest as they can be translated into biopsy-free strategies. Because mitochondria are relatively strong subcellular light scattering centers, and M2 macrophages are known to have enhanced mitochondrial biogenesis compared to M1, we hypothesized that M1 and M2 macrophages may have different angular light scattering profiles. To test this, we developed an in vitro angle-resolved forward light scattering measurement system. We found that M1 and M2 macrophage monolayers scatter relatively unequal amounts of light in the forward direction between 1.6 deg and 3.2 deg with M2 forward scattering significantly more light than M1 at increasing angles. The ratio of forward scattering can be used to identify the polarization state of macrophage populations in culture.

  16. Analysis of Light Scattering by Nanoobjects on a Plane Surface via Discrete Sources Method

    NASA Astrophysics Data System (ADS)

    Eremina, Elena; Eremin, Yuri; Wriedt, Thomas

    2012-12-01

    In the last years light scattering by nanostructures is of interest in different areas of science and technology. Analysis of light scattered by nanostructures is an effective tool for a better understanding of their properties. In this work the Discrete Sources Method (DSM) is applied to model light scattering by nanoparticles on a surface. One of attractive features of the DSM is an ability to account for all the features of the modeled system, such as complex refractive index with frequency dispersion of particles and a substrate, scattering interaction of particle and an interface. To demonstrate the variety of possible applications for the DSM, we concentrated on two practical applications. First is light scattering by a nanorod on a surface, which requires the use of a general 3D version of the DSM. The second case discussed in this chapter is light scattering by a nanoshell, which allows the accounting for the axial symmetry of the problem and essential reduction of calculation time. In both cases light scattering characteristics and their dependence on nanostructure characteristics like size, symmetry, incident angle, particle orientation, refractive index and wavelength are analyzed and discussed.

  17. Polarized light scattering as a probe for changes in chromosome structure

    SciTech Connect

    Shapiro, Daniel Benjamin

    1993-10-01

    Measurements and calculations of polarized light scattering are applied to chromosomes. Calculations of the Mueller matrix, which completely describes how the polarization state of light is altered upon scattering, are developed for helical structures related to that of chromosomes. Measurements of the Mueller matrix are presented for octopus sperm heads, and dinoflagellates. Comparisons of theory and experiment are made. A working theory of polarized light scattering from helices is developed. The use of the first Born approximation vs the coupled dipole approximation are investigated. A comparison of continuous, calculated in this work, and discrete models is also discussed. By comparing light scattering measurements with theoretical predictions the average orientation of DNA in an octopus sperm head is determined. Calculations are made for the Mueller matrix of DNA plectonemic helices at UV, visible and X-ray wavelengths. Finally evidence is presented that the chromosomes of dinoflagellates are responsible for observed differential scattering of circularly-polarized light. This differential scattering is found to vary in a manner that is possibly correlated to the cell cycle of the dinoflagellates. It is concluded that by properly choosing the wavelength probe polarized light scattering can provide a useful tool to study chromosome structure.

  18. Differences in forward angular light scattering distributions between M1 and M2 macrophages

    PubMed Central

    Halaney, David L.; Zahedivash, Aydin; Phipps, Jennifer E.; Wang, Tianyi; Dwelle, Jordan; Saux, Claude Jourdan Le; Asmis, Reto; Milner, Thomas E.; Feldman, Marc D.

    2015-01-01

    Abstract. The ability to distinguish macrophage subtypes noninvasively could have diagnostic potential in cancer, atherosclerosis, and diabetes, where polarized M1 and M2 macrophages play critical and often opposing roles. Current methods to distinguish macrophage subtypes rely on tissue biopsy. Optical imaging techniques based on light scattering are of interest as they can be translated into biopsy-free strategies. Because mitochondria are relatively strong subcellular light scattering centers, and M2 macrophages are known to have enhanced mitochondrial biogenesis compared to M1, we hypothesized that M1 and M2 macrophages may have different angular light scattering profiles. To test this, we developed an in vitro angle-resolved forward light scattering measurement system. We found that M1 and M2 macrophage monolayers scatter relatively unequal amounts of light in the forward direction between 1.6 deg and 3.2 deg with M2 forward scattering significantly more light than M1 at increasing angles. The ratio of forward scattering can be used to identify the polarization state of macrophage populations in culture. PMID:26538329

  19. Scattering of Sculpted Light in Intact Brain Tissue, with implications for Optogenetics

    PubMed Central

    Favre-Bulle, Itia A.; Preece, Daryl; Nieminen, Timo A.; Heap, Lucy A.; Scott, Ethan K.; Rubinsztein-Dunlop, Halina

    2015-01-01

    Optogenetics uses light to control and observe the activity of neurons, often using a focused laser beam. As brain tissue is a scattering medium, beams are distorted and spread with propagation through neural tissue, and the beam’s degradation has important implications in optogenetic experiments. To address this, we present an analysis of scattering and loss of intensity of focused laser beams at different depths within the brains of zebrafish larvae. Our experimental set-up uses a 488 nm laser and a spatial light modulator to focus a diffraction-limited spot of light within the brain. We use a combination of experimental measurements of back-scattered light in live larvae and computational modelling of the scattering to determine the spatial distribution of light. Modelling is performed using the Monte Carlo method, supported by generalised Lorenz–Mie theory in the single-scattering approximation. Scattering in areas rich in cell bodies is compared to that of regions of neuropil to identify the distinct and dramatic contributions that cell nuclei make to scattering. We demonstrate the feasibility of illuminating individual neurons, even in nucleus-rich areas, at depths beyond 100 μm using a spatial light modulator in combination with a standard laser and microscope optics. PMID:26108566

  20. Dynamic light scattering studies on charged rod-like fd-virus in dilute aqueous solution

    NASA Astrophysics Data System (ADS)

    Schulz, Susanne F.; Maier, Erich E.; Krause, Rainer; Hagenbüchle, Martin; Deggelmann, Martin; Weber, Reinhart

    1990-06-01

    Time correlation functions of the scattered light intensity are studied in aqueous solutions of charged rod-like fd-virus (L=880 nm, d=6 nm) at various ionic strengths. The short time behavior of the correlation function is dominated by the static structure factor S(q) which is also independently determined from static light scattering experiments. Comparison of correlation functions of solutions with high ionic strength (screened Coulomb interaction) and those of solutions with liquid-like nearest neighbor order (strong Coulomb interaction) shows different single particle diffusion coefficients on medium time scales at high scattering vectors, where mainly single particle properties are observed by light scattering. The single particle diffusion coefficient decreases with increasing structure peak height of the solutions. At low scattering vectors an extra slow mode component of the correlation function is observed for solutions with Coulomb interaction.

  1. Surface enhanced Raman scattering of light by ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Milekhin, A. G.; Yeryukov, N. A.; Sveshnikova, L. L.; Duda, T. A.; Zenkevich, E. I.; Kosolobov, S. S.; Latyshev, A. V.; Himcinski, C.; Surovtsev, N. V.; Adichtchev, S. V.; Feng, Zhe Chuan; Wu, Chia Cheng; Wuu, Dong Sing; Zahn, D. R. T.

    2011-12-01

    Raman scattering (including nonresonant, resonant, and surface enhanced scattering) of light by optical and surface phonons of ZnO nanocrystals and nanorods has been investigated. It has been found that the nonresonant and resonant Raman scattering spectra of the nanostructures exhibit typical vibrational modes, E 2(high) and A 1(LO), respectively, which are allowed by the selection rules. The deposition of silver nanoclusters on the surface of nanostructures leads either to an abrupt increase in the intensity (by a factor of 103) of Raman scattering of light by surface optical phonons or to the appearance of new surface modes, which indicates the observation of the phenomenon of surface enhanced Raman light scattering. It has been demonstrated that the frequencies of surface optical phonon modes of the studied nanostructures are in good agreement with the theoretical values obtained from calculations performed within the effective dielectric function model.

  2. Light-scattering thermal cross-linking material using morphology of nanoparticle free polymer blends

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi

    2015-03-01

    A newly light-scattering thermal cross-linking material based on self-assembly for forming the morphology of nanoparticle free polymer blends was reported. The material design concept to use light-scattering thermal cross-linking material with high uniformity of light on display panel from LED for high quality such as brightness and evenness, mechanical properties, and gas and water barrier properties. The high light scattering rate of 8 % at 350-450 nm of wavelength, fast cure film at 140 ºC and 120 s, and thermal stability at 190 ºC in bake condition for high productivity were indicated in the light-scattering thermal cross-linking material using the nanoparticle free polymers with carboxylic acid functional groups. These novel system using morphology of nanoparticle free polymer blends in light-scattering package material for a LCD using LED was a valuable approach to the design of material formulations for newly light-scattering thermal cross-linking material.

  3. Utilization of light scattering in transmission laser welding of medical devices

    NASA Astrophysics Data System (ADS)

    von Bülow, Jon Fold; Bager, Kim; Thirstrup, Carsten

    2009-11-01

    This paper reports on optimization of material parameters in transmission laser welding of polymers including light absorption, light scattering and the thermal properties of the polymers. A criterion for making an optimized transmission laser weld between a transparent polymer part and an absorbing and scattering polymer part is formulated as a required thickness of the melt-zone in the transparent part with a corresponding minimum-line-energy-for-welding ( MLEW). Experimental data of MLEW are presented for a medical device application involving joining polyethylene-octene parts for various concentrations of near-infrared absorber and titanium dioxide light scattering particles. Numerical and analytical models yield good agreement to the experimental data and enable optimization of the transmission laser welding process. By utilization of light scattering, the laser line-energy required for joining two polymer parts can be reduced by a factor up to three, enabling a corresponding reduction of the cycle time in the manufacturing process.

  4. Interfaces roughness cross correlation properties and light scattering of optical thin films

    NASA Astrophysics Data System (ADS)

    Pan, Yong-qiang; Wu, Zhen-sen; Hang, Ling-xia

    2009-05-01

    In order to study optical thin films interfaces roughness cross correlation properties and light scattering, theoretical models of optical thin films interfaces roughness light scattering are concisely presented. Furthermore, influence of interfaces roughness cross-correlation properties to light scattering was analyzed by total backscattering. Moreover, TiO2 single optical films thickness, substrate roughness of K9 glass and ion beam assisted deposition (IBAD) technique effect on interface roughness cross correlation properties were studied by experiments, respectively. The results showed that theoretical results obtained by integrating vector light scattering were agreed well with experimental results. The interfaces roughness cross-correlation decrease with the increase of films thickness or with the decrease of substrates roughness. When ion beam assisted deposition was used, a high degree of cross-correlated can be obtained.

  5. Spectrum of laser light scattered by nanoparticles in an ablation-induced cavitation bubble

    NASA Astrophysics Data System (ADS)

    Takeuchi, Masato; Sasaki, Koichi

    2016-04-01

    The spectrum of the laser light scattered by nanoparticles in a cavitation bubble, which was induced by laser ablation of a titanium target in water, was measured using a triple-grating spectrograph. The scattered laser light observed at 100 \\upmu s after laser ablation had no wavelength-shifted component, suggesting that nanoparticles at this delay time were metallic. The wavelength-shifted component was observed in the spectrum at a delay time of 200 \\upmu s, suggesting the formation of oxidized nanoparticles. However, we observed no peaks in the spectrum of the scattered laser light in the present in situ laser-light scattering experiment. On the other hand, we observed clear peaks in the Raman spectrum of synthesized nanoparticles. The experimental results suggest slow crystallization of nanoparticles in liquid in liquid-phase laser ablation.

  6. Aerosol particle absorption spectroscopy by photothermal modulation of Mie scattered light

    SciTech Connect

    Campillo, A.J.; Dodge, C.J.; Lin, H.B.

    1981-09-15

    Absorption spectroscopy of suspended submicron-sized aqueous ammonium-sulfate aerosol droplets has been performed by employing a CO/sub 2/ laser to photothermally modulate visible Mie scattered light. (AIP)

  7. In vivo measurement of mid-infrared light scattering from human skin

    PubMed Central

    Michel, Anna P. M.; Liakat, Sabbir; Bors, Kevin; Gmachl, Claire F.

    2013-01-01

    Two mid-infrared light sources, a broadband source from a Fourier Transform Infrared Spectrometer (FTIR) and a pulsed Quantum Cascade (QC) Laser, are used to measure angle-resolved backscattering in vivo from human skin across a broad spectral range. Scattering profiles measured using the FTIR suggest limited penetration of the light into the skin, with most of the light interacting with the stratum corneum layer of the epidermis. Scattering profiles from the QC laser show modulation patterns with angle suggesting interaction with scattering centers in the skin. The scattering is attributed to interaction of the laser light with components such as collagen fibers and capillaries in the dermis layer of the skin. PMID:23577287

  8. Brillouin-scattering-induced transparency and non-reciprocal light storage

    PubMed Central

    Dong, Chun-Hua; Shen, Zhen; Zou, Chang-Ling; Zhang, Yan-Lei; Fu, Wei; Guo, Guang-Can

    2015-01-01

    Stimulated Brillouin scattering is a fundamental interaction between light and travelling acoustic waves and arises primarily from electrostriction and photoelastic effects, with an interaction strength several orders of magnitude greater than that of other relevant non-linear optical processes. Here we report an experimental demonstration of Brillouin-scattering-induced transparency in a high-quality whispering-gallery-mode optical microresonantor. The triply resonant Stimulated Brillouin scattering process underlying the Brillouin-scattering-induced transparency greatly enhances the light–acoustic interaction, enabling the storage of light as a coherent, circulating acoustic wave with a lifetime up to 10 μs. Furthermore, because of the phase-matching requirement, a circulating acoustic wave can only couple to light with a given propagation direction, leading to non-reciprocal light storage and retrieval. These unique features establish a new avenue towards integrated all-optical switching with low-power consumption, optical isolators and circulators. PMID:25648234

  9. Coherent Scattering of Near-Resonant Light by a Dense Microscopic Cold Atomic Cloud

    NASA Astrophysics Data System (ADS)

    Jennewein, S.; Besbes, M.; Schilder, N. J.; Jenkins, S. D.; Sauvan, C.; Ruostekoski, J.; Greffet, J.-J.; Sortais, Y. R. P.; Browaeys, A.

    2016-06-01

    We measure the coherent scattering of light by a cloud of laser-cooled atoms with a size comparable to the wavelength of light. By interfering a laser beam tuned near an atomic resonance with the field scattered by the atoms, we observe a resonance with a redshift, a broadening, and a saturation of the extinction for increasing atom numbers. We attribute these features to enhanced light-induced dipole-dipole interactions in a cold, dense atomic ensemble that result in a failure of standard predictions such as the "cooperative Lamb shift". The description of the atomic cloud by a mean-field model based on the Lorentz-Lorenz formula that ignores scattering events where light is scattered recurrently by the same atom and by a microscopic discrete dipole model that incorporates these effects lead to progressively closer agreement with the observations, despite remaining differences.

  10. Discrete Sources Method for light scattering analysis of non-axisymmetric features of a substrate

    NASA Astrophysics Data System (ADS)

    Eremin, Yuri; Wriedt, Thomas

    2016-01-01

    The Discrete Sources Method (DSM) has been extended to analyze polarized light scattering by non-axial symmetric nano-sized features on a plane substrate. A detailed description of the corresponding numerical scheme is provided. Using a "fictitious" particle approach the new DSM model enables to consider scattering from such substrate defects as a line bump and a line pit. The developed computer model has been employed for demonstrating the ability to perform a comparative analysis of light scattering from such line features. Simulation results corresponding to the Differential Scattering Cross-Section (DSC) and the integral response for P/S polarized light are presented. It was found that the integral response can change by an order of magnitude depending on the orientation of the linear defect with respect to the direction of the incident laser light. In addition, it was shown that some defects can turn out to be "invisible" if an oblique angle of incidence is chosen.

  11. Cancer detection using NIR elastic light scattering and tissue fluorescence imaging

    SciTech Connect

    Demos, S G; Staggs, M; Radousky, H B; Gandour-Edwards, R; deVere White, R

    2000-12-04

    Near infrared imaging using elastic light scattering and tissue fluorescence under long-wavelength laser excitation are explored for cancer detection. Various types of normal and malignant human tissue samples were utilized in this investigation.

  12. Light scattering by marine algae: two-layer spherical and nonspherical models

    NASA Astrophysics Data System (ADS)

    Quirantes, Arturo; Bernard, Stewart

    2004-11-01

    Light scattering properties of algae-like particles are modeled using the T-matrix for coated scatterers. Two basic geometries have been considered: off-centered coated spheres and centered spheroids. Extinction, scattering and absorption efficiencies, plus scattering in the backward plane, are compared to simpler models like homogeneous (Mie) and coated (Aden-Kerker) models. The anomalous diffraction approximation (ADA), of widespread use in the oceanographic light-scattering community, has also been used as a first approximation, for both homogeneous and coated spheres. T-matrix calculations show that some light scattering values, such as extinction and scattering efficiencies, have little dependence on particle shape, thus reinforcing the view that simpler (Mie, Aden-Kerker) models can be applied to infer refractive index (RI) data from absorption curves. The backscattering efficiency, on the other hand, is quite sensitive to shape. This calls into question the use of light scattering techniques where the phase function plays a pivotal role, and can help explain the observed discrepancy between theoretical and experimental values of the backscattering coefficient in observed in oceanic studies.

  13. Modeling Light Scattering in Tissue as Continuous Random Media Using a Versatile Refractive Index Correlation Function

    PubMed Central

    Rogers, Jeremy D.; Radosevich, Andrew J.; Yi, Ji; Backman, Vadim

    2014-01-01

    Optical interactions with biological tissue provide powerful tools for study, diagnosis, and treatment of disease. When optical methods are used in applications involving tissue, scattering of light is an important phenomenon. In imaging modalities, scattering provides contrast, but also limits imaging depth, so models help optimize an imaging technique. Scattering can also be used to collect information about the tissue itself providing diagnostic value. Therapies involving focused beams require scattering models to assess dose distribution. In all cases, models of light scattering in tissue are crucial to correctly interpreting the measured signal. Here, we review a versatile model of light scattering that uses the Whittle–Matérn correlation family to describe the refractive index correlation function Bn (rd). In weakly scattering media such as tissue, Bn (rd) determines the shape of the power spectral density from which all other scattering characteristics are derived. This model encompasses many forms such as mass fractal and the Henyey–Greenstein function as special cases. We discuss normalization and calculation of optical properties including the scattering coefficient and anisotropy factor. Experimental methods using the model are also described to quantify tissue properties that depend on length scales of only a few tens of nanometers. PMID:25587211

  14. A review of light-scattering techniques for the study of colloids in natural waters

    USGS Publications Warehouse

    Rees, T.F.

    1987-01-01

    In order to understand the movement of colloidal materials in natural waters, we first need to have a means of quantifying their physical characteristics. This paper reviews three techniques which utilize light-scattering phenomena to measure the translational diffusion coefficient, the rotational diffusion coefficient, and the electrophoretic mobility of colloids suspended in water. Primary emphasis is to provide sufficient theoretical detail so that hydrologists can evaluate the utility of photon correlation spectrometry, electrophoretic light scattering, and electric birefringence analysis. ?? 1987.

  15. Detecting quantum coherence of Bose gases in optical lattices by scattering light intensity in cavity.

    PubMed

    Zhou, Xiaoji; Xu, Xu; Yin, Lan; Liu, W M; Chen, Xuzong

    2010-07-19

    We propose a new method of detecting quantum coherence of a Bose gas trapped in a one-dimensional optical lattice by measuring the light intensity from Raman scattering in cavity. After pump and displacement process, the intensity or amplitude of scattering light is different for different quantum states of a Bose gas, such as superfluid and Mott-Insulator states. This method can also be useful to detect quantum states of atoms with two components in an optical lattice.

  16. Measurements of near forward scattered laser light in a large ICF plasma

    SciTech Connect

    Moody, J.D., LLNL

    1998-06-02

    We describe an instrument which measures the angular spread and spectrum of near forward scattered laser light from a probe beam in a long scalelength laser-plasma. The instrument consists of a combination of time integrating and time resolving detectors which measure the scattered light amplitude over four orders of magnitude for a range of angles. These measurements allow us to study the beam spray resulting from various laser and plasma conditions and determine the density fluctuations associated with this beam spray.

  17. Protein crystal nucleation kinetics using relative light-scattering techniques: Center director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Pusey, Marc Lee

    1989-01-01

    Light-scattering intensity measurements are a sensitive method for following changes in the hydrodynamic radius of particles in solution. The approach used in this report utilizes the light-scattering intensity ratios of a polydisperse to a monodisperse system. By numerically modeling the process, and fitting the model curves to the data, estimates have been obtained for the dimerization equilibrium constant, the dimer + dimer yields tetramer equilibrium constant, and the association rate constant for the dimerization process.

  18. Experimental and theoretical realization of enhanced light scattering spectroscopy of gold nanorods

    SciTech Connect

    Li, Yunbo; Song, Linlin; Qiao, Yisha

    2015-01-12

    Assisted with transmission electron microscopy and extinction spectra, the enhanced light scattering (ELS) experiments were performed with gold nanoparticles. Although both the nanospheres and nanorods can enhance light scattering in study aggregation, the spectral characteristics of gold nanorods is relatively simple compared to that of nanospheres. This will further extend the application range of ELS method to determinate the amounts of inorganic ions in analytical field and investigate on the macromolecular aggregation in polymeric research due to its simplicity, rapidity, and sensitivity.

  19. Dynamic light scattering investigations of nanoparticle aggregation following a light-induced pH jump

    NASA Astrophysics Data System (ADS)

    Murphy, Ryan J.; Pristinski, Denis; Migler, Kalman; Douglas, Jack F.; Prabhu, Vivek M.

    2010-05-01

    There are many important processes where the stability of nanoparticles can change due to changes in solution environment. These processes are often difficult to study under controlled changes to the solution conditions. Dynamic light scattering was used to measure the initial kinetics of aggregation of carboxylated polystyrene nanoparticles after well-defined pH jumps using aqueous solutions of photoacid generator (PAG). With this approach, the pH of the solution was controlled by exposure to ultraviolet (UV) light without the delays from mixing or stirring. The aggregation kinetics of the nanoparticles was extremely sensitive to the solution pH. The UV exposure dose is inversely correlated with the resulting surface charge of the nanoparticles. Decreasing pH decreases the electrostatic repulsion force between particles and leads to aggregation. The reaction-limited or diffusion-limited aggregation kinetics was sensitive to the pH quench depth, relative to the acid-equilibrium constant (pKa) of the surface carboxylic acid groups on the nanoparticles. Since numerous PAGs are commercially available, this approach provides a flexible method to study the aggregation of a variety of solvent-dispersed nanoparticle systems.

  20. Light scattering by conducting surfaces with one-dimensional roughness

    NASA Astrophysics Data System (ADS)

    O'Donnell, Kevin A.; Knotts, Michael E.; Michel, T. R.

    1994-10-01

    We describe experimental measurements of the scattering properties of two conducting surfaces with 1D roughness. The surfaces have been fabricated in photoresist and have been characterized with a stylus that is small compared to the surface correlation length. In studies of diffuse scatter, we present measurements of the four unique elements of the Stokes matrix. Backscattering enhancement and associated polarization effects are observed for the rougher surface while behavior consistent with tangent plane models is seen for the smoother surface. The polarization-dependence of the coherent scatter is also investigated, and comparisons are made with the results calculated for a flat surface. Finally, we briefly present results for the angular correlation functions of intensity, where the coherent effects that produce backscattering enhancement are more directly observed.

  1. Anomalous Light Scattering by Topological PT-symmetric Particle Arrays

    PubMed Central

    Ling, C. W.; Choi, Ka Hei; Mok, T. C.; Zhang, Zhao-Qing; Fung, Kin Hung

    2016-01-01

    Robust topological edge modes may evolve into complex-frequency modes when a physical system becomes non-Hermitian. We show that, while having negligible forward optical extinction cross section, a conjugate pair of such complex topological edge modes in a non-Hermitian -symmetric system can give rise to an anomalous sideway scattering when they are simultaneously excited by a plane wave. We propose a realization of such scattering state in a linear array of subwavelength resonators coated with gain media. The prediction is based on an analytical two-band model and verified by rigorous numerical simulation using multiple-multipole scattering theory. The result suggests an extreme situation where leakage of classical information is unnoticeable to the transmitter and the receiver when such a -symmetric unit is inserted into the communication channel. PMID:27905504

  2. Light scattering by absorbing hexagonal ice crystals in cirrus clouds.

    PubMed

    Zhang, J; Xu, L

    1995-09-01

    An improved ray-optics theory for single scattering and polarization of hexagonal columns and plates randomly oriented in space has been developed by considering absorption and by using the Chebyshev solution for diffraction integrals. The vector-tracing method and statistics technique of random sampling are employed. The equivalent forms of Snell's law and Fresnel formulas for absorbing ice crystals are derived, and two equivalent optical constants, m' and m″, are obtained. Comparison is made of the computed results of our model and the Takano and Liou model for asymmetry factors, single-scattering albedos, and scattering phase matrix elements. Some characteristics of our model are discussed, and these analyses demonstrate that our ray-optics model is practical and much improved.

  3. Anomalous Light Scattering by Topological PT-symmetric Particle Arrays

    NASA Astrophysics Data System (ADS)

    Ling, C. W.; Choi, Ka Hei; Mok, T. C.; Zhang, Zhao-Qing; Fung, Kin Hung

    2016-12-01

    Robust topological edge modes may evolve into complex-frequency modes when a physical system becomes non-Hermitian. We show that, while having negligible forward optical extinction cross section, a conjugate pair of such complex topological edge modes in a non-Hermitian -symmetric system can give rise to an anomalous sideway scattering when they are simultaneously excited by a plane wave. We propose a realization of such scattering state in a linear array of subwavelength resonators coated with gain media. The prediction is based on an analytical two-band model and verified by rigorous numerical simulation using multiple-multipole scattering theory. The result suggests an extreme situation where leakage of classical information is unnoticeable to the transmitter and the receiver when such a -symmetric unit is inserted into the communication channel.

  4. Effect of nonsphericity of scattering centers on light transport in turbid media

    NASA Astrophysics Data System (ADS)

    Mourant, Judith R.; Aida, Toru; Coburn, Leslie; Ramachandran, Janak

    2004-07-01

    The scattering centers in cells are not spheres, however, in most modeling of light transport, the scattering centers are assumed to be spherical. For example, in Monte Carlo simulations a Mie or Henyey-Greenstein phase function is often used. It is known that an elliptical particle will have a different phase function than a spherical particle. In particular there are differences in the phase functions for scattering polarized light. To examine how these changes in phase function affect light transport in tissue, we have developed a Monte Carlo code for light transport that uses elliptical scatterers. The phase functions are calculated using a T-matrix code and the propagation of polarized photons is performed in a manner analagous to that used by Bartel and Hielscher. Our initial results indicate that for narrow particle distributions the difference in shape can cause large differences in the intensity and polarization properties of the diffusely reflected light. For a mixture of particle sizes, however, there is a much smaller difference in the properties of the diffusely scattered light. Results are presented for both narrow and broad distributions of scatter sizes relevant to tissue.

  5. Features of polarization decay in the transition between the low-step and multiple scattering of laser light

    NASA Astrophysics Data System (ADS)

    Zimnyakov, D. A.; Yuvchenko, S. A.; Taskina, L. A.; Alonova, M. V.; Isaeva, E. A.; Isaeva, A. A.; Ushakova, O. V.

    2016-04-01

    The effect of increase in the uncertainty of local polarization states of laser light forward scattered by random media was studied in the experiments with phantom scatterers. At macroscopic level this effect is related to decay in the degree of polarization of scattered light in the course of transition from single to multiple scattering. Gelatin layers with embedded titania particles were used as the phantom scatterers. Features of distributions of local polarization states in various polarization coordinates were considered.

  6. Monte Carlo simulation of light scattering from size distributed homogenous and coated spherical particles

    NASA Astrophysics Data System (ADS)

    Gogoi, Ankur

    Light scattering is a subject of intensive research at the present time in diverse fields of research namely, physics, astronomy, meteorology, biology, nanotechnology, etc. Observation and theoretical calculation of the absorption and scattering properties of particles, whose size ranges from micrometer to nanometer, are not only essential to deduce their physical properties but also capable of giving useful information for better understanding of radiation transfer through a medium containing such scatterer. In addition to such experimental and theoretical studies on light scattering by particulate matter several other groups have been extensively using Monte Carlo (MC) method to simulate light (photon) propagation in scattering media. Importantly such methods of simulating light scattering properties of artificial particles are proving to be a very useful tool in verifying the experimental observations with real samples as well as providing new clues to improve the accuracy of the existing theoretical models. In this contribution we report a MC method developed by implementing Mie theory to simulate the light scattering pattern from size distributed homogenous and coated spherical particles in single scattering regime. The computer program was written in ANSI C-language. The accuracy, efficiency and reliability of the MC method were validated by comparing the results generated by using the MC method with other benchmark theoretical results and experimental results with standard samples. Notably the MC method reported here is found to be stable even for very large spherical particles (size parameters > 1000) with large values of real (= 10) and imaginary part (= 10) of the refractive index. The promising field of application of the reported MC method will be in simulating the light (or electromagnetic) scattering properties of different types of planetary and interplanetary dust particles.

  7. Flexible optitrode for localized light delivery and electrical recording.

    PubMed

    Lin, S-T; Wolfe, J C; Dani, J A; Shih, W-C

    2012-06-01

    We present optitrode, a miniaturized flexible probe for integrated, localized light delivery and electrical recording. This device features an annular light guide with transparent polymer and fused silica layers surrounding a twisted-wire tetrode. We have developed a novel fabrication process, V-groove guided capillary assembly, to achieve high-precision, coaxial alignment of the various layers of the device. Optitrode with a length-to-diameter ratio ∼500 (5 cm long, 100 μm diameter) has been fabricated, and both the electrical and optical functions have been characterized. The prototype can deliver 11% (110 mW) of the total laser power under abrupt bending angle ∼25°.

  8. Double scattering of light from Biophotonic Nanostructures with short-range order.

    PubMed

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Prum, Richard O; Mochrie, Simon G J; Dufresne, Eric R; Cao, Hui

    2010-05-24

    We investigate the physical mechanism for color production by isotropic nanostructures with short-range order in bird feather barbs. While the primary peak in optical scattering spectra results from constructive interference of singly-scattered light, many species exhibit secondary peaks with distinct characteristic. Our experimental and numerical studies show that these secondary peaks result from double scattering of light by the correlated structures. Without an analog in periodic or random structures, such a phenomenon is unique for short-range ordered structures, and has been widely used by nature for non-iridescent structural coloration.

  9. Investigation of light scattering as a technique for detecting discrete soot particles in a luminous flame

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The practicability of using a classical light-scattering technique, involving comparison of angular scattering intensity patterns with theoretically determined Mie and Rayleight patterns, to detect discrete soot particles (diameter less than 50 nm) in premixed propane/air and propane/oxygen-helium flames is considered. The experimental apparatus employed in this investigation included a laser light source, a flat-flame burner, specially coated optics, a cooled photomultiplier detector, and a lock-in voltmeter readout. Although large, agglomerated soot particles were detected and sized, it was not possible to detect small, discrete particles. The limiting factor appears to be background scattering by the system's optics.

  10. Bragg scattering of light in vacuum structured by strong periodic fields.

    PubMed

    Kryuchkyan, Gagik Yu; Hatsagortsyan, Karen Z

    2011-07-29

    Elastic scattering of laser radiation due to vacuum polarization by spatially modulated strong electromagnetic fields is considered. The Bragg interference arising at a specific impinging direction of the probe wave concentrates the scattered light in specular directions. The interference maxima are enhanced with respect to the usual vacuum polarization effect proportional to the square of the number of modulation periods within the interaction region. The Bragg scattering can be employed to detect the vacuum polarization effect in a setup of multiple crossed superstrong laser beams with parameters envisaged in the future Extreme Light Infrastructure.

  11. Double scattering of light from Biophotonic Nanostructures with short-range order

    SciTech Connect

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Prum, Richard O.; Mochrie, Simon G.J.; Dufresne, Eric R.; Cao, Hui

    2010-07-28

    We investigate the physical mechanism for color production by isotropic nanostructures with short-range order in bird feather barbs. While the primary peak in optical scattering spectra results from constructive interference of singly-scattered light, many species exhibit secondary peaks with distinct characteristic. Our experimental and numerical studies show that these secondary peaks result from double scattering of light by the correlated structures. Without an analog in periodic or random structures, such a phenomenon is unique for short-range ordered structures, and has been widely used by nature for non-iridescent structural coloration.

  12. Angle-Resolved Second-Harmonic Light Scattering from Colloidal Particles

    SciTech Connect

    Yang, N.; Angerer, W. E.; Yodh, A. G.

    2001-09-03

    We report angle-resolved second-harmonic generation (SHG) measurements from suspensions of centrosymmetric micron-size polystyrene spheres with surface-adsorbed dye (malachite green). The second-harmonic scattering profiles differ qualitatively from linear light scattering profiles of the same particles. We investigated these radiation patterns using several polarization configurations and particle diameters. We introduce a simple Rayleigh-Gans-Debye model to account for the SHG scattering anisotropy. The model compares favorably with our experimental data. Our measurements suggest scattering anisotropy may be used to isolate particle nonlinear optics from other bulk nonlinear optical effects in suspension.

  13. Light scattering apparatus and method for determining radiation exposure to plastic detectors

    DOEpatents

    Hermes, Robert E.

    2002-01-01

    An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.

  14. Light scattering by hexagonal ice crystals with distributed inclusions

    NASA Astrophysics Data System (ADS)

    Panetta, R. Lee; Zhang, Jia-Ning; Bi, Lei; Yang, Ping; Tang, Guanlin

    2016-07-01

    Inclusions of air bubbles or soot particles have significant effects on the single-scattering properties of ice crystals, effects that in turn have significant impacts on the radiation budget of an atmosphere containing the crystals. This study investigates some of the single-scattering effects in the case of hexagonal ice crystals, including effects on the backscattering depolarization ratio, a quantity of practical importance in the interpretation of lidar observations. One distinguishing feature of the study is an investigation of scattering properties at a visible wavelength for a crystal with size parameter (x) above 100, a size regime where one expects some agreement between exact methods and geometrical optics methods. This expectation is generally borne out in a test comparison of how the sensitivity of scattering properties to the distribution of a given volume fraction of included air is represented using (i) an approximate Monte Carlo Ray Tracing (MCRT) method and (ii) a numerically exact pseudo-spectral time-domain (PSTD) method. Another distinguishing feature of the study is a close examination, using the numerically exact Invariant-Imbedding T-Matrix (II-TM) method, of how some optical properties of importance to satellite remote sensing vary as the volume fraction of inclusions and size of crystal are varied. Although such an investigation of properties in the x>100 regime faces serious computational burdens that force a large number of idealizations and simplifications in the study, the results nevertheless provide an intriguing glimpse of what is evidently a quite complex sensitivity of optical scattering properties to inclusions of air or soot as volume fraction and size parameter are varied.

  15. Harnessing randomness to control the polarization of light transmitted through highly scattering media.

    PubMed

    Tripathi, Santosh; Toussaint, Kimani C

    2014-02-24

    We show that the multiple scattering events taking place inside a highly scattering medium, in conjunction with wavefront shaping, can be used to control the state of polarization of the light transmitted through a highly scattering medium. This control is achieved by using the intensity, phase, and polarization changing behavior of a scattering medium captured by a vector transmission matrix (VTM). We use a single beam incident upon a scattering medium to measure the absolute value of the VTM elements, in contrast to the multiple beams required in our previously reported approach. Further, the phase-only spatial light modulator based on a low-cost (< US$600) deformable micro-mirror array used in our work will make similar experiments accessible to other researchers.

  16. Effect of laser-radiation polarization on the nonlinear scattering of light in nanodiamond suspensions

    NASA Astrophysics Data System (ADS)

    Mikheev, G. M.; Vanyukov, V. V.; Mogileva, T. N.; Puzyr', A. P.; Bondar', V. S.; Svirko, Yu. P.

    2014-07-01

    The effect of laser radiation polarization on the nonlinear scattering of light in aqueous suspensions of detonation nanodiamonds (DNDs) in a regime of optical power limiting (OPL) has been studied. It is established that the nonlinear transmission coefficient of DND suspension in the OPL regime in a field of nanosecond laser pulses with a wavelength of 532 nm is independent of the polarization of incident radiation. The nonlinear scattering of light observed at an angle of 90° in the plane perpendicular to the plane of polarization of the incident radiation depends on the polarization angle in accordance with a trigonometric law. It is shown that the ratio of the signals of scattered radiation for the vertical and horizontal polarizations exhibits nonmonotonic dependence on the laser-beam power density. The results are explained by the Rayleigh-Mie scattering and a change in the size of scattering centers as a result of the effect of a laser upon the DND suspension.

  17. Statistical-thermodynamic model for light scattering from eye lens protein mixtures.

    PubMed

    Bell, Michael M; Ross, David S; Bautista, Maurino P; Shahmohamad, Hossein; Langner, Andreas; Hamilton, John F; Lahnovych, Carrie N; Thurston, George M

    2017-02-07

    We model light-scattering cross sections of concentrated aqueous mixtures of the bovine eye lens proteins γB- and α-crystallin by adapting a statistical-thermodynamic model of mixtures of spheres with short-range attractions. The model reproduces measured static light scattering cross sections, or Rayleigh ratios, of γB-α mixtures from dilute concentrations where light scattering intensity depends on molecular weights and virial coefficients, to realistically high concentration protein mixtures like those of the lens. The model relates γB-γB and γB-α attraction strengths and the γB-α size ratio to the free energy curvatures that set light scattering efficiency in tandem with protein refractive index increments. The model includes (i) hard-sphere α-α interactions, which create short-range order and transparency at high protein concentrations, (ii) short-range attractive plus hard-core γ-γ interactions, which produce intense light scattering and liquid-liquid phase separation in aqueous γ-crystallin solutions, and (iii) short-range attractive plus hard-core γ-α interactions, which strongly influence highly non-additive light scattering and phase separation in concentrated γ-α mixtures. The model reveals a new lens transparency mechanism, that prominent equilibrium composition fluctuations can be perpendicular to the refractive index gradient. The model reproduces the concave-up dependence of the Rayleigh ratio on α/γ composition at high concentrations, its concave-down nature at intermediate concentrations, non-monotonic dependence of light scattering on γ-α attraction strength, and more intricate, temperature-dependent features. We analytically compute the mixed virial series for light scattering efficiency through third order for the sticky-sphere mixture, and find that the full model represents the available light scattering data at concentrations several times those where the second and third mixed virial contributions fail. The model

  18. Statistical-thermodynamic model for light scattering from eye lens protein mixtures

    NASA Astrophysics Data System (ADS)

    Bell, Michael M.; Ross, David S.; Bautista, Maurino P.; Shahmohamad, Hossein; Langner, Andreas; Hamilton, John F.; Lahnovych, Carrie N.; Thurston, George M.

    2017-02-01

    We model light-scattering cross sections of concentrated aqueous mixtures of the bovine eye lens proteins γB- and α-crystallin by adapting a statistical-thermodynamic model of mixtures of spheres with short-range attractions. The model reproduces measured static light scattering cross sections, or Rayleigh ratios, of γB-α mixtures from dilute concentrations where light scattering intensity depends on molecular weights and virial coefficients, to realistically high concentration protein mixtures like those of the lens. The model relates γB-γB and γB-α attraction strengths and the γB-α size ratio to the free energy curvatures that set light scattering efficiency in tandem with protein refractive index increments. The model includes (i) hard-sphere α-α interactions, which create short-range order and transparency at high protein concentrations, (ii) short-range attractive plus hard-core γ-γ interactions, which produce intense light scattering and liquid-liquid phase separation in aqueous γ-crystallin solutions, and (iii) short-range attractive plus hard-core γ-α interactions, which strongly influence highly non-additive light scattering and phase separation in concentrated γ-α mixtures. The model reveals a new lens transparency mechanism, that prominent equilibrium composition fluctuations can be perpendicular to the refractive index gradient. The model reproduces the concave-up dependence of the Rayleigh ratio on α/γ composition at high concentrations, its concave-down nature at intermediate concentrations, non-monotonic dependence of light scattering on γ-α attraction strength, and more intricate, temperature-dependent features. We analytically compute the mixed virial series for light scattering efficiency through third order for the sticky-sphere mixture, and find that the full model represents the available light scattering data at concentrations several times those where the second and third mixed virial contributions fail. The model

  19. [Light scattering extinction properties of atmospheric particle and pollution characteristics in hazy weather in Hangzhou].

    PubMed

    Xu, Chang; Ye, Hui; Shen, Jian-Dong; Sun, Hong-Liang; Hong, Sheng-Mao; Jiao, Li; Huang, Kan

    2014-12-01

    In order to evaluate the influence of particle scattering on visibility, light scattering coefficient, particle concentrations and meteorological factor were simultaneously monitored from July 2011 to June 2012 in Hangzhou. Daily scattering coefficients ranged from 108.4 to 1 098.1 Mm(-1), with an annual average concentration of 428.6 Mm(-1) ± 200.2 Mm(-1). Seasonal variation of scattering coefficients was significant, with the highest concentrations observed in autumn and winter and the lowest in summer. It was found there were two peaks for the average diurnal variations of the scattering coefficient, which could be observed at 08:00 and 21:00. The scattering efficiencies of PM2.5 and PM10 were 7.6 m2 x g(-1) and 4.4 m2 x g(-1), respectively. The particle scattering was about 90.2 percent of the total light extinction. The scattering coefficients were 684.4 Mm(-1) ± 218.1 Mm(-1) and 1 095.4 Mm(-1) ± 397.7 Mm(-1) in hazy and heavy hazy days, respectively, which were 2.6 and 4.2 times as high as in non-hazy weather, indicating that particle scattering is the main factor for visibility degradation and the occurrence of hazy weather in Hangzhou.

  20. Water permeability through biological membranes by isotopic effects of fluorescence and light scattering.

    PubMed Central

    Lawaczeck, R

    1984-01-01

    A light-scattering technique used to measure the water permeability across closed biomembranes is described, which is based on the different indices of refraction of D2O and H2O. This transient technique is compared with a similar method using D2O-sensitive fluorophores in the intravesicular space. The results of both techniques are equivalent although the signal-to-noise ratio favors the light-scattering or turbidity experiment. The light-scattering method is only applicable to larger particles (no point-scatterers) and is easily extended to biological objects. Data on the H2O/D2O exchange across membranes of ghosts from human erythrocytes suggest two mechanisms: the D2O and H2O permeation through the membrane and a slower D2O-induced conformational change of membraneous proteins. PMID:6546887

  1. Spectral and angular distribution of light scattered from the elytra of two carabid beetle species

    NASA Astrophysics Data System (ADS)

    Wu, X.; Erbe, A.; Fabritius, H.; Raabe, D.

    2010-06-01

    Color in living organisms is primarily generated by two mechanisms: selective absorption by pigments and structural coloration, or a combination of both. In this study, we investigated the coloration of cuticle from the wings (elytra) of the two ground beetle species Carabus auronitens and Carabus auratus. The greenish iridescent color of both species is created by a multilayer structure consisting of periodically alternating layers with different thicknesses and composition which is located in the 1-2 µm thick outermost layer of the cuticle (epicuticle). Illuminated with white light, reflectance spectra in both linear polarisation show an angle-dependent characteristic peak in the blue/green region of the spectrum. Furthermore, the reflected light is polarised linearly. Scattering experiments with laser illumination at 532 nm show diffuse scattering over a larger angular range. The polarisation dependence of the scattered light is consistent with the interpretation of small inhomogeneities as scattering centres in the elytra.

  2. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak

    NASA Astrophysics Data System (ADS)

    Berni, L. A.; Albuquerque, B. F. C.

    2010-12-01

    Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esférico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contribute to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.

  3. Label-free identification of individual bacteria using Fourier transform light scattering.

    PubMed

    Jo, YoungJu; Jung, JaeHwang; Kim, Min-Hyeok; Park, HyunJoo; Kang, Suk-Jo; Park, YongKeun

    2015-06-15

    Rapid identification of bacterial species is crucial in medicine and food hygiene. In order to achieve rapid and label-free identification of bacterial species at the single bacterium level, we propose and experimentally demonstrate an optical method based on Fourier transform light scattering (FTLS) measurements and statistical classification. For individual rod-shaped bacteria belonging to four bacterial species (Listeria monocytogenes, Escherichia coli, Lactobacillus casei, and Bacillus subtilis), two-dimensional angle-resolved light scattering maps are precisely measured using FTLS technique. The scattering maps are then systematically analyzed, employing statistical classification in order to extract the unique fingerprint patterns for each species, so that a new unidentified bacterium can be identified by a single light scattering measurement. The single-bacterial and label-free nature of our method suggests wide applicability for rapid point-of-care bacterial diagnosis.

  4. Single-shot measurement of soot aggregate sizes by wide-angle light scattering (WALS)

    NASA Astrophysics Data System (ADS)

    Oltmann, H.; Reimann, J.; Will, S.

    2012-01-01

    The wide-angle light scattering (WALS) approach has been utilized for the measurement of soot aggregate sizes (radii of gyration) in flames on a single-shot basis. Key elements are a pulsed laser and an ellipsoidal mirror, which images the light scattered within a plane onto an intensified CCD camera, thus allowing for an instantaneous acquisition of a full scattering diagram with high resolution. Results for a laminar premixed flame exhibit good agreement with averaged data and demonstrate the feasibility of the method. The applicability of the technique to unsteady combustion processes is demonstrated by measuring aggregate sizes in a weakly turbulent jet-diffusion flame. In both cases light scattering results are verified by data obtained from electron microscopy analysis of sampled soot.

  5. Charactrisation of particle assemblies by 3D cross correlation light scattering and diffusing wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Scheffold, Frank

    2014-08-01

    To characterize the structural and dynamic properties of soft materials and small particles, information on the relevant mesoscopic length scales is required. Such information is often obtained from traditional static and dynamic light scattering (SLS/DLS) experiments in the single scattering regime. In many dense systems, however, these powerful techniques frequently fail due to strong multiple scattering of light. Here I will discuss some experimental innovations that have emerged over the last decade. New methods such as 3D static and dynamic light scattering (3D LS) as well as diffusing wave spectroscopy (DWS) can cover a much extended range of experimental parameters ranging from dilute polymer solutions, colloidal suspensions to extremely opaque viscoelastic emulsions.

  6. Use of fast scopes to enable Thomson scattering measurement in presence of fluctuating plasma light.

    SciTech Connect

    McLean, H; Moller, J; Hill, D

    2004-04-19

    The addition of inexpensive high-speed oscilloscopes has enabled higher Te Thomson scattering measurements on the SSPX spheromak. Along with signal correlation techniques, the scopes allow new analyses based on the shape of the scattered laser pulse to discriminate against fluctuating background plasma light that often make gated-integrator measurements unreliable. A 1.4 J Nd:YAG laser at 1064 nm is the scattering source. Spatial locations are coupled by viewing optics and fibers to 4-wavelength-channel filter polychrometers. Ratios between the channels determine Te while summations of the channels determine density. Typically, the channel that provides scattered signal at higher Te is contaminated by fluctuating background light. Individual channels are correlated with either a modeled representation of the laser pulse or a noise-free stray light signal to extract channel amplitudes.

  7. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak.

    PubMed

    Berni, L A; Albuquerque, B F C

    2010-12-01

    Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esférico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contribute to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.

  8. Nonequivalence of second virial coefficients from sedimentation equilibrium and static light scattering studies of protein solutions.

    PubMed

    Winzor, Donald J; Deszczynski, Marcin; Harding, Stephen E; Wills, Peter R

    2007-06-01

    Experimental data for ovalbumin and lysozyme are presented to highlight the nonequivalence of second virial coefficients obtained for proteins by sedimentation equilibrium and light scattering. Theoretical considerations confirm that the quantity deduced from sedimentation equilibrium distributions is B(22), the osmotic second virial coefficient describing thermodynamic nonideality arising solely from protein self-interaction. On the other hand, the virial coefficient determined by light scattering is shown to reflect the combined contributions of protein-protein and protein-buffer interactions to thermodynamic nonideality of the protein solution. Misidentification of the light scattering parameter as B(22) accounts for published reports of negative osmotic second virial coefficients as indicators of conditions conducive to protein crystal growth. Finally, textbook assertions about the equivalence of second virial coefficients obtained by sedimentation equilibrium and light scattering reflect the restriction of consideration to single-solute systems. Although sedimentation equilibrium distributions for buffered protein solutions are, indeed, amenable to interpretation in such terms, the same situation does not apply to light scattering measurements because buffer constituents cannot be regarded as part of the solvent: instead they must be treated as non-scattering cosolutes.

  9. The accuracy of liquid-liquid phase transition temperatures determined from semiautomated light scattering measurements.

    PubMed

    Dean, Kevin M; Babayco, Christopher B; Sluss, Daniel R B; Williamson, J Charles

    2010-08-21

    The synthetic-method determination of liquid-liquid coexistence curves using semiautomated light scattering instrumentation and stirred samples is based on identifying the coexistence curve transition temperatures (T(cx)) from sudden changes in turbidity associated with droplet formation. Here we use a thorough set of such measurements to evaluate the accuracy of several different analysis methods reported in the literature for assigning T(cx). More than 20 samples each of weakly opalescent isobutyric acid+water and strongly opalescent aniline+hexane were tested with our instrumentation. Transmitted light and scattering intensities at 2 degrees , 24 degrees , and 90 degrees were collected simultaneously as a function of temperature for each stirred sample, and the data were compared with visual observations and light scattering theory. We find that assigning T(cx) to the onset of decreased transmitted light or increased 2 degrees scattering has a potential accuracy of 0.01 K or better for many samples. However, the turbidity due to critical opalescence obscures the identification of T(cx) from the light scattering data of near-critical stirred samples, and no simple rule of interpretation can be applied regardless of collection geometry. At best, when 90 degrees scattering is collected along with transmitted or 2 degrees data, the accuracy of T(cx) is limited to 0.05 K for near-critical samples. Visual determination of T(cx) remains the more accurate approach in this case.

  10. Effect of scattering albedo on attenuation and polarization of light underwater.

    PubMed

    Cochenour, Brandon; Mullen, Linda; Muth, John

    2010-06-15

    Recent work on underwater laser communication links uses polarization discrimination to improve system performance [Appl. Opt.48, 328 (2009)] [in Proceedings of IEEE Oceans 2009 (IEEE, 2009), pp. 1-4]. In the laboratory, Maalox antacid is commonly used as a scattering agent. While its scattering function closely mimics that of natural seawaters, its scattering albedo can be much higher, as Maalox particles tend to be less absorbing. We present a series of experiments where Nigrosin dye is added to Maalox in order to more accurately recreate real-world absorption and scattering properties. We consider the effect that scattering albedo has on received power and the degree of depolarization of forward-scattered light in the context of underwater laser communication links.

  11. Impact of polishing on the light scattering at aerogel surface

    NASA Astrophysics Data System (ADS)

    Barnyakov, A. Yu.; Barnyakov, M. Yu.; Bobrovnikov, V. S.; Buzykaev, A. R.; Danilyuk, A. F.; Katcin, A. A.; Kononov, S. A.; Kirilenko, P. S.; Kravchenko, E. A.; Kuyanov, I. A.; Onuchin, A. P.; Ovtin, I. V.; Predein, A. Yu.; Protsenko, R. S.

    2016-07-01

    Particle identification power of modern aerogel RICH detectors strongly depends on optical quality of radiators. It was shown that wavelength dependence of aerogel tile transparency after polishing cannot be described by the standard Hunt formula. The Hunt formula has been modified to describe scattering in a thin layer of silica dust on the surface of aerogel tile. Several procedures of polishing of aerogel tile have been tested. The best result has been achieved while using natural silk tissue. The resulting block has optical smooth surfaces. The measured decrease of aerogel transparency due to surface scattering is about few percent. This result could be used for production of radiators for the Focusing Aerogel RICH detectors.

  12. Temporal Quantum Correlations in Inelastic Light Scattering from Water

    NASA Astrophysics Data System (ADS)

    Kasperczyk, Mark; de Aguiar Júnior, Filomeno S.; Rabelo, Cassiano; Saraiva, Andre; Santos, Marcelo F.; Novotny, Lukas; Jorio, Ado

    2016-12-01

    Water is one of the most prevalent chemicals on our planet, an integral part of both our environment and our existence as a species. Yet it is also rich in anomalous behaviors. Here we reveal that water is a novel—yet ubiquitous—source for quantum correlated photon pairs at ambient conditions. The photon pairs are produced through Raman scattering, and the correlations arise from the shared quantum of a vibrational mode between the Stokes and anti-Stokes scattering events. We confirm the nonclassical nature of the produced photon pairs by showing that the cross-correlation and autocorrelations of the signals violate a Cauchy-Schwarz inequality by over 5 orders of magnitude. The unprecedented degree of violating the inequality in pure water, as well as the well-defined polarization properties of the photon pairs, points to its usefulness in quantum information.

  13. Multi-angle Light Scattering Device for Aerosol Particle Detection

    DTIC Science & Technology

    2014-12-01

    SUBJECT TERMS b. ABSTRACT 2. REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF PAGES 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER...control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Kansas State University 2 Fairchild Hall Manhattan , KS 66506 -1100 31-Jul-2014...currently measuring scattering from Arizona road dust, various sizes of abrasive grits and planning soot studies, some cloud processed. The project

  14. Scattering of light from metamaterial gratings with finite length.

    PubMed

    Grünhut, Vivian; Cuevas, Mauro; Depine, Ricardo A

    2012-06-01

    Using an integral equation approach based on the Rayleigh hypothesis, we investigate the scattering of a plane wave at the rough surface of a metamaterial with a finite number of sinusoidal grooves. To show the adequacy of the model, we present results that are in agreement with the predictions of physical optics and that quantitatively reproduce the polarization and angular dependences predicted by the C-formalism for metamaterial gratings with an infinite number of grooves.

  15. Systematic Study of Pyroelectricity. Light Scattering and Pyroelectricity in Ferroelectrics

    DTIC Science & Technology

    1976-04-01

    displacements of the niobium atoms in the Z direction (away from the C. symmetry axis) which are correlated for some finite distance along Z. Averaged...consistent with the formation of linear chains of correlated displacements of niobium ions as proposed in connection with diffuse x-ray scattering -j...General US Anny Tank- Automotive Command ATTN: ORSTA-RH-FL 001 Warren, Michigan I4809O 1492 Commandant US .Army Air Defense School ATTN

  16. A Novel Effect of Scattered-Light Interference in Misted Mirrors

    ERIC Educational Resources Information Center

    Bridge, N. James

    2005-01-01

    Interference rings can be observed in mirrors clouded by condensation, even in diffuse lighting. The effect depends on individual droplets acting as point sources by refracting light into the mirror, so producing coherent wave-trains which are reflected and then scattered again by diffraction round the same source droplet. The secondary wave-train…

  17. Absorption and scattering of light by VO2 nanoparticle array

    NASA Astrophysics Data System (ADS)

    Yu, Xiaojing; Li, Yi; Wang, Haifang; Zhang, Hu; Zhang, Wei; Huang, Yize

    2009-07-01

    Much attention has been paid to the semiconductor-metal phase transition in vanadium dioxide nanomaterials, accompanied with an abrupt change in its resistivity and near-infrared transmission. The phase transition and optical properties of vanadium dioxide nanoparticles were studied by the mathematical model based on the complex refractive changing with the temperature and wavelength. The optical properties of nano-array were investigated by using the discrete dipole approximation and Mie scattering theory, as well as the absorption and scattering properties of small particles. The results show that the main contribution to the optical response with variational wavelength in the infrared is from absorption cross section comparing with the scattering cross section. It is obvious that the absorption peak of metal phase occurs near 980nm. With the change of temperature, the variation of extinction coefficient is larger in the infrared region than in the visible region. The largest change of extinction coefficient occurs in the near-infrared region. The extincition coefficient is very small in the visible region and there is a maximal value in the infrared region in the nano-array.

  18. Design and analysis of particles detecting system based on near forward light scattering

    NASA Astrophysics Data System (ADS)

    Cui, Xiao-Jun; Li, Xiao; Yu, Jia-Xin

    2016-01-01

    A novel design based on near forward light scattering detection system to measure size and concentration distribution of particles in liquids is reported. According to theory of Mie scattering, the influence of relative refractive index, particles size and wavelength on the detection results are discussed. A green optical fiber laser with 532nm was used as the excited light source. As a key part in the detection system, the focusing system using a lens structure to confine light sensitive area with Gauss distribution less than 80 μm2. The lateral size of the sample cell is limited to 100μm. In order to measure the particles in non-overlapping state and improve the accuracy and repeatability, a novel structure in the sample cell was used and particle velocity through the sample cell was controlled by high precision stepper motor control system of micro circulation pump. Particle light scattering signal acquisition was completed by the poly lens combination system, according to the receiving angle relative to the measured particle, which can adjust the light scattering direction to obtain better particles light scattering signal. Photoelectric signal conversion, amplification and acquisition are all the devices with high precision. The measurement results showed that the measurement system was accurate and stable when the particles size in the range of 0.5-5μm.

  19. Morphology effect on the light scattering and dynamic response of polymer network liquid crystal phase modulator.

    PubMed

    Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Jiancheng, Zeng; Dayong, Zhang; Yongquan, Luo

    2014-06-16

    Polymer network liquid crystal (PNLC) was one of the most potential liquid crystal for submillisecond response phase modulation, which was possible to be applied in submillisecond response phase only spatial light modulator. But until now the light scattering when liquid crystal director was reoriented by external electric field limited its phase modulation application. Dynamic response of phase change when high voltage was applied was also not elucidated. The mechanism that determines the light scattering was studied by analyzing the polymer network morphology by SEM method. Samples were prepared by varying the polymerization temperature, UV curing intensity and polymerization time. The morphology effect on the dynamic response of phase change was studied, in which high voltage was usually applied and electro-striction effect was often induced. The experimental results indicate that the polymer network morphology was mainly characterized by cross linked single fibrils, cross linked fibril bundles or even both. Although the formation of fibril bundle usually induced large light scattering, such a polymer network could endure higher voltage. In contrast, although the formation of cross linked single fibrils induced small light scattering, such a polymer network cannot endure higher voltage. There is a tradeoff between the light scattering and high voltage endurance. The electro-optical properties such as threshold voltage and response time were taken to verify our conclusion. For future application, the monomer molecular structure, the liquid crystal solvent and the polymerization conditions should be optimized to generate optimal polymer network morphology.

  20. Angular scattering of light by a homogeneous spherical particle in a zeroth-order Bessel beam and its relationship to plane wave scattering.

    PubMed

    Preston, Thomas C; Reid, Jonathan P

    2015-06-01

    The angular scattering of light from a homogeneous spherical particle in a zeroth-order Bessel beam is calculated using a generalized Lorenz-Mie theory. We investigate the dependence of the angular scattering on the semi-apex angle of the Bessel beam and discuss the major features of the resulting scattering plots. We also compare Bessel beam scattering to plane wave scattering and provide criterion for when the difference between the two cases can be considered negligible. Finally, we discuss a method for characterizing spherical particles using angular light scattering. This work is useful to researchers who are interested in characterizing particles trapped in optical beams using angular dependent light scattering measurements.

  1. Single-particle evanescent light scattering simulations for total internal reflection microscopy

    NASA Astrophysics Data System (ADS)

    Helden, Laurent; Eremina, Elena; Riefler, Norbert; Hertlein, Christopher; Bechinger, Clemens; Eremin, Yuri; Wriedt, Thomas

    2006-10-01

    We simulate and measure light scattering of a micrometer-sized spherical particle suspended in solution close to a glass substrate. The model, based on the discrete sources method, is developed to describe the experimental situation of total internal reflection microscopy experiments; i.e., the particle is illuminated by an evanescent light field originating from the glass-solvent interface. In contrast to the well-established assumption of a simple exponential decay of the scattering intensity with distance, we demonstrate significant deviations for a certain range of penetration depths and polarization states of the incident light.

  2. Single-particle evanescent light scattering simulations for total internal reflection microscopy.

    PubMed

    Helden, Laurent; Eremina, Elena; Riefler, Norbert; Hertlein, Christopher; Bechinger, Clemens; Eremin, Yuri; Wriedt, Thomas

    2006-10-01

    We simulate and measure light scattering of a micrometer-sized spherical particle suspended in solution close to a glass substrate. The model, based on the discrete sources method, is developed to describe the experimental situation of total internal reflection microscopy experiments; i.e., the particle is illuminated by an evanescent light field originating from the glass-solvent interface. In contrast to the well-established assumption of a simple exponential decay of the scattering intensity with distance, we demonstrate significant deviations for a certain range of penetration depths and polarization states of the incident light.

  3. Method for measuring changes in light absorption of highly scattering media

    DOEpatents

    Bigio, Irving J.; Johnson, Tamara M.; Mourant, Judith R.

    2002-01-01

    The noninvasive measurement of variations in absorption that are due to changes in concentrations of biochemically relevant compounds in tissue is important in many clinical settings. One problem with such measurements is that the pathlength traveled by the collected light through the tissue depends on the scattering properties of the tissue. It is demonstrated, using both Monte Carlo simulations and experimental measurements, that for an appropriate separation between light-delivery and light-collection fibers, the pathlength of the collected photons is insensitive to scattering parameters for the range of parameters typically found in tissue. This is important for developing rapid, noninvasive, inexpensive, and accurate methods for measuring absorption changes in tissue.

  4. Finite-size effect in light transmission through highly forward scattering media at grazing angles.

    PubMed

    Marinyuk, V V; Sheberstov, S V

    2016-03-01

    We present a theoretical study of light transmission through a disordered medium with large (compared to the light wavelength) inhomogeneities. Both numerical integration and analytic treatments of the radiative transfer equation are performed. An effect of the single-scattering phase function on the total transmittance is found in a subdiffusion thickness range. The effect reveals itself at grazing angles of incidence and originates from small-angle multiple scattering of light. A simple analytic formula for the total transmittance is derived. Our results are in good agreement with data of independent numerical calculations.

  5. Mesoscopic coherence in light scattering from cold, optically dense and disordered atomic systems

    NASA Astrophysics Data System (ADS)

    Kupriyanov, D. V.; Sokolov, I. M.; Havey, M. D.

    2017-02-01

    Coherent effects manifested in light scattering from cold, optically dense and disordered atomic systems are reviewed from a primarily theoretical point of view. Development of the basic theoretical tools is then elaborated through several physical atomic physics based processes which have been at least partly explored experimentally. These include illustrations drawn from the coherent backscattering effect, random lasing in atomic gases, quantum memories and light-atoms interface assisted by the light trapping mechanism. Current understanding and challenges associated with the transition to high atomic densities and cooperativity in the scattering process are also discussed in some detail.

  6. Transfer of diffuse astronomical light and airglow in scattering Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Hong, S. S.; Kwon, S. M.; Park, Y.-S.; Park, C.

    1998-06-01

    To understand an observed distribution of atmospheric diffuse light (ADL) over an entire meridian, we have solved rigorously, with the quasi-diffusion method, the problem of radiative transfer in an anisotropically scattering spherical atmosphere of the earth. In addition to the integrated starlight and the zodiacal light we placed a narrow layer of airglow emission on top of the scattering earth atmosphere. The calculated distribution of the ADL brightness over zenith distance shows good agreement with the observed one. The agreement can be utilized in deriving the zodiacal light brightness at small solar elongations from the night sky brightness observed at large zenith distances.

  7. Mid-infrared (λ = 8.4-9.9 μm) light scattering from porcine tissue

    NASA Astrophysics Data System (ADS)

    Liakat, Sabbir; Michel, Anna P. M.; Bors, Kevin A.; Gmachl, Claire F.

    2012-08-01

    Back-scattering of mid-infrared light from porcine skin is studied versus wavelength and angle for a Quantum Cascade laser and a broadband infrared light source. Scattering is detected over 30° away from the specular angle for both sources, and modulation patterns with angle are seen when using the laser. A nonlinear increase in scattered light intensity versus input power indicates that directional scattering from within the skin is dominant. Collagen fibers in the dermis layer, over 200 μm deep into the skin, are conducive to such scattering. We conclude that mid-infrared light penetrates deep enough for potential glucose detection in dermal interstitial fluid.

  8. Macroorganization of Chlorophyll a/b light-harvesting complex in thylakoids and aggregates: information from circular differential scattering

    SciTech Connect

    Garab, G.; Faludi-Daniel, A.; Sutherland, J.C.; Hind, G.

    1988-04-05

    Circular dichroism (CD) and magnetic circular dichroism (MCD) spectra were recorded for spinach thylakoids and for isolated, aggregated chlorophyll a/b light-harvesting pigment-protein complex, in random and magnetically aligned states of orientation at room and low temperatures. The shape and magnitude of the CD signal of most bands strongly depended on the orientation of the thylakoid membranes or the aggregated pigment-protein complex. In both thylakoids and aggregated light-harvesting complexes, however, the MCD spectra of the two different orientations were almost identical. Random and magnetically aligned samples exhibited anomalous, large CD signals outside the bands of pigment absorbance. Lack of similarity between the corresponding MCD and CD spectra showed that the large CD signals are not produced as a distortion of CD of absorbance by light scattering. Instead, these anomalous spectral features are believed to originate in differential selective scattering of circularly polarized light. The results lead to the conclusion that the light-harvesting pigment-protein complex in thylakoid grana forms a helical macroarray with dimensions commensurate with the wavelengths of the anomalous circular dichroism signals. A hypothesis is put forward suggesting a role for these macrodomains in granal organization.

  9. Near-Infrared Light Absorption and Scattering Based on a Mono-Layer of Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Soltanmoradi, R.; Wang, Q.; Qiu, M.; Popov, S.; Yan, M.

    2015-06-01

    We report fabrication and characterization of large-area ultrathin near-infrared light absorbers and scatterers based on a mono-layer of gold nanoparticles laying on top of a dielectric spacer and an aluminum reflector. The nanoparticles are formed through thermal annealing of an evaporated continuous gold film. Through optimization of initial gold-film thickness, spacer thickness, as well as annealing temperature we obtained samples that exhibit very low (~2%) broadband specular reflectance at near-infrared (NIR) wavelength range. By considering also diffuse reflection, we identify that the low specular reflectance can be due to either relatively high light absorption (~70%) or high light scattering (over 60%), with the latter achieved for samples having relatively sparse gold nanoparticles. Both strong absorption and scattering of NIR light are not inherent properties of the bulk materials used for fabricating the samples. Such composite optical surfaces can potentially be integrated to solar-energy harvesting and LED devices.

  10. Intensity and polarization of light scattered by size distributions of randomly oriented nonspherical particles

    NASA Technical Reports Server (NTRS)

    Mishchenko, M. I.; Travis, L. D.

    1993-01-01

    Calculations of light scattering by small particles are important in many diverse fields of science and engineering. In many cases of practical interest, scattering particles are nonspherical and are distributed over sizes and orientations. However, accurate light scattering computations for ensembles of nonspherical particles are difficult and time-consuming, and the literature in which such calculations are reported is rather scarce. In this paper, the T-matrix approach, as extended recently to randomly oriented particles, is used to calculate rigorously light scattering by size distributions of randomly oriented axially symmetric particles. To model the variation of particle sizes in real ensembles, we use a power law distribution typical of some terrestrial aerosols. Contour plots of intensity and degree of linear polarization for polydisperse prolate and oblate spheroids of different aspect ratios and effective equivalent-sphere size parameters from 0 to 10 are calculated and compared with calculations for equivalent spheres. The angular scattering behavior of nonspherical polydispersions is found to be greatly different from that of spheres, while the scattering properties of oblate and prolate spheroids of the same aspect ratio are similar. With increasing particle size, both intensity and polarization become more shape-dependent. In general, nonspherical particles are stronger side scatterers and weaker backscatterers than equivalent spheres. With increasing aspect ratio of nonspherical particles polarization tends to be predominantly positive. Possible effects of particle nonsphericity on optical remote sensing of atmospheric aerosols are discussed.

  11. Controlling the s -wave scattering length with nonresonant light: Predictions of an asymptotic model

    NASA Astrophysics Data System (ADS)

    Crubellier, Anne; González-Férez, Rosario; Koch, Christiane P.; Luc-Koenig, Eliane

    2017-02-01

    A pair of atoms interacts with nonresonant light via its anisotropic polarizability. This effect can be used to tune the scattering properties of the atoms. Although the light-atom interaction varies with interatomic separation as 1 /R3 , the effective s -wave potential decreases more rapidly as 1 /R4 such that the field-dressed scattering length can be determined without any formal difficulty. The scattering dynamics are essentially governed by the long-range part of the interatomic interaction and can thus be accurately described by an asymptotic model [A. Crubellier et al., New J. Phys. 17, 045020 (2015), 10.1088/1367-2630/17/4/045020]. Here we use the asymptotic model to determine the field-dressed scattering length from the s -wave radial component of a particular threshold wave function. Applying our theory to the scattering of two strontium isotopes, we calculate the variation of the scattering length with the intensity of the nonresonant light. Moreover, we predict the intensities at which the scattering length becomes infinite for any pair of atoms.

  12. Accurate optical simulation of nano-particle based internal scattering layers for light outcoupling from organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Egel, Amos; Gomard, Guillaume; Kettlitz, Siegfried W.; Lemmer, Uli

    2017-02-01

    We present a numerical strategy for the accurate simulation of light extraction from organic light emitting diodes (OLEDs) comprising an internal nano-particle based scattering layer. On the one hand, the light emission and propagation through the OLED thin film system (including the scattering layer) is treated by means of rigorous wave optics calculations using the T-matrix formalism. On the other hand, the propagation through the substrate is modeled in a ray optics approach. The results from the wave optics calculations enter in terms of the initial substrate radiation pattern and the bidirectional reflectivity distribution of the OLED stack with scattering layer. In order to correct for the truncation error due to a finite number of particles in the simulations, we extrapolate the results to infinitely extended scattering layers. As an application example, we estimate the optimal particle filling fraction for an internal scattering layer in a realistic OLED geometry. The presented treatment is designed to emerge from electromagnetic theory with as few additional assumptions as possible. It could thus serve as a baseline to validate faster but approximate simulation approaches.

  13. Electrically Switchable and Permanently Stable Light Scattering Modes by Dynamic Fingerprint Chiral Textures.

    PubMed

    Cheng, Ko-Ting; Lee, Po-Yi; Qasim, Malik M; Liu, Cheng-Kai; Cheng, Wen-Fa; Wilkinson, Timothy D

    2016-04-27

    Negative dielectric nematic liquid crystals (LCs) doped with two azobenzene materials provide electrically switchable and permanently stable scattering mode light modulators based on dynamic fingerprint chiral textures (DFCT) with inhomogeneously helical axes. These light modulators can be switched between transparent (stable large domains of DFCT) states and scattering (stable small domains of DFCT) states by applying electric fields with different frequencies. The generation of DFCT results from the long flexible side chains of the doped chiral dopant. That is, if the DFCT can be obtained, then the large domains of DFCT reflect an intrinsically stable state. Moreover, the stabilization of the small domains of DFCT are caused by the terminal rigid restricted side chains of the other doped chiral dopant. Experimentally, the required amplitude to switch the light modulator from a scattering (transparent) state to a transparent (scattering) state decreases as the frequency of the applied electric field increases (decreases) within the set limits. This study is the first report on the advantages of the light scattering mode of DFCT, including low operating voltage, permanently stable transmission, wide viewing angle, high contrast, and polarization-independent scattering and transparency.

  14. Light Scattering by Gaussian Particles: A Solution with Finite-Difference Time Domain Technique

    NASA Technical Reports Server (NTRS)

    Sun, W.; Nousiainen, T.; Fu, Q.; Loeb, N. G.; Videen, G.; Muinonen, K.

    2003-01-01

    The understanding of single-scattering properties of complex ice crystals has significance in atmospheric radiative transfer and remote-sensing applications. In this work, light scattering by irregularly shaped Gaussian ice crystals is studied with the finite-difference time-domain (FDTD) technique. For given sample particle shapes and size parameters in the resonance region, the scattering phase matrices and asymmetry factors are calculated. It is found that the deformation of the particle surface can significantly smooth the scattering phase functions and slightly reduce the asymmetry factors. The polarization properties of irregular ice crystals are also significantly different from those of spherical cloud particles. These FDTD results could provide a reference for approximate light-scattering models developed for irregular particle shapes and can have potential applications in developing a much simpler practical light scattering model for ice clouds angular-distribution models and for remote sensing of ice clouds and aerosols using polarized light. (copyright) 2003 Elsevier Science Ltd. All rights reserved.

  15. On the scattered light by dilute aqueous dispersions of nanogel particles.

    PubMed

    Callejas-Fernández, J; Ramos, J; Forcada, J; Moncho-Jordá, A

    2015-07-15

    This work deals with the scattered light by nanoparticles formed by a temperature sensitive polymer networks, namely nanogel particles. The scattered light is measured as a function of the scattering angle at temperatures below and above the volume phase transition temperature (VPTT) of nanogel particles. Our experimental results indicate that nanogel particles have a core-shell structure, formed by a uniform highly cross-linked core surrounded by a fuzzy shell where the polymer density decays to zero gradually for swollen configurations and sharply for shrunken states. The theoretical fitting of the experimental curves shows that the scattered light at low angle obeys a decreasing power law with the scattering vector, q(-α). The value of exponent α provides information about the radial dependence of the polymer density at the external shell of the particles for swollen nanogels, and about the degree of roughness of the surface for the case of shrunken nanogels. On the one hand, at low temperatures (below the VPPT), the nanogel particle is in the swollen state and the light scattering data show that its shell structure follows a fractal behaviour, with a polymer density that decays as r(α-3), where r is the distance to the particle centre. On the other hand, above the VPPT the results indicate that nanogel collapses into a core of uniform polymer density and a rough shell, with a fractal surface dimension of 2.5.

  16. Q-space analysis of light scattering by Gaussian Random Spheres

    NASA Astrophysics Data System (ADS)

    Maughan, Justin B.; Sorensen, Christopher M.; Chakrabarti, Amitabha

    2016-05-01

    Q-space analysis is applied to the scattered intensity from Gaussian Random Spheres (GRSs). Q-space analysis involves plotting the scattered intensity vs. the magnitude of the scattering wave vector q = 2 k sin θ/2 where k = 2 π / λ with λ the wavelength and θ is the scattering angle, on a log-log plot. The light scattering properties of GRSs were calculated using a discrete dipole approximation algorithm. The GRSs had σ=0.2 and ν=3, where σ is the relative standard deviation in the radial direction, and ν describes fluctuations in the angular direction. Calculations were systematically performed with size parameters ranging from 10 to 30, and with a relative index of refraction, m, ranging from 1.01 to 1.5. The results show quantifiable, power law descriptions of the scattered intensity and a Rayleigh functionality of the forward scattered intensity that depend upon the phase shift parameter ρ = 2 k Req | m - 1 | where Req is an equivalent radius. Similar functionalities have been observed in both spheres and other irregularly shaped particles. These results continue the implication that there is a comprehensive description of light scattering for all particles that can be uncovered with the application of Q-space.

  17. A fourier tool for the analysis of coherent light scattering by bio-optical nanostructures.

    PubMed

    Prum, Richard O; Torres, Rodolfo H

    2003-08-01

    The fundamental dichotomy between incoherent (phase independent) and coherent (phase dependent) light scattering provides the best criterion for a classification of biological structural color production mechanisms. Incoherent scattering includes Rayleigh, Tyndall, and Mie scattering. Coherent scattering encompasses interference, reinforcement, thin-film reflection, and diffraction. There are three main classes of coherently scattering nanostructures-laminar, crystal-like, and quasi-ordered. Laminar and crystal-like nanostructures commonly produce iridescence, which is absent or less conspicuous in quasi-ordered nanostructures. Laminar and crystal-like arrays have been analyzed with methods from thin-film optics and Bragg's Law, respectively, but no traditional methods were available for the analysis of color production by quasi-ordered arrays. We have developed a tool using two-dimensional (2D) Fourier analysis of transmission electron micrographs (TEMs) that analyzes the spatial variation in refractive index (available from the authors). This Fourier tool can examine whether light scatterers are spatially independent, and test whether light scattering can be characterized as predominantly incoherent or coherent. The tool also provides a coherent scattering prediction of the back scattering reflectance spectrum of a biological nanostructure. Our applications of the Fourier tool have falsified the century old hypothesis that the non-iridescent structural colors of avian feather barbs and skin are produced by incoherent Rayleigh or Tyndall scattering. 2D Fourier analysis of these quasi-ordered arrays in bird feathers and skin demonstrate that these non-iridescent colors are produced by coherent scattering. No other previous examples of biological structural color production by incoherent scattering have been tested critically with either analysis of scatterer spatial independence or spectrophotometry. The Fourier tool is applied here for the first time to coherent

  18. Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers.

    PubMed

    Zhao, Dengwu; Duan, Haoze; Yu, Shengtao; Zhang, Yao; He, Jiaqing; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-11-26

    This report investigates the enhancement of localized evaporation via separated light absorbing particles (plasmonic absorbers) and scattering particles (polystyrene nanoparticles). Evaporation has been considered as one of the most important phase-change processes in modern industries. To improve the efficiency of evaporation, one of the most feasible methods is to localize heat at the top water layer rather than heating the bulk water. In this work, the mixture of purely light absorptive plasmonic nanostructures such as gold nanoparticles and purely scattering particles (polystyrene nanoparticles) are employed to confine the incident light at the top of the solution and convert light to heat. Different concentrations of both the light absorbing centers and the light scattering centers were evaluated and the evaporation performance can be largely enhanced with the balance between absorbing centers and scattering centers. The findings in this study not only provide a new way to improve evaporation efficiency in plasmonic particle-based solution, but also shed lights on the design of new solar-driven localized evaporation systems.

  19. Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers

    PubMed Central

    Zhao, Dengwu; Duan, Haoze; Yu, Shengtao; Zhang, Yao; He, Jiaqing; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-01-01

    This report investigates the enhancement of localized evaporation via separated light absorbing particles (plasmonic absorbers) and scattering particles (polystyrene nanoparticles). Evaporation has been considered as one of the most important phase-change processes in modern industries. To improve the efficiency of evaporation, one of the most feasible methods is to localize heat at the top water layer rather than heating the bulk water. In this work, the mixture of purely light absorptive plasmonic nanostructures such as gold nanoparticles and purely scattering particles (polystyrene nanoparticles) are employed to confine the incident light at the top of the solution and convert light to heat. Different concentrations of both the light absorbing centers and the light scattering centers were evaluated and the evaporation performance can be largely enhanced with the balance between absorbing centers and scattering centers. The findings in this study not only provide a new way to improve evaporation efficiency in plasmonic particle-based solution, but also shed lights on the design of new solar-driven localized evaporation systems. PMID:26606898

  20. Elastic light single-scattering spectroscopy for detection of dysplastic tissues

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Denkçeken, Tuba; Akman, Ayşe.; Alpsoy, Erkan; Tuncer, Recai; Akyüz, Mahmut; Baykara, Mehmet; Yücel, Selçuk; Başsorgun, Ibrahim; ćiftçioǧlu, M. Akif; Gökhan, Güzide Ayşe.; Gürer, ElifInanç; Peştereli, Elif; Karaveli, Šeyda

    2013-11-01

    Elastic light single-scattering spectroscopy (ELSSS) system has been developed and tested in diagnosis of cancerous tissues of different organs. ELSSS system consists of a miniature visible light spectrometer, a single fiber optical probe, a halogen tungsten light source and a laptop. Measurements were performed on excised brain, skin, cervix and prostate tumor specimens and surrounding normal tissues. Single fiber optical probe with a core diameter of 100 μm was used to deliver white light to and from tissue. Single optical fiber probe mostly detects singly scattered light from tissue rather than diffused light. Therefore, measured spectra are sensitive to size of scatters in tissue such as cells, nuclei, mitochondria and other organelles of cells. Usually, nuclei of tumor cells are larger than nuclei of normal cells. Therefore, spectrum of singly scattered light of tumor tissue is different than normal tissue. The spectral slopes were shown to be positive for normal brain, skin and prostate and cervix tissues and negative for the tumors of the same tissues. Signs of the spectral slopes were used as a discrimination parameter to differentiate tumor from normal tissues for the three organ tissues. Sensitivity and specificity of the system in differentiation between tumors from normal tissues were 93% and %100 for brain, 87% and 85% for skin, 93.7% and 46.1% for cervix and 98% and 100% for prostate.

  1. Surface plasmon excitations in metal spheres: Direct comparison of light scattering and electron energy-loss spectroscopy by modal decomposition

    NASA Astrophysics Data System (ADS)

    Collins, Sean M.; Midgley, Paul A.

    2013-06-01

    In previous publications, qualitative agreement between studies of surface plasmon excitations in nanoparticles by near-field light scattering and electron energy-loss spectroscopy (EELS) has been found for experiments and simulations. Here, we present a quantitative method for the comparison of light scattering and EELS for surface plasmons in metal spheres. Defining the Fourier transform of the modal component of the scattered electric field along the equivalent electron trajectory enables a direct evaluation of the relative weighting factor for light- and electron-excited surface plasmon modes. This common quantity for light scattering and EELS is examined for size, composition, and trajectory dependencies, facilitating the analysis of key differences between light and electron excitation. A single functional dependence on Drude model plasmon energies is identified to explain the relative modal weighting factors for light scattering and EELS. This method represents an important step toward the complete spectral and spatial reconstruction of EELS maps from near-field light scattering calculations.

  2. Fiber optic light-scattering measurement system for evaluation of embryo viability: model experiment

    NASA Astrophysics Data System (ADS)

    Itoh, Harumi; Arai, Tsunenori; Kikuchi, Makoto

    1996-05-01

    We evaluated the particle density detectability and particle size detectivity of our fiber-optic light-scattering measurement system. In order to prevent the multiple pregnancy on current in vitro fertilization-embryo transfer, we have aimed to develop a new quantitative and non- invasive method to select a single viable human embryo. We employed the measurement of mitochondria localization in an embryo, which may have the correlation with development ability. We applied the angular distribution measurement of the light-scattering intensity from the embryo to obtain the information originated from the mitochondria. The latex spheres with a diameter of 1.0 micrometers were used to simulate the scattering intensity of the mitochondria. The measurement probes of our system consisted of two fibers for illumination and sensing. They were arranged at a right angle to a microscope optical axis to measure the angular distribution of the light-scattering intensity. We observed that the light-scattering intensity increased monotonically in the range from 106 to 1010 particles per ml. Since the mitochondria density in a human embryo corresponded to 2.5 X 107 per ml in the measurement chamber, we may measure the mitochondria density in the human embryo. The angular dependence of light-scattering intensity changed with the sphere diameters. This result showed the possibility of the selective measurement of the mitochondria density in the embryo in spite of the presence of the other cell organelle. We think that our light-scattering measurement system might be applicable to the evaluation method for the embryo viability.

  3. Characterization of porcine peripheral blood leukocytes by light-scattering flow cytometry.

    PubMed Central

    Wang, F I; Williams, T J; el-Awar, F Y; Pang, V F; Hahn, E C

    1987-01-01

    As a basis for other experiments using flow cytometry of porcine peripheral blood leukocytes, cell fractions were isolated by various methods and analyzed by forward angle light scatter and 90 degree light scatter. Cytospin smears of cell samples were also studied by leukocyte differential counts and nonspecific esterase staining. Three main populations of peripheral blood leukocytes [lymphocytes, monocytes, and granulocytes (primarily neutrophils)], were defined in the log 90 degree light scatter by forward angle light scatter histogram. Partial overlap was observed between lymphocyte and monocyte, and between monocyte and granulocyte domains. Correlation between leukocyte differential counts and flow cytometric quantification based on bitmap statistics of appropriate domains was between r = 0.872-0.892 for lymphocyte and granulocyte. Percoll density gradients were used for subfractionation of leukocyte populations, especially for the enrichment of granulocytes. The specific densities were calculated for lymphocytes (1.0585-1.0819 g/cc), monocytes (1.0585-1.0702 g/cc), granulocyte (1.0819-1.0936 g/cc), and erythrocytes (greater than 1.0952 g/cc). We suggest that light scatter characterization is a basis for future studies of porcine blood by flow cytometry. PMID:3453262

  4. Asymmetric Flow-Field Flow Fractionation (AF4) of Aqueous C60 Aggregates with Dynamic Light Scattering Size and LC-MS

    EPA Science Inventory

    Current methods for the size determination of nanomaterials in aqueous suspension include dynamic or static light scattering and electron or atomic force microscopy techniques. Light scattering techniques are limited by poor resolution and the scattering intensity dependence on p...

  5. Solvent residue content measured by light scattering technique

    NASA Technical Reports Server (NTRS)

    Salkowski, M. J.; Werle, D. K.

    1966-01-01

    Photometric analyzer measures NVR /nonvolatile residue/ in trichloroethylene and other organic solvents. The analyzer converts the liquid solvent to aerosol and passes it between an optically focused light beam and a photodetector that is connected to standard amplifying and readout equipment.

  6. Quantitative Measurements of Multilayer Physical Adsorption on Heterogeneous Surfaces from Nonlinear Light Scattering

    NASA Astrophysics Data System (ADS)

    Henson, B. F.; Wilson, K. R.; Robinson, J. M.

    1997-08-01

    We present measurements of equilibrium multilayer physical adsorption on porous, heterogeneous ice films using nonlinear light scattering. The dependence of scattering intensity on surface coverage is modeled using the adsorption theory of Brunauer, Emmett, and Teller, and an extension based on the Bragg-Williams formalism. We show that a complete equation of state for an adsorbed species can be experimentally determined within this simple framework.

  7. On Two Numerical Techniques for Light Scattering by Dielectric Agglomerated Structures

    PubMed Central

    Lakhtakia, Akhlesh; Mulholland, George W.

    1993-01-01

    Smoke agglomerates are made of many soot sphcres, and their light scattering response is of interest in fire research. The numerical techniques chiefly used for theoretical scattering studies are the method of moments and the coupled dipole moment. The two methods have been obtained in this tutorial paper directly from the monochromatic Maxwell curl equations and shown to be equivalent. The effects of the finite size of the primary spheres have been numerically delineated. PMID:28053494

  8. Potential Elevation Biases for Laser Altimeters from Subsurface Scattered Photons: Laboratory and Model Exploration of Green Light Scattering in Snow

    NASA Astrophysics Data System (ADS)

    Greeley, A.; Neumann, T.; Markus, T.; Kurtz, N. T.; Cook, W. B.

    2015-12-01

    Existing visible light laser altimeters such as MABEL (Multiple Altimeter Beam Experimental Lidar) - a single photon counting simulator for ATLAS (Advanced Topographic Laser Altimeter System) on NASA's upcoming ICESat-2 mission - and ATM (Airborne Topographic Mapper) on NASA's Operation IceBridge mission provide scientists a view of Earth's ice sheets, glaciers, and sea ice with unprecedented detail. Precise calibration of these instruments is needed to understand rapidly changing parameters like sea ice freeboard and to measure optical properties of surfaces like snow covered ice sheets using subsurface scattered photons. Photons travelling into snow, ice, or water before scattering back to the altimeter receiving system (subsurface photons) travel farther and longer than photons scattering off the surface only, causing a bias in the measured elevation. We seek to identify subsurface photons in a laboratory setting using a flight-tested laser altimeter (MABEL) and to quantify their effect on surface elevation estimates for laser altimeter systems. We also compare these estimates with previous laboratory measurements of green laser light transmission through snow, as well as Monte Carlo simulations of backscattered photons from snow.

  9. Moisture-insensitive optical fingerprint scanner based on polarization resolved in-finger scattered light.

    PubMed

    Back, Seon-Woo; Lee, Yong-Geon; Lee, Sang-Shin; Son, Geun-Sik

    2016-08-22

    A moisture-insensitive optical fingerprint scanner (FPS) that is based on polarization resolved in-finger light is proposed and realized. Incident visible light, which is selectively fed to a fingerprint sample via a polarization beam splitter (PBS), is deemed to be partially scattered backward by tissues associated with the skin of the finger. The backscattered light is mostly index-guided in the ridge comprising the fingerprint, which has a higher refractive index, and is drastically dispersed in the valley, which is typically filled with water or air and so has a lower index. However, when light reflects directly off the surface of the finger skin, it fundamentally prevents the scanned image from being determined. The proposed FPS produces bright and dark intensity patterns that are alternately created on the surface of the PBS and correspond to the ridges and valleys, respectively. Thus, this method can especially distinguish between a fake synthetic fingerprint and a genuine fingerprint due to its use of in-finger scattered light. The scanner has been rigorously designed by carrying out ray-optic simulations depending on the wavelength, with tissue-induced scattering taken into account. The device was constructed by incorporating a wire-grid type PBS in conjunction with visible LED sources, including blue, green and red. The scanner adopting a blue LED, which exhibits the strongest light scattering, resulted in the best fingerprint image, enabling enhanced fidelity under the wet and dry situations. Finally, a fake synthetic fingerprint could be successfully discriminated.

  10. Analytic height correlation function of rough surfaces derived from light scattering

    NASA Astrophysics Data System (ADS)

    Zamani, M.; Shafiei, F.; Fazeli, S. M.; Downer, M. C.; Jafari, G. R.

    2016-10-01

    We derive an analytic expression for the height correlation function of a homogeneous, isotropic rough surface based on the inverse wave scattering method of Kirchhoff theory. The expression directly relates the height correlation function to diffuse scattered intensity along a linear path at fixed polar angle. We test the solution by measuring the angular distribution of light scattered from rough silicon surfaces and comparing extracted height correlation functions to those derived from atomic force microscopy (AFM). The results agree closely with AFM over a wider range of roughness parameters than previous formulations of the inverse scattering problem, while relying less on large-angle scatter data. Our expression thus provides an accurate analytical equation for the height correlation function of a wide range of surfaces based on measurements using a simple, fast experimental procedure.

  11. Plasmon-modulated light scattering from gold nanocrystal-decorated hollow mesoporous silica microspheres.

    PubMed

    Xiao, Manda; Chen, Huanjun; Ming, Tian; Shao, Lei; Wang, Jianfang

    2010-11-23

    Localized surface plasmon resonances of noble metal nanocrystals are powerful in enhancing a variety of linear and nonlinear optical signals and photorelated processes. Here we demonstrate the plasmonic enhancement of the light scattering from hollow mesoporous silica microspheres by attaching a dense layer of gold nanocrystals onto the outer surface of the microspheres. The attachment of gold nanocrystals induces both the shift and intensity increase in the resonant scattering peaks of the microspheres. The spectral region of the resonant scattering enhancement can be controlled by using gold nanocrystals with different plasmon resonance wavelengths. The spectral region of the enhancement is independent of the microsphere diameter. The scattering enhancement factor ranges from 20 to 130, depending on the plasmonic properties and surface coverage of the attached gold nanocrystals. The systematic evolution of the scattering spectra of the individual microspheres is also revealed by chemically etching away the attached gold nanocrystals gradually.

  12. Physical bounds to the entropy-depolarization relation in random light scattering.

    PubMed

    Aiello, A; Woerdman, J P

    2005-03-11

    We present a theoretical study of multimode scattering of light by optically random media, using the Mueller-Stokes formalism which permits us to encode all the polarization properties of the scattering medium in a real 4 x 4 matrix. From this matrix two relevant parameters can be extracted: the depolarizing power D(M) and the polarization entropy E(M) of the scattering medium. By studying the relation between E(M) and D(M), we find that all scattering media must satisfy some universal constraints. These constraints apply to both classical and quantum scattering processes. The results obtained here may be especially relevant for quantum communication applications, where depolarization is synonymous with decoherence.

  13. Scattering of Light by Electron Wave Packets: Size Doesn't Matter

    NASA Astrophysics Data System (ADS)

    Corson, John; Glasgow, Scott; Acosta, Sebastian; Ware, Michael; Peatross, Justin

    2011-05-01

    In support of a current experiment, we investigate light scattering by individual free electrons in an intense laser focus using full second quantization. This addresses the question of whether emission from a large electron packet will be suppressed owing to interference between different parts of the packet. Textbook treatments of Compton scattering generally use exact momentum states, but packets necessarily superpose many momentum states with the possibility of quantum interference (see J. Peatross, C. Muller, K. Hatsagortsyan, and C. H. Keitel, Phys. Rev. Lett. 100, 153601, 2008). We investigate the details of this interference for both single- photon and coherent-state scattering. Kinematic constraints eliminate interference in the case of unidirectional stimulation, whether the scattering is single- or multi-photon in nature. To all orders of perturbation theory, the scattering exhibits no dependence on the relative phases of constituent momenta, and thus no dependence on wave packet size.

  14. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST.

    PubMed

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.

  15. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST

    NASA Astrophysics Data System (ADS)

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.

  16. Light-scattering study of the effect of salt and polyelectrolyte on magnetic latex particles

    SciTech Connect

    Sohn, D.; Russo, P.S.

    1993-12-31

    Dynamic and static light scattering methods have been used to study the interaction between magnetic latex and polyelectrolytes (polystyrene sulfonate sodium salt, NaPSS) in solution. The light scattering signal from magnetic latex particles was far stronger than that of the polyelectrolyte, especially during depolarized measurements where the polyelectrolyte was essentially invisible. Rotational and translational diffusion of the magnetic latex is investigated as a function of the NaPSS concentration and added salt (NaCl). The diffusion coefficient of magnetic latex decreases abruptly with increasing salt concentration when NaPSS is absent, but it recovers upon addition of NaPSS to the system. Static light scattering results also give evidence of particle aggregation at high salt.

  17. Determination of liquid-liquid critical point composition using 90∘ laser light scattering

    NASA Astrophysics Data System (ADS)

    Williamson, J. Charles; Brown, Allison M.; Helvie, Elise N.; Dean, Kevin M.

    2016-04-01

    Despite over a century of characterization efforts, liquid-liquid critical point compositions are difficult to identify with good accuracy. Reported values vary up to 10% for even well-studied systems. Here, a technique is presented for high-precision determination of the critical composition of a partially miscible binary liquid system. Ninety-degree laser light-scattering intensities from single-phase samples are analyzed using an equation derived from nonclassical power laws and the pseudospinodal approximation. Results are reported for four liquid-liquid systems (aniline + hexane, isobutyric acid + water, methanol + cyclohexane, and methanol + carbon disulfide). Compared to other methods, the 90∘ light-scattering approach has a strong dependence on composition near the critical point, is less affected by temperature fluctuations, and is insensitive to the presence of trace impurities in the samples. Critical compositions found with 90∘ light scattering are precise to the parts-per-thousand level and show long-term reproducibility.

  18. Light scattering by red blood cells in ektacytometry: Fraunhofer versus anomalous diffraction.

    PubMed

    Streekstra, G J; Hoekstra, A G; Nijhof, E J; Heethaar, R M

    1993-05-01

    In the present literature on ektacytometry, small angle light scattering by ellipsoidal red blood cells is commonly approximated by Fraunhofer diffraction. Calculations on a sphere with the size and relative refractive index of a red cell, however, show that Fraunhofer diffraction deviates significantly from exact Mie theory. Anomalous diffraction is found to be a much better approximation. The anomalous diffraction theory is used to calculate the intensity distribution of the light scattered by an ellipsoidally deformed red blood cell. The derived expression shows that the ellipticity of isointensity curves in forward scattered light are equal to the ellipticity of the red blood cell. The theoretical expression is fitted to the intensity patterns measured with an ektacytometer. For the small observation angles used in ektacytometry, the experimental results confirm the validity of the anomalous diffraction approach.

  19. Applications of Optical Sensors to the Detection of Light Scattered from Gelling Systems

    NASA Astrophysics Data System (ADS)

    Bulone, Donatella; Manno, Mauro; San Biagio, Pier Luigi; Martorana, Vincenzo

    Visible light, scattered within an angle of few degrees, (Small Angle Light Scattering, SALS) yields information on the spatial correlations and dynamical properties on the scale of the micrometers. In this way a quick and non-invasive characterization of a variety of samples is feasible. Lately the SALS instruments have been built around multielement optical sensors (CCD, CMOS), allowing the simultaneous measurement of the complete structure factor even during fast kinetics. An assessment of some sensor matrices of different technology will be presented. The omolecular assemblies produced by polysaccharides or proteins can be functional or dysfunctional, their properties being either desirable or detrimental. Anyhow, their morphology often depends, in a very delicate way, on the presence of cosolutes, on the thermal history, on the biopolymer concentration etc. We present some applications of low angle dynamic and static light scattering to the study of gelling systems (agarose, pectin, insulin).

  20. Study of CCT varying by volume scattering diffuser with moving and rotating white light LED

    NASA Astrophysics Data System (ADS)

    Ma, Shih-Hsin; Chen, Liang-Shiun; Huang, Wen-Chao

    2014-09-01

    In this study, the corrected color temperature (CCT) of white light, which originates from a white light LED (WLLED) and passes through a volume-scattering diffuser (VSD), is investigated. The VSD with thickness of 2mm is fabricated by mixing the 2um-sized PMMA scattering particles and the epoxy glue with different concentration values. Moreover, in order to understand the influences of the illuminated area and the scattering path of VSD on CCT values, the bulletheaded and lambertian-type WLLEDs are assembled for different positions and distinct orientations along the optical axis in a black cavity. A detailed comparison between results regarding the white light with and without passing through the VSD is offered. The results of this research will help to improve the colorful consistency of the LED lamps which use diffusers.

  1. Beam-splitting code for light scattering by ice crystal particles within geometric-optics approximation

    NASA Astrophysics Data System (ADS)

    Konoshonkin, Alexander V.; Kustova, Natalia V.; Borovoi, Anatoli G.

    2015-10-01

    The open-source beam-splitting code is described which implements the geometric-optics approximation to light scattering by convex faceted particles. This code is written in C++ as a library which can be easy applied to a particular light scattering problem. The code uses only standard components, that makes it to be a cross-platform solution and provides its compatibility to popular Integrated Development Environments (IDE's). The included example of solving the light scattering by a randomly oriented ice crystal is written using Qt 5.1, consequently it is a cross-platform solution, too. Both physical and computational aspects of the beam-splitting algorithm are discussed. Computational speed of the beam-splitting code is obviously higher compared to the conventional ray-tracing codes. A comparison of the phase matrix as computed by our code with the ray-tracing code by A. Macke shows excellent agreement.

  2. Sensitivity of a fibre scattered-light interferometer to external phase perturbations in an optical fibre

    SciTech Connect

    Alekseev, A E; Potapov, V T; Gorshkov, B G

    2015-10-31

    Sensitivity of a fibre scattered-light interferometer to external phase perturbations is studied for the first time. An expression is derived for an average power of a useful signal at the interferometer output under external harmonic perturbations in a signal fibre of the interferometer. It is shown that the maximum sensitivity of the scattered-light interferometer depends on the dispersion of the interferogram intensity. An average signal-to-noise ratio is determined theoretically and experimentally at the output of the interferometer at different amplitudes of external perturbations. Using the measured dependences of the signal-to-noise ratio, the threshold sensitivity of the fibre scattered-light interferometer to external phase perturbations is found. The results obtained can be used to optimise characteristics of optical time-domain reflectometers and to design individual phase-sensitive fibre-optic sensors. (laser applications and other topics in quantum electronics)

  3. Determination of liquid-liquid critical point composition using 90^{∘} laser light scattering.

    PubMed

    Williamson, J Charles; Brown, Allison M; Helvie, Elise N; Dean, Kevin M

    2016-04-01

    Despite over a century of characterization efforts, liquid-liquid critical point compositions are difficult to identify with good accuracy. Reported values vary up to 10% for even well-studied systems. Here, a technique is presented for high-precision determination of the critical composition of a partially miscible binary liquid system. Ninety-degree laser light-scattering intensities from single-phase samples are analyzed using an equation derived from nonclassical power laws and the pseudospinodal approximation. Results are reported for four liquid-liquid systems (aniline + hexane, isobutyric acid + water, methanol + cyclohexane, and methanol + carbon disulfide). Compared to other methods, the 90^{∘} light-scattering approach has a strong dependence on composition near the critical point, is less affected by temperature fluctuations, and is insensitive to the presence of trace impurities in the samples. Critical compositions found with 90^{∘} light scattering are precise to the parts-per-thousand level and show long-term reproducibility.

  4. Endogenous light scattering as an optical signature of circulating tumor cell clusters

    PubMed Central

    Lyons, Joe; Polmear, Michael; Mineva, Nora D.; Romagnoli, Mathilde; Sonenshein, Gail E.; Georgakoudi, Irene

    2016-01-01

    Circulating tumor cell clusters (CTCCs) are significantly more likely to form metastases than single tumor cells. We demonstrate the potential of backscatter-based flow cytometry (BSFC) to detect unique light scattering signatures of CTCCs in the blood of mice orthotopically implanted with breast cancer cells and treated with an anti-ADAM8 or a control antibody. Based on scattering detected at 405, 488, and 633 nm from blood samples flowing through microfluidic devices, we identified 14 CTCCs with large scattering peak widths and intensities, whose presence correlated strongly with metastasis. These initial studies demonstrate the potential to detect CTCCs via label-free BSFC. PMID:27231606

  5. Optical properties assessment for liquid phantoms using fiber based frequency-modulated light scattering interferometry

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Somesfalean, Gabriel; Svanberg, Sune

    2014-03-01

    Fiber based frequency-modulated light scattering interferometry (FMLSI) is developed for optical properties studies of liquid phantoms, made of Intralipid®. By employing optical frequency modulation on a tunable diode laser, the power spectrum of the heterodyne-detected intensity fluctuations through the dynamic turbid medium is a combination of the time-of-flight distribution and the Doppler power spectrum due to the movement of the scattering particles. The reduced scattering coefficient, absorption coefficient and Brownian diffusion constant are retrieved by employing nonlinear fitting to the power spectrum based on diffusion theory.

  6. An autonomous underwater telescope for measuring the scattering of light in the deep sea

    NASA Astrophysics Data System (ADS)

    Balasi, K. G.; Domvoglou, T.; Kiskiras, I.; Lenis, D.; Maniatis, M.; Maragos, N.; Stavropoulos, G.

    2016-05-01

    The KM3NeT research infrastructure will be a deep sea multidisciplinary observatory in the Mediterranean Sea housing a neutrino telescope. Accurate knowledge of the optical properties of the sea water is important for the performance evaluation of the telescope. In this work we describe the deployment of the equipment that we had previously examined by Monte Carlo (MC) simulationsl, in the context of the scattering experiment in order to evaluate the parameters describing the scattering characteristics of the sea water. Four photomultipliers (PMTs) were used to measure in situ the scattered light emitted by six laser diodes in three different wavelengths covering the Cherenkov radiation spectrum.

  7. Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers.

    PubMed

    Etxebarria, J; Ortega, J; Folcia, C L; Sanz-Enguita, G; Aramburu, I

    2015-04-01

    We have studied the degradation process of the laser emission in a cholesteric liquid crystal laser. We have found that there exists a negative correlation between the laser efficiency and the amount of light scattered by the liquid-crystal sample in the illuminated area. The growth of scattering is attributed to the appearance of small imperfections generated in the sample as a result of certain thermal processes that involve the dye molecules. The scattering implies an increase of the coefficient of distributed losses, which is the main response of the rise of the laser threshold.

  8. [Multiple scattering of visible and infrared light by sea fog over wind driving rough sea surface].

    PubMed

    Sun, Xian-Ming; Wang, Hai-Hua; Lei, Cheng-Xin; Shen, Jin

    2013-08-01

    The present paper is concerned with computing the multiple scattering characteristics of a sea fog-sea surface couple system within this context. The single scattering characteristics of sea fog were studied by Mie theory, and the multiple scattering of sunlight by single sea fog layer was studied by radiative transfer theory. The reflection function of a statistically rough ocean surface was obtained using the standard Kirchhoff formulation, with shadowing effects taken into account. The reflection properties of the combined sea fog and ocean surface were obtained employing the adding method, and the results indicated that the reflected light intensity of sea fog increased with the sea background.

  9. Light-scattering properties of plate and column ice crystals generated in a laboratory cold chamber.

    PubMed

    Barkey, Brian; Bailey, Matt; Liou, Kuo-Nan; Hallett, John

    2002-09-20

    Angular scattering properties of ice crystal particles generated in a laboratory cloud chamber are measured with a lightweight polar nephelometer with a diode laser beam. This cloud chamber produces distinct plate and hollow column ice crystal types for light-scattering experiments and provides a controlled test bed for comparison with results computed from theory. Ice clouds composed predominantly of plates and hollow columns generated noticeable 22 degrees and 46 degrees halo patterns, which are predicted from geometric ray-tracing calculations. With the measured ice crystal shape and size distribution, the angular scattering patterns computed from geometrical optics with a significant contribution by rough surfaces closely match those observed from the nephelometer.

  10. Endogenous light scattering as an optical signature of circulating tumor cell clusters.

    PubMed

    Lyons, Joe; Polmear, Michael; Mineva, Nora D; Romagnoli, Mathilde; Sonenshein, Gail E; Georgakoudi, Irene

    2016-03-01

    Circulating tumor cell clusters (CTCCs) are significantly more likely to form metastases than single tumor cells. We demonstrate the potential of backscatter-based flow cytometry (BSFC) to detect unique light scattering signatures of CTCCs in the blood of mice orthotopically implanted with breast cancer cells and treated with an anti-ADAM8 or a control antibody. Based on scattering detected at 405, 488, and 633 nm from blood samples flowing through microfluidic devices, we identified 14 CTCCs with large scattering peak widths and intensities, whose presence correlated strongly with metastasis. These initial studies demonstrate the potential to detect CTCCs via label-free BSFC.

  11. Theoretical models for near forward light scattering by a Plasmodium falciparum infected red blood cell

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.

    2012-12-01

    A number of experimental elastic light scattering studies have been performed in the past few years with the aim of developing automated in vivo tools for differentiating a healthy red blood cell from a Plasmodium falciparum infected cell. This paper examines some theoretical aspects of the problem. An attempt has been made to simulate the scattering patterns of healthy as well as infected individual red blood cells. Two models, namely, a homogeneous sphere model and a coated sphere model have been considered. The scattering patterns predicted by these models are examined. A possible method for discriminating infected red blood cells from healthy ones has been suggested.

  12. Optical characteristics of LGP depending on the scattering pattern orientation for flat-type LED lighting

    NASA Astrophysics Data System (ADS)

    Park, Sohee; Shin, Yongjin; Oh, Kwanghwan; Bang, Taehwan

    2016-04-01

    In flat-type light-emitting-diode (LED) lighting systems, a planar light is formed using a luminance source positioned on the side of the system and light guide panel (LGP) or reflecting plates. Thus, such systems are favorable for their thinness, which allows a relatively small number of LEDs to be used. However, the application of a high-power LED light to a large-area lighting system yields Lambertian luminaires; therefore, a point or a discomfort glare is produced, which generally causes degradation of the luminance efficiency and uniformity. In this study, we solved the problems of luminance non-uniformity and inefficiency by adjusting the orientation of an applied LGP scattered pattern and removing the remaining glare. Through computer simulation, optical characteristics that increase the efficiency even in the case of low-output LEDs were found. Specifically, a scattered pattern vertically oriented relative to the direction of the incident light improves the luminance uniformity at the side of the system, while a scattered pattern oriented parallel to the direction of the incident light plays the role of a waveguide. We implemented a flat-type LED lighting system by fabricating a large-area LGP based on the computer-simulation results and using an extremely sensitive laser. The optical characteristics observed using the laser-processed LGP were identical to those obtained in the computer simulation. Therefore, for large-area flat-type LED lighting systems, we confirmed that adjusting the orientation of the LGP scattered pattern can increase the luminance efficiency and uniformity.

  13. Use of polarization to separate on-axis scattered and unscattered light in red blood cells

    NASA Astrophysics Data System (ADS)

    Sardar, Dhiraj K.; Nemati, Babak; Barrera, Frederick J.

    1991-06-01

    The separation of on-axis scattered and unscattered transmission through turbid media has been a difficult experimental task in recent years. This study suggests the use of a polarimeter to filter out the contribution of scattered light to the net on-axis transmission. Red blood cells (RBC) were used to produce the scattering effect. The scattering level was varied by: (1) altering the distance of the detector from the sample, (2) using erythrocytes from three different species, e.g., the dog, goat, and human, which are know to have different RBC sizes, and (3) allowing the RBCs from each species to shrink and swell osmotically. An He-Ne laser was used as the source of the radiation so that data were obtained at a wavelength in the spectral region used in oximetry and hemoglobinometry. In each case, the difference in the scattering cross sections obtained for each sample, with and without polarization filtering, gave us a measure of the filtered scattered light. The results obtained were in close agreement with the expected contribution of scattered radiation to the net axial transmission. This method may be used effectively for all studies involving measurements of on-axis transmission through turbid media, such as biological tissue.

  14. The LS-CODAG experiment for light scattering measurements by dust particles and their aggregates

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, A. C.; Cabane, M.; Chassefière, E.; Haudebourg, V.; Worms, J. C.

    1999-01-01

    Light scattering measurements are needed to provide links between the currently available observations of scattering by dust in the solar system, and the still unknown properties of the clouds of dust particles and aggregates. The fragility, the fluffiness, and the size of the aggregates make it almos impossible to obtain realistic measurements through computational models or classical laboratory measurements. In order to measure the scattering by dust particles and their aggregates, we have conceived the Light Scattering (LS) experiment for the COsmic Dust AGgregation (CODAG) module. This small and compact instrument has been developed to operate under microgravity conditions, jointly with the CODAG Sounding Rocket experiment (Blum et al., 1998), during ESA rocket flights. The purpose of the experiment is to determine accurately the intensity and the polarization phase functions of the particles that are dispersed in a low pressure chamber, and to document the temporal evolution of their scattering properties, while an aggregation process representative of the solar system formation is starting and spreading out. The instrumental principle relies on simultaneous measurements, performed on a large number of phase angles, from back to forward scattering, of the two polarized components of the scattered intensity.

  15. Light scattering by subwavelength Cu2O particles.

    PubMed

    Ullah, Kaleem; Liu, Xuefeng; Yadav, N P; Habib, Muhammad; Song, Li; García-Cámara, Braulio

    2017-03-01

    Novel metamaterials with new capabilities to manipulate light may be used by considering basic building blocks with new optical properties. This is the case with resonant magneto-dielectric particles. In this work, the resonant response of a high-dielectric Cu2O subwavelength particle is analyzed, both analytically and experimentally. The emergence of electric and magnetic resonances and their interferential effects, producing directional behaviors, can be used in a new generation of metamaterials, as well as new integrated optical devices.

  16. Light scattering by subwavelength Cu2O particles

    NASA Astrophysics Data System (ADS)

    Ullah, Kaleem; Liu, Xuefeng; Yadav, N. P.; Habib, Muhammad; Song, Li; García-Cámara, Braulio

    2017-03-01

    Novel metamaterials with new capabilities to manipulate light may be used by considering basic building blocks with new optical properties. This is the case with resonant magneto-dielectric particles. In this work, the resonant response of a high-dielectric Cu2O subwavelength particle is analyzed, both analytically and experimentally. The emergence of electric and magnetic resonances and their interferential effects, producing directional behaviors, can be used in a new generation of metamaterials, as well as new integrated optical devices.

  17. Mathematical methods for restricted domain ternary liquid mixture free energy determination using light scattering.

    PubMed

    Wahle, Chris W; Ross, David S; Thurston, George M

    2013-09-28

    We extend methods of solution of a light scattering partial differential equation for the free energy of mixing to apply to connected, isotropic ternary liquid composition domains that do not touch all three binary axes. To do so we mathematically analyze the problem of inferring needed Dirichlet boundary data, and solving for the free energy, with use of hypothetical static light scattering measurements that correspond to dielectric composition gradient vectors that have distinct directions. The physical idea behind the technique is that contrasting absorption properties of mixture components can result in such distinctly directed dielectric composition gradient vectors, due to their differing wavelength dependences of dielectric response. At suitably chosen wavelengths, contrasting light scattering efficiency patterns in the ternary composition triangle can then correspond to the same underlying free energy, and enlarge the scope of available information about the free energy, as shown here. We show how to use distinctly directed dielectric gradients to measure the free energy on both straight lines and curves within the ternary composition triangle, so as to provide needed Dirichlet conditions for light scattering partial differential equation solution. With use of Monte Carlo simulations of noisy light scattering data, we provide estimates of the overall system measurement time and sample spacing needed to determine the free energy to a desired degree of accuracy, for various angles between the assumed dielectric gradient vectors, and indicate how the measurement time depends on instrumental throughput parameters. The present analysis methods provide a way to use static light scattering to measure, directly, mixing free energies of many systems that contain such restricted liquid domains, including aqueous solutions of biological macromolecules, micellar mixtures and microemulsions, and many small molecule systems that are important in separation technology.

  18. Mathematical methods for restricted domain ternary liquid mixture free energy determination using light scattering

    NASA Astrophysics Data System (ADS)

    Wahle, Chris W.; Ross, David S.; Thurston, George M.

    2013-09-01

    We extend methods of solution of a light scattering partial differential equation for the free energy of mixing to apply to connected, isotropic ternary liquid composition domains that do not touch all three binary axes. To do so we mathematically analyze the problem of inferring needed Dirichlet boundary data, and solving for the free energy, with use of hypothetical static light scattering measurements that correspond to dielectric composition gradient vectors that have distinct directions. The physical idea behind the technique is that contrasting absorption properties of mixture components can result in such distinctly directed dielectric composition gradient vectors, due to their differing wavelength dependences of dielectric response. At suitably chosen wavelengths, contrasting light scattering efficiency patterns in the ternary composition triangle can then correspond to the same underlying free energy, and enlarge the scope of available information about the free energy, as shown here. We show how to use distinctly directed dielectric gradients to measure the free energy on both straight lines and curves within the ternary composition triangle, so as to provide needed Dirichlet conditions for light scattering partial differential equation solution. With use of Monte Carlo simulations of noisy light scattering data, we provide estimates of the overall system measurement time and sample spacing needed to determine the free energy to a desired degree of accuracy, for various angles between the assumed dielectric gradient vectors, and indicate how the measurement time depends on instrumental throughput parameters. The present analysis methods provide a way to use static light scattering to measure, directly, mixing free energies of many systems that contain such restricted liquid domains, including aqueous solutions of biological macromolecules, micellar mixtures and microemulsions, and many small molecule systems that are important in separation technology.

  19. Detection of internal structure by scattered light intensity: Application to kidney cell sorting

    NASA Technical Reports Server (NTRS)

    Goolsby, C. L.; Kunze, M. E.

    1985-01-01

    Scattered light measurements in flow cytometry were sucessfully used to distinguish cells on the basis of differing morphology and internal structure. Differences in scattered light patterns due to changes in internal structure would be expected to occur at large scattering angles. Practically, the results of these calculations suggest that in experimental situations an array of detectors would be useful. Although in general the detection of the scattered light intensity at several intervals within the 10 to 60 region would be sufficient, there are many examples where increased sensitivity could be acheived at other angles. The ability to measure at many different angular intervals would allow the experimenter to empirically select the optimum intervals for the varying conditions of cell size, N/C ratio, granule size and internal structure from sample to sample. The feasibility of making scattered light measurements at many different intervals in flow cytometry was demonstrated. The implementation of simplified versions of these techniques in conjunction with independant measurements of cell size could potentially improve the usefulness of flow cytometry in the study of the internal structure of cells.

  20. Blood cell counting and classification by nonflowing laser light scattering method

    NASA Astrophysics Data System (ADS)

    Yang, Ye; Zhang, Zhenxi; Yang, Xinhui; Jiang, Dazong; Yeo, Joon Hock

    1999-11-01

    A new non-flowing laser light scattering method for counting and classifying blood cells is presented. A linear charge- coupled device with 1024 elements is used to detect the scattered light intensity distribution of the blood cells. A pinhole plate is combined with the CCD to compete the focusing of the measurement system. An isotropic sphere is used to simulate the blood cell. Mie theory is used to describe the scattering of blood cells. In order to inverse the size distribution of blood cells from their scattered light intensity distribution, Powell method combined with precision punishment method is used as a dependent model method for measurement red blood cells and blood plates. Non-negative constraint least square method combined with Powell method and precision punishment method is used as an independent model for measuring white blood cells. The size distributions of white blood cells and red blood cells, and the mean diameter of red blood cells are measured by this method. White blood cells can be divided into three classes: lymphocytes, middle-sized cells and neutrocytes according to their sizes. And the number of blood cells in unit volume can also be measured by the linear dependence of blood cells concentration on scattered light intensity.

  1. Small angle light scattering characterization of single micrometric particles in microfluidic flows

    NASA Astrophysics Data System (ADS)

    Dannhauser, David; Romeo, Giovanni; Causa, Filippo; Netti, Paolo A.

    2013-04-01

    A CCD-camera based small angle light scattering (SALS) apparatus has been used to characterize single micrometric particles flowing in a micro-channel. The measured scattering vector spans the range 2x10-2 - 6:8x101μm-1. The incident laser light is collimated to a spot of about 50 μm in diameter at the sample position with a divergence lower than 0.045 rad. Such small collimated laser beam opens the possibility to perform on-line SALS of micron-sized particles flowing in micro-channels. By properly designing the micro-channel and using a viscoelastic liquid as suspending medium we are able to realize a precise 3D focusing of the target particles. The forward scattering emitted from the particle is collected by a lens with high numerical aperture. At the focal point of that lens a homemade beam stop is blocking the incident light. Finally, a second lens maps the scattered light on the CCD sensor, allowing to obtain far field images on short distances. Measurements with mono-disperse polystyrene particles, both in quiescent and in-flow conditions have been realized. Experiments in-flow allow to measure the single particle scattering. Results are validated by comparison with calculations based on the Lorenz-Mie theory. The quality of the measured intensity profiles confirms the possibility to use our apparatus in real multiplex applications, with particles down to 1 μm in radius.

  2. Blood cell counting and classification by nonflowing laser light scattering method.

    PubMed

    Yang, Ye; Zhang, Zhenxi; Yang, Xinhui; Yeo, Joon Hock; Jiang, LiJun; Jiang, Dazong

    2004-01-01

    We present a nonflowing laser light scattering method for automatically counting and classifying blood cells. A linear charge-coupled device (CCD) and a silicon photoelectric cell (which is placed behind a pinhole plate on the CCD) form a double-detector structure: the CCD is used to detect the scattered light intensity distribution of the blood cells and the silicon photoelectric cell to complete the focusing process. An isotropic sphere, with relative refractivity near 1, is used to model the blood cell. Mie theory is used to describe the scattering of white blood cells and platelets, and anomalous diffraction, red blood cells. To obtain the size distribution of blood cells from their scattered light intensity distribution, the nonnegative constraint least-squares (NNLS) method combined with the Powell method and the precision punishment method are used. Both numerical simulation and experimental results are presented. This method can be used not only to measure the mean and the distribution of red blood cell size, but also to divide the white blood cells into three classes: lymphocytes, middle-sized cells, and neutrocytes. The experimental results show a linear relationship between the blood cell (both white and red blood cells) concentration and the scattered light intensity, and therefore, the number of blood cells in a unit volume can be determined from this relationship.

  3. Spatio-temporal imaging of light transport in scattering media using white light illumination (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Badon, Amaury; Li, Dayan; Lerosey, Geoffroy; Boccara, Claude; Fink, Mathias; Aubry, Alexandre

    2016-03-01

    We recently showed how the correlations of a broadband and incoherent wave-field can directly yield the time-dependent Green's functions between scatterers of a complex medium [Badon et al., Phys. Rev. Lett., 2015]. In this study, we apply this approach to the imaging of optical transport properties in complex media. A parallel measurement of millions of Green's functions at the surface of several strongly scattering samples (ZnO, TiO2, Teflon tape) is performed. A statistical analysis of this Green's matrix allows to investigate locally the spatio-temporal evolution of the diffusive halo within the scattering sample. An image of diffusion tensor is then obtained. It allows to map quantitatively the local concentration of scatterers and their anisotropy within the scattering medium. The next step of this work is to test this approach on biological tissues and illustrate how it can provide an elegant and powerful alternative to diffuse optical imaging techniques.

  4. Coherent light scattering of heterogeneous randomly rough films and effective medium in the theory of electromagnetic wave multiple scattering

    SciTech Connect

    Berginc, G

    2013-11-30

    We have developed a general formalism based on Green's functions to calculate the coherent electromagnetic field scattered by a random medium with rough boundaries. The approximate expression derived makes it possible to determine the effective permittivity, which is generalised for a layer of an inhomogeneous random medium with different types of particles and bounded with randomly rough interfaces. This effective permittivity describes the coherent propagation of an electromagnetic wave in a random medium with randomly rough boundaries. We have obtained an expression, which contains the Maxwell – Garnett formula at the low-frequency limit, and the Keller formula; the latter has been proved to be in good agreement with experiments for particles whose dimensions are larger than a wavelength. (coherent light scattering)

  5. Probing the Quantum State of a 1D Bose Gas Using Off-Resonant Light Scattering

    SciTech Connect

    Sykes, A. G.; Ballagh, R. J.

    2011-12-30

    We present a theoretical treatment of coherent light scattering from an interacting 1D Bose gas at finite temperatures. We show how this can provide a nondestructive measurement of the atomic system states. The equilibrium states are determined by the temperature and interaction strength, and are characterized by the spatial density-density correlation function. We show how this correlation function is encoded in the angular distribution of the fluctuations of the scattered light intensity, thus providing a sensitive, quantitative probe of the density-density correlation function and therefore the quantum state of the gas.

  6. Noninvasive evaluation of corneal abnormalities using static and dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.; Misra, Anup K.; Leung, Alfred B.; King, James F.; Datiles, Manuel B., III

    2002-06-01

    A preliminary study of corneal abnormalities in intact bovine eyes is presented. Twenty-one eyes were treated with chemicals, cotton swabs, and radial and photo-refractive surgeries. Dynamic and static light scattering was performed as a function of the penetration depth into the corneal tissue. Topographical maps of corneal refractive power from untreated and treated corneas were also obtained using videokeratoscopy and results compared. The ultimate aim is to develop the technique of dynamic light scattering (DLS) for clinical applications in early evaluation of corneal complications after laser-assisted in situ keratomileusis (LASIK) surgeries and other corneal abnormalities.

  7. Enhanced light scattering in Si nanostructures produced by pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Sberna, P. M.; Scapellato, G. G.; Piluso, N.; Boninelli, S.; Miritello, M.; Crupi, I.; Bruno, E.; Privitera, V.; Simone, F.; Mirabella, S.

    2013-11-01

    An innovative method for Si nanostructures (NS) fabrication is proposed, through nanosecond laser irradiation (λ = 532 nm) of thin Si film (120 nm) on quartz. Varying the laser energy fluences (425-1130 mJ/cm2) distinct morphologies of Si NS appear, going from interconnected structures to isolated clusters. Film breaking occurs through a laser-induced dewetting process. Raman scattering is enhanced in all the obtained Si NS, with the largest enhancement in interconnected Si structures, pointing out an increased trapping of light due to multiple scattering. The reported method is fast, scalable and cheap, and can be applied for light management in photovoltaics.

  8. Total internal reflection resonance light scattering at solid/liquid interfaces.

    PubMed

    Tang, Yao-Ji; Chen, Ying; Yao, Min-Na; Li, Yao-Qun

    2008-08-05

    Total internal reflection (TIR) technique is an interface-specific tool and resonance light scattering (RLS) is of high sensitivity. The combination of both approaches is introduced into the solid/liquid interface for the first time. The behaviors of mixture of TPPS and BSA at the interface have been studied with total internal reflection resonance light scattering (TIR-RLS). The preliminary experimental results indicate that TIR-RLS is a good approach to study the interaction and distinguish the states of macromolecules at the solid/liquid interface.

  9. Non-Invasive Evaluation of Corneal Abnormalities Using Static and Dynamic Light Scattering

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Misra, Anup K.; Leung, Alfred B.; King, James F.; Datiles, Manuel B., III

    2002-01-01

    A preliminary study of corneal abnormalities in intact bovine eyes is presented. Twenty-one eyes were treated with chemicals, cotton swabs, and radial and photo-refractive surgeries. Dynamic and static light scattering was performed as a function of the penetration depth into the corneal tissue. Topographical maps of corneal refractive power from untreated and treated corneas were also obtained using videokeratoscopy and results compared. The ultimate aim is to develop the technique of dynamic light scattering (DLS) for clinical applications in early evaluation of corneal complications after laser-assisted in situ keratomileusis (LASIK) surgeries and other corneal abnormalities.

  10. Method and apparatus for measuring micro structures, anisotropy and birefringence in polymers using laser scattered light

    DOEpatents

    Grek, Boris; Bartolick, Joseph; Kennedy, Alan D.

    2000-01-01

    A method and apparatus for measuring microstructures, anistropy and birefringence in polymers using laser scattered light includes a laser which provides a beam that can be conditioned and is directed at a fiber or film which causes the beam to scatter. Backscatter light is received and processed with detectors and beam splitters to obtain data. The data is directed to a computer where it is processed to obtain information about the fiber or film, such as the birefringence and diameter. This information provides a basis for modifications to the production process to enhance the process.

  11. Light scattering by randomly irregular dielectric particles larger than the wavelength.

    PubMed

    Grynko, Yevgen; Shkuratov, Yuriy; Förstner, Jens

    2013-12-01

    We present results of simulation of light scattering by randomly irregular particles that have dimensions larger than the wavelength of incident light. We apply the discontinuous Galerkin time domain method and compare the accurate solution with that obtained using an approximate geometric-optics model. A qualitative agreement is observed for scattering angle curves of intensity at the size parameter of X=60, whereas angular dependence of polarization appears to be more sensitive to the wave effects and requires larger sizes for application of geometrical optics.

  12. Specular, diffuse, and polarized light scattered by two wheat canopies

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Grant, L.; Biehl, L. L.; Robinson, B. F.

    1985-01-01

    Using polarization measurements, the reflectance factor of two wheat canopies is divided into components due to specularly and diffusely reflected light. The data show that two key angles may be predicted, the angle of the polarizer for minimum flux and the angle of incidence of sunlight specularly reflected by a leaf to a sensor. The results show that specular reflection is a key aspect to radiation transfer by two canopies. Results suggest that the advent of heading in wheat may be remotely sensed from polarization measurements of the canopy reflectance.

  13. Thermochromic light scattering from particulate VO2 layers

    NASA Astrophysics Data System (ADS)

    Montero, José; Ji, Yu-Xia; Granqvist, Claes G.; Niklasson, Gunnar A.

    2016-02-01

    Particulate layers of thermochromic (TC) VO2 were made by reactive DC magnetron sputtering of vanadium onto In2O3:Sn-coated glass. The deposits were characterized by scanning electron microscopy, atomic force microscopy, and X-ray diffraction. Specular and diffuse optical transmittance and reflectance were recorded in the 300-2500-nm wavelength range and displayed pronounced TC effects. These properties could be reconciled with a semi-quantitative model based on Lorentz-Mie theory applied to the distribution of particle sizes and accounting for particle shapes by the Grenfell-Warren approach with equal-volume-to-area spheres.

  14. Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles

    NASA Astrophysics Data System (ADS)

    Evlyukhin, Andrey B.; Fischer, Tim; Reinhardt, Carsten; Chichkov, Boris N.

    2016-11-01

    The application of Cartesian multipoles in irreducible representations provides the possibility to get explicit contributions of the toroidal multipole terms in the extinction and scattering power without the introduction of special form factors. In the framework of the Cartesian multipoles, we obtained multipole decomposition (up to the third order) of the induced polarization (current) inside an arbitrarily shaped scatterer (nanoparticle). The third-order decomposition includes the toroidal dipole, magnetic quadrupole, electric octupole terms, and also nonradiating terms. The corresponding multipole decomposition of the scattering cross section, taking into account the electric octupole term, is derived and compared with the multipole decomposition of the extinction cross section obtained using the optical theorem. We show that the role of multipoles in the optical theorem (light extinction) and scattering by arbitrarily shaped nanoparticles can be different. This can result in seemingly paradoxical conclusions with respect to the appearance of multipole contributions in the scattering and extinction cross sections. This fact is especially important for absorptionless nanoparticles, for which the scattering cross section can be calculated using the optical theorem, because in this case extinction is solely determined by scattering. Demonstrative results concerning the role of third-order multipoles in the resonant optical response of high-refractive-index dielectric nanodisks, with and without a through hole at the center, are presented. It is shown that the optical theorem results in a negligible role of the third-order multipoles in the extinction cross sections, whereas these multipoles provide the main contribution in the scattering cross sections.

  15. Extraction of morphological features from biological models and cells by Fourier analysis of static light scatter measurements

    SciTech Connect

    Burger, D.E.; Jett, J.H.; Mullaney, P.F.

    1982-03-01

    Models of biological cells of varying geometric complexity were used to generate data to test a method of extracting geometric features from light scatter distributions. Measurements of the dynamic range and angular distribution of intensity and light scatter from these models was compared to the distributions predicted by a complete theory of light scatter (Mie) and by diffraction theory (Fraunhofer). An approximation to the Fraunhofer theory provides a means of obtaining size and shape features from the data by a spectrum analysis. Experimental verification using nucleated erythrocytes as the biological material show the potential application of this method for the extraction of important size and shape parameters from light scatter data.

  16. Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572)

    SciTech Connect

    Rest, A; Welch, D L; Suntzeff, N B; Oaster, L; Lanning, H; Olsen, K; Smith, R C; Becker, A C; Bergmann, M; Challis, P; Clocchiatti, A; Cook, K H; Damke, G; Garg, A; Huber, M E; Matheson, T; Minniti, D; Prieto, J L; Wood-Vasey, W M

    2008-05-06

    We report the discovery of an extensive system of scattered light echo arclets associated with the recent supernovae in the local neighborhood of the Milky Way: Tycho (SN 1572) and Cassiopeia A. Existing work suggests that the Tycho SN was a thermonuclear explosion while the Cas A supernova was a core collapse explosion. Precise classifications according to modern nomenclature require spectra of the outburst light. In the case of ancient SNe, this can only be done with spectroscopy of their light echo, where the discovery of the light echoes from the outburst light is the first step. Adjacent light echo positions suggest that Cas A and Tycho may share common scattering dust structures. If so, it is possible to measure precise distances between historical Galactic supernovae. On-going surveys that alert on the development of bright scattered-light echo features have the potential to reveal detailed spectroscopic information for many recent Galactic supernovae, both directly visible and obscured by dust in the Galactic plane.

  17. Chemotaxis of bacteria in glass capillary arrays. Escherichia coli, motility, microchannel plate, and light scattering.

    PubMed

    Berg, H C; Turner, L

    1990-10-01

    Random and directed motility of bacterial populations were assayed by monitoring the flux of bacteria through a microchannel plate (a porous glass plate comprising a fused array of capillary tubes) separating two identical stirred chambers. Cells, washed free of growth medium by a new filtration method, were added to one chamber at a low density. Their number in the other chamber was determined from the amount of light scattered from a beam of a laser diode and recorded on a strip chart. Diffusion coefficients were computed from fluxes observed in the absence of chemical gradients, and chemotaxis drift velocities were computed from fluxes observed in their presence. Cells migrated through tubes of diam 10 microns more rapidly than through tubes of diam 50 microns, suggesting that the straight segments of their tracks were aligned with the axes of the smaller tubes. Mutants that are motile but nonchemotactic could be selected because they move through the microchannel plate in the face of an adverse gradient. Weak chemotactic responses were assessed from ratios of fluxes observed in paired experiments in which the sign of the gradient of attractant was reversed. Studies were made of wild-type Escherichia coli and mutants that are nonmotile, tumblely, smooth-swimming, aspartate-blind, or defective in methylation and demethylation. Chemotaxis drift velocities for the latter mutants (cheRcheB) were quite small.

  18. Rayleigh light scattering properties of atmospheric molecular clusters consisting of sulfuric acid and bases.

    PubMed

    Elm, Jonas; Norman, Patrick; Mikkelsen, Kurt V

    2015-06-28

    The Rayleigh light scattering properties of (H2SO4)a(NH3)b and (H2SO4)a((CH3)2NH)b atmospheric molecular clusters have been investigated using a response theory approach. Using density functional theory the molecular structures and stepwise formation free energies of clusters with a and b up to 4 have been re-investigated. The Rayleigh scattering intensities are calculated from the dipole polarizability tensor α using the CAM-B3LYP functional by applying linear response methods. The intrinsic scattering properties of (H2SO4)a(NH3)b and (H2SO4)a((CH3)2NH)b indicate that amine containing clusters scatter light significantly more efficiently then their ammonia containing counterparts. Using the Atmospheric Cluster Dynamics Code (ACDC) the steady state cluster concentrations are estimated and the effective scattering is calculated. The effective scattering is shown to be highly dependent on the estimated concentrations and indicates that there exist competitive pathways, such as nucleation and coagulation, which influence the cluster distributions. The frequency dependence of the scattering is found to depend on the cluster composition and show increased responses when clusters contain more bases than acid molecules. Based on structures obtained using semi-empirical molecular dynamics simulations the Rayleigh scattering properties of clusters with up to 20 acid-base pairs are evaluated. This study represents the first step towards gaining a fundamental understanding of the scattering properties of small atmospheric clusters in the ambient atmosphere.

  19. Laboratory measurements of light scattering properties of a carbonaceous interstellar dust analogue (soot particles)

    NASA Astrophysics Data System (ADS)

    Gogoi, Ankur; Choudhury, Amarjyoti; Ahmed, Gazi A.; Kashyap Boruah, Goutam

    2012-07-01

    Dust particles are present everywhere in the solar system, cometary comae and tail, interstellar dust clouds, asteroidal atmospheres and aerosols of other planetary atmospheres. The in situ sampling of the cometary dust composition conducted by CIDA (Cometary and Interstellar Dust Analyzer) and observed interstellar extinction and polarization revealed the presence of amorphous carbon, graphite, silicate, graphite, carbonates, metal oxide grains, ice particles and nanodiamonds in the interstellar medium. These particles act as the heterogeneous media to scatter solar or steller light. Observations and simulations of the light scattered by dust particles in cometary comae, interplanetary space and planetary regolith (or analogous terrestrial dust aggregates) is necessary to deduce the physical properties of their constituent particles and may lead to a better understanding of the formation of solar system. Notably the measurement of the volume scattering function (VSF) and degree of linear polarization (DLP) can be used to estimate parameters like size, porosity and roughness of the dust particles. In this contribution we report the design and fabrication of a laser based laboratory light scattering instrument that uses an array of 16 static Si photodetectors and can be operated at three different incident wavelengths (543.5 nm, 594.5 nm and 632.8 nm). The accuracy and the reliability of the setup were verified by conducting light scattering measurements on spherical water droplets and comparing the results with theoretical Mie calculations. The results of the measurements of the VSF and DLP of carbonaceous soot particles (agglomerates) that were sprayed in front of the laser beam by using an aerosol sprayer are presented. The experimental results were further analyzed by comparing with theoretically generated T-matrix and DDA (Discrete Dipole Approximation) plots with estimated parameters to yield more fruitful conclusions. Significant variations of the light

  20. Enhanced light harvesting of dye-sensitized solar cells with TiO2 microspheres as light scattering layer

    NASA Astrophysics Data System (ADS)

    Guan, Yingli; Song, Lixin; Zhou, Yangyang; Yin, Xin; Xie, Xueyao; Xiong, Jie

    2017-03-01

    Two kinds of TiO2 microspheres (TMS) with average diameter of 1500 nm but different surface were fabricated by solvothermal method from different Ti source. The effect of TMS on the light harvesting and photovoltaic performance of dye-sensitized solar cells (DSSCs)was investigated. The UV-Vis diffusion reflectance spectra and absorption spectra of N719 dye in detached solutions proved that the TMS showed dual functions of light scattering and dye-adsorption which was an important functional material in DSSCs. The results showed that the TMS made from titanium(IV) isopropoxide with rough surface (TMSR) exhibited better photovoltaic performance than that of TMS made from tetrabutyl titanate with smooth surface (TMSS). To further improve the photovoltaic performance, the double-layered DSSCs made of P25 as an underlayer and TMS as a light-scattering layer (P25-TMS) were fabricated. The photovoltaic performance of double-layered DSSCs was higher than that of the single-layered DSSCs with similar thickness. Especially, the DSSCs made of P25 as an underlayer and the TMSR as a light-scattering layer (P25-TMSR) had a highest power conversion efficiency of 7.62%. This was higher than that of single-layered TMSR-based cell (5.54%), P25-based cell (5.75%), and double-layered P25-TMSS-based cell (6.78%) with similar thickness. This was mainly attributed to the large specific surface area, superior light scattering ability, and fast electron transport of TMSR.