Science.gov

Sample records for recovery efficiency including

  1. Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)

    SciTech Connect

    Abhijit Dandekar; Shirish Patil; Santanu Khataniar

    2008-12-31

    Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project

  2. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1992-01-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

  3. High efficiency shale oil recovery

    SciTech Connect

    Adams, D.C.

    1993-04-22

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

  4. High efficiency shale oil recovery

    SciTech Connect

    Adams, C.D.

    1992-07-18

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a larger continuous process kiln. For example, similar conditions of heatup rate, oxidation of the residue and cool-down prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The second quarter agenda consisted of (a) kiln modifications; (b) sample preparation; and (c) Heat Transfer calibration runs (part of proposal task number 3 -- to be completed by the end of month 7).

  5. Performance Efficient Launch Vehicle Recovery and Reuse

    NASA Technical Reports Server (NTRS)

    Reed, John G.; Ragab, Mohamed M.; Cheatwood, F. McNeil; Hughes, Stephen J.; Dinonno, J.; Bodkin, R.; Lowry, Allen; Brierly, Gregory T.; Kelly, John W.

    2016-01-01

    For decades, economic reuse of launch vehicles has been an elusive goal. Recent attempts at demonstrating elements of launch vehicle recovery for reuse have invigorated a debate over the merits of different approaches. The parameter most often used to assess the cost of access to space is dollars-per-kilogram to orbit. When comparing reusable vs. expendable launch vehicles, that ratio has been shown to be most sensitive to the performance lost as a result of enabling the reusability. This paper will briefly review the historical background and results of recent attempts to recover launch vehicle assets for reuse. The business case for reuse will be reviewed, with emphasis on the performance expended to recover those assets, and the practicality of the most ambitious reuse concept, namely propulsive return to the launch site. In 2015, United Launch Alliance (ULA) announced its Sensible, Modular, Autonomous Return Technology (SMART) reuse plan for recovery of the booster module for its new Vulcan launch vehicle. That plan employs a non-propulsive approach where atmospheric entry, descent and landing (EDL) technologies are utilized. Elements of such a system have a wide variety of applications, from recovery of launch vehicle elements in suborbital trajectories all the way to human space exploration. This paper will include an update on ULA's booster module recovery approach, which relies on Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and Mid-Air Retrieval (MAR) technologies, including its concept of operations (ConOps). The HIAD design, as well as parafoil staging and MAR concepts, will be discussed. Recent HIAD development activities and near term plans including scalability, next generation materials for the inflatable structure and heat shield, and gas generator inflation systems will be provided. MAR topics will include the ConOps for recovery, helicopter selection and staging, and the state of the art of parachute recovery systems using large parafoils

  6. Microbial battery for efficient energy recovery

    PubMed Central

    Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S.; Cui, Yi

    2013-01-01

    By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs—a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power. PMID:24043800

  7. Microbial battery for efficient energy recovery.

    PubMed

    Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S; Cui, Yi

    2013-10-01

    By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs-a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power.

  8. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

    2003-06-01

    Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of the field

  9. Recovery efficiency of aquifer storage and recovery (ASR) with mass transfer limitation

    NASA Astrophysics Data System (ADS)

    Lu, Chunhui; Du, Pengfei; Chen, Yiming; Luo, Jian

    2011-08-01

    Aquifer storage and recovery (ASR) is an effective strategy for water resources management and has been widely used in many contaminated and saline aquifers. However, its recovery efficiency (RE) may be significantly affected by mass transfer limitations. A numerical model is developed to simulate ASR performance by combining the convergent and divergent dispersion models with a first-order mass transfer model. By analyzing the concentration history at the pumping well, we obtain simple and effective relationships for investigating ASR efficiency under various mass transfer parameters, including capacity ratio and mass transfer timescale, and operational parameters, including injection durations and well-pumping rates. On the basis of such relationships, one can conveniently determine whether a site with mass transfer limitations is appropriate or not for ASR and how many ASR cycles are required for achieving a positive RE. Results indicate that the immobile domain may function as a contaminant source or sink or both during the recovery phase and RE usually improves with well-flow rate, the decrease of capacity ratio, and the ASR cycles. However, RE is a nonmonotonic function of the mass transfer timescale and the injection duration. A critical timescale is given for quantifying this nonmonotonic behavior. When the injection period is greater than such a critical value, increasing injection period results in a higher RE. Contrarily, when the injection period is less than the critical value, increasing the injection period may even yield a lower RE.

  10. Model and Parameter Discretization Impacts on Estimated ASR Recovery Efficiency

    NASA Astrophysics Data System (ADS)

    Forghani, A.; Peralta, R. C.

    2015-12-01

    We contrast computed recovery efficiency of one Aquifer Storage and Recovery (ASR) well using several modeling situations. Test situations differ in employed finite difference grid discretization, hydraulic conductivity, and storativity. We employ a 7-layer regional groundwater model calibrated for Salt Lake Valley. Since the regional model grid is too coarse for ASR analysis, we prepare two local models with significantly smaller discretization capable of analyzing ASR recovery efficiency. Some addressed situations employ parameters interpolated from the coarse valley model. Other situations employ parameters derived from nearby well logs or pumping tests. The intent of the evaluations and subsequent sensitivity analysis is to show how significantly the employed discretization and aquifer parameters affect estimated recovery efficiency. Most of previous studies to evaluate ASR recovery efficiency only consider hypothetical uniform specified boundary heads and gradient assuming homogeneous aquifer parameters. The well is part of the Jordan Valley Water Conservancy District (JVWCD) ASR system, that lies within Salt Lake Valley.

  11. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    A. Wang; H. Xiao; R. May

    1999-10-29

    Efficient and complete recovery of petroleum reserves from existing oil wells has proven difficult due to a lack of robust instrumentation that can monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multi-lateral wells. The main objective of the research program is to develop cost-effective, reliable fiber sensor instrumentation for real-time monitoring and /or control of various key parameters crucial to efficient and economical oil production. This report presents the detailed research work and technical progress from October 1, 1998 to September 30, 1999. The research performed over the first year of the program has followed the schedule as proposed, and solid research progress has been made in specification of the technical requirements, design and fabrication of the SCIIB sensor probes, development of the sensor systems, development of DSP-based signal processing techniques, and construction of the test systems. These technical achievements will significantly help to advance continued research on sensor tests and evaluation during the second year of the program.

  12. Increase of unit efficiency by improved waste heat recovery

    SciTech Connect

    Bauer, G.; Lankes, F.

    1998-07-01

    For coal-fired power plants with flue gas desulfurization by wet scrubbing and desulfurized exhaust gas discharge via cooling tower, a further improvement of new power plant efficiency is possible by exhaust gas heat recovery. The waste heat of exhaust gas is extracted in a flue gas cooler before the wet scrubber and recovered for combustion air and/or feedwater heating by either direct or indirect coupling of heat transfer. Different process configurations for heat recovery system are described and evaluated with regard to net unit improvement. For unite firing bituminous coal an increase of net unit efficiency of 0.25 to 0.7 percentage points and for lignite 0.7 to 1.6 percentage points can be realized depending on the process configurations of the heat recovery systems.

  13. Registration efficiency of some SSNTDs with source area included

    NASA Astrophysics Data System (ADS)

    El-Samman, H.; Mansy, M.; Hussein, A.; El-Hawary, M.; El Sersy, A.

    1999-09-01

    In this work, registration efficiency dependence on alpha particle energy and incident angle of some SSNTDs has been studied where the source area ( 241Am thin source) was included in the calculations. Ratio of the number of recorded track density rate ( ρ/ t) to the incident flux ( φ) has been determined using LR-115, CN-85 and CR-39 track detectors etched in the most recommended optimum etching conditions. It was found that the detector registration efficiency is independent on the source-to-detector distance ( d) if the flux is accurately calculated and the point source approximation is worked only for d greater than six times the source diameter when irradiation is performed in air. Results of the present work are discussed within the framework of alpha particle interaction with track detectors where the geometrical configuration of the source and detector arrangement is taken into consideration.

  14. An Efficient Image Recovery Algorithm for Diffraction Tomography Systems

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1993-01-01

    A diffraction tomography system has potential application in ultrasonic medical imaging area. It is capable of achieving imagery with the ultimate resolution of one quarter the wavelength by collecting ultrasonic backscattering data from a circular array of sensors and reconstructing the object reflectivity using a digital image recovery algorithm performed by a computer. One advantage of such a system is that is allows a relatively lower frequency wave to penetrate more deeply into the object and still achieve imagery with a reasonable resolution. An efficient image recovery algorithm for the diffraction tomography system was originally developed for processing a wide beam spaceborne SAR data...

  15. Recovery Efficiency Test Project: Phase 1, Activity report

    SciTech Connect

    Overbey, W.K. Jr.; Wilkins, D.W.; Keltch, B.; Saradji, B.; Salamy, S.P.

    1988-04-01

    This report is the second volume of the Recovery Efficiency Test Phase I Report of Activities. Volume 1 covered selection, well planning, drilling, coring, logging and completion operations. This volume reports on well testing activities, reclamation activities on the drilling site and access roads, and the results of physical and mechanical properties tests on the oriented core material obtained from a horizontal section of the well. 3 refs., 21 figs., 10 tabs.

  16. Determination of the recovery efficiency of cryptosporidium oocysts and giardia cysts from seeded bivalve mollusks.

    PubMed

    Schets, Franciska M; van den Berg, Harold H J L; de Roda Husman, Ana Maria

    2013-01-01

    The intestinal parasites Cryptosporidium and Giardia are transmitted by water and food and cause human gastroenteritis. Filter-feeding bivalve mollusks, such as oysters and mussels, filter large volumes of water and thus concentrate such pathogens, which makes these bivalves potential vectors of disease. To assess the risk of infection from consumption of contaminated bivalves, parasite numbers and parasite recovery data are required. A modified immunomagnetic separation (IMS) procedure was used to determine Cryptosporidium oocyst and Giardia cyst numbers in individually homogenized oysters (Crassostrea gigas) and mussels (Mytilus edulis). About 12% of the commercial bivalves were positive, with low (oo)cyst numbers per specimen. The recovery efficiency of the IMS procedure was systematically evaluated. Experiments included seeding of homogenized bivalves and whole animals with 100 to 1,000 (oo)cysts. Both seeding procedures yielded highly variable recovery rates. Median Cryptosporidium recoveries were 7.9 to 21% in oysters and 62% in mussels. Median Giardia recoveries were 10 to 25% in oysters and 110% in mussels. Giardia recovery was significantly higher than Cryptosporidium recovery. (Oo)cysts were less efficiently recovered from seeded whole animals than from seeded homogenates, with median Cryptosporidium recoveries of 5.3% in oysters and 45% in mussels and median Giardia recoveries of 4.0% in oysters and 82% in mussels. Both bivalve homogenate seeding and whole animal seeding yielded higher (oo)cyst recovery in mussels than in oysters, likely because of the presence of less shellfish tissue in IMS when analyzing the smaller mussels compared with the larger oysters, resulting in more efficient (oo)cyst extraction. The data generated in this study may be used in the quantitative assessment of the risk of infection with Cryptosporidium or Giardia associated with the consumption of raw bivalve mollusks. This information may be used for making risk management

  17. An efficient method of noroviruses recovery from oysters and clams

    NASA Astrophysics Data System (ADS)

    Zhou, Deqing; Ma, Liping; Zhao, Feng; Yao, Lin; Su, Laijin; Li, Xinguang

    2013-03-01

    Noroviruses (NoVs) are widespread causes of nonbacterial gastroenteritis. Outbreaks of NoVs caused diseases are commonly ascribed to the consumption of contaminated shellfish. The concentration and RNA extraction of NoVs are crucial steps of detecting NoVs in shellfish. This study aimed to select a simple, rapid and highly efficient recovery method of NoVs detection with real-time RT-PCR. Four methods of recovering GI.3 and GII.4 NoVs from spiked digestive tissues of oysters and clams, respectively, were compared, of them, the method involving proteinase K and PEG 8000 was found the most efficient. With this method, 9.3% and 13.1% of GI.3 and GII.4 NoVs were recovered from oysters and 9.6% and 12.3% of GI.3 and GII.4 NoVs were recovered from clams, respectively. This method was further used to detect NoVs in 84 oysters ( Crassostrea gigas) and 86 clams ( Ruditapes philippinarum) collected from 10 coastal cities in China from Jan. 2011 to Feb. 2012. The NoVs isolation rates were 10.47% of clams (9/86) and 7.14% of oysters (6/84). All the detected NoVs belonged to genotype GII. The NoVs recovery method selected is efficient for NoVs detection in oysters and clams.

  18. High-efficiency photovoltaic technology including thermoelectric generation

    NASA Astrophysics Data System (ADS)

    Fisac, Miguel; Villasevil, Francesc X.; López, Antonio M.

    2014-04-01

    Nowadays, photovoltaic solar energy is a clean and reliable source for producing electric power. Most photovoltaic systems have been designed and built up for use in applications with low power requirements. The efficiency of solar cells is quite low, obtaining best results in monocrystalline silicon structures, with an efficiency of about 18%. When temperature rises, photovoltaic cell efficiency decreases, given that the short-circuit current is slightly increased, and the open-circuit voltage, fill factor and power output are reduced. To ensure that this does not affect performance, this paper describes how to interconnect photovoltaic and thermoelectric technology into a single structure. The temperature gradient in the solar panel is used to supply thermoelectric cells, which generate electricity, achieving a positive contribution to the total balance of the complete system.

  19. Recovery Efficiency Test Project: Phase 1, Activity report

    SciTech Connect

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  20. Recovery efficiency test project, Phase 2 activity report

    SciTech Connect

    Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1989-02-01

    The Recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency of gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. This volume contains appendices for: (1) supporting material and procedures for data frac'' stimulation of zone 6 using nitrogen and nitrogen foam; (2) supporting material and procedures for stimulation no. 1 nitrogen gas frac on zone no. 1; (3) supporting material and procedures for stimulation no. 2 in zone no. 1 using liquid CO{sub 2}; (4) supporting material and procedures for frac no. 3 on zone no.1 using nitrogen foam and proppant; (5) supporting material and procedures for stimulation no. 4 in zones 2--3 and 4 using nitrogen foam and proppant; (6) supporting materials and procedures for stimulation no. 5 in zones 5 and 8; and (7) fracture diagnostics reports and supporting materials.

  1. Flexible organic solar cells including efficiency enhancing grating structures.

    PubMed

    de Oliveira Hansen, Roana Melina; Liu, Yinghui; Madsen, Morten; Rubahn, Horst-Günter

    2013-04-12

    In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques, such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption enhancement. Since the solar cells avoid using brittle electrodes, the performance of the flexible devices is not affected by the peeling process. We have investigated three different nanostructured grating designs and conclude that gratings with a 500 nm pitch distance have the highest light-trapping efficiency for the selected active layer material (P3HT:PCBM), resulting in an enhancement of about 34% on the solar cell efficiency. The presented method can be applied to a large variety of flexible nanostructured devices in future applications.

  2. Flexible organic solar cells including efficiency enhancing grating structures

    NASA Astrophysics Data System (ADS)

    Melina de Oliveira Hansen, Roana; Liu, Yinghui; Madsen, Morten; Rubahn, Horst-Günter

    2013-04-01

    In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques, such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption enhancement. Since the solar cells avoid using brittle electrodes, the performance of the flexible devices is not affected by the peeling process. We have investigated three different nanostructured grating designs and conclude that gratings with a 500 nm pitch distance have the highest light-trapping efficiency for the selected active layer material (P3HT:PCBM), resulting in an enhancement of about 34% on the solar cell efficiency. The presented method can be applied to a large variety of flexible nanostructured devices in future applications.

  3. Efficient loss recovery in application overlay stored media streaming

    NASA Astrophysics Data System (ADS)

    Xie, Zhi-ping; Zheng, Geng-sheng; He, Gui-ming

    2005-07-01

    As the Internet does not widely support Internet protocol multicast, and content distribution networks are costly, application overlay has emerged as an alternative for deploying large scale streaming systems. Loss recovery in such architecture is a great challenge because of the correlation of packet losses results from the relaying nature, the variation of accumulated loss rates, and the dynamics of overlay structure, which is inevitable. Since each overlay node is capable of buffering a certain length of media data it has received, and there exists a temporal dependency between the buffers of nodes along a transmitting path, it is highly desirable to make full use of this buffering capability to carry out loss recovery. To this purpose, a retransmission-based approach is proposed in this paper. First, packet losses at a node are classified into two categories according to whether they can be repaired from the immediate upstream node, then, by making upstream nodes propagate loss information downstream, the proposed scheme enables each node efficiently recognize the nature of the loss it detects, and accordingly determine appropriate repair source, thus suppresses unnecessary retransmission requests. The proposed scheme is supported by theoretical analysis of the temporal dependency between overlay nodes, and its performance is verified by experimental results.

  4. Assessment of thermal efficiency of heat recovery coke making

    NASA Astrophysics Data System (ADS)

    Tiwari, H. P.; Saxena, V. K.; Haldar, S. K.; Sriramoju, S. K.

    2017-02-01

    The heat recovery stamp charge coke making process is quite complicated due to the evolved volatile matter during coking, is partially combusted in oven crown and sole flue in a controlled manner to provide heat for producing metallurgical coke. Therefore, the control and efficient utilization of heat in the oven crown, and sole flue is difficult, which directly affects the operational efficiency. Considering the complexity and importance of thermal efficiency, evolution of different gases, combustion of gasses in oven crown and sole flue, and heating process of coke oven has been studied. A nonlinear regression methodology was used to predict temperature profile of different depth of coal cake during the coking. It was observed that the predicted temperature profile is in good agreement with the actual temperature profile (R2 = 0.98) and is validated with the actual temperature profile of other ovens. A complete study is being done to calculate the material balance, heat balance, and heat losses. This gives an overall understanding of heat flow which affects the heat penetration into the coal cake. The study confirms that 60% heat was utilized during coking.

  5. Recovery Efficiency Test Project Phase 2 activity report, Volume 1

    SciTech Connect

    Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1989-02-01

    The purpose of Phase II operations of the Recovery Efficiency Test Project is to enhance the natural production of the well and evaluate the relative improvement as a function of the type of stimulation conducted. Another purpose is to compare the stimulated production performance of the horizontal well with vertical wells in the field. The objectives considered for Phase II operations and plans were: (1) Develop a rationale for a systematic approach to designing stimulations for the well. (2) Conduct a series of stimulations designed to optimize the fluids, injection rates, proppant volumes and general approach to stimulating a horizontal well with similar geologic conditions. (3) Develop and test a method or methods for determining the geometry of stimulation-induced fractures. (4) Conduct tests and analyze the results to determine the efficiency of stimulation operations. The technical approach pursued in developing plans to accomplish three objectives was to: (1) Review the data needs for all objectives and obtain that data first. (2) Identify the operating geologic, geomechanical, and reservoir parameters that need additional clarification or definition. (3) Investigate existing models which could be used to plan or evaluate stimulation on the well and the reservoir. (4) Plan for analysis and verification of models and approaches.

  6. Recovery

    NASA Video Gallery

    This video discusses the recovery events that occur in high-power rocketry and the various devices used in safely recovering the rocket. The video includes a discussion of black powder and ejection...

  7. 20 CFR 10.712 - What amounts are included in the gross recovery?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... recovery? 10.712 Section 10.712 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF... gross recovery? (a) When a settlement or judgment is paid to, or for, one individual, the entire amount... recovery. If a settlement or judgment is paid to or for more than one individual or in more than...

  8. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibility of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).

  9. Highly efficient heat recovery system for phosphoric acid fuel cells used for cooling telecommunication equipment

    NASA Astrophysics Data System (ADS)

    Ishizawa, Maki; Okada, Shigeru; Yamashita, Takashi

    To protect the global environment by using energy more efficiently, NTT is developing a phosphoric acid fuel cell (PAFC) energy system for telecommunication cogeneration systems. Fuel cells are used to provide electrical power to telecommunication equipment and the heat energy is used by absorption refrigerators to cool the telecommunication rooms throughout the year. We have recently developed a highly efficient system for recovering heat and water from the exhaust gases of a 200-kW (rated power) fuel cell. It is composed of a shell-and-tube type heat exchanger to recover high-temperature heat and a direct-contact cooler to recover the water efficiently and simply. The reformer and cathode exhaust gases from the fuel cell are first supplied to the heat exchanger and then to the cooler. The high-temperature (85-60°C) heat can be recovered, and the total efficiency including the heat recovered from the fuel-cell stack coolant can be improved by supplying the recovered heat to the dual-heat-input absorption refrigerator. The water needed for operating the fuel cell is also recovered from the exhaust gases. We are currently applying this heat and water recovery system to the PC25C-type fuel cell. Maximum total efficiency including electrical power efficiency is estimated to be 78% at the rated power of 200 kW: composed of 17% heat recovery for the fuel-cell stack coolant, 21% from the exhaust gas by improving the heat exchanger, and 40% from electrical conversion. Next, we plan to evaluate the usefulness of this heat recovery system for cooling telecommunication equipment.

  10. Validation of a Nylon-Flocked-Swab Protocol for Efficient Recovery of Bacterial Spores from Smooth and Rough Surfaces▿

    PubMed Central

    Probst, Alexander; Facius, Rainer; Wirth, Reinhard; Moissl-Eichinger, Christine

    2010-01-01

    In order to meet planetary-protection requirements, culturable bacterial spore loads are measured representatively for the total microbial contamination of spacecraft. However, the National Aeronautics and Space Administration's (NASA's) cotton swab protocols for spore load determination have not changed for decades. To determine whether a more efficient alternative was available, a novel swab was evaluated for recovery of different Bacillus atrophaeus spore concentrations on stainless steel and other surfaces. Two protocols for the nylon-flocked swab (NFS) were validated and compared to the present NASA standard protocol. The results indicate that the novel swab protocols recover 3- to 4-fold more (45.4% and 49.0% recovery efficiency) B. atrophaeus spores than the NASA standard method (13.2%). Moreover, the nylon-flocked-swab protocols were superior in recovery efficiency for spores of seven different Bacillus species, including Bacillus anthracis Sterne (recovery efficiency, 20%). The recovery efficiencies for B. atrophaeus spores from different surfaces showed a variation from 5.9 to 62.0%, depending on the roughness of the surface analyzed. Direct inoculation of the swab resulted in a recovery rate of about 80%, consistent with the results of scanning electron micrographs that allowed detailed comparisons of the two swab types. The results of this investigation will significantly contribute to the cleanliness control of future life detection missions and will provide significant improvement in detection of B. anthracis contamination for law enforcement and security efforts. PMID:20543054

  11. Modelling total duration of traffic incidents including incident detection and recovery time.

    PubMed

    Tavassoli Hojati, Ahmad; Ferreira, Luis; Washington, Simon; Charles, Phil; Shobeirinejad, Ameneh

    2014-10-01

    Traffic incidents are key contributors to non-recurrent congestion, potentially generating significant delay. Factors that influence the duration of incidents are important to understand so that effective mitigation strategies can be implemented. To identify and quantify the effects of influential factors, a methodology for studying total incident duration based on historical data from an 'integrated database' is proposed. Incident duration models are developed using a selected freeway segment in the Southeast Queensland, Australia network. The models include incident detection and recovery time as components of incident duration. A hazard-based duration modelling approach is applied to model incident duration as a function of a variety of factors that influence traffic incident duration. Parametric accelerated failure time survival models are developed to capture heterogeneity as a function of explanatory variables, with both fixed and random parameters specifications. The analysis reveals that factors affecting incident duration include incident characteristics (severity, type, injury, medical requirements, etc.), infrastructure characteristics (roadway shoulder availability), time of day, and traffic characteristics. The results indicate that event type durations are uniquely different, thus requiring different responses to effectively clear them. Furthermore, the results highlight the presence of unobserved incident duration heterogeneity as captured by the random parameter models, suggesting that additional factors need to be considered in future modelling efforts.

  12. EFFICIENT RECOVERY OF BIOETHANOL USING NOVEL PERVAPORATION-DEPHLEGMATION PROCESS

    EPA Science Inventory

    Bioethanol is the most important liquid fuel made in the U.S. from domestically produced renewable resources. Traditional production of bioethanol involves batch fermation of biomass followed by ethanol recovery from the fermentation broths using distillation. The distillation st...

  13. Technique for highly efficient recovery of microbiological contaminants

    NASA Technical Reports Server (NTRS)

    Godwin, W. W.

    1969-01-01

    Collecting and recovery small assay samples of viable microbiological contaminants in a gas stream involves use of a commercially available water-soluble paper. This paper is nontoxic to a number of microbiological organisms and can be dry-heat-sterilized.

  14. 20 CFR 10.712 - What amounts are included in the gross recovery?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... contested verdict attributable to each of several plaintiffs, OWCP or SOL will accept that division. (b) In..., OWCP or SOL will determine the appropriate amount of the FECA beneficiary's gross recovery and advise the beneficiary of its determination. FECA beneficiaries may accept OWCP's or SOL's determination...

  15. 32 CFR 37.580 - What is recovery of funds and when should I consider including it in my TIA?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... consider including it in my TIA? 37.580 Section 37.580 National Defense Department of Defense OFFICE OF THE... consider including it in my TIA? (a) Recovery of funds refers to the use of the authority in 10 U.S.C. 2371... and the awarding organization, but its purpose is not to augment program budgets. It may be used...

  16. 32 CFR 37.580 - What is recovery of funds and when should I consider including it in my TIA?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... consider including it in my TIA? 37.580 Section 37.580 National Defense Department of Defense OFFICE OF THE... consider including it in my TIA? (a) Recovery of funds refers to the use of the authority in 10 U.S.C. 2371... and the awarding organization, but its purpose is not to augment program budgets. It may be used...

  17. 32 CFR 37.580 - What is recovery of funds and when should I consider including it in my TIA?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... consider including it in my TIA? 37.580 Section 37.580 National Defense Department of Defense OFFICE OF THE... consider including it in my TIA? (a) Recovery of funds refers to the use of the authority in 10 U.S.C. 2371... and the awarding organization, but its purpose is not to augment program budgets. It may be used...

  18. Energy efficiency of substance and energy recovery of selected waste fractions

    SciTech Connect

    Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian

    2011-04-15

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.

  19. Energy efficiency of substance and energy recovery of selected waste fractions.

    PubMed

    Fricke, Klaus; Bahr, Tobias; Bidlingmaier, Werner; Springer, Christian

    2011-04-01

    In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.

  20. Recovery Act--Class 8 Truck Freight Efficiency Improvement Project

    SciTech Connect

    Trucks, Daimler

    2015-07-26

    Daimler Trucks North America completed a five year, $79.6M project to develop and demonstrate a concept vehicle with at least 50% freight efficiency improvement over a weighted average of several drive cycles relative to a 2009 best-in-class baseline vehicle. DTNA chose a very fuel efficient baseline vehicle, the 2009 Freightliner Cascadia with a DD15 engine, yet successfully demonstrated a 115% freight efficiency improvement. DTNA learned a great deal about the various technologies that were incorporated into Super Truck and those that, through down-selection, were discarded. Some of the technologies competed with each other for efficiency, and notably some of the technologies complemented each other. For example, we found that Super Truck’s improved aerodynamic drag resulted in improved fuel savings from eCoast, relative to a similar vehicle with worse aerodynamic drag. However, some technologies were in direct competition with each other, namely the predictive technologies which use GPS and 3D digital maps to efficiently manage the vehicles kinetic energy through controls and software, versus hybrid which is a much costlier technology that essentially targets the same inefficiency. Furthermore, the benefits of a comprehensive, integrated powertrain/vehicle approach was proven, in which vast improvements in vehicle efficiency (e.g. lower aero drag and driveline losses) enabled engine strategies such as downrating and downspeeding. The joint engine and vehicle developments proved to be a multiplier-effect which resulted in large freight efficiency improvements. Although a large number of technologies made the selection process and were used on the Super Truck demonstrator vehicle, some of the technologies proved not feasible for series production.

  1. Turbulent boundary layer heat transfer experiments: Convex curvature effects including introduction and recovery

    NASA Technical Reports Server (NTRS)

    Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.

    1982-01-01

    Measurements were made of the heat transfer rate through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20% to 50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15% to 20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: the effect of initial boundary layer thickness, the effect of freestream velocity, the effect of freestream acceleration, the effect of unheated starting length, and the effect of the maturity of the boundary layer. An existing curvature prediction model was tested against this broad heat transfer data base to determine where it could appropriately be used for heat transfer predictions.

  2. Turbulent boundary layer heat transfer experiments: Convex curvature effects, including introduction and recovery

    NASA Technical Reports Server (NTRS)

    Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.

    1980-01-01

    Heat transfer rates were measured through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20-50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15-20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: (1) the effect of initial boundary layer thickness; (2) the effect of freestream velocity; (3) the effect of freestream acceleration; (4) the effect of unheated starting length; and (5) the effect of the maturity of the boundary layer. Regardless of the initial state, curvature eventually forced the boundary layer into an asymptotic curved condition. The slope, minus one, is believed to be significant.

  3. 32 CFR 37.580 - What is recovery of funds and when should I consider including it in my TIA?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false What is recovery of funds and when should I consider including it in my TIA? 37.580 Section 37.580 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Pre-Award...

  4. Message Efficient Checkpointing and Rollback Recovery in Heterogeneous Mobile Networks

    NASA Astrophysics Data System (ADS)

    Jaggi, Parmeet Kaur; Singh, Awadhesh Kumar

    2016-06-01

    Heterogeneous networks provide an appealing way of expanding the computing capability of mobile networks by combining infrastructure-less mobile ad-hoc networks with the infrastructure-based cellular mobile networks. The nodes in such a network range from low-power nodes to macro base stations and thus, vary greatly in their capabilities such as computation power and battery power. The nodes are susceptible to different types of transient and permanent failures and therefore, the algorithms designed for such networks need to be fault-tolerant. The article presents a checkpointing algorithm for the rollback recovery of mobile hosts in a heterogeneous mobile network. Checkpointing is a well established approach to provide fault tolerance in static and cellular mobile distributed systems. However, the use of checkpointing for fault tolerance in a heterogeneous environment remains to be explored. The proposed protocol is based on the results of zigzag paths and zigzag cycles by Netzer-Xu. Considering the heterogeneity prevalent in the network, an uncoordinated checkpointing technique is employed. Yet, useless checkpoints are avoided without causing a high message overhead.

  5. The concentration of Cryptosporidium and Giardia in water--the role and importance of recovery efficiency.

    PubMed

    Ongerth, Jerry E

    2013-05-01

    The concentration of Cryptosporidium and of Giardia in surface water is a subject of importance to public health and public water supply. The term concentration is a fundamental property of any water quality parameter having a classical definition as used in chemistry and biology. Analytical methods for measuring the occurrence of Cryptosporidium and Giardia in water find only a fraction of the organisms actually present. This paper collects recently available data to examine the role and importance of recovery efficiency measurement to description of the concentrations of these organisms. Data from Australian sources graphically illustrate the variability of recovery efficiency at individual sites over relatively short time scales. Additional data on replicated recovery measurements establish their reproducibility. The recently released USEPA LT2 data along with those from Australia illustrate the independent variation of Cryptosporidium and Giardia occurrence and recovery efficiency at individual sampling locations. Calculation of concentration from paired raw numbers and recovery efficiency measurements clearly shows the magnitude and importance of taking recovery into account in expressing the concentration of these organisms.

  6. Efficient Coordinated Recovery of Sparse Channels in Massive MIMO

    NASA Astrophysics Data System (ADS)

    Masood, Mudassir; Afify, Laila H.; Al-Naffouri, Tareq Y.

    2015-01-01

    This paper addresses the problem of estimating sparse channels in massive MIMO-OFDM systems. Most wireless channels are sparse in nature with large delay spread. In addition, these channels as observed by multiple antennas in a neighborhood have approximately common support. The sparsity and common support properties are attractive when it comes to the efficient estimation of large number of channels in massive MIMO systems. Moreover, to avoid pilot contamination and to achieve better spectral efficiency, it is important to use a small number of pilots. We present a novel channel estimation approach which utilizes the sparsity and common support properties to estimate sparse channels and require a small number of pilots. Two algorithms based on this approach have been developed which perform Bayesian estimates of sparse channels even when the prior is non-Gaussian or unknown. Neighboring antennas share among each other their beliefs about the locations of active channel taps to perform estimation. The coordinated approach improves channel estimates and also reduces the required number of pilots. Further improvement is achieved by the data-aided version of the algorithm. Extensive simulation results are provided to demonstrate the performance of the proposed algorithms.

  7. Effects of Al-coagulant sludge characteristics on the efficiency of coagulants recovery by acidification.

    PubMed

    Chen, Yi-Jui; Wang, Wen-May; Wei, Ming-Jun; Chen, Jiann-Long; He, Ju-Liang; Chiang, Kung-Yuh; Wu, Chih-Chao

    2012-12-01

    This study evaluated the effects of Al-coagulant sludge characteristics on the efficiency ofcoagulant recovery by acidification with H2SO4. Two sludge characteristics were studied: types of coagulant and textures of the suspended solid in raw water. The coagulant types are aluminium sulphate and polyaluminium chloride (PACl); the textures of the suspended solid are sand-based and clay-based. Efficiency of aluminium recovery at a pH of 2 was compared for different sludges obtained from water treatment plants in Taiwan. The results showed that efficiency of aluminium recovery from sludge containing clayey particles was higher than that from sludge containing sandy particles. As for the effect of coagulant types, the aluminium recovery efficiency for sludge using PACl ranged between 77% and 100%, whereas it ranged between 65% and 72% for sludge using aluminium sulphate as the coagulant. This means using PACl as the coagulant could result in higher recovery efficiency of coagulant and be beneficial for water treatment plants where renewable materials and waste reduction as the factors for making decisions regarding plant operations. However, other metals, such as manganese, could be released with aluminium during the acidification process and limit the use of the recovered coagulants. It is suggested that the recovered coagulants be used in wastewater treatment processes.

  8. Energy-Efficient Bioalcohol Recovery by Gel Stripping

    NASA Astrophysics Data System (ADS)

    Godbole, Rutvik; Ma, Lan; Hedden, Ronald

    2014-03-01

    Design of energy-efficient processes for recovering butanol and ethanol from dilute fermentations is a key challenge facing the biofuels industry due to the high energy consumption of traditional multi-stage distillation processes. Gel stripping is an alternative purification process by which a dilute alcohol is stripped from the fermentation product by passing it through a packed bed containing particles of a selectively absorbent polymeric gel material. The gel must be selective for the alcohol, while swelling to a reasonable degree in dilute alcohol-water mixtures. To accelerate materials optimization, a combinatorial approach is taken to screen a matrix of copolymer gels having orthogonal gradients in crosslinker concentration and hydrophilicity. Using a combination of swelling in pure solvents, the selectivity and distribution coefficients of alcohols in the gels can be predicted based upon multi-component extensions of Flory-Rehner theory. Predictions can be validated by measuring swelling in water/alcohol mixtures and conducting h HPLC analysis of the external liquid. 95% + removal of butanol from dilute aqueous solutions has been demonstrated, and a mathematical model of the unsteady-state gel stripping process has been developed. NSF CMMI Award 1335082.

  9. Behavior and distribution of heavy metals including rare Earth elements, thorium, and uranium in sludge from industry water treatment plant and recovery method of metals by biosurfactants application.

    PubMed

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90-100% using a precipitation method with alkaline solution.

  10. Energy recovery efficiency and cost analysis of VOC thermal oxidation pollution control technology.

    PubMed

    Warahena, Aruna S K; Chuah, Yew Khoy

    2009-08-01

    Thermal oxidation of VOC is extremely energy intensive, and necessitates high efficiency heat recovery from the exhaust heat. In this paper, two independent parameters heat recovery factor (HRF) and equipment cost factor (ECF) are introduced. HRF and ECF can be used to evaluate separately the merits of energy efficiency and cost effectiveness of VOC oxidation systems. Another parameter equipment cost against heat recovery (ECHR) which is a function of HRF and ECF is introduced to evaluate the merit of different systems for the thermal oxidation of VOC. Respective cost models were derived for recuperative thermal oxidizer (TO) and regenerative thermal oxidizer (RTO). Application examples are presented to show the use and the importance of these parameters. An application examples show that TO has a lower ECF while RTO has a higher HRF. However when analyzed using ECHR, RTO would be of advantage economically in longer periods of use. The analytical models presented can be applied in similar environmental protection systems.

  11. Modulating Astrocyte Transition after Stroke to Promote Brain Rescue and Functional Recovery: Emerging Targets Include Rho Kinase.

    PubMed

    Abeysinghe, Hima Charika S; Phillips, Ellie L; Chin-Cheng, Heung; Beart, Philip M; Roulston, Carli L

    2016-02-26

    Stroke is a common and serious condition, with few therapies. Whilst previous focus has been directed towards biochemical events within neurons, none have successfully prevented the progression of injury that occurs in the acute phase. New targeted treatments that promote recovery after stroke might be a better strategy and are desperately needed for the majority of stroke survivors. Cells comprising the neurovascular unit, including blood vessels and astrocytes, present an alternative target for supporting brain rescue and recovery in the late phase of stroke, since alteration in the unit also occurs in regions outside of the lesion. One of the major changes in the unit involves extensive morphological transition of astrocytes resulting in altered energy metabolism, decreased glutamate reuptake and recycling, and retraction of astrocyte end feed from both blood vessels and neurons. Whilst globally inhibiting transitional change in astrocytes after stroke is reported to result in further damage and functional loss, we discuss the available evidence to suggest that the transitional activation of astrocytes after stroke can be modulated for improved outcomes. In particular, we review the role of Rho-kinase (ROCK) in reactive gliosis and show that inhibiting ROCK after stroke results in reduced scar formation and improved functional recovery.

  12. Improving ASR Recovery Efficiency by Partially-penetrating Wells in Brackish Aquifers

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2015-12-01

    Aquifer storage and recovery (ASR) is a proven cost-effective powerful technology for environmental protection and water resources optimization. The recovery efficiency (RE) is regarded as the key criteria for evaluating the ASR performance. In this study, a particular ASR scheme with the fully-penetrating well (FPW) for injection and the partially-penetrating well (PPW) for recovery is proposed to improve the RE for ASR schemes implemented in brackish aquifers. This design appreciates the tilting shape of the interface with underlying heavier salt water. For the FPW, recovery has to be terminated as soon as the interface toe reaches the well, while the toe can be pulled up to the PPW for recovery termination, resulting in later breakthrough of salt water into the pumping well, more recoverable water extracted from the shallow layers, and a higher RE. Key hydrogeological and operational parameters affecting the RE were investigated by numerical simulations. Results demonstrated the effectiveness and efficiency of the new ASR scheme and provided practical guidance for designing such a scheme in various hydrogeological conditions.

  13. Global Aerodynamic Modeling for Stall/Upset Recovery Training Using Efficient Piloted Flight Test Techniques

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Cunningham, Kevin; Hill, Melissa A.

    2013-01-01

    Flight test and modeling techniques were developed for efficiently identifying global aerodynamic models that can be used to accurately simulate stall, upset, and recovery on large transport airplanes. The techniques were developed and validated in a high-fidelity fixed-base flight simulator using a wind-tunnel aerodynamic database, realistic sensor characteristics, and a realistic flight deck representative of a large transport aircraft. Results demonstrated that aerodynamic models for stall, upset, and recovery can be identified rapidly and accurately using relatively simple piloted flight test maneuvers. Stall maneuver predictions and comparisons of identified aerodynamic models with data from the underlying simulation aerodynamic database were used to validate the techniques.

  14. Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs

    SciTech Connect

    Goldman, Charles A.; Stuart, Elizabeth; Hoffman, Ian; Fuller, Merrian C.; Billingsley, Megan A.

    2011-02-25

    Since the spring of 2009, billions of federal dollars have been allocated to state and local governments as grants for energy efficiency and renewable energy projects and programs. The scale of this American Reinvestment and Recovery Act (ARRA) funding, focused on 'shovel-ready' projects to create and retain jobs, is unprecedented. Thousands of newly funded players - cities, counties, states, and tribes - and thousands of programs and projects are entering the existing landscape of energy efficiency programs for the first time or expanding their reach. The nation's experience base with energy efficiency is growing enormously, fed by federal dollars and driven by broader objectives than saving energy alone. State and local officials made countless choices in developing portfolios of ARRA-funded energy efficiency programs and deciding how their programs would relate to existing efficiency programs funded by utility customers. Those choices are worth examining as bellwethers of a future world where there may be multiple program administrators and funding sources in many states. What are the opportunities and challenges of this new environment? What short- and long-term impacts will this large, infusion of funds have on utility customer-funded programs; for example, on infrastructure for delivering energy efficiency services or on customer willingness to invest in energy efficiency? To what extent has the attribution of energy savings been a critical issue, especially where administrators of utility customer-funded energy efficiency programs have performance or shareholder incentives? Do the new ARRA-funded energy efficiency programs provide insights on roles or activities that are particularly well-suited to state and local program administrators vs. administrators or implementers of utility customer-funded programs? The answers could have important implications for the future of U.S. energy efficiency. This report focuses on a selected set of ARRA-funded energy

  15. Evaluation of vapor recovery systems efficiency and personal exposure in service stations in Mexico City.

    PubMed

    Cruz-Núñez, Xochitl; Hernández-Solís, José M; Ruiz-Suárez, Luis G

    2003-06-20

    Results of a field study on the efficiency of vapor recovery systems currently used in gasoline service stations in Mexico City are presented. Nine gasoline stations were studied, representing the several technologies available in Mexico City. The test was applied to a fixed vehicular fleet of approximately 10 private and public service vehicles. Each one of the gasoline service stations tested reported efficiencies above 80% in the recovery of vapor losses from gasoline which is the minimum permissible value by Mexican regulations. Implications to the emissions inventory are discussed. A second goal of this study was to measure the potential exposure of service attendants to three important components of gasoline: benzene; toluene; and xylenes. The influence of spatial location of personnel within the service station was also evaluated by measuring levels of the three compounds both at the refueling area and in the service station office. Results are discussed and compared to a previous study.

  16. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  17. High efficiency shale oil recovery. First quarter report, January 1, 1992--March 31, 1992

    SciTech Connect

    Adams, D.C.

    1992-12-01

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

  18. Culture methods impact recovery of antibiotic-resistant Enterococci including Enterococcus cecorum from pre- and postharvest chicken.

    PubMed

    Suyemoto, M M; Barnes, H J; Borst, L B

    2017-03-01

    Pathogenic strains of Enterococcus cecorum (EC) expressing multidrug resistance have emerged. In National Antimicrobial Resistance Monitoring System (NARMS) data, EC is rarely recovered from chickens. Two NARMS methodologies (FDA and USDA) were compared with standard culture (SC) techniques for recovery of EC. NARMS methods failed to detect EC in 58 caecal samples, 20 chicken breast or six whole broiler samples. EC was recovered from 1 of 38 (2·6%) and 2 of 38 (5·2%) preharvest spinal lesions (USDA and FDA method, respectively). In contrast, using the SC method, EC was recovered from 44 of 53 (83%) caecal samples, all 38 (100%) spinal lesions, 14 of 20 (70%) chicken breast samples, and all three spinal lesions identified in whole carcasses. Compared with other Enterococcus spp., EC isolates had a higher prevalence of resistance to macrolides. The NARMS methods significantly affected recovery of enterococcal species other than EC. When the postharvest FDA method was applied to preharvest caecal samples, isolates of Enterococcus faecium were preferentially recovered. All 11 E. faecium isolates were multidrug resistant, including resistance to penicillin, daptomycin and linezolid. These findings confirm that current methodologies may not accurately identify the amount and range of antimicrobial resistance of enterococci from chicken sources.

  19. Electron linac for medical isotope production with improved energy efficiency and isotope recovery

    DOEpatents

    Noonan, John; Walters, Dean; Virgo, Matt; Lewellen, John

    2015-09-08

    A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.

  20. Wall-Plug Efficiencies of High-Power Free Electron Lasers Employing Energy Recovery Linacs

    DTIC Science & Technology

    2009-04-23

    oscillator and amplifier (uniform and tapered wiggler ) are strongly dependent on the energy recovery process A theoretical model for electron beam dynamics in...For the tapered amplifier, the spent electron beam exiting the wiggler consists of trapped and untrapped electrons De-accelerating these two...size, complexity and cost of the overall system. The wall- plug efficiency for the FEL oscillator and amplifier (uniform and tapered wiggler ) are

  1. Efficiency of energy recovery from waste incineration, in the light of the new Waste Framework Directive.

    PubMed

    Grosso, Mario; Motta, Astrid; Rigamonti, Lucia

    2010-07-01

    This paper deals with a key issue related to municipal waste incineration, which is the efficiency of energy recovery. A strong driver for improving the energy performances of waste-to-energy plants is the recent Waste Framework Directive (Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives), which allows high efficiency installations to benefit from a status of "recovery" rather than "disposal". The change in designation means a step up in the waste hierarchy, where the lowest level of priority is now restricted to landfilling and low efficiency wastes incineration. The so-called "R1 formula" reported in the Directive, which counts for both production of power and heat, is critically analyzed and correlated to the more scientific-based approach of exergy efficiency. The results obtained for waste-to-energy plants currently operating in Europe reveal some significant differences in their performance, mainly related to the average size and to the availability of a heat market (district heating).

  2. Hydrogen Gas Recycling for Energy Efficient Ammonia Recovery in Electrochemical Systems.

    PubMed

    Kuntke, Philipp; Rodríguez Arredondo, Mariana; Widyakristi, Laksminarastri; Ter Heijne, Annemiek; Sleutels, Tom H J A; Hamelers, Hubertus V M; Buisman, Cees J N

    2017-03-07

    Recycling of hydrogen gas (H2) produced at the cathode to the anode in an electrochemical system allows for energy efficient TAN (Total Ammonia Nitrogen) recovery. Using a H2 recycling electrochemical system (HRES) we achieved high TAN transport rates at low energy input. At a current density of 20 A m(-2), TAN removal rate from the influent was 151 gN m(-2) d(-1) at an energy demand of 26.1 kJ gN(-1). The maximum TAN transport rate of 335 gN m(-2) d(-1) was achieved at a current density of 50 A m(-2) and an energy demand of 56.3 kJ gN(-1). High TAN removal efficiency (73-82%) and recovery (60-73%) were reached in all experiments. Therefore, our HRES is a promising alternative for electrochemical and bioelectrochemical TAN recovery. Advantages are the lower energy input and lower risk of chloride oxidation compared to electrochemical technologies and high rates and independence of organic matter compared to bioelectrochemical systems.

  3. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    NASA Astrophysics Data System (ADS)

    Myat, Aung; Thu, Kyaw; Kim, Young-Deuk; Choon, Ng Kim

    2012-06-01

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification. The proposed plant comprises a Capstone C30 micro-turbine which generates 24 kW of electricity, a compact and efficient waste heat recovery system and a host of waste heat activated devices namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The numerical analysis for the host of waste heat recovery system and thermally activated devices using FORTRAN power station linked to powerful IMSL library is performed to investigate the performance of the overall system. A set of experiments, both part load and full load, of micro-turbine is conducted to examine the electricity generation and the exhaust gas temperature. It is observed that energy utilization factor (EUF) could achieve as high as 70% while Fuel Energy Saving Ratio (FESR) is found to be 28%.

  4. Design and implementation of a new low-cost subsurface mooring system for efficient data recovery

    SciTech Connect

    Tian, Chuan; Deng, Zhiqun; Tian, Jiwei; Zhao, Wei; Song, Dalei; Xu, Ming; Xu, Xiaoyang; Lu, Jun

    2013-09-23

    Mooring systems are the most effective method for making sustained time series observations in the oceans. Generally there are two types of ocean mooring systems: surface and subsurface. Subsurface mooring system is less likely to be damaged after deployment than surface system. However, subsurface system usually needs to be retrieved from the ocean for data recovery. This paper describes the design and implementation of a new low-cost subsurface mooring system for efficient data recovery: Timed Communication Buoy System (TCBS). TCBS is usually integrated in the main float and the designated data is downloaded from the control system. After data retrieval, TCBS will separate from main float, rise up to the sea surface, and transmit data by satellite communication.

  5. Hypochlorite digestion method for efficient recovery of PHB from Alcaligenes faecalis.

    PubMed

    Sayyed, R Z; Gangurde, N S; Chincholkar, S B

    2009-09-01

    We reported the optimum amount of PHB accumulated by Alcaligenes faecalis during its 24 h growth under nitrogen deficient conditions. After 24 h incubation decrease in the amount of PHB was recorded. Hypochlorite digestion of biomass of organism followed by extraction with a solvent system consisting of 1:1 mixture of ethanol and acetone resulted in efficient recovery of PHB vis-à-vis earlier methods. This solvent system gave a high recovery yield, i.e. 5.6 gL(-1) vis-à-vis earlier reported yield, 1.34 gL(-1) (by same method), 0.63 gL(-1) (by chloroform extraction method) and 1.1 gL(-1) (by dispersion method).

  6. Quantitation of Binding, Recovery and Desalting Efficiency in Solid Phase Extraction Micropipette Tips

    SciTech Connect

    Palmblad, M N; Vogel, J S

    2004-08-02

    Micropipette-tip solid phase extraction systems are common in proteomic analyses for desalting and concentrating samples for mass spectrometry, removing interferences, and increasing sensitivity. These systems are inexpensive, disposable, and highly efficient. Here we show micropipette-tip solid phase extraction is a direct sample preparation method for {sup 14}C-accelerator mass spectrometry (AMS), removing salts or reagent from labeled macromolecules. We compared loading, recovery and desalting efficiency in commercially available SPE micro-tips using {sup 14}C-labeled peptides and proteins, AMS, and alpha spectrometry ion energy loss quantitation. The polypropylene in the tips was nearly {sup 14}C-free and simultaneously provided low-background carrier for AMS. The silica material did not interfere with the analysis. Alpha spectrometry provided an absolute measurement of desalting efficiency.

  7. Energy-efficient heat recovery systems for air conditioning of indoor swimming pools

    SciTech Connect

    Elsayed, M.M.; El-Refaee, M.M.; Borhan, Y.A.

    1997-12-31

    Analysis of a conventional air-conditioning system for indoor swimming pools during the summer season is presented. The analysis showed that the cooling load is characterized by a large latent heat fraction. As a result, a reheating process must be used downstream of the cooling coil to achieve the proper design comfort condition in the pool area. This, in turn, increases the energy requirement per unit cooling load of the pool. Two heat recovery systems are proposed to reduce this energy. In the first system, ambient air is used for the reheating process in an air-to-air heat exchanger. In the second system, mixed air--recirculated and ambient air--is used for the reheating process. Heat recovery efficiency is defined as an index of the energy savings resulting from the use of the heat recovery system compared to that of a conventional air-conditioning system. At a wide range of ambient conditions it is found that the energy savings could be up to 70% of the energy required to operate a conventional air-conditioning system. A parametric study was carried out to size the air-to-air heat exchanger associated with these heat recovery systems, and the results showed that a heat exchanger having an effectiveness of 0.5 would give satisfactory results. The proposed heat recovery systems are also compared to the case of reheating using the heat rejection from the condenser of the refrigeration machine. The comparison showed that the proposed systems save more energy than reheating using the condenser heat. A typical case study is given to demonstrate the savings in energy consumption when these systems are used.

  8. High efficiency shale oil recovery. Final report, January 1, 1992--June 30, 1993

    SciTech Connect

    Adams, D.C.

    1993-09-29

    The Adams Counter-current shale oil recovery process is an improved retorting technology enabling highly efficient oil recovery from oil shale. The high efficiency results primarily from the following facts: it (1) recovers the ash heat to preheat the feed ore; (2) burns and uses the coke energy and (3) operates without using hot ash recycling as a heat carrier. This latter feature is doubly important, contributing to high oil yield and to the generation of highly reactive coke which can be burned below 1000{degree}F, avoiding the endothermal calcination of the mineral carbonates and helping to clean the ash of contaminants. This project demonstrates that oil shale can be retorted under the specified conditions and achieve the objectives of very high efficiency. The project accomplished the following: 51 quartz sand rotary kiln runs provided significant engineering data. A heat transfer value of 107 Btu/hr/ft{sup 2}/{degree}F was obtained at optimum RPM; eight oil shale samples were obtained and preliminary shakedown runs were made. Five of the samples were selected for kiln processing and twelve pyrolysis runs were made on the five different oil shales;average off recovery was 109% of Fisher Assay; retorted residue from all five samples was oxidized at approximately 1000{degree}F. The ash from these runs was oxidized to varying extents, depending on the oil shale and oxidizing temperatures. While 1000{degree}F is adequately hot to provide process heat from coke combustion for these ores, some Eastern oil shales, without mineral carbonates, may be oxidized at higher temperatures, perhaps 100--300 degrees hotter, to obtain a more complete oxidation and utilization of the coke.

  9. Optimization of the recovery efficiency in an axial HGMF cell with bounded flow field

    NASA Astrophysics Data System (ADS)

    Badescu, V.; Murariu, V.; Rotariu, O.; Rezlescu, N.

    1996-09-01

    This work presents a method to optimize the recovery efficiency of fine paramagnetic particles from a liquid suspension in an axial HGMF cell. The cell has the flow field bounded by a circular cylindrical wall. It has only one ferromagnetic wire mounted outside the flow field, parallel with its axis and in `paramagnetic capture mode'. The optimization criterion was deduced from the analysis of the particles' trajectories inside the magnetic active space. It is based on the relationship between the geometrical 0022-3727/29/9/042/img1 and operational 0022-3727/29/9/042/img2 parameters for which the filtration efficiency is 100%. The work also presents some experimental data which are in good agreement with theoretical results.

  10. Demonstrate the removal efficiency and capacity of MOF materials for krypton recovery

    SciTech Connect

    Thallapally, Praveen K.; Liu, Jian; Strachan, Denis M.

    2013-08-23

    Metal organic framework materials (MOFs) were developed and tested in support of the U.S. Department of Energy Office of Nuclear Energy, Fuel Cycle Technology Separations and Waste Forms Campaign. Specifically, materials are being developed for the removal of xenon (Xe) and krypton (Kr) from gaseous products of nuclear fuel reprocessing unit operations. Two metal organic framework structures were investigated in greater detail to demonstrate the removal efficiency and capacity of MOF materials for krypton recovery. Our two bed breakthrough measurements on NiDOBDC and FMOFCu indicate these materials can capture and separate parts per million levels of Xe and Kr from air. The removal efficiency and adsorption capacity for Kr on these two MOFs were further increased upon removal of Xe upfront.

  11. Recovery of soil unicellular eukaryotes: an efficiency and activity analysis on the single cell level.

    PubMed

    Lentendu, Guillaume; Hübschmann, Thomas; Müller, Susann; Dunker, Susanne; Buscot, François; Wilhelm, Christian

    2013-12-01

    Eukaryotic unicellular organisms are an important part of the soil microbial community, but they are often neglected in soil functional microbial diversity analysis, principally due to the absence of specific investigation methods in the special soil environment. In this study we used a method based on high-density centrifugation to specifically isolate intact algal and yeast cells, with the aim to analyze them with flow cytometry and sort them for further molecular analysis such as deep sequencing. Recovery efficiency was tested at low abundance levels that fit those in natural environments (10(4) to 10(6) cells per g soil). Five algae and five yeast morphospecies isolated from soil were used for the testing. Recovery efficiency was between 1.5 to 43.16% and 2 to 30.2%, respectively, and was dependent on soil type for three of the algae. Control treatments without soil showed that the majority of cells were lost due to the method itself (58% and 55.8% respectively). However, the cell extraction technique did not much compromise cell vitality because a fluorescein di-acetate assay indicated high viability percentages (73.3% and 97.2% of cells, respectively). The low abundant algae and yeast morphospecies recovered from soil were cytometrically analyzed and sorted. Following, their DNA was isolated and amplified using specific primers. The developed workflow enables isolation and enrichment of intact autotrophic and heterotrophic soil unicellular eukaryotes from natural environments for subsequent application of deep sequencing technologies.

  12. Recovery efficiency test project, Phase 2 activity report. Volume 2, Final report

    SciTech Connect

    Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1989-02-01

    The Recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency of gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. This volume contains appendices for: (1) supporting material and procedures for ``data frac`` stimulation of zone 6 using nitrogen and nitrogen foam; (2) supporting material and procedures for stimulation no. 1 nitrogen gas frac on zone no. 1; (3) supporting material and procedures for stimulation no. 2 in zone no. 1 using liquid CO{sub 2}; (4) supporting material and procedures for frac no. 3 on zone no.1 using nitrogen foam and proppant; (5) supporting material and procedures for stimulation no. 4 in zones 2--3 and 4 using nitrogen foam and proppant; (6) supporting materials and procedures for stimulation no. 5 in zones 5 and 8; and (7) fracture diagnostics reports and supporting materials.

  13. Fast hybrid SPECT simulation including efficient septal penetration modelling (SP-PSF).

    PubMed

    Staelens, Steven; de Wit, Tim; Beekman, Freek

    2007-06-07

    Single photon emission computed tomography (SPECT) images are degraded by the detection of scattered photons and photons that penetrate the collimator septa. In this paper, a previously proposed Monte Carlo software that employs fast object scatter simulation using convolution-based forced detection (CFD) is extended towards a wide range of medium and high energy isotopes measured using various collimators. To this end, a fast method was developed for incorporating effects of septal penetrating (SP) photons. The SP contributions are obtained by calculating the object attenuation along the path from primary emission to detection followed by sampling a pre-simulated and scalable septal penetration point spread function (SP-PSF). We found that with only a very slight reduction in accuracy, we could accelerate the SP simulation by four orders of magnitude. To achieve this, we combined: (i) coarse sampling of the activity and attenuation distribution; (ii) simulation of the penetration only for a coarse grid of detector pixels followed by interpolation and (iii) neglection of SP-PSF elements below a certain threshold. By inclusion of this SP-PSF-based simulation it became possible to model both primary and septal penetrated photons while only 10% extra computation time was added to the CFD-based Monte Carlo simulator. As a result, a SPECT simulation of a patient-like distribution including SP now takes less than 5 s per projection angle on a dual processor PC. Therefore, the simulator is well-suited as an efficient projector for fully 3D model-based reconstruction or as a fast data-set generator for applications such as image processing optimization or observer studies.

  14. Patterns and trends in nitrogen use and nitrogen recovery efficiency in world agriculture

    NASA Astrophysics Data System (ADS)

    Conant, Richard T.; Berdanier, Aaron B.; Grace, Peter R.

    2013-04-01

    Worldwide increases in nitrogen (N) inputs to croplands have been and will continue to be an important contributor to growing more food. But a substantial portion of N inputs to croplands are not captured in harvested products and leave the field, contributing to air and water pollution. Whether the proportion of N inputs captured in harvest grows, shrinks, or remains unchanged will have important impacts on both food production and N pollution. We created a new global N input database (fertilizer, manure, fixation, deposition, and residues) that enables evaluation of trends in nitrogen use and recovery by country and by crop from the 1960s through 2007. These data show that despite growth in yields and increased N fertilization, differences in efficiency of N use between Organisation for Economic Co-operation and Development (OECD; http://www.oecd.org) and other countries have persisted over nearly 50 years and exhibit no sign of convergence. The high yield, high nitrogen input systems characteristic of rich countries have released large amounts of reactive N to the environment but have operated with greater efficiency—recovering a greater portion of added N in crops. Aggregate yields in OECD countries are 70% greater than in non-OECD countries on N input rates just 54% greater. Variation in recovery efficiency between countries suggests that there is scope for improvements through enhanced N delivery and capture in the world's low-yielding croplands and that increasing efficiency of N use is an important component of meeting food demand in the future.

  15. An efficient approach for phosphorus recovery from wastewater using series-coupled air-agitated crystallization reactors.

    PubMed

    Dai, Hongliang; Lu, Xiwu; Peng, Yonghong; Zou, Haiming; Shi, Jing

    2016-12-01

    Homogeneous nucleation of hydroxyapatite (HAP) crystallization in high levels of supersaturation solution has a negative effect on phosphorus recovery efficiency because of the poor settleability of the generated HAP microcrystalline. In this study, a new high-performance approach for phosphorus recovery from anaerobic supernatant using three series-coupled air-agitated crystallization reactors was developed and characterized. During 30-day operation, the proposed process showed a high recovery efficiency (∼95.82%) and low microcrystalline ratio (∼3.11%). Particle size analysis showed that the microcrystalline size was successively increased (from 5.81 to 26.32 μm) with the sequence of series-coupled reactors, confirming the conjectural mechanism that a multistage-induced crystallization system provided an appropriate condition for the growth, aggregation, and precipitation of crystallized products. Furthermore, the new process showed a broad spectrum of handling ability for different concentrations of phosphorus-containing solution in the range of 5-350 mg L(-1), and the obtained results of phosphorus conversion ratio and recovery efficiency were more than 92% and 80%, respectively. Overall, these results showed that the new process exhibited an excellent ability of efficient phosphorus recovery as well as wide application scope, and might be used as an effective approach for phosphorus removal and recovery from wastewater.

  16. STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    SciTech Connect

    Charles McCormick; Roger Hester

    2004-09-30

    This sixth and final progress report for DOE Award Number DE-FC26-01BC15317 describes research during the period March 01, 2004 through August 31, 2004 performed at the University of Southern Mississippi on ''Stimuli Responsive Polymers with Enhanced Efficiency in Reservoir Recovery'' processes. Significantly, terpolymers that are responsive to changes in pH and ionic strength have been synthesized, characterized, and their solution properties have been extensively examined. Terpolymers composed of acrylamide, a carboxylated acrylamido monomer (AMBA), and a quaternary ammonium monomer (AMBATAC) with balanced compositions of the latter two, exhibit increases in aqueous solution viscosity as NaCl concentration is increased. This increase in polymer coil size can be expected upon injection of this type of polymer into oil reservoirs of moderate-to-high salinity, leading to better mobility control. The opposite effect (loss of viscosity) is observed for conventional polymer systems. Additionally polymer mobility characteristics have been conducted for a number of hydrophilic copolymers utilizing an extensional flow apparatus and size exclusion chromatography. This study reveled that oil recovery enhancement through use of polymers in a water flood is due to the polymer's resistance to deformation as it flows through the reservoir. Individual polymers when in aqueous solution form coils. The larger the polymer's coil size, the greater the polymer's resistance to extensional flow and the more effective the polymer is in enhancing oil recovery. Large coil sizes are obtained by increasing the polymer molecular weight and having macromolecular structures that favor greater swelling of the coil by the aqueous solvent conditions (temperature, pH and electrolyte concentration) existing in the reservoir.

  17. False-Negative Rate and Recovery Efficiency Performance of a Validated Sponge Wipe Sampling Method

    SciTech Connect

    Krauter, Paula; Piepel, Gregory F.; Boucher, Raymond; Tezak, Matthew S.; Amidan, Brett G.; Einfeld, Wayne

    2012-02-01

    Recovery of spores from environmental surfaces varies due to sampling and analysis methods, spore size and characteristics, surface materials, and environmental conditions. Tests were performed to evaluate a new, validated sponge wipe method using Bacillus atrophaeus spores. Testing evaluated the effects of spore concentration and surface material on recovery efficiency (RE), false-negative rate (FNR), limit of detection (LOD), and their uncertainties. Ceramic tile and stainless steel had the highest mean RE values (48.9 and 48.1%, respectively). Faux leather, vinyl tile, and painted wood had mean RE values of 30.3, 25.6, and 25.5, respectively, while plastic had the lowest mean RE (9.8%). Results show roughly linear dependences of RE and FNR on surface roughness, with smoother surfaces resulting in higher mean REs and lower FNRs. REs were not influenced by the low spore concentrations tested (3.10x10^-3 to 1.86 CFU/cm^2). Stainless steel had the lowest mean FNR (0.123), and plastic had the highest mean FNR (0.479). The LOD90 (>1 CFU detected 90% of the time) varied with surface material, from 0.015 CFU/cm^2 on stainless steel up to 0.039 on plastic. It may be possible to improve sampling results by considering surface roughness in selecting sampling locations and interpreting spore recovery data. Further, FNR values (calculated as a function of concentration and surface material) can be used presampling to calculate the numbers of samples for statistical sampling plans with desired performance and postsampling to calculate the confidence in characterization and clearance decisions.

  18. False-Negative Rate and Recovery Efficiency Performance of a Validated Sponge Wipe Sampling Method

    PubMed Central

    Piepel, Greg F.; Boucher, Raymond; Tezak, Matt; Amidan, Brett G.; Einfeld, Wayne

    2012-01-01

    Recovery of spores from environmental surfaces varies due to sampling and analysis methods, spore size and characteristics, surface materials, and environmental conditions. Tests were performed to evaluate a new, validated sponge wipe method using Bacillus atrophaeus spores. Testing evaluated the effects of spore concentration and surface material on recovery efficiency (RE), false-negative rate (FNR), limit of detection (LOD), and their uncertainties. Ceramic tile and stainless steel had the highest mean RE values (48.9 and 48.1%, respectively). Faux leather, vinyl tile, and painted wood had mean RE values of 30.3, 25.6, and 25.5, respectively, while plastic had the lowest mean RE (9.8%). Results show roughly linear dependences of RE and FNR on surface roughness, with smoother surfaces resulting in higher mean REs and lower FNRs. REs were not influenced by the low spore concentrations tested (3.10 × 10−3 to 1.86 CFU/cm2). Stainless steel had the lowest mean FNR (0.123), and plastic had the highest mean FNR (0.479). The LOD90 (≥1 CFU detected 90% of the time) varied with surface material, from 0.015 CFU/cm2 on stainless steel up to 0.039 on plastic. It may be possible to improve sampling results by considering surface roughness in selecting sampling locations and interpreting spore recovery data. Further, FNR values (calculated as a function of concentration and surface material) can be used presampling to calculate the numbers of samples for statistical sampling plans with desired performance and postsampling to calculate the confidence in characterization and clearance decisions. PMID:22138998

  19. Modular Energy-Efficient and Robust Paradigms for a Disaster-Recovery Process over Wireless Sensor Networks.

    PubMed

    Razaque, Abdul; Elleithy, Khaled

    2015-07-06

    Robust paradigms are a necessity, particularly for emerging wireless sensor network (WSN) applications. The lack of robust and efficient paradigms causes a reduction in the provision of quality of service (QoS) and additional energy consumption. In this paper, we introduce modular energy-efficient and robust paradigms that involve two archetypes: (1) the operational medium access control (O-MAC) hybrid protocol and (2) the pheromone termite (PT) model. The O-MAC protocol controls overhearing and congestion and increases the throughput, reduces the latency and extends the network lifetime. O-MAC uses an optimized data frame format that reduces the channel access time and provides faster data delivery over the medium. Furthermore, O-MAC uses a novel randomization function that avoids channel collisions. The PT model provides robust routing for single and multiple links and includes two new significant features: (1) determining the packet generation rate to avoid congestion and (2) pheromone sensitivity to determine the link capacity prior to sending the packets on each link. The state-of-the-art research in this work is based on improving both the QoS and energy efficiency. To determine the strength of O-MAC with the PT model; we have generated and simulated a disaster recovery scenario using a network simulator (ns-3.10) that monitors the activities of disaster recovery staff; hospital staff and disaster victims brought into the hospital. Moreover; the proposed paradigm can be used for general purpose applications. Finally; the QoS metrics of the O-MAC and PT paradigms are evaluated and compared with other known hybrid protocols involving the MAC and routing features. The simulation results indicate that O-MAC with PT produced better outcomes.

  20. Modular Energy-Efficient and Robust Paradigms for a Disaster-Recovery Process over Wireless Sensor Networks

    PubMed Central

    Razaque, Abdul; Elleithy, Khaled

    2015-01-01

    Robust paradigms are a necessity, particularly for emerging wireless sensor network (WSN) applications. The lack of robust and efficient paradigms causes a reduction in the provision of quality of service (QoS) and additional energy consumption. In this paper, we introduce modular energy-efficient and robust paradigms that involve two archetypes: (1) the operational medium access control (O-MAC) hybrid protocol and (2) the pheromone termite (PT) model. The O-MAC protocol controls overhearing and congestion and increases the throughput, reduces the latency and extends the network lifetime. O-MAC uses an optimized data frame format that reduces the channel access time and provides faster data delivery over the medium. Furthermore, O-MAC uses a novel randomization function that avoids channel collisions. The PT model provides robust routing for single and multiple links and includes two new significant features: (1) determining the packet generation rate to avoid congestion and (2) pheromone sensitivity to determine the link capacity prior to sending the packets on each link. The state-of-the-art research in this work is based on improving both the QoS and energy efficiency. To determine the strength of O-MAC with the PT model; we have generated and simulated a disaster recovery scenario using a network simulator (ns-3.10) that monitors the activities of disaster recovery staff; hospital staff and disaster victims brought into the hospital. Moreover; the proposed paradigm can be used for general purpose applications. Finally; the QoS metrics of the O-MAC and PT paradigms are evaluated and compared with other known hybrid protocols involving the MAC and routing features. The simulation results indicate that O-MAC with PT produced better outcomes. PMID:26153768

  1. An efficient pipeline wavefront phase recovery for the CAFADIS camera for extremely large telescopes.

    PubMed

    Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel

    2010-01-01

    In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations.

  2. Development of an ELISA for Evaluation of Swab Recovery Efficiencies of Bovine Serum Albumin

    PubMed Central

    Sparding, Nadja; Slotved, Hans-Christian; Nicolaisen, Gert M.; Giese, Steen B.; Elmlund, Jón; Steenhard, Nina R.

    2014-01-01

    After a potential biological incident the sampling strategy and sample analysis are crucial for the outcome of the investigation and identification. In this study, we have developed a simple sandwich ELISA based on commercial components to quantify BSA (used as a surrogate for ricin) with a detection range of 1.32–80 ng/mL. We used the ELISA to evaluate different protein swabbing procedures (swabbing techniques and after-swabbing treatments) for two swab types: a cotton gauze swab and a flocked nylon swab. The optimal swabbing procedure for each swab type was used to obtain recovery efficiencies from different surface materials. The surface recoveries using the optimal swabbing procedure ranged from 0–60% and were significantly higher from nonporous surfaces compared to porous surfaces. In conclusion, this study presents a swabbing procedure evaluation and a simple BSA ELISA based on commercial components, which are easy to perform in a laboratory with basic facilities. The data indicate that different swabbing procedures were optimal for each of the tested swab types, and the particular swab preference depends on the surface material to be swabbed. PMID:25402464

  3. An Efficient Pipeline Wavefront Phase Recovery for the CAFADIS Camera for Extremely Large Telescopes

    PubMed Central

    Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel

    2010-01-01

    In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations. PMID:22315523

  4. Efficient recovery of carbon, nitrogen, and phosphorus from waste activated sludge.

    PubMed

    Chen, Yinguang; Zheng, Xiong; Feng, Leiyu; Yang, Hong

    2013-01-01

    Carbon, nitrogen, and phosphorus need to be recovered to reduce the environmental impact of waste activated sludge (WAS). In this study the improved short-chain fatty acid (SCFA) production from WAS by the addition of kitchen waste to adjust the ratio of carbon to nitrogen (C/N), and the efficient recovery of nitrogen and phosphorus from the fermentation liquid were reported. Firstly, the optimum conditions for SCFA production were found to be pH 8, temperature 35 °C, C/N ratio 21 mg-C/1 mg-N, and fermentation time 6 d, using the response surface methodology. After alkaline fermentation, the struvite precipitation method was applied to efficiently and simultaneously recover the released ammonia and phosphorus from the fermentation liquid. Finally, the fermentation liquid was used as the additional carbon source for biological nitrogen and phosphorus removal. It was observed that, compared with acetic acid, the use of fermentation liquid as carbon source showed greater removal efficiencies of total nitrogen and total phosphorus.

  5. Investigations of afterpulsing and detection efficiency recovery in superconducting nanowire single-photon detectors

    NASA Astrophysics Data System (ADS)

    Burenkov, Viacheslav; Xu, He; Qi, Bing; Hadfield, Robert H.; Lo, Hoi-Kwong

    2013-06-01

    We report on the observation of a non-uniform dark count rate in Superconducting Nanowire Single Photon Detectors (SNSPDs), specifically focusing on an afterpulsing effect present when the SNSPD is operated at a high bias current regime. The afterpulsing exists for real detection events (triggered by input photons) as well as for dark counts (no laser input). In our standard set-up, the afterpulsing is most likely to occur at around 180 ns following a detection event, for both real counts and dark counts. We characterize the afterpulsing behavior and speculate that it is not due to the SNSPD itself but rather the amplifiers used to boost the electrical output signal from the SNSPD. We show that the afterpulsing indeed disappears when we use a different amplifier with a better low frequency response. We also examine the short-lived enhancement of detection efficiency during the recovery of the SNSPD due to temporary perturbation of the bias and grounding conditions.

  6. Evaluation of efficient extraction methods for recovery of photosynthetic pigments from microalgae.

    PubMed

    Ilavarasi, A; Pandiaraj, D; Mubarakali, D; Ilyas, M H Mohammed; Thajuddin, N

    2012-09-15

    Microalgal species are known to have pigments in their cellular constitute at the maximum and are valuable bioactive products. In the present study focused was on the evaluation of efficient extraction methods for photosynthetic pigments from microalgal species. They are, Chlorella sp., Acrochaete sp., Phormidium chlorinum, Jaaginema pseudogeminatum and Chroococcus sp. There are four different extraction methods were adopted for active recovery and are economically feasible such as direct extraction, mechanical grinding, heating and preheated solvent method. It was found that mechanical grinding method has extract two fold increased amount than the other methods. Additionally, this methods is inexpensive, less laborious and active extraction. It is suggested that this method could be used for the extraction of photosynthetic pigments from microalgae for pharmaceutical to biotechnological purpose.

  7. Redundancy management for efficient fault recovery in NASA's distributed computing system

    NASA Technical Reports Server (NTRS)

    Malek, Miroslaw; Pandya, Mihir; Yau, Kitty

    1991-01-01

    The management of redundancy in computer systems was studied and guidelines were provided for the development of NASA's fault-tolerant distributed systems. Fault recovery and reconfiguration mechanisms were examined. A theoretical foundation was laid for redundancy management by efficient reconfiguration methods and algorithmic diversity. Algorithms were developed to optimize the resources for embedding of computational graphs of tasks in the system architecture and reconfiguration of these tasks after a failure has occurred. The computational structure represented by a path and the complete binary tree was considered and the mesh and hypercube architectures were targeted for their embeddings. The innovative concept of Hybrid Algorithm Technique was introduced. This new technique provides a mechanism for obtaining fault tolerance while exhibiting improved performance.

  8. High efficiency shale oil recovery. Fourth quarterly report, October 1, 1992--December 31, 1992

    SciTech Connect

    Adams, D.C.

    1992-12-31

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

  9. High efficiency shale oil recovery. Fifth quarterly report, January 1, 1993--March 31, 1993

    SciTech Connect

    Adams, D.C.

    1993-04-22

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft{sup 2}/{degrees}F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000{degrees}F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

  10. Evaluation of two spike-and-recovery controls for assessment of extraction efficiency in microbial source tracking studies

    USGS Publications Warehouse

    Stoeckel, D.M.; Stelzer, E.A.; Dick, L.K.

    2009-01-01

    Quantitative PCR (qPCR), applied to complex environmental samples such as water, wastewater, and feces, is susceptible to methodological and sample related biases. In this study, we evaluated two exogenous DNA spike-and-recovery controls as proxies for recovery efficiency of Bacteroidales 16S rDNA gene sequences (AllBac and qHF183) that are used for microbial source tracking (MST) in river water. Two controls-(1) the plant pathogen Pantoea stewartii, carrying the chromosomal target gene cpsD, and (2) Escherichia coli, carrying the plasmid-borne target gene DsRed2-were added to raw water samples immediately prior to concentration and DNA extraction for qPCR. When applied to samples processed in replicate, recovery of each control was positively correlated with the observed concentration of each MST marker. Adjustment of MST marker concentrations according to recovery efficiency reduced variability in replicate analyses when consistent processing and extraction methodologies were applied. Although the effects of this procedure on accuracy could not be tested due to uncertainties in control DNA concentrations, the observed reduction in variability should improve the strength of statistical comparisons. These findings suggest that either of the tested spike-and-recovery controls can be useful to measure efficiency of extraction and recovery in routine laboratory processing. ?? 2009 Elsevier Ltd.

  11. Nurturing the geology-reservoir engineering team: Vital for efficient oil and gas recovery

    SciTech Connect

    Sessions, K.P.; Lehman, D.H. )

    1990-05-01

    Of an estimated 482 billion bbl (76.6 Gm{sup 3}) of in-place oil discovered in the US, 158 billion (25.1 Gm{sup 3}) can be recovered with existing technology and economic conditions. The cost-effective recovery through infill drilling and enhanced oil recovery methods to recover any portion of the remaining 323 billion bbl (51.4 Gm3) will require a thorough understanding of reservoirs and the close cooperation of production geologists and reservoir engineers. This paper presents the concept of increased interaction between geologists and reservoir engineers through multifunctional teams and cross-training between the disciplines. A discussion of several factors supporting this concept is covered, including educational background, technical manpower trends, employee development, and job satisfaction. There are several ways from an organizational standpoint to achieve this cross-training, with or without a formal change in job assignment. This paper outlines three approaches, including case histories where each of the approaches has been implemented and the resulting benefits.

  12. High efficiency shale oil recovery. Second quarterly report, April 1, 1992--June 30, 1992

    SciTech Connect

    Adams, C.D.

    1992-07-18

    The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a larger continuous process kiln. For example, similar conditions of heatup rate, oxidation of the residue and cool-down prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The second quarter agenda consisted of (a) kiln modifications; (b) sample preparation; and (c) Heat Transfer calibration runs (part of proposal task number 3 -- to be completed by the end of month 7).

  13. Recovery Efficiency Test Project Phase 2 activity report, Volume 1. Final report

    SciTech Connect

    Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1989-02-01

    The purpose of Phase II operations of the Recovery Efficiency Test Project is to enhance the natural production of the well and evaluate the relative improvement as a function of the type of stimulation conducted. Another purpose is to compare the stimulated production performance of the horizontal well with vertical wells in the field. The objectives considered for Phase II operations and plans were: (1) Develop a rationale for a systematic approach to designing stimulations for the well. (2) Conduct a series of stimulations designed to optimize the fluids, injection rates, proppant volumes and general approach to stimulating a horizontal well with similar geologic conditions. (3) Develop and test a method or methods for determining the geometry of stimulation-induced fractures. (4) Conduct tests and analyze the results to determine the efficiency of stimulation operations. The technical approach pursued in developing plans to accomplish three objectives was to: (1) Review the data needs for all objectives and obtain that data first. (2) Identify the operating geologic, geomechanical, and reservoir parameters that need additional clarification or definition. (3) Investigate existing models which could be used to plan or evaluate stimulation on the well and the reservoir. (4) Plan for analysis and verification of models and approaches.

  14. Improved Recovery of Bacillus Spores from Nonporous Surfaces with Cotton Swabs over Foam, Nylon, or Polyester, and the Role of Hydrophilicity of Cotton in Governing the Recovery Efficiency

    PubMed Central

    Mujawar, Mohammed M.; Upreti, Reshmi; Sekhar, Aparna C.

    2013-01-01

    Evaluating different swabbing materials for spore recovery efficiency (RE) from steel surfaces, we recorded the maximum RE (71%) of 107 Bacillus subtilis spores with Tulips cotton buds, followed by Johnson's cotton buds and standard Hi-Media cotton, polyester, nylon, and foam (23%) swabs. Among cotton swabs, instant water-absorbing capacity or the hydrophilicity index appeared to be the major indicator of RE, as determined by testing three more brands. Tulips swabs worked efficiently across diverse nonporous surfaces and on different Bacillus spp., registering 65 to 77% RE. PMID:23087040

  15. 13-week inhalation toxicity study (including 6- and 13-week recovery periods) with ammonium persulfate dust in albino rats.

    PubMed

    Signorin, J; Ulrich, C E; Butt, M T; D'Amato, E A

    2001-11-01

    The subchronic inhalation toxicity of ammonium persulfate was characterized using Sprague-Dawley rats (20/sex/group) at respirable dust concentrations of 0, 5.0, 10.3, and 25 mg/m(3). Whole-body exposures were conducted 6 h/day, 5 days/wk for 13 wk. Gravimetric airborne test material samples were taken daily and particle size samples were taken weekly from each exposure chamber for analysis. Ten animals/sex/group were necropsied after 13 wk of exposure, and 5 animals/sex/group were held for 6- and 13-wk recovery periods. Animals were observed for clinical signs. Effects on body weight, food consumption, clinical chemistry and hematology, ophthalmologic parameters, organ weights, gross lesions, and histopathology were evaluated. There were no exposure-related deaths during the study. Rales and increased respiration rate were noted in both males and females in the 25 mg/m(3) group, and in a few animals in the 10.3 mg/m(3) group. The incidence of these clinical signs decreased to zero during the first few weeks of the recovery period. Body weights for both males and females in the 25 mg/m(3) group were significantly depressed during most of the exposure period compared to the control group. By the end of the recovery period, body weights for the exposed animals were similar to the control group values. Lung weights were elevated in the 25 mg/m(3) group after 13 wk of exposure, but were similar to controls at 6 wk postexposure. Irritation of the trachea and bronchi/bronchiole was noted microscopically after 13 wk of exposure to 25 mg/m(3). These lesions had recovered by 6 wk postexposure. Based on the results of this study, the no-observed-adverse-effect level (NOAEL) was 10.3 mg/m(3), while the no-observed-effect level (NOEL) for exposure of rats to a dust aerosol of ammonium persulfate was 5.0 mg/m(3).

  16. Methods of improving the efficiency of photovoltaic cells. [including X ray analysis

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.; Roessler, B.; Crisman, E. E.; Chen, L. Y.; Kaul, R.

    1974-01-01

    Work on aluminum-alloyed silicon grating cells is continued. Optimization of the geometry (grating line width and spacing) confirms the analysis of such cells. A 1 sq cm grating cell was fabricated and its i-V characteristic was measured under an AMO solar simulator. It is found that the efficiency of this cell would be about 7.9%, if it were covered by the usual antireflection coating. The surface of the cell is not covered by a diffused junction. The response is blue shifted; the current is somewhat higher than that produced by a commercial Si cell. However, the open circuit voltage is low, and attempts to optimize the open circuit voltage of the aluminum-alloy junctions are described. A preliminary X-ray topographic examination of GaAs specimens of the type commonly used to make solar cells is studied. The X-ray study shows that the wafers are filled with regions having strain gradients, possibly caused by precipitates. It is possible that a correlation exists between the presence of low mechanical perfection and minority carrier diffusion lengths of GaAs crystals.

  17. Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity

    NASA Astrophysics Data System (ADS)

    González-Estrada, Octavio A.; Natarajan, Sundararajan; Ródenas, Juan José; Nguyen-Xuan, Hung; Bordas, Stéphane P. A.

    2013-07-01

    An error control technique aimed to assess the quality of smoothed finite element approximations is presented in this paper. Finite element techniques based on strain smoothing appeared in 2007 were shown to provide significant advantages compared to conventional finite element approximations. In particular, a widely cited strength of such methods is improved accuracy for the same computational cost. Yet, few attempts have been made to directly assess the quality of the results obtained during the simulation by evaluating an estimate of the discretization error. Here we propose a recovery type error estimator based on an enhanced recovery technique. The salient features of the recovery are: enforcement of local equilibrium and, for singular problems a "smooth + singular" decomposition of the recovered stress. We evaluate the proposed estimator on a number of test cases from linear elastic structural mechanics and obtain efficient error estimations whose effectivities, both at local and global levels, are improved compared to recovery procedures not implementing these features.

  18. Enhanced oil recovery by surfactant-enhanced volumetric sweep efficiency: Second annual report, September 30, 1986-September 30, 1987

    SciTech Connect

    Harwell, J H; Scamehorn, J F

    1988-04-01

    It is widely known that heterogeneities in oil reservoirs occurring as a result of permeability variations in the rock can have a detrimental effect on an oil recovery process; preferential diversion of injected displacement fluid occurs through the high-permeability zones, leaving the lower-permeability zones at a high residual oil content at a time when it is no longer economically viable to continue the oil recovery process. A novel oil recovery process is described which aims to improve the volumetric sweep efficiency of oil recovery. High-permeability zones are partially or completely plugged off by using the chromatographic and phase behavior of surfactants and their mixtures and the preferential invasion of high-permeability areas by low-viscosity injected fluids. The plugging will divert flow into regions of higher oil saturation. 85 refs., 46 figs., 6 tabs.

  19. Improvement of III-nitride visible and ultraviolet light-emitting diode performance, including extraction efficiency, electrical efficiency, thermal management and efficiency maintenance at high current densities

    NASA Astrophysics Data System (ADS)

    Vampola, Kenneth

    In this work, highly efficient broad-area LEDs on bulk GaN substrates were developed and the fabrication process and device layout were optimized. This optimization relied in part on electrical, optical, thermal and recombination models. The peak external quantum efficiency of the 450 nm LEDs was over 68% when biased at 20 mA. The efficiency characteristic showed a typical droop curve, decreasing at high current densities. The cause of this droop is unknown. An exploratory experiment was conducted to characterize electron overflow and its role in efficiency droop. Novel device structures were developed, allowing direct measurement of overflow electrons in LED-like structures under electrical injection. In these test structures, electrons were observed in the p-type region of the LED only at current densities where efficiency droop was active. The onset of efficiency droop was preceded by the onset of electron overflow. However, the magnitude of the overflow current could not be measured and it is undetermined whether the dominant cause of efficiency droop is electron overflow or some other process such as Auger recombination. Calibration structures allowing measurement of the magnitude of the overflow are proposed. Work on deep-ultraviolet, 275 nm, LEDs is also presented. Demonstration of direct-wafer bonded LEDs to beta-Ga2O3 is presented. A SiC substrate removal process is discussed. LEDs fabricated by this flip-chip process exhibited up to 1.8 times greater power compared to LEDs fabricated by a standard process but suffered from increased forward voltage and premature failure. Further process development leading to electrically efficient operation is proposed.

  20. An efficient phase-selective gelator for aromatic solvents recovery based on a cyanostilbene amide derivative.

    PubMed

    Zhang, Yuping; Ma, Yao; Deng, Mengyu; Shang, Hongxing; Liang, Chunshuang; Jiang, Shimei

    2015-07-07

    Two novel low molecular weight organogelators (LMOGs) 1 and 2 composed of a cholesteryl group, an amide group and various terminal cyanostilbene moieties were synthesized. They could form stable gels in p-xylene. In particular, 2 with more extended π-conjugation length showed remarkable gelation ability in many aromatic solvents, chloroform and chloroform-containing mixed solvents at a relatively low concentration. FT-IR and XRD spectra indicated that the difference between 1 and 2 in the gelation properties may result from the deviation of the intermolecular hydrogen bonding and π–π stacking as driving forces for the formation of the gels. Significantly, 2 can function as an efficient room-temperature phase-selective gelator (PSG) for potential application in the separation and recovery of various aromatic solvents from its mixture with water. Meanwhile, the gelator can be easily recovered and reused several times. Furthermore, the phase-selective gelation properties of 2 can provide a simple and feasible approach for the removal of the rhodamine B (RhB) dye from water.

  1. Use of the BACTEC Mycobacteria Growth Indicator Tube 960 automated system for recovery of Mycobacteria from 9,558 extrapulmonary specimens, including urine samples.

    PubMed

    Hillemann, Doris; Richter, Elvira; Rüsch-Gerdes, Sabine

    2006-11-01

    The BACTEC Mycobacteria Growth Indicator Tube 960 (MGIT 960) system was applied for recovery of mycobacteria from extrapulmonary specimens and compared with solid media (Löwenstein-Jensen and Stonebrink). A total of 9,558 specimens were investigated, comprising 3,074 body fluids, 1,878 tissues, and 2,069 urine samples, from which the recovery of mycobacteria was not yet established for MGIT 960. In total, the MGIT 960 was able to detect 446 (90.3%) of the 494 isolates of Mycobacterium tuberculosis complex (MTBC) and 223 (86.0%) out of the 259 isolates of nontuberculous mycobacteria (NTM). In comparison to this, culture on solid medium revealed 358 (72.6%) MTBC isolates and 164 (66.8%) NTM isolates. While 136 (27.6%) of the MTBC isolates and 95 (19.2%) of the NTM isolates were recovered from the MGIT 960 only, 48 (9.7%) of the MTBC isolates and 36 (13.9%) NTM isolates grew only on solid media. Thus, the overall sensitivities for the recovery of mycobacteria from extrapulmonary specimens with MGIT 960 and solid media were 88.8% and 69.3%, respectively. However, the efficiency of the MGIT 960 system can be maximized with additional culture on solid media.

  2. Use of the BACTEC Mycobacteria Growth Indicator Tube 960 Automated System for Recovery of Mycobacteria from 9,558 Extrapulmonary Specimens, Including Urine Samples▿

    PubMed Central

    Hillemann, Doris; Richter, Elvira; Rüsch-Gerdes, Sabine

    2006-01-01

    The BACTEC Mycobacteria Growth Indicator Tube 960 (MGIT 960) system was applied for recovery of mycobacteria from extrapulmonary specimens and compared with solid media (Löwenstein-Jensen and Stonebrink). A total of 9,558 specimens were investigated, comprising 3,074 body fluids, 1,878 tissues, and 2,069 urine samples, from which the recovery of mycobacteria was not yet established for MGIT 960. In total, the MGIT 960 was able to detect 446 (90.3%) of the 494 isolates of Mycobacterium tuberculosis complex (MTBC) and 223 (86.0%) out of the 259 isolates of nontuberculous mycobacteria (NTM). In comparison to this, culture on solid medium revealed 358 (72.6%) MTBC isolates and 164 (66.8%) NTM isolates. While 136 (27.6%) of the MTBC isolates and 95 (19.2%) of the NTM isolates were recovered from the MGIT 960 only, 48 (9.7%) of the MTBC isolates and 36 (13.9%) NTM isolates grew only on solid media. Thus, the overall sensitivities for the recovery of mycobacteria from extrapulmonary specimens with MGIT 960 and solid media were 88.8% and 69.3%, respectively. However, the efficiency of the MGIT 960 system can be maximized with additional culture on solid media. PMID:17005737

  3. Recovery efficiency and limit of detection of aerosolized Bacillus anthracis Sterne from environmental surface samples.

    PubMed

    Estill, Cheryl Fairfield; Baron, Paul A; Beard, Jeremy K; Hein, Misty J; Larsen, Lloyd D; Rose, Laura; Schaefer, Frank W; Noble-Wang, Judith; Hodges, Lisa; Lindquist, H D Alan; Deye, Gregory J; Arduino, Matthew J

    2009-07-01

    After the 2001 anthrax incidents, surface sampling techniques for biological agents were found to be inadequately validated, especially at low surface loadings. We aerosolized Bacillus anthracis Sterne spores within a chamber to achieve very low surface loading (ca. 3, 30, and 200 CFU per 100 cm(2)). Steel and carpet coupons seeded in the chamber were sampled with swab (103 cm(2)) or wipe or vacuum (929 cm(2)) surface sampling methods and analyzed at three laboratories. Agar settle plates (60 cm(2)) were the reference for determining recovery efficiency (RE). The minimum estimated surface concentrations to achieve a 95% response rate based on probit regression were 190, 15, and 44 CFU/100 cm(2) for sampling steel surfaces and 40, 9.2, and 28 CFU/100 cm(2) for sampling carpet surfaces with swab, wipe, and vacuum methods, respectively; however, these results should be cautiously interpreted because of high observed variability. Mean REs at the highest surface loading were 5.0%, 18%, and 3.7% on steel and 12%, 23%, and 4.7% on carpet for the swab, wipe, and vacuum methods, respectively. Precision (coefficient of variation) was poor at the lower surface concentrations but improved with increasing surface concentration. The best precision was obtained with wipe samples on carpet, achieving 38% at the highest surface concentration. The wipe sampling method detected B. anthracis at lower estimated surface concentrations and had higher RE and better precision than the other methods. These results may guide investigators to more meaningfully conduct environmental sampling, quantify contamination levels, and conduct risk assessment for humans.

  4. Evaluation of Sample Recovery Efficiency for Bacteriophage P22 on Fomites

    PubMed Central

    Herzog, Amanda B.; Pandey, Alok K.; Reyes-Gastelum, David; Gerba, Charles P.; Rose, Joan B.

    2012-01-01

    Fomites are known to play a role in the transmission of pathogens. Quantitative analysis of the parameters that affect sample recovery efficiency (SRE) at the limit of detection of viruses on fomites will aid in improving quantitative microbial risk assessment (QMRA) and infection control. The variability in SRE as a function of fomite type, fomite surface area, sampling time, application media, relative humidity (rH), and wetting agent was evaluated. To quantify the SRE, bacteriophage P22 was applied onto fomites at average surface densities of 0.4 ± 0.2 and 4 ± 2 PFU/cm2. Surface areas of 100 and 1,000 cm2 of nonporous fomites found in indoor environments (acrylic, galvanized steel, and laminate) were evaluated with premoistened antistatic wipes. The parameters with the most effects on the SRE were sampling time, fomite surface area, wetting agent, and rH. At time zero (the initial application of bacteriophage P22), the SRE for the 1,000-cm2 fomite surface area was, on average, 40% lower than that for the 100-cm2 fomite surface area. For both fomite surface areas, the application medium Trypticase soy broth (TSB) and/or the laminate fomite predominantly resulted in a higher SRE. After the applied samples dried on the fomites (20 min), the average SRE was less than 3%. A TSB wetting agent applied on the fomite improved the SRE for all samples at 20 min. In addition, an rH greater than 28% generally resulted in a higher SRE than an rH less than 28%. The parameters impacting SRE at the limit of detection have the potential to enhance sampling strategies and data collection for QMRA models. PMID:22941090

  5. Energy-efficient modification of reduction-melting for lead recovery from cathode ray tube funnel glass

    SciTech Connect

    Okada, Takashi Yonezawa, Susumu

    2013-08-15

    Highlights: • We recovered Pb from cathode ray tube funnel glass using reduction melting process. • We modified the melting process to achieve Pb recovery with low energy consumption. • Pb in the funnel glass is efficiently recovered at 1000 °C by adding Na{sub 2}CO{sub 3}. • Pb remaining in the glass after reduction melting is extracted with 1 M HCl. • 98% of Pb in the funnel glass was recovered by reduction melting and HCl leaching. - Abstract: Lead can be recovered from funnel glass of waste cathode ray tubes via reduction melting. While low-temperature melting is necessary for reduced energy consumption, previously proposed methods required high melting temperatures (1400 °C) for the reduction melting. In this study, the reduction melting of the funnel glass was performed at 900–1000 °C using a lab-scale reactor with varying concentrations of Na{sub 2}CO{sub 3} at different melting temperatures and melting times. The optimum Na{sub 2}CO{sub 3} dosage and melting temperature for efficient lead recovery was 0.5 g per 1 g of the funnel glass and 1000 °C respectively. By the reduction melting with the mentioned conditions, 92% of the lead in the funnel glass was recovered in 60 min. However, further lead recovery was difficult because the rate of the lead recovery decreased as with the recovery of increasing quantity of the lead from the glass. Thus, the lead remaining in the glass after the reduction melting was extracted with 1 M HCl, and the lead recovery improved to 98%.

  6. Energy-efficient modification of reduction-melting for lead recovery from cathode ray tube funnel glass.

    PubMed

    Okada, Takashi; Yonezawa, Susumu

    2013-08-01

    Lead can be recovered from funnel glass of waste cathode ray tubes via reduction melting. While low-temperature melting is necessary for reduced energy consumption, previously proposed methods required high melting temperatures (1400 °C) for the reduction melting. In this study, the reduction melting of the funnel glass was performed at 900-1000 °C using a lab-scale reactor with varying concentrations of Na(2)CO(3) at different melting temperatures and melting times. The optimum Na(2)CO(3) dosage and melting temperature for efficient lead recovery was 0.5 g per 1g of the funnel glass and 1000 °C respectively. By the reduction melting with the mentioned conditions, 92% of the lead in the funnel glass was recovered in 60 min. However, further lead recovery was difficult because the rate of the lead recovery decreased as with the recovery of increasing quantity of the lead from the glass. Thus, the lead remaining in the glass after the reduction melting was extracted with 1M HCl, and the lead recovery improved to 98%.

  7. Efficient ethanol recovery from fermentation broths with integrated distillation-membrane process

    EPA Science Inventory

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane separati...

  8. Efficient ethanol recovery from yeast fermentation broth with integrated distillation-membrane process

    EPA Science Inventory

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...

  9. Agrobacterium-mediated transformation of safflower and the efficient recovery of transgenic plants via grafting

    PubMed Central

    2011-01-01

    Background Safflower (Carthamus tinctorius L.) is a difficult crop to genetically transform being susceptible to hyperhydration and poor in vitro root formation. In addition to traditional uses safflower has recently emerged as a broadacre platform for the production of transgenic products including modified oils and pharmaceutically active proteins. Despite commercial activities based on the genetic modification of safflower, there is no method available in the public domain describing the transformation of safflower that generates transformed T1 progeny. Results An efficient and reproducible protocol has been developed with a transformation efficiency of 4.8% and 3.1% for S-317 (high oleic acid content) and WT (high linoleic acid content) genotypes respectively. An improved safflower transformation T-DNA vector was developed, including a secreted GFP to allow non-destructive assessment of transgenic shoots. Hyperhydration and necrosis of Agrobacterium-infected cotyledons was effectively controlled by using iota-carrageenan, L-cysteine and ascorbic acid. To overcome poor in vitro root formation for the first time a grafting method was developed for safflower in which ~50% of transgenic shoots develop into mature plants bearing viable transgenic T1 seed. The integration and expression of secreted GFP and hygromycin genes were confirmed by PCR, Southern and Western blot analysis. Southern blot analysis in nine independent lines indicated that 1-7 transgenes were inserted per line and T1 progeny displayed Mendelian inheritance. Conclusions This protocol demonstrates significant improvements in both the efficiency and ease of use over existing safflower transformation protocols. This is the first complete method of genetic transformation of safflower that generates stably-transformed plants and progeny, allowing this crop to benefit from modern molecular applications. PMID:21595986

  10. Multicenter comparison of ESP Culture System II with BACTEC 460TB and with Lowenstein-Jensen medium for recovery of mycobacteria from different clinical specimens, including blood.

    PubMed

    Tortoli, E; Cichero, P; Chirillo, M G; Gismondo, M R; Bono, L; Gesu, G; Simonetti, M T; Volpe, G; Nardi, G; Marone, P

    1998-05-01

    The recently developed ESP Culture System II (AccuMed, Chicago, Ill.) was compared with radiometric BACTEC 460TB (Becton Dickinson, Towson, Md.) and with Lowenstein-Jensen medium for recovery of mycobacteria from over 2,500 clinical specimens both of respiratory and nonrespiratory origin, including blood. The majority of the 219 mycobacterial isolates (129) belonged to the Mycobacterium tuberculosis complex, followed by 37 isolates of the Mycobacterium avium complex (MAC) and 53 isolates of eight other mycobacterial species. Rates of recovery obtained with BACTEC, ESP, and Lowenstein-Jensen medium were 89, 79, and 64%, respectively, with such differences being statistically significant. Different media and systems appeared to behave differently when the more frequently detected organisms were considered: M. tuberculosis complex isolates grew better with BACTEC, and MAC isolates grew better with ESP. An analysis of the combinations of Lowenstein-Jensen medium with BACTEC and with ESP did not reveal significant differences in recovery rates. With regard to the times needed for the detection of positive cultures, they were significantly longer on Lowenstein-Jensen medium (average, 28 days) than with the remaining two systems, between which there was no difference (average, 18 days). We conclude, therefore, that the ESP system, when used in combination with a solid medium, performs as well as the thoroughly validated radiometric BACTEC system and offers the advantages of full automation and absence of radioisotopes.

  11. 3M: Hutchinson Plant Focuses on Heat Recovery and Cogeneration during Plan-Wide Energy-Efficiency Assessment

    SciTech Connect

    2003-06-01

    3M performed a plant-wide energy efficiency assessment at its Hutchinson, Minnesota, plant to identify energy- and cost-saving opportunities. Assessment staff developed four separate implementation packages that represented various combinations of energy-efficiency projects involving chiller consolidation, air compressor cooling improvements, a steam turbine used for cogeneration, and a heat recovery boiler for two of the plant's thermal oxidizers. Staff estimated that the plant could save 6 million kWh/yr in electricity and more than 200,000 MMBtu/yr in natural gas and fuel oil, and avoid energy costs of more than $1 million during the first year.

  12. Efficiency of energy recovery from municipal solid waste and the resultant effect on the greenhouse gas balance.

    PubMed

    Gohlke, Oliver

    2009-11-01

    Global warming is a focus of political interest and life-cycle assessment of waste management systems reveals that energy recovery from municipal solid waste is a key issue. This paper demonstrates how the greenhouse gas effects of waste treatment processes can be described in a simplified manner by considering energy efficiency indicators. For evaluation to be consistent, it is necessary to use reasonable system boundaries and to take the generation of electricity and the use of heat into account. The new European R1 efficiency criterion will lead to the development and implementation of optimized processes/systems with increased energy efficiency which, in turn, will exert an influence on the greenhouse gas effects of waste management in Europe. Promising technologies are: the increase of steam parameters, reduction of in-plant energy consumption, and the combined use of heat and power. Plants in Brescia and Amsterdam are current examples of good performance with highly efficient electricity generation. Other examples of particularly high heat recovery rates are the energy-from-waste (EfW) plants in Malmö and Gothenburg. To achieve the full potential of greenhouse gas reduction in waste management, it is necessary to avoid landfilling combustible wastes, for example, by means of landfill taxes and by putting incentives in place for increasing the efficiency of EfW systems.

  13. Fertilization recovery system is dependent on the number of pollen grains for efficient reproduction in plants.

    PubMed

    Kasahara, Ryushiro D; Maruyama, Daisuke; Higashiyama, Tetsuya

    2013-04-01

    For over a century, plant fertilization has been thought to depend on the fertility of a single pollen tube. However, we reported recently a "fertilization recovery system" in flowering plants that actively rescues failed fertilization of a defective mutant pollen tube by attracting a second, functional pollen tube. In typical flowering plants, two synergid cells beside the egg cell attract pollen tubes, one of which degenerates upon pollen tube discharge. We observed that fertilization was rescued when the second synergid cell accepted a wild-type pollen tube. Our results suggest that flowering plants precisely control the number of pollen tubes that arrive at each ovule and use a fertilization recovery mechanism to maximize the likelihood of successful seed set. Restricted pollination experiments showed that if sufficient pollen grains are provided, ovules attract a second pollen tube for recovery. These results support our previous finding that a long period of time is required for ovules to complete the system.

  14. Efficient recovery of fluoroquinolone-susceptible and fluoroquinolone-resistant Escherichia coli strains from frozen samples.

    PubMed

    Lautenbach, Ebbing; Santana, Evelyn; Lee, Abby; Tolomeo, Pam; Black, Nicole; Babson, Andrew; Perencevich, Eli N; Harris, Anthony D; Smith, Catherine A; Maslow, Joel

    2008-04-01

    We assessed the rate of recovery of fluoroquinolone-resistant and fluoroquinolone-susceptible Escherichia coli isolates from culture of frozen perirectal swab samples compared with the results for culture of the same specimen before freezing. Recovery rates for these 2 classes of E. coli were 91% and 83%, respectively. The majority of distinct strains recovered from the initial sample were also recovered from the frozen sample. The strains that were not recovered were typically present only in low numbers in the initial sample. These findings emphasize the utility of frozen surveillance samples.

  15. Integration of a phenolic-acid recovery step in the CaCCO process for efficient fermentable-sugar recovery from rice straw.

    PubMed

    Zhao, Rui; Yun, Min-Soo; Shiroma, Riki; Ike, Masakazu; Guan, Di; Tokuyasu, Ken

    2013-11-01

    An advanced sugar-platform bioprocess for lignocellulosic feedstocks by adding a phenolic-acid (PA: p-coumaric acid and ferulic acid) recovery step to the CaCCO process was designed. For efficient PA extraction, pretreatment was 95°C for 2h, producing a yield of 7.30 g/kg-dry rice straw (65.2% of total ester-linked PAs) with insignificant effects on saccharification. PAs were readily recovered in solution during the repeated washings of solids, and the glucose yield, after 72-h saccharification of the washed solids, was significantly improved from 65.9% to 70.3-72.7%, suggesting the removal of potential enzyme inhibitors. The promotion of xylose yield was insignificant, probably due to 13.1-17.8% loss of xylose residues after washing(s). This new bioprocess, termed the SRB (simultaneous recovery of by-products)-CaCCO process, would effectively produce fermentable sugars and other valuables from feedstocks, strengthening the platform in both economic and environmental terms.

  16. Efficient ethanol recovery from fermentation broths with integrated distillation-vapor permeation hybrid process

    EPA Science Inventory

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...

  17. Recovery Act: Integrated DC-DC Conversion for Energy-Efficient Multicore Processors

    SciTech Connect

    Shepard, Kenneth L

    2013-03-31

    In this project, we have developed the use of thin-film magnetic materials to improve in energy efficiency of digital computing applications by enabling integrated dc-dc power conversion and management with on-chip power inductors. Integrated voltage regulators also enables fine-grained power management, by providing dynamic scaling of the supply voltage in concert with the clock frequency of synchronous logic to throttle power consumption at periods of low computational demand. The voltage converter generates lower output voltages during periods of low computational performance requirements and higher output voltages during periods of high computational performance requirements. Implementation of integrated power conversion requires high-capacity energy storage devices, which are generally not available in traditional semiconductor processes. We achieve this with integration of thin-film magnetic materials into a conventional complementary metal-oxide-semiconductor (CMOS) process for high-quality on-chip power inductors. This project includes a body of work conducted to develop integrated switch-mode voltage regulators with thin-film magnetic power inductors. Soft-magnetic materials and inductor topologies are selected and optimized, with intent to maximize efficiency and current density of the integrated regulators. A custom integrated circuit (IC) is designed and fabricated in 45-nm CMOS silicon-on-insulator (SOI) to provide the control system and power-train necessary to drive the power inductors, in addition to providing a digital load for the converter. A silicon interposer is designed and fabricated in collaboration with IBM Research to integrate custom power inductors by chip stacking with the 45-nm CMOS integrated circuit, enabling power conversion with current density greater than 10A/mm2. The concepts and designs developed from this work enable significant improvements in performance-per-watt of future microprocessors in servers, desktops, and mobile

  18. Recovery kinetics of photochemical efficiency in winter stressed conifers: the effects of growth light environment, extent of the season and species.

    PubMed

    Verhoeven, Amy S

    2013-02-01

    Evergreens undergo reductions in maximal photochemical efficiency (F(v)/F(m)) during winter due to increases in sustained thermal energy dissipation. Upon removing winter stressed leaves to room temperature and low light, F(v)/F(m) recovers and can include both a rapid and a slow phase. The goal of this study was to determine whether the rapid component to recovery exists in winter stressed conifers at any point during the season in a seasonally extreme environment. Additional goals were to compare the effects of species, growth light environment and the extent of the winter season on recovery kinetics in conifers. Four species (sun and shade needle) were monitored during the winter of 2007/2008: eastern white pine (Pinus strobus), balsam fir (Abies balsamea), Taxus cuspidata and white spruce (Picea glauca). F(v)/F(m) was measured in the field, and then monitored indoors at room temperature and low light for 6 days. The results showed that all species showed a rapid component to recovery in early winter that disappeared later in the season in sun needles but was present in shade needles on most days monitored during winter. There were differences among species in the recovery kinetics across the season, with pine recovering the most slowly and spruce the most quickly. The results suggest an important role for the rapidly reversible form of energy dissipation in early winter, as well as important differences between species in their rate of recovery in late winter/early spring which may have implications for spring onset of photosynthesis.

  19. Energy efficient of ethanol recovery in pervaporation membrane bioreactor with mechanical vapor compression eliminating the cold traps.

    PubMed

    Fan, Senqing; Xiao, Zeyi; Li, Minghai

    2016-07-01

    An energy efficient pervaporation membrane bioreactor with mechanical vapor compression was developed for ethanol recovery during the process of fermentation coupled with pervaporation. Part of the permeate vapor at the membrane downstream under the vacuum condition was condensed by running water at the first condenser and the non-condensed vapor enriched with ethanol was compressed to the atmospheric pressure and pumped into the second condenser, where the vapor was easily condensed into a liquid by air. Three runs of fermentation-pervaporation experiment have been carried out lasting for 192h, 264h and 360h respectively. Complete vapor recovery validated the novel pervaporation membrane bioreactor. The total flux of the polydimethylsiloxane (PDMS) membrane was in the range of 350gm(-2)h(-1) and 600gm(-2)h(-1). Compared with the traditional cold traps condensation, mechanical vapor compression behaved a dominant energy saving feature.

  20. Depletion efficiency and recovery of trace markers from a multiparameter immunodepletion column.

    PubMed

    Brand, Joachim; Haslberger, Tobias; Zolg, Werner; Pestlin, Gabriele; Palme, Stefan

    2006-06-01

    The selective removal of high-abundance proteins is considered to be an important prerequisite for a sensitive proteome analysis in plasma. In this study, we examined the "multiaffinity removal system", an immunoaffinity depletion column targeted against six plasma proteins. As determined by sandwich ELISA, the depletion rate for each target protein is >99% over 200 cycles of regeneration. Our data give evidence that two column antibodies are slowly inactivated during the repeated use of the column; however, the individual depletion rate meets the specification of the manufacturer. To estimate a potential loss of analytes after the immunodepletion, we performed spiking/recovery experiments with a selection of tumor markers at concentrations in the lower to medium ng/mL range. The average recovery of 9 out of 11 markers is 78%. A significant proportion of two other markers binds to the column. Based on the average marker recovery and a depletion of ;85% of the total protein we estimate a five-fold enrichment of a potential biomarker by the use of this depletion column. We conclude that the selective depletion of plasma proteins by immunoaffinity chromatography is a valid strategy for the enrichment of potential biomarkers sought by proteomics methodologies.

  1. Recovery in a letter-by-letter reader: more efficiency at the expense of normal reading strategy.

    PubMed

    Ablinger, Irene; Huber, Walter; Schattka, Kerstin I; Radach, Ralph

    2013-01-01

    Although changes in reading performance of recovering letter-by-letter readers have been described in some detail, no prior research has provided an in-depth analysis of the underlying adaptive word processing strategies. Our work examined the reading performance of a letter-by-letter reader, FH, over a period of 15 months, using eye movement methodology to delineate the recovery process at two different time points (T1, T2). A central question is whether recovery is characterized either by moving back towards normal word processing or by refinement and possibly automatization of an existing pathological strategy that was developed in response to the impairment. More specifically, we hypothesized that letter-by-letter reading may be executed with at least four different strategies and our work sought to distinguish between these alternatives. During recovery significant improvements in reading performance were achieved. A shift of fixation positions from the far left to the extreme right of target words was combined with many small and very few longer regressive saccades. Apparently, 'letter-by-letter reading' took the form of local clustering, most likely corresponding to the formation of sublexical units of analysis. This pattern was more pronounced at T2, suggesting that improvements in reading efficiency may come at the expense of making it harder to eventually return to normal reading.

  2. Energy Efficient Hybrid Vapor Stripping-Vapor Permeation Process for Ethanol Recovery ad Dehydration

    EPA Science Inventory

    Distillation combined with molecular sieve dehydration is the current state of the art for fuel grade ethanol production from fermentation broths. To improve the sustainability of bioethanol production, energy efficient separation alternatives are needed, particularly for lower f...

  3. Energy efficient recovery and dehydration of ethanol from fermentation broths by Membrane Assisted Vapor Stripping technology

    EPA Science Inventory

    Distillation combined with molecular sieve dehydration is the current state of the art for fuel grade ethanol production from fermentation broths. To improve the sustainability of bioethanol production, energy efficient separation alternatives are needed, particularly for lower ...

  4. On the potential for BECCS efficiency improvement through heat recovery from both post-combustion and oxy-combustion facilities.

    PubMed

    Dowell, N Mac; Fajardy, M

    2016-10-20

    In order to mitigate climate change to no more than 2 °C, it is well understood that it will be necessary to directly remove significant quantities of CO2, with bioenergy CCS (BECCS) regarded as a promising technology. However, BECCS will likely be more costly and less efficient at power generation than conventional CCS. Thus, approaches to improve BECCS performance and reduce costs are of importance to facilitate the deployment of this key technology. In this study, the impact of biomass co-firing rate and biomass moisture content on BECCS efficiency with both post- and oxy-combustion CO2 capture technologies was evaluated. It was found that post-combustion capture BECCS (PCC-BECCS) facilities will be appreciably less efficient than oxy-combustion capture BECCS (OCC-BECCS) facilities. Consequently, PCC-BECCS have the potential to be more carbon negative than OCC-BECCS per unit electricity generated. It was further observed that the biomass moisture content plays an important role in determining the BECCS facilities' efficiency. This will in turn affect the enthalpic content of the BECCS plant exhaust and implies that exhaust gas heat recovery may be an attractive option at higher rates of co-firing. It was found that there is the potential for the recovery of approximately 2.5 GJheat per tCO2 at a temperature of 100 °C from both PCC-BECCS and OCC-BECCS. On- and off-site applications for this recovered heat are discussed, considering boiler feedwater pre-heating, solvent regeneration and district heating cases.

  5. Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations

    SciTech Connect

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  6. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    SciTech Connect

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune; Andrea Francini; Lisa Zhang

    2011-07-12

    using feasibly-implementable rate adaptivity. • A buffer-management algorithm that is designed to reduce the size of router buffers, and hence energy consumed. • A packet-scheduling algorithm designed to minimize packet-processing energy requirements. Additional research is recommended in at least two areas: further exploration of rate-adaptation in network switching equipment, including incorporation of rate-adaptation in actual hardware, allowing experimentation in operational networks; and development of control protocols that allow parts of networks to be shut down while minimizing disruption to traffic flow in the network. The research is an integral part of a large effort within Bell Laboratories, Alcatel-Lucent, aimed at dramatic improvements in the energy efficiency of telecommunication networks. This Study did not explicitly consider any commercialization opportunities.

  7. Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption.

    PubMed

    Qureshi, N; Hughes, S; Maddox, I S; Cotta, M A

    2005-07-01

    This article discusses the separation of butanol from aqueous solutions and/or fermentation broth by adsorption. Butanol fermentation is also known as acetone butanol ethanol (ABE) or solvent fermentation. Adsorbents such as silicalite, resins (XAD-2, XAD-4, XAD-7, XAD-8, XAD-16), bone charcoal, activated charcoal, bonopore, and polyvinylpyridine have been studied. Use of silicalite appears to be the more attractive as it can be used to concentrate butanol from dilute solutions (5 to 790-810 g L(-1)) and results in complete desorption of butanol (or ABE). In addition, silicalite can be regenerated by heat treatment. The energy requirement for butanol recovery by adsorption-desorption processes has been calculated to be 1,948 kcal kg(-1) butanol as compared to 5,789 kcal kg(-1) butanol by steam stripping distillation. Other techniques such as gas stripping and pervaporation require 5,220 and 3,295 kcal kg(-1) butanol, respectively.

  8. Method for efficient recovery of high-purity polycarbonates from electronic waste.

    PubMed

    Weeden, George S; Soepriatna, Nicholas H; Wang, Nien-Hwa Linda

    2015-02-17

    More than one million tons of polycarbonates from waste electrical and electronic equipment are consigned to landfills at an increasing rate of 3-5% per year. Recycling the polymer waste should have a major environmental impact. Pure solvents cannot be used to selectively extract polycarbonates from mixtures of polymers with similar properties. In this study, selective mixed solvents are found using guidelines from Hansen solubility parameters, gradient polymer elution chromatography, and solubility tests. A room-temperature sequential extraction process using two mixed solvents is developed to recover polycarbonates with high yield (>95%) and a similar purity and molecular weight distribution as virgin polycarbonates. The estimated cost of recovery is less than 30% of the cost of producing virgin polycarbonates from petroleum. This method would potentially reduce raw materials from petroleum, use 84% less energy, reduce emission by 1-6 tons of CO2 per ton of polycarbonates, and reduce polymer accumulation in landfills and associated environmental hazards.

  9. Recovery Act - CAREER: Sustainable Silicon -- Energy-Efficient VLSI Interconnect for Extreme-Scale Computing

    SciTech Connect

    Chiang, Patrick

    2014-01-31

    The research goal of this CAREER proposal is to develop energy-efficient, VLSI interconnect circuits and systems that will facilitate future massively-parallel, high-performance computing. Extreme-scale computing will exhibit massive parallelism on multiple vertical levels, from thou­ sands of computational units on a single processor to thousands of processors in a single data center. Unfortunately, the energy required to communicate between these units at every level (on­ chip, off-chip, off-rack) will be the critical limitation to energy efficiency. Therefore, the PI's career goal is to become a leading researcher in the design of energy-efficient VLSI interconnect for future computing systems.

  10. Structure Segmentation and Transfer Faults in the Marcellus Shale, Clearfield County, Pennsylvania: Implications for Gas Recovery Efficiency and Risk Assessment Using 3D Seismic Attribute Analysis

    NASA Astrophysics Data System (ADS)

    Roberts, Emily D.

    The Marcellus Shale has become an important unconventional gas reservoir in the oil and gas industry. Fractures within this organic-rich black shale serve as an important component of porosity and permeability useful in enhancing production. Horizontal drilling is the primary approach for extracting hydrocarbons in the Marcellus Shale. Typically, wells are drilled perpendicular to natural fractures in an attempt to intersect fractures for effective hydraulic stimulation. If the fractures are contained within the shale, then hydraulic fracturing can enhance permeability by further breaking the already weakened rock. However, natural fractures can affect hydraulic stimulations by absorbing and/or redirecting the energy away from the wellbore, causing a decreased efficiency in gas recovery, as has been the case for the Clearfield County, Pennsylvania study area. Estimating appropriate distances away from faults and fractures, which may limit hydrocarbon recovery, is essential to reducing the risk of injection fluid migration along these faults. In an attempt to mitigate the negative influences of natural fractures on hydrocarbon extraction within the Marcellus Shale, fractures were analyzed through the aid of both traditional and advanced seismic attributes including variance, curvature, ant tracking, and waveform model regression. Through the integration of well log interpretations and seismic data, a detailed assessment of structural discontinuities that may decrease the recovery efficiency of hydrocarbons was conducted. High-quality 3D seismic data in Central Pennsylvania show regional folds and thrusts above the major detachment interval of the Salina Salt. In addition to the regional detachment folds and thrusts, cross-regional, northwest-trending lineaments were mapped. These lineaments may pose a threat to hydrocarbon productivity and recovery efficiency due to faults and fractures acting as paths of least resistance for induced hydraulic stimulation fluids

  11. Including Thermal Fluctuations in Actomyosin Stable States Increases the Predicted Force per Motor and Macroscopic Efficiency in Muscle Modelling.

    PubMed

    Marcucci, Lorenzo; Washio, Takumi; Yanagida, Toshio

    2016-09-01

    Muscle contractions are generated by cyclical interactions of myosin heads with actin filaments to form the actomyosin complex. To simulate actomyosin complex stable states, mathematical models usually define an energy landscape with a corresponding number of wells. The jumps between these wells are defined through rate constants. Almost all previous models assign these wells an infinite sharpness by imposing a relatively simple expression for the detailed balance, i.e., the ratio of the rate constants depends exponentially on the sole myosin elastic energy. Physically, this assumption corresponds to neglecting thermal fluctuations in the actomyosin complex stable states. By comparing three mathematical models, we examine the extent to which this hypothesis affects muscle model predictions at the single cross-bridge, single fiber, and organ levels in a ceteris paribus analysis. We show that including fluctuations in stable states allows the lever arm of the myosin to easily and dynamically explore all possible minima in the energy landscape, generating several backward and forward jumps between states during the lifetime of the actomyosin complex, whereas the infinitely sharp minima case is characterized by fewer jumps between states. Moreover, the analysis predicts that thermal fluctuations enable a more efficient contraction mechanism, in which a higher force is sustained by fewer attached cross-bridges.

  12. Including Thermal Fluctuations in Actomyosin Stable States Increases the Predicted Force per Motor and Macroscopic Efficiency in Muscle Modelling

    PubMed Central

    2016-01-01

    Muscle contractions are generated by cyclical interactions of myosin heads with actin filaments to form the actomyosin complex. To simulate actomyosin complex stable states, mathematical models usually define an energy landscape with a corresponding number of wells. The jumps between these wells are defined through rate constants. Almost all previous models assign these wells an infinite sharpness by imposing a relatively simple expression for the detailed balance, i.e., the ratio of the rate constants depends exponentially on the sole myosin elastic energy. Physically, this assumption corresponds to neglecting thermal fluctuations in the actomyosin complex stable states. By comparing three mathematical models, we examine the extent to which this hypothesis affects muscle model predictions at the single cross-bridge, single fiber, and organ levels in a ceteris paribus analysis. We show that including fluctuations in stable states allows the lever arm of the myosin to easily and dynamically explore all possible minima in the energy landscape, generating several backward and forward jumps between states during the lifetime of the actomyosin complex, whereas the infinitely sharp minima case is characterized by fewer jumps between states. Moreover, the analysis predicts that thermal fluctuations enable a more efficient contraction mechanism, in which a higher force is sustained by fewer attached cross-bridges. PMID:27626630

  13. Enhanced xylose recovery from oil palm empty fruit bunch by efficient acid hydrolysis.

    PubMed

    Tan, Hooi Teng; Dykes, Gary A; Wu, Ta Yeong; Siow, Lee Fong

    2013-08-01

    Oil palm empty fruit bunch (EFB) is abundantly available in Malaysia and it is a potential source of xylose for the production of high-value added products. This study aimed to optimize the hydrolysis of EFB using dilute sulfuric acid (H2SO4) and phosphoric acid (H3PO4) via response surface methodology for maximum xylose recovery. Hydrolysis was carried out in an autoclave. An optimum xylose yield of 91.2 % was obtained at 116 °C using 2.0 % (v/v) H2SO4, a solid/liquid ratio of 1:5 and a hydrolysis time of 20 min. A lower optimum xylose yield of 24.0 % was observed for dilute H3PO4 hydrolysis at 116 °C using 2.4 % (v/v) H3PO4, a solid/liquid ratio of 1:5 and a hydrolysis time of 20 min. The optimized hydrolysis conditions suggested that EFB hydrolysis by H2SO4 resulted in a higher xylose yield at a lower acid concentration as compared to H3PO4.

  14. CHARACTERIZATION OF MIXED WETTABLILITY AT DIFFERENT SCALES AND ITS IMPACT ON OIL RECOVERY EFFICIENCY

    SciTech Connect

    Mukul M. Sharma; George J. Hirasaki

    2003-08-31

    The objectives of the this research project were to: (1) Quantify the pore scale mechanisms that determine the wettability state of a reservoir; (2) Study the effect of crude oil, brine and mineral compositions in the establishment of mixed wet states; (3) Clarify the effect of mixed-wettability on oil displacement efficiency in waterfloods; and (4) Develop a new tracer technique to measure wettability, fluid distributions, residual saturations and relative permeabilities.

  15. CHARACTERIZATION OF MIXED WETTABILITY AT DIFFERENT SCALES AND ITS IMPACT ON OIL RECOVERY EFFICIENCY

    SciTech Connect

    Mukul M. Sharma; George J. Hirasaki

    2003-09-01

    The objectives of the this research project were to: (1) Quantify the pore scale mechanisms that determine the wettability state of a reservoir; (2) Study the effect of crude oil, brine and mineral compositions in the establishment of mixed wet states; (3) Clarify the effect of mixed-wettability on oil displacement efficiency in waterfloods; and (4) Develop a new tracer technique to measure wettability, fluid distributions, residual saturations and relative permeabilities.

  16. The Long-Term Effectiveness of Reading Recovery and the Cost-Efficiency of Reading Recovery Relative to the Learning Disabled Classification Rate

    ERIC Educational Resources Information Center

    Galluzzo, Charles A.

    2010-01-01

    There is a great deal of research supporting Reading Recovery as a successful reading intervention program that assists below level first graders readers in closing the gap in reading at the same level of their average peers. There is a lack of research that analyses the cost-effectiveness of the Reading Recovery program compared to the cost in…

  17. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect

    Qu, Ming; Abdelaziz, Omar; Yin, Hongxi

    2014-11-01

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  18. Heat treatment of unclarified Escherichia coli homogenate improved the recovery efficiency of recombinant hepatitis B core antigen.

    PubMed

    Ng, Michelle Y T; Tan, Wen Siang; Abdullah, Norhafizah; Ling, Tau Chuan; Tey, Beng Ti

    2006-10-01

    Heat precipitation procedure has been regularly incorporated as a selective purification step in various thermostable proteins expressed in different hosts. This method is efficient in precipitation of most of the host proteins and also deactivates various host proteases that can be harmful to the desired gene products. In this study, introduction of heat treatment procedure in the purification of hepatitis B core antigen (HBcAg) produced in Escherichia coli has been investigated. Thermal treatment of the cell homogenate at 60 degrees C for 30 min prior to subsequent clarification steps has resulted in 1.4 times and 18% higher in purity and recovery yield, respectively, compared to the non-heat-treated cell homogenate. In direct capture of HBcAg by using anion-exchangers from unclarified feedstock, pre-conditioning the feedstock by heat treatment at 60 degrees C for 45 min has increased the recovery yield of HBcAg by 2.9-fold and 42% in purity compared to that treated for 10 min. Enzyme-linked immunosorbent assay (ELISA) analysis showed that the antigenicity of the core particles was not affected by the heat treatment process.

  19. Efficiency of Artemia cysts removal as a model invasive spore using a continuous microwave system with heat recovery.

    PubMed

    Balasubramanian, Sundar; Ortego, Jeffrey; Rusch, Kelly A; Boldor, Dorin

    2008-12-15

    A continuous microwave system to treat ballast water inoculated with Artemia salina cysts as a model invasive spore was tested for its efficacy in inactivating the cysts present. The system was tested at two different flow rates (1 and 2 L x min(-1)) and two different power levels (2.5 and 4.5 kW). Temperature profiles indicate that the system could deliver heating loads in excess of 100 degrees C in a uniform and near-instantaneous manner when using a heat recovery system. Except for a power and flow rate combination of 2.5 kW and 2 L x min(-1), complete inactivation of the cysts was observed at all combinations at holding times below 100 s. The microwave treatment was better or equal to the control treatment in inactivating the cysts. Use of heat exchangers increased the power conversion efficiency and the overall efficiency of the treatment system. Cost economics analysis indicates that in the present form of development microwave treatment costs are higher than the existing ballast water treatment methods. Overall, tests results indicated that microwave treatment of ballast water is a promising method that can be used in conjunction with other methods to form an efficient treatment system that can prevent introduction of potentially invasive spore forming species in non-native waters.

  20. Characterization of Mixed Wettability at Different Scales and its Impact on Oil Recovery Efficiency

    SciTech Connect

    Sharma, Mukul M.; Hirasaki, George J.

    2002-01-28

    The objectives of this project was to: (1) quantify the pore scale mechanisms that determine the wettability state of a reservoir, (2) study the effect of crude oil, brine and mineral compositions in the establishment of mixed wet states, (3) clarify the effect of mixed - wettability on oil displacement efficiency in waterfloods, (4) develop a new tracer technique to measure wettability, fluid distributions, residual saturation's and relative permeabilities, and (5) develop methods for properly incorporating wettability in up-scaling from pore to core to reservoir scales.

  1. Energy efficiency and recovery of heat lost in the Industrial Systems

    NASA Astrophysics Data System (ADS)

    Mounkid, S.; Loukili, A.

    2017-03-01

    the economic importance of energy is manifested at all levels of farms, the demand for energy is today one of the major challenges of societies, it constitutes an indispensable element to any activity of production, it is for this, the industry has an interest to anticipate and invest in energy efficiency in order to gain competitiveness, this last represents a tremendous lever for performance and economy. The Energy diagnosis allows unveils the potential energy sinks and the discovery of the various sources of energy losses in a manufacturing process or in all system user of energy. Use with the effectiveness of the energy help the industry to meet the challenges of competitiveness.

  2. Accurate and efficient modeling of global seismic wave propagation for an attenuative Earth model including the center

    NASA Astrophysics Data System (ADS)

    Toyokuni, Genti; Takenaka, Hiroshi

    2012-06-01

    We propose a method for modeling global seismic wave propagation through an attenuative Earth model including the center. This method enables accurate and efficient computations since it is based on the 2.5-D approach, which solves wave equations only on a 2-D cross section of the whole Earth and can correctly model 3-D geometrical spreading. We extend a numerical scheme for the elastic waves in spherical coordinates using the finite-difference method (FDM), to solve the viscoelastodynamic equation. For computation of realistic seismic wave propagation, incorporation of anelastic attenuation is crucial. Since the nature of Earth material is both elastic solid and viscous fluid, we should solve stress-strain relations of viscoelastic material, including attenuative structures. These relations represent the stress as a convolution integral in time, which has had difficulty treating viscoelasticity in time-domain computation such as the FDM. However, we now have a method using so-called memory variables, invented in the 1980s, followed by improvements in Cartesian coordinates. Arbitrary values of the quality factor (Q) can be incorporated into the wave equation via an array of Zener bodies. We also introduce the multi-domain, an FD grid of several layers with different grid spacings, into our FDM scheme. This allows wider lateral grid spacings with depth, so as not to perturb the FD stability criterion around the Earth center. In addition, we propose a technique to avoid the singularity problem of the wave equation in spherical coordinates at the Earth center. We develop a scheme to calculate wavefield variables on this point, based on linear interpolation for the velocity-stress, staggered-grid FDM. This scheme is validated through a comparison of synthetic seismograms with those obtained by the Direct Solution Method for a spherically symmetric Earth model, showing excellent accuracy for our FDM scheme. As a numerical example, we apply the method to simulate seismic

  3. Successful Recovery and Transplantation of 11 Organs Including Face, Bilateral Upper Extremities, and Thoracic and Abdominal Organs From a Single Deceased Organ Donor.

    PubMed

    Tullius, Stefan G; Pomahac, Bohdan; Kim, Heung Bae; Carty, Matthew J; Talbot, Simon G; Nelson, Helen M; Delmonico, Francis L

    2016-10-01

    We report on the to date largest recovery of 11 organs from a single deceased donor with the transplantation of face, bilateral upper extremities, heart, 1 lung, liver (split for 2 recipients), kidneys, pancreas, and intestine. Although logistically challenging, this case demonstrates the feasibility and safety of the recovery of multiple thoracic and abdominal organs with multiple vascular composite allotransplants and tissues. Our experience of 8 additional successful multiple vascular composite allotransplants, thoracic, and abdominal organ recoveries suggests that such procedures are readily accomplishable from the same deceased donor.

  4. Recovery of indium from used LCD panel by a time efficient and environmentally sound method assisted HEBM.

    PubMed

    Lee, Cheol-Hee; Jeong, Mi-Kyung; Kilicaslan, M Fatih; Lee, Jong-Hyeon; Hong, Hyun-Seon; Hong, Soon-Jik

    2013-03-01

    In this study, a method which is environmentally sound, time and energy efficient has been used for recovery of indium from used liquid crystal display (LCD) panels. In this method, indium tin oxide (ITO) glass was crushed to micron size particles in seconds via high energy ball milling (HEBM). The parameters affecting the amount of dissolved indium such as milling time, particle size, effect time of acid solution, amount of HCl in the acid solution were tried to be optimized. The results show that by crushing ITO glass to micron size particles by HEBM, it is possible to extract higher amount of indium at room temperature than that by conventional methods using only conventional shredding machines. In this study, 86% of indium which exists in raw materials was recovered about in a very short time.

  5. Optimization of cell disruption methods for efficient recovery of bioactive metabolites via NMR of three freshwater microalgae (chlorophyta).

    PubMed

    Ma, Nyuk Ling; Teh, Kit Yinn; Lam, Su Shiung; Kaben, Anne Marie; Cha, Thye San

    2015-08-01

    This study demonstrates the use of NMR techniques coupled with chemometric analysis as a high throughput data mining method to identify and examine the efficiency of different disruption techniques tested on microalgae (Chlorella variabilis, Scenedesmus regularis and Ankistrodesmus gracilis). The yield and chemical diversity from the disruptions together with the effects of pre-oven and pre-freeze drying prior to disruption techniques were discussed. HCl extraction showed the highest recovery of oil compounds from the disrupted microalgae (up to 90%). In contrast, NMR analysis showed the highest intensity of bioactive metabolites obtained for homogenized extracts pre-treated with freeze-drying, indicating that homogenizing is a more favorable approach to recover bioactive substances from the disrupted microalgae. The results show the potential of NMR as a useful metabolic fingerprinting tool for assessing compound diversity in complex microalgae extracts.

  6. A low-rank matrix recovery approach for energy efficient EEG acquisition for a wireless body area network.

    PubMed

    Majumdar, Angshul; Gogna, Anupriya; Ward, Rabab

    2014-08-25

    We address the problem of acquiring and transmitting EEG signals in Wireless Body Area Networks (WBAN) in an energy efficient fashion. In WBANs, the energy is consumed by three operations: sensing (sampling), processing and transmission. Previous studies only addressed the problem of reducing the transmission energy. For the first time, in this work, we propose a technique to reduce sensing and processing energy as well: this is achieved by randomly under-sampling the EEG signal. We depart from previous Compressed Sensing based approaches and formulate signal recovery (from under-sampled measurements) as a matrix completion problem. A new algorithm to solve the matrix completion problem is derived here. We test our proposed method and find that the reconstruction accuracy of our method is significantly better than state-of-the-art techniques; and we achieve this while saving sensing, processing and transmission energy. Simple power analysis shows that our proposed methodology consumes considerably less power compared to previous CS based techniques.

  7. Double-quantum homonuclear rotary resonance: Efficient dipolar recovery in magic-angle spinning nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J.; Levitt, M. H.

    1994-08-01

    We describe an efficient method for the recovery of homonuclear dipole-dipole interactions in magic-angle spinning NMR. Double-quantum homonuclear rotary resonance (2Q-HORROR) is established by fulfilling the condition ωr=2ω1, where ωr is the sample rotation frequency and ω1 is the nutation frequency around an applied resonant radio frequency (rf) field. This resonance can be used for double-quantum filtering and measurement of homonuclear dipolar interactions in the presence of magic-angle spinning. The spin dynamics depend only weakly on crystallite orientation allowing good performance for powder samples. Chemical shift effects are suppressed to zeroth order. The method is demonstrated for singly and doubly 13C labeled L-alanine.

  8. Reading Recovery.

    ERIC Educational Resources Information Center

    Jones, Joanna R., Ed.

    1992-01-01

    This issue of the Arizona Reading Journal focuses on the theme "reading recovery" and includes the following articles: "Why Is an Inservice Programme for Reading Recovery Teachers Necessary?" (Marie M. Clay); "What Is Reading Recovery?" (Gay Su Pinnell); "Teaching a Hard To Teach Child" (Constance A.…

  9. Rapid and efficient removal/recovery of molybdenum onto ZnFe2O4 nanoparticles.

    PubMed

    Tu, Yao-Jen; Chan, Ting-Shan; Tu, Hao-Wei; Wang, Shan-Li; You, Chen-Feng; Chang, Chien-Kuei

    2016-04-01

    An efficient method for removing and recovering molybdenum (Mo) from water was developed by using ZnFe2O4 nanoparticles. The Mo adsorption displayed a nonlinear isotherm that fitted well with the Langmuir isotherm, showing limited adsorption sites on the surface of ZnFe2O4. The adsorption of Mo(VI) was dependent on solution pH. With increasing pH, the build-up of negative charges of both adsorbent and adsorbate led to enhanced electric repulsion between them. The K-edge XANES spectra for the adsorbents collected after Mo adsorption revealed that Mo(VI) was the predominant oxidation state sorbed on ZnFe2O4, indicating that the reduction of Mo(VI) did not occur on ZnFe2O4. The different peak positions of k-space and R-space shown in K-edge EXAFS spectra demonstrated that the adsorbed Mo could be bound on the surface or be slipped in the vacancy position of the ZnFe2O4 crystal. Importantly, Mo could be efficiently adsorbed from photoelectric industrial wastewater and these adsorbed Mo anions were rapidly replaced by OH(-) ions, implying the potential for Mo removing and recovering in industrial wastewater.

  10. Recovery Act: Low-Cost, Highly Lambertian Reflector Composite For Improved LED Fixture Efficiency and Lifetime

    SciTech Connect

    Teather, Eric

    2013-02-15

    The overall objective of the program was to demonstrate a 98% or greater reflective, highly diffuse, low-cost composite material that significantly improves luminaire efficiency, is able to withstand 50,000 hours or greater luminaire operation under expected LED system thermal and environmental operating extremes and meets the cost targets required to be an effective commercial solution for the Solid State Lighting industry. This project met most of the goals defined and contributed to the understanding of high reflectance, white coatings. Research under this program increased the understanding of coatings development using particle size reduction techniques and preparation of coating solutions with a broad range of particle types. The research explored scale-up of coating systems and generated understanding of processing required for high volume manufacturing applications. The work demonstrated how coating formulation and application technique can translate to material durability and LED system lifetime. The research also demonstrated improvements in lighting efficiency to be gained using high reflectance white coatings.

  11. Efficiency enhancement in solid state dye sensitized solar cells by including inverse opals with controlled layer thicknesses

    NASA Astrophysics Data System (ADS)

    Zheng, Hanbin; Shah, Said Karim; Abbas, Mamatimin; Ly, Isabelle; Rivera, Thomas; Almeida, Rui M.; Hirsch, Lionel; Toupance, Thierry; Ravaine, Serge

    2016-09-01

    The photoconversion efficiency of dye sensitized solar cells can be enhanced by the incorporation of light management nanostructures such as photonic crystals. Here, we present a facile route to incorporate titania inverse opals into solid state dye sensitized solar cells and report photoconversion efficiency enhancements of up to 56% compared with a model system without the inverse opal. Our approach is based on the precise design of titania inverse opals with a predetermined thickness that can be controlled at the individual layer level. By choosing an inverse opal exhibiting a photonic bandgap which overlaps the absorption bands of the dye, our results show that there is an optimal thickness of the inverse opal structure for maximum efficiency enhancement of the cell. This is the first experimental proof that the thickness of a titania inverse opal plays a pivotal role in cell efficiency enhancement in solid state dye sensitized solar cells.

  12. FOR STIMULI-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    SciTech Connect

    Charles McCormick; Roger Hester

    2002-04-29

    To date, our synthetic research efforts have been focused on the development of stimuli-responsive water-soluble polymers designed for use in enhanced oil recovery (EOR) applications. These model systems are structurally tailored for potential application as viscosifiers and/or mobility control agents for secondary and tertiary EOR methods. The following report discloses the progress of our ongoing research of polyzwitterions, polymers derived from monomers bearing both positive and negative charges, that show the ability to sustain or increase their hydrodynamic volume (and thus, solution viscosity) in the presence of electrolytes. Such polymers appear to be well-suited for use under conditions similar to those encountered in EOR operations. Additionally, we disclose the synthesis and characterization of a well-defined set of polyacrylamide (PAM) homopolymers that vary by MW. The MW of the PAM samples is controlled by addition of sodium formate to the polymerization medium as a conventional chain transfer agent. Data derived from polymer characterization is used to determine the kinetic parameter C{sub CT}, the chain transfer constant to sodium formate under the given polymerization conditions. The PAM homopolymer series will be employed in future set of experiments designed to test a simplified intrinsic viscosity equation. The flow resistance of a polymer solution through a porous medium is controlled by the polymer's hydrodynamic volume, which is strongly related to it's intrinsic viscosity. However, the hydrodynamic volume of a polymer molecule in an aqueous solution varies with fluid temperature, solvent composition, and polymer structure. This report on the theory of polymer solubility accentuates the importance of developing polymer solutions that increase in intrinsic viscosity when fluid temperatures are elevated above room conditions. The intrinsic viscosity response to temperature and molecular weight variations of three polymer solutions verified the

  13. Energy Efficient Building Ventilation Systems: Innovative Building-Integrated Enthalpy Recovery

    SciTech Connect

    2010-10-15

    BEETIT Project: A2 is developing a building moisture and heat exchange technology that leverages a new material and design to create healthy buildings with lower energy use. Commercial building owners/operators are demanding buildings with greater energy efficiency and healthier indoor environments. A2 is developing a membrane-based heat and moisture exchanger that controls humidity by transferring the water vapor in the incoming fresh air to the drier air leaving the building. Unlike conventional systems, A2 locates the heat and moisture exchanger within the depths of the building’s wall to slow down the air flow and increase the surface area that captures humidity, but with less fan power. The system’s integration into the wall reduces the size and demand on the air conditioning equipment and increases liable floor area flexibility.

  14. A Robust and Cost-Effective Superhydrophobic Graphene Foam for Efficient Oil and Organic Solvent Recovery.

    PubMed

    Zhu, Haiguang; Chen, Dongyun; An, Wei; Li, Najun; Xu, Qingfeng; Li, Hua; He, Jinghui; Lu, Jianmei

    2015-10-21

    Water pollution caused by chemical reagent leaking, industrial wastewater discharging, and crude oil spills has raised global concerns on environmental sustainability, calling for high-performance absorbent materials for effective treatments. However, low-cost materials capable of effectively separating oils and organic solvents from water with a high adsorption capacity and good recyclability are rare on the market. Here, a cost-effective method is reported to fabricate high-performance graphene modified absorbents through the facile thermal reduction of graphene oxide on the skeletons of melamine foam. By integrating the high porosity, superior elasticity, and mechanical stability of raw sponge with the chemical stability and hydrophobicity of graphene sheets, the as-fabricated graphene foam not only possesses a rough and superhydrophobic surface, but also exhibits an excellent adsorption performance and extraordinary recyclability for various oils and organic solvents. It is worth mentioning that the superhydrophobic surface also endows the graphene foam with an excellent efficiency for oil/water separation. More importantly, the cost-effective fabrication method without involving expensive raw materials and sophisticated equipment permits a scale-up of the graphene foam for pollution disposal. All these features make the graphene foam an ideal candidate for removal and collection of oils and organic solvents from water.

  15. Monitoring mis-acylated tRNA suppression efficiency in mammalian cells via EGFP fluorescence recovery.

    PubMed

    Ilegems, Erwin; Pick, Horst M; Vogel, Horst

    2002-12-01

    A reporter assay was developed to detect and quantify nonsense codon suppression by chemically aminoacylated tRNAs in mammalian cells. It is based on the cellular expression of the enhanced green fluorescent protein (EGFP) as a reporter for the site-specific amino acid incorporation in its sequence using an orthogonal suppressor tRNA derived from Escherichia coli. Suppression of an engineered amber codon at position 64 in the EGFP run-off transcript could be achieved by the incorporation of a leucine via an in vitro aminoacylated suppressor tRNA. Microinjection of defined amounts of mutagenized EGFP mRNA and suppressor tRNA into individual cells allowed us to accurately determine suppression efficiencies by measuring the EGFP fluorescence intensity in individual cells using laser-scanning confocal microscopy. Control experiments showed the absence of natural suppression or aminoacylation of the synthetic tRNA by endogenous aminoacyl-tRNA synthetases. This reporter assay opens the way for the optimization of essential experimental parameters for expanding the scope of the suppressor tRNA technology to different cell types.

  16. Simple and efficient ion imprinted polymer for recovery of uranium from environmental samples.

    PubMed

    Pakade, V E; Cukrowska, E M; Darkwa, J; Darko, G; Torto, N; Chimuka, L

    2012-01-01

    Ion imprinted polymer material (IIP) was prepared by forming ternary complexes of uranyl imprint ion with 1-(prop-2-en-1-yl)-4-(pyridin-2-ylmethyl)piperazine and methacrylic acid followed by thermal copolymerization with ethylene glycol dimethacrylate as the cross-linking monomer in the presence of 1,1'-azobis(cyclohexanecarbonitrile) initiator and 2-methoxy ethanol porogenic solvent. HCl solution (5 mol/L) was used to leach out the uranyl template ion from the IIP particles. Similarly, the control polymer (CP) material was also prepared exactly under the same conditions as the IIP but without the uranyl ion template. Various parameters such as solution pH, initial concentration, aqueous phase volume, sorbent dosage, contact time and leaching solution volumes were investigated. SEM, IR and BET-surface area and pore size analysis were used for the characterization of IIP and CP materials. The extraction efficiency of the IIP and CP was compared using a batch and SPE mode of extraction. The optimal pH for quantitative removal is 4.0-8.0, sorbent amount is 20 mg, contact time is 20 min and the retention capacity is 120 mg of uranyl ion per g of IIP. The IIP prepared demonstrated superior selectivity towards coexisting cations and therefore it can be used for selective removal of uranium from complex matrices.

  17. Characterization of microsieves recovery efficiency in isolation of circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Osuchowska, Paulina Natalia; Sarzyński, Antoni; Strzelec, Marek; Bogdanowicz, Zdzisław; Marczak, Jan; Łapiński, Mariusz Piotr; Trafny, ElŻbieta Anna

    2016-12-01

    Isolation of circulating tumor cells (CTCs) from the blood is important in the diagnosis of malignant tumors and for monitoring therapeutic responses. The two main problems to be solved are extremely low CTCs numbers in the blood (average 1-10 CTC per 10 ml of whole blood) and the absence of one particular phenotype or genotype, which would allow for precise identification. Isolation of CTCs can be based on physical characteristics, e.g. the size of the cells (ISET, Isolation by Size of Epithelial Tumor cells) or the biological properties of these cells (the expression of specific proteins on their surface). In the IOE WAT the copper alloy microsieves with a pore diameter of 10.85 +/- 0.89 μm designed for cell isolation by ISET method were produced. The microsieves with 100 000 pores with a 50 μm interval was made using precise, percussion laser drilling. The performance microsieves filtration was determined using fluorescent beads with three dimensions: 4 μm, 10 μm and 15 μm. Furthermore, the suspensions of cells lines from different types of tumor were used in the process of filtration. The efficiency of the cells filtration process was affected by lack of biocompatibility of the material used for the microsieves production as well as the roughness and porosity of the microsieves surface. Moreover, the diameter of the pores and the course of the filtration process were also significant.

  18. American Recovery and Reinvestment Act - Department of the Navy Near Term Energy-Efficient Technologies Projects

    DTIC Science & Technology

    2011-06-23

    classi tied comments electronically, you must send them over the SECRET Internet Protocol Router Network (SIPRNET). We appreciate the courtesies...agency’s research interest in an individual program requirement or in broadly defined areas of interest covering the full range of an agency’s...Initiatives These projects include developing or reviewing off-the-shelf enterprise energy auditing programs and software that can couple energy

  19. Fast Recovery of the High Work Function of Tungsten and Molybdenum Oxides via Microwave Exposure for Efficient Organic Photovoltaics.

    PubMed

    Vasilopoulou, Maria; Soultati, Anastasia; Argitis, Panagiotis; Stergiopoulos, Thomas; Davazoglou, Dimitris

    2014-06-05

    In this work, we use microwave exposure of tungsten and molybdenum oxides to improve hole extraction in organic photovoltaics (OPVs). This is a result of fast recovery of the high work function of metal oxides occurring within a few seconds of microwave processing. Using the space-charge-limited current model, we verified the formation of an anode contact that facilitates hole extraction, while Mott-Schottky analysis revealed the enhancement of the device built-in field in the devices with the microwave-exposed metal oxides. Both were attributed to the formation of large interfacial dipoles at the ITO/microwave-exposed metal oxide interface. The power conversion efficiency (PCE) of OPVs using microwave-exposed metal oxides and based on blends of poly[(9-(1-octylnonyl)-9H-carbazole-2,7-diyl)-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT) with ([6,6]-phenyl-C71 butyric acid methyl ester, PC71BM) reached values of 7.2%, which represents an increase of about 30% compared with the efficiency of 5.7% of devices using metal oxides not subjected to microwave exposure.

  20. Efficient Removal and Recovery of Uranium by a Layered Organic-Inorganic Hybrid Thiostannate.

    PubMed

    Feng, Mei-Ling; Sarma, Debajit; Qi, Xing-Hui; Du, Ke-Zhao; Huang, Xiao-Ying; Kanatzidis, Mercouri G

    2016-09-28

    Uranium is important in the nuclear fuel cycle both as an energy source and as radioactive waste. It is of vital importance to recover uranium from nuclear waste solutions for further treatment and disposal. Herein we present the first chalcogenide example, (Me2NH2)1.33(Me3NH)0.67Sn3S7·1.25H2O (FJSM-SnS), in which organic amine cations can be used for selective UO2(2+) ion-exchange. The UO2(2+)-exchange kinetics perfectly conforms to pseudo-second-order reaction, which is observed for the first time in a chalcogenide ion-exchanger. This reveals the chemical adsorption process and its ion-exchange mechanism. FJSM-SnS has excellent pH stability in both strongly acidic and basic environments (pH = 2.1-11), with a maximum uranium-exchange capacity of 338.43 mg/g. It can efficiently capture UO2(2+) ions in the presence of high concentrations of Na(+), Ca(2+), or HCO3(-) (the highest distribution coefficient Kd value reached 4.28 × 10(4) mL/g). The material is also very effective in removing of trace levels of U in the presence of excess Na(+) (the relative amounts of U removed are close to 100%). The UO2(2+)···S(2-) interactions are the basis for the high selectivity. Importantly, the uranyl ion in the exchanged products could be easily eluted with an environmentally friendly method, by treating the UO2(2+)-laden materials with a concentrated KCl solution. These advantages coupled with the very high loading capacity, low cost, environmentally friendly nature, and facile synthesis make FJSM-SnS a new promising remediation material for removal of radioactive U from nuclear waste solutions.

  1. Efficient Time-Domain Imaging Processing for One-Stationary Bistatic Forward-Looking SAR Including Motion Errors.

    PubMed

    Xie, Hongtu; Shi, Shaoying; Xiao, Hui; Xie, Chao; Wang, Feng; Fang, Qunle

    2016-11-12

    With the rapid development of the one-stationary bistatic forward-looking synthetic aperture radar (OS-BFSAR) technology, the huge amount of the remote sensing data presents challenges for real-time imaging processing. In this paper, an efficient time-domain algorithm (ETDA) considering the motion errors for the OS-BFSAR imaging processing, is presented. This method can not only precisely handle the large spatial variances, serious range-azimuth coupling and motion errors, but can also greatly improve the imaging efficiency compared with the direct time-domain algorithm (DTDA). Besides, it represents the subimages on polar grids in the ground plane instead of the slant-range plane, and derives the sampling requirements considering motion errors for the polar grids to offer a near-optimum tradeoff between the imaging precision and efficiency. First, OS-BFSAR imaging geometry is built, and the DTDA for the OS-BFSAR imaging is provided. Second, the polar grids of subimages are defined, and the subaperture imaging in the ETDA is derived. The sampling requirements for polar grids are derived from the point of view of the bandwidth. Finally, the implementation and computational load of the proposed ETDA are analyzed. Experimental results based on simulated and measured data validate that the proposed ETDA outperforms the DTDA in terms of the efficiency improvement.

  2. Efficient Time-Domain Imaging Processing for One-Stationary Bistatic Forward-Looking SAR Including Motion Errors

    PubMed Central

    Xie, Hongtu; Shi, Shaoying; Xiao, Hui; Xie, Chao; Wang, Feng; Fang, Qunle

    2016-01-01

    With the rapid development of the one-stationary bistatic forward-looking synthetic aperture radar (OS-BFSAR) technology, the huge amount of the remote sensing data presents challenges for real-time imaging processing. In this paper, an efficient time-domain algorithm (ETDA) considering the motion errors for the OS-BFSAR imaging processing, is presented. This method can not only precisely handle the large spatial variances, serious range-azimuth coupling and motion errors, but can also greatly improve the imaging efficiency compared with the direct time-domain algorithm (DTDA). Besides, it represents the subimages on polar grids in the ground plane instead of the slant-range plane, and derives the sampling requirements considering motion errors for the polar grids to offer a near-optimum tradeoff between the imaging precision and efficiency. First, OS-BFSAR imaging geometry is built, and the DTDA for the OS-BFSAR imaging is provided. Second, the polar grids of subimages are defined, and the subaperture imaging in the ETDA is derived. The sampling requirements for polar grids are derived from the point of view of the bandwidth. Finally, the implementation and computational load of the proposed ETDA are analyzed. Experimental results based on simulated and measured data validate that the proposed ETDA outperforms the DTDA in terms of the efficiency improvement. PMID:27845757

  3. Efficient process for previous metal recovery from cell membrane electrode assemblies

    DOEpatents

    Shore, Lawrence; Matlin, Ramail; Heinz, Robert

    2010-05-04

    A method is provided for recovering a catalytic element from a fuel cell membrane electrode assembly. The method includes grinding the membrane electrode assembly into a powder, extracting the catalytic element by forming a slurry comprising the powder and an acid leachate adapted to dissolve the catalytic element into a soluble salt, and separating the slurry into a depleted powder and a supernatant containing the catalytic element salt. The depleted powder is washed to remove any catalytic element salt retained within pores in the depleted powder and the catalytic element is purified from the salt.

  4. An Improved DNA Extraction Method for Efficient and Quantitative Recovery of Phytoplankton Diversity in Natural Assemblages

    PubMed Central

    Yuan, Jian; Li, Meizhen; Lin, Senjie

    2015-01-01

    Marine phytoplankton are highly diverse with different species possessing different cell coverings, posing challenges for thoroughly breaking the cells in DNA extraction yet preserving DNA integrity. While quantitative molecular techniques have been increasingly used in phytoplankton research, an effective and simple method broadly applicable to different lineages and natural assemblages is still lacking. In this study, we developed a bead-beating protocol based on our previous experience and tested it against 9 species of phytoplankton representing different lineages and different cell covering rigidities. We found the bead-beating method enhanced the final yield of DNA (highest as 2 folds) in comparison with the non-bead-beating method, while also preserving the DNA integrity. When our method was applied to a field sample collected at a subtropical bay located in Xiamen, China, the resultant ITS clone library revealed a highly diverse assemblage of phytoplankton and other micro-eukaryotes, including Archaea, Amoebozoa, Chlorophyta, Ciliphora, Bacillariophyta, Dinophyta, Fungi, Metazoa, etc. The appearance of thecate dinoflagellates, thin-walled phytoplankton and “naked” unicellular organisms indicates that our method could obtain the intact DNA of organisms with different cell coverings. All the results demonstrate that our method is useful for DNA extraction of phytoplankton and environmental surveys of their diversity and abundance. PMID:26218575

  5. For Stimul-Responsive Polymers with Enhanced Efficiency in Reservoir Recovery Processes

    SciTech Connect

    Charles McCormick; Roger Hester

    2003-02-28

    Acrylamide-based hydrophobically modified (HM) polybetaines containing N-butylphenylacrylamide (BPAM) and varying amounts of either sulfobetaine (3-(2-acrylamido-2-methylpropanedimethylammonio)-1-propanesulfonate, AMPDAPS) or carboxybetaine (4-(2-acrylamido-2-methylpropyldimethylammonio) butanoate, AMPDAB) comonomers were synthesized via micellar copolymerization. The terpolymers were characterized via {sup 13}C NMR and UV spectroscopies, classical and dynamic light scattering, and potentiometric titration. The response of aqueous polymer solutions to various external stimuli, including changes in solution pH, electrolyte concentration, and the addition of small molecule surfactants, was investigated using surface tension and rheological measurements. Low charge density terpolymers were found to show greater viscosity enhancement upon the addition of surfactant compared to the high charge density terpolymers. The addition of sodium dodecyl sulfate (SDS) produced the largest maximum in solution viscosity, while N-dodecyl-N,N,N-trimethylammonium bromide (DTAB), N-dodecyl-N,N-dimethylammonio-1-propanesulfonate (SB3-12), and Triton X-100 tended to show reduced viscosity enhancement. In most cases, the high charge density carboxybetaine terpolymer exhibited diminished solution viscosities upon surfactant addition. In our last report, we discussed solution thermodynamic theory that described changes in polymer coil conformation as a function of solution temperature and polymer molecular weight. These polymers contained no ionic charges. In this report, we expand polymer solution theory to account for the electrostatic interactions present in solutions of charged polymers. Polymers with ionic charges are referred to as polyions or polyelectrolytes.

  6. An Improved DNA Extraction Method for Efficient and Quantitative Recovery of Phytoplankton Diversity in Natural Assemblages.

    PubMed

    Yuan, Jian; Li, Meizhen; Lin, Senjie

    2015-01-01

    Marine phytoplankton are highly diverse with different species possessing different cell coverings, posing challenges for thoroughly breaking the cells in DNA extraction yet preserving DNA integrity. While quantitative molecular techniques have been increasingly used in phytoplankton research, an effective and simple method broadly applicable to different lineages and natural assemblages is still lacking. In this study, we developed a bead-beating protocol based on our previous experience and tested it against 9 species of phytoplankton representing different lineages and different cell covering rigidities. We found the bead-beating method enhanced the final yield of DNA (highest as 2 folds) in comparison with the non-bead-beating method, while also preserving the DNA integrity. When our method was applied to a field sample collected at a subtropical bay located in Xiamen, China, the resultant ITS clone library revealed a highly diverse assemblage of phytoplankton and other micro-eukaryotes, including Archaea, Amoebozoa, Chlorophyta, Ciliphora, Bacillariophyta, Dinophyta, Fungi, Metazoa, etc. The appearance of thecate dinoflagellates, thin-walled phytoplankton and "naked" unicellular organisms indicates that our method could obtain the intact DNA of organisms with different cell coverings. All the results demonstrate that our method is useful for DNA extraction of phytoplankton and environmental surveys of their diversity and abundance.

  7. Measure Guideline: Summary of Interior Ducts in New Construction, Including an Efficient, Affordable Method to Install Fur-Down Interior Ducts

    SciTech Connect

    Beal, D.; McIlvaine, J.; Fonorow, K.; Martin, E.

    2011-11-01

    This document illustrates guidelines for the efficient installation of interior duct systems in new housing, including the fur-up chase method, the fur-down chase method, and interior ducts positioned in sealed attics or sealed crawl spaces.

  8. FOR STIMUL-RESPONSIVE POLYMERS WITH ENHANCED EFFICIENCY IN RESERVOIR RECOVERY PROCESSES

    SciTech Connect

    Charles McCormick; Roger Hester

    2004-03-26

    This report contains a series of terpolymers containing acrylic acid, methacrylamide and a twin-tailed hydrophobic monomer that were synthesized using micellar polymerization methods. These polymer systems were characterized using light scattering, viscometry, and fluorescence methods. Viscosity studies indicate that increasing the nonpolar character of the hydrophobic monomer (longer chain length or twin tailed vs. single tailed) results in enhanced viscosity in aqueous solutions. The interactions of these polymers with surfactants were investigated. These surfactants include sodium dodecyl sulfate (SDS), cetyl trimethyl ammonium bromide (CTAB), Triton X-100. Viscosity measurements of DiC{sub 6}AM and DiC{sub 8}AM mixtures indicate little interaction with SDS, gelation with CTAB, and hemimicelle formation followed by polymer hydrophobe solubilization with Triton X-100. The DiC{sub 10}Am terpolymer shows similar interaction behavior with CTAB and Triton X-100. However, the enhanced hydrophobic nature of the DiC{sub 10} polymer allows complex formation with SDS as confirmed by surface tensiometry. Fluorescence measurements performed on a dansyl labeled DiC{sub 10}Am terpolymer in the presence of increasing amounts of each of the surfactant indicate relative interaction strengths to be CTAB>Triton X-100>SDS. A modified model based on Yamakawa-Fujii and Odjik-Skolnick-Fixman theories was found to describe the contribution of electrostatic forces to the excluded volume of a polyelectrolyte in solution. The model was found to be valid for flexible polymer coils in aqueous salt solutions where intermolecular interactions are minimal. The model suggested that a dimensionless group of parameters termed the dimensionless viscosity should be proportional to the dimensionless ratio of solution screening length to polyion charge spacing. Several sets of experimental data from the literature and from our laboratory have been analyzed according to the model and the results

  9. Modelling the effect of exposing algae to pulses of S-metolachlor: How to include a delay to the onset of the effect and in the recovery.

    PubMed

    Copin, Pierre-Jean; Perronet, Léa; Chèvre, Nathalie

    2016-01-15

    In agriculture, herbicides are applied to improve crop productivity. During and after rain event, herbicides can be transported by surface runoff in streams and rivers. As a result, the exposure pattern in creeks is time-varying, i.e., a repeated pollution of aquatic system. In previous studies, we developed a model to assess the effects of pulse exposure patterns on algae. This model was validated for triazines and phenylureas, which are substances that induce effects directly after exposure with no delay in recovery. However, other herbicides display a mode of action characterized by a time-dependency effect and a delay in recovery. In this study, we therefore investigate whether this previous model could be used to assess the effects of pulse exposure by herbicides with time delay in effect and recovery. The current study focuses on the herbicide S-metolachlor. We showed that the effect of the herbicide begins only after 20 h of exposure for the alga Scenedesmus vacuolatus based on both the optical density and algal cells size measurements. Furthermore, the duration of delay of the recovery for algae previously exposed to S-metolachlor was 20 h and did not depend on the pulse exposure duration or the height of the peak concentration. By accounting for these specific effects, the measured and predicted effects were similar when pulse exposure of S-metolachlor is tested on the alga S. vacuolatus. However, the sensitivity of the alga is greatly modified after being previously exposed to a pulse of S-metolachlor. In the case of scenarios composed of several pulses, this sensitivity should be considered in the modelling. Therefore, modelling the effects of any pulse scenario of S-metolachlor on an alga is feasible but requires the determination of the effect trigger, the delay in recovery and the possible change in the sensitivity of the alga to the substance.

  10. The use of salinity contrast for density difference compensation to improve the thermal recovery efficiency in high-temperature aquifer thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    van Lopik, Jan H.; Hartog, Niels; Zaadnoordijk, Willem Jan

    2016-08-01

    The efficiency of heat recovery in high-temperature (>60 °C) aquifer thermal energy storage (HT-ATES) systems is limited due to the buoyancy of the injected hot water. This study investigates the potential to improve the efficiency through compensation of the density difference by increased salinity of the injected hot water for a single injection-recovery well scheme. The proposed method was tested through numerical modeling with SEAWATv4, considering seasonal HT-ATES with four consecutive injection-storage-recovery cycles. Recovery efficiencies for the consecutive cycles were investigated for six cases with three simulated scenarios: (a) regular HT-ATES, (b) HT-ATES with density difference compensation using saline water, and (c) theoretical regular HT-ATES without free thermal convection. For the reference case, in which 80 °C water was injected into a high-permeability aquifer, regular HT-ATES had an efficiency of 0.40 after four consecutive recovery cycles. The density difference compensation method resulted in an efficiency of 0.69, approximating the theoretical case (0.76). Sensitivity analysis showed that the net efficiency increase by using the density difference compensation method instead of regular HT-ATES is greater for higher aquifer hydraulic conductivity, larger temperature difference between injection water and ambient groundwater, smaller injection volume, and larger aquifer thickness. This means that density difference compensation allows the application of HT-ATES in thicker, more permeable aquifers and with larger temperatures than would be considered for regular HT-ATES systems.

  11. Use of 222Rn as natural tracer for LNAPL quantification and recovery efficiency in a crude-oil contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Ponsin, Violaine; Chablais, Amélie; Dumont, Julien; Cardetti, Marc; Radakovitch, Olivier; Höhener, Patrick

    2014-05-01

    the mean activities were generally significantly lower than upgradient. This is due to partitioning into the oil phase. Decreases were correlated with NAPL recovery efficiency. The laboratory-determined crude oil-water partitioning coefficient of 38,5 ± 2,9 was used for estimating LNAPL saturation in each recovery well. However, extrapolations of LNAPL saturations to whole-site oil volume estimations are difficult since at low water tables, the volume in the capillary fringe is not assessed. Nevertheless, we find that 222Rn is a useful and cheap groundwater tracer for finding zones of good LNAPL recovery in a heavily pumped aquifer. Hunkeler, D., E. Hoehn, P. Höhener and J. Zeyer, 1997. 222Rn as a partitioning tracer to detect mineral oil contaminations: laboratory experiments and field study. Environmental Science and Technology 31, 3180-3187. Semprini, L., O.S. Hopkins and B.R. Tasker, 2000. Laboratory, field and modeling studies of radon-222 as a natural tracer for monitoring NAPL contamination. Transport in Porous Media 38, 223-240. Schubert, M., A. Paschke, S. Lau, W. Geyer and K. Knöller, 2007. Radon as a naturally occurring tracer for the assessment of residual NAPL contamination of aquifers. Environmental Pollution 145, 920-927.

  12. A Highly Efficient Six-Stroke Internal Combustion Engine Cycle with Water Injection for In-Cylinder Exhaust Heat Recovery

    SciTech Connect

    Conklin, Jim; Szybist, James P

    2010-01-01

    A concept is presented here that adds two additional strokes to the four-stroke Otto or Diesel cycle that has the potential to increase fuel efficiency of the basic cycle. The engine cycle can be thought of as a 4 stroke Otto or Diesel cycle followed by a 2-stroke heat recovery steam cycle. Early exhaust valve closing during the exhaust stroke coupled with water injection are employed to add an additional power stroke at the end of the conventional four-stroke Otto or Diesel cycle. An ideal thermodynamics model of the exhaust gas compression, water injection at top center, and expansion was used to investigate this modification that effectively recovers waste heat from both the engine coolant and combustion exhaust gas. Thus, this concept recovers energy from two waste heat sources of current engine designs and converts heat normally discarded to useable power and work. This concept has the potential of a substantial increase in fuel efficiency over existing conventional internal combustion engines, and under appropriate injected water conditions, increase the fuel efficiency without incurring a decrease in power density. By changing the exhaust valve closing angle during the exhaust stroke, the ideal amount of exhaust can be recompressed for the amount of water injected, thereby minimizing the work input and maximizing the mean effective pressure of the steam expansion stroke (MEPsteam). The value of this exhaust valve closing for maximum MEPsteam depends on the limiting conditions of either one bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens to discard the spent gas mixture in the sixth stroke. The range of MEPsteam calculated for the geometry of a conventional gasoline spark-ignited internal combustion engine and for plausible water injection parameters is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEPcombustion) of naturally aspirated gasoline engines are up to 10 bar, thus this

  13. Mixed-scale channel networks including Kingfisher-beak-shaped 3D microfunnels for efficient single particle entrapment

    NASA Astrophysics Data System (ADS)

    Lee, Yunjeong; Lim, Yeongjin; Shin, Heungjoo

    2016-06-01

    Reproducible research results for nanofluidics and their applications require viable fabrication technologies to produce nanochannels integrated with microchannels that can guide fluid flow and analytes into/out of the nanochannels. We present the simple fabrication of mixed-scale polydimethylsiloxane (PDMS) channel networks consisting of nanochannels and microchannels via a single molding process using a monolithic mixed-scale carbon mold. The monolithic carbon mold is fabricated by pyrolyzing a polymer mold patterned by photolithography. During pyrolysis, the polymer mold shrinks by ~90%, which enables nanosized carbon molds to be produced without a complex nanofabrication process. Because of the good adhesion between the polymer mold and the Si substrate, non-uniform volume reduction occurs during pyrolysis resulting in the formation of curved carbon mold side walls. These curved side walls and the relatively low surface energy of the mold provide efficient demolding of the PDMS channel networks. In addition, the trigonal prismatic shape of the polymer is converted into to a Kingfisher-beak-shaped carbon structure due to the non-uniform volume reduction. The transformation of this mold architecture produces a PDMS Kingfisher-beak-shaped 3D microfunnel that connects the microchannel and the nanochannel smoothly. The smooth reduction in the cross-sectional area of the 3D microfunnels enables efficient single microparticle trapping at the nanochannel entrance; this is beneficial for studies of cell transfection.Reproducible research results for nanofluidics and their applications require viable fabrication technologies to produce nanochannels integrated with microchannels that can guide fluid flow and analytes into/out of the nanochannels. We present the simple fabrication of mixed-scale polydimethylsiloxane (PDMS) channel networks consisting of nanochannels and microchannels via a single molding process using a monolithic mixed-scale carbon mold. The monolithic

  14. Recovery of indium from used LCD panel by a time efficient and environmentally sound method assisted HEBM

    SciTech Connect

    Lee, Cheol-Hee; Jeong, Mi-Kyung; Fatih Kilicaslan, M.; Lee, Jong-Hyeon; Hong, Hyun-Seon; Hong, Soon-Jik

    2013-03-15

    Highlights: ► In this study, we recovered indium from a waste LCD panel. ► The ITO glass was milled to obtain micron size particles in a HEBM machine. ► Effect of particle size of ITO glass on the amount of dissolved In was investigated. ► In a very short time, a considerable amount of In was recovered. ► Amount of HCl in acid solution was decreased to 40 vol.%. - Abstract: In this study, a method which is environmentally sound, time and energy efficient has been used for recovery of indium from used liquid crystal display (LCD) panels. In this method, indium tin oxide (ITO) glass was crushed to micron size particles in seconds via high energy ball milling (HEBM). The parameters affecting the amount of dissolved indium such as milling time, particle size, effect time of acid solution, amount of HCl in the acid solution were tried to be optimized. The results show that by crushing ITO glass to micron size particles by HEBM, it is possible to extract higher amount of indium at room temperature than that by conventional methods using only conventional shredding machines. In this study, 86% of indium which exists in raw materials was recovered about in a very short time.

  15. Efficient Recovery of Lignocellulolytic Enzymes of Spent Mushroom Compost from Oyster Mushrooms, Pleurotus spp., and Potential Use in Dye Decolorization

    PubMed Central

    Lim, Seon-Hwa; Lee, Yun-Hae

    2013-01-01

    This study was conducted in order to perform efficient extraction of lignocellulolytic enzymes amylase (EC 3.2.1.1), cellulase (EC 3.2.1.4), laccase (EC 1.10.3.2), and xylanase (EC 3.2.1.8) from spent mushroom compost (SMC) of Pleurotus ostreatus, P. eryngii, and P. cornucopiae. Optimal enzyme recovery was achieved when SMCs were extracted with 50 mM sodium citrate (pH 4.5) buffer at 4℃ for 2 hr. Amylase, cellulase, and xylanase activities showed high values in extracts from P. ostreatus SMC, with 2.97 U/g, 1.67 U/g, and 91.56 U/g, respectively, whereas laccase activity and filter paper degradation ability were highest in extracts from P. eryngii SMC, with values of 9.01 U/g and 0.21 U/g, respectively. Enzymatic activities varied according to the SMCs released from different mushroom farms. The synthetic dyes remazol brilliant blue R and Congo red were decolorized completely by the SMC extract of P. eryngii within 120 min, and the decolorization ability of the extract was comparable to that of 0.3 U of commercial laccase. In addition, laccase activity of the SMC extract from P. eryngii was compared to that of commercial enzymes or its industrial application in decolorization. PMID:24493942

  16. Membrane-based energy efficient dewatering of microalgae in biofuels production and recovery of value added co-products.

    PubMed

    Bhave, Ramesh; Kuritz, Tanya; Powell, Lawrence; Adcock, Dale

    2012-05-15

    The objective of this paper is to describe the use of membranes for energy efficient biomass harvesting and dewatering. The dewatering of Nannochloropsis sp. was evaluated with polymeric hollow fiber and tubular inorganic membranes to demonstrate the capabilities of a membrane-based system to achieve microalgal biomass of >150 g/L (dry wt.) and ∼99% volume reduction through dewatering. The particle free filtrate containing the growth media is suitable for recycle and reuse. For cost-effective processing, hollow fiber membranes can be utilized to recover 90-95% media for recycle. Tubular membranes can provide additional media and water recovery to achieve target final concentrations. Based on the operating conditions used in this study and taking into scale-up considerations, an integrated hollow fiber-tubular membrane system can process microalgal biomass with at least 80% lower energy requirement compared to traditional processes. Backpulsing was found to be an effective flux maintenance strategy to minimize flux decline at high biomass concentration. An effective chemical cleaning protocol was developed for regeneration of fouled membranes.

  17. Membrane-Based Energy Efficient Dewatering of Microalgae in Biofuels Production and Recovery of Value Added Co-Products

    SciTech Connect

    Bhave, Ramesh R; Kuritz, Tanya; Powell, Lawrence E; Adcock, Kenneth Dale

    2012-01-01

    The objective of this paper is to describe the use of membranes for energy efficient biomass harvesting and dewatering. We have evaluated the dewatering of Nannochloropsis sp. with polymeric hollow fiber and tubular inorganic membranes to demonstrate the capabilities of a membrane-based system to achieve microalgal biomass of >150 g/L (dry wt.) and ~99% volume reduction through dewatering. The particle free filtrate containing the growth media is suitable for recycle and reuse. For cost-effective processing, hollow fiber membranes can be utilized to recover 90-95% media for recycle. Tubular membranes can provide additional media and water recovery to achieve target final concentrations. Based on the operating conditions used in this study and taking into scale-up considerations, it can be shown that an integrated hollow fiber-tubular membrane system can process microalgal biomass with at least 80% lower energy requirement compared to traditional processes. Backpulsing was found to be an effective flux maintenance strategy to minimize flux decline at high biomass concentration. An effective chemical cleaning protocol was developed for regeneration of fouled membranes.

  18. Motor recovery and the breathing arm after brachial plexus surgical repairs, including re-implantation of avulsed spinal roots into the spinal cord.

    PubMed

    Htut, M; Misra, V P; Anand, P; Birch, R; Carlstedt, T

    2007-04-01

    Forty-four patients with severe traction brachial plexus avulsion injuries were studied following surgical repairs. In eight patients, re-implanting avulsed spinal roots directly to the spinal cord was performed with other repairs and motor recovery in the proximal limb was similar to that achieved by conventional nerve grafts and transfers when assessed using the MRC clinical grades, Narakas scores, EMG and Transcranial Magnetic Stimulation (TMS). Thirty-four of the 37 patients had co-contractions of agonist and antagonist muscle groups. Spontaneous contractions of limb muscles in synchrony with respiration, the "breathing arm", were noted in 26 of 37 patients: in three patients, the source of the breathing arm was from spinal cord re-connection, providing evidence of regeneration from the CNS to the periphery. Our study shows that re-connection of avulsed spinal roots can produce good motor recovery and provides a clinical model for developing new treatments which may enhance nerve regeneration.

  19. The British research evidence for recovery, papers published between 2006 and 2009 (inclusive). Part two: a review of the grey literature including book chapters and policy documents.

    PubMed

    Stickley, T; Wright, N

    2011-05-01

    This paper is the second in a series of two which reviews the current UK evidence base for recovery in mental health. As outlined in the previous paper, over the last 4 years a vast amount has written about recovery in mental health (approximately 60% of all articles). Whereas the first review focused on the peer-reviewed evidence; this paper specifically focuses on the grey/non-peer-reviewed literature. In total, our search strategy yielded the following: 3 books, a further 11 book chapters, 12 papers, 6 policy documents and 3 publications from voluntary sector organizations. Each group of publications was analysed for content, and they are discursively presented by publication group. The findings are then presented as themes in the discussion section. The themes are: social, historical and political critique; philosophy of hope for the individual; individual identity and narrative; models and guidance for mental health practice. We conclude that there is a need for both empirical research into recovery and a clearer theoretical exposition of the concept.

  20. Ultracentrifugation as a direct method to concentrate viruses in environmental waters: virus-like particle enumeration as a new approach to determine the efficiency of recovery.

    PubMed

    Prata, Catarina; Ribeiro, Andreia; Cunha, Ângela; Gomes, Newton C M; Almeida, Adelaide

    2012-01-01

    Some health important enteric viruses are considered to be emerging waterborne pathogens and so the improvement of detection of these viruses in the aquatic environment is one of the most important steps in dealing with these pathogens. Since these viruses may be present in low numbers in water, it is necessary to concentrate water samples before viral detection. Although there are several methods to concentrate viruses in environmental waters, all present some drawbacks and consequently the method should be chosen that, despite its limitations, is adequate to achieve the aim of each study. As the effectiveness of the concentration methods is evaluated by determining the efficiency of viral recovery after concentration, it is important to use a simple and effective approach to evaluate their recovery efficiency. In this work ultracentrifugation, usually used as a secondary step for virus concentration, was evaluated as the main method to concentrate directly viruses in environmental water samples, using the microscopic enumeration of virus-like particles (VLP) as a new approach to estimate the efficiency of recovery. As the flocculation method is currently employed to concentrate viruses in environmental waters, it was also used in this study to assess the efficiency of the ultracentrifugation as the main viral concentration method in environmental waters. The results of this study indicate that ultracentrifugation is an adequate approach to concentrate viruses directly from environmental waters (recovery percentages between 66 and 72% in wastewaters and between 66 and 76% in recreational waters) and that the determination of VLP by epifluorescence microscopy is a simple, fast and cheap alternative approach to determine the recovery efficiency of the viral concentration methods.

  1. Substructuring including interface reduction for the efficient vibro-acoustic simulation of fluid-filled piping systems

    NASA Astrophysics Data System (ADS)

    Herrmann, Jan; Maess, Matthias; Gaul, Lothar

    2010-01-01

    The operation of pumps and valves leads to strong acoustic excitation in fluid-filled piping systems. Efficient substructuring and model order reduction strategies are required for the sound prediction in piping systems, and in order to reduce the sound transmission to attached components, such as the floor panel in vehicles, for example. This research presents a finite element based automatic substructuring and component mode synthesis technique, which is a combination of an extended Craig-Bampton method for fluid-structure coupled piping systems and a novel, consecutive interface reduction. Hereby, the remaining interface degrees of freedom between different substructures are further reduced using appropriate Ritz vectors. The proposed model order reduction strategy accelerates the computation of transfer functions in fluid-filled extended piping systems. In order to validate the simulation results, experimental results are obtained by a hydraulic test bench for dynamic measurements, where fluid pulsation is induced by piezo-driven transducers. The observed fluid-structure interaction phenomena correspond to the predictions by the proposed computation approach.

  2. Bacteriophages of Staphylococcus aureus efficiently package various bacterial genes and mobile genetic elements including SCCmec with different frequencies.

    PubMed

    Mašlaňová, Ivana; Doškař, Jiří; Varga, Marian; Kuntová, Lucie; Mužík, Jan; Malúšková, Denisa; Růžičková, Vladislava; Pantůček, Roman

    2013-02-01

    Staphylococcus aureus is a serious human and veterinary pathogen in which new strains with increasing virulence and antimicrobial resistance occur due to acquiring new genes by horizontal transfer. It is generally accepted that temperate bacteriophages play a major role in gene transfer. In this study, we proved the presence of various bacterial genes of the S. aureus COL strain directly within the phage particles via qPCR and quantified their packaging frequency. Non-parametric statistical analysis showed that transducing bacteriophages φ11, φ80 and φ80α of serogroup B, in contrast to serogroup A bacteriophage φ81, efficiently package selected chromosomal genes localized in 4 various loci of the chromosome and 8 genes carried on variable elements, such as staphylococcal cassette chromosome SCCmec, staphylococcal pathogenicity island SaPI1, genomic islands vSaα and vSaβ, and plasmids with various frequency. Bacterial gene copy number per ng of DNA isolated from phage particles ranged between 1.05 × 10(2) for the tetK plasmid gene and 3.86 × 10(5) for the SaPI1 integrase gene. The new and crucial finding that serogroup B bacteriophages can package concurrently ccrA1 (1.16 × 10(4)) and mecA (1.26 × 10(4)) located at SCCmec type I into their capsids indicates that generalized transduction plays an important role in the evolution and emergence of new methicillin-resistant clones.

  3. Development and assessment of an efficient numerical solution of the richard's equation including root extraction by plants

    NASA Astrophysics Data System (ADS)

    Varado, N.; Braud, I.; Ross, P. J.

    2003-04-01

    5; but was generally less than 10%. The study also showed that the Lai and Katul (2000) model formulation was not adapted for sandy soils. Twice less water than the Li model could be extracted on sandy soils. The comparison of the two root modules with the initial version of SiSPAT shows that the Lai model was unable to extract as water as the initial SiSPAT or the Li model, even when changing the sensitive parameters. As a conclusion the new numerical method coupled with the Li et al. (2001) model provides an efficient and accurate solution for inclusion of a physically-based infiltration-evapotranspiration module into larger scale watershed models.

  4. Simultaneous optimization of monolayer formation factors, including temperature, to significantly improve nucleic acid hybridization efficiency on gold substrates.

    PubMed

    Pris, Andrew D; Ostrowski, Sara G; Garaas, Sarah D

    2010-04-20

    Past literature investigations have optimized various single factors used in the formation of thiolated, single stranded DNA (ss-DNA) monolayers on gold. In this study a more comprehensive approach is taken, where a design of experiment (DOE) is employed to simultaneously optimize all of the factors involved in construction of the capture monolayer used in a fluorescence-based hybridization assay. Statistical analysis of the fluorescent intensities resulting from the DOE provides empirical evidence for the importance and the optimal levels of traditional and novel factors included in this investigation. We report on the statistical importance of a novel factor, temperature of the system during monolayer formation of the capture molecule and lateral spacer molecule, and how proper usage of this temperature factor increased the hybridization signal 50%. An initial theory of how the physical factor of heat is mechanistically supplementing the function of the lateral spacer molecule is provided.

  5. Chemical Method to Improve CO{sub 2} Flooding Sweep Efficiency for Oil Recovery Using SPI-CO{sub 2} Gels

    SciTech Connect

    Burns, Lyle D.

    2009-04-14

    The problem in CO{sub 2} flooding lies with its higher mobility causing low conformance or sweep efficiency. This is an issue in oilfield applications where an injected fluid or gas used to mobilize and produce the oil in a marginal field has substantially higher mobility (function of viscosity and density and relative permeability) relative to the crude oil promoting fingering and early breakthrough. Conformance is particularly critical in CO{sub 2} oilfield floods where the end result is less oil recovered and substantially higher costs related to the CO{sub 2}. The SPI-CO{sub 2} (here after called “SPI”) gel system is a unique silicate based gel system that offers a technically effective solution to the conformance problem with CO{sub 2} floods. This SPI gel system remains a low viscosity fluid until an external initiator (CO{sub 2}) triggers gelation. This is a clear improvement over current technologies where the gels set up as a function of time, regardless of where it is placed in the reservoir. In those current systems, the internal initiator is included in the injected fluid for water shut off applications. In this new research effort, the CO{sub 2} is an external initiator contacted after SPI gel solution placement. This concept ensures in the proper water wet reservoir environment that the SPI gel sets up in the precise high permeability path followed by the CO{sub 2}, therefore improving sweep efficiency to a greater degree than conventional systems. In addition, the final SPI product in commercial quantities is expected to be low cost over the competing systems. This Phase I research effort provided “proof of concept” that SPI gels possess strength and may be formed in a sand pack reducing the permeability to brine and CO{sub 2} flow. This SPI technology is a natural extension of prior R & D and the Phase I effort that together show a high potential for success in a Phase II follow-on project. Carbon dioxide (CO{sub 2}) is a major by-product of

  6. Three-dimensional simulations of the non-thermal broadband emission from young supernova remnants including efficient particle acceleration

    SciTech Connect

    Ferrand, Gilles; Safi-Harb, Samar; Decourchelle, Anne E-mail: samar@physics.umanitoba.ca

    2014-07-01

    Supernova remnants are believed to be major contributors to Galactic cosmic rays. In this paper, we explore how the non-thermal emission from young remnants can be used to probe the production of energetic particles at the shock (both protons and electrons). Our model couples hydrodynamic simulations of a supernova remnant with a kinetic treatment of particle acceleration. We include two important back-reaction loops upstream of the shock: energetic particles can (1) modify the flow structure and (2) amplify the magnetic field. As the latter process is not fully understood, we use different limit cases that encompass a wide range of possibilities. We follow the history of the shock dynamics and of the particle transport downstream of the shock, which allows us to compute the non-thermal emission from the remnant at any given age. We do this in three dimensions, in order to generate projected maps that can be compared with observations. We observe that completely different recipes for the magnetic field can lead to similar modifications of the shock structure, although to very different configurations of the field and particles. We show how this affects the emission patterns in different energy bands, from radio to X-rays and γ-rays. High magnetic fields (>100 μG) directly impact the synchrotron emission from electrons, by restricting their emission to thin rims, and indirectly impact the inverse Compton emission from electrons and also the pion decay emission from protons, mostly by shifting their cut-off energies to respectively lower and higher energies.

  7. Recovery efficiencies of anthrax spores and ricin from nonporous or nonabsorbent and porous or absorbent surfaces by a variety of sampling methods*.

    PubMed

    Frawley, Dody A; Samaan, Marian N; Bull, Robert L; Robertson, James M; Mateczun, Alfred J; Turnbull, Peter C B

    2008-09-01

    The 2001 anthrax letter cases brought into focus the need to establish the most effective environmental sampling procedures. Results are presented from two studies aimed at establishing the best procedures for everyday surfaces likely to be contaminated after the release of environmentally stable bioaggressive agents, as exemplified by anthrax spores and ricin. With anthrax spores, contact plates, with mean retrieval rates of 28-54%, performed better than other methods by a wide margin for flat nonporous, nonabsorbent surfaces. They also proved best on flat porous, absorbent materials, although recoveries were low (<7%). For both agents, dry devices (swabs, wipes, Trace Evidence Collection Filters) had universally poor retrieval efficiencies with no significant differences between them. Among moistened devices (wipes, swabs, and Sample Collection and Recovery Devices), wipes were generally best, albeit with considerable cross-over among individual readings (highest mean recoveries for anthrax spores and ricin 5.5% and 2.5%, respectively, off plastic).

  8. Integrated Framework for Assessing Impacts of CO₂ Leakage on Groundwater Quality and Monitoring-Network Efficiency: Case Study at a CO₂ Enhanced Oil Recovery Site.

    PubMed

    Yang, Changbing; Hovorka, Susan D; Treviño, Ramón H; Delgado-Alonso, Jesus

    2015-07-21

    This study presents a combined use of site characterization, laboratory experiments, single-well push-pull tests (PPTs), and reactive transport modeling to assess potential impacts of CO2 leakage on groundwater quality and leakage-detection ability of a groundwater monitoring network (GMN) in a potable aquifer at a CO2 enhanced oil recovery (CO2 EOR) site. Site characterization indicates that failures of plugged and abandoned wells are possible CO2 leakage pathways. Groundwater chemistry in the shallow aquifer is dominated mainly by silicate mineral weathering, and no CO2 leakage signals have been detected in the shallow aquifer. Results of the laboratory experiments and the field test show no obvious damage to groundwater chemistry should CO2 leakage occur and further were confirmed with a regional-scale reactive transport model (RSRTM) that was built upon the batch experiments and validated with the single-well PPT. Results of the RSRTM indicate that dissolved CO2 as an indicator for CO2 leakage detection works better than dissolved inorganic carbon, pH, and alkalinity at the CO2 EOR site. The detection ability of a GMN was assessed with monitoring efficiency, depending on various factors, including the natural hydraulic gradient, the leakage rate, the number of monitoring wells, the aquifer heterogeneity, and the time for a CO2 plume traveling to the monitoring well.

  9. Experimental Evaluation of Hybrid Distillation-Vapor Permeation Process for Efficient Ethanol Recovery from Ethanol-Water Mixtures

    EPA Science Inventory

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...

  10. RAPP, a systematic e-assessment of postoperative recovery in patients undergoing day surgery: study protocol for a mixed-methods study design including a multicentre, two-group, parallel, single-blind randomised controlled trial and qualitative interview studies

    PubMed Central

    Dahlberg, K; Odencrants, S; Hagberg, L

    2016-01-01

    Introduction Day surgery is a well-established practice in many European countries, but only limited information is available regarding postoperative recovery at home though there is a current lack of a standard procedure regarding postoperative follow-up. Furthermore, there is also a need for improvement of modern technology in assessing patient-related outcomes such as mobile applications. This article describes the Recovery Assessment by Phone Points (RAPP) study protocol, a mixed-methods study to evaluate if a systematic e-assessment follow-up in patients undergoing day surgery is cost-effective and improves postoperative recovery, health and quality of life. Methods and analysis This study has a mixed-methods study design that includes a multicentre, two-group, parallel, single-blind randomised controlled trial and qualitative interview studies. 1000 patients >17 years of age who are undergoing day surgery will be randomly assigned to either e-assessed postoperative recovery follow-up daily in 14 days measured via smartphone app including the Swedish web-version of Quality of Recovery (SwQoR) or to standard care (ie, no follow-up). The primary aim is cost-effectiveness. Secondary aims are (A) to explore whether a systematic e-assessment follow-up after day surgery has a positive effect on postoperative recovery, health-related quality of life (QoL) and overall health; (B) to determine whether differences in postoperative recovery have an association with patient characteristic, type of surgery and anaesthesia; (C) to determine whether differences in health literacy have a substantial and distinct effect on postoperative recovery, health and QoL; and (D) to describe day surgery patient and staff experiences with a systematic e-assessment follow-up after day surgery. The primary aim will be measured at 2 weeks postoperatively and secondary outcomes (A–C) at 1 and 2 weeks and (D) at 1 and 4 months. Trial registration number NCT02492191; Pre

  11. Development of a high-efficiency phosphorus recovery method using a fluidized-bed crystallized phosphorus removal system.

    PubMed

    Shimamura, K; Tanaka, T; Miura, Y; Ishikawa, H

    2003-01-01

    The authors have been engaged in the research and development concerning the recovery of MAP (Magnesium Ammonium Phosphate) using a fluidized-bed crystallized phosphorus removal system. In the reactor of the fluidized-bed crystallized phosphorus removal system, seed crystals (of MAP) are fluidized previously and new MAP crystals are produced on the seed crystal surfaces. Conventionally, the reactor consisted of one reaction tank only, but this practice had the problem that as the crystallization progresses, the seed crystal is grown excessively and as a result, the effective reaction surface areas are decreased and the fluidization effect is degraded, causing the recovery ratio to be decreased. Recently, the authors have devised a two-tank type reactor by adding a sub reaction tank to the reactor (now the main reaction tank) so that the MAP particle size in the main reaction tank may be kept constant making the recovery ratio stable. They conducted a demonstration test with a pilot experimental system of the 2-tank type reactor. For raw water T-P 111 to 507 mg/L, the main reaction tank treated water T-P 14.0 to 79.5 mg/L and phosphorus recovery ratios 84 to 92% were obtained. Because the mean MAP particle size in the main reaction tank could be kept constant, the phosphorus recovery ratio could always be above 80%, realizing stable treatment.

  12. Comparison of the solid-phase extraction efficiency of a bounded and an included cyclodextrin-silica microporous composite for polycyclic aromatic hydrocarbons determination in water samples.

    PubMed

    Mauri-Aucejo, Adela; Amorós, Pedro; Moragues, Alaina; Guillem, Carmen; Belenguer-Sapiña, Carolina

    2016-08-15

    Solid-phase extraction is one of the most important techniques for sample purification and concentration. A wide variety of solid phases have been used for sample preparation over time. In this work, the efficiency of a new kind of solid-phase extraction adsorbent, which is a microporous material made from modified cyclodextrin bounded to a silica network, is evaluated through an analytical method which combines solid-phase extraction with high-performance liquid chromatography to determine polycyclic aromatic hydrocarbons in water samples. Several parameters that affected the analytes recovery, such as the amount of solid phase, the nature and volume of the eluent or the sample volume and concentration influence have been evaluated. The experimental results indicate that the material possesses adsorption ability to the tested polycyclic aromatic hydrocarbons. Under the optimum conditions, the quantification limits of the method were in the range of 0.09-2.4μgL(-1) and fine linear correlations between peak height and concentration were found around 1.3-70μgL(-1). The method has good repeatability and reproducibility, with coefficients of variation under 8%. Due to the concentration results, this material may represent an alternative for trace analysis of polycyclic aromatic hydrocarbons in water trough solid-phase extraction.

  13. Augmenting a Microbial Selective Plugging Technique with Polymer Flooding to Increase the Efficiency of Oil Recovery - A Search for Synergy

    SciTech Connect

    Brown, Lewis R.; Pittman Jr., Charles U.; Lynch, F. Leo; Vadie, A. Alex

    2003-02-10

    The overall objective of this project was to improve the effectiveness of a microbial selective plugging technique of improving oil recovery through the use of polymer floods. More specifically, the intent was to increase the total amount of oil recovered and to reduce the cost per barrel of incremental oil.

  14. Efficiencies of metal separation and recovery in ash-melting of municipal solid waste under non-oxidative atmospheres with different reducing abilities.

    PubMed

    Okada, Takashi; Tomikawa, Hiroki

    2016-01-15

    Ash-melting of municipal solid waste produces molten metal that contains Fe and Cu, and melting furnace fly ash (MFA) that contains Pb and Zn. To recover the metal from the fly ash, Pb and Zn are extracted from the ash by water or enriched in the ash by washing out salts; this separation depends on their leachability. In this study, we investigated the effects of the reducing ability of the atmosphere on the efficiencies of metal separation during melting and metal recovery in water treatment. Different feedstocks (incineration residues) were melted under N2 or CO + N2 atmospheres. In some of the feedstock materials, volatilization of metallic Cu into MFA was promoted under the atmosphere with greater reducing ability (CO + N2). This increased volatilization inhibited the metal separation in the ash-melting process. Moreover, the higher reducing ability inhibited the formation of water-soluble lead chlorides and decreased the efficiency of metal recovery from the MFA because of the water leaching of the lead compounds. The reducing ability of the atmosphere is difficult to control uniformly in actual ash-melting plants, and we investigated appropriate melting conditions under which the effect of the reducing ability was minimized to promote metal separation and recovery. This minimization was achieved by melting incineration fly ash without additives with Cl gas treatment at 1400 °C.

  15. Integrating theory, synthesis, spectroscopy and device efficiency to design and characterize donor materials for organic photovoltaics: a case study including 12 donors

    DOE PAGES

    Oosterhout, S. D.; Kopidakis, N.; Owczarczyk, Z. R.; ...

    2015-04-07

    There have been remarkable improvements in the power conversion efficiency of solution-processable Organic Photovoltaics (OPV) have largely been driven by the development of novel narrow bandgap copolymer donors comprising an electron-donating (D) and an electron-withdrawing (A) group within the repeat unit. The large pool of potential D and A units and the laborious processes of chemical synthesis and device optimization, has made progress on new high efficiency materials slow with a few new efficient copolymers reported every year despite the large number of groups pursuing these materials. In our paper we present an integrated approach toward new narrow bandgap copolymersmore » that uses theory to guide the selection of materials to be synthesized based on their predicted energy levels, and time-resolved microwave conductivity (TRMC) to select the best-performing copolymer–fullerene bulk heterojunction to be incorporated into complete OPV devices. We validate our methodology by using a diverse group of 12 copolymers, including new and literature materials, to demonstrate good correlation between (a) theoretically determined energy levels of polymers and experimentally determined ionization energies and electron affinities and (b) photoconductance, measured by TRMC, and OPV device performance. The materials used here also allow us to explore whether further copolymer design rules need to be incorporated into our methodology for materials selection. For example, we explore the effect of the enthalpy change (ΔH) during exciton dissociation on the efficiency of free charge carrier generation and device efficiency and find that ΔH of -0.4 eV is sufficient for efficient charge generation.« less

  16. Integrating theory, synthesis, spectroscopy and device efficiency to design and characterize donor materials for organic photovoltaics: a case study including 12 donors

    SciTech Connect

    Oosterhout, S. D.; Kopidakis, N.; Owczarczyk, Z. R.; Braunecker, W. A.; Larsen, R. E.; Ratcliff, E. L.; Olson, D. C.

    2015-04-07

    There have been remarkable improvements in the power conversion efficiency of solution-processable Organic Photovoltaics (OPV) have largely been driven by the development of novel narrow bandgap copolymer donors comprising an electron-donating (D) and an electron-withdrawing (A) group within the repeat unit. The large pool of potential D and A units and the laborious processes of chemical synthesis and device optimization, has made progress on new high efficiency materials slow with a few new efficient copolymers reported every year despite the large number of groups pursuing these materials. In our paper we present an integrated approach toward new narrow bandgap copolymers that uses theory to guide the selection of materials to be synthesized based on their predicted energy levels, and time-resolved microwave conductivity (TRMC) to select the best-performing copolymer–fullerene bulk heterojunction to be incorporated into complete OPV devices. We validate our methodology by using a diverse group of 12 copolymers, including new and literature materials, to demonstrate good correlation between (a) theoretically determined energy levels of polymers and experimentally determined ionization energies and electron affinities and (b) photoconductance, measured by TRMC, and OPV device performance. The materials used here also allow us to explore whether further copolymer design rules need to be incorporated into our methodology for materials selection. For example, we explore the effect of the enthalpy change (ΔH) during exciton dissociation on the efficiency of free charge carrier generation and device efficiency and find that ΔH of -0.4 eV is sufficient for efficient charge generation.

  17. Computer implementation of the international standards for neurological classification of spinal cord injury for consistent and efficient derivation of its subscores including handling of data from not testable segments.

    PubMed

    Schuld, Christian; Wiese, Julia; Hug, Andreas; Putz, Cornelia; Hedel, Hubertus J A van; Spiess, Martina R; Weidner, Norbert; Rupp, Rüdiger

    2012-02-10

    The International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI), defined by the American Spinal Injury Association (ASIA), and particularly the ASIA Impairment Scale (AIS) are widely used for research and clinical purposes. Although detailed procedures for scaling, scoring, and classification have been defined, misclassifications remain a major problem, especially for cases with missing (i.e., not testable [NT]) data. This work aimed to implement computer-based classification algorithms that included rules for handling NT data. A consistent and structured algorithmic scoring, scaling, and classification scheme, and a computerized application have been developed by redefining logical/mathematical imprecisions. Existing scoring rules are extended for handling NT segments. Design criterion is a pure logical approach so that substitution of non-testability for all valid examination scores leads to concordant results. Nine percent of 5542 datasets from 1594 patients in the database of the European Multicenter Study of Human Spinal Cord Injury (EM-SCI) contained NT segments. After adjusting computational algorithms, the classification accuracy was equivalent between clinical experts and the computational approach and resulted in 84% valid AIS classifications within datasets containing NT. Additionally, the computational method is much more efficient, processing approximately 200,000 classifications/sec. Computational algorithms offer the ability to classify ISNCSCI subscores efficiently and without the risk of human-induced errors. This is of particular clinical relevance, since these scores are used for early predictions of neurological recovery and functional outcome for patients with spinal cord injuries.

  18. Measure Guideline: Summary of Interior Ducts in New Construction, Including an Efficient, Affordable Method to Install Fur-Down Interior Ducts

    SciTech Connect

    Beal, D.; McIlvaine , J.; Fonorow, K.; Martin, E.

    2011-11-01

    This document illustrates guidelines for the efficient installation of interior duct systems in new housing, including the fur-up chase method, the fur-down chase method, and interior ducts positioned in sealed attics or sealed crawl spaces. This document illustrates guidelines for the efficient installation of interior duct systems in new housing. Interior ducts result from bringing the duct work inside a home's thermal and air barrier. Architects, designers, builders, and new home buyers should thoroughly investigate any opportunity for energy savings that is as easy to implement during construction, such as the opportunity to construct interior duct work. In addition to enhanced energy efficiency, interior ductwork results in other important advantages, such as improved indoor air quality, increased system durability and increased homeowner comfort. While the advantages of well-designed and constructed interior duct systems are recognized, the implementation of this approach has not gained a significant market acceptance. This guideline describes a variety of methods to create interior ducts including the fur-up chase method, the fur-down chase method, and interior ducts positioned in sealed attics or sealed crawl spaces. As communication of the intent of an interior duct system, and collaboration on its construction are paramount to success, this guideline details the critical design, planning, construction, inspection, and verification steps that must be taken. Involved in this process are individuals from the design team; sales/marketing team; and mechanical, insulation, plumbing, electrical, framing, drywall and solar contractors.

  19. Experimental Determination of the Recovery Factor and Analytical Solution of the Conical Flow Field for a 20 deg Included Angle Cone at Mach Numbers of 4.6 and 6.0 and Stagnation Temperatures to 2600 degree R

    NASA Technical Reports Server (NTRS)

    Pfyl, Frank A.; Presley, Leroy L.

    1961-01-01

    The local recovery factor was determined experimentally along the surface of a thin-walled 20 deg included angle cone for Mach numbers near 6.0 at stagnation temperatures between 1200 deg R and 2600 deg R. In addition, a similar cone configuration was tested at Mach numbers near 4.5 at stagnation temperatures of approximately 612 deg R. The local Reynolds number based on flow properties at the edge of the boundary layer ranged between 0.1 x 10(exp 4) and 3.5 x 10(exp 4) for tests at temperatures above 1200 deg R and between 6 x 10(exp 4) and 25 x 10(exp 4) for tests at temperatures near 612 deg R. The results indicated, generally, that the recovery factor can be predicted satisfactorily using the square root of the Prandtl number. No conclusion could be made as to the necessity of evaluating the Prandtl number at a reference temperature given by an empirical equation, as opposed to evaluating the Prandtl number at the wall temperature or static temperature of the gas at the cone surface. For the tests at temperatures above 1200 deg R (indicated herein as the tests conducted in the slip-flow region), two definite trends in the recovery data were observed - one of increasing recovery factor with decreasing stagnation pressure, which was associated with slip-flow effects and one of decreasing recovery factor with increasing temperature. The true cause of the latter trend could not be ascertained, but it was shown that this trend was not appreciably altered by the sources of error of the magnitude considered herein. The real-gas equations of state were used to determine accurately the local stream properties at the outer edge of the boundary layer of the cone. Included in the report, therefore, is a general solution for the conical flow of a real gas using the Beattie-Bridgeman equation of state. The largest effect of temperature was seen to be in the terms which were dependent upon the internal energy of the gas. The pressure and hence the pressure drag terms were

  20. Implications of the mesophyll conductance to CO2 for photosynthesis and water-use efficiency during long-term water stress and recovery in two contrasting Eucalyptus species.

    PubMed

    Cano, F Javier; López, Rosana; Warren, Charles R

    2014-11-01

    Water stress (WS) slows growth and photosynthesis (A(n)), but most knowledge comes from short-time studies that do not account for longer term acclimation processes that are especially relevant in tree species. Using two Eucalyptus species that contrast in drought tolerance, we induced moderate and severe water deficits by withholding water until stomatal conductance (g(sw)) decreased to two pre-defined values for 24 d, WS was maintained at the target g(sw) for 29 d and then plants were re-watered. Additionally, we developed new equations to simulate the effect on mesophyll conductance (g(m)) of accounting for the resistance to refixation of CO(2). The diffusive limitations to CO(2), dominated by the stomata, were the most important constraints to A(n). Full recovery of A(n) was reached after re-watering, characterized by quick recovery of gm and even higher biochemical capacity, in contrast to the slower recovery of g(sw). The acclimation to long-term WS led to decreased mesophyll and biochemical limitations, in contrast to studies in which stress was imposed more rapidly. Finally, we provide evidence that higher gm under WS contributes to higher intrinsic water-use efficiency (iWUE) and reduces the leaf oxidative stress, highlighting the importance of gm as a target for breeding/genetic engineering.

  1. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances.

    PubMed

    Merrild, Hanna; Larsen, Anna W; Christensen, Thomas H

    2012-05-01

    Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

  2. Efficient Bell state analyzer for time-bin qubits with fast-recovery WSi superconducting single photon detectors.

    PubMed

    Valivarthi, R; Lucio-Martinez, I; Rubenok, A; Chan, P; Marsili, F; Verma, V B; Shaw, M D; Stern, J A; Slater, J A; Oblak, D; Nam, S W; Tittel, W

    2014-10-06

    We experimentally demonstrate a high-efficiency Bell state measurement for time-bin qubits that employs two superconducting nanowire single-photon detectors with short dead-times, allowing projections onto two Bell states, |ψ⁻〉 and |ψ⁺〉. Compared to previous implementations for time-bin qubits, this yields an increase in the efficiency of Bell state analysis by a factor of thirty.

  3. High-Efficiency, Cost-effective Thermoelectric Materials/Devices for Industrial Process Refrigeration and Waste Heat Recovery, STTR Phase II Final Report

    SciTech Connect

    Lin, Timothy

    2011-01-07

    This is the final report of DoE STTR Phase II project, “High-efficiency, Cost-effective Thermoelectric Materials/Devices for Industrial Process Refrigeration and Waste Heat Recovery”. The objective of this STTR project is to develop a cost-effective processing approach to produce bulk high-performance thermoelectric (TE) nanocomposites, which will enable the development of high-power, high-power-density TE modulus for waste heat recovery and industrial refrigeration. The use of this nanocomposite into TE modules are expected to bring about significant technical benefits in TE systems (e.g. enhanced energy efficiency, smaller sizes and light weight). The successful development and applications of such nanocomposite and the resultant TE modules can lead to reducing energy consumption and environmental impacts, and creating new economic development opportunities.

  4. Efficient and selective recovery of Ni, Cu, and Co from low-nickel matte via a hydrometallurgical process

    NASA Astrophysics Data System (ADS)

    Chen, Guang-ju; Gao, Jian-ming; Zhang, Mei; Guo, Min

    2017-03-01

    Low-nickel matte was intensively characterized, and Ni, Cu, and Co were determined to exist mainly as (Fe,Ni)9S8 and FeNi3, Cu5FeS4, and (Fe,Ni)9S8 and Fe3O4 (in isomorphic form), respectively. The efficient and selective extraction of Ni, Cu, and Co from the low-nickel matte in an (NH4)2S2O8/NH3·H2O solution system was studied. The effects of (NH4)2S2O8 and NH3·H2O concentrations, leaching time, and leaching temperature on the metal extraction efficiency were systematically investigated. During the oxidative ammonia leaching process, the metal extraction efficiencies of Ni 81.07%, Cu 93.81%, and Co 71.74% were obtained under the optimal conditions. The relatively low leaching efficiency of Ni was mainly ascribed to NiFe alloy deactivation in ammonia solution. By introducing an acid pre-leaching process into the oxidative ammonia leaching process, we achieved the high extraction efficiencies of 98.03%, 99.13%, and 85.60% for the valuable metals Ni, Cu, and Co, respectively, from the low-nickel matte.

  5. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    SciTech Connect

    Merrild, Hanna; Larsen, Anna W.; Christensen, Thomas H.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We model the environmental impact of recycling and incineration of household waste. Black-Right-Pointing-Pointer Recycling of paper, glass, steel and aluminium is better than incineration. Black-Right-Pointing-Pointer Recycling and incineration of cardboard and plastic can be equally good alternatives. Black-Right-Pointing-Pointer Recyclables can be transported long distances and still have environmental benefits. Black-Right-Pointing-Pointer Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

  6. Technical support document: Energy efficiency standards for consumer products: Refrigerators, refrigerator-freezers, and freezers including draft environmental assessment, regulatory impact analysis

    SciTech Connect

    1995-07-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended by the National Appliance Energy Conservation Act of 1987 (P.L. 100-12) and by the National Appliance Energy Conservation Amendments of 1988 (P.L. 100-357), and by the Energy Policy Act of 1992 (P.L. 102-486), provides energy conservation standards for 12 of the 13 types of consumer products` covered by the Act, and authorizes the Secretary of Energy to prescribe amended or new energy standards for each type (or class) of covered product. The assessment of the proposed standards for refrigerators, refrigerator-freezers, and freezers presented in this document is designed to evaluate their economic impacts according to the criteria in the Act. It includes an engineering analysis of the cost and performance of design options to improve the efficiency of the products; forecasts of the number and average efficiency of products sold, the amount of energy the products will consume, and their prices and operating expenses; a determination of change in investment, revenues, and costs to manufacturers of the products; a calculation of the costs and benefits to consumers, electric utilities, and the nation as a whole; and an assessment of the environmental impacts of the proposed standards.

  7. Sustainable and efficient pathways for bioenergy recovery from low-value process streams via bioelectrochemical systems in biorefineries

    DOE PAGES

    Borole, Abhijeet P.

    2015-08-25

    Conversion of biomass into bioenergy is possible via multiple pathways resulting in production of biofuels, bioproducts and biopower. Efficient and sustainable conversion of biomass, however, requires consideration of many environmental and societal parameters in order to minimize negative impacts. Integration of multiple conversion technologies and inclusion of upcoming alternatives such as bioelectrochemical systems can minimize these impacts and improve conservation of resources such as hydrogen, water and nutrients via recycle and reuse. This report outlines alternate pathways integrating microbial electrolysis in biorefinery schemes to improve energy efficiency while evaluating environmental sustainability parameters.

  8. Total Value of Phosphorus Recovery.

    PubMed

    Mayer, Brooke K; Baker, Lawrence A; Boyer, Treavor H; Drechsel, Pay; Gifford, Mac; Hanjra, Munir A; Parameswaran, Prathap; Stoltzfus, Jared; Westerhoff, Paul; Rittmann, Bruce E

    2016-07-05

    Phosphorus (P) is a critical, geographically concentrated, nonrenewable resource necessary to support global food production. In excess (e.g., due to runoff or wastewater discharges), P is also a primary cause of eutrophication. To reconcile the simultaneous shortage and overabundance of P, lost P flows must be recovered and reused, alongside improvements in P-use efficiency. While this motivation is increasingly being recognized, little P recovery is practiced today, as recovered P generally cannot compete with the relatively low cost of mined P. Therefore, P is often captured to prevent its release into the environment without beneficial recovery and reuse. However, additional incentives for P recovery emerge when accounting for the total value of P recovery. This article provides a comprehensive overview of the range of benefits of recovering P from waste streams, i.e., the total value of recovering P. This approach accounts for P products, as well as other assets that are associated with P and can be recovered in parallel, such as energy, nitrogen, metals and minerals, and water. Additionally, P recovery provides valuable services to society and the environment by protecting and improving environmental quality, enhancing efficiency of waste treatment facilities, and improving food security and social equity. The needs to make P recovery a reality are also discussed, including business models, bottlenecks, and policy and education strategies.

  9. Recovery in soccer : part ii-recovery strategies.

    PubMed

    Nédélec, Mathieu; McCall, Alan; Carling, Chris; Legall, Franck; Berthoin, Serge; Dupont, Gregory

    2013-01-01

    In the formerly published part I of this two-part review, we examined fatigue after soccer matchplay and recovery kinetics of physical performance, and cognitive, subjective and biological markers. To reduce the magnitude of fatigue and to accelerate the time to fully recover after completion, several recovery strategies are now used in professional soccer teams. During congested fixture schedules, recovery strategies are highly required to alleviate post-match fatigue, and then to regain performance faster and reduce the risk of injury. Fatigue following competition is multifactorial and mainly related to dehydration, glycogen depletion, muscle damage and mental fatigue. Recovery strategies should consequently be targeted against the major causes of fatigue. Strategies reviewed in part II of this article were nutritional intake, cold water immersion, sleeping, active recovery, stretching, compression garments, massage and electrical stimulation. Some strategies such as hydration, diet and sleep are effective in their ability to counteract the fatigue mechanisms. Providing milk drinks to players at the end of competition and a meal containing high-glycaemic index carbohydrate and protein within the hour following the match are effective in replenishing substrate stores and optimizing muscle-damage repair. Sleep is an essential part of recovery management. Sleep disturbance after a match is common and can negatively impact on the recovery process. Cold water immersion is effective during acute periods of match congestion in order to regain performance levels faster and repress the acute inflammatory process. Scientific evidence for other strategies reviewed in their ability to accelerate the return to the initial level of performance is still lacking. These include active recovery, stretching, compression garments, massage and electrical stimulation. While this does not mean that these strategies do not aid the recovery process, the protocols implemented up until

  10. Efficient Recovery of Neodymium in Acidic System by Free-Standing Dual-Template Docking Oriented Ionic Imprinted Mesoporous Films.

    PubMed

    Zheng, Xudong; Zhang, Fusheng; Liu, Enli; Xu, Xuechao; Yan, Yongsheng

    2017-01-11

    Neodymium (Nd) is critical component of sintered neodymium magnets. Separation of Nd from consumer magnets has attracted a widespread attention. In this paper, we presented free-standing ionic imprinted mesoporous film materials for facile and highly efficient targeted separation of Nd from permanent magnets by dual-template docking oriented ionic imprinting (DTD-OII) method. DTD-OII is based on dual-template docking oriented molecular imprinting. Compared with conventional imprinting, this novel strategy does not need extra steps, but significantly advance imprinted efficiency. With optimization of functional monomer, our free-standing dual-template docking oriented ionic imprinted mesoporous films exhibit excellent adsorption of Nd by solid-liquid extraction. The Nd adsorption capacity for optimized films was 34.98 mg g(-1) under pH = 3.0. The distribution coefficient of Nd was 636 mL g(-1), which indicates films possess significantly selectivity of Nd. In addition, efficient dual-template docking oriented ionic imprinting makes films demonstrating an outstanding of reusability by cycle test, which appreciating their potential for industrial application.

  11. Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacillus cereus SPV.

    PubMed

    Valappil, S P; Misra, S K; Boccaccini, A R; Keshavarz, T; Bucke, C; Roy, I

    2007-11-01

    A newly characterised Bacillus strain, Bacillus cereus SPV was found to produce PHB at a concentration of 38% of its dry cell weight in shaken flask cultures, using glucose as the main carbon source. Polymer production was then scaled up to 20 L batch fermentations where 29% dry cell weight of PHB was obtained within 48 h. Following this, a simple glucose feeding strategy was developed and the cells accumulated 38% dry cell weight of PHB, an increase in the overall volumetric yield by 31% compared to the batch fermentation. Sporulation is the cause of low PHB productivity from the genus Bacillus [Wu, Q., Huang, H., Hu, G.H., Chen, J., Ho, K.P., Chen, G.Q., 2001. Production of poly-3-hydroxybutyrate by Bacillus sp. JMa5 cultivated in molasses media. Antonie van Leeuwenhoek 80, 111-118]. However, in this study, acidic pH conditions (4.5-5.8) completely suppress sporulation, in accordance with Kominek and Halvorson [Kominek, L.A., Halvorson, H.O., 1965. Metabolism of poly-beta-hydroxybutyrate and acetoin in Bacillus cereus. J. Bacteriol. 90, 1251-1259], and result in an increase in the yield of PHB production. This observation emphasises the potential of the use of Bacillus in the commercial production of PHB and other PHAs. The recovery of the PHB produced was optimised and the isolated polymer characterised to identify its material properties. The polymer extracted, was found to have similar molecular weight, polydispersity index and lower crystallinity index than others reported in literature. Also, the extracted polymer was found to have desirable material properties for potential tissue engineering applications.

  12. The Recovery of Net Ecosystem Productivity and Water Use Efficiency of a Harvested Aspen Forest in the Western Boreal Plain, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Petrone, R. M.; Giroux, K.; Brown, S. M.; Devito, K. J.; Chasmer, L. E.

    2011-12-01

    The Utikuma Region Study Area (URSA) is located in north-central Alberta, Canada, in a region where aspen (Populus Tremuloides Michx.) dominate the upland vegetation of the Western Boreal Plain (WBP). Due to the heterogeneity of the surficial geology as well as the sub-humid climate where the water balance is dominated by evapotranspiration, the carbon balance across this landscape is highly variable. Moreover, the upland aspen regions represent significant stores of carbon. More recently, aspen stands have become valuable commercial resources for pulp and paper processing. These stands are harvested through clear cutting and are generally left to regenerate on their own, a process which occurs rapidly in clonal species like aspen. At URSA, three eddy covariance towers were setup during the length of the growing seasons of 2005-2009 to investigate the CO2 exchange under natural conditions and the rate of recovery after harvest. In 2007, the south facing slope of URSA was harvested and the north facing slope in 2008. This study examines the inter-annual variability and recovery (after harvest) of net ecosystem productivity (NEP) and water use efficiency (WUE) as controlled by environmental variables such as air temperature, precipitation, soil moisture, growing season length and LAI.

  13. Alternative lattice options for energy recovery in high-average-power high-efficiency free-electron lasers

    SciTech Connect

    Piot, P.; /Northern Illinois U. /NICADD, DeKalb /Fermilab

    2009-03-01

    High-average-power free-electron lasers often rely on energy-recovering linacs. In a high-efficiency free electron laser, the main limitation to high average power stems from the fractional energy spread induced by the free-electron laser process. Managing beams with large fractional energy spread while simultaneously avoiding beam losses is extremely challenging and relies on intricate longitudinal phase space manipulations. In this paper we discuss a possible alternative technique that makes use of an emittance exchange between one of the transverse and the longitudinal phase spaces.

  14. [Comparison of the efficiency of 2 culture media in the recovery of heterotrophic bacteria damaged with chlorine].

    PubMed

    Guerrero, J J

    1987-01-01

    In this study, culture mediums R2A and m-HPC were compared with respect to their efficiency in the recuperation of injured heterotrophic bacteria present in water, which previously was treated with chlorine. The results of total counts obtained by membrane filtration, show that medium R2A was better than m-HPC. These two culture mediums are indicated by the 16th edition of Standard Methods for the Examination of Water and Waste-water. The results obtained may be due to the low concentration of organic matter, or to the presence of yeast extract in the R2A medium.

  15. A Novel Energy Recovery System for Parallel Hybrid Hydraulic Excavator

    PubMed Central

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented. PMID:25405215

  16. A novel energy recovery system for parallel hybrid hydraulic excavator.

    PubMed

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented.

  17. Experimental Design for a Macrofoam-Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials

    SciTech Connect

    Piepel, Gregory F.; Hutchison, Janine R.

    2014-12-05

    This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam-swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (culture and polymerase chain reaction) will be used. Only one previous study has investigated how the false negative rate depends on test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam-swab sampling at low concentrations.

  18. Experimental Design for a Macrofoam Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials

    SciTech Connect

    Piepel, Gregory F.; Hutchison, Janine R.

    2014-04-16

    This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (plating/counting and polymerase chain reaction) will be used. Only one previous study has investigated false negative as a function of affecting test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam swab sampling at low concentrations.

  19. Integrated adsorptive technique for efficient recovery of m-cresol and m-toluidine from actual acidic and salty wastewater.

    PubMed

    Chen, Da; Liu, Fuqiang; Zong, Lidan; Sun, Xiaowen; Zhang, Xiaopeng; Zhu, Changqing; Tao, Xuewen; Li, Aimin

    2016-07-15

    An integrated adsorptive technique combining an m-cresol adsorption unit, an acid retardation unit and an m-toluidine adsorption unit in sequence was designed to recover m-cresol and m-toluidine from highly acidic and salty m-cresol manufacturing wastewater. In the first column packed with hypercrosslinked polymeric resin (NDA-99), most m-cresol was captured through π-π and hydrogen-bonding interactions as well as the salting-out effect, while m-toluidine was not absorbed due to protonation. To separate acid from salt, an acid retardation unit was introduced successively to adsorb sulfuric acid by strong base anion exchange resin (201×7). After the acid retardation unit and mild neutralization reaction, the last column filled with NDA-99 was applied to trap neutral m-toluidine from the salty effluent. Moreover, the eluent of the acid retardation unit was utilized as the regenerant to recover m-toluidine, and the recycled high-acidity and low-salinity solution of m-toluidine was directly used to produce m-cresol as the raw material. Therefore, the proposed method not only efficiently recycled m-cresol and m-toluidine, but also reduced the consumption of alkali dramatically (saving 0.1628t/t wastewater). These findings will inspire design of integrated adsorptive techniques for treating complex organic wastewater with high efficiency and low cost.

  20. Efficient recovery of nitrate and phosphate from wastewater by an amine-grafted adsorbent for cyanobacterial biomass production.

    PubMed

    Kim, Jungmin; Hwang, Min-Jin; Lee, Sang-Jun; Noh, Won; Kwon, Jung Min; Choi, Jin Soo; Kang, Chang-Min

    2016-04-01

    Various types of wastewater have been widely utilized in microalgae and cyanobacteria cultivation for environmental and economic reasons. However, the problems of low cell growth and biomass contamination due to direct use of wastewater remain unresolved. In the present study, nitrate and phosphate were separated from wastewater by adsorption and subsequently used for cyanobacterial biomass production. To this end, an amine-grafted magnetic absorbent was synthesized. The synthesized absorbent recovered ca. 78% nitrate and 93% phosphate from wastewater. Regenerated medium was prepared using recovered nutrients as nitrogen and phosphate sources, which were efficiently assimilated by cyanobacterial culture. Compared to synthetic medium, there was no difference in growth and nutrient removal using regenerated medium. The proposed indirect method of wastewater utilization would prevent contamination of the produced biomass by unfavorable substances, which will broaden its potential applications.

  1. Dual substrate strategy to enhance butanol production using high cell inoculum and its efficient recovery by pervaporation.

    PubMed

    Yadav, Sweta; Rawat, Garima; Tripathi, Priyanka; Saxena, R K

    2014-01-01

    The present study deals with the development of an efficient ABE fermentation process using mixed substrate strategy for butanol production wherein no acetone was produced. For this, glucose was supplemented in the medium containing glycerol as main substrate which leads to a higher butanol production of 17.75 g/L in 72 h by Clostridium acetobutylicum KF158795. Moreover, the high cell inoculum also resulted in an increased ABE productivity of 0.46 g/L/h. Further, industrial scalability of the process was also successfully validated in a 300 L fermenter. Furthermore, potential of the Polymeric (PolyRMem) and Zeolite (ZeoMem) membranes for separation of butanol from fermentation broth was also studied by testing the pervaporation performance through which the butanol was successfully recovered.

  2. Enhanced oil recovery by surfactant-enhanced volumetric sweep efficiency: First annual report for the period September 30, 1985-September 30, 1986. [Sandpacks

    SciTech Connect

    Harwell, J H; Scamehorn, J F

    1987-05-01

    Surfactant-enhanced volumetric sweep efficiency is a novel EOR method which utilizes precipitation/coacervation of surfactants to plug the most permeable regions of the reservoir, improving the efficiency of a waterflooding operation. This technique does not rely on reduction of interfacial tension between aqueous and oleic phases to enhance oil recovery. Therefore, even though surfactants are involved, this new technique is not a substitute or improvement on classical surfactant flooding; however, it has the potantial to compete with polymer flooding as an alternative sweep efficiency improvement method. In surfactant-enhanced volumetric sweep efficiency, a slug containing one kind of surfactant is injected into the reservoir, followed by a brine spacer. This is followed by injection of a second kind of surfactant which has lower adsorption than the first surfactant used. Anionic and cationic surfactants are one possible combination for this application. These may form either a precipitate or a coacervate upon mixing. Phase boundaries for some specific systems of this type have been determined over a wide range of conditions and a model developed to describe this behavior. Another possibility is the use of nonionic surfactants, which may form coacervate under proper conditions. The adsorption behavior of mixtures of anionic and nonionic surfactants was measured to aid in modeling the chromatographic effects with these surfactants in the reservoir. Studies with sandpacks of different permeabilities in parallel configuration using mixtures of anionic and cationic surfactants have demonstrated the capability of this method to reduce flow rates through a more permeable sandpack more than that through a less permeable sandpack. 4 refs., 23 figs., 8 tabs.

  3. Efficient approach to include molecular polarizations using charge and atom dipole response kernels to calculate free energy gradients in the QM/MM scheme.

    PubMed

    Asada, Toshio; Ando, Kanta; Sakurai, Koji; Koseki, Shiro; Nagaoka, Masataka

    2015-10-28

    An efficient approach to evaluate free energy gradients (FEGs) within the quantum mechanical/molecular mechanical (QM/MM) framework has been proposed to clarify reaction processes on the free energy surface (FES) in molecular assemblies. The method is based on response kernel approximations denoted as the charge and the atom dipole response kernel (CDRK) model that include explicitly induced atom dipoles. The CDRK model was able to reproduce polarization effects for both electrostatic interactions between QM and MM regions and internal energies in the QM region obtained by conventional QM/MM methods. In contrast to charge response kernel (CRK) models, CDRK models could be applied to various kinds of molecules, even linear or planer molecules, without using imaginary interaction sites. Use of the CDRK model enabled us to obtain FEGs on QM atoms in significantly reduced computational time. It was also clearly demonstrated that the time development of QM forces of the solvated propylene carbonate radical cation (PC˙(+)) provided reliable results for 1 ns molecular dynamics (MD) simulation, which were quantitatively in good agreement with expensive QM/MM results. Using FEG and nudged elastic band (NEB) methods, we found two optimized reaction paths on the FES for decomposition reactions to generate CO2 molecules from PC˙(+), whose reaction is known as one of the degradation mechanisms in the lithium-ion battery. Two of these reactions proceed through an identical intermediate structure whose molecular dipole moment is larger than that of the reactant to be stabilized in the solvent, which has a high relative dielectric constant. Thus, in order to prevent decomposition reactions, PC˙(+) should be modified to have a smaller dipole moment along two reaction paths.

  4. A linear gradient line source facilitates the use of diffusion models with high order approximation for efficient, accurate turbid sample optical properties recovery.

    PubMed

    Lee, Ming-Wei; Hung, Cheng-Hung; Liao, Jung-Li; Cheng, Nan-Yu; Hou, Ming-Feng; Tseng, Sheng-Hao

    2014-10-01

    In this paper, we demonstrate that a scanning MEMS mirror can be employed to create a linear gradient line source that is equivalent to a planar source. This light source setup facilitates the use of diffusion models of increased orders of approximation having closed form solution, and thus enhance the efficiency and accuracy in sample optical properties recovery. In addition, compared with a regular planar light source, the linear gradient line source occupies much less source area and has an elevated measurement efficiency. We employed a δ-P1 diffusion equation with a closed form solution and carried out a phantom study to understand the performance of this new method in determining the absorption and scattering properties of turbid samples. Moreover, our Monte Carlo simulation results indicated that this geometry had probing depths comparable to those of the conventional diffuse reflectance measurement geometry with a source-detector separation of 3 mm. We expect that this new source setup would facilitate the investigating of superficial volumes of turbid samples in the wavelength regions where tissue absorption coefficients are comparable to scattering coefficients.

  5. Target recovery in complex networks

    NASA Astrophysics Data System (ADS)

    Sun, Weiman; Zeng, An

    2017-01-01

    The invulnerability of complex networks is an important issue which has been widely analyzed in different fields. A lot of works have been done to measure and improve the stability of complex networks when being attacked. Recently, how to recover networks after attack was intensively studied. The existing methods are mainly designed to recover the overall functionality of networks, yet in many real cases the recovery of important nodes should be given priority, to which we refer target recovery. For example, when the cold wave paralyses the railway networks, target recovery means to repair those stations or railways such that the transport capacity of densely-populated cities can be recovered as fast as possible. In this paper, we first compare the impact of attacks on the whole network and target nodes respectively, and then study the efficiency of traditional recovery methods that are proposed based on global centrality metrics. Furthermore, based on target centrality metrics, we introduce a local betweenness recovery method and we find it has better performance than the traditional methods. We finally propose a hybrid recovery method which includes local betweenness metric and local closeness metric. The performance of the hybrid method is shown to be similar to that of the greedy algorithm.

  6. Displacement and sweep efficiencies in a DNAPL recovery test using micellar and polymer solutions injected in a five-spot pattern

    NASA Astrophysics Data System (ADS)

    Martel, Richard; Hébert, Alain; Lefebvre, René; Gélinas, Pierre; Gabriel, Uta

    2004-11-01

    Soil washing with micellar solutions is a promising alternative for the remediation of DNAPL source zones. As with any flushing technology, the success of soil washing with micellar solutions depends in a very large part on the ability of the solution to contact the contaminant (sweep efficiency) and then on the efficiency of contaminant removal once this contact is made (displacement efficiency). We report here on a field test where a micellar solution was used to recover a DNAPL in an open five-spot pattern in which polymer solutions were also injected before and after the washing solution to improve sweep efficiency. The washing solution formulation was optimised in the laboratory prior to the test to obtain good dissolution capacity. For a high-concentration and low-volume soil flushing remediation test such as the one performed (0.8 pore volumes of actual washing solution injected), slug sizing of the washing solution is critical. It was evaluated by an analytical solution. In a five-spot pattern, the displacement efficiency of the washing solution was observed to vary in the porous medium as a function of the radial distance from the injection well because: (1) the volume of the washing solution flowing through a section of the test cell changes (maximum close to the injection well and minimal at the pumping wells); (2) the in situ velocity changes (maximum at the wells and minimum between the wells) and; (3) the contact time of the washing solution with the NAPL changes as a function of the distance from the injection well. The relative importance of the recovery mechanisms, mobilisation and dissolution, was also observed to vary in the test cell. The reduced velocity increased the contact time of the washing solution with the DNAPL enhancing its dissolution, but the decrease of the capillary number caused less mobilisation. The washing process is much more extensive around the injection well. The use of an injection-pumping pattern allowing a complete sweep

  7. What Is "No Recovery?"

    ERIC Educational Resources Information Center

    Kauffman, Jeffrey

    2008-01-01

    Thanatologists, as Balk recently commented (Balk, 2004), have been saying that there is no recovery from bereavement, or that we should not speak of bereavement as leading to a recovery. The term recovery has a high level of plasticity and can be shaped to fit diverse meanings, including contradictory meanings. We will sort our way through some of…

  8. Recycling steel automatically -- through resource recovery

    SciTech Connect

    Crawford, G.L.

    1996-12-31

    More than three-fourths of the operating resource recovery plants magnetically separate steel cans and other discarded steel items either pre- or post-combustion. This last year, 121 resource recovery facilities combusted about 14% of the solid waste for communities across the US. Automatic recycling of steel clearly reduces the post-combustion material that is landfilled and heightens the facilities environmental performance through tangible recycling achievement. Even though about one out of every six steel cans is recycled automatically through resource recovery, not many people are aware of automatic recycling of steel cans through resource recovery. How many people know that their local resource recovery plant is insuring that virtually all of their food, beverage and general purpose cans--including paint and aerosol--are being recycled so easily and efficiently? Magnetic separation at resource recovery facilities is a fundamentally simple and desirable method of diverting what would otherwise be relegated as solid waste to the landfill. It should be recognized as an increasingly important and valued part of the resource recovery and steel industries overall recycling efforts. This paper will provide the latest information on steel recycled automatically from resource recovery facilities within the total context of all recycling accomplished annually by the steel industry. Most important, recommendations are provided for building public awareness of the automatic steel recycling contribution made so solidly by resource recovery facilities.

  9. Influence of the drying step within disk-based solid-phase extraction both on the recovery and the limit of quantification of organochlorine pesticides in surface waters including suspended particulate matter.

    PubMed

    Günter, Anastasia; Balsaa, Peter; Werres, Friedrich; Schmidt, Torsten C

    2016-06-10

    In this study, 21 organochlorine pesticides (OCPs) were determined based on sample preparation using solid-phase extraction disks (SPE disks) coupled with programmable temperature vaporizer (PTV)-large-volume injection gas-chromatography mass spectrometry (LVI-GC-MS). The work includes a comprehensive testing scheme on the suitability of the method for routine analysis of surface and drinking water including suspended particulate matter (SPM) with regard to requirements derived from the European Water Framework Directive (WFD, Directive 2000/60/EC). SPM is an important reservoir for OCPs, which contributes to the transport of these compounds in the aquatic environment. To achieve the detection limits required by the WFD, a high pre-concentration factor during sample preparation is necessary, which was achieved by disk SPE in this study. The performance of disk SPE is strongly influenced by the drying step, which could be significantly improved by effective elimination of the residual water by combination of a high vacuum pump and a low humidity atmosphere. Detection limits of the WFD in the ng/L range were achieved by large volume injection of 100μL sample extract. The recoveries ranged from 82% to 117% with an RSD smaller than 13%. The applicability of this method to natural samples was tested for instrumental qualification and system suitability evaluation. Successful participation in an interlaboratory comparison proved the suitability of the method for routine analysis.

  10. Battleground Energy Recovery Project

    SciTech Connect

    Bullock, Daniel

    2011-12-31

    In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and Create a Showcase Waste Heat Recovery Demonstration Project.

  11. The importance of new collection efficiency values including the effect of rear capture for the below-cloud scavenging of aerosol particles

    NASA Astrophysics Data System (ADS)

    Quérel, Arnaud; Monier, Marie; Flossmann, Andrea I.; Lemaitre, Pascal; Porcheron, Emmanuel

    2014-06-01

    A numerical study is presented to evaluate the possible impact of recently measured collection scavenging efficiencies of aerosol particles by raindrops on the calculation of wet removal of pollution plumes by rain. These new collection efficiencies cover the previously undocumented range between 0.3 μm and 3.5 μm diameter for the aerosol particles and 2 to 2.6 mm diameter for the drops. They show for particles between 0.3 μm and 0.7 μm a region of an important increase of the efficiencies with decreasing particle size probably due to the capture of particles in the rear vortex developing behind the falling drop. This hypothesis was motivated by measurements using particle image velocimetry (PIV). Also for the particles larger than 1.5 μm the efficiencies exceed old approximations by up to a factor of two. Typical continental and maritime aerosol particle distributions were used for background and plume distributions and each time the deposited particle mass was calculated with the old and the new efficiencies for the different resulting precipitation rates. In the simulations the new efficiencies increased the calculated wet removal rate of pollution plume particles between 5% and 17%, with respect to the simulations with the old efficiencies, whereby one third of this increase could be attributed to rear capture. This phenomenon has not been observed in these size ranges before. The study also highlights the weakness of certain methods to determine the scavenging coefficient of a pollution plume by rain. Instead of linking the scavenging coefficient to the decrease of the particle spectrum in the air, an operational approach, e.g. in case of accidental releases, needs to be developed that links it to the rainfall intensity, as well as other variables like meteorological parameters, cloud size and plume characteristics. Considering the still persisting gaps of measurements in the collection efficiencies more laboratory measurements of collection scavenging

  12. Benefits of Group Living Include Increased Feeding Efficiency and Lower Mass Loss during Desiccation in the Social and Inbreeding Spider Stegodyphus dumicola

    PubMed Central

    Vanthournout, Bram; Greve, Michelle; Bruun, Anne; Bechsgaard, Jesper; Overgaard, Johannes; Bilde, Trine

    2016-01-01

    Group living carries a price: it inherently entails increased competition for resources and reproduction, and may also be associated with mating among relatives, which carries costs of inbreeding. Nonetheless, group living and sociality is found in many animals, and understanding the direct and indirect benefits of cooperation that override the inherent costs remains a challenge in evolutionary ecology. Individuals in groups may benefit from more efficient management of energy or water reserves, for example in the form of reduced water or heat loss from groups of animals huddling, or through reduced energy demands afforded by shared participation in tasks. We investigated the putative benefits of group living in the permanently social spider Stegodyphus dumicola by comparing the effect of group size on standard metabolic rate, lipid/protein content as a body condition measure, feeding efficiency, per capita web investment, and weight/water loss and survival during desiccation. Because energetic expenditure is temperature sensitive, some assays were performed under varying temperature conditions. We found that feeding efficiency increased with group size, and the rate of weight loss was higher in solitary individuals than in animals in groups of various sizes during desiccation. Interestingly, this was not translated into differences in survival or in standard metabolic rate. We did not detect any group size effects for other parameters, and group size effects did not co-vary with experimental temperature in a predictive manner. Both feeding efficiency and mass loss during desiccation are relevant ecological factors as the former results in lowered predator exposure time, and the latter benefits social spiders which occupy arid, hot environments. PMID:26869936

  13. Efficiency of a novel "Food to waste to food" system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse.

    PubMed

    Stoknes, K; Scholwin, F; Krzesiński, W; Wojciechowska, E; Jasińska, A

    2016-10-01

    At urban locations certain challenges are concentrated: organic waste production, the need for waste treatment, energy demand, food demand, the need for circular economy and limited area for food production. Based on these factors the project presented here developed a novel technological approach for processing organic waste into new food. In this system, organic waste is converted into biogas and digester residue. The digester residue is being used successfully as a stand-alone fertilizer as well as main substrate component for vegetables and mushrooms for the first time - a "digeponics" system - in a closed new low energy greenhouse system with dynamic soap bubble insulation. Biogas production provides energy for the process and CO2 for the greenhouse. With very limited land use highly efficient resource recycling was established at pilot scale. In the research project it was proven that a low energy dynamic bubble insulated greenhouse can be operated continuously with 80% energy demand reduction compared to conventional greenhouses. Commercial crop yields were achieved based on fertilization with digestate; in individual cases they were even higher than the control yields of vegetables such as tomatoes, cucumber and lettuce among others. For the first time an efficient direct use of digestate as substrate and fertilizer has been developed and demonstrated.

  14. Adjustments of water use efficiency by stomatal regulation during drought and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri x V. rupestris).

    PubMed

    Pou, Alícia; Flexas, Jaume; Alsina, Maria del Mar; Bota, Josefina; Carambula, Cecilia; de Herralde, Felicidad; Galmés, Jeroni; Lovisolo, Claudio; Jiménez, Miguel; Ribas-Carbó, Miquel; Rusjan, Denis; Secchi, Francesca; Tomàs, Magdalena; Zsófi, Zsolt; Medrano, Hipólito

    2008-10-01

    The hybrid Richter-110 (Vitis berlandieri x Vitis rupestris) (R-110) has the reputation of being a genotype strongly adapted to drought. A study was performed with plants of R-110 subjected to water withholding followed by re-watering. The goal was to analyze how stomatal conductance (g(s)) is regulated with respect to different physiological variables under water stress and recovery, as well as how water stress affects adjustments of water use efficiency (WUE) at the leaf level. Water stress induced a substantial stomatal closure and an increase in WUE, which persisted many days after re-watering. The g(s) during water stress was mainly related to the content of ABA in the xylem and partly related to plant hydraulic conductivity but not to leaf water potential. By contrast, low g(s) during re-watering did not correlate with ABA contents and was only related to a sustained decreased hydraulic conductivity. In addition to a complex physiological regulation of stomatal closure, g(s) and rate of transpiration (E) were strongly affected by leaf-to-air vapor pressure deficit (VPD) in a way dependent of the treatment. Interestingly, E increased with increasing VPD in control plants, but decreased with increasing VPD in severely stressed plants. All together, the fine stomatal regulation in R-110 resulted in very high WUE at the leaf level. This genotype is revealed to be very interesting for further studies on the physiological mechanisms leading to regulation of stomatal responsiveness and WUE in response to drought.

  15. Recovery Efficiency, False Negative Rate, and Limit of Detection Performance of a Validated Macrofoam-Swab Sampling Method with Low Surface Concentrations of Two Bacillus anthracis Surrogates

    SciTech Connect

    Piepel, Gregory F.; Hutchison, Janine R.; Deatherage Kaiser, Brooke L; Amidan, Brett G.; Sydor, Michael A.; Barrett, Christopher A.

    2015-03-31

    The performance of a macrofoam-swab sampling method was evaluated using Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus Nakamura (BG) spores applied at nine low target amounts (2-500 spores) to positive-control plates and test coupons (2 in. × 2 in.) of four surface materials (glass, stainless steel, vinyl tile, and plastic). Test results from cultured samples were used to evaluate the effects of surrogate, surface concentration, and surface material on recovery efficiency (RE), false negative rate (FNR), and limit of detection. For RE, surrogate and surface material had statistically significant effects, but concentration did not. Mean REs were the lowest for vinyl tile (50.8% with BAS, 40.2% with BG) and the highest for glass (92.8% with BAS, 71.4% with BG). FNR values ranged from 0 to 0.833 for BAS and 0 to 0.806 for BG, with values increasing as concentration decreased in the range tested (0.078 to 19.375 CFU/cm2, where CFU denotes ‘colony forming units’). Surface material also had a statistically significant effect. A FNR-concentration curve was fit for each combination of surrogate and surface material. For both surrogates, the FNR curves tended to be the lowest for glass and highest for vinyl title. The FNR curves for BG tended to be higher than for BAS at lower concentrations, especially for glass. Results using a modified Rapid Viability-Polymerase Chain Reaction (mRV-PCR) analysis method were also obtained. The mRV-PCR results and comparisons to the culture results will be discussed in a subsequent report.

  16. Environmental pressure reduction with a new method of noble metal recovery

    NASA Astrophysics Data System (ADS)

    Filippova, EV

    2017-02-01

    Discoveries in the area of hydrometallurgy of noble metals can be of use in metal recovery from low-grade solutions and slurries, including liquid tailings. Efficiency of noble metal recovery and reduction in mining waste is gained owing to utilization of two forms of ion-exchange sorbent, including OH‑ for recovery of cyanic compounds of gold and cyanides, which allows abating burden on natural systems.

  17. Mobile NAPL recovery: Conceptual, field, and mathematical considerations

    SciTech Connect

    Sale, T.; Applegate, D.

    1997-05-01

    Recovery of mobile Nonaqueous Phase Liquids (NAPLs), referred to as oil recovery, is one of the most common remedial technologies currently being implemented at sites where NAPLs have been released. The rationale for oil recovery typically includes resource recovery, mitigation of further NAPL migration, and compliance with regulatory mandates for source reduction. Efficient oil recovery can be achieved by optimizing conditions within the oil flow path. This concept is referred to as flow path management. Building on this concept, a waterflood oil recovery technique utilizing dual recovery and parallel delivery drainlines has been developed for recovery of creosote-based wood-treating oil, a Dense Nonaqueous Phase Liquid (DNAPL). Full-scale application of this technique at a contaminated site has yielded 1.5 million gallons of DNAPL. Furthermore, an operational endpoint of 95% recovery of the mobile oil is being achieved. Building on the concept of flow path management and the observed performance of the waterflood oil recovery system, a first-order analytical solution for DNAPL flow to a drainline has been derived and validated using field data. This solution leads to a set of useful design equations and further insight into the factors that control oil recovery.

  18. Resource Recovery Guide

    SciTech Connect

    Abert, J.G.

    1983-01-01

    Resource Recovery Guides is a collection of articles orignally published between 1975 and 1981. Many of these articles were not easily available to interested readers. Subjects discussed include newspaper recycling, aluminum recovery, codisposal of solid waste and dry sewage sludge, and the recovery of glass from urban refuse. Includes a combined author and subject index. Contents: National concerns for recycling and resource recovery of municipal waste: policy perspectives. Planning, procurement, marketing, economics, and finance. Waste as a source of raw materials. Waste as an energy source.

  19. Theoretical and experimental fundamentals of designing promising technological equipment to improve efficiency and environmental safety of highly viscous oil recovery from deep oil reservoirs

    NASA Astrophysics Data System (ADS)

    Moiseyev, V. A.; Nazarov, V. P.; Zhuravlev, V. Y.; Zhuykov, D. A.; Kubrikov, M. V.; Klokotov, Y. N.

    2016-12-01

    The development of new technological equipment for the implementation of highly effective methods of recovering highly viscous oil from deep reservoirs is an important scientific and technical challenge. Thermal recovery methods are promising approaches to solving the problem. It is necessary to carry out theoretical and experimental research aimed at developing oil-well tubing (OWT) with composite heatinsulating coatings on the basis of basalt and glass fibers. We used the method of finite element analysis in Nastran software, which implements complex scientific and engineering calculations, including the calculation of the stress-strain state of mechanical systems, the solution of problems of heat transfer, the study of nonlinear static, the dynamic transient analysis of frequency characteristics, etc. As a result, we obtained a mathematical model of thermal conductivity which describes the steady-state temperature and changes in the fibrous highly porous material with the heat loss by Stefan-Boltzmann's radiation. It has been performed for the first time using the method of computer modeling in Nastran software environments. The results give grounds for further implementation of the real design of the OWT when implementing thermal methods for increasing the rates of oil production and mitigating environmental impacts.

  20. A physiologically based in silico model for trans-2-hexenal detoxification and DNA adduct formation in human including interindividual variation indicates efficient detoxification and a negligible genotoxicity risk.

    PubMed

    Kiwamoto, R; Spenkelink, A; Rietjens, I M C M; Punt, A

    2013-09-01

    A number of α,β-unsaturated aldehydes are present in food both as natural constituents and as flavouring agents. Their reaction with DNA due to their electrophilic α,β-unsaturated aldehyde moiety may result in genotoxicity as observed in some in vitro models, thereby raising a safety concern. A question that remains is whether in vivo detoxification would be efficient enough to prevent DNA adduct formation and genotoxicity. In this study, a human physiologically based kinetic/dynamic (PBK/D) model of trans-2-hexenal (2-hexenal), a selected model α,β-unsaturated aldehyde, was developed to examine dose-dependent detoxification and DNA adduct formation in humans upon dietary exposure. The kinetic model parameters for detoxification were quantified using relevant pooled human tissue fractions as well as tissue fractions from 11 different individual subjects. In addition, a Monte Carlo simulation was performed so that the impact of interindividual variation in 2-hexenal detoxification on the DNA adduct formation in the population as a whole could be examined. The PBK/D model revealed that DNA adduct formation due to 2-hexenal exposure was 0.039 adducts/10⁸ nucleotides (nt) at the estimated average 2-hexenal dietary intake (0.04 mg 2-hexenal/kg bw) and 0.18 adducts/10⁸ nt at the 95th percentile of the dietary intake (0.178 mg 2-hexenal/kg bw) in the most sensitive people. These levels are three orders of magnitude lower than natural background DNA adduct levels that have been reported in disease-free humans (6.8-110 adducts/10⁸ nt), suggesting that the genotoxicity risk for the human population at realistic dietary daily intakes of 2-hexenal may be negligible.

  1. Intermediate water recovery system

    NASA Technical Reports Server (NTRS)

    Deckman, G.; Anderson, A. R. (Editor)

    1973-01-01

    A water recovery system for collecting, storing, and processing urine, wash water, and humidity condensates from a crew of three aboard a spacecraft is described. The results of a 30-day test performed on a breadboard system are presented. The intermediate water recovery system produced clear, sterile, water with a 96.4 percent recovery rate from the processed urine. Recommendations for improving the system are included.

  2. 78 FR 48865 - Nationwide Categorical Waivers Under the American Recovery and Reinvestment Act of 2009 (Recovery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... of Energy Efficiency and Renewable Energy Nationwide Categorical Waivers Under the American Recovery and Reinvestment Act of 2009 (Recovery Act) AGENCY: Office of Energy Efficiency and Renewable Energy... and Recovery Act of 2009 (Recovery Act Buy American provisions) in EERE- funded projects limiting...

  3. 78 FR 48868 - Nationwide Categorical Waivers Under the American Recovery and Reinvestment Act of 2009 (Recovery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... of Energy Efficiency and Renewable Energy Nationwide Categorical Waivers Under the American Recovery and Reinvestment Act of 2009 (Recovery Act) AGENCY: Office of Energy Efficiency and Renewable Energy... and Recovery Act of 2009 (Recovery Act Buy American provisions) in EERE- funded projects for LED...

  4. Performance assessment techniques for groundwater recovery and treatment systems

    SciTech Connect

    Kirkpatrick, G.L.

    1993-03-01

    Groundwater recovery and treatment (pump and treat systems) continue to be the most commonly selected remedial technology for groundwater restoration and protection programs at hazardous waste sites and RCRA facilities nationwide. Implementing a typical groundwater recovery and treatment system includes the initial assessment of groundwater quality, characterizing aquifer hydrodynamics, recovery system design, system installation, testing, permitting, and operation and maintenance. This paper focuses on methods used to assess the long-term efficiency of a pump and treat system. Regulatory agencies and industry alike are sensitive to the need for accurate assessment of the performance and success of groundwater recovery systems for contaminant plume abatement and aquifer restoration. Several assessment methods are available to measure the long-term performance of a groundwater recovery system. This paper presents six assessment techniques: degree of compliance with regulatory agency agreement (Consent Order of Record of Decision), hydraulic demonstration of system performance, contaminant mass recovery calculation, system design and performance comparison, statistical evaluation of groundwater quality and preferably, integration of the assessment methods. Applying specific recovery system assessment methods depends upon the type, amount, and quality of data available. Use of an integrated approach is encouraged to evaluate the success of a groundwater recovery and treatment system. The methods presented in this paper are for engineers and corporate management to use when discussing the effectiveness of groundwater remediation systems with their environmental consultant. In addition, an independent (third party) system evaluation is recommended to be sure that a recovery system operates efficiently and with minimum expense.

  5. Bioelectrochemical metal recovery from wastewater: a review.

    PubMed

    Wang, Heming; Ren, Zhiyong Jason

    2014-12-01

    Metal contaminated wastewater posts great health and environmental concerns, but it also provides opportunities for precious metal recovery, which may potentially make treatment processes more cost-effective and sustainable. Conventional metal recovery technologies include physical, chemical and biological methods, but they are generally energy and chemical intensive. The recent development of bioelectrochemical technology provides a new approach for efficient metal recovery, because it offers a flexible platform for both oxidation and reduction reaction oriented processes. While dozens of recent studies demonstrated the feasibility of the bioelectrochemical metal recovery concept, the mechanisms have been different and confusing. This study provides a review that summarizes and discusses the different fundamental mechanisms of metal conversion, with the aim of facilitating the scientific understanding and technology development. While the general approach of bioelectrochemical metal recovery is using metals as the electron acceptor in the cathode chamber and organic waste as the electron donor in the anode chamber, there are so far four mechanisms that have been reported: (1) direct metal recovery using abiotic cathodes; (2) metal recovery using abiotic cathodes supplemented by external power sources; (3) metal conversion using bio-cathodes; and (4) metal conversion using bio-cathodes supplemented by external power sources.

  6. The Exploration Water Recovery System

    NASA Technical Reports Server (NTRS)

    ORourke, Mary Jane E.; Carter, Layne; Holder, Donald W.; Tomes, Kristin M.

    2006-01-01

    The Exploration Water Recovery System is designed towards fulfillment of NASA s Vision for Space Exploration, which will require elevation of existing technologies to higher levels of optimization. This new system, designed for application to the Exploration infrastructure, presents a novel combination of proven air and water purification technologies. The integration of unit operations is modified from that of the current state-of-the-art water recovery system so as to optimize treatment of the various waste water streams, contaminant loads, and flow rates. Optimization is achieved primarily through the removal of volatile organic contaminants from the vapor phase prior to their absorption into the liquid phase. In the current state-of-the-art system, the water vapor in the cabin atmosphere is condensed, and the volatile organic contaminants present in that atmosphere are absorbed into the aqueous phase. Removal of contaminants the5 occurs via catalytic oxidation in the liquid phase. Oxidation kinetics, however, dictate that removal of volatile organic contaminants from the vapor phase can inherently be more efficient than their removal from the aqueous phase. Taking advantage of this efficiency reduces the complexity of the water recovery system. This reduction in system complexity is accompanied by reductions in the weight, volume, power, and resupply requirements of the system. Vapor compression distillation technology is used to treat the urine, condensate, and hygiene waste streams. This contributes to the reduction in resupply, as incorporation of vapor compression distillation technology at this point in the process reduces reliance on the expendable ion exchange and adsorption media used in the current state-of-the-art water recovery system. Other proven technologies that are incorporated into the Exploration Water Recovery System include the Trace Contaminant Control System and the Volatile Removal Assembly.

  7. Recovery in soccer: part I - post-match fatigue and time course of recovery.

    PubMed

    Nédélec, Mathieu; McCall, Alan; Carling, Chris; Legall, Franck; Berthoin, Serge; Dupont, Gregory

    2012-12-01

    In elite soccer, players are frequently required to play consecutive matches interspersed by 3 days and complete physical performance recovery may not be achieved. Incomplete recovery might result in underperformance and injury. During congested schedules, recovery strategies are therefore required to alleviate post-match fatigue, regain performance faster and reduce the risk of injury. This article is Part I of a subsequent companion review and deals with post-match fatigue mechanisms and recovery kinetics of physical performance (sprints, jumps, maximal strength and technical skills), cognitive, subjective and biochemical markers. The companion review will analyse recovery strategies used in contemporary professional soccer. Soccer involves many physically demanding activities including sprinting, changes in running speed, changes of direction, jumps and tackles, as well as technical actions such as dribbling, shooting and passing. These activities lead to a post-match fatigue that is linked to a combination of dehydration, glycogen depletion, muscle damage and mental fatigue. The magnitude of soccer match-induced fatigue, extrinsic factors (i.e. match result, quality of the opponent, match location, playing surface) and/or intrinsic factors (i.e. training status, age, gender, muscle fibre typology), potentially influence the time course of recovery. Recovery in soccer is a complex issue, reinforcing the need for future research to estimate the quantitative importance of fatigue mechanisms and identify influencing factors. Efficient and individualized recovery strategies may consequently be proposed.

  8. Direct utilization - recovery of minerals from coal fly ash. Fossil Energy Program. Technical progress report, 1 July 1984-30 September 1984 including summary of work for FY84

    SciTech Connect

    Burnet, G.; Murtha, M.J.; Benson, J.D.

    1985-03-01

    The research discussed in this report deals with resource recovery from coal conversion solid wastes. Progress is reported on two methods (the HiChlor and Lime-Sinter processes) for extracting metal values from power plant fly ash. Preliminary work is also reported on a method of making cement from the residue of the lime-sinter process. In the HiChlor Process, metal oxides in the fly ash are converted to volatile chlorides by reaction with chlorine in the presence of a reductant. Several versions of this approach are being investigated. The Lime-Sinter Process utilizes a solid state reaction to selectively convert the alumina in fly ash to a soluble form. Fly ash is mixed with limestone and a suitable mineralizer (to reduce the temperature required for sintering and to enhance alumina recovery) and then sintered in a high temperature kiln. Alumina is recovered by leaching the resulting clinker. A complex relationship between the calcium, alumina, silica, and sulfur constituents in the feed mixture controls the formation and extraction of aluminate compounds. Alumina recovery levels are enhanced by promoting the formation of less-soluble calcium compounds and/or more-soluble aluminum compounds. A study is underway to determine the degree to which flue gas scrubber sludge can be used both as a limestone substitute and as a sulfur bearing mineralizer. Results show that 20 to 25% of the limestone can be provided by the scrubber sludges. 25 refs.,25 figs., 10 tabs.

  9. Apollo Recovery Operations

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    Objectives include: a) Describe the organization of recovery force command and control and landing areas; b) Describe the function and timeline use of the Earth Landing System (ELS); c) Describe Stable 1 vs Stable 2 landing configurations and the function of the Command Module Uprighting System; d) Explain the activities of the helicopter and swimmer teams in egress and recovery of the crew; e)Explain the activities of the swimmer teams and primary recovery ship in recovery of the Command Module; and f) Describe several landing incidents that occurred during Apollo.

  10. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    SciTech Connect

    Bahman Habibzadeh

    2010-01-31

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

  11. Integrated distillation-membrane process for bio-ethanol and bio-butanol recovery from actual fermentation broths: Separation energy efficiency and fate of secondary fermentation products

    EPA Science Inventory

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol and/or 1-butanol from aqueous solution as an alternative to convent...

  12. Hydrogeology and Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer, Southern Florida

    USGS Publications Warehouse

    Reese, Ronald S.; Alvarez-Zarikian, Carlos A.

    2007-01-01

    Well construction, hydraulic well test, ambient water-quality, and cycle test data were inventoried and compiled for 30 aquifer storage and recovery facilities constructed in the Floridan aquifer system in southern Florida. Most of the facilities are operated by local municipalities or counties in coastal areas, but five sites are currently being evaluated as part of the Comprehensive Everglades Restoration Plan. The relative performance of all sites with adequate cycle test data was determined, and compared with four hydrogeologic and design factors that may affect recovery efficiency. Testing or operational cycles include recharge, storage, and recovery periods that each last days or months. Cycle test data calculations were made including the potable water (chloride concentration of less than 250 milligrams per liter) recovery efficiency per cycle, total recovery efficiency per cycle, and cumulative potable water recovery efficiencies for all of the cycles at each site. The potable water recovery efficiency is the percentage of the total amount of potable water recharged for each cycle that is recovered; potable water recovery efficiency calculations (per cycle and cumulative) were the primary measures used to evaluate site performance in this study. Total recovery efficiency, which is the percent recovery at the end of each cycle, however, can be substantially higher and is the performance measure normally used in the operation of water-treatment plants. The Upper Floridan aquifer of the Floridan aquifer system currently is being used, or planned for use, at 29 of the aquifer storage and recovery sites. The Upper Floridan aquifer is continuous throughout southern Florida, and its overlying confinement is generally good; however, the aquifer contains brackish to saline ground water that can greatly affect freshwater storage and recovery due to dispersive mixing within the aquifer. The hydrogeology of the Upper Floridan varies in southern Florida; confinement

  13. Development of a Field Demonstration for Cost-Effective Low-Grade Heat Recovery and Use Technology Designed to Improve Efficiency and Reduce Water Usage Rates for a Coal-Fired Power Plant

    SciTech Connect

    Noble, Russell; Dombrowski, K.; Bernau, M.; Morett, D.; Maxson, A.; Hume, S.

    2016-06-30

    Coal-based power generation systems provide reliable, low-cost power to the domestic energy sector. These systems consume large amounts of fuel and water to produce electricity and are the target of pending regulations that may require reductions in water use and improvements in thermal efficiency. While efficiency of coal-based generation has improved over time, coal power plants often do not utilize the low-grade heat contained in the flue gas and require large volumes of water for the steam cycle make-up, environmental controls, and for process cooling and heating. Low-grade heat recovery is particularly challenging for coal-fired applications, due in large part to the condensation of acid as the flue gas cools and the resulting potential corrosion of the heat recovery materials. Such systems have also not been of significant interest as recent investments on coal power plants have primarily been for environmental controls due to more stringent regulations. Also, in many regions, fuel cost is still a pass-through to the consumer, reducing the motivation for efficiency improvements. Therefore, a commercial system combining low-grade heat-recovery technologies and associated end uses to cost effectively improve efficiency and/or reduce water consumption has not yet been widely applied. However, pressures from potential new regulations and from water shortages may drive new interest, particularly in the U.S. In an effort to address this issue, the U.S. Department of Energy (DOE) has sought to identify and promote technologies to achieve this goal.

  14. Nutrients removal and recovery in bioelectrochemical systems: a review.

    PubMed

    Kelly, Patrick T; He, Zhen

    2014-02-01

    Nutrient removal and recovery has received less attention during the development of bioelectrochemical systems (BES) for energy efficient wastewater treatment, but it is a critical issue for sustainable wastewater treatment. Both nitrogen and phosphorus can be removed and/or recovered in a BES through involving biological processes such as nitrification and bioelectrochemical denitrification, the NH4(+)/NH3 couple affected by the electrolyte pH, or precipitating phosphorus compounds in the high-pH zone adjacent a cathode electrode. This paper has reviewed the nutrients removal and recovery in various BES including microbial fuel cells and microbial electrolysis cells, discussed the influence factors and potential problems, and identified the key challenges for nitrogen and phosphorus removal/recovery in a BES. It expects to give an informative overview of the current development, and to encourage more thinking and investigation towards further development of efficient processes for nutrient removal and recovery in a BES.

  15. Recovery Act: High-Efficiency, Wideband Three-Phase Rectifiers and Adaptive Rectifier Management for Telecomm Central Office and Large Data Center Applications

    SciTech Connect

    Mark A. Johnson

    2012-06-29

    Lineage Power and Verizon teamed up to address a DOE funding opportunity focused on improving the power conversion chain in telecommunications facilities and data centers. The project had three significant elements: the design and development of high efficiency and high power three-phase rectifiers by Lineage Power, design and development of software to optimize overall plant energy efficiency by Lineage Power, and a field trial in active Verizon telecommunications facilities where energy consumption was measured before and after efficiency upgrades.

  16. Recovery Online

    ERIC Educational Resources Information Center

    Clark, John R.

    2007-01-01

    Since the founding of Alcoholics Anonymous (AA) in 1935, programs offering opportunity for recovery from alcoholism and other addictions have undergone vast changes. The Internet has created nearly limitless opportunities for recovering people and those seeking recovery to find both meetings and places where they can gather virtually and discuss…

  17. Register file soft error recovery

    DOEpatents

    Fleischer, Bruce M.; Fox, Thomas W.; Wait, Charles D.; Muff, Adam J.; Watson, III, Alfred T.

    2013-10-15

    Register file soft error recovery including a system that includes a first register file and a second register file that mirrors the first register file. The system also includes an arithmetic pipeline for receiving data read from the first register file, and error detection circuitry to detect whether the data read from the first register file includes corrupted data. The system further includes error recovery circuitry to insert an error recovery instruction into the arithmetic pipeline in response to detecting the corrupted data. The inserted error recovery instruction replaces the corrupted data in the first register file with a copy of the data from the second register file.

  18. Inherently safe in situ uranium recovery

    DOEpatents

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  19. 78 FR 49264 - Nationwide Categorical Waivers Under the American Recovery and Reinvestment Act of 2009 (Recovery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... Recovery and Reinvestment Act of 2009 (Recovery Act) AGENCY: Office of Energy Efficiency and Renewable... section 1605 of the Recovery Act under the authority of Section 1605(b)(2), (iron, steel, and the relevant...-Recovery Act Funded State Energy Program (SEP) award. FOR FURTHER INFORMATION CONTACT: Christine...

  20. 77 FR 20806 - Nationwide Categorical Waivers Under the American Recovery and Reinvestment Act of 2009 (Recovery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... of Energy Efficiency and Renewable Energy Nationwide Categorical Waivers Under the American Recovery and Reinvestment Act of 2009 (Recovery Act) AGENCY: Office of Energy Efficiency and Renewable Energy... 1605 of the Recovery Act under the authority of Section 1605(b)(2), (iron, steel, and the...

  1. 78 FR 48867 - Nationwide Categorical Waivers Under the American Recovery and Reinvestment Act of 2009 (Recovery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... of Energy Efficiency and Renewable Energy Nationwide Categorical Waivers Under the American Recovery and Reinvestment Act of 2009 (Recovery Act) AGENCY: Office of Energy Efficiency and Renewable Energy... 1605 of the Recovery Act under the authority of Section 1605(b)(2), (iron, steel, and the...

  2. 78 FR 48866 - Nationwide Categorical Waivers Under the American Recovery and Reinvestment Act of 2009 (Recovery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... of Energy Efficiency and Renewable Energy Nationwide Categorical Waivers Under the American Recovery and Reinvestment Act of 2009 (Recovery Act) AGENCY: Office of Energy Efficiency and Renewable Energy... 1605 of the Recovery Act under the authority of Section 1605(b)(2), (iron, steel, and the...

  3. Efficient butanol recovery from acetone-butanol-ethanol fermentation cultures grown on sweet sorghum juice by pervaporation using silicalite-1 membrane.

    PubMed

    Kanemoto, Miho; Negishi, Hideyuki; Sakaki, Keiji; Ikegami, Toru; Chohnan, Shigeru; Nitta, Youji; Kurusu, Yasurou; Ohta, Hiroyuki

    2016-06-01

    We investigated butanol recovery by pervaporation separation, using a silicalite-1 membrane, from batch cultures of butanol-producing Clostridium beijerinckii SBP2 grown on sweet sorghum juice as a fermentation medium. The pervaporation system yielded 73% (w/v) butanol from intact feed cultures containing 1% (w/v) butanol, and had a butanol permeation flux of 11 g m(-2) h(-1). Upon neutralization and activated charcoal treatment of the feed cultures, butanol yield and total flux increased to 82% (w/v) and 40 g m(-2) h(-1), respectively. This system is applicable to refining processes for practical biobutanol production from a promising energy crop, sweet sorghum.

  4. 78 FR 48864 - Limited Public Interest Waiver Under the American Recovery and Reinvestment Act of 2009 (Recovery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... of Energy Efficiency and Renewable Energy Limited Public Interest Waiver Under the American Recovery and Reinvestment Act of 2009 (Recovery Act) AGENCY: Office of Energy Efficiency and Renewable Energy... 1605 of the American Reinvestment and Recovery Act of 2009 (Recovery Act Buy American provisions)...

  5. Classic maximum entropy recovery of the average joint distribution of apparent FRET efficiency and fluorescence photons for single-molecule burst measurements.

    PubMed

    DeVore, Matthew S; Gull, Stephen F; Johnson, Carey K

    2012-04-05

    We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions.

  6. Modification of chemical and physical factors in steamflood to increase heavy oil recovery

    SciTech Connect

    Yortsos, Yanis C.

    2000-01-19

    This report covers the work performed in the various physicochemical factors for the improvement of oil recovery efficiency. In this context the following general areas were studied: (1) The understanding of vapor-liquid flows in porous media, including processes in steam injection; (2) The effect of reservoir heterogeneity in a variety of foams, from pore scale to macroscopic scale; (3) The flow properties of additives for improvement of recovery efficiency, particularly foams and other non-Newtonian fluids; and (4) The development of optimization methods to maximize various measures of oil recovery.

  7. Recovery processes for precious metals. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    Not Available

    1994-09-01

    The bibliography contains citations concerning the recovery and recycling of gold, silver, and other precious metals from industrial wastes. Procedures adapted to electroplating baths, anode sludges, mine tailings, electronic scrap, and photographic processing effluent are considered. Techniques are described, including precipitation, microbial leaching, ultrafiltration, and electrochemical processes. The citations examine the efficiency, operational difficulties, cost effectiveness, and optimization of specific precious metal recovery methods. (Contains a minimum of 62 citations and includes a subject term index and title list.)

  8. Energy Recovery

    NASA Astrophysics Data System (ADS)

    1987-01-01

    The United States and other countries face the problem of waste disposal in an economical, environmentally safe manner. A widely applied solution adopted by Americans is "waste to energy," incinerating the refuse and using the steam produced by trash burning to drive an electricity producing generator. NASA's computer program PRESTO II, (Performance of Regenerative Superheated Steam Turbine Cycles), provides power engineering companies, including Blount Energy Resources Corporation of Alabama, with the ability to model such features as process steam extraction, induction and feedwater heating by external sources, peaking and high back pressure. Expansion line efficiency, exhaust loss, leakage, mechanical losses and generator losses are used to calculate the cycle heat rate. The generator output program is sufficiently precise that it can be used to verify performance quoted in turbine generator supplier's proposals.

  9. Split Flow Online Solid-Phase Extraction Coupled with Inductively Coupled Plasma Mass Spectrometry System for One-Shot Data Acquisition of Quantification and Recovery Efficiency.

    PubMed

    Furukawa, Makoto; Takagai, Yoshitaka

    2016-10-04

    Online solid-phase extraction (SPE) coupled with inductively coupled plasma mass spectrometry (ICPMS) is a useful tool in automatic sequential analysis. However, it cannot simultaneously quantify the analytical targets and their recovery percentages (R%) in one-shot samples. We propose a system that simultaneously acquires both data in a single sample injection. The main flowline of the online solid-phase extraction is divided into main and split flows. The split flow line (i.e., bypass line), which circumvents the SPE column, was placed on the main flow line. Under program-controlled switching of the automatic valve, the ICPMS sequentially measures the targets in a sample before and after column preconcentration and determines the target concentrations and the R% on the SPE column. This paper describes the system development and two demonstrations to exhibit the analytical significance, i.e., the ultratrace amounts of radioactive strontium ((90)Sr) using commercial Sr-trap resin and multielement adsorbability on the SPE column. This system is applicable to other flow analyses and detectors in online solid phase extraction.

  10. Use of Echocardiography Reveals Reestablishment of Ventricular Pumping Efficiency and Partial Ventricular Wall Motion Recovery upon Ventricular Cryoinjury in the Zebrafish

    PubMed Central

    Marques, Inês João; Sánchez-Iranzo, Héctor; Jiménez-Borreguero, Luis Jesús; Mercader, Nadia

    2014-01-01

    Aims While zebrafish embryos are amenable to in vivo imaging, allowing the study of morphogenetic processes during development, intravital imaging of adults is hampered by their small size and loss of transparency. The use of adult zebrafish as a vertebrate model of cardiac disease and regeneration is increasing at high speed. It is therefore of great importance to establish appropriate and robust methods to measure cardiac function parameters. Methods and Results Here we describe the use of 2D-echocardiography to study the fractional volume shortening and segmental wall motion of the ventricle. Our data show that 2D-echocardiography can be used to evaluate cardiac injury and also to study recovery of cardiac function. Interestingly, our results show that while global systolic function recovered following cardiac cryoinjury, ventricular wall motion was only partially restored. Conclusion Cryoinjury leads to long-lasting impairment of cardiac contraction, partially mimicking the consequences of myocardial infarction in humans. Functional assessment of heart regeneration by echocardiography allows a deeper understanding of the mechanisms of cardiac regeneration and has the advantage of being easily transferable to other cardiovascular zebrafish disease models. PMID:25532015

  11. UH-FLUX: Compact, Energy Efficient Superconducting Asymmetric Energy Recovery LINAC for Ultra-high Fluxes of X-ray and THz Radiation

    SciTech Connect

    Konoplev, Ivan; Ainsworth, Robert; Burt, Graeme; Seryi, Andrei

    2016-06-01

    The conventional ERLs have limited peak beam current because increasing the beam charge and repetition rate leads to appearance of the beam break-up instabilities. At this stage the highest current, from the SRF ERL, is around 300 mA. A single-turn (the beam will be transported through the accelerating section, interaction point and deceleration section of the AERL only once) Asymmetric Energy Recovery LINAC (AERL) is proposed. The RF cells in different sections of the cavity are tuned in such a way that only operating mode is uniform inside all of the cells. The AERL will drive the electron beams with typical energies of 10 - 30 MeV and peak currents above 1 A, enabling the generation of high flux UV/X-rays and high power coherent THz radiation. We aim to build a copper prototype of the RF cavity for a compact AERL to study its EM properties. The final goal is to build AERL based on the superconducting RF cavity. Preliminary design for AERL's cavity has been developed and will be presented. The results of numerical and analytical models and the next steps toward the AERL operation will also be discussed.

  12. Army Projects in the DOD Near Term Energy-Efficient Technologies Program Funded by the American Recovery and Reinvestment Act of 2009

    DTIC Science & Technology

    2010-08-27

    Internet Protocol Router Network (SIPRNET). We appreciate the courtesies extended to the staff. Please direct questions to me at (703) 604-9201 (DSN 664...program requirement or in broadly defined areas of interest covering the full range of an agency’s requirements. Review of Internal Controls DOD...energy auditing programs and software that can couple energy security with energy efficiency, reducing power consumption in tactical heating and air

  13. Recovery of Interdependent Networks

    NASA Astrophysics Data System (ADS)

    di Muro, M. A.; La Rocca, C. E.; Stanley, H. E.; Havlin, S.; Braunstein, L. A.

    2016-03-01

    Recent network research has focused on the cascading failures in a system of interdependent networks and the necessary preconditions for system collapse. An important question that has not been addressed is how to repair a failing system before it suffers total breakdown. Here we introduce a recovery strategy for nodes and develop an analytic and numerical framework for studying the concurrent failure and recovery of a system of interdependent networks based on an efficient and practically reasonable strategy. Our strategy consists of repairing a fraction of failed nodes, with probability of recovery γ, that are neighbors of the largest connected component of each constituent network. We find that, for a given initial failure of a fraction 1 ‑ p of nodes, there is a critical probability of recovery above which the cascade is halted and the system fully restores to its initial state and below which the system abruptly collapses. As a consequence we find in the plane γ ‑ p of the phase diagram three distinct phases. A phase in which the system never collapses without being restored, another phase in which the recovery strategy avoids the breakdown, and a phase in which even the repairing process cannot prevent system collapse.

  14. Recovery of Interdependent Networks.

    PubMed

    Di Muro, M A; La Rocca, C E; Stanley, H E; Havlin, S; Braunstein, L A

    2016-03-09

    Recent network research has focused on the cascading failures in a system of interdependent networks and the necessary preconditions for system collapse. An important question that has not been addressed is how to repair a failing system before it suffers total breakdown. Here we introduce a recovery strategy for nodes and develop an analytic and numerical framework for studying the concurrent failure and recovery of a system of interdependent networks based on an efficient and practically reasonable strategy. Our strategy consists of repairing a fraction of failed nodes, with probability of recovery γ, that are neighbors of the largest connected component of each constituent network. We find that, for a given initial failure of a fraction 1 - p of nodes, there is a critical probability of recovery above which the cascade is halted and the system fully restores to its initial state and below which the system abruptly collapses. As a consequence we find in the plane γ - p of the phase diagram three distinct phases. A phase in which the system never collapses without being restored, another phase in which the recovery strategy avoids the breakdown, and a phase in which even the repairing process cannot prevent system collapse.

  15. Recovery of Interdependent Networks

    PubMed Central

    Di Muro, M. A.; La Rocca, C. E.; Stanley, H. E.; Havlin, S.; Braunstein, L. A.

    2016-01-01

    Recent network research has focused on the cascading failures in a system of interdependent networks and the necessary preconditions for system collapse. An important question that has not been addressed is how to repair a failing system before it suffers total breakdown. Here we introduce a recovery strategy for nodes and develop an analytic and numerical framework for studying the concurrent failure and recovery of a system of interdependent networks based on an efficient and practically reasonable strategy. Our strategy consists of repairing a fraction of failed nodes, with probability of recovery γ, that are neighbors of the largest connected component of each constituent network. We find that, for a given initial failure of a fraction 1 − p of nodes, there is a critical probability of recovery above which the cascade is halted and the system fully restores to its initial state and below which the system abruptly collapses. As a consequence we find in the plane γ − p of the phase diagram three distinct phases. A phase in which the system never collapses without being restored, another phase in which the recovery strategy avoids the breakdown, and a phase in which even the repairing process cannot prevent system collapse. PMID:26956773

  16. Power recovery from turbine and gas engine exhausts

    SciTech Connect

    Lawson, G.L.

    1985-02-01

    Due to the energy consciousness of the United States and to the ever increasing cost of engine fuels, power recovery from turbine and gas engine exhausts has come of age. The addition of waste recovery systems to these exhausts increases the thermal efficiencies of typical systems from the range of 21% to 39% up to the range of 28% to 49%. The new ''expander'' type power recovery system includes a waste heat recovery exchanger which will transfer heat from the engine exhaust into any of numerous thermal fluids. The recovered heat energy now in the thermal fluid medium can, in turn, be used to produce power for any desired application (i.e. gas compression, process refrigeration, electrical power generation, etc.). The particular systems put forth in this paper concentrate on the use of expansion fluids (other than steam) driving ''expanders'' as motive devices.

  17. Experimental Design for a Sponge-Wipe Study to Relate the Recovery Efficiency and False Negative Rate to the Concentration of a Bacillus anthracis Surrogate for Six Surface Materials

    SciTech Connect

    Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula; Einfeld, Wayne

    2011-05-01

    Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the false negative rate (FNR). The FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5) sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method. A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not FNR (which left a major gap in available information). Quantifying the FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The testing was performed by SNL and is now completed. The study investigated the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination recovered from coupons by sponge

  18. Experimental Design for a Sponge-Wipe Study to Relate the Recovery Efficiency and False Negative Rate to the Concentration of a Bacillus anthracis Surrogate for Six Surface Materials

    SciTech Connect

    Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula; Einfeld, Wayne

    2010-12-16

    Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the probability of correct detection (PCD) (or equivalently the false negative rate FNR = 1 - PCD). The PCD/FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5) sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method. A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not PCD/FNR (which left a major gap in available information). Quantifying the PCD/FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in PCD/FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The study will investigate the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination

  19. Efficient recovery of the functional IP10-scFv fusion protein from inclusion bodies with an on-column refolding system.

    PubMed

    Guo, Jun-Qing; Li, Qing-Mei; Zhou, Ji-Yong; Zhang, Gai-Ping; Yang, Yan-Yan; Xing, Guang-Xu; Zhao, Dong; You, Shang-You; Zhang, Chu-Yu

    2006-01-01

    A functional IP10-scFv fusion protein retaining the antibody specificity for acidic isoferritin and chemokine function was produced at high level in Esherichia coli (E. coli). IP10-scFv gene from the recombinant plasmid pc3IP104c9 was subcloned into pET28a fused to N-terminal His-tag sequence in frame and overexpressed in E. coli BL21(DE3). With an on-column refolding procedure based on Ni-chelating chromatography, the active fusion protein was recovered efficiently from inclusion bodies with a refolding yield of approximate 45% confirmed by spectrophotometer. The activity of refolded IP10-scFv was determined through sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting and enzyme-linked immunosorbent assay. The results showed the fusion protein retains the specific binding activity to AIF with an affinity constant of 4.48x10(-8) M as well as the chemokine function of IP-10. The overall yield of IP10-scFv with bioactivity in E. coli flask culture was more than 40 mg/L.

  20. Efficient recovery of whole blood RNA - a comparison of commercial RNA extraction protocols for high-throughput applications in wildlife species

    PubMed Central

    2012-01-01

    Background Since the emergence of next generation sequencing platforms, unprecedented opportunities have arisen in the study of natural vertebrate populations. In particular, insights into the genetic and epigenetic mechanisms of adaptation can be revealed through study of the expression profiles of genes. However, as a pre-requisite to expression profiling, care must be taken in RNA preparation as factors like DNA contamination, RNA integrity or transcript abundance can affect downstream applications. Here, we evaluated five commonly used RNA extraction methods using whole blood sampled under varying conditions from 20 wild carnivores. Results Despite the use of minute starting volumes, all methods produced quantifiable RNA extracts (1.4 – 18.4 μg) with varying integrity (RIN 4.6 - 7.7), the latter being significantly affected by the storage and extraction method used. We observed a significant overall effect of the extraction method on DNA contamination. One particular extraction method, the LeukoLOCK™ filter system, yielded high RNA integrity along with low DNA contamination and efficient depletion of hemoglobin transcripts highly abundant in whole blood. In a proof of concept sequencing experiment, we found globin RNA transcripts to occupy up to ¼ of all sequencing reads if libraries were not depleted of hemoglobin prior to sequencing. Conclusion By carefully choosing the appropriate RNA extraction method, whole blood can become a valuable source for high-throughput applications like expression arrays or transcriptome sequencing from natural populations. Additionally, candidate genes showing signs of selection could subsequently be genotyped in large population samples using whole blood as a source for RNA without harming individuals from rare or endangered species. PMID:22738215

  1. Looking South at south End of Green Room Including Scrubber ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking South at south End of Green Room Including Scrubber for Incinerator within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  2. Application of a probabilistic modelling approach for evaluation of nitrogen, phosphorus and organic carbon removal efficiency during four successive cycles of aquifer storage and recovery (ASR) in an anoxic carbonate aquifer.

    PubMed

    Vanderzalm, Joanne L; Page, Declan W; Barry, Karen E; Dillon, Peter J

    2013-05-01

    Aquifer storage is increasingly being recognised in its role as a treatment process barrier within a multiple barrier approach to water reuse. Aquifers are postulated to have the ability to provide sustainable treatment for removal of nitrogen, phosphorus and organic carbon, the dominant nutrient hazards in water recycling, but, to date this treatment performance has remained difficult to validate in field studies. This study applied a statistical method, proposed for validation of the performance of advanced water treatment processes, to evaluate nutrient removal during aquifer storage and recovery (ASR) with recycled water. Analysis of observed water quality changes during four successive ASR cycles with highly variable source water quality was used to describe the removal efficiencies for selected nutrients by an anoxic carbonate aquifer. The use of this method was found to be suitable to calculate removal efficiencies for total organic carbon (TOC) and total nitrogen (TN) over four ASR cycles with temporally variable concentrations of nutrients in the tertiary treated wastewater injectant. TOC and TN removal was dominated by redox processes, aerobic respiration and denitrification. Median removal of TOC ranged from 25 to 40% and TN from 46 to 87% over the four cycles. There was no observable reduction in this removal with time, suggesting that removal of TOC and TN by redox processes can be sustained in an ASR system. Contrastingly, total phosphorous (TP) was subject to reversible removal via adsorption and desorption processes and as a result, removal efficiency could not be calculated with this method. Thus in general, results indicated that this statistical method could be used to characterise the capacity of the anoxic carbonate aquifer treatment barrier for removal of carbon and nitrogen, but not for removal of phosphorus.

  3. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    SciTech Connect

    Anthony R. Kovscek; Louis M. Castanier

    2002-09-30

    The Stanford University Petroleum Research Institute (SUPRI-A) conducts a broad spectrum of research intended to help improve the recovery efficiency from difficult to produce reservoirs including heavy oil and fractured low permeability systems. Our scope of work is relevant across near-, mid-, and long-term time frames. The primary functions of the group are to conduct direction-setting research, transfer research results to industry, and educate and train students for careers in industry. Presently, research in SUPRI-A is divided into 5 main project areas. These projects and their goals include: (1) Multiphase flow and rock properties--to develop better understanding of the physics of displacement in porous media through experiment and theory. This category includes work on imbibition, flow in fractured media, and the effect of temperature on relative permeability and capillary pressure. (2) Hot fluid injection--to improve the application of nonconventional wells for enhanced oil recovery and elucidate the mechanisms of steamdrive in low permeability, fractured porous media. (3) Mechanisms of primary heavy oil recovery--to develop a mechanistic understanding of so-called ''foamy oil'' and its associated physical chemistry. (4) In-situ combustion--to evaluate the effect of different reservoir parameters on the insitu combustion process. (5) Reservoir definition--to develop and improve techniques for evaluating formation properties from production information. What follows is a report on activities for the past year. Significant progress was made in all areas.

  4. An assessment of aquifer storage recovery using ground water flow models.

    PubMed

    Lowry, Christopher S; Anderson, Mary P

    2006-01-01

    Owing to increased demands on ground water accompanied by increased drawdowns, technologies that use recharge options, such as aquifer storage recovery (ASR), are being used to optimize available water resources and reduce adverse effects of pumping. In this paper, three representative ground water flow models were created to assess the impact of hydrogeologic and operational parameters/factors on recovery efficiency of ASR systems. Flow/particle tracking and solute transport models were used to track the movement of water during injection, storage, and recovery. Results from particle tracking models consistently produced higher recovery efficiency than the solute transport models for the parameters/properties examined because the particle tracking models neglected mixing of the injected and ambient water. Mixing between injected and ambient water affected recovery efficiency. Results from this study demonstrate the interactions between hydrogeologic and operational parameters on predictions of recovery efficiency. These interactions are best simulated using coupled numerical ground water flow and transport models that include the effects of mixing of injected water and ambient ground water.

  5. Efficient recovery of carbon dioxide from flue gases of coal-fired power plants by cyclic fixed-bed operations over K{sub 2}CO{sub 3}-on-carbon

    SciTech Connect

    Hayashi, Hiromu; Taniuchi, Jun; Furuyashiki, Nobuyoshi; Sugiyama, Shigeru; Hirano, Shinichi; Shigemoto, Naoya; Nonaka, Takazumi

    1998-01-01

    An efficient chemical absorption method capable of cyclic fixed-bed operations under moist conditions for the recovery of carbon dioxide from flue gases has been proposed employing K{sub 2}CO{sub 3}-on-carbon. Carbon dioxide was chemically absorbed by the reaction K{sub 2}CO{sub 3} + CO{sub 2} + H{sub 2}O {r_equilibrium} 2KHCO{sub 3} to form potassium hydrogen carbonate. Moisture, usually contained as high as 8--17% in flue gases, badly affects the capacity of conventional adsorbents such as zeolites, but the present technology has no concern with moisture; water is rather necessary in principle as shown in the equation above. Deliquescent potassium carbonate should be supported on an appropriate porous material to adapt for fixed-bed operations. After breakthrough of carbon dioxide, the entrapped carbon dioxide was released by the decomposition of hydrogen carbonate to shift the reaction in reverse on flushing with steam, which could be condensed by cooling to afford carbon dioxide in high purity. Among various preparations of alkaline-earth carbonates (X{sub 2}CO{sub 3}, X = Li, Na, K) on porous materials, K{sub 2}CO{sub 3}-on-activated carbon revealed excellent properties for the present purpose. Preparation and characterization of K{sub 2}CO{sub 3}-on-carbon and illustrative fixed-bed operations under flue gas conditions in laboratory columns and a bench-scale plant are described.

  6. Recovery of Gemini 4 spacecraft and astronauts

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Recovery of Gemini 4 spacecraft and astronauts. Views include Astronaut James A. McDivitt, command pilot of the Gemini 4 space flight, sitting in life raft awaiting pickup by helicopter from the recovery ship, the aircraft carrier U.S.S. Wasp (33490); Navy frogmen stand on the flotation collar of the Gemini 4 spacecraft during recovery operations (33491).

  7. Photoelectrochemical batteries for efficient energy recovery.

    PubMed

    Han, Lei; Guo, Shaojun; Xu, Miao; Dong, Shaojun

    2014-11-11

    Herein we propose novel photoelectrochemical fuel cells (PEFCs) by the introduction of a solid-state Ag2O/Ag cathode (here also term as photoelectrochemical battery). Due to the superior electrochemical properties of Ag2O/Ag, the maximum power density of our PEFCs can reach 0.94 mW cm(-2) upon UV illumination. Furthermore, our PEFCs have stable cycle operation and can be undertaken in a single chamber without an ion-exchange membrane. Most importantly, we demonstrate that our PEFCs can be adopted to degrade the methyl orange (MO) dye with a decomposition percentage of 72.5% within 30 min during the PEFC process.

  8. Design of a new type vapor recovery system nozzle

    NASA Astrophysics Data System (ADS)

    Fu, S. H.; Cao, G. J.; Zhang, D. S.

    2016-05-01

    To settle the problem of low-efficiency recovery for Vapor recovery system nozzle, this paper advances a purely mechanical structure of the self-sealing refueling VRS nozzle. The structure, operating principle and controlled process of the nozzle is given. And an application of the nozzle is discussed. All indicated that the nozzle has a reasonable structure, can fuel and vapor recovery simultaneous start and stop. And thus improve the recovery efficiency and reduce oil leakage.

  9. Volatile organic compound matrix spike recoveries for ground- and surface-water samples, 1997-2001

    USGS Publications Warehouse

    Rowe, Barbara L.; Delzer, Gregory C.; Bender, David A.; Zogorski, John S.

    2005-01-01

    The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program used field matrix spikes (FMSs), field matrix spike replicates (FMSRs), laboratory matrix spikes (LMSs), and laboratory reagent spikes (LRSs), in part, to assess the quality of volatile organic compound (VOC) data from water samples collected and analyzed in more than 50 of the Nation's largest river basins and aquifers (Study Units). The data-quality objectives of the NAWQA Program include estimating the extent to which variability, degradation, and matrix effects, if any, may affect the interpretation of chemical analyses of ground- and surface-water samples. In order to help meet these objectives, a known mass of VOCs was added (spiked) to water samples collected in 25 Study Units. Data within this report include recoveries from 276 ground- and surface-water samples spiked with a 25-microliter syringe with a spike solution containing 85 VOCs to achieve a concentration of 0.5 microgram per liter. Combined recoveries for 85 VOCs from spiked ground- and surface-water samples and reagent water were used to broadly characterize the overall recovery of VOCs. Median recoveries for 149 FMSs, 107 FMSRs, 20 LMSs, and 152 LRSs were 79.9, 83.3, 113.1, and 103.5 percent, respectively. Spike recoveries for 85 VOCs also were calculated individually. With the exception of a few VOCs, the median percent recoveries determined from each spike type for individual VOCs followed the same pattern as for all VOC recoveries combined, that is, listed from least to greatest recovery-FMSs, FMSRs, LRSs, and LMSs. The median recoveries for individual VOCs ranged from 63.7 percent to 101.5 percent in FMSs; 63.1 percent to 101.4 percent in FMSRs; 101.7 percent to 135.0 percent in LMSs; and 91.0 percent to 118.7 percent in LRSs. Additionally, individual VOC recoveries were compared among paired spike types, and these recoveries were used to evaluate potential bias in the method. Variability associated with field

  10. 7 CFR 4280.158 - Future recovery.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Future recovery. 4280.158 Section 4280.158 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND... Efficiency Improvements Program Section B. Guaranteed Loans § 4280.158 Future recovery. Future...

  11. 7 CFR 4280.158 - Future recovery.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Future recovery. 4280.158 Section 4280.158 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND... Efficiency Improvements Program Section B. Guaranteed Loans § 4280.158 Future recovery. Future...

  12. Optimal and suboptimal control technique for aircraft spin recovery

    NASA Technical Reports Server (NTRS)

    Young, J. W.

    1974-01-01

    An analytic investigation has been made of procedures for effecting recovery from equilibrium spin conditions for three assumed aircraft configurations. Three approaches which utilize conventional aerodynamic controls are investigated. Included are a constant control recovery mode, optimal recoveries, and a suboptimal control logic patterned after optimal recovery results. The optimal and suboptimal techniques are shown to yield a significant improvement in recovery performance over that attained by using a constant control recovery procedure.

  13. Recovery position - series (image)

    MedlinePlus

    ... CPR, the victim should be placed in the recovery position. The recovery position helps keep the victim's airway open. To put the victim in the recovery position grab the victim's leg and shoulder and ...

  14. Heart Attack Recovery FAQs

    MedlinePlus

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Heart Attack Recovery FAQs Updated:Sep 19,2016 Most people ... recovery. View an animation of a heart attack . Heart Attack Recovery Questions and Answers What treatments will I ...

  15. False-negative rate, limit of detection and recovery efficiency performance of a validated macrofoam-swab sampling method for low surface concentrations of Bacillus anthracis Sterne and Bacillus atrophaeus spores

    SciTech Connect

    Piepel, G. F.; Deatherage Kaiser, B. L.; Amidan, B. G.; Sydor, M. A.; Barrett, C. A.; Hutchison, J. R.

    2016-05-06

    The performance of a macrofoam-swab sampling method was evaluated using Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus Nakamura (BG) spores applied at nine low target amounts (2-500 spores) to positive-control plates and test coupons (2 in × 2 in) of four surface materials (glass, stainless steel, vinyl tile, and plastic). Test results from cultured samples were used to evaluate the effects of surrogate, surface concentration, and surface material on recovery efficiency (RE), false negative rate (FNR), and limit of detection. For RE, surrogate and surface material had statistically significant effects, but concentration did not. Mean REs were the lowest for vinyl tile (50.8% with BAS and 40.2% with BG) and the highest for glass (92.8% with BAS and 71.4% with BG). FNR values ranged from 0 to 0.833 for BAS and 0 to 0.806 for BG; values increased as concentration decreased in the range tested (0.078 to 19.375 CFU/cm2). Surface material also had a statistically significant effect. A FNR-concentration curve was fit for each combination of surrogate and surface material. For both surrogates, the FNR curves tended to be the lowest for glass and highest for vinyl title. The FNR curves for BG tended to be higher than for BAS at lower concentrations, especially for glass. Results using a modified Rapid Viability-Polymerase Chain Reaction (mRV-PCR) analysis method were also obtained. The mRV-PCR results and comparisons to the culture results will be discussed in a subsequent article.

  16. Micellar slug for oil recovery

    SciTech Connect

    Morita, H.; Kawada, Y.; Ukigai, T.; Yamada, J.

    1985-08-27

    A micellar slug for use in the recovery of oil is described, the slug containing a hydrocarbon, an aqueous medium, a surfactant, and a cosurfactant. The surfactant contains as an essential component an alpha-olefin sulfonate having 10 to 26 carbon atoms and containing 0.1% to 15% by weight by weight of a disulfonate. This micellar slug has an excellent salinity tolerance and hard-water resistance. Furthermore, the micellar slugs of the present invention are capable of forming micro-emulsions having a sufficiently low interfacial tension and, therefore, can improve oil recovery efficiency.

  17. Micellar slug for oil recovery

    SciTech Connect

    Morita, H.; Kowada, Y.; Ukigai, T.; Yamada, J.

    1985-04-23

    A micellar slug for use in the recovery of oil is described, the slug containing a hydrocarbon, an aqueous medium, a surfactant, and a cosurfactant. The surfactant contains, as an essential component, a divalent metal salt of an alpha-olefin sulfonic acid. This micellar slug has an excellent salinity tolerance and hard-water resistance. Furthermore, the micro-emulsion formed from the present micellar slug is maintained stable in a subterranean reservoir formed by alkaline earth metal carbonates and, therefore, the oil recovery efficiency can be improved.

  18. Recovery system for an underwater projectile

    SciTech Connect

    Johnson, D.W.

    1986-10-01

    A recovery system has been designed to recover and bring to the surface of the ocean a vehicle weighting 640 lbs under water and approximately 800 lbs in air. The vehicle has a terminal sink rate of 52-55 ft/sec. The recovery system includes a 4.2-ft-dia ribbon parachute, a 13-ft/sup 3/ flotation bag, and a gas generator for inflating the bag. Deployment of the recovery system normally occurs at depths between 400 and 600 ft. Components of the recovery system were tested before the system was used. Results of the tests along with a description of the recovery system are presented.

  19. Energy recovery device

    SciTech Connect

    Evans, V.

    1982-08-31

    The energy recovery device includes a housing having a central shaft which is connected to a lever operating a work-load system capable of generating work-load forces. The central shaft is also connected to a disk having four posts generally parallel to the shaft and initially located at positions corresponding to the four major points of a compass. Within each corner of the housing, a helically coiled spring is positioned over a support post. Each spring has two extending arms which contact two respective adjacent posts on the disk so as to maintain the spring under tension. When the lever is at the neutral position, I.E., when no work-load forces are generated, the recovery forces generated by the four springs within the housing are generally balanced. As the lever is displaced from the neutral position by a driving force, the disk rotates whereby the angular displacement between the arms of any spring decreases. Once the disk is displaced, the spring forces aid in continuing displacement of the disk. Simultaneously the work-load system generates forces which oppose any displacement. The springs are preferably configured and dimensioned so that, at any given displacement of the lever from the neutral position, the recovery forces generally counterbalance the work-load forces. Thus the lever will remain at a given displacement when the driving force applied to the lever is removed. Additionally, the counterbalancing of forces permits continued displacement of the lever with a minimal and constant driving force.

  20. Integrated butanol recovery for an advanced biofuel: current state and prospects.

    PubMed

    Xue, Chuang; Zhao, Jing-Bo; Chen, Li-Jie; Bai, Feng-Wu; Yang, Shang-Tian; Sun, Jian-Xin

    2014-04-01

    Butanol has recently gained increasing interest due to escalating prices in petroleum fuels and concerns on the energy crisis. However, the butanol production cost with conventional acetone-butanol-ethanol fermentation by Clostridium spp. was higher than that of petrochemical processes due to the low butanol titer, yield, and productivity in bioprocesses. In particular, a low butanol titer usually leads to an extremely high recovery cost. Conventional biobutanol recovery by distillation is an energy-intensive process, which has largely restricted the economic production of biobutanol. This article thus reviews the latest studies on butanol recovery techniques including gas stripping, liquid-liquid extraction, adsorption, and membrane-based techniques, which can be used for in situ recovery of inhibitory products to enhance butanol production. The productivity of the fermentation system is improved efficiently using the in situ recovery technology; however, the recovered butanol titer remains low due to the limitations from each one of these recovery technologies, especially when the feed butanol concentration is lower than 1 % (w/v). Therefore, several innovative multi-stage hybrid processes have been proposed and are discussed in this review. These hybrid processes including two-stage gas stripping and multi-stage pervaporation have high butanol selectivity, considerably higher energy and production efficiency, and should outperform the conventional processes using single separation step or method. The development of these new integrated processes will give a momentum for the sustainable production of industrial biobutanol.

  1. A review of enhanced recovery for thoracic anaesthesia and surgery.

    PubMed

    Jones, N L; Edmonds, L; Ghosh, S; Klein, A A

    2013-02-01

    During the past decade, there has been a dramatic increase in the number of thoracic surgical procedures carried out in the UK. The current financial climate dictates that more efficient use of resources is necessary to meet escalating demands on healthcare. One potential means to achieve this is through the introduction of enhanced recovery protocols, designed to produce productivity savings by driving reduction in length of stay. These have been promoted by government bodies in a number of surgical specialties, including colorectal, gynaecological and orthopaedic surgery. This review focuses on aspects of peri-operative care that might be incorporated into such a programme for thoracic anaesthesia, for which an enhanced recovery programme has not yet been introduced in the UK, and a review of the literature specific to this area of practice has not been published before. We performed a comprehensive search for published work relating to the peri-operative management and optimisation of patients undergoing thoracic surgery, and divided these into appropriate areas of practice. We have reviewed the specific interventions that may be included in an enhanced recovery programme, including: pre-optimisation; minimising fasting time; thrombo-embolic prophylaxis; choice of anaesthetic and analgesic technique and surgical approach; postoperative rehabilitation; and chest drain management. Using the currently available evidence, the design and implementation of an enhanced recovery programme based on this review in selected patients as a package of care may reduce morbidity and length of hospital stay, thus maximising utilisation of available resources.

  2. The CEOS Recovery Observatory Pilot

    NASA Astrophysics Data System (ADS)

    Hosford, S.; Proy, C.; Giros, A.; Eddy, A.; Petiteville, I.; Ishida, C.; Gaetani, F.; Frye, S.; Zoffoli, S.; Danzeglocke, J.

    2015-04-01

    Over the course of the last decade, large populations living in vulnerable areas have led to record damages and substantial loss of life in mega-disasters ranging from the deadly Indian Ocean tsunami of 2004 and Haiti earthquake of 2010; the catastrophic flood damages of Hurricane Katrina in 2005 and the Tohoku tsunami of 2011, and the astonishing extent of the environmental impact of the Deepwater Horizon explosion in 2009. These major catastrophes have widespread and long-lasting impacts with subsequent recovery and reconstruction costing billions of euros and lasting years. While satellite imagery is used on an ad hoc basis after many disasters to support damage assessment, there is currently no standard practice or system to coordinate acquisition of data and facilitate access for early recovery planning and recovery tracking and monitoring. CEOS led the creation of a Recovery Observatory Oversight Team, which brings together major recovery stakeholders such as the UNDP and the World Bank/Global Facility for Disaster Reduction and Recovery, value-adding providers and leading space agencies. The principal aims of the Observatory are to: 1. Demonstrate the utility of a wide range of earth observation data to facilitate the recovery and reconstruction phase following a major catastrophic event; 2. Provide a concrete case to focus efforts in identifying and resolving technical and organizational obstacles to facilitating the visibility and access to a relevant set of EO data; and 3. Develop dialogue and establish institutional relationships with the Recovery phase user community to best target data and information requirements; The paper presented here will describe the work conducted in preparing for the triggering of a Recovery Observatory including support to rapid assessments and Post Disaster Needs Assessments by the EO community.

  3. Credit Recovery Hits the Mainstream

    ERIC Educational Resources Information Center

    Carr, Sarah

    2014-01-01

    In communities including New Orleans, Los Angeles, and Chicago, educators are creating alternative schools for struggling students that employ online credit-recovery programs as a core portion, or all, of their curriculum. The growth in online learning generally, including blended learning, has fueled the proliferation of computer-based credit…

  4. Solid Rocket Booster Recovery

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The towing ship, Liberty, towed a recovered solid rocket booster (SRB) for the STS-5 mission to Port Canaveral, Florida. The recovered SRB would be inspected and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. The requirement for reusability dictated durable materials and construction to preclude corrosion of the hardware exposed to the harsh seawater environment. The SRB contains a complete recovery subsystem that includes parachutes, beacons, lights, and tow fixture.

  5. Solid Rocket Booster Recovery

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The towing ship, Liberty, towed a recovered solid rocket booster (SRB) for the STS-3 mission to Port Canaveral, Florida. The recovered SRB would be inspected and refurbished for reuse. The Shuttle's SRB's and solid rocket motors (SRM's) are the largest ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds. The requirement for reusability dictated durable materials and construction to preclude corrosion of the hardware exposed to the harsh seawater environment. The SRB contains a complete recovery subsystem that includes parachutes, beacons, lights, and tow fixture.

  6. Manned Spacecraft Landing and Recovery

    NASA Technical Reports Server (NTRS)

    Hammel, Don

    2004-01-01

    As recent history has tragically demonstrated, a successful space mission is not complete until the crew has safely returned to earth and has been successfully recovered. It is noted that a safe return to earth does not guarantee a successful recovery. The focus of this presentation will be a discussion of the ground operation assets involved in a successful recovery. The author's experience in land and water-based recovery of crewed vehicles and flight hardware at Kennedy Space Center (KSC), Edwards Air Force Base, international landing sites, and the Atlantic Ocean provides for some unique insight into this topic. He has participated in many aspects of Space Shuttle landing and recovery operations including activation of Transatlantic Abort Landing (TAL) sites and Emergency Landing Sites (ELS) as an Operations Test Director, execution of post landing convoy operations as an Orbiter Move Director, Operations Test Director, and Landing and Recovery Director, and recovery of solid rocket boosters, frustum and their parachutes 140 miles offshore in a wide range of sea states as a Retrieval Diver/Engineer. The recovery operations for the Mercury, Gemini, and Apollo were similar from a landing and recovery perspective in th t they all were capsules with limited "flying" capability and had a planned End of Mission (EOM) in an ocean with a descent slowed by parachutes. The general process was to deploy swim teams via helicopters to prepare the capsule for recovery and assist with crew extraction when required. The capsule was then hoisted onto the deck of a naval vessel. This approach required the extensive use and deployment of military assets to support the primary landing zone as well as alternate and contingency locations. The Russian Soyuz capsule also has limited "flying" capability; however, the planned EOM is terrestrial. In addition to use of parachutes to slow the reentry descent, soft-landing rockets on the bottom of the vehicle are employed to cushion the

  7. Recovery of marine animal populations and ecosystems.

    PubMed

    Lotze, Heike K; Coll, Marta; Magera, Anna M; Ward-Paige, Christine; Airoldi, Laura

    2011-11-01

    Many marine populations and ecosystems have experienced strong historical depletions, yet reports of recoveries are increasing. Here, we review the growing research on marine recoveries to reveal how common recovery is, its magnitude, timescale and major drivers. Overall, 10-50% of depleted populations and ecosystems show some recovery, but rarely to former levels of abundance. In addition, recovery can take many decades for long-lived species and complex ecosystems. Major drivers of recovery include the reduction of human impacts, especially exploitation, habitat loss and pollution, combined with favorable life-history and environmental conditions. Awareness, legal protection and enforcement of management plans are also crucial. Learning from historical recovery successes and failures is essential for implementing realistic conservation goals and promising management strategies.

  8. Factors influencing recovery and restoration following a chemical incident.

    PubMed

    Peña-Fernández, A; Wyke, S; Brooke, N; Duarte-Davidson, R

    2014-11-01

    Chemicals are an important part of our society. A wide range of chemicals are discharged into the environment every day from residential, commercial and industrial sources. Many of these discharges do not pose a threat to public health or the environment. However, global events have shown that chemical incidents or accidents can have severe consequences on human health, the environment and society. It is important that appropriate tools and technical guidance are available to ensure that a robust and efficient approach to developing a remediation strategy is adopted. The purpose of remediation is to protect human health from future exposure and to return the affected area back to normal as soon as possible. There are a range of recovery options (techniques or methods for remediation) that are applicable to a broad range of chemicals and incidents. Recovery options should be evaluated according to their appropriateness and efficacy for removing contaminants from the environment; however economic drivers and social and political considerations often influence decision makers on which remedial actions are implemented during the recovery phase of a chemical incident. To date, there is limited information in the literature on remediation strategies and recovery options that have been implemented following a chemical incident, or how successful they have been. Additional factors that can affect the approach taken for recovery are not well assessed or understood by decision makers involved in the remediation and restoration of the environment following a chemical incident. The identification of this gap has led to the development of the UK Recovery Handbook for Chemical Incidents to provide a framework for choosing an effective recovery strategy. A compendium of practical evidence-based recovery options (techniques or methods for remediation) for inhabited areas, food production systems and water environments has also been developed and is included in the chemical

  9. Parachute Line Hook Includes Integral Loop Expander

    NASA Technical Reports Server (NTRS)

    Bayless, G. B.

    1983-01-01

    Parachute packing simplified with modified line hook. One person packs parachutes for test recovery vehicles faster than previously two-person team. New line hook includes expander that opens up two locking loops so parachute lines are pulled through them. Parachutes are packed at high pressure to be compressed into limited space available in test vehicles.

  10. Investigation of Electrochemical Recovery of Zirconium from Spent Nuclear Fuels

    SciTech Connect

    Simpson, Michael; Hwang, II-Soon

    2014-06-01

    This project uses both modeling and experimental studies to design optimal electrochemical technology methods for recovery of zirconium from used nuclear fuel rods for more effective waste management. The objectives are to provide a means of efficiently separating zirconium into metallic high-level waste forms and to support development of a process for decontamination of zircaloy hulls to enable their disposal as low- and intermediate-level waste. Modeling work includes extension of a 3D model previously developed by Seoul National University for uranium electrorefining by adding the ability to predict zirconium behavior. Experimental validation activities include tests for recovery of zirconium from molten salt solutions and aqueous tests using surrogate materials. *This is a summary of the FY 2013 progress for I-NERI project # 2010-001-K provided to the I-NERI office.

  11. Short review on heat recovery from exhaust gas

    NASA Astrophysics Data System (ADS)

    Jaber, Hassan; Khaled, Mahmoud; Lemenand, Thierry; Ramadan, Mohamad

    2016-07-01

    The increasing growth of energy demand leads to issues associated with energy demand reduction and propose new energy efficient solutions. Heat recovery consists the most promising solution especially in regions where renewable energy resources are not available. That is why the domain of heat recovery has shown a tremendous improvement during the recent years. On the other hand, few works have been dedicated to heat recovery from exhaust gas. This paper presents a review on heat recovery from exhaust gas. The authors propose to classify exhaust gas heat recovery systems within three different classifications that are exhaust gas temperature, utilized equipment and recovery purposes.

  12. Economic and environmental evaluation of nitrogen removal and recovery methods from wastewater.

    PubMed

    Lin, Yanzi; Guo, Miao; Shah, Nilay; Stuckey, David C

    2016-09-01

    The driver for waste-based economic growth is long-term strategic design, and a paradigm-shift from waste treatment to resource recovery. This study aims to use an integrated modelling approach to evaluate the holistic economic and environmental profiles of three alternative nitrogen removal and recovery methods integrated into wastewater treatment systems, including conventional nitrification-denitrification, Anammox, and the anaerobic ion exchange route, to provide insights into N recovery system designs which are key elements in building a sustainable circular economy. Our results suggest that ion exchange is a promising technology showing high N removal-recovery efficiency from municipal wastewater and delivering competitive sustainability scores. In comparison with the well-developed conventional route, ion exchange and Anammox are undergoing significant research and development; as highlighted in sensitivity analyses, there is considerable room for process design and optimisation of ion exchange systems to achieve economically and environmentally optimal performance.

  13. Chemically enhanced in situ recovery

    SciTech Connect

    Sale, T.; Pitts, M.; Wyatt, K.

    1996-08-01

    Chemically enhanced recovery is a promising alternative to current technologies for management of subsurface releases of organic liquids. Through the inclusion of surfactants, solvents, polymers, and/or alkaline agents to a waterflood, the transport of targeted organic compounds can be increased and rates of recovery enhanced. By far, the vast majority of work done in the field of chemically enhanced recovery has been at a laboratory scale. The following text focuses on chemically enhanced recovery from a field application perspective with emphasis given to chlorinated solvents in a low permeability setting. While chlorinated solvents are emphasized, issues discussed are also relevant to organic liquids less dense than water such as petroleum products. Topics reviewed include: (1) Description of technology; (2) General technology considerations; (3) Low permeability media considerations; (4) Cost and reliability considerations; (5) Commercial availability; and (6) Case histories. Through this paper an appreciation is developed of both the potential and limitations of chemically enhanced recovery. Excluded from the scope of this paper is the in situ destruction of organic compounds through processes such as chemical or biological oxidation, chemically enhanced recovery of inorganic compounds, and ex situ soil treatment processes. 11 refs., 2 figs., 1 tab.

  14. Pump apparatus including deconsolidator

    DOEpatents

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  15. Optical modulator including grapene

    DOEpatents

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  16. Recovery Act Milestones

    ScienceCinema

    Rogers, Matt

    2016-07-12

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  17. Recovery Act Milestones

    SciTech Connect

    Rogers, Matt

    2009-01-01

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  18. Textile dryer heat recovery system

    SciTech Connect

    Gordon, J. S.

    1985-08-06

    A textile dryer heat recovery system includes a textile dryer and a heat exchanger. A duct is provided for directing dryer exhaust gas to the heat exchanger for preheating dryer input air. A cleaning system within the heat exchanger removes dryer exhaust gas contaminants deposited in the heat exchanger.

  19. Youth in Recovery

    ERIC Educational Resources Information Center

    de Miranda, John; Williams, Greg

    2011-01-01

    Young people are entering long-term recovery probably in greater numbers than ever before. A key word here is "probably" because we know precious little about the phenomenon of young people who recover from alcohol and drug addition. This article is a preliminary exploration of youth in recovery. It reviews several types of recovery support…

  20. Enhanced oil recovery update

    SciTech Connect

    Smith, R.V

    1989-03-01

    Technology continues to grow in the realm of enhanced oil recovery. Since 1950 several processes have proven economic for oil recovery. Others are still in their infancy and must be custom designed for each reservoir. This paper gives a general overview of these processes. The author focuses on the latest technology and the outlook for enhanced oil recovery operations.

  1. Recovery in Scotland: beyond service development.

    PubMed

    Bradstreet, Simon; McBrierty, Rona

    2012-02-01

    Over the last ten years there has been significant activity related to the promotion and support of recovery in Scotland, much of it linked to the work of the Scottish Recovery Network. A range of government policies have consistently identified recovery as a guiding principle of both service design and mental health improvement efforts. New learning has been developed and shared, workforce competencies reviewed and training developed, and a range of national initiatives put in place. In Scotland, as elsewhere, these efforts have tended to focus primarily on ensuring that mental health services offer environments and practices that support personal recovery. While service improvement is crucial, a wider challenge is ensuring that opportunities and support for self-directed recovery are enhanced outside statutory services. Providing examples, this paper will look at the development of recovery in Scotland - including the work of the Scottish Recovery Network - and consider the potential for building on progress made by rebalancing efforts to support personal recovery, highlighting the importance of public attitudes and community-based learning approaches. We will also touch on the role of identity in personal recovery and consider cultural issues related to the promotion of recovery in Scotland.

  2. Energy recovery ventilator

    SciTech Connect

    Schneider, S. L.; Dravnieks, K.

    1985-04-30

    An energy recovery ventilator adapted to be mounted on a roof and adapted to be connected to the outlet of an exhaust air duct of a building ventilation system and the inlet of an air supply duct of a building ventilation system. The energy recovery ventilator includes a housing having an exhaust air chamber and a supply air chamber separated by a divider wall. A circular heat transfer wheel is position in the housing, a portion of the wheel being housed in the exhaust air chamber and a second portion of the wheel being housed in the supply air chamber, and the heat transfer wheel is caused to rotate about a central axis. An exhaust fan is housed in the exhaust air chamber and causes exhaust air to be pulled through the exhaust air duct and the heat transfer wheel and to be exhausted from the housing. A supply air fan is housed in the supply air housing above the heat transfer wheel, and causes outside air to be drawn into the supply air chamber and to be forced through the heat transfer wheel into the air supply duct.

  3. Leading a Recovery-oriented Social Enterprise.

    PubMed

    Raeburn, Toby; Hungerford, Catherine; Sayers, Jan; Escott, Phil; Lopez, Violeta; Cleary, Michelle

    2015-05-01

    Recovery-oriented mental health services promote the principles of recovery, such as hope and optimism, and are characterized by a personalized approach to developing consumer self-determination. Nurse leaders are increasingly developing such services as social enterprises, but there is limited research on the leadership of these programs. Leading a recovery-oriented mental health nurse social enterprise requires visionary leadership, collaboration with consumers and local health providers, financial viability, and commitment to recovery-focused practice. This article describes the framework of an Australian mental health nursing social enterprise, including the service attributes and leadership lessons that have been learned from developing program sustainability.

  4. Including Jews in Multiculturalism.

    ERIC Educational Resources Information Center

    Langman, Peter F.

    1995-01-01

    Discusses reasons for the lack of attention to Jews as an ethnic minority within multiculturalism both by Jews and non-Jews; why Jews and Jewish issues need to be included; and addresses some of the issues involved in the ethical treatment of Jewish clients. (Author)

  5. Competing priorities: staff perspectives on supporting recovery.

    PubMed

    Le Boutillier, Clair; Slade, Mike; Lawrence, Vanessa; Bird, Victoria J; Chandler, Ruth; Farkas, Marianne; Harding, Courtenay; Larsen, John; Oades, Lindsay G; Roberts, Glenn; Shepherd, Geoff; Thornicroft, Graham; Williams, Julie; Leamy, Mary

    2015-07-01

    Recovery has come to mean living a life beyond mental illness, and recovery orientation is policy in many countries. The aims of this study were to investigate what staff say they do to support recovery and to identify what they perceive as barriers and facilitators associated with providing recovery-oriented support. Data collection included ten focus groups with multidisciplinary clinicians (n = 34) and team leaders (n = 31), and individual interviews with clinicians (n = 18), team leaders (n = 6) and senior managers (n = 8). The identified core category was Competing Priorities, with staff identifying conflicting system priorities that influence how recovery-oriented practice is implemented. Three sub-categories were: Health Process Priorities, Business Priorities, and Staff Role Perception. Efforts to transform services towards a recovery orientation require a whole-systems approach.

  6. The Role of Meditation in Addiction Recovery

    ERIC Educational Resources Information Center

    Pruett, James M.; Nishimura, Nancy J.; Priest, Ronnie

    2007-01-01

    The authors examined the role of meditation as an important component in addiction recovery. Successful addiction recovery is often related to an individual's ability to develop and use a repertoire of coping behaviors, including the ability to maintain an ongoing awareness of one's vulnerability. These learned behaviors serve as reliable…

  7. Solid Waste: Resource Recovery and Reuse

    ERIC Educational Resources Information Center

    Bernardo, James V.

    1973-01-01

    Discusses some of the processes involved in resource recovery (recycling) from municipal solid wastes. Provides specific examples of recovery of valuable resources, and suggests that the environmental consequences and technology related to solid waste treatment should be included in high school science courses. (JR)

  8. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery

    NASA Astrophysics Data System (ADS)

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L.

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques.

  9. Designing and managing successful endangered species recovery programs

    NASA Astrophysics Data System (ADS)

    Clark, Tim W.; Crete, Ron; Cada, John

    1989-03-01

    Endangered species recovery is characterized by complexity and uncertainty in both its biological and organizational aspects. To improve performance in the organizational dimension, some models of organizations are briefly introduced with an emphasis on the organization as a system for processing information, i.e., for successfully dealing with the high uncertainty in the task environment. A strong task orientation,which rewards achievement of the primary goal, is suggested as ideal for this task, as is generative rationality, which encourages workers to observe, critique, and generate new ideas. The parallel organization—a flexible, participatory, problem-solving structure set up alongside traditional bureaucracies—is offered as a useful structure for meeting the demands of uncertainties encountered during recovery. Task forces and projects teams can be set up as parallel organizations. Improved managerial functions include coordinating roles to facilitate the flow and use of information; decision making to avoid “groupthink”—the defects, symptoms, and countermeasures are described; and productive, active management of the inevitable conflict. The inability of organizations to solve dilemmas, to examine their own structures and management, and to change themselves for more effective, efficient, and equitable performance is seen as the major obstacle to improved recovery programs. Some recommendations for effecting change in bureaucracies are made along with a call for case studies detailing the organizational dimensions of endangered species recovery programs.

  10. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery.

    PubMed

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques.

  11. Oil recovery from refinery oily sludge via ultrasound and freeze/thaw.

    PubMed

    Zhang, Ju; Li, Jianbing; Thring, Ronald W; Hu, Xuan; Song, Xinyuan

    2012-02-15

    The effective disposal of oily sludge generated from the petroleum industry has received increasing concerns, and oil recovery from such waste was considered as one feasible option. In this study, three different approaches for oil recovery were investigated, including ultrasonic treatment alone, freeze/thaw alone and combined ultrasonic and freeze/thaw treatment. The results revealed that the combined process could achieve satisfactory performance by considering the oil recovery rate and the total petroleum hydrocarbon (TPH) concentrations in the recovered oil and wastewater. The individual impacts of five different factors on the combined process were further examined, including ultrasonic power, ultrasonic treatment duration, sludge/water ratio in the slurry, as well as bio-surfactant (rhamnolipids) and salt (NaCl) concentrations. An oil recovery rate of up to 80.0% was observed with an ultrasonic power of 66 W and an ultrasonic treatment duration of 10 min when the sludge/water ratio was 1:2 without the addition of bio-surfactant and salt. The examination of individual factors revealed that the addition of low concentration of rhamnolipids (<100mg/L) and salt (<1%) to the sludge could help improve the oil recovery from the combined treatment process. The experimental results also indicated that ultrasound and freeze/thaw could promote the efficiency of each other, and the main mechanism of oil recovery enhancement using ultrasound was through enhanced desorption of petroleum hydrocarbons (PHCs) from solid particles.

  12. DNA recovery from soils of diverse composition.

    PubMed

    Zhou, J; Bruns, M A; Tiedje, J M

    1996-02-01

    A simple, rapid method for bacterial lysis and direct extraction of DNA from soils with minimal shearing was developed to address the risk of chimera formation from small template DNA during subsequent PCR. The method was based on lysis with a high-salt extraction buffer (1.5 M NaCl) and extended heating (2 to 3 h) of the soil suspension in the presence of sodium dodecyl sulfate (SDS), hexadecyltrimethylammonium bromide, and proteinase K. The extraction method required 6 h and was tested on eight soils differing in organic carbon, clay content, and pH, including ones from which DNA extraction is difficult. The DNA fragment size in crude extracts from all soils was > 23 kb. Preliminary trials indicated that DNA recovery from two soils seeded with gram-negative bacteria was 92 to 99%. When the method was tested on all eight unseeded soils, microscopic examination of indigenous bacteria in soil pellets before and after extraction showed variable cell lysis efficiency (26 to 92%). Crude DNA yields from the eight soils ranged from 2.5 to 26.9 micrograms of DNA g-1, and these were positively correlated with the organic carbon content in the soil (r = 0.73). DNA yields from gram-positive bacteria from pure cultures were two to six times higher when the high-salt-SDS-heat method was combined with mortar-and-pestle grinding and freeze-thawing, and most DNA recovered was of high molecular weight. Four methods for purifying crude DNA were also evaluated for percent recovery, fragment size, speed, enzyme restriction, PCR amplification, and DNA-DNA hybridization. In general, all methods produced DNA pure enough for PCR amplification. Since soil type and microbial community characteristics will influence DNA recovery, this study provides guidance for choosing appropriate extraction and purification methods on the basis of experimental goals.

  13. Petroleum recovery: Reservoir engineering and recovery methods. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-09-01

    The bibliography contains citations concerning field projects and supporting research on petroleum recovery and reservoir technology. Recovery agents and methods are discussed including responsive copolymers, microemulsions, surfactants, steam injection, gas injection, miscible displacement, and thermal processes. Reservoir modeling, simulation, and performance are examined. (Contains 250 citations and includes a subject term index and title list.)

  14. What does recovery mean to you? Lessons from the recovery experience for research and practice

    PubMed Central

    Laudet, Alexandre B.

    2007-01-01

    Recovery is a ubiquitous concept but remains poorly understood and ill-defined, hindering the development of assessment tools necessary to evaluate treatment effectiveness. This study examines recovery definitions and experiences among persons who self-identify as ‘in recovery.’ Two questions are addressed: (1) Does recovery require total abstinence from all drugs and alcohol? and (2) Is recovery defined solely in terms of substance use or does it extend to other areas of functioning as well? Inner-city residents with resolved dependence to crack or heroin were interviewed yearly three times (N = 289). Most defined recovery as total abstinence. However, recovery goes well beyond abstinence; it is experienced as a bountiful ‘new life’, an ongoing process of growth, self-change and of reclaiming the self. Implications for clinical and assessment practice are discussed, including the need to effect paradigmatic shifts from pathology to wellness and from acute to continuing models. PMID:17889296

  15. Implications of rate-limited mass transfer for aquifer storage and recovery.

    PubMed

    Culkin, Sean L; Singha, Kamini; Day-Lewis, Frederick D

    2008-01-01

    Pressure to decrease reliance on surface water storage has led to increased interest in aquifer storage and recovery (ASR) systems. Recovery efficiency, which is the ratio of the volume of recovered water that meets a predefined standard to total volume of injected fluid, is a common criterion of ASR viability. Recovery efficiency can be degraded by a number of physical and geochemical processes, including rate-limited mass transfer (RLMT), which describes the exchange of solutes between mobile and immobile pore fluids. RLMT may control transport behavior that cannot be explained by advection and dispersion. We present data from a pilot-scale ASR study in Charleston, South Carolina, and develop a three-dimensional finite-difference model to evaluate the impact of RLMT processes on ASR efficiency. The modeling shows that RLMT can explain a rebound in salinity during fresh water storage in a brackish aquifer. Multicycle model results show low efficiencies over one to three ASR cycles due to RLMT degrading water quality during storage; efficiencies can evolve and improve markedly, however, over multiple cycles, even exceeding efficiencies generated by advection-dispersion only models. For an idealized ASR model where RLMT is active, our simulations show a discrete range of diffusive length scales over which the viability of ASR schemes in brackish aquifers would be hindered.

  16. 77 FR 4030 - Nationwide Limited Public Interest Waiver Under the American Recovery and Reinvestment Act of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-26

    ... American Recovery and Reinvestment Act of 2009 (Recovery Act) AGENCY: Office of Energy Efficiency and... requirements of section 1605 of the Recovery Act under the authority of section 1605(b)(1) (amended public... INFORMATION: Under the authority of the Recovery Act, section 1605(b)(1), the head of a Federal department...

  17. Integrated oxygen recovery system

    NASA Technical Reports Server (NTRS)

    Lee, M. Gene; Davenport, Ronald J.

    1993-01-01

    Life Systems has conceptualized an innovative Integrated Oxygen Recovery System (IORS) applicable to advanced mission air revitalization. The IORS provides the capability to electrochemically generate metabolic oxygen (O2) and recover O2 from the space habitat atmosphere via a carbon dioxide (CO2) reduction process within a single assembly. To achieve this capability, the IORS utilizes a Solid Metal Cathode (SMC) water electrolysis unit that simultaneously serves as the Sabatier CO2 reduction reactor. The IORS enables two major life support systems currently baselined in closed loop air revitalization systems to be combined into one smaller, less complex system. This concept reduces fluidic and electrical interface requirements and eliminates a hydrogen (H2) interface. Life Systems is performing an evaluation of the IORS process directed at demonstrating performance and quantifying key physical characteristics including power, weight, and volume. Technical progress achieved during the first two months of the program is summarized.

  18. Integrated oxygen recovery system

    NASA Technical Reports Server (NTRS)

    Lee, M. Gene; Davenport, Ronald J.

    1993-01-01

    Life Systems has conceptualized an innovative Integrated Oxygen Recovery System (IORS) applicable to advanced mission air revitalization. The IORS provides the capability to electrochemically generate metabolic oxygen (O2) and recover O2 from the space habitat atmosphere via a carbon dioxide (CO2) reduction process within a single assembly. To achieve this capability, the IORS utilizes a Solid Metal Cathode (SMC) water electrolysis unit that simultaneously serves as the Sabatier CO2 reduction reactor. The IORS enables two major life support systems currently baselined in closed loop air revitalization systems to be combined into one smaller, less complex system. This concept reduces fluidic and electrical interface requirements and eliminates a hydrogen (H2) interface. Life Systems is performing an evaluation of the IORS process directed at demonstrating performance and quantifying key physical characteristics including power, weight, and volume. The results of the checkout, shakedown, and initial parametric tests are summarized.

  19. Nutritional therapies (including fosteum).

    PubMed

    Nieves, Jeri W

    2009-03-01

    Nutrition is important in promoting bone health and in managing an individual with low bone mass or osteoporosis. In adult women and men, known losses of bone mass and microarchitecture occur, and nutrition can help minimize these losses. In every patient, a healthy diet with adequate protein, fruits, vegetables, calcium, and vitamin D is required to maintain bone health. Recent reports on nutritional remedies for osteoporosis have highlighted the importance of calcium in youth and continued importance in conjunction with vitamin D as the population ages. It is likely that a calcium intake of 1200 mg/d is ideal, and there are some concerns about excessive calcium intakes. However, vitamin D intake needs to be increased in most populations. The ability of soy products, particularly genistein aglycone, to provide skeletal benefit has been recently studied, including some data that support a new medical food marketed as Fosteum (Primus Pharmaceuticals, Scottsdale, AZ).

  20. Recovery and Money Management

    PubMed Central

    Rowe, Michael; Serowik, Kristin L.; Ablondi, Karen; Wilbur, Charles; Rosen, Marc I.

    2014-01-01

    Objective Social recovery and external money management are important approaches in contemporary mental health care, but little research has been done on the relationship between the two or on application of recovery principles to money management for people at risk of being assigned a representative payee or conservator. Methods Twenty-five transcripts out of forty-nine total qualitative interviews with persons receiving SSI or SSDI who were at risk of being assigned a money manager were analyzed to assess the presence of recognized recovery themes. Results The recovery principles of self-direction and responsibility were strong themes in participant comments related to money management. Conclusions and Implications for Practice Money management interventions should incorporate peoples’ recovery-related motivations to acquire financial management skills as a means to direct and assume responsibility for one’s finances. Staff involved in money management should receive training to support client’s recovery-related goals. PMID:23750764

  1. Refraction, including prisms.

    PubMed

    Hiatt, R L

    1991-02-01

    The literature in the past year on refraction is replete with several isolated but very important topics that have been of interest to strabismologists and refractionists for many decades. The refractive changes in scleral buckling procedures include an increase in axial length as well as an increase in myopia, as would be expected. Tinted lenses in dyslexia show little positive effect in the nonasthmatic patients in one study. The use of spectacles or bifocals as a way to control increase in myopia is refuted in another report. It has been shown that in accommodative esotropia not all patients will be able to escape the use of bifocals in the teenage years, even though surgery might be performed. The hope that disposable contact lenses would cut down on the instance of giant papillary conjunctivitis and keratitis has been given some credence, and the conventional theory that sclerosis alone is the cause of presbyopia is attacked. Also, gas permeable bifocal contact lenses are reviewed and the difficulties of correcting presbyopia by this method outlined. The practice of giving an aphakic less bifocal addition instead of a nonaphakic, based on the presumption of increased effective power, is challenged. In the review of prisms, the majority of articles concern prism adaption. The most significant report is that of the Prism Adaptation Study Research Group (Arch Ophthalmol 1990, 108:1248-1256), showing that acquired esotropia in particular has an increased incidence of stable and full corrections surgically in the prism adaptation group versus the control group.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event Symposium

    SciTech Connect

    Lesperance, Ann M.

    2008-06-30

    On March 19, 2008, policy makers, emergency managers, and medical and Public Health officials convened in Seattle, Washington, for a workshop on Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event. The day-long symposium was aimed at generating a dialogue about restoration and recovery through a discussion of the associated challenges that impact entire communities, including people, infrastructure, and critical systems.

  3. Recovery of ammonia and phosphate minerals from swine wastewater using gas-permeable membranes.

    PubMed

    Vanotti, M B; Dube, P J; Szogi, A A; García-González, M C

    2017-04-01

    Gas-permeable membrane technology is useful to recover ammonia (NH3) from liquid manures. In this study, phosphorus (P) recovery via MgCl2 precipitation was enhanced by combining it with NH3 recovery through gas-permeable membranes. Anaerobically digested swine wastewater containing approximately 2300 mg NH4(+)-N L(-1) and 450 mg P L(-1) was treated using submerged membranes plus low-rate aeration to recover the NH3 from within the liquid and MgCl2 to precipitate the P. The experiments included a first configuration where N and P were recovered sequentially and a second configuration with simultaneous recovery. The low-rate aeration reduced the natural carbonate, increased pH and accelerated NH3 uptake by the gas-permeable membrane system, which in turn benefited P recovery. Phosphorus removal efficiency was >90% and P recovery efficiency was about 100%. With higher NH3 capture, the recovered P contained higher P2O5 content (37-46%, >98% available), similar to the composition of the biomineral newberyite (MgHPO4·3H2O).

  4. Hospital service recovery.

    PubMed

    Gutbezahl, Cary; Haan, Perry

    2006-01-01

    An organization's ability to correct service errors is an important factor in achieving success in today's service economy. This paper examines service recovery in hospitals in the U.S. First is a general review of service recovery theories. Next is a discussion of specific service issues related to the hospital environment. The literature on service recovery is used to make specific recommendations to hospitals for ways to improve their ability to remedy service errors when they occur. Suggestions for future research in the field of service recovery are also made.

  5. Dutchess County Resource Recovery Task Force report: Dutchess County Pyrolysis Program

    SciTech Connect

    1980-07-01

    Dutchess County initiated development of a long-range master plan for Solid Waste Management in 1971. The plan included development of a resource recovery facility to service the municipalities in the County population center. Based on early recommendations, a pyrolysis facility employing Purox technology was to be implemented. A feasibility study, paid for by County funds was completed in 1975. The study provided siting recommendations, estimation of available waste, and preliminary facility design. Because of various considerations, the project was not developed. Under the Department of Energy grant, the County reassessed the feasibility of a resource recovery facility, with emphasis on confirming previous conclusions supporting the Purox technology, waste availability, energy recovery and sale and siting of the plant. The conclusions reached in the new study were: a resource recovery facility is feasible for the County; sufficient waste for such a facility is available and subject to control; While Purox technology was feasible it is not the most appropriate available technoloy for the County; that mass burning with steam recovery is the most appropriate technology; and that resource recovery while presently more expensive than landfilling, represents the only cost effective, energy efficient, and environmentally sound way to handle the solid waste problem in the County.

  6. Recovery After Prolonged Bed-Rest Deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Quach, David T.

    2003-01-01

    Recovery data were analyzed from normal healthy test subjects maintained in the horizontal or head-down body position in well-controlled bed rest (BR) studies in which adherence to the well-designed protocol was monitored. Because recovery data were almost always of secondary importance to the data collected during the BR period, there was little consistency in the recovery experimental designs regarding control factors (e.g., diet or exercise), duration, or timing of data collection. Thus, only about half of the BR studies that provided appropriate data were analyzed here. These recovery data were sorted into two groups: those from BR protocols of less than 37 days, and those from protocols greater than 36 days. There was great disparity in the unchanged responses at the end of BR in these two groups. Likewise with the variables that required more than 40 days for recovery; for example, some immune variables required more than 180 days. Knowledge of the recovery process after BR in healthy people should assist rehabilitation workers in differentiating "healthy" BR recovery responses from those of the infirmity of sick or injured patients; this should result in more appropriate and efficient health care.

  7. Quantifying fault recovery in multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Malek, Miroslaw; Harary, Frank

    1990-01-01

    Various aspects of reliable computing are formalized and quantified with emphasis on efficient fault recovery. The mathematical model which proves to be most appropriate is provided by the theory of graphs. New measures for fault recovery are developed and the value of elements of the fault recovery vector are observed to depend not only on the computation graph H and the architecture graph G, but also on the specific location of a fault. In the examples, a hypercube is chosen as a representative of parallel computer architecture, and a pipeline as a typical configuration for program execution. Dependability qualities of such a system is defined with or without a fault. These qualities are determined by the resiliency triple defined by three parameters: multiplicity, robustness, and configurability. Parameters for measuring the recovery effectiveness are also introduced in terms of distance, time, and the number of new, used, and moved nodes and edges.

  8. 75 FR 27705 - Endangered and Threatened Species; Recovery Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... 0648-XV18 Endangered and Threatened Species; Recovery Plans AGENCY: National Marine Fisheries Service... Draft Recovery Plan for Central California Coast coho salmon (Draft Plan). In the ADDRESSES portion of...-mail to: CohoRecovery.SWR@noaa.gov . Include in the subject line of the e-mail comment the...

  9. 47 CFR 51.215 - Dialing parity: Cost recovery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Dialing parity: Cost recovery. 51.215 Section... (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.215 Dialing parity: Cost recovery... service in the area served by the LEC, including that LEC. The LEC shall use a cost recovery...

  10. Recovery High Schools: Students and Responsive Academic and Therapeutic Services

    ERIC Educational Resources Information Center

    Moberg, D. Paul; Finch, Andrew J.; Lindsley, Stephanie M.

    2014-01-01

    This article reviews findings from the authors' studies of recovery high schools (RHS), including a 1995 program evaluation of a school in New Mexico (Moberg & Thaler, 1995), a 2006-09 descriptive study of 17 recovery high schools (Moberg & Finch, 2008), and presents early findings from a current study of the effectiveness of recovery high…

  11. 47 CFR 51.215 - Dialing parity: Cost recovery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Dialing parity: Cost recovery. 51.215 Section... (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.215 Dialing parity: Cost recovery... service in the area served by the LEC, including that LEC. The LEC shall use a cost recovery...

  12. Inventory and review of aquifer storage and recovery in southern Florida

    USGS Publications Warehouse

    Reese, Ronald S.

    2002-01-01

    publications > water resources investigations > report 02-4036 US Department of the Interior US Geological Survey WRI 02-4036Inventory and Review of Aquifer Storage and Recovery in Southern Florida By Ronald S. ReeseTallahassee, Florida 2002 prepared as part of the U.S. Geological Survey Place-Based Studies Program ABSTRACT Abstract Introduction Inventory of Data Case Studies Summary References Tables Aquifer storage and recovery in southern Florida has been proposed on an unprecedented scale as part of the Comprehensive Everglades Restoration Plan. Aquifer storage and recovery wells were constructed or are under construction at 27 sites in southern Florida, mostly by local municipalities or counties located in coastal areas. The Upper Floridan aquifer, the principal storage zone of interest to the restoration plan, is the aquifer being used at 22 of the sites. The aquifer is brackish to saline in southern Florida, which can greatly affect the recovery of the freshwater recharged and stored.Well data were inventoried and compiled for all wells at most of the 27 sites. Construction and testing data were compiled into four main categories: (1) well identification, location, and construction data; (2) hydraulic test data; (3) ambient formation water-quality data; and (4) cycle testing data. Each cycle during testing or operation includes periods of recharge of freshwater, storage, and recovery that each last days or months. Cycle testing data include calculations of recovery efficiency, which is the percentage of the total amount of potable water recharged for each cycle that is recovered.Calculated cycle test data include potable water recovery efficiencies for 16 of the 27 sites. However, the number of cycles at most sites was limited; except for two sites, the highest number of cycles was five. Only nine sites had a recovery efficiency above 10 percent for the first cycle, and 10 sites achieved a recovery efficiency above 30 percent during at least one cycle. The

  13. Wastewater heat recovery apparatus

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  14. Wastewater heat recovery apparatus

    DOEpatents

    Kronberg, J.W.

    1992-09-01

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  15. Integrated analysis of error detection and recovery

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Lee, Y. H.

    1985-01-01

    An integrated modeling and analysis of error detection and recovery is presented. When fault latency and/or error latency exist, the system may suffer from multiple faults or error propagations which seriously deteriorate the fault-tolerant capability. Several detection models that enable analysis of the effect of detection mechanisms on the subsequent error handling operations and the overall system reliability were developed. Following detection of the faulty unit and reconfiguration of the system, the contaminated processes or tasks have to be recovered. The strategies of error recovery employed depend on the detection mechanisms and the available redundancy. Several recovery methods including the rollback recovery are considered. The recovery overhead is evaluated as an index of the capabilities of the detection and reconfiguration mechanisms.

  16. Houston Recovery Initiative: A Rich Case Study of Building Recovery Communities One Voice at a Time.

    PubMed

    Bitting, Sara; Nash, Angela; Ochoa, Ashley

    2016-01-01

    Recovery from alcohol and drug problems is a process of change through which an individual achieves control and improved quality of life. Recovery is a primary goal for individuals with substance use disorder as it provides hope that treatment and overall health are possible for every individual. More than 23 million Americans are in recovery from addiction to alcohol and other drugs.Recovery-oriented systems of care (ROSC) are networks of community services and peer support that help individuals and families achieve recovery from substances and improve overall health. ROSC is a strengths-based and person-centered model that leverages existing community resources to address the needs of individuals and families as they progress through the journey of recovery. The ROSC model serves as the foundation of the Houston Recovery Initiative (HRI).The purpose of this article is to describe the history, development, and infrastructure of the HRI, which is a volunteer collaboration whose main goal is to educate the community on recovery and broaden the recovery safety net for people with substance use disorder in Houston, Texas. Since 2010, the HRI has grown to include more than 200 agencies across the spectrum of treatment and recovery support services in Houston so as to provide a resource for the community. Herein, we detail efforts to grow the HRI, lessons learned, future plans, and resources needed to move the HRI forward.

  17. "Sizing Up" Codependency Recovery.

    ERIC Educational Resources Information Center

    Messner, Beth A.

    1996-01-01

    Analyzes codependency related, self-help literature with a dramatistic lens to explore M. Beattie's bibliotherapeutic portrayal of codependency and codependency recovery. Depicts Beattie's "stylistic medicine" for codependency recovery as a three-step, rebirth experience: (1) recognize the codependent pollution within; (2) engage in…

  18. From the Kinetic Energy Recovery System to the Thermo-Hydraulic Hybrid Motor Vehicle

    NASA Astrophysics Data System (ADS)

    Cristescu, Corneliu; Drumea, Petrin; Guta, Dragos; Dumitrescu, Catalin

    2011-12-01

    The paper presents some theoretical and experimental results obtained by the Hydraulics and Pneumatics Research Institute INOE 2000-IHP with its partners, regarding the creating of one hydraulic system able to recovering the kinetic energy of the motor vehicles, in the braking phases, and use this recovered energy in the starting and accelerating phases. Also, in the article is presented a testing stand, which was especially designed for testing the hydraulic system for recovery the kinetic energy. Through mounting of the kinetic energy recovering hydraulic system, on one motor vehicle, this vehicle became a thermo-hydraulic hybrid vehicle. Therefore, the dynamic behavior was analyzed for the whole hybrid motor vehicle, which includes the energy recovery system. The theoretical and experimental results demonstrate the possible performances of the hybrid vehicle and that the kinetic energy recovery hydraulic systems are good means to increase energy efficiency of the road motor vehicles and to decrease of the fuel consumption.

  19. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery.

    PubMed

    Hu, H W; Tang, G H; Niu, D

    2016-06-07

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  20. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    NASA Astrophysics Data System (ADS)

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-06-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  1. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    PubMed Central

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-01-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed. PMID:27270997

  2. Failure recovery solutions using cognitive mechanisms based on software-defined optical network platform

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Guo, Lei; Hou, Weigang; Zhang, Qihan; Wang, Siqi

    2017-01-01

    Fault tolerance is one of the most desirable properties in the optical network since a large amount of data will be lost if the failure recovery cannot be well achieved. The software-defined network is an innovative paradigm-which decouples the control module from the underlying data forwarding plane-to make fast decisions on detecting and restoring link failures. Therefore, we focus on failure recovery solutions based on software-defined optical networks. The out-of-band control mechanism is utilized for the communication between the controller and the data forwarding elements. We demonstrate the performance of the proposed solutions-including a failure detection scheme, a dynamic all pairs shortest paths algorithm, and a failure recovery application-based on our software-defined optical network platform. Experimental demonstration and numerical evaluation both show its overall feasibility and efficiency.

  3. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    NASA Technical Reports Server (NTRS)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  4. Disaster Resiliency and Recovery: Capabilities (Fact Sheet)

    SciTech Connect

    Not Available

    2012-11-01

    The National Renewable Energy Laboratory (NREL) is the nation's leader in energy efficient and renewable energy technologies, practices, and strategies. For the last 15 years, NREL has provided expertise, tools, and innovations to private industry; federal, state, and local governments; non-profit organizations; and communities during the planning, recovery, and rebuilding stages after disaster strikes.

  5. Stress and Recovery during Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Nicolas, Michel

    The aim of this study was to determine the effects of a 60-day head-down tilt long-term bed rest (HDT) on stress and recovery in sixteen healthy female volunteers during the WISE-2005 study (Women International Space Simulation for Exploration). Participants were randomly assigned to either an exercise group (Exe) that followed a training program combining resistive and aerobic exercises, or to a no-exercise control group (Ctl). Psychological states were assessed using the Rest-Q, a validated questionnaire based on stress-recovery responses. A longitudinal analysis revealed significant changes in the general and specific stress scales for all participants throughout the experiment with a critical stage from supine to standing posture leading to a significant decrease in physical recovery. During HDT, Exe reported higher scores in stress subscales, as well as lower recovery scores compared to the Ctl. During the post HDT ambulatory recovery period, the exercisers still reported higher scores than the non-exercisers on the Lack of energy stress related scale, along with lower scores in general well-being and personal accomplishment. The present findings show that simulated weightlessness such as HDT may induce psychological stress and lead to subsequent alterations in perceived recovery. Exercise did not reduce HDT impaired effects on stress and recovery states. In the perspective of spaceflights of long-duration such as the future missions to Mars, there is a need for additional experiments to further investigate spaceflight-induced changes of stress and recovery parameters and the effects of exercise on these parameters. Further studies might determine and analyze the psychological factors involved, but also how to intervene concerning these factors with efficient psychological preparation which, although not yet fully investigated, may reduce stress, promote recovery and support adaptive responses to such extreme environments.

  6. Oil Recovery Increases by Low-Salinity Flooding: Minnelusa and Green River Formations

    SciTech Connect

    Eric P. Robertson

    2010-09-01

    Waterflooding is by far the most widely used method in the world to increase oil recovery. Historically, little consideration has been given in reservoir engineering practice to the effect of injection brine composition on waterflood displacement efficiency or to the possibility of increased oil recovery through manipulation of the composition of the injected water. However, recent work has shown that oil recovery can be significantly increased by modifying the injection brine chemistry or by injecting diluted or low salinity brine. This paper reports on laboratory work done to increase the understanding of improved oil recovery by waterflooding with low salinity injection water. Porous media used in the studies included outcrop Berea sandstone (Ohio, U.S.A.) and reservoir cores from the Green River formation of the Uinta basin (Utah, U.S.A.). Crude oils used in the experimental protocols were taken from the Minnelusa formation of the Powder River basin (Wyoming, U.S.A.) and from the Green River formation, Monument Butte field in the Uinta basin. Laboratory corefloods using Berea sandstone, Minnelusa crude oil, and simulated Minnelusa formation water found a significant relationship between the temperature at which the oil- and water-saturated cores were aged and the oil recovery resulting from low salinity waterflooding. Lower aging temperatures resulted in very little to no additional oil recovery, while cores aged at higher temperatures resulted in significantly higher recoveries from dilute-water floods. Waterflood studies using reservoir cores and fluids from the Green River formation of the Monument Butte field also showed significantly higher oil recoveries from low salinity waterfloods with cores flooded with fresher water recovering 12.4% more oil on average than those flooded with undiluted formation brine.

  7. The Relevance of Phosphorus and Iron Chemistry to the Recovery of Phosphorus from Wastewater: A Review.

    PubMed

    Wilfert, Philipp; Kumar, Prashanth Suresh; Korving, Leon; Witkamp, Geert-Jan; van Loosdrecht, Mark C M

    2015-08-18

    The addition of iron is a convenient way for removing phosphorus from wastewater, but this is often considered to limit phosphorus recovery. Struvite precipitation is currently used to recover phosphorus, and this approach has attracted much interest. However, it requires the use of enhanced biological phosphorus removal (EBPR). EBPR is not yet widely applied and the recovery potential is low. Other phosphorus recovery methods, including sludge application to agricultural land or recovering phosphorus from sludge ash, also have limitations. Energy-producing wastewater treatment plants increasingly rely on phosphorus removal using iron, but the problem (as in current processes) is the subsequent recovery of phosphorus from the iron. In contrast, phosphorus is efficiently mobilized from iron by natural processes in sediments and soils. Iron-phosphorus chemistry is diverse, and many parameters influence the binding and release of phosphorus, including redox conditions, pH, presence of organic substances, and particle morphology. We suggest that the current poor understanding of iron and phosphorus chemistry in wastewater systems is preventing processes being developed to recover phosphorus from iron-phosphorus rich wastes like municipal wastewater sludge. Parameters that affect phosphorus recovery are reviewed here, and methods are suggested for manipulating iron-phosphorus chemistry in wastewater treatment processes to allow phosphorus to be recovered.

  8. Dictionary learning and sparse recovery for electrodermal activity analysis

    NASA Astrophysics Data System (ADS)

    Kelsey, Malia; Dallal, Ahmed; Eldeeb, Safaa; Akcakaya, Murat; Kleckner, Ian; Gerard, Christophe; Quigley, Karen S.; Goodwin, Matthew S.

    2016-05-01

    Measures of electrodermal activity (EDA) have advanced research in a wide variety of areas including psychophysiology; however, the majority of this research is typically undertaken in laboratory settings. To extend the ecological validity of laboratory assessments, researchers are taking advantage of advances in wireless biosensors to gather EDA data in ambulatory settings, such as in school classrooms. While measuring EDA in naturalistic contexts may enhance ecological validity, it also introduces analytical challenges that current techniques cannot address. One limitation is the limited efficiency and automation of analysis techniques. Many groups either analyze their data by hand, reviewing each individual record, or use computationally inefficient software that limits timely analysis of large data sets. To address this limitation, we developed a method to accurately and automatically identify SCRs using curve fitting methods. Curve fitting has been shown to improve the accuracy of SCR amplitude and location estimations, but have not yet been used to reduce computational complexity. In this paper, sparse recovery and dictionary learning methods are combined to improve computational efficiency of analysis and decrease run time, while maintaining a high degree of accuracy in detecting SCRs. Here, a dictionary is first created using curve fitting methods for a standard SCR shape. Then, orthogonal matching pursuit (OMP) is used to detect SCRs within a dataset using the dictionary to complete sparse recovery. Evaluation of our method, including a comparison to for speed and accuracy with existing software, showed an accuracy of 80% and a reduced run time.

  9. A review of technologies and performances of thermal treatment systems for energy recovery from waste.

    PubMed

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2015-03-01

    The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes - Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) - were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities--incineration or gasification--co-generation is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net electric efficiency may reach values up to 30-31%. In small-medium plants, net electric efficiency is constrained by scale effect and remains at values around 20-24%. Other types of technical solutions--gasification with syngas use in internally fired devices, pyrolysis and plasma gasification--are less common or studied at pilot or demonstrative scale and, in any case, offer at present similar or lower levels

  10. Methane Recovery from Hydrate-bearing Sediments

    SciTech Connect

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with

  11. Insurance recovery for manufactured gas plant liabilities

    SciTech Connect

    Koch, G.S.; Wise, K.T.; Hanser, P.

    1997-04-15

    This article addresses insurance and liability issues arising from former manufactured gas plant sites. Three issues are discussed in detail: (1) how to place a value on a potential insurance recovery or damage award, (2) how to maximize recovery through litigation or settlement, and (3) how to mediate coverage disputes to avoid litigation. The first issue, valuing potential recovery, is discussed in the most detail. An approach is outlined which includes organizing policy data, evaluating site facts relevant to coverage, estimating site costs, estimating coverage likelihoods, and assessing the expected value of litigation. Probability and cost estimate data is provided to aid in assessments.

  12. A review of technologies and performances of thermal treatment systems for energy recovery from waste

    SciTech Connect

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2015-03-15

    Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net

  13. Energy recovery ventilator

    SciTech Connect

    Benoit, Jeffrey T.; Dobbs, Gregory M.; Lemcoff, Norberto O.

    2015-06-23

    An energy recovery heat exchanger (100) includes a housing (102). The housing has a first flowpath (144) from a first inlet (104) to a first outlet (106). The housing has a second flowpath (146) from a second inlet (108) to a second outlet (110). Either of two cores may be in an operative position in the housing. Each core has a number of first passageways having open first and second ends and closed first and second sides. Each core has a number of second such passageways interspersed with the first passageways. The ends of the second passageways are aligned with the sides of the first passageways and vice versa. A number of heat transfer member sections separate adjacent ones of the first and second passageways. An actuator is coupled to the carrier to shift the cores between first and second conditions. In the first condition, the first core (20) is in the operative position and the second core (220) is not. In the second condition, the second core is in the operative position and the first core is not. When a core is in the operative position, its first passageways are along the first flowpath and the second passageways are along the second flowpath.

  14. Apollo 12 Pacific Recovery

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Sitting in the life raft, during the Apollo 12 Pacific recovery, are the three mission astronauts; Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms, while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  15. Resource Conservation and Recovery Act (RCRA) and Federal Facilities

    EPA Pesticide Factsheets

    Federal facilities have responsibilities with hazardous waste under RCRA, including the generation, transportation, treatment, storage, and disposal under the Resource Conservation and Recovery Act (RCRA). .

  16. Solvent recycle/recovery

    SciTech Connect

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  17. Implementing recovery: an analysis of the key technologies in Scotland

    PubMed Central

    2011-01-01

    Background Over the past ten years the promotion of recovery has become a stated aim of mental health policies within a number of English speaking countries, including Scotland. Implementation of a recovery approach involves a significant reorientation of mental health services and practices, which often poses significant challenges for reformers. This article examines how four key technologies of recovery have assisted in the move towards the creation of a recovery-oriented mental health system in Scotland. Methods Drawing on documentary analysis and a series of interviews we examine the construction and implementation of four key recovery 'technologies' as they have been put to use in Scotland: recovery narratives, the Scottish Recovery Indicator (SRI), Wellness Recovery Action Planning (WRAP) and peer support. Results Our findings illuminate how each of these technologies works to instantiate, exemplify and disseminate a 'recovery orientation' at different sites within the mental health system in order to bring about a 'recovery oriented' mental health system. They also enable us to identify some of the factors that facilitate or hinder the effectiveness of those technologies in bringing about a change in how mental health services are delivered in Scotland. These finding provide a basis for some general reflections on the utility of 'recovery technologies' to implement a shift towards recovery in mental health services in Scotland and elsewhere. Conclusions Our analysis of this process within the Scottish context will be valuable for policy makers and service coordinators wishing to implement recovery values within their own national mental health systems. PMID:21569633

  18. Recovery After Stroke: Healthy Eating

    MedlinePlus

    Recovery After Stroke: Healthy Eating Eating well after stroke is key to your recovery. Choosing healthy foods can help you keep up ... get the nutrition you need for your stroke recovery.  Eat your biggest meal early in the day ...

  19. Inertial fusion energy power reactor fuel recovery system

    SciTech Connect

    Gentile, C. A.; Kozub, T.; Langish, S. W.; Ciebiera, L. P.; Nobile, A.; Wermer, J.; Sessions, K.

    2008-07-15

    A conceptual design is proposed to support the recovery of un-expended fuel, ash, and associated post-detonation products resident in plasma exhaust from a {approx}2 GWIFE direct drive power reactor. The design includes systems for the safe and efficient collection, processing, and purification of plasma exhaust fuel components. The system has been conceptually designed and sized such that tritium bred within blankets, lining the reactor target chamber, can also be collected, processed, and introduced into the fuel cycle. The system will nominally be sized to process {approx}2 kg of tritium per day and is designed to link directly to the target chamber vacuum pumping system. An effort to model the fuel recovery system (FRS) using the Aspen Plus engineering code has commenced. The system design supports processing effluent gases from the reactor directly from the exhaust of the vacuum pumping system or in batch mode, via a buffer vessel in the Receiving and Analysis System. Emphasis is on nuclear safety, reliability, and redundancy as to maximize availability. The primary goal of the fuel recovery system design is to economically recycle components of direct drive IFE fuel. The FRS design is presented as a facility sub-system in the context of supporting the larger goal of producing safe and economical IFE power. (authors)

  20. 36 CFR 72.17 - Preliminary Action Program-commitments to be included.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... support services necessary for the development and completion of the Recovery Action Program...-commitments to be included. 72.17 Section 72.17 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR URBAN PARK AND RECREATION RECOVERY ACT OF 1978 Local Recovery Action Programs §...

  1. 36 CFR 72.17 - Preliminary Action Program-commitments to be included.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... support services necessary for the development and completion of the Recovery Action Program...-commitments to be included. 72.17 Section 72.17 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR URBAN PARK AND RECREATION RECOVERY ACT OF 1978 Local Recovery Action Programs §...

  2. 36 CFR 72.17 - Preliminary Action Program-commitments to be included.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... support services necessary for the development and completion of the Recovery Action Program...-commitments to be included. 72.17 Section 72.17 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR URBAN PARK AND RECREATION RECOVERY ACT OF 1978 Local Recovery Action Programs §...

  3. 36 CFR 72.17 - Preliminary Action Program-commitments to be included.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... support services necessary for the development and completion of the Recovery Action Program...-commitments to be included. 72.17 Section 72.17 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR URBAN PARK AND RECREATION RECOVERY ACT OF 1978 Local Recovery Action Programs §...

  4. 36 CFR 72.17 - Preliminary Action Program-commitments to be included.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... support services necessary for the development and completion of the Recovery Action Program...-commitments to be included. 72.17 Section 72.17 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR URBAN PARK AND RECREATION RECOVERY ACT OF 1978 Local Recovery Action Programs §...

  5. Nutritional Supplements to Enhance Recovery

    NASA Astrophysics Data System (ADS)

    Ziegenfuss, Tim N.; Landis, Jamie; Greenwood, Mike

    The ability to recover from intense exercise often separates good athletes from great ones. In the past, "recovery" often simply included rest, physical modalities (e.g., massage, hydration therapy) and meeting basic nutritional needs for fluid and energy intake. Today, athletes have a number of additional options to help them recover from high intensity training, one of which includes the judicious use of dietary supplements. This chapter briefly reviews nutritional strategies that have a strong theoretical background for enhancing rehydration/electrolyte balance, replenishing energy reserves, minimizing oxidative damage, and stimulating muscle repair.

  6. Galileo spacecraft anomaly and safing recovery

    NASA Technical Reports Server (NTRS)

    Basilio, Ralph R.; Durham, David M.

    1993-01-01

    A high-level anomaly recovery plan which identifies the steps necessary to recover from a spacecraft 'Safing' incident was developed for the Galileo spacecraft prior to launch. Since launch, a total of four in-flight anomalies have lead to entry into a system fault protection 'Safing' routine which has required the Galileo flight team to refine and execute the recovery plan. These failures have allowed the flight team to develop an efficient recovery process when permanent spacecraft capability degradation is minimal and the cause of the anomaly is quickly diagnosed. With this previous recovery experience and the very focused boundary conditions of a specific potential failure, a Gaspra asteroid recovery plan was designed to be implemented in as quickly as forty hours (desired goal). This paper documents the work performed above, however, the Galileo project remains challenged to develop a generic detailed recovery plan which can be implemented in a relatively short time to configure the spacecraft to a nominal state prior to future high priority mission objectives.

  7. RECOVERY OF RUTHENIUM VALUES

    DOEpatents

    Grummitt, W.E.; Hardwick, W.H.

    1961-01-01

    A process is given for the recovery of ruthenium from its aqueous solutions by oxidizing the ruthenium to the octavalent state and subsequently extracting the ruthenium into a halogen-substituted liquid paraffin.

  8. Silver recovery system data

    SciTech Connect

    Boulineau, B.

    1991-08-26

    In August of 1990 the Savannah River Site Photography Group began testing on a different type of silver recovery system. This paper describes the baseline study and the different phases of installation and testing of the system.

  9. City of Camden, New Jersey Program offering widespread energy recovery (power): Final report

    SciTech Connect

    Witkowski, Stanley

    2013-12-31

    The Camden Residential POWER Program, Program Offering Widespread Energy Recovery, is a program designed to benefit Camden homeowners, stabilize neighborhoods and put local contractors to work. Camden POWER granted up to $18,600 to fund energy efficient home improvements and necessary life/safety rehabilitation repairs. The program was designed as a self-sustaining, neighborhood approach to bringing long-term energy and financial savings to the community. Valuable home upgrades were completed, including high-efficiency furnaces, hot water heaters, insulation, insulated roofs and blower door guided air-sealing. The goal of all improvements were to reduce energy consumption, lower utility bills, improve property values and promote neighborhood stabilization.

  10. Postattack Recovery Strategies.

    DTIC Science & Technology

    1980-11-01

    relocation conditions --problems that range from financing and the stockpiling of needed resources to providing information about how, where, and with...sustain their health, improve economic and social conditions and start rebuilding for the long-term recovery. The types of information that would be...Postattack Economic Conditions One of the important federal roles for aiding postattack economic recovery will be that of supplying information on

  11. Refuse recycling and recovery

    SciTech Connect

    Holmes, J.R.

    1981-01-01

    Sanitary landfill of domestic, commercial, and industrial wastes is the predominant method of waste disposal in the United Kingdom. Although there was various waste disposal processes at various stages of design and test, landfill and incineration are still the only reliable methods of waste processing. Methods of recovery and use of refuse are examined in this book together with various separation processes, waste derived fuels, refuse composting, and glass and metal recovery. (Refs. 39).

  12. Apollo 8 Recovery

    NASA Technical Reports Server (NTRS)

    1968-01-01

    A team of U.S. Navy underwater demolition swimmers prepares the Apollo 8 command module for being hoisted aboard the carrier U.S.S. Yorktown, prime recovery vessel for the initial manned lunar orbital mission. The crew members - astronauts Frank Borman, James A. Lovell, Jr., and William A. Anders - had already egressed the spacecraft and were aboard the recovery ship at the time of this photo.

  13. Automotive Thermoelectric Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  14. The role of service recovery in HMO satisfaction.

    PubMed

    Sarel, D; Marmorstein, H

    1999-01-01

    Complaint handling and service recovery by HMOs may be more efficient to implement and more determinant of customer satisfaction and retention than other approaches such as improving access to care. The current findings are consistent with research on recovery efforts in other industries. Complaint handling systems must achieve rapid and comprehensive identification and resolution of HMO member problems. Both cultural change and appropriate incentives to re-educate employees within HMO organizations are additional requisites to effective service recovery. The benefits to the HMO of expenditures on service recovery should be more immediate and sustainable than the benefits derived from other methods of increasing member satisfaction.

  15. Localized recovery of complex networks against failure

    NASA Astrophysics Data System (ADS)

    Shang, Yilun

    2016-07-01

    Resilience of complex networks to failure has been an important issue in network research for decades, and recent studies have begun to focus on the inverse recovery of network functionality through strategically healing missing nodes or edges. However, the effect of network recovery is far from fully understood, and a general theory is still missing. Here we propose and study a general model of localized recovery, where a group of neighboring nodes are restored in an invasive way from a seed node. We develop a theoretical framework to compare the effect of random recovery (RR) and localized recovery (LR) in complex networks including Erdős-Rényi networks, random regular networks, and scale-free networks. We find detailed phase diagrams for the subnetwork of occupied nodes and the “complement network” of failed nodes under RR and LR. By identifying the two competitive forces behind LR, we present an analytical and numerical approach to guide us in choosing the appropriate recovery strategy and provide estimation on its effect by using the degree distribution of the original network as the only input. Our work therefore provides insight for quantitatively understanding recovery process and its implications in infrastructure protection in various complex systems.

  16. Localized recovery of complex networks against failure

    PubMed Central

    Shang, Yilun

    2016-01-01

    Resilience of complex networks to failure has been an important issue in network research for decades, and recent studies have begun to focus on the inverse recovery of network functionality through strategically healing missing nodes or edges. However, the effect of network recovery is far from fully understood, and a general theory is still missing. Here we propose and study a general model of localized recovery, where a group of neighboring nodes are restored in an invasive way from a seed node. We develop a theoretical framework to compare the effect of random recovery (RR) and localized recovery (LR) in complex networks including Erdős-Rényi networks, random regular networks, and scale-free networks. We find detailed phase diagrams for the subnetwork of occupied nodes and the “complement network” of failed nodes under RR and LR. By identifying the two competitive forces behind LR, we present an analytical and numerical approach to guide us in choosing the appropriate recovery strategy and provide estimation on its effect by using the degree distribution of the original network as the only input. Our work therefore provides insight for quantitatively understanding recovery process and its implications in infrastructure protection in various complex systems. PMID:27456202

  17. An evidence-based review of enhanced recovery interventions in knee replacement surgery

    PubMed Central

    Alazzawi, S; Nizam, I; Haddad, FS

    2013-01-01

    Introduction Total knee replacement (TKR) is a very common surgical procedure. Improved pain management techniques, surgical practices and the introduction of novel interventions have enhanced the patient’s postoperative experience after TKR. Safe, efficient pathways are needed to address the increasing need for knee arthroplasty in the UK. Enhanced recovery programmes can help to reduce hospital stays following knee replacements while maintaining patient safety and satisfaction. This review outlines common evidence-based pre, intra and postoperative interventions in use in enhanced recovery protocols following TKR. Methods A thorough literature search of the electronic healthcare databases (MEDLINE®, Embase™ and the Cochrane Library) was conducted to identify articles and studies concerned with enhanced recovery and fast track pathways for TKR. Results A literature review revealed several non-operative and operative interventions that are effective in enhanced recovery following TKR including preoperative patient education, pre-emptive and local infiltration analgesia, preoperative nutrition, neuromuscular electrical stimulation, pulsed electromagnetic fields, perioperative rehabilitation, modern wound dressings, different standard surgical techniques, minimally invasive surgery and computer assisted surgery. Conclusions Enhanced recovery programmes require a multidisciplinary team of dedicated professionals, principally involving preoperative education, multimodal pain control and accelerated rehabilitation; this will be boosted if combined with minimally invasive surgery. The current economic climate and restricted healthcare budget further necessitate brief hospitalisation while minimising costs. These non-operative interventions are the way forward to achieve such requirements. PMID:24025284

  18. Recovery and distribution of incinerated aluminum packaging waste.

    PubMed

    Hu, Y; Bakker, M C M; de Heij, P G

    2011-12-01

    A study was performed into relations between physical properties of aluminum packaging waste and the corresponding aluminum scraps in bottom ash from three typical incineration processes. First, Dutch municipal solid waste incineration (MSWI) bottom ash was analyzed for the identifiable beverage can alloy scraps in the +2mm size ranges using chemical detection and X-ray fluorescence. Second, laboratory-scale pot furnace tests were conducted to investigate the relations between aluminum packaging in base household waste and the corresponding metal recovery rates. The representative packaging wastes include beverage cans, foil containers and thin foils. Third, small samples of aluminum packaging waste were incinerated in a high-temperature oven to determine leading factors influencing metal recovery rates. Packaging properties, combustion conditions, presence of magnesium and some specific contaminants commonly found in household waste were investigated independently in the high-temperature oven. In 2007, the bottom ash (+2mm fraction) from the AEB MSWI plant was estimated to be enriched by 0.1 wt.% of aluminum beverage cans scrap. Extrapolating from this number, the recovery potential of all eleven MSWI plants in the Netherlands is estimated at 720 ton of aluminum cans scrap. More than 85 wt.% of this estimate would end up in +6mm size fractions and were amenable for efficient recycling. The pot furnace tests showed that the average recovery rate of metallic aluminum typically decreases from beverage cans (93 wt.%) to foil containers (85 wt.%) to thin foils (77 wt.%). The oven tests showed that in order of decreasing impact the main factors promoting metallic aluminum losses are the packaging type, combustion temperature, residence time and salt contamination. To a lesser degree magnesium as alloying element, smaller packaging size and basic contaminations may also promote losses.

  19. Power generation using sugar cane bagasse: A heat recovery analysis

    NASA Astrophysics Data System (ADS)

    Seguro, Jean Vittorio

    The sugar industry is facing the need to improve its performance by increasing efficiency and developing profitable by-products. An important possibility is the production of electrical power for sale. Co-generation has been practiced in the sugar industry for a long time in a very inefficient way with the main purpose of getting rid of the bagasse. The goal of this research was to develop a software tool that could be used to improve the way that bagasse is used to generate power. Special focus was given to the heat recovery components of the co-generation plant (economizer, air pre-heater and bagasse dryer) to determine if one, or a combination, of them led to a more efficient co-generation cycle. An extensive review of the state of the art of power generation in the sugar industry was conducted and is summarized in this dissertation. Based on this models were developed. After testing the models and comparing the results with the data collected from the literature, a software application that integrated all these models was developed to simulate the complete co-generation plant. Seven different cycles, three different pressures, and sixty-eight distributions of the flue gas through the heat recovery components can be simulated. The software includes an economic analysis tool that can help the designer determine the economic feasibility of different options. Results from running the simulation are presented that demonstrate its effectiveness in evaluating and comparing the different heat recovery components and power generation cycles. These results indicate that the economizer is the most beneficial option for heat recovery and that the use of waste heat in a bagasse dryer is the least desirable option. Quantitative comparisons of several possible cycle options with the widely-used traditional back-pressure turbine cycle are given. These indicate that a double extraction condensing cycle is best for co-generation purposes. Power generation gains between 40 and

  20. Conscientiousness predicts greater recovery from negative emotion.

    PubMed

    Javaras, Kristin N; Schaefer, Stacey M; van Reekum, Carien M; Lapate, Regina C; Greischar, Lawrence L; Bachhuber, David R; Love, Gayle Dienberg; Ryff, Carol D; Davidson, Richard J

    2012-10-01

    Greater levels of conscientiousness have been associated with lower levels of negative affect. We focus on one mechanism through which conscientiousness may decrease negative affect: effective emotion regulation, as reflected by greater recovery from negative stimuli. In 273 adults who were 35-85 years old, we collected self-report measures of personality including conscientiousness and its self-control facet, followed on average 2 years later by psychophysiological measures of emotional reactivity and recovery. Among middle-aged adults (35-65 years old), the measures of conscientiousness and self-control predicted greater recovery from, but not reactivity to, negative emotional stimuli. The effect of conscientiousness and self-control on recovery was not driven by other personality variables or by greater task adherence on the part of high conscientiousness individuals. In addition, the effect was specific to negative emotional stimuli and did not hold for neutral or positive emotional stimuli.

  1. Learning from recovery after Hurricane Mitch.

    PubMed

    Christoplos, Ian; Rodríguez, Tomás; Schipper, E Lisa F; Narvaez, Eddy Alberto; Bayres Mejia, Karla Maria; Buitrago, Rolando; Gómez, Ligia; Pérez, Francisco J

    2010-04-01

    This paper reviews how Nicaragua has recovered from Hurricane Mitch of October 1998. In particular, it examines how the assumptions and claims that were made during initial recovery planning have proven relevant in light of subsequent development. One must consider the response to Hurricane Mitch from the perspective of the broader trends that have driven recovery, including household, community and government initiatives and the wider economic context. Recovery efforts have not 'transformed' Nicaragua. In fact, market upheavals and livelihood changes in rural areas have had a more profound impact on poverty profiles than recovery programmes. Social protection programmes have been piloted, but patron-client ties and relations with aid providers are still more reliable sources of support in a time of crisis. Risk reduction has become more deeply integrated into the rural development discourse than was the case before the disaster, but risk reduction initiatives continue to place undue emphasis on hazard response rather than addressing vulnerability.

  2. Alternate Materials for Recovery Boiler Superheater Tubes

    SciTech Connect

    Keiser, James R; Kish, Joseph; Singbeil, Douglas

    2009-01-01

    The ever escalating demands for increased efficiency of all types of boilers would most sensibly be realized by an increase in the steam parameters of temperature and pressure. However, materials and corrosion limitations in the steam generating components, particularly the superheater tubes, present major obstacles to boiler designers in achieving systems that can operate under the more severe conditions. This paper will address the issues associated with superheater tube selection for many types of boilers; particularly chemical recovery boilers, but also addressing the similarities in issues for biomass and coal fired boilers. It will also review our recent study of materials for recovery boiler superheaters. Additional, more extensive studies, both laboratory and field, are needed to gain a better understanding of the variables that affect superheater tube corrosion and to better determine the best means to control this corrosion to ultimately permit operation of recovery boilers at higher temperatures and pressures.

  3. Energy Recovery Linacs for Commercial Radioisotope Production

    SciTech Connect

    Sy, Amy; Krafft, Geoffrey A.; Johnson, Rolland; Roberts, Tom; Boulware, Chase; Hollister, Jerry

    2015-09-01

    Photonuclear reactions with bremsstrahlung photon beams from electron linacs can generate radioisotopes of critical interest. An SRF Energy Recovery Linac (ERL) provides a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes in a more compact footprint and at a lower cost than those produced by conventional reactor or ion accelerator methods. Use of an ERL enables increased energy efficiency of the complex through energy recovery of the waste electron beam, high electron currents for high production yields, and reduced neutron production and shielding activation at beam dump components. Simulation studies using G4Beamline/GEANT4 and MCNP6 through MuSim, as well as other simulation codes, will design an ERL-based isotope production facility utilizing bremsstrahlung photon beams from an electron linac. Balancing the isotope production parameters versus energy recovery requirements will inform a choice of isotope production target for future experiments.

  4. Insight into biological phosphate recovery from sewage.

    PubMed

    Ye, Yuanyao; Ngo, Huu Hao; Guo, Wenshan; Liu, Yiwen; Zhang, Xinbo; Guo, Jianbo; Ni, Bing-Jie; Chang, Soon Woong; Nguyen, Dinh Duc

    2016-10-01

    The world's increasing population means that more food production is required. A more sustainable supply of fertilizers mainly consisting of phosphate is needed. Due to the rising consumption of scarce resources and limited natural supply of phosphate, the recovery of phosphate and their re-use has potentially high market value. Sewage has high potential to recover a large amount of phosphate in a circular economy approach. This paper focuses on utilization of biological process integrated with various subsequent processes to concentrate and recycle phosphate which are derived from liquid and sludge phases. The phosphate accumulation and recovery are discussed in terms of mechanism and governing parameters, recovery efficiency, application at plant-scale and economy.

  5. 26 CFR 1.1331-1 - Recoveries in respect of war losses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 11 2010-04-01 2010-04-01 true Recoveries in respect of war losses. 1.1331-1... TAX (CONTINUED) INCOME TAXES War Loss Recoveries § 1.1331-1 Recoveries in respect of war losses. (a)(1) The amount of any recovery in respect of war loss property must be included in gross income to...

  6. 26 CFR 1.1331-1 - Recoveries in respect of war losses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 11 2011-04-01 2011-04-01 false Recoveries in respect of war losses. 1.1331-1... TAX (CONTINUED) INCOME TAXES (CONTINUED) War Loss Recoveries § 1.1331-1 Recoveries in respect of war losses. (a)(1) The amount of any recovery in respect of war loss property must be included in...

  7. 26 CFR 1.1331-1 - Recoveries in respect of war losses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 11 2012-04-01 2012-04-01 false Recoveries in respect of war losses. 1.1331-1... TAX (CONTINUED) INCOME TAXES (CONTINUED) War Loss Recoveries § 1.1331-1 Recoveries in respect of war losses. (a)(1) The amount of any recovery in respect of war loss property must be included in...

  8. 26 CFR 1.1331-1 - Recoveries in respect of war losses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 11 2014-04-01 2014-04-01 false Recoveries in respect of war losses. 1.1331-1... TAX (CONTINUED) INCOME TAXES (CONTINUED) War Loss Recoveries § 1.1331-1 Recoveries in respect of war losses. (a)(1) The amount of any recovery in respect of war loss property must be included in...

  9. 26 CFR 1.1331-1 - Recoveries in respect of war losses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 11 2013-04-01 2013-04-01 false Recoveries in respect of war losses. 1.1331-1... TAX (CONTINUED) INCOME TAXES (CONTINUED) War Loss Recoveries § 1.1331-1 Recoveries in respect of war losses. (a)(1) The amount of any recovery in respect of war loss property must be included in...

  10. 75 FR 72822 - Nationwide Categorical Waivers Under Section 1605 (Buy American) of the American Recovery and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-26

    ... of Energy Efficiency and Renewable Energy Nationwide Categorical Waivers Under Section 1605 (Buy...) of section 1605 of the American Reinvestment and Recovery Act of 2009 (Recovery Act Buy American.... SUPPLEMENTARY INFORMATION: Under the authority of Recovery Act, Public Law 111-5, section 1605(b)(2), the...

  11. Energy Efficiency Services Sector: Workforce Education and Training Needs

    SciTech Connect

    Goldman, Charles A.; Peters, Jane S.; Albers, Nathaniel; Stuart, Elizabeth; Fuller, Merrian C.

    2010-03-19

    This report provides a baseline assessment of the current state of energy efficiency-related education and training programs and analyzes training and education needs to support expected growth in the energy efficiency services workforce. In the last year, there has been a significant increase in funding for 'green job' training and workforce development (including energy efficiency), through the American Recovery and Reinvestment Act (ARRA). Key segments of the energy efficiency services sector (EESS) have experienced significant growth during the past several years, and this growth is projected to continue and accelerate over the next decade. In a companion study (Goldman et al. 2009), our research team estimated that the EESS will increase two- to four-fold by 2020, to 220,000 person-years of employment (PYE) (low-growth scenario) or up to 380,000 PYE (high-growth scenario), which may represent as many as 1.3 million individuals. In assessing energy efficiency workforce education and training needs, we focus on energy-efficiency services-related jobs that are required to improve the efficiency of residential and nonresidential buildings. Figure ES-1 shows the market value chain for the EESS, sub-sectors included in this study, as well as the types of market players and specific occupations. Our assessment does not include the manufacturing, wholesale, and retail distribution subsectors, or energy efficiency-focused operations and maintenance performed by facility managers.

  12. Efficiency of endoscopy units can be improved with use of discrete event simulation modeling

    PubMed Central

    Sauer, Bryan G.; Singh, Kanwar P.; Wagner, Barry L.; Vanden Hoek, Matthew S.; Twilley, Katherine; Cohn, Steven M.; Shami, Vanessa M.; Wang, Andrew Y.

    2016-01-01

    Background and study aims: The projected increased demand for health services obligates healthcare organizations to operate efficiently. Discrete event simulation (DES) is a modeling method that allows for optimization of systems through virtual testing of different configurations before implementation. The objective of this study was to identify strategies to improve the daily efficiencies of an endoscopy center with the use of DES. Methods: We built a DES model of a five procedure room endoscopy unit at a tertiary-care university medical center. After validating the baseline model, we tested alternate configurations to run the endoscopy suite and evaluated outcomes associated with each change. The main outcome measures included adequate number of preparation and recovery rooms, blocked inflow, delay times, blocked outflows, and patient cycle time. Results: Based on a sensitivity analysis, the adequate number of preparation rooms is eight and recovery rooms is nine for a five procedure room unit (total 3.4 preparation and recovery rooms per procedure room). Simple changes to procedure scheduling and patient arrival times led to a modest improvement in efficiency. Increasing the preparation/recovery rooms based on the sensitivity analysis led to significant improvements in efficiency. Conclusions: By applying tools such as DES, we can model changes in an environment with complex interactions and find ways to improve the medical care we provide. DES is applicable to any endoscopy unit and would be particularly valuable to those who are trying to improve on the efficiency of care and patient experience. PMID:27853739

  13. Image recovery from edge primitives

    NASA Technical Reports Server (NTRS)

    Alter-Gartenberg, Rachel; Huck, Friedrich O.; Narayanswamy, Ramkumar

    1990-01-01

    A method for extracting edge primitives from Mach-band patterns is presented together with a method for recovering image representations of features outlined by the edge boundaries. The accuracy, stability, and resolution of these representations are assessed. Since these representations are most commonly used in characterizing targets, this method of low-level processing offers new opportunities for computer vision and high data-compressing coding. Two bandpass filters are considered, the spatially invariant Laplacian of Gaussian filter and spatially variant intensity-dependent spatial (IDS) summation. It is shown that the recovery from the IDS bandpass data is particularly advantageous in applications for which robustness to local and temporal variations in illumination is important. It is concluded that the edge primitives extracted from bandpassed images can be an efficient way to store, transmit, and represent images.

  14. Aerobic microbial enhanced oil recovery

    SciTech Connect

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  15. Unconventional gas recovery symposium

    SciTech Connect

    Not Available

    1980-01-01

    The objective of the SPE and DOE in organizing this symposium has been to bring together in a single annual meeting the best of the professional community engaged in unconventional gas recovery technology. The first venture will focus on discussions of the realities and potentials of unconventional gas sources and an exchange of technology developments. Unconventional gas sources are expected to have an important impact on new gas supplies as technological developments rapidly emerge and become mature technologies in the recovery of natural gas from coal, tight formations, Devonian shale geopressured reservoirs and other alternative high-cost gas sources. It is hoped that this symposium will provide a state-of-art perspective on geology, exploration and production research, recovery technology and field test results. Separate abstracts have been prepared for individual articles for inclusion in the Energy Data Base.

  16. Recovery from vestibular ototoxicity

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Gianna-Poulin, C.; Pesznecker, S. C.

    2001-01-01

    OBJECTIVE: Determine whether subjects with documented vestibular ototoxicity recover vestibular function and, if so, investigate the recovery dynamics. STUDY DESIGN: Prospective and retrospective reviews and repeated measures. SETTING: Clinical research and technology center. SUBJECTS: Twenty-eight subjects who received vestibulotoxic medications were followed for at least 12 months after initial treatment. CONTROLS: Our subject sample was compared with a published database of normal individuals. INTERVENTIONS: All 28 subjects received systemically administered medications known to be ototoxic. The subjects' treating physicians controlled medication, dosage, and administration schedules. MAIN OUTCOME MEASURES: Tests of horizontal canal vestibulo-ocular function were performed. Subjects' auditory and vestibular symptoms were recorded. RESULTS: Eleven subjects (39%) showed changes in horizontal canal vestibulo-ocular gain constant (GC) and/or time constant (TC) consistent with vestibular ototoxicity. When tested 1 year after ototoxic drug administration, eight of the nine subjects who experienced ototoxic decrease in GC showed a recovery of GC to normal limits. Only one of the eight subjects who experienced ototoxic decrease in TC showed recovery of TC to within normal limits. Ototoxicity onset and recovery were independent of baseline vestibular function, and ototoxicity onset did not correlate with cumulative dose of ototoxic medication. There was no relationship between subjective symptoms and ototoxicity onset. CONCLUSIONS: Recovery of GC after vestibular ototoxicity is more commonly observed than recovery of TC. Because ototoxic changes developed and continued in an unpredictable time and manner in relation to ototoxic drug administration, we propose that once ototoxic changes in vestibulo-ocular reflex are detected, ototoxic medications should be discontinued as soon as possible.

  17. JLAB Hurricane recovery

    SciTech Connect

    A. Hutton; D. Arenius; J. Benesch; S. Chattopadhyay; E. F. Daly; O. Garza; R. Kazimi; R. Lauzi; L. Merminga; W. Merz; R. Nelson; W. Oren; M. Poelker; P. Powers; J. Preble; V. Ganni; C. R. Reece; R. Rimmer; M. Spata; S. Suhring

    2004-07-01

    Hurricane Isabel, originally a Category 5 storm, arrived at Jefferson Lab on September 18, 2003 with winds of only 75 mph, creating little direct damage to the infrastructure. However, electric power was lost for four days allowing the superconducting cryomodules to warm up and causing a total loss of the liquid helium. The subsequent recovery of the cryomodules and the impact of the considerable amount of opportunistic preventive maintenance provides important lessons for all accelerator complexes, not only those with superconducting elements. The details of how the recovery process was structured and the resulting improvement in accelerator availability will be discussed in detail.

  18. Rockets for spin recovery

    NASA Technical Reports Server (NTRS)

    Whipple, R. D.

    1980-01-01

    The potential effectiveness of rockets as an auxiliary means for an aircraft to effect recovery from spins was investigated. The advances in rocket technology produced by the space effort suggested that currently available systems might obviate many of the problems encountered in earlier rocket systems. A modern fighter configuration known to exhibit a flat spin mode was selected. An analytical study was made of the thrust requirements for a rocket spin recovery system for the subject configuration. These results were then applied to a preliminary systems study of rocket components appropriate to the problem. Subsequent spin tunnel tests were run to evaluate the analytical results.

  19. Wash water recovery system

    NASA Technical Reports Server (NTRS)

    Deckman, G.; Rousseau, J. (Editor)

    1973-01-01

    The Wash Water Recovery System (WWRS) is intended for use in processing shower bath water onboard a spacecraft. The WWRS utilizes flash evaporation, vapor compression, and pyrolytic reaction to process the wash water to allow recovery of potable water. Wash water flashing and foaming characteristics, are evaluated physical properties, of concentrated wash water are determined, and a long term feasibility study on the system is performed. In addition, a computer analysis of the system and a detail design of a 10 lb/hr vortex-type water vapor compressor were completed. The computer analysis also sized remaining system components on the basis of the new vortex compressor design.

  20. Epigenetics in Stroke Recovery

    PubMed Central

    Kassis, Haifa; Shehadah, Amjad; Chopp, Michael; Zhang, Zheng Gang

    2017-01-01

    Abstract: While the death rate from stroke has continually decreased due to interventions in the hyperacute stage of the disease, long-term disability and institutionalization have become common sequelae in the aftermath of stroke. Therefore, identification of new molecular pathways that could be targeted to improve neurological recovery among survivors of stroke is crucial. Epigenetic mechanisms such as post-translational modifications of histone proteins and microRNAs have recently emerged as key regulators of the enhanced plasticity observed during repair processes after stroke. In this review, we highlight the recent advancements in the evolving field of epigenetics in stroke recovery. PMID:28264471

  1. Recovery of plutonium from solvent wash solutions

    SciTech Connect

    Kyser, E.A.

    1992-03-31

    A number of potential alternatives to the acid hydrolysis recovery of Pu were investigated. The most promising alternative for short-term use appears to be an anion exchange process that would eliminate the long boiling times and the multiple-pass concentration steps needed with the solvent extraction process because it separates the Pu from the dibutyl phosphate (DBP) while at the same time concentrating the Pu. However, restart of the Primary Recovery Column (PRC) to process this solution would require significant administrative effort. The original boiling recovery by acid hydrolysis followed by solvent extraction is probably the most expedient way to process the Pu-DBP-carbonate solution currently stored in tank 13.5 even with its long processing times and dilute product concentration. Anion exchange of a heat stabilized acidified solution is a more efficient process, but requires restart of the PRC. Extended-boiling acid hydrolysis or anion exchange of a heat stabilized acidified solution provide two well developed alternatives for recovery of the Pu from the tank 13.5 carbonate. Further work defining additional recovery processes is not planned at this time.

  2. Microwave Plasma Hydrogen Recovery System

    NASA Technical Reports Server (NTRS)

    Atwater, James; Wheeler, Richard, Jr.; Dahl, Roger; Hadley, Neal

    2010-01-01

    A microwave plasma reactor was developed for the recovery of hydrogen contained within waste methane produced by Carbon Dioxide Reduction Assembly (CRA), which reclaims oxygen from CO2. Since half of the H2 reductant used by the CRA is lost as CH4, the ability to reclaim this valuable resource will simplify supply logistics for longterm manned missions. Microwave plasmas provide an extreme thermal environment within a very small and precisely controlled region of space, resulting in very high energy densities at low overall power, and thus can drive high-temperature reactions using equipment that is smaller, lighter, and less power-consuming than traditional fixed-bed and fluidized-bed catalytic reactors. The high energy density provides an economical means to conduct endothermic reactions that become thermodynamically favorable only at very high temperatures. Microwave plasma methods were developed for the effective recovery of H2 using two primary reaction schemes: (1) methane pyrolysis to H2 and solid-phase carbon, and (2) methane oligomerization to H2 and acetylene. While the carbon problem is substantially reduced using plasma methods, it is not completely eliminated. For this reason, advanced methods were developed to promote CH4 oligomerization, which recovers a maximum of 75 percent of the H2 content of methane in a single reactor pass, and virtually eliminates the carbon problem. These methods were embodied in a prototype H2 recovery system capable of sustained high-efficiency operation. NASA can incorporate the innovation into flight hardware systems for deployment in support of future long-duration exploration objectives such as a Space Station retrofit, Lunar outpost, Mars transit, or Mars base. The primary application will be for the recovery of hydrogen lost in the Sabatier process for CO2 reduction to produce water in Exploration Life Support systems. Secondarily, this process may also be used in conjunction with a Sabatier reactor employed to

  3. Efficient fireplace

    SciTech Connect

    Bigelow, T.

    1985-10-01

    Among the efforts to overcome the inherent inefficiency of fireplaces, the most effective to date is a fireplace insert, which is an air-tight wood-burning heater made to fit inside an existing fireplace. New aesthetically pleasing designs combine the latest in heating technology (including catalytic combustors). Features to look for are strong construction with double walls and smooth welds, a good warranty, and proper sizing. Efficiency ratings of the new inserts are 40-45%, compared to 10-15% for a conventional fireplace. Disadvantages include the difficulty of handling and installing the inserts, creosote formation because of lingering smoke, and possible fires. The National Fire Protection Association has adopted a positive connect requirement to carry smoke directly into the chimney. Prices range from $600 to $1300 for the inserts.

  4. Audit Report on "Management Controls over the Department of Energy's American Recovery and Reinvestment Act - Louisiana State Energy Program"

    SciTech Connect

    2010-05-01

    The Department of Energy's (Department) Office of Energy Efficiency and Renewable Energy (EERE) provides grants to states, territories and the District of Columbia (states) to support their energy priorities through the State Energy Program (SEP). Federal funding is based on a grant formula that considers the population and energy consumption in each state, and amounted to $25 million for Fiscal Year (FY) 2009. The American Recovery and Reinvestment Act of 2009 (Recovery Act) expanded the SEP by authorizing an additional $3.1 billion to states using the existing grant formula. EERE made grant awards to states after reviewing plans that summarize the activities states will undertake to achieve SEP Recovery Act objectives, including preserving and creating jobs; saving energy; increasing renewable energy sources; and, reducing greenhouse gas emissions. EERE program guidance emphasizes that states are responsible for administering SEP within each state, and requires each state to implement internal controls over the use of Recovery Act funds. The State of Louisiana received $71.6 million in SEP Recovery Act funds; a 164-fold increase over its FY 2009 SEP grant of $437,000. As part of the Office of Inspector General's strategy for reviewing the Department's implementation of the Recovery Act, we initiated this review to determine whether the Louisiana State Energy Office had internal controls in place to efficiently and effectively administer Recovery Act funds provided for its SEP program. Louisiana developed a strategy for SEP Recovery Act funding that focused on improving energy efficiency in state buildings, housing and small businesses; increasing Energy Star appliance rebates; and, expanding the use of alternative fuels and renewable energy. Due to a statewide hiring freeze, Louisiana outsourced management of the majority of its projects ($63.3 million) to one general contractor. Louisiana plans to internally manage one project, Education and Outreach ($2

  5. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers

    DOEpatents

    Kychakoff, George; Afromowitz, Martin A; Hugle, Richard E

    2005-06-21

    A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions and about 4 or 8.7 microns and directly producing images of the interior of the boiler. An image pre-processing circuit (95) in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. An image segmentation module (105) for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. An image-understanding unit (115) matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system (130) for more efficient operation of the plant pendant tube cleaning and operating systems.

  6. Preliminary design of the Shuttle-C avionics recovery system

    NASA Technical Reports Server (NTRS)

    Brookfield, Morgan; Decker, Deron; Gilbert, Harold; Moore, David; Rist, Mark

    1989-01-01

    The analysis done in developing a recovery system for the Shuttle-C cargo vehicle is presented. This recovery system is comprised of a reentry capsule which houses the vehicles avionics. The avionics are contained in a single package which is extracted from the capsule by the parachute recovery system. The Shuttle-C will be able to satisfy NASA's design and mission requirements. Included, is an analysis of the structural, thermal protection, and parachute recovery systems. A discussion of the merits of the proposed system is also included.

  7. Recovery potential and conservation options for elasmobranchs.

    PubMed

    Ward-Paige, C A; Keith, D M; Worm, B; Lotze, H K

    2012-04-01

    Many elasmobranchs have experienced strong population declines, which have been largely attributed to the direct and indirect effects of exploitation. Recently, however, live elasmobranchs are being increasingly valued for their role in marine ecosystems, dive tourism and intrinsic worth. Thus, management plans have been implemented to slow and ultimately reverse negative trends, including shark-specific (e.g. anti-finning laws) to ecosystem-based (e.g. no-take marine reserves) strategies. Yet it is unclear how successful these measures are, or will be, given the degree of depletion and slow recovery potential of most elasmobranchs. Here, current understanding of elasmobranch population recoveries is reviewed. The potential and realized extent of population increases, including rates of increase, timelines and drivers are evaluated. Across 40 increasing populations, only 25% were attributed to decreased anthropogenic mortality, while the majority was attributed to predation release. It is also shown that even low exploitation rates (2-6% per year) can halt or reverse positive population trends in six populations currently managed under recovery plans. Management measures that help restore elasmobranch populations include enforcement or near-zero fishing mortality, protection of critical habitats, monitoring and education. These measures are highlighted in a case study from the south-eastern U.S.A., where some evidence of recovery is seen in Pristis pectinata, Galeocerdo cuvier and Sphyrna lewini populations. It is concluded that recovery of elasmobranchs is certainly possible but requires time and a combination of strong and dedicated management actions to be successful.

  8. Cultural competency and recovery within diverse populations.

    PubMed

    Ida, D J

    2007-01-01

    Recovery for diverse populations with mental health problems includes communities of color, those with limited English proficiency and individuals who are lesbian, gay, bisexual or transgender (LGBT). The process of healing and recovery must take into consideration the critical role of culture and language and look at the individual within the context of an environment that is influenced by racism, sexism, colonization, homophobia, and poverty as well as the stigma and shame associated with having a mental illness. Recovery must assess the impact of isolation brought about by cultural and language barriers and work towards reducing the negative influence it has on the emotional and physical well-being of the person. It is imperative that recovery occur at multiple levels and involves the person in recovery, the service provider, the larger community and the system that establishes policies that often work against those who do not fit the mold of what mainstream society considers being "the norm." Recovery must respect the cultural and language backgrounds of the individual.

  9. Soil washing using various nonionic surfactants and their recovery by selective adsorption with activated carbon.

    PubMed

    Ahn, C K; Kim, Y M; Woo, S H; Park, J M

    2008-06-15

    The performance of activated carbon in soil washing and subsequent selective adsorption for surfactant recovery from the washed solution was investigated. Sandy loam soil contaminated with phenanthrene at 200 mg kg(-1) was washed with four different nonionic surfactants: Tween 40, Tween 80, Brij 30 and Brij 35. The efficiency of soil washing was highest when using Brij 30 with the highest solubilizing ability for phenanthrene and low adsorption onto soil. In the selective adsorption step, surfactant recovery was quite effective for all surfactants ranging from 85.0 to 89.0% at 1 g L(-1) of activated carbon (Darco 20-40 mesh). Phenanthrene removal from the solution washed with Brij 30 was only 33.9%, even though it was 54.1-56.4% with other surfactants. The selectivity was larger than 7.02 except for Brij 30 (3.60). The overall performance considering both the washing and surfactant recovery step was effective when using Tween 80 and Brij 35. The results suggest that higher solubilizing ability of surfactants is a requirement for soil washing but causes negative effects on phenanthrene removal in the selective adsorption. Therefore, if a surfactant recovery process by selective adsorption is included in soil remediation by washing, the overall performance including the two steps should be considered for properly choosing the surfactant.

  10. Recovery post ICU.

    PubMed

    Jones, Christina

    2014-10-01

    Many ICU patients struggle to recovery following critical illness and may be left with physical, cognitive and psychological problems, which have a negative impact on their quality of life. Gross muscle mass loss and weakness can take some months to recover after the patients' Intensive Care Unit (ICU) discharge, in addition critical illness polyneuropathies can further complicate physical recovery. Psychological problems such as anxiety, depression and post traumatic stress disorder (PTSD) are common and have an negative impact on the patients' ability to engage in rehabilitation after ICU discharge. Finally cognitive deficit affecting memory can be a significant problem. The first step in helping patients to recover from such a devastating illness is to recognise those who have the greatest need and target interventions. Research now suggests that there are interventions that can accelerate physical recovery and reduce the incidence of psychological problems such as anxiety, depression and PTSD. Cognitive rehabilitation, however, is still in its infancy. This review will look at the research into patients' recovery and what can be done to improve this where needed.

  11. Collegiate Recovery Programs

    ERIC Educational Resources Information Center

    Harris, Kitty S.; Kimball, Thomas G.; Casiraghi, Ann M.; Maison, Sara J.

    2014-01-01

    More than ever, people are seeking substance use disorder treatment during the adolescent and young adult stages of development. Developmentally, many of these young adults new to recovery are in the process of making career decisions that may require attendance at a college or university. However, the collegiate environment is not conducive to a…

  12. ONSITE SOLVENT RECOVERY

    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery. The technologies were (1) atmospheric batch distillation, (2) vacuum heat-pump distillation, and (3) low-emission vapor degreas...

  13. Recovery High Schools

    ERIC Educational Resources Information Center

    Vogel, Carl

    2009-01-01

    This article discusses recovery high schools which are designed specifically to serve students who have been through a professional substance abuse treatment program and are working to stay away from drugs and alcohol. The schools typically serve multiple districts and are funded from both the per-pupil state funds that follow a student and what…

  14. Disaster Recovery: Courting Disaster

    ERIC Educational Resources Information Center

    O'Hanlon, Charlene

    2007-01-01

    An inadequate or nonexistent disaster recovery plan can have dire results. Fire, power outage, and severe weather all can brin down the best of networks in an instant. This article draws on the experiences of the Charlotte County Public Schools (Port Charlotte, Florida), which were able to lessen the damage caused by Hurricane Charley when it hit…

  15. Heat Recovery System

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Ball Metal's design of ducting and controls for series of roof top heat exchangers was inspired by Tech Briefs. Heat exchangers are installed on eight press and coating lines used to decorate sheet metal. The heat recovery system provides an estimated energy savings of more than $250,000 per year.

  16. Monkey Able After Recovery

    NASA Technical Reports Server (NTRS)

    1959-01-01

    On May 28, 1959, a Jupiter Intermediate Range Ballistic Missile provided by a U.S. Army team in Redstone Arsenal, Alabama, launched a nose cone carrying Baker, A South American squirrel monkey and Able, An American-born rhesus monkey. This photograph shows Able after recovery of the nose cone of the Jupiter rocket by U.S.S. Kiowa.

  17. Computer Disaster Recovery Planning.

    ERIC Educational Resources Information Center

    Clark, Orvin R.

    Arguing that complete, reliable, up-to-date system documentation is critical for every data processing environment, this paper on computer disaster recovery planning begins by discussing the importance of such documentation both for recovering from a systems crash, and for system maintenance and enhancement. The various components of system…

  18. Cost Recovery Through Depreciation.

    ERIC Educational Resources Information Center

    Forrester, Robert T.; Wesolowski, Leonard V.

    1983-01-01

    The approach of adopting depreciation rather than use allowance in order to recover more accurately the cost of college buildings and equipment used on federal projects is considered. It is suggested that depreciation will offer most colleges and universities a higher annual recovery rate, and an opportunity for better facilities planning. For…

  19. Engine Would Recover Exhaust Energy More Efficiently

    NASA Technical Reports Server (NTRS)

    Dimpelfeld, Philip M.

    1993-01-01

    Exhaust energy used for supercharging and extra shaft power. Flow of exhaust apportioned by waste gate to meet demand of turbocharger, and portion not fed to turbocharger sent to power-recovery turbine. Expected to increase fuel efficiency.

  20. Instruments for measuring mental health recovery: a systematic review.

    PubMed

    Sklar, Marisa; Groessl, Erik J; O'Connell, Maria; Davidson, Larry; Aarons, Gregory A

    2013-12-01

    Persons in recovery, providers, and policymakers alike are advocating for recovery-oriented mental health care, with the promotion of recovery becoming a prominent feature of mental health policy in the United States and internationally. One step toward creating a recovery-oriented system of care is to use recovery-oriented outcome measures. Numerous instruments have been developed to assess progress towards mental health recovery. This review identifies instruments of mental health recovery and evaluates the appropriateness of their use including their psychometric properties, ease of administration, and service-user involvement in their development. A literature search using the Medline and Psych-INFO databases was conducted, identifying 21 instruments for potential inclusion in this review, of which thirteen met inclusion criteria. Results suggest only three instruments (25%) have had their psychometric properties assessed in three or more unique samples of participants. Ease of administration varied between instruments, and for the majority of instruments, development included service user involvement. This review updates and expands previous reviews of instruments to assess mental health recovery. As mental health care continues to transform to a recovery-oriented model of service delivery, this review may facilitate selection of appropriate assessments of mental health recovery for systems to use in evaluating and improving the care they provide.

  1. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    Unknown

    1998-10-01

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system have been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.

  2. Impact of Processing Method on Recovery of Bacteria from Wipes Used in Biological Surface Sampling

    PubMed Central

    Olson, Nathan D.; Filliben, James J.; Morrow, Jayne B.

    2012-01-01

    Environmental sampling for microbiological contaminants is a key component of hygiene monitoring and risk characterization practices utilized across diverse fields of application. However, confidence in surface sampling results, both in the field and in controlled laboratory studies, has been undermined by large variation in sampling performance results. Sources of variation include controlled parameters, such as sampling materials and processing methods, which often differ among studies, as well as random and systematic errors; however, the relative contributions of these factors remain unclear. The objective of this study was to determine the relative impacts of sample processing methods, including extraction solution and physical dissociation method (vortexing and sonication), on recovery of Gram-positive (Bacillus cereus) and Gram-negative (Burkholderia thailandensis and Escherichia coli) bacteria from directly inoculated wipes. This work showed that target organism had the largest impact on extraction efficiency and recovery precision, as measured by traditional colony counts. The physical dissociation method (PDM) had negligible impact, while the effect of the extraction solution was organism dependent. Overall, however, extraction of organisms from wipes using phosphate-buffered saline with 0.04% Tween 80 (PBST) resulted in the highest mean recovery across all three organisms. The results from this study contribute to a better understanding of the factors that influence sampling performance, which is critical to the development of efficient and reliable sampling methodologies relevant to public health and biodefense. PMID:22706055

  3. Enterocyte Purge and Rapid Recovery Is a Resilience Reaction of the Gut Epithelium to Pore-Forming Toxin Attack.

    PubMed

    Lee, Kwang-Zin; Lestradet, Matthieu; Socha, Catherine; Schirmeier, Stefanie; Schmitz, Antonin; Spenlé, Caroline; Lefebvre, Olivier; Keime, Céline; Yamba, Wennida M; Bou Aoun, Richard; Liegeois, Samuel; Schwab, Yannick; Simon-Assmann, Patricia; Dalle, Frédéric; Ferrandon, Dominique

    2016-12-14

    Besides digesting nutrients, the gut protects the host against invasion by pathogens. Enterocytes may be subjected to damage by both microbial and host defensive responses, causing their death. Here, we report a rapid epithelial response that alleviates infection stress and protects the enterocytes from the action of microbial virulence factors. Intestinal epithelia exposed to hemolysin, a pore-forming toxin secreted by Serratia marcescens, undergo an evolutionarily conserved process of thinning followed by the recovery of their initial thickness within a few hours. In response to hemolysin attack, Drosophila melanogaster enterocytes extrude most of their apical cytoplasm, including damaged organelles such as mitochondria, yet do not lyse. We identify two secreted peptides, the expression of which requires CyclinJ, that mediate the recovery phase in which enterocytes regain their original shape and volume. Epithelial thinning and recovery constitute a fast and efficient response to intestinal infections, with pore-forming toxins acting as alarm signals.

  4. Recovery of valuable materials from waste liquid crystal display panel.

    PubMed

    Li, Jinhui; Gao, Song; Duan, Huabo; Liu, Lili

    2009-07-01

    Associated with the rapid development of the information and electronic industry, liquid crystal displays (LCDs) have been increasingly sold as displays. However, during the discarding at their end-of-life stage, significant environmental hazards, impacts on health and a loss of resources may occur, if the scraps are not managed in an appropriate way. In order to improve the efficiency of the recovery of valuable materials from waste LCDs panel in an environmentally sound manner, this study presents a combined recycling technology process on the basis of manual dismantling and chemical treatment of LCDs. Three key processes of this technology have been studied, including the separation of LCD polarizing film by thermal shock method the removal of liquid crystals between the glass substrates by the ultrasonic cleaning, and the recovery of indium metal from glass by dissolution. The results show that valuable materials (e.g. indium) and harmful substances (e.g. liquid crystals) could be efficiently recovered or separated through above-mentioned combined technology. The optimal conditions are: (1) the peak temperature of thermal shock to separate polarizing film, ranges from 230 to 240 degrees C, where pyrolysis could be avoided; (2) the ultrasonic-assisted cleaning was most efficient at a frequency of 40 KHz (P = 40 W) and the exposure of the substrate to industrial detergents for 10 min; and (3) indium separation from glass in a mix of concentrated hydrochloric acid at 38% and nitric acid at 69% (HCl:HNO(3):H(2)O = 45:5:50, volume ratio). The indium separation process was conducted with an exposure time of 30 min at a constant temperature of 60 degrees C.

  5. Simulation of subsurface storage and recovery of effluent using multiple wells, St Petersburg, Florida

    USGS Publications Warehouse

    Yobbi, D.K.

    1997-01-01

    The potential for subsurface storage and recovery, otherwise called aquifer storage and recovery, of effluent in the uppermost producing zone of the Upper Floridan aquifer in St. Petersburg, Florida, was studied by the U.S. Geological Survey, in cooperation with the city of St. Petersburg and the Southwest Florida Water Management District. The success of subsurface storage and recovery depends on the recovery efficiency, or the quantity of water, relative to the quantity injected, that can be recovered before the water that is withdrawn fails to meet salinity limits. The viability of this practice will depend upon the ability of the injected zone to receive, store, and discharge the injected fluid. A three-dimensional numerical model of ground-water flow and solute transport, incorporating available data on aquifer properties and water quality, was developed to evaluate the effects of changing various operational factors on recovery efficiency. The reference case for testing was a base model considered representative of the aquifer system underlying the Southwest St. Petersburg Water Treatment Facility. The base simulation used as a standard for comparison consisted of a single cycle of 90 days of simultaneous injection of effluent in three wells at a rate of 4.0 million gallons per day and then equal rate withdrawal of 4.0 million gallons per day until the pumped water in each well reached a dissolvedsolids concentration of 1,500 milligrams per liter. A recovery efficiency of 14.8 percent was estimated for the base simulation. Ten successive injection and recovery cycles increased recovery efficiency to about 56 percent. Based on model simulations for hypothetical conditions, recovery efficiency (1) increased with successive injection and recovery cycles; (2) increased when the volume of injectant increased; (3) decreased when storage time increased; (4) did not change significantly when the injection rate or recovery rate increased, or when the ratio of recovery

  6. Lessons from the past: Biotic recoveries from mass extinctions

    PubMed Central

    Erwin, Douglas H.

    2001-01-01

    Although mass extinctions probably account for the disappearance of less than 5% of all extinct species, the evolutionary opportunities they have created have had a disproportionate effect on the history of life. Theoretical considerations and simulations have suggested that the empty niches created by a mass extinction should refill rapidly after extinction ameliorates. Under logistic models, this biotic rebound should be exponential, slowing as the environmental carrying capacity is approached. Empirical studies reveal a more complex dynamic, including positive feedback and an exponential growth phase during recoveries. Far from a model of refilling ecospace, mass extinctions appear to cause a collapse of ecospace, which must be rebuilt during recovery. Other generalities include the absence of a clear correlation between the magnitude of extinction and the pace of recovery or the resulting ecological and evolutionary disruption the presence of a survival interval, with few originations, immediately after an extinction and preceding the recovery phase, and the presence of many lineages that persist through an extinction event only to disappear during the subsequent recovery. Several recoveries include numerous missing lineages, groups that are found before the extinction, then latter in the recovery, but are missing during the initial survival–recovery phase. The limited biogeographic studies of recoveries suggest considerable variability between regions. PMID:11344285

  7. Landscaping for energy efficiency

    SciTech Connect

    1995-04-01

    This publication by the National Renewable Energy Laboratory addresses the use of landscaping for energy efficiency. The topics of the publication include minimizing energy expenses; landscaping for a cleaner environment; climate, site, and design considerations; planning landscape; and selecting and planting trees and shrubs. A source list for more information on landscaping for energy efficiency and a reading list are included.

  8. Genomic Tools for Customized Recovery and Detection of Foodborne Shiga Toxigenic Escherichia coli.

    PubMed

    Knowles, Michael; Stinson, Sara; Lambert, Dominic; Carrillo, Catherine; Koziol, Adam; Gauthier, Martine; Blais, Burton

    2016-12-01

    Genomic antimicrobial resistance (AMR) prediction tools have the potential to support foodborne illness outbreak investigations through their application in the analysis of bacterial genomes from causative strains. The AMR marker profile of a strain of interest, initially identified in outbreak-associated clinical samples, may serve as the basis for customization of selective enrichment media, facilitating its recovery from samples in a food safety investigation. Different possibilities for AMR analyses include the use of comprehensive AMR gene databases such as the Comprehensive Antibiotic Resistance Database, which can be mined with in-house bioinformatics alignment tools (e.g., Antimicrobial Resistance Marker Identifier), or publicly available tools based on clinically relevant acquired AMR gene databases (e.g., ResFinder). In combination with a previously reported pipeline (SigSeekr) designed to identify specific DNA sequences associated with a particular strain for its rapid identification by PCR, it should be possible to deploy custom recovery and identification tools for the efficient detection of priority pathogens such as Shiga toxigenic Escherichia coli (STEC) outbreak strains within the time frame of an active investigation. Using a laboratory STEC strain as a model, trimethoprim resistance identified by both Antimicrobial Resistance Marker Identifier and ResFinder was used as the basis for its selective recovery against a background of commensal E. coli bacteria in ground beef samples. Enrichment in modified tryptic soy broth containing trimethoprim greatly enhanced the recovery of low numbers of model strain cells inoculated in ground beef samples, as verified by the enumeration of colonies on plating media using a strain-specific PCR method to determine the recovery efficiency for the target strain. We discuss the relative merits of different AMR marker prediction tools for this purpose and describe how such tools can be utilized to good effect in a

  9. Surgical aspects of donor hand recovery for transplantation.

    PubMed

    Banegas, Rodrigo N; Moreno, Rodrigo; Duggal, Anil; Breidenbach, Warren C

    2012-01-01

    The purpose of this article is to share our institution's experience in optimizing the suitability of composite donor tissue for use in hand transplantation. The centerpiece of this process includes procurement techniques, preservation and timing issues, and anatomical matching. Recovery of the donor hand must proceed in an efficient, organized, and expedient manner. Proper timing of the donor operation not only ensures the quality of donor tissue and outcome for the hand recipient, but also allows surgeons recovering other organs to obtain high quality tissue for those recipients. Timing remains a critical factor in preserving tissue after removal from the donor. We will also consider the factors of temperature and preservation solution during transport.

  10. Results of an integrated water recovery system test

    NASA Astrophysics Data System (ADS)

    Pickering, K.; Pariani, G.; Campbell, M.; Finger, B.; Verostko, C.; Wines, K.

    The results of an integrated advanced water recovery system test are presented. The test evaluated the ability of the system to recover potable water from human generated wastewater. Primary processing was performed by a biological water processor (BWP), which included microbial organic carbon oxidation and nitrification. The majority of inorganic contaminant removal was accomplished with reverse osmosis (RO). Water from RO brine was recovered using an air evaporation system. Ultraviolet oxidation and ion exchange polished the recovered water to potable specifications. All subsystems were designed for operation in microgravity. All water produced during the test met NASA potable water standards. Subsystem performance is summarized. The influence of subsystem performance on overall system efficiency is also discussed.

  11. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, Maria; Hu, Zhicheng

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  12. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  13. URANIUM RECOVERY PROCESS

    DOEpatents

    Stevenson, J.W.; Werkema, R.G.

    1959-07-28

    The recovery of uranium from magnesium fluoride slag obtained as a by- product in the production of uranium metal by the bomb reduction prccess is presented. Generally the recovery is accomplished by finely grinding the slag, roasting ihe ground slag air, and leaching the roasted slag with a hot, aqueous solution containing an excess of the sodium bicarbonate stoichiometrically required to form soluble uranium carbonate complex. The roasting is preferably carried out at between 425 and 485 deg C for about three hours. The leaching is preferably done at 70 to 90 deg C and under pressure. After leaching and filtration the uranium may be recovered from the clear leach liquor by any desired method.

  14. Spontaneous recovery from acalculia.

    PubMed

    Basso, Anna; Caporali, Alessandra; Faglioni, Pietro

    2005-01-01

    A topic much considered in research on acalculia was its relationship with aphasia. Far less attention has been given to the natural course of acalculia. In this retrospective study, we examined the relationship between aphasia and acalculia in an unselected series of 98 left-brain-damaged patients and the spontaneous recovery from acalculia in 92 acalculic patients with follow-up. There was a significant association between aphasia and acalculia although 19 participants exhibited aphasia with no acalculia and six acalculia with no aphasia. We observed significant improvement between a first examination carried out between 1 and 5 months post-onset and a second examination carried out between 3 and 11 months later (mean: 5 months). The mechanisms of spontaneous recovery are discussed.

  15. Gasoline Vapor Recovery

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Gasoline is volatile and some of it evaporates during storage, giving off hydrocarbon vapor. Formerly, the vapor was vented into the atmosphere but anti-pollution regulations have precluded that practice in many localities, so oil companies and storage terminals are installing systems to recover hydrocarbon vapor. Recovery provides an energy conservation bonus in that most of the vapor can be reconverted to gasoline. Two such recovery systems are shown in the accompanying photographs (mid-photo at right and in the foreground below). They are actually two models of the same system, although.configured differently because they are customized to users' needs. They were developed and are being manufactured by Edwards Engineering Corporation, Pompton Plains, New Jersey. NASA technological information proved useful in development of the equipment.

  16. Designer drilling increases recovery

    SciTech Connect

    Eck-Olsen, J.; Drevdal, K.E.

    1995-04-01

    Implementation of a new designer-well profile has resulted in increased recovery and production rates. The geologically complex Gullfaks field, located in the Norwegian sector of the North Sea, required a new type of well profile to increase total recovery and production rates from Gullfaks A, B and C platforms. Advances in steerable technology and directional drilling performance enabled a 3-D horizontal, extended-reach well profile, now designated as a designer well, to penetrate multiple targets. This article presents the concept, implementation and conclusions drawn from designer well application. Gullfaks field, in Norwegian North Sea Block 34/10, is the first license ever run by a fully Norwegian joint venture corporation. The license group consists of Statoil (operator), Norsk Hydro and Saga Petroleum. The field currently produces more than 535,000 bopd from three main Jurassic reservoirs.

  17. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    SciTech Connect

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2002-07-01

    This second quarter report of 2002 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. Previous reports described development of a catalyst with the required selectivity and efficiency for producing sulfur dioxide from H{sub 2}S. In the laboratory, the catalyst was shown to be robust and stable in the presence of several intentionally added contaminants, including condensate from the pilot plant site. This report describes testing using the laboratory apparatus but operated at the pilot plant using the actual pilot plant

  18. Recovery High Schools

    PubMed Central

    Moberg, D. Paul; Finch, Andrew J.

    2009-01-01

    High schools specifically designed for students recovering from a substance use disorder (substance abuse or dependence) have been emerging as a continuing care resource since 1987. This study of 17 schools provides the first systematic description of recovery school programs and their students. The most common school model is that of a program or affiliated school, embedded organizationally and physically with another school or set of alternative school programs. Although embedded, there are serious efforts to maintain physical separation of recovery school students from other students, using scheduling and physical barriers. Affiliation with public school systems is the case for most recovery schools, and seems to be a major factor in assuring fiscal and organizational feasibility. The students in the recovery high schools studied were predominantly white (78%), with about one-half from two parent homes. Overall parent educational levels suggest a higher mean SES than in the general population. Most students (78%) had prior formal treatment for substance use disorders, often concomitantly with treatment for mental health concerns, and were often referred by treatment providers. Students came with a broad and complex range of mental health issues, traumatic experiences, drug use patterns, criminal justice involvement, and educational backgrounds. The complexity of these problems clearly limits the enrollment capacity of the schools. Retrospective pretest to post-test analysis suggests significant reduction in substance use as well as in mental health symptoms among the students. Students were very positive in their assessment of the therapeutic value of the schools, but less enthusiastic regarding the educational programs. The school programs appear to successfully function as continuing care to reinforce and sustain the therapeutic benefits students gained from their treatment experiences. PMID:19165348

  19. Superconducting energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  20. Apollo 10 Helicopter Recovery

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A Navy helicopter arrivies to recover the Apollo 10 astronauts, seen entering a life raft, as the Command Module 'Charlie Brown' floats in the South Pacific. U.S. Navy underwater demolition team swimmers assist in the recovery operations. Splashdown occurred at 11:53 a.m., May 26, 1969, about 400 miles east of American Samoa. Note that in this photo the divers have attached a flotation collar to the spacecraft.

  1. Energy Recovery System

    NASA Astrophysics Data System (ADS)

    1983-01-01

    Cogeneration system is one in which the energy ordinarily wasted in an industrial process is recovered and reused to create a second form of energy. Such an energy recovery system is in use at Crane Company's plant in Ferguson, KY, which manufactures ceramic bathroom fixtures. Crane's system captures hot stack gases from the company's four ceramic kilns and uses them to produce electrical power for plant operations.

  2. Interagency Biological Restoration Demonstration (IBRD): a collaborative approach to biological incident recovery.

    PubMed

    Crockett, Katie

    2011-09-01

    Following the terrorist attacks in 2001, much time and effort has been put toward improving catastrophic incident response. But recovery--the period following initial response that focuses on the long-term viability of the affected area--has received less attention. Recognizing the importance of being able to recover an area following a catastrophic incident, the Department of Defense, through its Defense Threat Reduction Agency (DTRA), and the Department of Homeland Security, through its Science and Technology Directorate (DHS S&T), created the Interagency Biological Restoration Demonstration (IBRD) program. IBRD was a 4-year program jointly managed and funded by DTRA and DHS S&T, the goal of which was to reduce the time and resources necessary to recover a wide urban area from an intentional release of Bacillus anthracis. Specific program objectives included understanding the social, economic, and operational interdependencies that affect recovery; establishing long-term coordination between the Departments of Defense and Homeland Security; developing strategic recovery/restoration plans; identifying and demonstrating technologies that support recovery; and exercising recovery activities and technology solutions. IBRD has made important first steps toward improving national preparedness in the area biological incident recovery. Specifically, IBRD has helped enhance the efficacy and efficiency of recovering large urban areas by developing consequence management guidance; identifying key S&T capabilities and integrating them with planning and guidance documents; and establishing key relationships across the federal interagency, federal-to-regional, civilian-to-military, and public-to-private stakeholders. Upon completion of IBRD in fall 2010, both DTRA and DHS S&T planned follow-on programs.

  3. Launch and Recovery System Literature Review

    DTIC Science & Technology

    2010-12-01

    of traits for an optimal LARS. Of special concern is the need for a fast, safe winch, a latch/hook mechanism, and controlling vehicle pendulation ...examine vehicle pendulation in the time-domain. Baker and McCarty [52] discuss the requirements of a davit launch and recovery trainer including the

  4. Rankine cycle waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  5. Rankine cycle waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-05-10

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  6. Recovery Ship Freedom Star

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Freedom Star, one of NASA's two solid rocket booster recovery ships, is towing a barge containing the third Space Shuttle Super Lightweight External Tank (SLWT) into Port Canaveral. This SLWT was slated for use to launch the orbiter Discovery on mission STS-95 in October 1998. This first time towing arrangement, part of a cost saving plan by NASA to prudently manage existing resources, began June 12 from the Michoud Assembly Facility in New Orleans where the Shuttle's external tanks were manufactured. The barge was transported up Banana River to the LC-39 turn basin using a conventional tug boat. Previously, NASA relied on an outside contractor to provide external tank towing services at a cost of about $120,000 per trip. The new plan allowed NASA's Space Flight Operations contractor, United Space Alliance (USA), to provide the same service to NASA using the recovery ships during their downtime between Shuttle launches. Studies showed a potential savings of about $50,000 per trip. The cost of the necessary ship modifications would be paid back by the fourteenth tank delivery. The other recovery ship, Liberty Star, also underwent deck strengthening enhancements and had the necessary towing wench installed.

  7. Recovery after abdominal wall reconstruction.

    PubMed

    Jensen, Kristian Kiim

    2017-03-01

    Incisional hernia is a common long-term complication to abdominal surgery, occurring in more than 20% of all patients. Some of these hernias become giant and affect patients in several ways. This patient group often experiences pain, decreased perceived body image, and loss of physical function, which results in a need for surgical repair of the giant hernia, known as abdominal wall reconstruction. In the current thesis, patients with a giant hernia were examined to achieve a better understanding of their physical and psychological function before and after abdominal wall reconstruction. Study I was a systematic review of the existing standardized methods for assessing quality of life after incisional hernia repair. After a systematic search in the electronic databases Embase and PubMed, a total of 26 studies using standardized measures for assessment of quality of life after incisional hernia repair were found. The most commonly used questionnaire was the generic Short-Form 36, which assesses overall health-related quality of life, addressing both physical and mental health. The second-most common questionnaire was the Carolinas Comfort Scale, which is a disease specific questionnaire addressing pain, movement limitation and mesh sensation in relation to a current or previous hernia. In total, eight different questionnaires were used at varying time points in the 26 studies. In conclusion, standardization of timing and method of quality of life assessment after incisional hernia repair was lacking. Study II was a case-control study of the effects of an enhanced recovery after surgery pathway for patients undergoing abdominal wall reconstruction for a giant hernia. Sixteen consecutive patients were included prospectively after the implementation of a new enhanced recovery after surgery pathway at the Digestive Disease Center, Bispebjerg Hospital, and compared to a control group of 16 patients included retrospectively in the period immediately prior to the

  8. Validating Indicators of Disaster Recovery with Qualitative Research

    PubMed Central

    Dwyer, Caroline; Horney, Jennifer

    2014-01-01

    Introduction: Recovery from disasters is a critical function of federal, state, and local governments, yet measurable, validated indicators of community recovery remain unidentified. A list of potential recovery indicators was developed by the authors through a literature review, recovery plan review, and case study of two disaster impacted communities. Methods: To validate the indicators, qualitative data was collected from experts on disaster recovery. Twenty-one key informant interviews and two focus groups were conducted between January and April of 2014 to solicit feedback from disaster recovery practitioners and academics. Results: Five major themes emerged from the qualitative data. These included: the flexibility of the indicators to serve multiple purposes for communities and individuals both pre- and post- disaster; the focus areas are comprehensive, but content and organization can be improved; the importance of seeing the indicators as a self-assessment, rather than a tool for comparing communities; the potential challenges of collecting data for some indicators; and the identification of potential measurement issues with the indicators. Discussion: The proposed recovery indicators can be utilized by both practitioners and researchers to effectively track post-disaster recovery. They capture many of the complexities of community disaster recovery and provide potential opportunities for linkages to the development of disaster recovery plans and other activities that could increase community resilience in the future. PMID:25685626

  9. Digital Recovery Management: Characterizing Recovery-Specific Social Network Site Participation and Perceived Benefit.

    PubMed

    Bergman, Brandon G; Kelly, Nathaniel W; Hoeppner, Bettina B; Vilsaint, Corrie L; Kelly, John F

    2017-02-16

    Research shows that digital social network sites (SNSs) may be valuable platforms to effect health behavior change. Little is known specifically about their ability to help address alcohol and other drug problems. This gap is noteworthy, given that individuals are already participating in existing, recovery-specific SNSs (hereafter referred to as recovery SNSs): online communities with the functionality of conventional SNSs (e.g., Facebook) that focus on substance use disorder (SUD) recovery. For example, InTheRooms.com (ITR) is a large, well-known recovery SNS that is available for free 24 hr/day via website and mobile smartphone applications. It offers recovery tools within a digital social milieu for over 430,000 registered users. To augment the knowledge base on recovery SNS platforms, we conducted an online survey of 123 ITR participants (M = 50.8 years old; 56.9% female; 93.5% White; M = 7.3 years of abstinence, range of 0-30 years; 65% cited alcohol as their primary substance). Respondents engaged with ITR, on average, for about 30 min/day several times each week. Daily meditation prompts and live online video meetings were the most commonly utilized resources. Participants generally endorsed ITR as a helpful platform, particularly with respect to increased abstinence/recovery motivation and self-efficacy. Compared to individuals abstinent for 1 or more years, those abstinent less than 1 year (including nonabstinent individuals) showed similar rates of engagement with ITR activities and similar levels of perceived benefit. Our findings suggest that longitudinal studies are warranted to examine the clinical utility of ITR and other recovery SNSs as SUD treatment adjuncts and/or recovery self-management tools. (PsycINFO Database Record

  10. Microbial enhanced oil recovery research

    SciTech Connect

    Sharma, M.M.; Georgiou, G.

    1990-01-01

    The objective of this work is to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. Specific goals include: (1) investigation of the mechanisms of microbially induced oil mobilization; (2) the production, isolation, chemical characterization and study of the physical properties of microbially produced surfactants; (3) model studies in sandstone cores for the characterization of the interactions between growing microbially cultures and oil reservoirs; (4) development of simulators for MEOR; and (5) design of operational strategies for the sequential injection of microorganisms and nutrient in reservoirs are: (1) systematic discussion of the mechanisms important in MEOR processes; (2) Measurement of the growth characteristics of Bacillus Licheniformis under various conditions of pH, temperature and salt concentration for both aerobic and anaerobic growth.; (3) measurement of interfacial tension reducing ability of the biosurfactant under different conditions of pH and salt concentration; (4) development of some preliminary methods to concentrate and characterize the biosurfactant; (5) development of a compositional numerical simulator for MEOR processes; and (6) Measurement of the lowest interfacial tension (IFT) value reported for biosurfactants to date. Demonstration of the fact that the low IFT values required for oil recovery can be attained with biosurfactants.

  11. Incorporating reservoir heterogeneity with geostatistics to investigate waterflood recoveries

    SciTech Connect

    Wolcott, D.S. ); Chopra, A.K. )

    1993-03-01

    This paper presents an investigation of infill drilling performance and reservoir continuity with geostatistics and a reservoir simulator. The geostatistical technique provides many possible realizations and realistic descriptions of reservoir heterogeneity. Correlation between recovery efficiency and thickness of individual sand subunits is shown. Additional recovery from infill drilling results from thin, discontinuous subunits. The technique may be applied to variations in continuity for other sandstone reservoirs.

  12. New roads paved on losses: photovoice perspectives about recovery from mental illness.

    PubMed

    Mizock, Lauren; Russinova, Zlatka; Shani, Roni

    2014-11-01

    People with serious mental illness face stigma that interferes with recovery. Photovoice is a method that integrates photography and writing, providing a valuable means for capturing the narratives of people with mental illness whose voices are often marginalized. The purpose of the present article is to explore the meaning of recovery for individuals with serious mental illness based on a qualitative analysis of a new photovoice-based intervention, Recovery Narrative Photovoice. This intervention focuses on promoting the process of recovery and sense of identity through the creation of empowering visual images and narratives of recovery for individuals with serious mental illness. In this article, we present iconographic and thematic analysis for the 23 photovoice works from two pilots of the Recovery Narrative Photovoice intervention. Results reveal several themes, including metaphors for mental illness, associated losses, recovery strategies, and recovery outcomes. A final theme pertains to recovery messages learned from the recovery process.

  13. Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid.

    PubMed

    Minoda, Ayumi; Sawada, Hitomi; Suzuki, Sonoe; Miyashita, Shin-ichi; Inagaki, Kazumi; Yamamoto, Takaiku; Tsuzuki, Mikio

    2015-02-01

    The demand for rare earth elements has increased dramatically in recent years because of their numerous industrial applications, and considerable research efforts have consequently been directed toward recycling these materials. The accumulation of metals in microorganisms is a low-cost and environmentally friendly method for the recovery of metals present in the environment at low levels. Numerous metals, including rare earth elements, can be readily dissolved in aqueous acid, but the efficiency of metal biosorption is usually decreased under the acidic conditions. In this report, we have investigated the use of the sulfothermophilic red alga Galdieria sulphuraria for the recovery of metals, with particular emphasis on the recovery of rare earth metals. Of the five different growth conditions investigated where G. sulphuraria could undergo an adaptation process, Nd(III), Dy(III), and Cu(II) were efficiently recovered from a solution containing a mixture of different metals under semi-anaerobic heterotrophic condition at a pH of 2.5. G. sulphuraria also recovered Nd(III), Dy(III), La(III), and Cu(II) with greater than 90% efficiency at a concentration of 0.5 ppm. The efficiency remained unchanged at pH values in the range of 1.5-2.5. Furthermore, at pH values in the range of 1.0-1.5, the lanthanoid ions were collected much more efficiently into the cell fractions than Cu(II) and therefore successfully separated from the Cu(II) dissolved in the aqueous acid. Microscope observation of the cells using alizarin red suggested that the metals were accumulating inside of the cells. Experiments using dead cells suggested that this phenomenon was a biological process involving specific activities within the cells.

  14. How Should We Study Residential Recovery Homes?

    PubMed Central

    Polcin, Douglas L.

    2014-01-01

    Purpose Persons with serious alcohol and drug problems who are attempting to maintain abstinence often lack an alcohol and drug free living environment that supports sustained recovery. Residential recovery homes, called “sober living houses” in California, are alcohol and drug-free living environments that offer long-term support for persons with addictive disorders. They do not offer formal treatment services but usually encourage or mandate attendance at self-help recovery groups such as Alcoholics Anonymous. Approach This paper weighs the strengths and weaknesses of different research designs for studying residential recovery homes. Alternatives to randomized designs that are able to capture “real world” data that are readily generalized are described and understudied topics are identified. Findings A significant limitation of traditional randomized designs is they eliminate mutual selection processes between prospective residents and recovery home residents and staff. Naturalistic research designs have the advantage of including mutual selection processes and there are methods available for limiting self-selection bias. Qualitative methods should be used to identify factors that residents experience as helpful that can then be studied further. Innovative studies are needed to investigate how outcomes are affected by architectural characteristics of the houses and resident interactions with the surrounding community. Practical implications Use of the recommended strategies could lead to findings that are more informative, intuitively appealing, and interpretable. Social implications Recovery homes and similar programs will be more responsive to consumers. Originality This paper represents one of the first to review various options for studying recovery homes and to provide suggestions for new studies. PMID:26604434

  15. Applications guide for waste heat recovery

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.

    1983-01-01

    The state-of-the-art of commercially available organic Rankine cycle (ORC) hardware from a literature search and industry survey is assessed. Engineering criteria for applying ORC technology are established, and a set of nomograms to enable the rapid sizing of the equipment is presented. A comparison of an ORC system with conventional heat recovery techniques can be made with a nomogram developed for a recuperative heat exchanger. A graphical technique for evaluating the economic aspects of an ORC system and conventional heat recovery method is discussed: also included is a description of anticipated future trends in organic Rankine cycle R&D.

  16. Development of a preprototype times wastewater recovery subsystem

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Dehner, G. F.

    1982-01-01

    A three-man wastewater recovery preprototype subsystem using a hollow fiber membrane evaporator with a thermoelectric heat pump to provide efficient potable water recovery from wastewater on extended duration space flights was designed, fabricated, and tested at one-gravity. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem. The tubular hollow fiber elements provide positive liquid/gas phase control with no moving parts, and provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery. Application and integration of these key elements solved problems inherent in all previous reclamation subsystem designs.

  17. Young Children and Disasters: Lessons Learned About Resilience and Recovery

    ERIC Educational Resources Information Center

    Osofsky, Joy D.; Reuther, Erin T.

    2013-01-01

    For young children, consistency, nurturance, protection, and support are required for both resilience and full recovery. This article reviews relevant literature, developmental issues affecting young children, and factors that influence resilience and recovery including both promotive and protective influences. Focus is also placed on disaster…

  18. Reading Recovery[R]. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2009

    2009-01-01

    "Reading Recovery"[R] is a short-term tutoring intervention designed to serve the lowest-achieving (bottom 20%) first-grade students. The goals of "Reading Recovery"[R] include: promoting literacy skills; reducing the number of first-grade students who are struggling to read; and preventing long-term reading difficulties. The…

  19. 15 CFR 971.203 - Commercial recovery plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS Applications Contents § 971.203 Commercial recovery plan. (a) General. The application must include a proposed commercial... requirements for resource assessment and logical mining unit (§ 971.501); (6) A description of the methods...

  20. 15 CFR 971.203 - Commercial recovery plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS Applications Contents § 971.203 Commercial recovery plan. (a) General. The application must include a proposed commercial... requirements for resource assessment and logical mining unit (§ 971.501); (6) A description of the methods...

  1. 15 CFR 971.203 - Commercial recovery plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS Applications Contents § 971.203 Commercial recovery plan. (a) General. The application must include a proposed commercial... requirements for resource assessment and logical mining unit (§ 971.501); (6) A description of the methods...

  2. Effects of Microwave Radiation on Oil Recovery

    NASA Astrophysics Data System (ADS)

    Esmaeili, Abdollah

    2011-12-01

    A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co-mingled with suspended solids and water. To increase oil recovery, it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil-in-water and oil-water-solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers, water can be discharged and oil is collected. High-frequency microwave recycling process can recover oil and gases from oil shale, residual oil, drill cuttings, tar sands oil, contaminated dredge/sediments, tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly, fuel-generating recycler to reduce waste, cut emissions, and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.

  3. Recovery of Missing Persons in Cyprus: Heavy Equipment Methods and Techniques for Complex Well Excavations.

    PubMed

    Ceker, Deren; Stevens, William D

    2015-11-01

    This technical note presents the methods and techniques developed by the Bi-communal Forensic Team (BCFT) of the Committee on Missing Persons in Cyprus (CMP) used to excavate and exhume the remains of missing persons, many of whom were buried in deep wells at sites across the island of Cyprus during the conflict period of the 1960s and 1970s. A total of 493 Turkish Cypriots and 1508 Greek Cypriots were officially reported missing by the two communities as a result of the conflict. Since the team's formation, in 2005, the BCFT has excavated 114 wells, resulting in the recovery of 195 missing individuals from 35 of these well excavations. The standard excavation approach used by the BCFT, especially for deep well recovery, consists of "ramp," "pocket," and "pool" components. These excavation features enable CMP archaeologists to excavate deep wells safely and efficiently while simultaneously permitting time for thorough documentation and unimpeded recovery of human remains. The team uses three variants of this approach to cope with the variety of geological, physical, and hydrological contexts faced in Cyprus' wells, including hard and soft landforms, the presence or absence of water, and limitations imposed by surrounding infrastructure. The "terracing", "double-ramp", and "single-ramp" variations are detailed with respect to the environmental contexts which prescribe their use. The BCFT's general procedures for human remains recovery and standard well safety protocols conclude the article.

  4. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture

    SciTech Connect

    Seaman, John

    2013-01-14

    The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

  5. Integrating water flow, locomotor performance and respiration of Chinese sturgeon during multiple fatigue-recovery cycles.

    PubMed

    Cai, Lu; Chen, Lei; Johnson, David; Gao, Yong; Mandal, Prashant; Fang, Min; Tu, Zhiying; Huang, Yingping

    2014-01-01

    The objective of this study is to provide information on metabolic changes occurring in Chinese sturgeon (an ecologically important endangered fish) subjected to repeated cycles of fatigue and recovery and the effect on swimming capability. Fatigue-recovery cycles likely occur when fish are moving through the fishways of large dams and the results of this investigation are important for fishway design and conservation of wild Chinese sturgeon populations. A series of four stepped velocity tests were carried out successively in a Steffensen-type swimming respirometer and the effects of repeated fatigue-recovery on swimming capability and metabolism were measured. Significant results include: (1) critical swimming speed decreased from 4.34 bl/s to 2.98 bl/s; (2) active oxygen consumption (i.e. the difference between total oxygen consumption and routine oxygen consumption) decreased from 1175 mgO2/kg to 341 mgO2/kg and was the primary reason for the decrease in Ucrit; (3) excess post-exercise oxygen consumption decreased from 36 mgO2/kg to 22 mgO2/kg; (4) with repeated step tests, white muscle (anaerobic metabolism) began contributing to propulsion at lower swimming speeds. Therefore, Chinese sturgeon conserve energy by swimming efficiently and have high fatigue recovery capability. These results contribute to our understanding of the physiology of the Chinese sturgeon and support the conservation efforts of wild populations of this important species.

  6. Updates to Selected Analytical Methods for Environmental Remediation and Recovery (SAM)

    EPA Pesticide Factsheets

    View information on the latest updates to methods included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM), including the newest recommended methods and publications.

  7. Recovery in the 21st Century: From Shame to Strength.

    PubMed

    Gumbley, Stephen J

    2016-01-01

    Through the "war on drugs," the just-say-no campaign, and into the early years of this century, the overarching approach to substance use disorders (SUDs) called for a single outcome (abstinence) and a single methodology (spiritual connection with a higher power) as the remedy for SUDs. Those who did not become permanently abstinent or rejected the spiritual approach were seen as "not ready" or "in denial."A seismic shift in thinking about "addiction" and "recovery" began in earnest in the 1990s. In 2005, the Substance Abuse and Mental Health Services Administration brought together leaders of the treatment and recovery field for the historic National Summit on Recovery to develop broad-based consensus on guiding principles for recovery and elements of recovery-oriented systems of care.Major changes associated with the recovery-oriented approach include viewing SUDs as chronic, rather than acute, problems that require long-term support and focusing on recovery management rather than disease management. Complete abstinence is not an absolute requirement for wellness for all persons with SUDs. There are "many pathways to recovery," not only the 12-Step approach (White & Kurtz, 2006). Sustained recovery is self-directed and requires personal choices, the support of peers and allies, and community reinforcement as well as a strength-based approach and the use of research-based interventions. This Perspectives column addresses the historical context for the transformation toward a recovery-oriented system of care, highlights federal efforts to promote recovery-oriented approaches, and describes recovery-oriented terminology to reduce misconceptions, labeling, and stigmatization and promote recovery for individuals, families, and communities.

  8. Recovery of agricultural nutrients from biorefineries.

    PubMed

    Carey, Daniel E; Yang, Yu; McNamara, Patrick J; Mayer, Brooke K

    2016-09-01

    This review lays the foundation for why nutrient recovery must be a key consideration in design and operation of biorefineries and comprehensively reviews technologies that can be used to recover an array of nitrogen, phosphorus, and/or potassium-rich products of relevance to agricultural applications. Recovery of these products using combinations of physical, chemical, and biological operations will promote sustainability at biorefineries by converting low-value biomass (particularly waste material) into a portfolio of higher-value products. These products can include a natural partnering of traditional biorefinery outputs such as biofuels and chemicals together with nutrient-rich fertilizers. Nutrient recovery not only adds an additional marketable biorefinery product, but also avoids the negative consequences of eutrophication, and helps to close anthropogenic nutrient cycles, thereby providing an alternative to current unsustainable approaches to fertilizer production, which are energy-intensive and reliant on nonrenewable natural resource extraction.

  9. Helium recovery and purification at CHMFL

    NASA Astrophysics Data System (ADS)

    Li, J.; Meng, Q.; Ouyang, Z.; Shi, L.; Ai, X.; Chen, X.

    2017-02-01

    Currently, rising demand and declining reserves of helium have led to dramatic increases in the helium price. The High Magnetic Field Laboratory of Chinese Academy of Sciences (CHMFL) has made efforts since its foundation to increase the percentage of helium recovered. The piping network connects all the helium experimental facilities to the recovery system, and even exhaust ports of pressure relief valves and vacuum pumps are also connected. In each year, about 30,000 cubic meters helium gas is recovered. The recovery gas is purified, liquefied and supplied to the users again. This paper will provide details about the helium recovery and purification system at CHMFL, including system flowchart, components, problems and solutions.

  10. Social Networks among Residents in Recovery Homes.

    PubMed

    Jason, Leonard; Stevens, Ed; Ferrari, Joseph R; Thompson, Erin; Legler, Ray

    2012-05-26

    Although evidence exists that substance abuse abstinence is enhanced when individuals in recovery are embedded in social networks that are cohesive, few studies examined the network structures underlying recovery home support systems. In two studies, we investigated the mechanisms through which social environments affect health outcomes among two samples of adult residents of recovery homes. Findings from Study 1 (n = 150) indicated that network size and the presence of relationships with other Oxford House (OH) residents both predicted future abstinence. Study 2 (n = 490) included individuals who lived in an OH residence for up to 6 months, and their personal relationship with other house residents predicted future abstinence. Implications of these findings are discussed.

  11. Development of portable measuring system for testing of electrical vehicle's heat energy recovery system

    NASA Astrophysics Data System (ADS)

    Sarvajcz, K.; Váradiné Szarka, A.

    2016-11-01

    Nowadays the consumer society applies a huge amount of energy in many fields including transportation sector. Internal combustion vehicles contribute substantially to the air pollution. An alternative solution for reducing energy consumption is replacing the internal combustion vehicles by electrical or hybrid vehicles. Today one of the biggest disadvantages of the electrical vehicles is the finite capacity of batteries. The research topic presented in this paper is the „Energy Harvesting”, and development of energy recovery system for electrical vehicles which largely contributes in increasing the driving range. At the current phase of the research efficiency analysis of the heat energy recovery devices are investigated in real driving circumstances. Computer based mobile and wireless measurement system for the analysis was developed, tested and installed in a real vehicle. Driving tests were performed and analysed in different circumstances.

  12. Recovery of Extracellular Lipolytic Enzymes from Macrophomina phaseolina by Foam Fractionation with Air

    PubMed Central

    Germani, José Carlos

    2013-01-01

    Macrophomina phaseolina was cultivated in complex and simple media for the production of extracellular lipolytic enzymes. Culture supernatants were batch foam fractionated for the recovery of these enzymes, and column design and operation included the use of P 2 frit (porosity 40 to 100 μm), air as sparging gas at variable flow rates, and Triton X-100 added at the beginning or gradually in aliquots. Samples taken at intervals showed the progress of the kinetic and the efficiency parameters. Best results were obtained with the simple medium supernatant by combining the stepwise addition of small amounts of the surfactant with the variation of the air flow rates along the separation. Inert proteins were foamed out first, and the subsequent foamate was enriched in the enzymes, showing estimated activity recovery (R), enrichment ratio (E), and purification factor (P) of 45%, 34.7, and 2.9, respectively. Lipases were present in the enriched foamate. PMID:23738054

  13. Prognostic value of late heart rate recovery after treadmill exercise.

    PubMed

    Johnson, Nils P; Goldberger, Jeffrey J

    2012-07-01

    Recovery from exercise can be divided into an early, rapid period and a late, slower period. Although early heart rate (HR) recovery 1 minute after treadmill exercise independently predicts survival, the prognostic value of late HR recovery has not been well studied. The aim of this study was to evaluate the independent prognostic value of late HR recovery for all-cause mortality. A total of 2,082 patients referred to the nuclear cardiology laboratory of an urban academic medical center for treadmill exercise with imaging from August 1998 to December 2003 were followed for all-cause mortality. During 9.9 ± 1.5 years of follow-up, 196 deaths (9%) occurred. To avoid overlap with early HR recovery or the baseline HR, late HR recovery was defined as the percentage of the cycle length change between rest and peak exercise that had been recovered after 5 minutes. Lower values represent impaired recovery, by analogy with 1-minute HR recovery. Impaired late HR recovery was a significant univariate predictor of all-cause mortality (hazard ratio 0.28 per percentage, 95% confidence interval 0.17 to 0.46, p <0.001). It significantly improved a nested, multivariate model (change in chi-square 8.66, p = 0.003), including 1-minute HR recovery, with independent prognostic value (adjusted hazard ratio 0.58, 95% confidence interval 0.41 to 0.84, p = 0.004). In conclusion, late HR recovery after treadmill exercise stress adds prognostic value for all-cause mortality to a multivariate model including early, 1-minute HR recovery.

  14. Line Creek improves efficiency

    SciTech Connect

    Harder, P.

    1988-04-01

    Boosting coal recovery rate by 8% and reducing fuel expense $18,000 annually by replacing two tractors, are two tangible benefits that Crows Nest Resources of British Columbia has achieved since overseas coal markets weakened in 1985. Though coal production at the 4-million tpy Line Creek open pit mine has been cut 25% from its 1984 level, morale among the pit crew remains high. More efficient pit equipment, innovative use of existing equipment, and encouragement of multiple skill development among workers - so people can be assigned to different jobs in the operation as situations demand - contribute to a successful operation.

  15. Aluminum and glass recovery systems: second-generation design

    SciTech Connect

    Bernheisel, J.F.; Bagalman, P.M.; Schlag, W.A.

    1983-09-01

    A facility to recover aluminum and glass from unicipal solid waste is outlined. The aluminum recovery system includes the following: trommel screen, magnetic separator, flow splitter, friction slide, eddy current separator, air knife, shredder, vibrating screen, and storage bin. The glass recovery system includes the following: rolls crusher, spiral classifier, dewatering screen, surge bin, rod mill, vibrating screen, spiral classifier, flotation cell unit, spiral classifier, vacuum filter, dryer, storage silo, and water treatment. Cost estimates are included. (MHR)

  16. Neutral beamline with improved ion energy recovery

    DOEpatents

    Kim, Jinchoon

    1984-01-01

    A neutral beamline employing direct energy recovery of unneutralized residual ions is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell, and thus improves the overall neutral beamline efficiency. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beam direction in the neutral izer exit region. The ions which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be loosely coupled. As a result, the fractional energy ions exiting the cell are reflected onto and collected at an interior wall of the neutralizer formed by the modified end geometry, and thus do not detract from the energy recovery efficiency of full energy ions exiting the cell. Electrons within the neutralizer are prevented from exiting the neutralizer end opening by the action of crossed fields drift (ExB) and are terminated to a collector collar around the downstream opening of the neutralizer. The correct combination of the extended neutralizer end structure and the magnet region is designed so as to maximize the exit of full energy ions and to contain the fractional energy ions.

  17. Umbilical cable recovery load analysis

    NASA Astrophysics Data System (ADS)

    Yan, Shu-wang; Jia, Zhao-lin; Feng, Xiao-wei; Li, Shi-tao

    2013-06-01

    Umbilical cable is a kind of integrated subsea cable widely used in the exploration and exploitation of oil and gas field. The severe ocean environment makes great challenges to umbilical maintenance and repair work. Damaged umbilical is usually recovered for the regular operation of the offshore production system. Analysis on cables in essence is a two-point boundary problem. The tension load at the mudline must be known first, and then the recovery load and recovery angle on the vessel can be solved by use of catenary equation. The recovery analysis also involves umbilical-soil interaction and becomes more complicated. Calculation methods for recovery load of the exposed and buried umbilical are established and the relationship between the position of touch down point and the recovery load as well as the recovery angle and recovery load are analyzed. The analysis results provide a theoretical reference for offshore on-deck operation.

  18. Improving Biofuels Recovery Processes for Energy Efficiency and Sustainability

    EPA Science Inventory

    Biofuels are made from living or recently living organisms. For example, ethanol can be made from fermented plant materials. Biofuels have a number of important benefits when compared to fossil fuels. Biofuels are produced from renewable energy sources such as agricultural resou...

  19. Improving Biofuel Recovery Processes For Efficiency and Sustainability

    EPA Science Inventory

    The 2007 Energy Independence and Security Act (EISA) provided for increased production of biofuels with, among other provisions, a specified share to be derived from non-sugar or cellulose feedstocks. The EISA further established standards for renewable fuels achieving 20, 50, a...

  20. Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery

    SciTech Connect

    Wang, a.; Pickrell, G.; Xiao, H.; May, r.

    2003-02-27

    The overall goal of this project was to develop reliable cost effective sensors for application in the down-hole environment. The physical parameters measured by these sensors were temperature, pressure, flow and acoustic signals. Sensor head configurations for each of the physical measurands were optimized to increase the sensitivity to the particular measurand of interest while decreasing the cross-sensitivity to the other physical measurands and to environmental influences. In addition, the optical signal demodulation electronics was designed to be insensitive to environmental influences while maintaining the required resolution, precision and accuracy of the parameter being sensed. The influence of potentially detrimental agents such as water in the down-hole environment was investigated as well as methods to protect both the optical fiber and the sensor from these detrimental effects.