Functional recovery in patients with schizophrenia: recommendations from a panel of experts.
Lahera, Guillermo; Gálvez, José L; Sánchez, Pedro; Martínez-Roig, Miguel; Pérez-Fuster, J V; García-Portilla, Paz; Herrera, Berta; Roca, Miquel
2018-06-05
The management of schizophrenia is evolving towards a more comprehensive model based on functional recovery. The concept of functional recovery goes beyond clinical remission and encompasses multiple aspects of the patient's life, making it difficult to settle on a definition and to develop reliable assessment criteria. In this consensus process based on a panel of experts in schizophrenia, we aimed to provide useful insights on functional recovery and its involvement in clinical practice and clinical research. After a literature review of functional recovery in schizophrenia, a scientific committee of 8 members prepared a 75-item questionnaire, including 6 sections: (I) the concept of functional recovery (9 items), (II) assessment of functional recovery (23 items), (III) factors influencing functional recovery (16 items), (IV) psychosocial interventions and functional recovery (8 items), (V) pharmacological treatment and functional recovery (14 items), and (VI) the perspective of patients and their relatives on functional recovery (5 items). The questionnaire was sent to a panel of 53 experts, who rated each item on a 9-point Likert scale. Consensus was achieved in a 2-round Delphi dynamics, using the median (interquartile range) scores to consider consensus in either agreement (scores 7-9) or disagreement (scores 1-3). Items not achieving consensus in the first round were sent back to the experts for a second consideration. After the two recursive rounds, consensus was achieved in 64 items (85.3%): 61 items (81.3%) in agreement and 3 (4.0%) in disagreement, all of them from section II (assessment of functional recovery). Items not reaching consensus were related to the concepts of functional recovery (1 item, 1.3%), functional assessment (5 items, 6.7%), factors influencing functional recovery (3 items, 4.0%), and psychosocial interventions (2 items, 5.6%). Despite the lack of a well-defined concept of functional recovery, we identified a trend towards a common archetype of the definition and factors associated with functional recovery, as well as its applicability in clinical practice and clinical research.
Yan-Meier, Leslie; Eberhart, Nicole K; Hammen, Constance L; Gitlin, Michael; Sokolski, Kenneth; Altshuler, Lori
2011-04-30
Identifying predictors of functional recovery in bipolar disorder is critical to treatment efforts to help patients re-establish premorbid levels of role adjustment following an acute manic episode. The current study examined the role of stressful life events as potential obstacles to recovery of functioning in various roles. 65 patients with bipolar I disorder participated in a longitudinal study of functional recovery following clinical recovery from a manic episode. Stressful life events were assessed as predictors of concurrent vs. delayed recovery of role functioning in 4 domains (friends, family, home duties, work/school). Despite clinical recovery, a subset of patients experienced delayed functional recovery in various role domains. Moreover, delayed functional recovery was significantly associated with presence of one or more stressors in the prior 3 months, even after controlling for mood symptoms. Presence of a stressor predicted longer time to functional recovery in life domains, up to 112 days in work/school. Interventions that provide monitoring, support, and problem-solving may be needed to help prevent or mitigate the effects of stress on functional recovery. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Neuroplasticity and functional recovery in multiple sclerosis
Tomassini, Valentina; Matthews, Paul M.; Thompson, Alan J.; Fuglø, Daniel; Geurts, Jeroen J.; Johansen-Berg, Heidi; Jones, Derek K.; Rocca, Maria A.; Wise, Richard G.; Barkhof, Frederik; Palace, Jacqueline
2013-01-01
The development of therapeutic strategies that promote functional recovery is a major goal of multiple sclerosis (MS) research. Neuroscientific and methodological advances have improved our understanding of the brain’s recovery from damage, generating novel hypotheses for potential targets or modes of intervention and laying the foundation for the development of scientifically informed strategies promoting recovery in interventional studies. This Review aims to encourage the transition from characterization of recovery mechanisms to the development of strategies that promote recovery in MS. We discuss current evidence for functional reorganization that underlies recovery and its implications for development of new recovery-oriented strategies in MS. Promotion of functional recovery requires an improved understanding of recovery mechanisms modulated by interventions and the development of reliable measures of therapeutic effects. As imaging methods can be used to measure functional and structural alterations associated with recovery, this Review discusses their use as reliable markers to measure the effects of interventions. PMID:22986429
Functional recovery in the avian ear after hair cell regeneration.
Smolders, J W
1999-01-01
Trauma to the inner ear in birds, due to acoustic overstimulation or ototoxic aminoglycosides, can lead to hair cell loss which is followed by regeneration of new hair cells. These processes are paralleled by hearing loss followed by significant functional recovery. After acoustic trauma, functional recovery is rapid and nearly complete. The early and major part of functional recovery after sound trauma occurs before regenerated hair cells become functional. Even very intense sound trauma causes loss of only a proportion of the hair cell population, mainly so-called short hair cells residing on the abneural mobile part of the avian basilar membrane. Uncoupling of the tectorial membrane from the hair cells during sound overexposure may serve as a protection mechanism. The rapid functional recovery after sound trauma appears not to be associated with regeneration of the lost hair cells, but with repair processes involving the surviving hair cells. Small residual functional deficits after recovery are most likely associated with the missing upper fibrous layer of the tectorial membrane which fails to regenerate after sound trauma. After aminoglycoside trauma, functional recovery is slower and parallels the structural regeneration more closely. Aminoglycosides cause damage to both types of hair cells, starting at the basal (high frequency) part of the basilar papilla. However, functional hearing loss and recovery also occur at lower frequencies, associated with areas of the papilla where hair cells survive. Functional recovery in these low frequency areas is complete, whereas functional recovery in high frequency areas with complete hair cell loss is incomplete, despite regeneration of the hair cells. Permanent residual functional deficits remain. This indicates that in low frequency regions functional recovery after aminoglycosides involves repair of nonlethal injury to hair cells and/or hair cell-neural synapses. In the high frequency regions functional recovery involves regenerated hair cells. The permanent functional deficits after the regeneration process in these areas are most likely associated with functional deficits in the regenerated hair cells or shortcomings in the synaptic reconnections of nerve fibers with the regenerated hair cells. In conclusion, the avian inner ear appears to be much more resistant to trauma than the mammalian ear and possesses a considerable capacity for functional recovery based on repair processes along with its capacity to regenerate hair cells. The functional recovery in areas with regenerated hair cells is considerable but incomplete.
Clarkson, Andrew N; Overman, Justine J; Zhong, Sheng; Mueller, Rudolf; Lynch, Gary; Carmichael, S Thomas
2011-03-09
Stroke is the leading cause of adult disability. Recovery after stroke shares similar molecular and cellular properties with learning and memory. A main component of learning-induced plasticity involves signaling through AMPA receptors (AMPARs). We systematically tested the role of AMPAR function in motor recovery in a mouse model of focal stroke. AMPAR function controls functional recovery beginning 5 d after the stroke. Positive allosteric modulators of AMPARs enhance recovery of limb control when administered after a delay from the stroke. Conversely, AMPAR antagonists impair motor recovery. The contributions of AMPARs to recovery are mediated by release of brain-derived neurotrophic factor (BDNF) in periinfarct cortex, as blocking local BDNF function in periinfarct cortex blocks AMPAR-mediated recovery and prevents the normal pattern of motor recovery. In contrast to a delayed AMPAR role in motor recovery, early administration of AMPAR agonists after stroke increases stroke damage. These findings indicate that the role of glutamate signaling through the AMPAR changes over time in stroke: early potentiation of AMPAR signaling worsens stroke damage, whereas later potentiation of the same signaling system improves functional recovery.
Ickmans, Kelly; Simoens, Fauve; Nijs, Jo; Kos, Daphne; Cras, Patrick; Willekens, Barbara; Meeus, Mira
2014-07-01
Delayed recovery of muscle function following exercise has been demonstrated in the lower limbs of patients with multiple sclerosis (MS). However, studies examining this in the upper limbs are currently lacking. This study compared physical activity level (PAL) and recovery of upper limb muscle function following exercise between MS patients and healthy inactive controls. Furthermore, the relationship between PAL and muscle recovery was examined. PAL of 19 MS patients and 32 controls was measured using an accelerometer for 7 consecutive days. Afterwards, recovery of muscle function was assessed by performing a fatiguing upper limb exercise test with subsequent recovery measures. Muscle recovery of the upper limb muscles was similar in both groups. Average activity counts were significantly lower in MS patients than in the control group. MS patients spent significantly more time being sedentary and less time on activities of moderate intensity compared with the control group. No significant correlation between PAL and recovery of muscle function was found in MS patients. Recovery of upper limb muscle function following exercise is normal in MS patients. MS patients are less physically active than healthy inactive controls. PAL and recovery of upper limb muscle function appear unrelated in MS patients. Copyright © 2014 Elsevier B.V. All rights reserved.
Chan, Randolph C H; Mak, Winnie W S; Chio, Floria H N; Tong, Alan C Y
2017-09-08
Well-being is not just the absence of mental disorder but also involves positive feelings and contentment (emotional well-being), meaningful engagement (psychological well-being), and contribution of one's community or society (social well-being). Recovery processes, which encompass mitigation of clinical symptomatology (clinical recovery), improvement in occupational, social, and adaptive functioning (functional recovery), and development of personally valued goals and identity (personal recovery), have demonstrated to be important markers of well-being. This study examined the relative contribution of clinical, functional, and personal recovery processes on well-being among individuals with schizophrenia and explored the effect of personal recovery on people with varying levels of symptom severity and functional ability. A longitudinal quantitative research design was used in which 181 people with schizophrenia spectrum disorders were assessed at baseline and 6 months. At baseline, 28.2% of the participants were considered as flourishing. Around half of the participants (52.5%) were moderately mentally healthy, while 19.3% were identified as languishing. Results showed that clinical recovery was predictive of better well-being at 6-month postbaseline. Personal recovery was found to positively predict well-being, above and beyond the effects of clinical and functional recovery. Moderation analysis showed that the effect of personal recovery on well-being did not depend on clinical and functional recovery, which implied that people with schizophrenia can participate in the process of personal recovery and enjoy positive well-being regardless of their clinical stability and functional competence. Given the robust salutogenic effect of personal recovery, greater emphasis should be placed on developing person-centered, strength-based, recovery-oriented services. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Siegel, Chad S.; Fink, Kathren L.; Strittmatter, Stephen M.
2015-01-01
Axons in the adult CNS fail to regenerate after injury, and therefore recovery from spinal cord injury (SCI) is limited. Although full recovery is rare, a modest degree of spontaneous recovery is observed consistently in a broad range of clinical and nonclinical situations. To define the mechanisms mediating spontaneous recovery of function after incomplete SCI, we created bilaterally complete medullary corticospinal tract lesions in adult mice, eliminating a crucial pathway for voluntary skilled movement. Anatomic and pharmacogenetic tools were used to identify the pathways driving spontaneous functional recovery in wild-type and plasticity-sensitized mice lacking Nogo receptor 1. We found that plasticity-sensitized mice recovered 50% of normal skilled locomotor function within 5 weeks of lesion. This significant, yet incomplete, spontaneous recovery was accompanied by extensive sprouting of intact rubrofugal and rubrospinal projections with the emergence of a de novo circuit between the red nucleus and the nucleus raphe magnus. Transient silencing of this rubro–raphe circuit in vivo via activation of the inhibitory DREADD (designer receptor exclusively activated by designer drugs) receptor hM4di abrogated spontaneous functional recovery. These data highlight the pivotal role of uninjured motor circuit plasticity in supporting functional recovery after trauma, and support a focus of experimental strategies on enhancing intact circuit rearrangement to promote functional recovery after SCI. PMID:25632122
Novick, Diego; Montgomery, William; Vorstenbosch, Ellen; Moneta, Maria Victoria; Dueñas, Héctor; Haro, Josep Maria
2017-01-01
Not all individuals treated for major depressive disorder (MDD) achieve recovery. This observational study examined the recovery rates in MDD patients and the patient characteristics associated with achieving recovery in a naturalistic clinical setting. Recovery was defined as having both clinical and functional remission. Data for this post hoc analysis were taken from a 24-week prospective, observational study that involved 1,549 MDD patients. Clinical remission was assessed using the 16-item Quick Inventory of Depressive Symptomatology Self-Report and functional remission through the Sheehan Disability Scale and no days of reduced productivity in the previous week. Generalized estimating equation regression models were used to examine the baseline factors associated with recovery during follow-up. Clinical and functional remission was achieved in 70.6% and 56.1% of the MDD patients, respectively. MDD patients who achieved recovery (52.1%) were significantly less likely to have impaired levels of functioning, concurrent medical or psychiatric conditions, low levels of education, or nonadherence to therapy at follow-up. The level of functioning during the index episode seems to be a better predictor of recovery than symptom severity. Therefore, the level of functioning should be considered while determining recovery from depression.
[Brain function recovery after prolonged posttraumatic coma].
Klimash, A V; Zhanaidarov, Z S
2016-01-01
To explore the characteristics of brain function recovery in patients after prolonged posttraumatic coma and with long-unconscious states. Eighty-seven patients after prolonged posttraumatic coma were followed-up for two years. An analysis of a clinical/neurological picture after a prolonged episode of coma was based on the dynamics of vital functions, neurological status and patient's reactions to external stimuli. Based on the dynamics of the clinical/neurological picture that shows the recovery of functions of the certain brain areas, three stages of brain function recovery after a prolonged episode of coma were singled out: brain stem areas, diencephalic areas and telencephalic areas. These functional/anatomic areas of brain function recovery after prolonged coma were compared to the present classifications.
Vukovic, Mile; Vuksanovic, Jasmina; Vukovic, Irena
2008-01-01
In this study we investigated the recovery patterns of language and cognitive functions in patients with post-traumatic language processing deficits and in patients with aphasia following a stroke. The correlation of specific language functions and cognitive functions was analyzed in the acute phase and 6 months later. Significant recovery of the tested functions was observed in both groups. However, in patients with post-traumatic language processing deficits the degree of recovery of most language functions and some cognitive functions was higher. A significantly greater correlation was revealed within language and cognitive functions, as well as between language functions and other aspects of cognition in patients with post-traumatic language processing deficits than in patients with aphasia following a stroke. Our results show that patients with post-traumatic language processing deficits have a different recovery pattern and a different pattern of correlation between language and cognitive functions compared to patients with aphasia following a stroke. (1) Better understanding of the differences in recovery of language and cognitive functions in patients who have suffered strokes and those who have experienced traumatic brain injury. (2) Better understanding of the relationship between language and cognitive functions in patients with post-traumatic language processing deficits and in patients with aphasia following a stroke. (3) Better understanding of the factors influencing recovery.
Novick, Diego; Montgomery, William; Vorstenbosch, Ellen; Moneta, Maria Victoria; Dueñas, Héctor; Haro, Josep Maria
2017-01-01
Not all individuals treated for major depressive disorder (MDD) achieve recovery. This observational study examined the recovery rates in MDD patients and the patient characteristics associated with achieving recovery in a naturalistic clinical setting. Recovery was defined as having both clinical and functional remission. Data for this post hoc analysis were taken from a 24-week prospective, observational study that involved 1,549 MDD patients. Clinical remission was assessed using the 16-item Quick Inventory of Depressive Symptomatology Self-Report and functional remission through the Sheehan Disability Scale and no days of reduced productivity in the previous week. Generalized estimating equation regression models were used to examine the baseline factors associated with recovery during follow-up. Clinical and functional remission was achieved in 70.6% and 56.1% of the MDD patients, respectively. MDD patients who achieved recovery (52.1%) were significantly less likely to have impaired levels of functioning, concurrent medical or psychiatric conditions, low levels of education, or nonadherence to therapy at follow-up. The level of functioning during the index episode seems to be a better predictor of recovery than symptom severity. Therefore, the level of functioning should be considered while determining recovery from depression. PMID:29184393
The Role of Cortical Plasticity in Recovery of Function Following Allogeneic Hand Transplantation
2015-10-01
transplantation, functional magnetic resonance imaging, hand replantation, cortical reorganization, functional recovery 16. SECURITY CLASSIFICATION OF: U...functional magnetic resonance imaging (fMRI) data suggest that areas of the sensory and motor cortex devoted to representing the hand prior to...function, recovery, functional magnetic resonance imaging 3. Accomplishments Major Goals Achieved: Year Two My lab is relocated to Washington University
Wittmann, Daniela; Carolan, Marsha; Given, Barbara; Skolarus, Ted A; Crossley, Heather; An, Lawrence; Palapattu, Ganesh; Clark, Patricia; Montie, James E
2015-02-01
Interventions designed to help couples recover sexual intimacy after prostatectomy have not been guided by a comprehensive conceptual model. We examined a proposed biopsychosocial conceptual model of couples' sexual recovery that included functional, psychological, and relational aspects of sexuality, surgery-related sexual losses, and grief and mourning as recovery process. We interviewed 20 couples preoperatively and 3 months postoperatively. between 2010 and 2012. Interviews were analyzed with Analytic Induction qualitative methodology, using NVivo software. Paired t-tests described functional assessment data. Study findings led to a revised conceptual model. Couples' experiences were assessed through semi-structured interviews; male participants' sexual function was assessed with the Expanded Prostate Cancer Index Composite and female participants' sexual function with the Female Sexual Function Index. Preoperatively, 30% of men had erectile dysfunction (ED) and 84% of partners were postmenopausal. All valued sexual recovery, but worried about cancer spread and surgery side effects. Faith in themselves and their surgeons led 90% of couples to overestimate erectile recovery. Postoperatively, most men had ED and lost confidence. Couples' sexual activity decreased. Couples reported feeling loss and grief: cancer diagnosis was the first loss, followed by surgery-related sexual losses. Couples' engagement in intentional sex, patients' acceptance of erectile aids, and partners' interest in sex aided the recovery of couples' sexual intimacy recovery. Unselfconscious sex, not returning to erectile function baseline, was seen as the end point. Survey findings documented participants' sexual function losses, confirming qualitative findings. Couples' sexual recovery requires addressing sexual function, feelings about losses, and relationship simultaneously. Perioperative education should emphasize the roles of nerve damage in ED and grief and mourning in sexual recovery. © 2014 International Society for Sexual Medicine.
Wittmann, Daniela; Carolan, Marsha; Given, Barbara; Skolarus, Ted A.; Crossley, Heather; An, Lawrence; Palapattu, Ganesh; Clark, Patricia; Montie, James E.
2015-01-01
Introduction Interventions designed to help couples recover sexual intimacy after prostatectomy have not been guided by a comprehensive conceptual model. Aim We examined a proposed biopsychosocial conceptual model of couples’ sexual recovery that included functional, psychological and relational aspects of sexuality, surgery-related sexual losses, and grief and mourning as recovery process. Methods We interviewed twenty couples pre-operatively and 3-months post-operatively. between 2010 and 2012. Interviews were analyzed with Analytic Induction qualitative methodology, using NVivo software. Paired t-tests described functional assessment data. Study findings led to a revised conceptual model. Main Outcome Measures Couples’ experiences were assessed through semi-structured interviews; male participants’ sexual function was assessed with the Expanded Prostate Cancer Index Composite and female participants’ sexual function with the Female Sexual Function Index. Results Pre-operatively, 30% of men had erectile dysfunction (ED), 84% of partners were post-menopausal. All valued sexual recovery, but worried about cancer spread and surgery side-effects. Faith in themselves and their surgeons led 90% of couples to overestimate erectile recovery. Post-operatively, most men had ED and lost confidence. Couples’ sexual activity decreased. Couples reported feeling loss and grief: cancer diagnosis was the first loss, followed by surgery-related sexual losses. Couples’ engagement in intentional sex, patients’ acceptance of erectile aids and partners’ interest in sex aided the recovery of couples’ sexual intimacy recovery. Unselfconscious sex, not return to erectile function baseline, was seen as the endpoint. Survey findings documented participants’ sexual function losses, confirming qualitative findings. Conclusions Couples’ sexual recovery requires addressing sexual function, feelings about losses and relationship simultaneously. Peri-operative education should emphasize the roles of nerve damage in ED and grief and mourning in sexual recovery. PMID:25358901
Brain Connectivity and Functional Recovery in Patients With Ischemic Stroke.
Almeida, Sara Regina Meira; Vicentini, Jessica; Bonilha, Leonardo; De Campos, Brunno M; Casseb, Raphael F; Min, Li Li
2017-01-01
Brain mapping studies have demonstrated that functional poststroke brain reorganization is associated with recovery of motor function. Nonetheless, the specific mechanisms associated with functional reorganization leading to motor recovery are still partly unknown. In this study, we performed a cross-sectional evaluation of poststroke subjects with the following goals: (1) To assess intra- and interhemispheric functional brain activation patterns associated with motor function in poststroke patients with variable degrees of recovery; (2) to investigate the involvement of other nonmotor functional networks in relationship with recovery. We studied 59 individuals: 13 patients with function Rankin > 1 and Barthel < 100; 19 patients with preserved function with Rankin 0-1 and Barthel = 100; and 27 healthy controls. All subjects underwent structural and functional magnetic resonance imaging (3T Philips Achieva, Holland) using the same protocol (TR = 2 seconds, TE = 30 ms, FOV = 240 × 240 × 117, slice = 39). Resting state functional connectivity was used by in-house software, based on SPM12. Among patients with and without preserved function, the functional connectivity between the primary motor region (M1) and the contralateral hemisphere was increased compared with controls. Nonetheless, only patients with decreased function exhibited decreased functional connectivity between executive control, sensorimotor and visuospatial networks. Functional recovery after stroke is associated with preserved functional connectivity of motor to nonmotor networks. Copyright © 2016 by the American Society of Neuroimaging.
Dynamics of functional failures and recovery in complex road networks
NASA Astrophysics Data System (ADS)
Zhan, Xianyuan; Ukkusuri, Satish V.; Rao, P. Suresh C.
2017-11-01
We propose a new framework for modeling the evolution of functional failures and recoveries in complex networks, with traffic congestion on road networks as the case study. Differently from conventional approaches, we transform the evolution of functional states into an equivalent dynamic structural process: dual-vertex splitting and coalescing embedded within the original network structure. The proposed model successfully explains traffic congestion and recovery patterns at the city scale based on high-resolution data from two megacities. Numerical analysis shows that certain network structural attributes can amplify or suppress cascading functional failures. Our approach represents a new general framework to model functional failures and recoveries in flow-based networks and allows understanding of the interplay between structure and function for flow-induced failure propagation and recovery.
Choi, S-S; Cho, S-S; Ha, T-Y; Hwang, S; Lee, S-G; Kim, Y-K
2016-02-01
The safety of healthy living donors who are undergoing hepatic resection is a primary concern. We aimed to identify intraoperative anaesthetic and surgical factors associated with delayed recovery of liver function after hepatectomy in living donors. We retrospectively analysed 1969 living donors who underwent hepatectomy for living donor liver transplantation. Delayed recovery of hepatic function was defined by increases in international normalised ratio of prothrombin time and concomitant hyperbilirubinaemia on or after post-operative day 5. Univariate and multivariate logistic regression analyses were performed to determine the factors associated with delayed recovery of hepatic function after living donor hepatectomy. Delayed recovery of liver function after donor hepatectomy was observed in 213 (10.8%) donors. Univariate logistic regression analysis showed that sevoflurane anaesthesia, synthetic colloid, donor age, body mass index, fatty change and remnant liver volume were significant factors for prediction of delayed recovery of hepatic function. Multivariate logistic regression analysis showed that independent factors significantly associated with delayed recovery of liver function after donor hepatectomy were sevoflurane anaesthesia (odds ratio = 3.514, P < 0.001), synthetic colloid (odds ratio = 1.045, P = 0.033), donor age (odds ratio = 0.970, P = 0.003), female gender (odds ratio = 1.512, P = 0.014) and remnant liver volume (odds ratio = 0.963, P < 0.001). Anaesthesia with sevoflurane was an independent factor in predicting delayed recovery of hepatic function after donor hepatectomy. Although synthetic colloid may be associated with delayed recovery of hepatic function after donor hepatectomy, further study is required. These results can provide useful information on perioperative management of living liver donors. © 2015 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Earthquake recovery of historic buildings: exploring cost and time needs.
Al-Nammari, Fatima M; Lindell, Michael K
2009-07-01
Disaster recovery of historic buildings has rarely been investigated even though the available literature indicates that they face special challenges. This study examines buildings' recovery time and cost to determine whether their functions (that is, their use) and their status (historic or non-historic) affect these outcomes. The study uses data from the city of San Francisco after the 1989 Loma Prieta earthquake to examine the recovery of historic buildings owned by public agencies and non-governmental organisations. The results show that recovery cost is affected by damage level, construction type and historic status, whereas recovery time is affected by the same variables and also by building function. The study points to the importance of pre-incident recovery planning, especially for building functions that have shown delayed recovery. Also, the study calls attention to the importance of further investigations into the challenges facing historic building recovery.
Huang, Jinghui; Hu, Xueyu; Lu, Lei; Ye, Zhengxu; Wang, Yuqing; Luo, Zhuojing
2009-10-01
Electrical stimulation has been shown to enhance peripheral nerve regeneration after nerve injury. However, the impact of electrical stimulation on motor functional recovery after nerve injuries, especially over long nerve gap lesions, has not been investigated in a comprehensive manner. In the present study, we aimed to determine whether electrical stimulation (1 h, 20 Hz) is beneficial for motor functional recovery after a 10 mm femoral nerve gap lesion in rats. The proximal nerve stump was electrically stimulated for 1 h at 20 Hz frequency prior to nerve repair with an autologous graft. The rate of motor functional recovery was evaluated by single frame motion analysis and electrophysiological studies, and the nerve regeneration was investigated by double labeling and histological analysis. We found that brief electrical stimulation significantly accelerated motor functional recovery and nerve regeneration. Although the final outcome, both in functional terms and morphological terms, was not improved by electrical stimulation, the observed acceleration of functional recovery and axon regeneration may be of therapeutic importance in clinical setting.
Anderson, Kim; Aito, Sergio; Atkins, Michal; Biering-Sørensen, Fin; Charlifue, Susan; Curt, Armin; Ditunno, John; Glass, Clive; Marino, Ralph; Marshall, Ruth; Mulcahey, Mary Jane; Post, Marcel; Savic, Gordana; Scivoletto, Giorgio; Catz, Amiram
2008-01-01
Background/Objective: The end goal of clinical care and clinical research involving spinal cord injury (SCI) is to improve the overall ability of persons living with SCI to function on a daily basis. Neurologic recovery does not always translate into functional recovery. Thus, sensitive outcome measures designed to assess functional status relevant to SCI are important to develop. Method: Evaluation of currently available SCI functional outcome measures by a multinational work group. Results: The 4 measures that fit the prespecified inclusion criteria were the Modified Barthel Index (MBI), the Functional Independence Measure (FIM), the Quadriplegia Index of Function (QIF), and the Spinal Cord Independence Measure (SCIM). The MBI and the QIF were found to have minimal evidence for validity, whereas the FIM and the SCIM were found to be reliable and valid. The MBI has little clinical utility for use in the SCI population. Likewise, the FIM applies mainly when measuring burden of care, which is not necessarily a reflection of functional recovery. The QIF is useful for measuring functional recovery but only in a subpopulation of people with SCI, and substantial validity data are still required. The SCIM is the only functional recovery outcome measure designed specifically for SCI. Conclusions: The multinational work group recommends that the latest version of the SCIM (SCIM III) continue to be refined and validated and subsequently implemented worldwide as the primary functional recovery outcome measure for SCI. The QIF may continue to be developed and validated for use as a supplemental tool for the nonambulatory tetraplegic population. PMID:18581660
Fowler, David; Hodgekins, Jo; Howells, Lawrence; Millward, Melanie; Ivins, Annabel; Taylor, Gavin; Hackmann, Corinna; Hill, Katherine; Bishop, Nick; Macmillan, Iain
2009-11-01
This paper assesses the impact of different models of early intervention (EI) service provision on functional recovery and inpatient hospital admission. The study compares the outcome of a comprehensive EI team with a partial model (community mental health team (CMHT) plus specialist support) and traditional care (generic CMHT) over a 10-year period. The design is in comparison with historical control. The study compares the functional recovery outcomes of three cohorts from the same geographical area over the period 1998-2007. The primary outcomes were partial and full functional recovery defined with respect to readily identifiable UK benefit system thresholds and psychiatric inpatient admission days at 1 and 2 years post-referral. Only 15% of individuals made a full or partial functional recovery at 2 years under the care of a traditional generic CMHT in 1998. In 2007, 52% of the cases were making a full or partial functional recovery under the care of the comprehensive EI team. A large reduction in inpatient admissions was associated with the EI strategy. The implementation of comprehensive EI teams can have a major impact in improving functional recovery outcomes in psychosis and reducing inpatient admissions. Partial implementation using limited funding of specialist workers in collaboration with traditional care appeared to have a more limited effect on these recovery dimensions. The implementation of targeted EI in psychosis strategies can result in substantive functional benefits. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Asia Pty Ltd.
Shiromoto, Takashi; Okabe, Naohiko; Lu, Feng; Maruyama-Nakamura, Emi; Himi, Naoyuki; Narita, Kazuhiko; Yagita, Yoshiki; Kimura, Kazumi; Miyamoto, Osamu
2017-02-01
Endogenous neurogenesis is associated with functional recovery after stroke, but the roles it plays in such recovery processes are unknown. This study aims to clarify the roles of endogenous neurogenesis in functional recovery and motor map reorganization induced by rehabilitative therapy after stroke by using a rat model of cerebral ischemia (CI). Ischemia was induced via photothrombosis in the caudal forelimb area of the rat cortex. First, we examined the effect of rehabilitative therapy on functional recovery and motor map reorganization, using the skilled forelimb reaching test and intracortical microstimulation. Next, using the same approaches, we examined how motor map reorganization changed when endogenous neurogenesis after stroke was inhibited by cytosine-β-d-arabinofuranoside (Ara-C). Rehabilitative therapy for 4 weeks after the induction of stroke significantly improved functional recovery and expanded the rostral forelimb area (RFA). Intraventricular Ara-C administration for 4-10 days after stroke significantly suppressed endogenous neurogenesis compared to vehicle, but did not appear to influence non-neural cells (e.g., microglia, astrocytes, and vascular endothelial cells). Suppressing endogenous neurogenesis via Ara-C administration significantly inhibited (~50% less than vehicle) functional recovery and RFA expansion (~33% of vehicle) induced by rehabilitative therapy after CI. After CI, inhibition of endogenous neurogenesis suppressed both the functional and anatomical markers of rehabilitative therapy. These results suggest that endogenous neurogenesis contributes to functional recovery after CI related to rehabilitative therapy, possibly through its promotion of motor map reorganization, although other additional roles cannot be ruled out. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Kim, C-Yoon; Hwang, In-Kyu; Kim, Hana; Jang, Se-Woong; Kim, Hong Seog; Lee, Won-Young
2016-01-01
A case report on observing the recovery of sensory-motor function after cervical spinal cord transection. Laminectomy and transection of cervical spinal cord (C5) was performed on a male beagle weighing 3.5 kg. After applying polyethylene glycol (PEG) on the severed part, reconstruction of cervical spinal cord was confirmed by the restoration of sensorimotor function. Tetraplegia was observed immediately after operation, however, the dog showed stable respiration and survival without any complication. The dog showed fast recovery after 1 week, and recovered approximately 90% of normal sensorimotor function 3 weeks after the operation, although urinary disorder was still present. All recovery stages were recorded by video camera twice a week for behavioral analysis. While current belief holds that functional recovery is impossible after a section greater than 50% at C5-6 in the canine model, this case study shows the possibility of cervical spinal cord reconstruction after near-total transection. Furthermore, this case study also confirms that PEG can truly expedite the recovery of sensorimotor function after cervical spinal cord sections in dogs.
Engstrand, Christina; Krevers, Barbro; Kvist, Joanna
2015-01-01
Prospective cohort study. The evidence of the relationship between functional recovery and impairment after surgery and hand therapy are inconsistent. To explore factors that were most related to functional recovery as measured by DASH in patients with Dupuytren's disease. Eighty-one patients undergoing surgery and hand therapy were consecutively recruited. Functional recovery was measured by the Disability of the Arm, Shoulder and Hand (DASH) questionnaire. Explanatory variables: range of motion of the finger joints, five questions regarding safety and social issues of hand function, and health-related quality of life (Euroqol). The three variables "need to take special precautions", "avoid using the hand in social context", and health-related quality of life (EQ-5D index) explained 62.1% of the variance in DASH, where the first variable had the greatest relative effect. Safety and social issues of hand function and quality of life had an evident association with functional recovery. IV. Copyright © 2015 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Defining recovery in chronic fatigue syndrome: a critical review.
Adamowicz, Jenna L; Caikauskaite, Indre; Friedberg, Fred
2014-11-01
In chronic fatigue syndrome (CFS), the lack of consensus on how recovery should be defined or interpreted has generated controversy and confusion. The purpose of this paper was to systematically review, compare, and evaluate the definitions of recovery reported in the CFS literature and to make recommendations about the scope of recovery assessments. A search was done using the MEDLINE, PubMed, PsycINFO, CINAHL, and Cochrane databases for peer review papers that contained the search terms "chronic fatigue syndrome" and "recovery," "reversal," "remission," and/or "treatment response." From the 22 extracted studies, recovery was operationally defined by reference with one or more of these domains: (1) pre-morbid functioning; (2) both fatigue and function; (3) fatigue (or related symptoms) alone; (4) function alone; and/or (5) brief global assessment. Almost all of the studies measuring recovery in CFS did so differently. The brief global assessment was the most common outcome measure used to define recovery. Estimates of recovery ranged from 0 to 66 % in intervention studies and 2.6 to 62 % in naturalistic studies. Given that the term "recovery" was often based on limited assessments and less than full restoration of health, other more precise and accurate labels (e.g., clinically significant improvement) may be more appropriate and informative. In keeping with common understandings of the term recovery, we recommend a consistent definition that captures a broad-based return to health with assessments of both fatigue and function as well as the patient's perceptions of his/her recovery status.
Pofi, Riccardo; Feliciano, Chona; Sbardella, Emilia; Argese, Nicola; Woods, Conor P; Grossman, Ashley B; Jafar-Mohammadi, Bahram; Gleeson, Helena; Lenzi, Andrea; Isidori, Andrea M; Tomlinson, Jeremy W
2018-05-25
The 250μg Short Synacthen (corticotropin) Test (SST) is the most commonly used tool to assess hypothalamo-pituitary-adrenal (HPA) axis function. There are many potentially reversible causes of adrenal insufficiency (AI), but currently no data to guide clinicians as to the frequency of repeat testing or likelihood of HPA axis recovery. To use the SST results to predict recovery of adrenal function. A retrospective analysis of data from 1912 SSTs. 776 patients with reversible causes of AI were identified who had at least two SSTs performed. A subgroup analysis was performed on individuals previously treated with suppressive doses of glucocorticoids (n=110). Recovery of HPA axis function. SST 30-minute cortisol levels above or below 350nmol/L (12.7μg/dL) best predicted HPA axis recovery (AUC ROC=0.85; median recovery time 334 vs. 1368 days, p=8.5x10-13): 99% of patients with a 30-minute cortisol >350nmol/L recovered adrenal function within 4-years, compared with 49% in those with cortisol levels <350nmol/L. In patients exposed to suppressive doses of glucocorticoids, delta cortisol (30-minute - basal) was the best predictor of recovery (AUC ROC = 0.77; median recovery time 262 vs. 974 days, p=7.0x10-6). No patient with a delta cortisol <100nmol (3.6μg/dL) and a subsequent random cortisol <200nmol/L (7.3μg/dL) measured approximately 1-year later recovered HPA axis function. Cortisol levels across an SST can be used to predict recovery of AI and may guide the frequency of repeat testing and inform both clinicians and patients as to the likelihood of restoration of HPA axis function.
Jeong, Oh; Ryu, Seong Yeob; Park, Young Kyu
2016-01-01
Abstract Enhanced recovery after surgery (ERAS) is increasingly used in several abdominal surgeries to accelerate postoperative recovery and reduce the length of stay. The aim of this study was to investigate the pattern of functional recovery after gastrectomy in patients undergoing ERAS and to analyze factors that affect postoperative recovery. In all, 168 gastric cancer patients enrolled in a clinical trial evaluating ERAS compliance after gastrectomy were prospectively assessed with respect to postoperative functional recovery using discharge criteria, evaluating 4 major functional outcomes: adequate pain control, ability to mobilize and self-care, tolerance of oral intake, and no abnormal physical findings or laboratory test. The mean completion time of overall discharge criteria was 5.1 ± 3.2 days. The mean completion time for each dimension were 4.4 ± 0.9 days for adequate pain control, 4.1 ± 0.8 days for ability to mobilize and self-care, 4.3 ± 1.1 days for no abnormal physical signs or laboratory test, and 4.6 ± 1.2 days for tolerance of oral intake. The mean length of stay was 7.2 ± 3.2 days, and readmission rate was 2.4% (n = 4). There was 9.5% (n = 16) of morbidity and no hospital mortality. Female sex (P < 0.001) and age (≥65 years; P = 0.049) were significantly associated with a slower recovery in tolerance of oral intake, and total gastrectomy was significantly associated with delayed completion of adequate pain control (P = 0.003). Functional recovery after gastrectomy can be achieved after about 5 days in patients undergoing ERAS. Female sex, old age, and total gastrectomy are factors that delay normal functional recovery after gastrectomy. PMID:27057836
Miller, Ram R; Zhang, Yuqing; Silliman, Rebecca A; Hayes, Margaret Kelly; Leveille, Suzanne G; Murabito, Joanne M; Kiel, Douglas; O'Connor, George T; Felson, David T
2004-02-01
To evaluate the effect of nine disabling medical conditions upon recovery from functional limitations by elders. Retrospective analysis of prospective longitudinal cohort. Community. Persons aged 65 and older in Framingham Heart Study. Change in function in elders from biennial Examinations 18 (1983-85; baseline) through 23 (1994-96). At each examination, subjects reported limitations in heavy household work, walking up and down stairs, walking half a mile, bathing, toileting, and continence. They were also directly observed for performance of transferring in and out of a chair, dressing, walking 50 feet, and carrying a 10-pound object 10 feet. The prevalence of functional limitations and the incidence of recovery from functional limitation by the subsequent examination for each task were calculated. The effects of congestive heart failure, cognitive impairment, diabetes mellitus, stroke, depressive symptoms, hip fracture, knee pain, claudication, and chronic obstructive pulmonary disease were evaluated. The relationship between the total number of comorbid conditions present (0, 1, 2, 3 or more), the presence of each individual condition at the start of each examination cycle, and the incidence of recovery from functional limitations were examined using generalized estimating equations. One thousand eight hundred twenty-five subjects were studied at baseline; 1,026 were available 10 years later. Mean age of subjects at baseline was 73.5 (range 61-95); 60.7% were women. The prevalence of functional limitations ranged from 3.1% to 29.8% at biennial Examination 18 and increased to 15.1% to 32.4% at Examination 23. The incidence of recovery ranged from 3.2% to 78.4% depending upon the task and the examination cycle. Increasing disease burden, as measured by the number of comorbidities, was associated with a decreased likelihood of recovery from functional limitations. Diabetes mellitus, stroke, depressive symptoms, hip fracture, and knee pain had the strongest adverse effect upon recovery from functional limitations. In these community-dwelling elders, recovery from prevalent functional limitations was frequent. Increasing disease burden was associated with a decreased incidence of recovery. Diabetes mellitus, stroke, depressive symptoms, hip fracture, and knee pain had the strongest adverse effect on recovery from functional limitations.
ERIC Educational Resources Information Center
Vukovic, Mile; Vuksanovic, Jasmina; Vukovic, Irena
2008-01-01
In this study we investigated the recovery patterns of language and cognitive functions in patients with post-traumatic language processing deficits and in patients with aphasia following a stroke. The correlation of specific language functions and cognitive functions was analyzed in the acute phase and 6 months later. Significant recovery of the…
Spijker, J; Graaf, R; Bijl, R V; Beekman, A T F; Ormel, J; Nolen, W A
2004-09-01
Data on the temporal relationships between duration of depression and recovery and functional disability are sparse. These relationships were examined in subjects from the general population (n = 250) with newly originated episodes of DSM-III-R major depression. The Netherlands Mental Health Survey and Incidence Study is a prospective epidemiological survey in the adult population (n = 7076), using the Composite International Diagnostic Interview (CIDI). Duration of depression and duration of recovery over 2 years were assessed with a life chart interview. Functional disabilities were assessed with the MOS-SF-36 and with absence days from work. Functional disabilities and absence days in depressed individuals were not found to be associated with duration of depression. Functioning in daily activities improved with longer duration of recovery but social functioning not. Functioning deteriorates by actual depressive symptomatology and comorbid anxiety but not by longer duration of depression. After symptomatic recovery, functioning improves to premorbid level, irrespective of the length of the depression. Improvements in daily activities and work can be expected with longer duration of recovery.
Quandt, Fanny; Hummel, Friedhelm C
2014-01-01
Neuromuscular stimulation has been used as one potential rehabilitative treatment option to restore motor function and improve recovery in patients with paresis. Especially stroke patients who often regain only limited hand function would greatly benefit from a therapy that enhances recovery and restores movement. Multiple studies investigated the effect of functional electrical stimulation on hand paresis, the results however are inconsistent. Here we review the current literature on functional electrical stimulation on hand motor recovery in stroke patients. We discuss the impact of different parameters such as stage after stoke, degree of impairment, spasticity and treatment protocols on the functional outcome. Importantly, we outline the results from recent studies investigating the cortical effects elicited by functional electrical stimulation giving insights into the underlying mechanisms responsible for long-term treatment effects. Bringing together the findings from present research it becomes clear that both, treatment outcomes as well as the neurophysiologic mechanisms causing functional recovery, vary depending on patient characteristics. In order to develop unified treatment guidelines it is essential to conduct homogenous studies assessing the impact of different parameters on rehabilitative success.
2014-01-01
Neuromuscular stimulation has been used as one potential rehabilitative treatment option to restore motor function and improve recovery in patients with paresis. Especially stroke patients who often regain only limited hand function would greatly benefit from a therapy that enhances recovery and restores movement. Multiple studies investigated the effect of functional electrical stimulation on hand paresis, the results however are inconsistent. Here we review the current literature on functional electrical stimulation on hand motor recovery in stroke patients. We discuss the impact of different parameters such as stage after stoke, degree of impairment, spasticity and treatment protocols on the functional outcome. Importantly, we outline the results from recent studies investigating the cortical effects elicited by functional electrical stimulation giving insights into the underlying mechanisms responsible for long-term treatment effects. Bringing together the findings from present research it becomes clear that both, treatment outcomes as well as the neurophysiologic mechanisms causing functional recovery, vary depending on patient characteristics. In order to develop unified treatment guidelines it is essential to conduct homogenous studies assessing the impact of different parameters on rehabilitative success. PMID:25276333
Oliveira-Maia, Albino J; Mendonça, Carina; Pessoa, Maria J; Camacho, Marta; Gago, Joaquim
2016-01-01
Within clinical psychiatry, recovery from severe mental illness (SMI) has classically been defined according to symptoms and function (service-based recovery). However, service-users have argued that recovery should be defined as the process of overcoming mental illness, regaining self-control and establishing a meaningful life (customer-based recovery). Here, we aimed to compare customer-based and service-based recovery and clarify their differential relationship with other constructs, namely needs and quality of life. The study was conducted in 101 patients suffering from SMI, recruited from a rural community mental health setting in Portugal. Customer-based recovery and function-related service-based recovery were assessed, respectively, using a shortened version of the Mental Health Recovery Measure (MHRM-20) and the Global Assessment of Functioning score. The Camberwell Assessment of Need scale was used to objectively assess needs, while subjective quality of life was measured with the TL-30s scale. Using multiple linear regression models, we found that the Global Assessment of Functioning score was incrementally predictive of the MHRM-20 score, when added to a model including only clinical and demographic factors, and that this model was further incremented by the score for quality of life. However, in an alternate model using the Global Assessment of Functioning score as the dependent variable, while the MHRM-20 score contributed significantly to the model when added to clinical and demographic factors, the model was not incremented by the score for quality of life. These results suggest that, while a more global concept of recovery from SMI may be assessed using measures for service-based and customer-based recovery, the latter, namely the MHRM-20, also provides information about subjective well-being. Pending confirmation of these findings in other populations, this instrument could thus be useful for comprehensive assessment of recovery and subjective well-being in patients suffering from SMI.
Oliveira-Maia, Albino J.; Mendonça, Carina; Pessoa, Maria J.; Camacho, Marta; Gago, Joaquim
2016-01-01
Within clinical psychiatry, recovery from severe mental illness (SMI) has classically been defined according to symptoms and function (service-based recovery). However, service-users have argued that recovery should be defined as the process of overcoming mental illness, regaining self-control and establishing a meaningful life (customer-based recovery). Here, we aimed to compare customer-based and service-based recovery and clarify their differential relationship with other constructs, namely needs and quality of life. The study was conducted in 101 patients suffering from SMI, recruited from a rural community mental health setting in Portugal. Customer-based recovery and function-related service-based recovery were assessed, respectively, using a shortened version of the Mental Health Recovery Measure (MHRM-20) and the Global Assessment of Functioning score. The Camberwell Assessment of Need scale was used to objectively assess needs, while subjective quality of life was measured with the TL-30s scale. Using multiple linear regression models, we found that the Global Assessment of Functioning score was incrementally predictive of the MHRM-20 score, when added to a model including only clinical and demographic factors, and that this model was further incremented by the score for quality of life. However, in an alternate model using the Global Assessment of Functioning score as the dependent variable, while the MHRM-20 score contributed significantly to the model when added to clinical and demographic factors, the model was not incremented by the score for quality of life. These results suggest that, while a more global concept of recovery from SMI may be assessed using measures for service-based and customer-based recovery, the latter, namely the MHRM-20, also provides information about subjective well-being. Pending confirmation of these findings in other populations, this instrument could thus be useful for comprehensive assessment of recovery and subjective well-being in patients suffering from SMI. PMID:27857698
Timilshina, N; Breunis, H; Tomlinson, G A; Brandwein, J M; Buckstein, R; Durbano, S; Alibhai, S M H
2018-06-08
We previously described impairments in quality of life (QOL) and physical function among acute myeloid leukemia (AML) survivors between diagnosis and 1 year. The aim of the current study is to describe and compare to normative data QOL and physical function recovery over 3 years from diagnosis and treatment with intensive chemotherapy (IC). At assessments done at baseline (pre-IC) and at 11 time points over 3 years, QOL, fatigue, and 3 physical performance measures (PPMs; grip strength, 6-min walk test (6MWT), and timed chair stands) were collected. Long-term recovery was defined by reaching scores within the minimum clinically important difference of normative data. Global QOL recovery was seen in 79% at 1 year, 75% at 2 years, and 86% at 3 years. At 3 years, the QLQ-C30 subscales with the greatest recovery were physical and emotional functioning. For FACT-fatigue, recovery was seen in 68% at 1 year and 77% at 3 years. Recovery on PPMs was poorer on average, with only 17% on the 6MWT and 42% in grip strength returning to normal at 3 years. The vast majority of AML survivors after IC achieve recovery in QOL and fatigue by three years. However, recovery in physical performance remained blunted.
3 CFR - Assignment of Reporting Function Under the American Recovery and Reinvestment Act of 2009
Code of Federal Regulations, 2010 CFR
2010-01-01
... 3 The President 1 2010-01-01 2010-01-01 false Assignment of Reporting Function Under the American Recovery and Reinvestment Act of 2009 Presidential Documents Other Presidential Documents Memorandum of May 15, 2009 Assignment of Reporting Function Under the American Recovery and Reinvestment Act of 2009 Memorandum for the Chair of the Council On...
Robust signal recovery using the prolate spherical wave functions and maximum correntropy criterion
NASA Astrophysics Data System (ADS)
Zou, Cuiming; Kou, Kit Ian
2018-05-01
Signal recovery is one of the most important problem in signal processing. This paper proposes a novel signal recovery method based on prolate spherical wave functions (PSWFs). PSWFs are a kind of special functions, which have been proved having good performance in signal recovery. However, the existing PSWFs based recovery methods used the mean square error (MSE) criterion, which depends on the Gaussianity assumption of the noise distributions. For the non-Gaussian noises, such as impulsive noise or outliers, the MSE criterion is sensitive, which may lead to large reconstruction error. Unlike the existing PSWFs based recovery methods, our proposed PSWFs based recovery method employs the maximum correntropy criterion (MCC), which is independent of the noise distribution. The proposed method can reduce the impact of the large and non-Gaussian noises. The experimental results on synthetic signals with various types of noises show that the proposed MCC based signal recovery method has better robust property against various noises compared to other existing methods.
Combinatorial treatments enhance recovery following facial nerve crush.
Sharma, Nijee; Moeller, Carl W; Marzo, Sam J; Jones, Kathryn J; Foecking, Eileen M
2010-08-01
To investigate the effects of various combinatorial treatments, consisting of a tapering dose of prednisone (P), a brief period of nerve electrical stimulation (ES), and systemic testosterone propionate (TP) on improving functional recovery following an intratemporal facial nerve crush injury. Prospective, controlled animal study. After a right intratemporal facial nerve crush, adult male Sprague-Dawley rats were divided into the following eight treatment groups: 1) no treatment, 2) P only, 3) ES only, 4) ES + P, 5) TP only, 6) TP + P, 7) ES + TP, and 8) ES + TP + P. For each group n = 4-8. Recovery of the eyeblink reflex and vibrissae orientation and movement were assessed. Changes in peak amplitude and latency of evoked response, in response to facial nerve stimulation, was also recorded weekly. : Brief ES of the proximal nerve stump most effectively accelerated the initiation of functional recovery. Also, ES or TP treatments enhanced recovery of some functional parameters more than P treatment. When administered alone, none of the three treatments improved recovery of complete facial function. Only the combinatorial treatment of ES + TP, regardless of the presence of P, accelerated complete functional recovery and return of normal motor nerve conduction. Our findings suggest that a combinatorial treatment strategy of using brief ES and TP together promises to be an effective therapeutic intervention for promoting regeneration following facial nerve injury. Administration of P neither augments nor hinders recovery.
Speed of recovery after arthroscopic rotator cuff repair.
Kurowicki, Jennifer; Berglund, Derek D; Momoh, Enesi; Disla, Shanell; Horn, Brandon; Giveans, M Russell; Levy, Jonathan C
2017-07-01
The purpose of this study was to delineate the time taken to achieve maximum improvement (plateau of recovery) and the degree of recovery observed at various time points (speed of recovery) for pain and function after arthroscopic rotator cuff repair. An institutional shoulder surgery registry query identified 627 patients who underwent arthroscopic rotator cuff repair between 2006 and 2015. Measured range of motion, patient satisfaction, and patient-reported outcome measures were analyzed for preoperative, 3-month, 6-month, 1-year, and 2-year intervals. Subgroup analysis was performed on the basis of tear size by retraction grade and number of anchors used. As an entire group, the plateau of maximum recovery for pain, function, and motion occurred at 1 year. Satisfaction with surgery was >96% at all time points. At 3 months, 74% of improvement in pain and 45% to 58% of functional improvement were realized. However, only 22% of elevation improvement was achieved (P < .001). At 6 months, 89% of improvement in pain, 81% to 88% of functional improvement, and 78% of elevation improvement were achieved (P < .001). Larger tears had a slower speed of recovery for Single Assessment Numeric Evaluation scores, forward elevation, and external rotation. Smaller tears had higher motion and functional scores across all time points. Tear size did not influence pain levels. The plateau of maximum recovery after rotator cuff repair occurred at 1 year with high satisfaction rates at all time points. At 3 months, approximately 75% of pain relief and 50% of functional recovery can be expected. Larger tears have a slower speed of recovery. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
Objectives include: a) Describe the organization of recovery force command and control and landing areas; b) Describe the function and timeline use of the Earth Landing System (ELS); c) Describe Stable 1 vs Stable 2 landing configurations and the function of the Command Module Uprighting System; d) Explain the activities of the helicopter and swimmer teams in egress and recovery of the crew; e)Explain the activities of the swimmer teams and primary recovery ship in recovery of the Command Module; and f) Describe several landing incidents that occurred during Apollo.
Recovery from hip fracture in eight areas of function.
Magaziner, J; Hawkes, W; Hebel, J R; Zimmerman, S I; Fox, K M; Dolan, M; Felsenthal, G; Kenzora, J
2000-09-01
This report describes changes in eight areas of functioning after a hip fracture, identifies the point at which maximal levels of recovery are reached in each area, and evaluates the sequence of recuperation across multiple functional domains. METHODS. Community-residing hip fracture patients (n = 674) admitted to eight hospitals in Baltimore, Maryland, 1990-1991 were followed prospectively for 2 years from the time of hospitalization. Eight areas of function (i.e., upper and lower extremity physical and instrumental activities of daily living; gait and balance; social, cognitive, and affective function) were measured by personal interview and direct observation during hospitalization at 2, 6, 12, 18, and 24 months. Levels of recovery are described in each area, and time to reach maximal recovery was estimated using Generalized Estimating Equations and longitudinal data. Most areas of functioning showed progressive lessening of dependence over the first postfracture year, with different levels of recovery and time to maximum levels observed for each area. New dependency in physical and instrumental tasks for those not requiring equipment or human assistance prefracture ranged from as low as 20.3% for putting on pants to as high as 89.9% for climbing five stairs. Recuperation times were specific to area of function, ranging from approximately 4 months for depressive symptoms (3.9 months), upper extremity function (4.3 months), and cognition (4.4 months) to almost a year for lower extremity function (11.2 months). Functional disability following hip fracture is significant, patterns of recovery differ by area of function, and there appears to be an orderly sequence by which areas of function reach their maximal levels.
Bon-Mardion, Nicolas; Duclos, Célia; Genty, Damien; Jean, Laetitia; Boyer, Olivier; Marie, Jean-Paul
2011-01-01
Olfactory ensheathing cells (OECs) represent an interesting candidate for cell therapy and could be obtained from olfactory mucosa (OM-OECs) or olfactory bulbs (OB-OECs). Recent reports suggest that, depending on their origin, OECs display different functional properties. We show here the complementary and additive effects of co-transplanting OM-OECs and OB-OECs after lesion of a peripheral nerve. For this, a selective motor denervation of the laryngeal muscles was performed by a section/anastomosis of the recurrent laryngeal nerve (RLN). Two months after surgery, recovery of the laryngeal movements and synkinesis phenonema were analyzed by videolaryngoscopy. To complete these assessments, measure of latency and potential duration were determined by electrophysiological recordings and myelinated nerve fiber profiles were defined based on toluidine blue staining. To explain some of the mechanisms involved, tracking of GFP positive OECs was performed. It appears that transplantation of OM-OECs or OB-OECs displayed opposite abilities to improve functional recovery. Indeed, OM-OECs increased recuperation of laryngeal muscles activities without appropriate functional recovery. In contrast, OB-OECs induced some functional recovery by enhancing axonal regrowth. Importantly, co-transplantation of OM-OECs and OB-OECs supported a major functional recovery, with reduction of synkinesis phenomena. This study is the first which clearly demonstrates the complementary and additive properties of OECs obtained from olfactory mucosa and olfactory bulb to improve functional recovery after transplantation in a nerve lesion model. PMID:21826209
Recovery from dispositional and pharmacodynamic tolerance after chronic pentobarbital treatment.
Okamoto, M; Rao, S N; Reyes, J; Rifkind, A B
1985-10-01
Recovery characteristics of dispositional and pharmacodynamic tolerances produced by chronic Na-pentobarbital treatment were studied. To study dispositional tolerance, the rate of disappearance of pentobarbital from blood was estimated by sequential blood sampling before and after chronic treatment and during 15 days of withdrawal after chronic treatment. Pentobarbital half-life values were compared with four representative cytochrome P-450-mediated hepatic microsomal mixed-function oxidase reactions: aminopyrine demethylase, benzo(a)pyrene hydroxylase, 7-ethoxycoumarin deethylase and 7-ethoxyresorufin deethylase and with the concentration of cytochrome P-450 in sequentially biopsied liver samples. Pharmacodynamic tolerance was evaluated by measuring the increase in pentobarbital blood concentration required to produce predetermined central nervous system functional depression ratings. The recovery from dispositional tolerance was more rapid than the recovery from pharmacodynamic tolerance. Thus, whereas cytochrome P-450 levels and pentobarbital elimination rates were increased to close to twice pretreatment values by chronic treatment, by about 2 week post-withdrawal the values had normalized. In contrast, pharmacodynamic tolerance persisted after no residual dispositional tolerance remained. The neuronal functions most sensitive to barbiturate (i.e., sedation and loss of fine motor coordination) exhibited a greater degree of pharmacodynamic tolerance than other functions; hence the recovery of these neuronal functions took a longer period of time for their recovery. However, the rates of recovery of pharmacodynamic tolerance at all levels of central nervous system function seemed relatively constant indicating that there are uniform readaptation mechanisms for all the central nervous systems functions.
Cold water immersion enhances recovery of submaximal muscle function after resistance exercise.
Roberts, Llion A; Nosaka, Kazunori; Coombes, Jeff S; Peake, Jonathan M
2014-10-15
We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses after high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise followed by one of two recovery interventions: 1) 10 min of CWI at 10°C or 2) 10 min of active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during 6 sets of 10 squats at 80% of 1 repetition maximum. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction, and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, participants lifted a greater load (P < 0.05, Cohen's effect size: 1.3, 38%) after CWI compared with active recovery. During CWI, muscle temperature decreased ∼7°C below postexercise values and remained below preexercise values for another 35 min. Venous blood O2 saturation decreased below preexercise values for 1.5 h after CWI. Serum endothelin-1 concentration did not change after CWI, whereas it decreased after active recovery. Plasma myoglobin concentration was lower, whereas plasma IL-6 concentration was higher after CWI compared with active recovery. These results suggest that CWI after resistance exercise allows athletes to complete more work during subsequent training sessions, which could enhance long-term training adaptations. Copyright © 2014 the American Physiological Society.
Kjell, J; Pernold, K; Olson, L; Abrams, M B
2014-03-01
Erlotinib and Rapamycin are both in clinical use and experimental inhibition of their respective molecular targets, EGFR and mTORC1, has improved recovery from spinal cord injury. Our aim was to determine if daily Erlotinib or Rapamycin treatment started directly after spinal contusion injury in rats improves locomotion function or recovery of bladder function. Stockholm, Sweden. Rats were subjected to contusion injuries and treated during the acute phase with either Erlotinib or Rapamycin. Recovery of bladder function was monitored by measuring residual urine volume and hindlimb locomotion assessed by open-field observations using the BBB rating scale as well as by automated registration of gait parameters. Body weights were monitored. To determine whether Erlotinib and Rapamycin inhibit the same signaling pathway, a cell culture system and western blots were used. Erlotinib accelerated locomotor recovery and slightly improved bladder recovery; however, we found no long-term improvements of locomotor function. Rapamycin did neither improved locomotor function nor bladder recovery. In vitro studies confirmed that Erlotinib and Rapamycin both inhibit the EGFR-mTORC1 signaling pathway. We conclude that none of these two drug regimes improved long-term functional outcome in our current model of spinal cord injury. Nevertheless, oral treatment with Erlotinib may offer modest temporary advantages, whereas treatment with Rapamycin does not.
Rangasamy, Suresh Babu
2013-07-01
Spinal cord injuries usually produce loss or impairment of sensory, motor and reflex function below the level of damage. In the absence of functional regeneration or manipulations that promote regeneration, spontaneous improvements in motor functions occur due to the activation of multiple compensatory mechanisms in animals and humans following the partial spinal cord injury. Many studies were performed on quantitative evaluation of locomotor recovery after induced spinal cord injury in animals using behavioral tests and scoring techniques. Although few studies on rodents have led to clinical trials, it would appear imperative to use nonhuman primates such as macaque monkeys in order to relate the research outcomes to recovery of functions in humans. In this review, we will discuss some of our research evidences concerning the degree of spontaneous recovery in bipedal locomotor functions of bonnet monkeys that underwent spinal cord hemisection/contusion lesions. To our knowledge, this is the first report to discuss on the extent of spontaneous recovery in bipedal locomotion of macaque monkeys through the application of footprint analyzing technique. In addition, the results obtained were compared with the published data on recovery of quadrupedal locomotion of spinally injured rodents. We propose that the mechanisms underlying spontaneous recovery of functions in spinal cord lesioned monkeys may be correlated to the mature function of spinal pattern generator for locomotion under the impact of residual descending and afferent connections. Moreover, based on analysis of motor functions observed in locomotion in these subjected monkeys, we understand that spinal automatism and development of responses by afferent stimuli from outside the cord could possibly contribute to recovery of paralyzed hindlimbs. This report also emphasizes the functional contribution of progressive strengthening of undamaged nerve fibers through a collateral sprouts/synaptic plasticity formed in partially lesioned cord of monkeys. Copyright © 2013 Wiley Periodicals, Inc.
Oosting, Ellen; Hoogeboom, Thomas J; Appelman-de Vries, Suzan A; Swets, Adam; Dronkers, Jaap J; van Meeteren, Nico L U
2016-01-01
The aim of this study was to evaluate the value of conventional factors, the Risk Assessment and Predictor Tool (RAPT) and performance-based functional tests as predictors of delayed recovery after total hip arthroplasty (THA). A prospective cohort study in a regional hospital in the Netherlands with 315 patients was attending for THA in 2012. The dependent variable recovery of function was assessed with the Modified Iowa Levels of Assistance scale. Delayed recovery was defined as taking more than 3 days to walk independently. Independent variables were age, sex, BMI, Charnley score, RAPT score and scores for four performance-based tests [2-minute walk test, timed up and go test (TUG), 10-meter walking test (10 mW) and hand grip strength]. Regression analysis with all variables identified older age (>70 years), Charnley score C, slow walking speed (10 mW >10.0 s) and poor functional mobility (TUG >10.5 s) as the best predictors of delayed recovery of function. This model (AUC 0.85, 95% CI 0.79-0.91) performed better than a model with conventional factors and RAPT scores, and significantly better (p = 0.04) than a model with only conventional factors (AUC 0.81, 95% CI 0.74-0.87). The combination of performance-based tests and conventional factors predicted inpatient functional recovery after THA. Two simple functional performance-based tests have a significant added value to a more conventional screening with age and comorbidities to predict recovery of functioning immediately after total hip surgery. Patients over 70 years old, with comorbidities, with a TUG score >10.5 s and a walking speed >1.0 m/s are at risk for delayed recovery of functioning. Those high risk patients need an accurate discharge plan and could benefit from targeted pre- and postoperative therapeutic exercise programs.
Alessi, Cathy A; Martin, Jennifer L; Webber, Adam P; Alam, Tarannum; Littner, Michael R; Harker, Judith O; Josephson, Karen R
2008-09-01
To study the association between sleep/wake patterns among older adults during inpatient post-acute rehabilitation and their immediate and long-term functional recovery Prospective, observational cohort study. Two inpatient post-acute rehabilitation sites (one community and one Veterans Administration). Older patients (aged > or = 65 years, N = 245) admitted for inpatient post-acute rehabilitation. None. Based on 7-day wrist actigraphy during the rehabilitation stay, mean nighttime percent sleep was only 52.2% and mean daytime percent sleep was 15.8% (16.3% based on structured behavioral observations). Using the Pittsburgh Sleep Quality Index (PSQI), participants reported their sleep was worse during rehabilitation compared to their premorbid sleep. Functional recovery between admission and discharge from rehabilitation (measured by the motor component of the Functional Independence Measure) was not significantly associated with reported sleep quality (PSQI scores) or actigraphically measured nighttime sleep. However, more daytime percent sleep (estimated by actigraphy and observations) during the rehabilitation stay was associated with less functional recovery from admission to discharge, even after adjusting for other significant predictors of functional recovery (mental status, hours of rehabilitation therapy received, rehospitalization, and reason for admission; adjusted R2= 0.267, P < 0.0001). More daytime sleeping during rehabilitation remained a significant predictor of less functional recovery in adjusted analyses at 3-month follow-up. Sleep disturbance is common among older people undergoing inpatient post-acute rehabilitation. These data suggest that more daytime sleeping during the rehabilitation stay is associated with less functional recovery for up to three months after admission for rehabilitation.
Zhang, Jiancheng; Yao, Chengye; Chen, Jiayi; Zhang, Yujing; Yuan, Shiying; Lin, Yun
2016-09-01
Hyperforin, the main active ingredient of the medicinal plant Hypericum perforatum, has been shown to be neuroprotective against acute ischemic stroke. However, the long-term actions of hyperforin on the post-stroke functional recovery and underlying mechanisms have not been investigated. C57BL/6 wild-type mice or interleukin (IL)-17A knock-out mice underwent middle cerebral artery occlusion (60min) followed by reperfusion for 28 days. Here, we found that delayed treatment with hyperforin significantly promoted functional recovery and increased IL-17A expression in the ischemic hemisphere at 28 days post-ischemia (dpi). IL-17A knock-out or anti-IL-17A monoclonal antibody (mAb) treatment significantly attenuated the promoting effects of hyperforin on functional recovery. After screening for neurotrophic factors, we revealed that blocking IL-17A significantly decreased, whereas recombinant mouse IL-17A (rIL-17A) treatment significantly increased vascular endothelial growth factor (VEGF) expression. Our data also showed that rIL-17A treatment significantly increased CD34 expression and promoted functional recovery at 28dpi, and the promoting effects were attenuated by VEGF neutralizing antibody treatment. Furthermore, hyperforin treatment significantly increased the expression of VEGF and CD34 in the ischemic hemisphere at 28dpi, and the effects were attenuated by blocking IL-17A. Furthermore, VEGF neutralizing antibody significantly attenuated the promoting role of hyperforin on the cerebral CD34 expression. Thus, our results suggest that, in addition to the acute neuroprotection when delivered immediately after ischemic stroke, hyperforin could also promote functional recovery when delivered in the later phases of stroke recovery. Our results also reveal a previously uncharacterized property of IL-17A/VEGF signaling-induced angiogenesis in hyperforin-mediated functional recovery. Copyright © 2016 Elsevier B.V. All rights reserved.
Laudet, Alexandre B; White, William
2010-01-01
Substance use disorders (SUD) are, for many, chronic conditions that are typically associated with severe impairments in multiple areas of functioning. "Recovery" from SUD is, for most, a lengthy process; improvements in other areas of functioning do not necessarily follow the attainment of abstinence. The current SUD service model providing intense, short-term, symptom-focused services is ill-suited to address these issues. A recovery-oriented model of care is emerging, which provides coordinated recovery-support services using a chronic-care model of sustained recovery management. Information is needed about substance users' priorities, particularly persons in recovery who are not currently enrolled in treatment, to guide the development of recovery-oriented systems. As a first step in filling this gap, we present qualitative data on current life priorities among a sample of individuals that collectively represent successive recovery stages (N = 356). Findings suggest that many areas of functioning remain challenging long after abstinence is attained, most notably employment and education, family/social relations, and housing. Although the ranking of priorities changes somewhat across recovery stages, employment is consistently the second most important priority, behind working on one's recovery. Study limitations are noted, and the implications of findings for the development and evaluation of recovery-oriented services are discussed.
Daidzein Augments Cholesterol Homeostasis via ApoE to Promote Functional Recovery in Chronic Stroke
Kim, Eunhee; Woo, Moon-Sook; Qin, Luye; Ma, Thong; Beltran, Cesar D.; Bao, Yi; Bailey, Jason A.; Corbett, Dale; Ratan, Rajiv R.; Lahiri, Debomoy K.
2015-01-01
Stroke is the world's leading cause of physiological disability, but there are currently no available agents that can be delivered early after stroke to enhance recovery. Daidzein, a soy isoflavone, is a clinically approved agent that has a neuroprotective effect in vitro, and it promotes axon growth in an animal model of optic nerve crush. The current study investigates the efficacy of daidzein on neuroprotection and functional recovery in a clinically relevant mouse model of stroke recovery. In light of the fact that cholesterols are essential lipid substrates in injury-induced synaptic remodeling, we found that daidzein enhanced the cholesterol homeostasis genetic program, including Lxr and downstream transporters, Apoe, Abca1, and Abcg1 genes in vitro. Daidzein also elevated the cholesterol homeostasis genes in the poststroke brain with Apoe, the highest expressing transporter, but did not affect infarct volume or hemispheric swelling. Despite the absence of neuroprotection, daidzein improved motor/gait function in chronic stroke and elevated synaptophysin expression. However, the daidzein-enhanced functional benefits and synaptophysin expression were abolished in Apoe-knock-out mice, suggesting the importance of daidzein-induced ApoE upregulation in fostering stroke recovery. Dissociation between daidzein-induced functional benefits and the absence of neuroprotection further suggest the presence of nonoverlapping mechanisms underlying recovery processes versus acute pathology. With its known safety in humans, early and chronic use of daidzein aimed at augmenting ApoE may serve as a novel, translatable strategy to promote functional recovery in stroke patients without adverse acute effect. SIGNIFICANCE STATEMENT There have been recurring translational failures in treatment strategies for stroke. One underlying issue is the disparity in outcome analysis between animal and clinical studies. The former mainly depends on acute infarct size, whereas long-term functional recovery is an important outcome in patients. In an attempt to identify agents that promote functional recovery, we discovered that an FDA-approved soy isoflavone, daidzein, improved stroke-induced behavioral deficits via enhancing cholesterol homeostasis in chronic stroke, and this occurs without causing adverse effects in the acute phase. With its known safety in humans, the study suggests that the early and chronic use of daidzein serves as a potential strategy to promote functional recovery in stroke patients. PMID:26558782
Daidzein Augments Cholesterol Homeostasis via ApoE to Promote Functional Recovery in Chronic Stroke.
Kim, Eunhee; Woo, Moon-Sook; Qin, Luye; Ma, Thong; Beltran, Cesar D; Bao, Yi; Bailey, Jason A; Corbett, Dale; Ratan, Rajiv R; Lahiri, Debomoy K; Cho, Sunghee
2015-11-11
Stroke is the world's leading cause of physiological disability, but there are currently no available agents that can be delivered early after stroke to enhance recovery. Daidzein, a soy isoflavone, is a clinically approved agent that has a neuroprotective effect in vitro, and it promotes axon growth in an animal model of optic nerve crush. The current study investigates the efficacy of daidzein on neuroprotection and functional recovery in a clinically relevant mouse model of stroke recovery. In light of the fact that cholesterols are essential lipid substrates in injury-induced synaptic remodeling, we found that daidzein enhanced the cholesterol homeostasis genetic program, including Lxr and downstream transporters, Apoe, Abca1, and Abcg1 genes in vitro. Daidzein also elevated the cholesterol homeostasis genes in the poststroke brain with Apoe, the highest expressing transporter, but did not affect infarct volume or hemispheric swelling. Despite the absence of neuroprotection, daidzein improved motor/gait function in chronic stroke and elevated synaptophysin expression. However, the daidzein-enhanced functional benefits and synaptophysin expression were abolished in Apoe-knock-out mice, suggesting the importance of daidzein-induced ApoE upregulation in fostering stroke recovery. Dissociation between daidzein-induced functional benefits and the absence of neuroprotection further suggest the presence of nonoverlapping mechanisms underlying recovery processes versus acute pathology. With its known safety in humans, early and chronic use of daidzein aimed at augmenting ApoE may serve as a novel, translatable strategy to promote functional recovery in stroke patients without adverse acute effect. There have been recurring translational failures in treatment strategies for stroke. One underlying issue is the disparity in outcome analysis between animal and clinical studies. The former mainly depends on acute infarct size, whereas long-term functional recovery is an important outcome in patients. In an attempt to identify agents that promote functional recovery, we discovered that an FDA-approved soy isoflavone, daidzein, improved stroke-induced behavioral deficits via enhancing cholesterol homeostasis in chronic stroke, and this occurs without causing adverse effects in the acute phase. With its known safety in humans, the study suggests that the early and chronic use of daidzein serves as a potential strategy to promote functional recovery in stroke patients. Copyright © 2015 the authors 0270-6474/15/3515113-14$15.00/0.
Long-term functional recovery after facial nerve transection and repair in the rat.
Banks, Caroline A; Knox, Christopher; Hunter, Daniel A; Mackinnon, Susan E; Hohman, Marc H; Hadlock, Tessa A
2015-03-01
The rodent model is commonly used to study facial nerve injury. Because of the exceptional regenerative capacity of the rodent facial nerve, it is essential to consider the timing when studying facial nerve regeneration and functional recovery. Short-term functional recovery data following transection and repair of the facial nerve has been documented by our laboratory. However, because of the limitations of the head fixation device, there is a lack of long-term data following facial nerve injury. The objective of this study was to elucidate the long-term time course and functional deficit following facial nerve transection and repair in a rodent model. Adult rats were divided into group 1 (controls) and group 2 (experimental). Group 1 animals underwent head fixation, followed by a facial nerve injury, and functional testing was performed from day 7 to day 70. Group 2 animals underwent facial nerve injury, followed by delayed head fixation, and then underwent functional testing from months 6 to 8. There was no statistical difference between the average whisking amplitudes in group 1 and group 2 animals. Functional whisking recovery 6 months after facial nerve injury is comparable to recovery within 1 to 4 months of transection and repair, thus the ideal window for evaluating facial nerve recovery falls within the 4 months after injury. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Iwata, Akira; Fuchioka, Satoshi; Hiraoka, Koichi; Masuhara, Mitsuhiko; Kami, Katsuya
2010-05-01
Although numerous studies have aimed to elucidate the mechanisms used to repair the structure and function of injured skeletal muscles, it remains unclear how and when movement recovers following damage. We performed a temporal analysis to characterize the changes in movement, muscle function, and muscle structure after muscle injury induced by the drop-mass technique. At each time-point, movement recovery was determined by ankle kinematic analysis of locomotion, and functional recovery was represented by isometric force. As a histological analysis, the cross-sectional area of myotubes was measured to examine structural regeneration. The dorsiflexion angle of the ankle, as assessed by kinematic analysis of locomotion, increased after injury and then returned to control levels by day 14 post-injury. The isometric force returned to normal levels by day 21 post-injury. However, the size of the myotubes did not reach normal levels, even at day 21 post-injury. These results indicate that recovery of locomotion occurs prior to recovery of isometric force and that functional recovery occurs earlier than structural regeneration. Thus, it is suggested that recovery of the movement and function of injured skeletal muscles might be insufficient as markers for estimating the degree of neuromuscular system reconstitution.
Dijkstra, J R; Meek, M F; Robinson, P H; Gramsbergen, A
2000-03-15
The aim of this study was to compare different methods for the evaluation of functional nerve recovery. Three groups of adult male Wistar rats were studied. In group A, a 12-mm gap between nerve ends was bridged by an autologous nerve graft; in rats of group B we performed a crush lesion of the sciatic nerve and group C consisted of non-operated control rats. The withdrawal reflex, elicited by an electric stimulus, was used to evaluate the recovery of sensory nerve function. To investigate motor nerve recovery we analyzed the walking pattern. Three different methods were used to obtain data for footprint analysis: photographic paper with thickened film developer on the paws, normal white paper with finger paint, and video recordings. The footprints were used to calculate the sciatic function index (SFI). From the video recordings, we also analyzed stepcycles. The withdrawal reflex is a convenient and reproducible test for the evaluation of global sensory nerve recovery. Recording walking movements on video and the analysis of footplacing is a perfect although time-consuming method for the evaluation of functional aspects of motor nerve recovery.
Ohwatashi, Akihiko; Ikeda, Satoshi; Harada, Katsuhiro; Kamikawa, Yurie; Yoshida, Akira
2013-01-01
Exercise has been considered to affect the functional recovery from central nervous damage. Neurotrophic factors have various effects on brain damage. However, the effects of exercise for expression of GDNF on functional recovery with brain damage are not well known. We investigated the difference in functional recovery between non-exercise and beam-walking exercise groups, and the expression of GDNF in both groups after photochemical infarction. Adult male Wistar rats (N = 64) were used. Animals were divided into two groups: non-exercise (N = 35), and beam-walking exercise (N = 29). All rats underwent surgical photochemical infarction. The rats of the beam-walking group were trained every day to walk on a narrow beam after a one-day recovery period and those of the non-exercise group were left to follow a natural course. Animals were evaluated for hind limb function every day using a beam-walking task with an elevated narrow beam. The number of GDNF-like immunoreactive cells in the temporal cortex surrounding the lesion was counted 1, 3, 5, and 7 days after the infarction. Functional recovery of the beam-walking exercise group was significantly earlier than that of the non-exercise group. At 3 days after infarction, the number of GDNF-positive cells in the temporal cortex surrounding the infarction was significantly increased in the beam-walking exercise group compared with that in the non-exercise group. In the exercise group, motor function was remarkably recovered with the increased expression of GDNF-like immunoreactive cells. Our results suggested that a rehabilitative approach increased the expression of GDNF and facilitated functional recovery from cerebral infarction.
Functional recovery of older people with hip fracture: does malnutrition make a difference?
Li, Hsiao-Juan; Cheng, Huey-Shinn; Liang, Jersey; Wu, Chi-Chuan; Shyu, Yea-Ing Lotus
2013-08-01
To report a study of the effects of protein-energy malnutrition on the functional recovery of older people with hip fracture who participated in an interdisciplinary intervention. It is not clear whether protein-energy malnutrition is associated with worse functional outcomes or it affects the interdisciplinary intervention program on the functional recovery of older people with hip fracture. A randomized experimental design. Data were collected between 2002-2006 from older people with hip fracture (N = 162) in Taiwan. The generalized estimating equations approach was used to evaluate the effect of malnutrition on the functional recovery of older people with hip fracture. The majority of older patients with hip fracture were malnourished (48/80, 60% in the experimental group vs. 55/82, 67% in the control group) prior to hospital discharge. The results of the generalized estimating equations analysis demonstrated that subjects suffering from protein-energy malnutrition prior to hospital discharge appeared to have significantly worse performance trajectories for their activities of daily living, instrumental activities of daily living, and recovery of walking ability compared with those without protein-energy malnutrition. In addition, it was found that the intervention is more effective on the performance of activities of daily living and recovery of walking ability in malnourished patients than in non-malnourished patients. Healthcare providers should develop a nutritional assessment/management system in their interdisciplinary intervention program to improve the functional recovery of older people with hip fracture. © 2012 Blackwell Publishing Ltd.
Krivic, A; Majerovic, M; Jelic, I; Seiwerth, S; Sikiric, P
2008-05-01
In the presented study we compared the effect of stable peptide BPC 157 and methylprednisolone on early functional recovery after Achilles tendon to bone transection in a rat model before collagen healing started. Surgical transection of the right Achilles tendon to bone area was performed in seventy two Wistar Albino male rats. Healing Achilles tendon edges were harvested at days 1-4 following the transection. Using Achilles functional index (AFI), myeloperoxidase activity, histological inflammatory cell influx and vascular index early functional recovery was evaluated. Agents (stable peptide BPC 157 10 microg methylprednisolone 5 mg, normal saline 5 ml) were given alone (/kg b.w., intraperitoneally, once daily, first 30 min after surgery, last 24 h before analysis). Control group received normal saline 5 ml/kg. BPC 157 improved functional recovery (AFI values increased at all time points, p <0.05) by anti-inflammatory (decreased myeloperoxidase (MPO) activity and histological inflammatory cell influx, p <0.05) and increased new blood vessel formation (increased vascular index, p <0.05). Methyprednisolone decreased MPO activity and histological inflammatory cell influx, (p <0.05) but also decreased new blood vessel formation and did not affect early functional recovery. Stable peptide BPC 157 with combined anti-inflammatory action and induction of early new blood vessel formation facilitates early functional recovery in Achilles tendon to bone healing.
The kinematic recovery process of rhesus monkeys after spinal cord injury.
Wei, Rui-Han; Zhao, Can; Rao, Jia-Sheng; Zhao, Wen; Zhou, Xia; Tian, Peng-Yu; Song, Wei; Ji, Run; Zhang, Ai-Feng; Yang, Zhao-Yang; Li, Xiao-Guang
2018-05-16
After incomplete spinal cord injury (SCI), neural circuits may be plastically reconstructed to some degree, resulting in extensive functional locomotor recovery. The present study aimed to observe the post-SCI locomotor recovery of rhesus monkey hindlimbs and compare the recovery degrees of different hindlimb parts, thus revealing the recovery process of locomotor function. Four rhesus monkeys were chosen for thoracic hemisection injury. The hindlimb locomotor performance of these animals was recorded before surgery, as well as 6 and 12 weeks post-lesion. Via principal component analysis, the relevant parameters of the limb endpoint, pelvis, hindlimb segments, and joints were processed and analyzed. Twelve weeks after surgery, partial kinematic recovery was observed at the limb endpoint, shank, foot, and knee joints, and the locomotor performance of the ankle joint even recovered to the pre-lesion level; the elevation angle of the thigh and hip joints showed no obvious recovery. Generally, different parts of a monkey hindlimb had different spontaneous recovery processes; specifically, the closer the part was to the distal end, the more extensive was the locomotor function recovery. Therefore, we speculate that locomotor recovery may be attributed to plastic reconstruction of the motor circuits that are mainly composed of corticospinal tract. This would help to further understand the plasticity of motor circuits after spinal cord injury.
Targeting L-Selectin to Improve Neurologic and Urologic Function After Spinal Cord Injury
2015-10-01
demonstrated locomotor recovery in mice receiving 40mg/kg DFA up to 3 hours following spinal cord injury -We demonstrated improved locomotor recovery...health, as evaluated by body weight -We identified no added locomotor recovery due to multiple, successive doses of DFA. Moreover, additional doses...bladder function Significance: We have identified robust locomotor recovery in both mild and severe spinal cord injured mice that received DFA up
Kell, Christian A; Neumann, Katrin; Behrens, Marion; von Gudenberg, Alexander W; Giraud, Anne-Lise
2018-03-01
We previously reported speaking-related activity changes associated with assisted recovery induced by a fluency shaping therapy program and unassisted recovery from developmental stuttering (Kell et al., Brain 2009). While assisted recovery re-lateralized activity to the left hemisphere, unassisted recovery was specifically associated with the activation of the left BA 47/12 in the lateral orbitofrontal cortex. These findings suggested plastic changes in speaking-related functional connectivity between left hemispheric speech network nodes. We reanalyzed these data involving 13 stuttering men before and after fluency shaping, 13 men who recovered spontaneously from their stuttering, and 13 male control participants, and examined functional connectivity during overt vs. covert reading by means of psychophysiological interactions computed across left cortical regions involved in articulation control. Persistent stuttering was associated with reduced auditory-motor coupling and enhanced integration of somatosensory feedback between the supramarginal gyrus and the prefrontal cortex. Assisted recovery reduced this hyper-connectivity and increased functional connectivity between the articulatory motor cortex and the auditory feedback processing anterior superior temporal gyrus. In spontaneous recovery, both auditory-motor coupling and integration of somatosensory feedback were normalized. In addition, activity in the left orbitofrontal cortex and superior cerebellum appeared uncoupled from the rest of the speech production network. These data suggest that therapy and spontaneous recovery normalizes the left hemispheric speaking-related activity via an improvement of auditory-motor mapping. By contrast, long-lasting unassisted recovery from stuttering is additionally supported by a functional isolation of the superior cerebellum from the rest of the speech production network, through the pivotal left BA 47/12. Copyright © 2017 Elsevier Inc. All rights reserved.
Functional Recovery From Extended Warm Ischemia Associated With Partial Nephrectomy.
Zhang, Zhiling; Zhao, Juping; Velet, Lily; Ercole, Cesar E; Remer, Erick M; Mir, Carme M; Li, Jianbo; Takagi, Toshio; Demirjian, Sevag; Campbell, Steven C
2016-01-01
To evaluate the impact of extended warm ischemia on incidence of acute kidney injury (AKI) and ultimate functional recovery after partial nephrectomy (PN), incorporating rigorous control for loss of parenchymal mass, and embedded within comparison to cohorts of patients managed with hypothermia or limited warm ischemia. From 2007 to 2014, 277 patients managed with PN had appropriate studies to evaluate changes in function/mass specifically within the operated kidney. Recovery from ischemia was defined as %function saved/%parenchymal mass saved. AKI was based on global renal function and defined as a ≥1.5-fold increase in serum creatinine above the preoperative level. Hypothermia was utilized in 112 patients (median = 27 minutes) and warm ischemia in 165 (median = 21 minutes). AKI strongly correlated with solitary kidney (P < .001) and duration (P < .001) but not type (P = .49) of ischemia. Median recovery from ischemia in the operated kidney was 100% (interquartile range [IQR] = 88%-109%) for cold ischemia, with 6 (5%) noted to have <80% recovery from ischemia. For the warm ischemia group, median recovery from ischemia was 91% (IQR = 82%-101%, P < .001 compared with hypothermia), and 34 (21%) had recovery from ischemia <80% (P < .001). For warm ischemia subgrouped by duration <25 minutes (n = 114), 25-35 minutes (n = 35), and >35 minutes (n = 16), median recovery from ischemia was 92% (IQR = 86%-100%), 90% (IQR = 78%-104%), and 91% (IQR = 80%-96%), respectively (P = .77). Our results suggest that AKI after PN correlates with duration but not with type of ischemia. However, subsequent recovery, which ultimately defines the new baseline glomerular filtration rate, is most reliable with hypothermia. However, most patients undergoing PN with warm ischemia still recover relatively strongly from ischemia, even if extended to 35-45 minutes. Copyright © 2015 Elsevier Inc. All rights reserved.
The Recovery of Walking in Stroke Patients: A Review
ERIC Educational Resources Information Center
Jang, Sung Ho
2010-01-01
We reviewed the literature on walking recovery of stroke patients as it relates to the following subjects: epidemiology of walking dysfunction, recovery course of walking, and recovery mechanism of walking (neural control of normal walking, the evaluation methods for leg motor function, and motor recovery mechanism of leg). The recovery of walking…
Darling, Warren G.; Pizzimenti, Marc A.; Morecraft, Robert J.
2013-01-01
This review discusses selected classical works and contemporary research on recovery of contralesional fine hand motor function following lesions to motor areas of the cerebral cortex in non-human primates. Findings from both the classical literature and contemporary studies show that lesions of cortical motor areas induce paresis initially, but are followed by remarkable recovery of fine hand/digit motor function that depends on lesion size and post-lesion training. Indeed, in recent work where considerable quantification of fine digit function associated with grasping and manipulating small objects has been observed, very favorable recovery is possible with minimal forced use of the contralesional limb. Studies of the mechanisms underlying recovery have shown that following small lesions of the digit areas of primary motor cortex (M1), there is expansion of the digit motor representations into areas of M1 that did not produce digit movements prior to the lesion. However, after larger lesions involving the elbow, wrist and digit areas of M1, no such expansion of the motor representation was observed, suggesting that recovery was due to other cortical or subcortical areas taking over control of hand/digit movements. Recently, we showed that one possible mechanism of recovery after lesion to the arm areas of M1 and lateral premotor cortex is enhancement of corticospinal projections from the medially located supplementary motor area (M2) to spinal cord laminae containing neurons which have lost substantial input from the lateral motor areas and play a critical role in reaching and digit movements. Because human stroke and brain injury patients show variable, and usually poorer, recovery of hand motor function than that of nonhuman primates after motor cortex damage, we conclude with a discussion of implications of this work for further experimentation to improve recovery of hand function in human stroke patients. PMID:21960307
Longitudinal predictors of subjective recovery in psychosis.
Law, Heather; Shryane, Nick; Bentall, Richard P; Morrison, Anthony P
2016-07-01
Research has highlighted the importance of recovery as defined by the service user, and suggests a link to negative emotion, although little is known about the role of negative emotion in predicting subjective recovery. To investigate longitudinal predictors of variability in recovery scores with a focus on the role of negative emotion. Participants (n = 110) with experience of psychosis completed measures of psychiatric symptoms, social functioning, subjective recovery, depression, hopelessness and self-esteem at baseline and 6 months later. Path analysis was used to examine predictive factors for recovery and negative emotion. Subjective recovery scores were predicted by negative emotion, positive self-esteem and hopelessness, and to a lesser extent by symptoms and functioning. Current recovery score was not predicted by past recovery score after accounting for past symptoms, current hopelessness and current positive self-esteem. Psychosocial factors and negative emotion appear to be the strongest longitudinal predictors of variation in subjective recovery, rather than psychiatric symptoms. © The Royal College of Psychiatrists 2016.
75 FR 49506 - Recovery Policy, RP9525.16, Research-Related Equipment and Furnishings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-13
...] Recovery Policy, RP9525.16, Research-Related Equipment and Furnishings AGENCY: Federal Emergency Management... Management Agency (FEMA) is accepting comments on Recovery Policy RP9525.16 Research-related Equipment and... function such as an educational or medical function in order for the facilities, equipment and/or...
ERIC Educational Resources Information Center
Bullock, Daniel; And Others
1987-01-01
This commentary, written in response to Witelson's work (1987), examines alternative ways of determining how the developmentally stable functional asymmetry (hemispheric specialization) observed in neurologically intact children can be reconciled with the dramatic recovery of function often displayed following unilateral brain damage. (PCB)
Hoogewoud, Florence; Hamadjida, Adjia; Wyss, Alexander F; Mir, Anis; Schwab, Martin E; Belhaj-Saif, Abderraouf; Rouiller, Eric M
2013-01-01
In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots), in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n = 6) or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n = 6). In addition, in each subgroup, one half of monkeys (n = 3) were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n = 3) represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed. For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion), post-lesion restoration of the original movement patterns ("true" recovery) led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex.
Hoogewoud, Florence; Hamadjida, Adjia; Wyss, Alexander F.; Mir, Anis; Schwab, Martin E.; Belhaj-Saif, Abderraouf; Rouiller, Eric M.
2013-01-01
In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots), in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n = 6) or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n = 6). In addition, in each subgroup, one half of monkeys (n = 3) were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n = 3) represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed. For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion), post-lesion restoration of the original movement patterns (“true” recovery) led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex. PMID:23885254
Duclos, J; Bhangui, P; Salloum, C; Andreani, P; Saliba, F; Ichai, P; Elmaleh, A; Castaing, D; Azoulay, D
2016-01-01
The partial liver's ability to regenerate both as a graft and remnant justifies right lobe (RL) living donor liver transplantation. We studied (using biochemical and radiological parameters) the rate, extent of, and predictors of functional and volumetric recovery of the remnant left liver (RLL) during the first year in 91 consecutive RL donors. Recovery of normal liver function (prothrombin time [PT] ≥70% of normal and total bilirubin [TB] ≤20 µmol/L), liver volumetric recovery, and percentage RLL growth were analyzed. Normal liver function was regained by postoperative day's 7, 30, and 365 in 52%, 86%, and 96% donors, respectively. Similarly, mean liver volumetric recovery was 64%, 71%, and 85%; whereas the percentage liver growth was 85%, 105%, and 146%, respectively. Preoperative PT value (p = 0.01), RLL/total liver volume (TLV) ratio (p = 0.03), middle hepatic vein harvesting (p = 0.02), and postoperative peak TB (p < 0.01) were predictors of early functional recovery, whereas donor age (p = 0.03), RLL/TLV ratio (p = 0.004), and TLV/ body weight ratio (p = 0.02) predicted early volumetric recuperation. One-year post-RL donor hepatectomy, though functional recovery occurs in almost all (96%), donors had incomplete restoration (85%) of preoperative total liver volume. Modifiable predictors of regeneration could help in better and safer donor selection, while continuing to ensure successful recipient outcomes. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.
The Role of Species Traits in Mediating Functional Recovery during Matrix Restoration
Barnes, Andrew D.; Emberson, Rowan M.; Krell, Frank-Thorsten; Didham, Raphael K.
2014-01-01
Reversing anthropogenic impacts on habitat structure is frequently successful through restoration, but the mechanisms linking habitat change, community reassembly and recovery of ecosystem functioning remain unknown. We test for the influence of edge effects and matrix habitat restoration on the reassembly of dung beetle communities and consequent recovery of dung removal rates across tropical forest edges. Using path modelling, we disentangle the relative importance of community-weighted trait means and functional trait dispersion from total biomass effects on rates of dung removal. Community trait composition and biomass of dung beetle communities responded divergently to edge effects and matrix habitat restoration, yielding opposing effects on dung removal. However, functional dispersion—used in this study as a measure of niche complementarity—did not explain a significant amount of variation in dung removal rates across habitat edges. Instead, we demonstrate that the path to functional recovery of these altered ecosystems depends on the trait-mean composition of reassembling communities, over and above purely biomass-dependent processes that would be expected under neutral theory. These results suggest that any ability to manage functional recovery of ecosystems during habitat restoration will demand knowledge of species' roles in ecosystem processes. PMID:25502448
The role of species traits in mediating functional recovery during matrix restoration.
Barnes, Andrew D; Emberson, Rowan M; Krell, Frank-Thorsten; Didham, Raphael K
2014-01-01
Reversing anthropogenic impacts on habitat structure is frequently successful through restoration, but the mechanisms linking habitat change, community reassembly and recovery of ecosystem functioning remain unknown. We test for the influence of edge effects and matrix habitat restoration on the reassembly of dung beetle communities and consequent recovery of dung removal rates across tropical forest edges. Using path modelling, we disentangle the relative importance of community-weighted trait means and functional trait dispersion from total biomass effects on rates of dung removal. Community trait composition and biomass of dung beetle communities responded divergently to edge effects and matrix habitat restoration, yielding opposing effects on dung removal. However, functional dispersion--used in this study as a measure of niche complementarity--did not explain a significant amount of variation in dung removal rates across habitat edges. Instead, we demonstrate that the path to functional recovery of these altered ecosystems depends on the trait-mean composition of reassembling communities, over and above purely biomass-dependent processes that would be expected under neutral theory. These results suggest that any ability to manage functional recovery of ecosystems during habitat restoration will demand knowledge of species' roles in ecosystem processes.
Torkia, Caryne; Best, Krista L; Miller, William C; Eng, Janice J
2016-07-01
To estimate the effect of balance confidence measured at 1 month poststroke rehabilitation on perceived physical function, mobility, and stroke recovery 12 months later. Longitudinal study (secondary analysis). Multisite, community-based. Community-dwelling individuals (N=69) with stroke living in a home setting. Not applicable. Activities-specific Balance Confidence scale; physical function and mobility subscales of the Stroke Impact Scale 3.0; and a single item from the Stroke Impact Scale for perceived recovery. Balance confidence at 1 month postdischarge from inpatient rehabilitation predicts perceived physical function (model 1), mobility (model 2), and recovery (model 3) 12 months later after adjusting for important covariates. The covariates included in model 1 were age, sex, basic mobility, and depression. The covariates selected for model 2 were age, sex, balance capacity, and anxiety, and the covariates in model 3 were age, sex, walking capacity, and social support. The amount of variance in perceived physical function, perceived mobility, and perceived recovery that balance confidence accounted for was 12%, 9%, and 10%, respectively. After discharge from inpatient rehabilitation poststroke, balance confidence predicts individuals' perceived physical function, mobility, and recovery 12 months later. There is a need to address balance confidence at discharge from inpatient stroke rehabilitation. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Requejo-Aguilar, Raquel; Alastrue-Agudo, Ana; Cases-Villar, Marta; Lopez-Mocholi, Eric; England, Richard; Vicent, María J; Moreno-Manzano, Victoria
2017-01-01
Spinal cord injury (SCI) suffers from a lack of effective therapeutic strategies. Animal models of acute SCI have provided evidence that transplantation of ependymal stem/progenitor cells of the spinal cord (epSPCs) induces functional recovery, while systemic administration of the anti-inflammatory curcumin provides neuroprotection. However, functional recovery from chronic stage SCI requires additional enhancements in available therapeutic strategies. Herein, we report on a combination treatment for SCI using epSPCs and a pH-responsive polymer-curcumin conjugate. The incorporation of curcumin in a pH-responsive polymeric carrier mainchain, a polyacetal (PA), enhances blood bioavailability, stability, and provides a means for highly localized delivery. We find that PA-curcumin enhances neuroprotection, increases axonal growth, and can improve functional recovery in acute SCI. However, when combined with epSPCs, PA-curcumin also enhances functional recovery in a rodent model of chronic SCI. This suggests that combination therapy may be an exciting new therapeutic option for the treatment of chronic SCI in humans. Copyright © 2016 Elsevier Ltd. All rights reserved.
Daunoraviciene, Kristina; Adomaviciene, Ausra; Grigonyte, Agne; Griškevičius, Julius; Juocevicius, Alvydas
2018-05-18
The study aims to determine the effectiveness of robot-assisted training in the recovery of stroke-affected arms using an exoskeleton robot Armeo Spring. To identify the effect of robot training on functional recovery of the arm. A total of 34 stroke patients were divided into either an experimental group (EG; n= 17) or a control group (n= 17). EG was also trained to use the Armeo Spring during occupational therapy. Both groups were clinically assessed before and after treatment. Statistical comparison methods (i.e. one-tailed t-tests for differences between two independent means and the simplest test) were conducted to compare motor recovery using robot-assisted training or conventional therapy. Patients assigned to the EG showed a statistically significant improvement in upper extremity motor function when compared to the CG by FIM (P< 0.05) and ACER (P< 0.05). The calculated treatment effect in the EG and CG was meaningful for shoulder and elbow kinematic parameters. The findings show the benefits of robot therapy in two areas of functional recovery. Task-oriented robotic training in rehabilitation setting facilitates recovery not only of the motor function of the paretic arm but also of the cognitive abilities in stroke patients.
Fufaeva, E V; Mikadze, Yu V; Lukyanov, V I
2017-01-01
To follow up patterns of cognitive recovery in children (6-17 years of age) at the first four months after a severe traumatic brain injury (TBI). Seventeen children with TBI (GCS ≤8) were evaluated with the Coma Recovery Scale-R (CRS). Children were stratified into three groups according to their consciousness recovery. Seven children regained their consciousness completely and were assessed by the Luria Neuropsychological Battery test. Six children remained in the minimally conscious state (MCS) and were tested by the adapted procedure of neuropsychological assessment during the first four months. Four children with low level of consciousness were evaluated with CRS. The most destroying functions at the early recovery period were the processing speed (neurodynamics of mental activity), executive functions and memory. Children with the anterior cortex damage had the slowest dynamics of recovery. The slower dynamics of consciousness recovery was combined with severe primary damages of visual gnosis, speech and executive functions according to neuropsychological examination. The positive dynamics of consciousness recovery was combined with early behavioral changes and the greater rate of behavioral changes.
Higo, Noriyuki; Hayashi, Takuya; Nishimura, Yukio; Sugiyama, Yoko; Oishi, Takao; Tsukada, Hideo; Isa, Tadashi; Onoe, Hirotaka
2015-01-01
The question of how intensive motor training restores motor function after brain damage or stroke remains unresolved. Here we show that the ipsilesional ventral premotor cortex (PMv) and perilesional primary motor cortex (M1) of rhesus macaque monkeys are involved in the recovery of manual dexterity after a lesion of M1. A focal lesion of the hand digit area in M1 was made by means of ibotenic acid injection. This lesion initially caused flaccid paralysis in the contralateral hand but was followed by functional recovery of hand movements, including precision grip, during the course of daily postlesion motor training. Brain imaging of regional cerebral blood flow by means of H215O-positron emission tomography revealed enhanced activity of the PMv during the early postrecovery period and increased functional connectivity within M1 during the late postrecovery period. The causal role of these areas in motor recovery was confirmed by means of pharmacological inactivation by muscimol during the different recovery periods. These findings indicate that, in both the remaining primary motor and premotor cortical areas, time-dependent plastic changes in neural activity and connectivity are involved in functional recovery from the motor deficit caused by the M1 lesion. Therefore, it is likely that the PMv, an area distant from the core of the lesion, plays an important role during the early postrecovery period, whereas the perilesional M1 contributes to functional recovery especially during the late postrecovery period. PMID:25568105
Functional recovery following critical illness in children: the "wee-cover" pilot study.
Choong, Karen; Al-Harbi, Samah; Siu, Katie; Wong, Katie; Cheng, Ji; Baird, Burke; Pogorzelski, David; Timmons, Brian; Gorter, Jan-Willem; Thabane, Lehana; Khetani, Mary
2015-05-01
To determine the feasibility of conducting a longitudinal prospective study to evaluate functional recovery and predictors of impaired functional recovery in critically ill children. Prospective pilot study. Single-center PICU at McMaster Children's Hospital, Hamilton, Canada. Children aged 12 months to 17 years, with at least one organ dysfunction, limited mobility or bed rest during the first 48 hours of PICU admission, and a minimum 48-hour PICU length of stay, were eligible. Patients transferred from a neonatal ICU prior to ever being discharged home, already mobilizing well or at baseline functional status at time of screening, with an English language barrier, and prior enrollment into this study, were excluded. None. The primary outcome was feasibility, as defined by the ability to screen, enroll eligible patients, and execute the study procedures and measurements on participants. Secondary outcomes included functional status at baseline, 3 and 6 months, PICU morbidity, and mortality. Functional status was measured using the Pediatric Evaluation of Disability Inventory and the Participation and Environment Measure for Children and Youth. Thirty-three patients were enrolled between October 2012 and April 2013. Consent rate was 85%, and follow-up rates were 93% at 3 months and 71% at 6 months. We were able to execute the study procedures and measurements, demonstrating feasibility of conducting a future longitudinal study. Functional status deteriorated following critical illness. Recovery appears to be influenced by baseline health or functional status and severity of illness. Longitudinal research is needed to understand how children recover after a critical illness. Our results suggest factors that may influence the recovery trajectory and were used to inform the methodology, outcomes of interest, and appropriate sample size of a larger multicenter study evaluating functional recovery in this population.
Recovery of upper limb muscle function in chronic fatigue syndrome with and without fibromyalgia.
Ickmans, Kelly; Meeus, Mira; De Kooning, Margot; Lambrecht, Luc; Nijs, Jo
2014-02-01
Chronic fatigue syndrome (CFS) patients frequently complain of muscle fatigue and abnormally slow recovery, especially of the upper limb muscles during and after activities of daily living. Furthermore, disease heterogeneity has not yet been studied in relation to recovery of muscle function in CFS. Here, we examine recovery of upper limb muscle function from a fatiguing exercise in CFS patients with (CFS+FM) and without (CFS-only) comorbid fibromyalgia and compare their results with a matched inactive control group. In this case-control study, 18 CFS-only patients, 30 CFS+FM patients and 30 healthy inactive controls performed a fatiguing upper limb exercise test with subsequent recovery measures. There was no significant difference among the three groups for maximal handgrip strength of the non-dominant hand. A significant worse recovery of upper limb muscle function was found in the CFS+FM, but not in de CFS-only group compared with the controls (P < 0·05). This study reveals, for the first time, delayed recovery of upper limb muscle function in CFS+FM, but not in CFS-only patients. The results underline that CFS is a heterogeneous disorder suggesting that reducing the heterogeneity of the disorder in future research is important to make progress towards a better understanding and uncovering of mechanisms regarding the nature of divers impairments in these patients. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.
GDF10 Is a Signal for Axonal Sprouting and Functional Recovery after Stroke
Li, S; Nie, EH; Yin, Y; Benowitz, LI; Tung, S; Vinters, HV; Bahjat, FR; Stenzel-Poore, MP; Kawaguchi, R; Coppola, G; Carmichael, ST
2016-01-01
Stroke produces a limited process of neural repair. Axonal sprouting in cortex adjacent to the infarct is part of this recovery process, but the signal that initiates axonal sprouting is not known. Growth and Differentiation Factor 10 (GDF10) is induced in peri-infarct neurons in mouse, non-human primate and human. GDF10 promotes axonal outgrowth in vitro in mouse, rat and human neurons through TGFβRI/II signaling. Using pharmacogenetic gain and loss of function studies, GDF10 produces axonal sprouting and enhanced functional recovery after stroke; knocking down GDF10 blocks axonal sprouting and reduces recovery. RNA-seq from peri-infarct cortical neurons indicates that GDF10 downregulates PTEN and upregulates PI3 kinase signaling and induces specific axonal guidance molecules. Unsupervised genome-wide association analysis of the GDF10 transcriptome shows that it is not related to neurodevelopment but may partially overlap with other CNS injury patterns. GDF10 is a stroke-induced signal for axonal sprouting and functional recovery. PMID:26502261
Friedli, Lucia; Rosenzweig, Ephron S.; Barraud, Quentin; Schubert, Martin; Dominici, Nadia; Awai, Lea; Nielson, Jessica L.; Musienko, Pavel; Nout-Lomas, Yvette; Zhong, Hui; Zdunowski, Sharon; Roy, Roland R.; Strand, Sarah C.; van den Brand, Rubia; Havton, Leif A.; Beattie, Michael S.; Bresnahan, Jacqueline C.; Bézard, Erwan; Bloch, Jocelyne; Edgerton, V. Reggie; Ferguson, Adam R.; Curt, Armin; Tuszynski, Mark H.; Courtine, Grégoire
2017-01-01
Experimental and clinical studies suggest that primate species exhibit greater recovery after lateralized compared to symmetrical spinal cord injuries. Although this observation has major implications for designing clinical trials and translational therapies, advantages in recovery of nonhuman primates over other species has not been shown statistically to date, nor have the associated repair mechanisms been identified. We monitored recovery in more than 400 quadriplegic patients and found that that functional gains increased with the laterality of spinal cord damage. Electrophysiological analyses suggested that corticospinal tract reorganization contributes to the greater recovery after lateralized compared with symmetrical injuries. To investigate underlying mechanisms, we modeled lateralized injuries in rats and monkeys using a lateral hemisection, and compared anatomical and functional outcomes with patients who suffered similar lesions. Standardized assessments revealed that monkeys and humans showed greater recovery of locomotion and hand function than rats. Recovery correlated with the formation of corticospinal detour circuits below the injury, which were extensive in monkeys, but nearly absent in rats. Our results uncover pronounced inter-species differences in the nature and extent of spinal cord repair mechanisms, likely resulting from fundamental differences in the anatomical and functional characteristics of the motor systems in primates versus rodents. Although rodents remain essential for advancing regenerative therapies, the unique response of the primate corticospinal tract after injury re-emphasizes the importance of primate models for designing clinically relevant treatments. PMID:26311729
Tracking the recovery of consciousness from coma
Laureys, Steven; Boly, Mélanie; Maquet, Pierre
2006-01-01
Predicting the chances of recovery of consciousness and communication in patients who survive their coma but transit in a vegetative state or minimally conscious state (MCS) remains a major challenge for their medical caregivers. Very few studies have examined the slow neuronal changes underlying functional recovery of consciousness from severe chronic brain damage. A case study in this issue of the JCI reports an extraordinary recovery of functional verbal communication and motor function in a patient who remained in MCS for 19 years (see the related article beginning on page 2005). Diffusion tensor MRI showed increased fractional anisotropy (assumed to reflect myelinated fiber density) in posteromedial cortices, encompassing cuneus and precuneus. These same areas showed increased glucose metabolism as studied by PET scanning, likely reflecting the neuronal regrowth paralleling the patient’s clinical recovery. This case shows that old dogmas need to be oppugned, as recovery with meaningful reduction in disability continued in this case for nearly 2 decades after extremely severe traumatic brain injury. PMID:16823480
NASA Astrophysics Data System (ADS)
Tuszynski, Mark H.; Gage, Fred H.
1995-05-01
Grafts of favorable axonal growth substrates were combined with transient nerve growth factor (NGF) infusions to promote morphological and functional recovery in the adult rat brain after lesions of the septohippocampal projection. Long-term septal cholinergic neuronal rescue and partial hippocampal reinnervation were achieved, resulting in partial functional recovery on a simple task assessing habituation but not on a more complex task assessing spatial reference memory. Control animals that received transient NGF infusions without axonal-growth-promoting grafts lacked behavioral recovery but also showed long-term septal neuronal rescue. These findings indicate that (i) partial recovery from central nervous system injury can be induced by both preventing host neuronal loss and promoting host axonal regrowth and (ii) long-term neuronal loss can be prevented with transient NGF infusions.
Kantak, Shailesh S.; Stinear, James W.; Buch, Ethan R.; Cohen, Leonardo G.
2016-01-01
The brain is a plastic organ with a capability to reorganize in response to behavior and/or injury. Following injury to the motor cortex or emergent corticospinal pathways, recovery of function depends on the capacity of surviving anatomical resources to recover and repair in response to task-specific training. One such area implicated in poststroke reorganization to promote recovery of upper extremity recovery is the premotor cortex (PMC). This study reviews the role of distinct subdivisions of PMC: dorsal (PMd) and ventral (PMv) premotor cortices as critical anatomical and physiological nodes within the neural networks for the control and learning of goal-oriented reach and grasp actions in healthy individuals and individuals with stroke. Based on evidence emerging from studies of intrinsic and extrinsic connectivity, transcranial magnetic stimulation, functional neuroimaging, and experimental studies in animals and humans, the authors propose 2 distinct patterns of reorganization that differentially engage ipsilesional and contralesional PMC. Research directions that may offer further insights into the role of PMC in motor control, learning, and poststroke recovery are also proposed. This research may facilitate neuroplasticity for maximal recovery of function following brain injury. PMID:21926382
Bogers, A.J.J.C.; Kik, Ch.; de Jong, P.L.; Meijboom, F.J.
2008-01-01
Surgical ablation for atrial arrhythmias at conversion of atriopulmonary or ventriculopulmonary Fontan to a total cavopulmonary connection is feasible with recovery of both sinus rhythm and atrial transport function. Recovery of the patient’s physical condition may take up to a year. (Neth Heart J 2008;16:170-2.18566699) PMID:18566699
Sobotka, Stanislaw; Mu, Liancai
2012-01-01
Background End-to-end nerve anastomosis (EEA) is a commonly used nerve repair technique. However, this method generally results in poor functional recovery. This study was designed to determine the correlation of functional recovery to the extent of axonal reinnervation after EEA procedure in a rat model. Materials and Methods Seven adult rats were subjected to the immediate reinnervation of an experimentally paralyzed sternomastoid (SM) muscle. The SM nerve was transected and immediately repaired with EEA. The SM muscle at the opposite side, without nerve transection, served as a control. Three months after EEA nerve repair, the muscle force of the SM muscle was measured and the regenerated axons in the muscle were detected using neurofilament immunohistochemistry. Results Three months after surgery, the reinnervated SM muscle produced limited anatomical and functional recovery (calculated as the percentage of the control). Specifically, the wet weight of the operated SM muscle (a measure of muscle mass recovery) was 78.0% of the control. The maximal tetanic force (a measure of muscle functional recovery) was 56.7% of the control. The area fraction of the neurofilament stained intramuscular axons (a measure of axonal regeneration and muscle reinnervation) was measured to be only 13.4% of the control. A positive correlation was revealed between the extent of muscle reinnervation and maximal muscle force. Conclusions The EEA reinnervated SM muscle in the rat yielded unsatisfactory muscle force recovery as a result of mild to moderate nerve regeneration. Further work is needed to improve the surgical procedure, enhance axonal regeneration, and/or develop novel treatment strategies for better functional recovery. PMID:23207170
Sobotka, Stanislaw; Mu, Liancai
2013-06-15
End-to-end nerve anastomosis (EEA) is a commonly used nerve repair technique. However, this method generally results in poor functional recovery. This study was designed to determine the correlation of functional recovery to the extent of axonal reinnervation after EEA procedure in a rat model. Seven adult rats were subjected to the immediate reinnervation of an experimentally paralyzed sternomastoid (SM) muscle. The SM nerve was transected and immediately repaired with EEA. The SM muscle at the opposite side, without nerve transection, served as a control. Three months after EEA nerve repair, the muscle force of the SM muscle was measured and the regenerated axons in the muscle were detected using neurofilament immunohistochemistry. Three months after surgery, the reinnervated SM muscle produced limited anatomical and functional recovery (calculated as the percentage of the control). Specifically, the wet weight of the operated SM muscle (a measure of muscle mass recovery) was 78.0% of the control. The maximal tetanic force (a measure of muscle functional recovery) was 56.7% of the control. The area fraction of the neurofilament stained intramuscular axons (a measure of axonal regeneration and muscle reinnervation) was measured to be only 13.4% of the control. A positive correlation was revealed between the extent of muscle reinnervation and maximal muscle force. The EEA reinnervated SM muscle in the rat yielded unsatisfactory muscle force recovery as a result of mild to moderate nerve regeneration. Further work is needed to improve the surgical procedure, enhance axonal regeneration, and/or develop novel treatment strategies for better functional recovery. Copyright © 2013 Elsevier Inc. All rights reserved.
Komnenov, Dragana; Solarewicz, Julia Z; Afzal, Fareeza; Nantwi, Kwaku D; Kuhn, Donald M; Mateika, Jason H
2016-08-01
We examined the effect of repeated daily exposure to intermittent hypoxia (IH) on the recovery of respiratory and limb motor function in mice genetically depleted of central nervous system serotonin. Electroencephalography, diaphragm activity, ventilation, core body temperature, and limb mobility were measured in spontaneously breathing wild-type (Tph2(+/+)) and tryptophan hydroxylase 2 knockout (Tph2(-/-)) mice. Following a C2 hemisection, the mice were exposed daily to IH (i.e., twelve 4-min episodes of 10% oxygen interspersed with 4-min normoxic periods followed by a 90-min end-recovery period) or normoxia (i.e., sham protocol, 21% oxygen) for 10 consecutive days. Diaphragm activity recovered to prehemisection levels in the Tph2(+/+) and Tph2(-/-) mice following exposure to IH but not normoxia [Tph2(+/+) 1.3 ± 0.2 (SE) vs. 0.3 ± 0.2; Tph2(-/-) 1.06 ± 0.1 vs. 0.3 ± 0.1, standardized to prehemisection values, P < 0.01]. Likewise, recovery of tidal volume and breathing frequency was evident, although breathing frequency values did not return to prehemisection levels within the time frame of the protocol. Partial recovery of limb motor function was also evident 2 wk after spinal cord hemisection. However, recovery was not dependent on IH or the presence of serotonin in the central nervous system. We conclude that IH promotes recovery of respiratory function but not basic motor tasks. Moreover, we conclude that spontaneous or treatment-induced recovery of respiratory and motor limb function is not dependent on serotonin in the central nervous system in a mouse model of spinal cord injury.
Ryan, Colleen M; Schneider, Jeffrey C; Kazis, Lewis E; Lee, Austin; Li, Nien-Chen; Hinson, Michelle; Bauk, Helena; Peck, Michael; Meyer, Walter J; Palmieri, Tina; Pidcock, Frank S; Reilly, Debra; Tompkins, Ronald G
2013-01-01
Although data exist on burn survival, there are little data on long-term burn recovery. Patient-centered health outcomes are useful in monitoring and predicting recovery and evaluating treatments. An outcome questionnaire for young adult burn survivors was developed and tested. This 5-year (2003-2008) prospective, controlled, multicenter study included burned and nonburned adults ages 19 to 30 years. The Young Adult Burn Outcome Questionnaires were completed at initial contact, 10 days, and 6 and 12 months. Factor analysis established construct validity. Reliability assessments used Cronbach α and test-retest. Recovery patterns were investigated using generalized linear models, with generalized estimating equations using mixed models and random effects. Burned (n = 153) and nonburned subjects (n = 112) completed 620 questionnaires (47 items). Time from injury to first questionnaire administration was 157 ± 36 days (mean ± SEM). Factor analysis included 15 factors: Physical Function, Fine Motor Function, Pain, Itch, Social Function Limited by Physical Function, Perceived Appearance, Social Function Limited by Appearance, Sexual Function, Emotion, Family Function, Family Concern, Satisfaction With Symptom Relief, Satisfaction With Role, Work Reintegration, and Religion. Cronbach α ranged from 0.72 to 0.92, with 11 scales >0.8. Test-retest reliability ranged from 0.29 to 0.94, suggesting changes in underlying health status after burns. Recovery curves in five domains, Itch, Perceived Appearance, Social Function Limited by Appearance, Family Concern, and Satisfaction with Symptom Relief, remained below the reference group at 24 months. The Young Adult Burn Outcome Questionnaire is a reliable and valid instrument for multidimensional functional outcomes assessment. Recovery in some domains was incomplete.
Takata, Kotaro; Yamauchi, Hideki; Tatsuno, Hisashi; Hashimoto, Keiji; Abo, Masahiro
2006-01-01
To determine whether the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex is important for motor recovery after brain damage in the photochemically initiated thrombosis (PIT) model. We induced PIT in the sensorimotor cortex in rats and examined the recovery of motor function using the beam-walking test. In 24 rats, the right sensorimotor cortex was lesioned after 2 days of training for the beam-walking test (group 1). After 10 days, PIT was induced in the left sensorimotor cortex. Eight additional rats (group 2) received 2 days training in beam walking, then underwent the beam-walking test to evaluate function. After 10 days of testing, the left sensorimotor cortex was lesioned and recovery was monitored by the beam-walking test for 8 days. In group 1 animals, left hindlimb function caused by a right sensorimotor cortex lesion recovered within 10 days after the operation. Right hindlimb function caused by the left-side lesion recovered within 6 days. In group 2, right hindlimb function caused by induction of the left-side lesion after a total of 12 days of beam-walking training and testing recovered within 6 days as with the double PIT model. The training effect may be relevant to reorganization and neuromodulation. Motor recovery patterns did not indicate whether motor recovery was dependent on the ipsilateral cortex surrounding the lesion or the cortex of the contralateral side. The results emphasize the need for selection of appropriate programs tailored to the area of cortical damage in order to enhance motor functional recovery in this model. Copyright 2006 S. Karger AG, Basel.
Assessment of nerve regeneration across nerve allografts treated with tacrolimus.
Haisheng, Han; Songjie, Zuo; Xin, Li
2008-01-01
Although regeneration of nerve allotransplant is a major concern in the clinic, there have been few papers quantitatively assessing functional recovery of animals' nerve allografts in the long term. In this study, functional recovery, histopathological study, and immunohistochemistry changes of rat nerve allograft with FK506 were investigated up to 12 weeks without slaughtering. C57 and SD rats were used for transplantation. The donor's nerve was sliced and transplanted into the recipient. The sciatic nerve was epineurally sutured with 10-0 nylon. In total, 30 models of transplantation were performed and divided into 3 groups that were either treated with FK506 or not. Functional recovery of the grafted nerve was serially assessed by the pin click test, walking track analysis and electrophysiological evaluations. A histopathological study and immunohistochemistry study were done in the all of the models. Nerve allografts treated with FK506 have no immune rejection through 12 weeks. Sensibility had similarly improved in both isografts and allografts. There has been no difference in each graft. Walk track analysis demonstrates significant recovery of motor function of the nerve graft. No histological results of difference were found up to 12 weeks in each graft. In the rodent nerve graft model, FK506 prevented nerve allograft rejection across a major histocompatibility barrier. Sensory recovery seems to be superior to motor function. Nerve isograft and allograft treated with FK506 have no significant difference in function recovery, histopathological result, and immunohistochemistry changes.
Donal, Erwan; Grimm, Richard A; Yamada, Hirotsugu; Kim, Yong Jin; Marrouche, Nassir; Natale, Andrea; Thomas, James D
2005-04-15
Atrial fibrillation (AF) is a widespread condition that causes significant morbidity and mortality. Recently, pulmonary venous (PV) isolation using radiofrequency ablation has been used successfully to exclude the pulmonary venous ostia, resulting in correction of AF. Further, miniaturized high-frequency ultrasound phased-array transducers currently provide Doppler and 2-dimensional imaging during the ablation procedure. We examined atrial function and its determinants using intracardiac echocardiography before and after PV isolation in 45 patients who had chronic AF (56 +/- 11 years old). PV, left atrial (LA) appendage, and mitral and tricuspid flows were recorded. Recovery of booster pump function (defined by the presence of mitral inflow A wave, LA appendage a-wave, and PV A-reversal wave velocities >10 cm/s) was observed in 39 of 45 patients (86.6%). PV flow systolic wave before and after ablation correlated with the degree of LA booster pump function after PV isolation. An early systolic PV flow peak velocity >57.47 cm/s predicted "good" LA booster pump function recovery with 96% specificity. Diastolic LA appendage emptying in AF correlated (p <0.001) and predicted good LA booster pump function with 92% specificity for velocities >46.4 cm/s. Thus, monitoring LA function during PV isolation for chronic AF is feasible. Most patients recovered LA booster pump function immediately after PV isolation, and the degree of recovery correlated with LA reservoir function. Preserved reservoir function during AF is predictive of satisfactory recovery of booster pump function after PV isolation.
VanderWerf, Frans; Reits, Dik; Metselaar, Mick; De Zeeuw, Chris I
2012-03-01
To determine the functional recovery in patients with severe transient peripheral facial motor paralysis (Bell palsy). Prospective controlled trial. Academic medical center. Blink recovery was studied in 2 groups of severely affected Bell palsy patients during a follow-up period of 84 weeks. The patients in one group received prednisolone within the first week after the onset of symptoms. No medication was given to the other group. A control group of healthy subjects was also included. Simultaneous orbicularis oculi muscle activity and eyelid kinematics were recorded by surface electromyographic (EMG) recording and eyelid search coils, respectively. At the beginning of the paralysis, very little integrated orbicularis oculi muscle activity and eyelid movement was measured at the palsied side of the face. Thirteen weeks later, the integrated orbicularis oculi EMG and functional blink recovery gradually improved until 39 weeks. Beyond, only the integrated orbicularis oculi EMG slightly increased. At 84 weeks, the integrated orbicularis oculi EMG was significantly larger in the prednisolone group compared with the control group. The integrated EMG of the nonmedicated group recovered to normal values. Curiously enough, the functional blink recovery at the palsied side remained reduced to 64% compared with the healthy controls in the prednisolone-treated group and to 36% in the nonmedicated group. The authors demonstrate that prednisolone significantly increased the orbicularis oculi muscle activity and significantly improved functional blink recovery in severely affected Bell palsy patients. However, the increase of muscle activity was insufficient to restore functional blinking to normal values.
Ikeda, Satoshi; Ohwatashi, Akihiko; Harada, Katsuhiro; Kamikawa, Yurie; Yoshida, Akira
2013-01-01
The use of novel rehabilitative approaches for effecting functional recovery following stroke is controversial. Effects of different but effective rehabilitative interventions in the hemiplegic patient are not clear. We studied the effects of different rehabilitative approaches on functional recovery in the rat photochecmical cerebral infarction model. Twenty-four male Wistar rats aged 8 weeks were used. The cranial bone was exposed under deep anesthesia. Rose bengal (20 mg/kg) was injected intravenously, and the sensorimotor area of the cerebral cortex was irradiated transcranially for 20 min with a light beam of 533-nm wavelength. Animals were divided into 3 groups. In the simple-exercise group, treadmill exercise was performed for 20 min every day. In the expected for acquisition movement-training group, beam-walking exercise was done for 20 min daily. The control group was left to recover without additional intervention. Hindlimb function was evaluated with the beam-walking test. Following cerebral infarction, dysfunction of the contralateral extremities was observed. Functional recovery was observed earlier in the expected for acquisition training group than in the other groups. Although rats in the treadmill group recovered more quickly than controls, the beam-walking group had the shortest overall recovery time. Exercise facilitated functional recovery in the rat hemiplegic model, and expected for acquisition exercise was more effective than simple exercise. These findings are considered to have important implications for the future development of clinical rehabilitation programs.
Otte, Willem M; van der Marel, Kajo; van Meer, Maurits P A; van Rijen, Peter C; Gosselaar, Peter H; Braun, Kees P J; Dijkhuizen, Rick M
2015-08-01
Hemispherectomy is often followed by remarkable recovery of cognitive and motor functions. This reflects plastic capacities of the remaining hemisphere, involving large-scale structural and functional adaptations. Better understanding of these adaptations may (1) provide new insights in the neuronal configuration and rewiring that underlies sensorimotor outcome restoration, and (2) guide development of rehabilitation strategies to enhance recovery after hemispheric lesioning. We assessed brain structure and function in a hemispherectomy model. With MRI we mapped changes in white matter structural integrity and gray matter functional connectivity in eight hemispherectomized rats, compared with 12 controls. Behavioral testing involved sensorimotor performance scoring. Diffusion tensor imaging and resting-state functional magnetic resonance imaging were acquired 7 and 49 days post surgery. Hemispherectomy caused significant sensorimotor deficits that largely recovered within 2 weeks. During the recovery period, fractional anisotropy was maintained and white matter volume and axial diffusivity increased in the contralateral cerebral peduncle, suggestive of preserved or improved white matter integrity despite overall reduced white matter volume. This was accompanied by functional adaptations in the contralateral sensorimotor network. The observed white matter modifications and reorganization of functional network regions may provide handles for rehabilitation strategies improving functional recovery following large lesions.
Takahashi, Kazuhiro; Kurokawa, Tomohiro; Oshiro, Yukio; Fukunaga, Kiyoshi; Sakashita, Shingo; Ohkohchi, Nobuhiro
2016-05-01
Peripheral platelet counts decrease after partial hepatectomy; however, the implications of this phenomenon are unclear. We assessed if the observed decrease in platelet counts was associated with postoperative liver function and morbidity (complications grade ≤ II according to the Clavien-Dindo classification). We enrolled 216 consecutive patients who underwent partial hepatectomy for primary liver cancers, metastatic liver cancers, benign tumors, and donor hepatectomy. We classified patients as either low or high platelet percentage (postoperative platelet count/preoperative platelet count) using the optimal cutoff value calculated by a receiver operating characteristic (ROC) curve analysis, and analyzed risk factors for delayed liver functional recovery and morbidity after hepatectomy. Delayed liver function recovery and morbidity were significantly correlated with the lowest value of platelet percentage based on ROC analysis. Using a cutoff value of 60% acquired by ROC analysis, univariate and multivariate analysis determined that postoperative lowest platelet percentage ≤ 60% was identified as an independent risk factor of delayed liver function recovery (odds ratio (OR) 6.85; P < 0.01) and morbidity (OR, 4.90; P < 0.01). Furthermore, patients with the lowest platelet percentage ≤ 60% had decreased postoperative prothrombin time ratio and serum albumin level and increased serum bilirubin level when compared with patients with platelet percentage ≥ 61%. A greater than 40% decrease in platelet count after partial hepatectomy was an independent risk factor for delayed liver function recovery and postoperative morbidity. In conclusion, the decrease in platelet counts is an early marker to predict the liver function recovery and complications after hepatectomy.
Arora, Rajeev; Palta, Jiwan P.
1991-01-01
Plasma membrane ATPase has been proposed to be functionally altered during early stages of injury caused by a freeze-thaw stress. Complete recovery from freezing injury in onion cells during the postthaw period provided evidence in support of this proposal. During recovery, a simultaneous decrease in ion leakage and disappearance of water soaking (symptoms of freeze-thaw injury) has been noted. Since reabsorption of ions during recovery must be an active process, recovery of plasma membrane ATPase (active transport system) functions has been implicated. In the present study, onion (Allium cepa L. cv Downing Yellow Globe) bulbs were subjected to a freeze-thaw stress which resulted in a reversible (recoverable) injury. Plasma membrane ATPase activity in the microsomes (isolated from the bulb scales) and ion leakage rate (efflux/hour) from the same scale tissue were measured immediately following thawing and after complete recovery. In injured tissue (30-40% water soaking), plasma membrane ATPase activity was reduced by about 30% and this was paralleled by about 25% higher ion leakage rate. As water soaking disappeared during recovery, the plasma membrane ATPase activity and the ion leakage rate returned to about the same level as the respective controls. Treatment of freeze-thaw injured tissue with vanadate, a specific inhibitor of plasma membrane ATPase, during postthaw prevented the recovery process. These results indicate that recovery of freeze-injured tissue depends on the functional activity of plasma membrane ATPase. PMID:16668063
Neural correlates of motor recovery after stroke: a longitudinal fMRI study
Ward, N. S.; Brown, M. M.; Thompson, A. J.; Frackowiak, R. S. J.
2013-01-01
Summary Recovery of motor function after stroke may occur over weeks or months and is often attributed to cerebral reorganization. We have investigated the longitudinal relationship between recovery after stroke and task-related brain activation during a motor task as measured using functional MRI (fMRI). Eight first-ever stroke patients presenting with hemiparesis resulting from cerebral infarction sparing the primary motor cortex, and four control subjects were recruited. Subjects were scanned on a number of occasions whilst performing an isometric dynamic visually paced hand grip task. Recovery in the patient group was assessed using a battery of outcome measures at each time point. Task-related brain activations decreased over sessions as a function of recovery in a number of primary and non-primary motor regions in all patients, but no session effects were seen in the controls. Furthermore, consistent decreases across sessions correlating with recovery were seen across the whole patient group independent of rate of recovery or initial severity, in primary motor cortex, premotor and prefrontal cortex, supplementary motor areas, cingulate sulcus, temporal lobe, striate cortex, cerebellum, thalamus and basal ganglia. Although recovery-related increases were seen in different brain regions in four patients, there were no consistent effects across the group. These results further our understanding of the recovery process by demonstrating for the first time a clear temporal relationship between recovery and task-related activation of the motor system after stroke. PMID:12937084
The Impact of Adverse Child and Adult Experiences on Recovery from Serious Mental Illness
Stumbo, Scott P.; Yarborough, Bobbi Jo H.; Paulson, Robert I.; Green, Carla A.
2015-01-01
Objective To compare effects of adverse childhood experiences and adverse adult experiences on recovery from serious mental illnesses. Methods As part of a mixed-methods study of recovery from serious mental illnesses, we interviewed and administered questionnaires to 177 members of a not-for-profit health plan over a two-year period. Participants had a diagnosis of bipolar disorder, affective psychosis, schizophrenia or schizoaffective disorder. Data for analyses came from standardized self-reported measures; outcomes included recovery, functioning, quality of life, and psychiatric symptoms. Adverse events in childhood and adulthood were evaluated as predictors. Results Child and adult exposures to adverse experiences were high, at 91% and 82% respectively. Cumulative lifetime exposure to adverse experiences (childhood plus adult experiences) was 94%. In linear regression analyses, adverse adult experiences were more important predictors of outcomes than adverse childhood experiences. Adult experiences were associated with lower recovery scores, quality of life, mental and physical functioning, social functioning, and greater psychiatric symptoms. Emotional neglect in adulthood was associated with lower recovery scores. Conclusions and Implications for Practice Early and repeated exposure to adverse events was common in this sample of people with serious mental illnesses. Adverse adult experiences were stronger predictors of worse functioning and lower recovery levels than were childhood experiences. Focusing clinical attention on adult experiences of adverse or traumatic events may result in greater benefit than focusing on childhood experiences alone. PMID:26053533
Magklara, Eleni; Burton, Christopher R; Morrison, Val
2014-09-01
To investigate the role of self-efficacy in functional recovery and well-being outcomes in osteoarthritis patients, undergoing hip or knee replacement surgery. Studies were identified using MEDLINE via PUB med, PsycINFO and CINAHL from inception to July 2013. Three search strategies that combined key terms of 'self-efficacy', 'functional recovery', 'well-being' and 'joint replacement' were applied. Titles and abstracts were screened for eligibility and, accordingly, potentially eligible studies were retrieved for review. Included studies were assessed in terms of their quality, and data were extracted by two independent reviewers. A narrative synthesis of results was conducted. In total, 836 articles were identified and after electronic de-duplication, 708 articles remained. After screening 15 articles were retrieved as potentially eligible and eight articles were included in the review. Of the eight studies (n = 967 patients), seven had a prospective design and all studies were considered of good quality. No fully conclusive evidence for the influence of self-efficacy upon functional recovery outcomes was found. When the timing of self-efficacy measurement was examined, post-operative self-efficacy was found to be related to functional recovery outcomes. Presurgical self-efficacy was the least consistent predictor of functional outcomes while postoperative self-efficacy was more consistently associated with recovery outcomes such as longer distance ambulation, exercise repetition and frequency, walking speed and disability. © The Author(s) 2014.
Heart Rate Recovery, Physical Activity Level, and Functional Status in Subjects With COPD.
Morita, Andrea A; Silva, Laís K O; Bisca, Gianna W; Oliveira, Joice M; Hernandes, Nidia A; Pitta, Fabio; Furlanetto, Karina C
2018-05-15
A normal heart rate reflects the balance between the sympathetic and parasympathetic autonomic nervous system. When the difference between heart rate at the end of an exercise test and after 1 min of recovery, known as the 1-min heart rate recovery, is ≤ 12 beats/min, this may indicate an abnormal delay. We sought to compare physical activity patterns and subjects' functional status with COPD with or without delayed 1-min heart rate recovery after the 6-min walk test (6MWT). 145 subjects with COPD (78 men, median [interquartile range (IQR)] age 65 [60-73] y, body mass index 25 [21-30] kg/m 2 , FEV 1 45 ± 15% predicted) were underwent the following assessments: spirometry, 6MWT, functional status, and physical activity in daily life (PADL). A delayed heart rate recovery of 1 min was defined as ≤ 12 beats/min. Subjects with delayed 1-min heart rate recovery walked a shorter distance in the 6MWT compared to subjects without delayed heart rate recovery (median [IQR] 435 [390-507] m vs 477 [425-515] m, P = .01; 81 [71-87] vs 87 [79-98]% predicted, P = .002). Regarding PADL, subjects with delayed heart rate recovery spent less time in the standing position (mean ± SD 185 ± 89 min vs 250 ± 107 min, P = .002) and more time in sedentary positions (472 ± 110 min vs 394 ± 129 min, P = .002). Scores based on the self-care domain of the London Chest Activity of Daily Living questionnaire and the activity domain of the Pulmonary Functional Status and Dyspnea questionnaire were also worse in the group with delayed heart rate recovery (6 ± 2 points vs 5 ± 2 points; P = .039 and 29 ± 24 points vs 19 ± 17 points; P = .037, respectively). Individuals with COPD who exhibit delayed 1-min heart rate recovery after the 6MWT exhibited worse exercise capacity as well as a more pronounced sedentary lifestyle and worse functional status than those without delayed heart rate recovery. Despite its assessment simplicity, heart rate recovery after the 6MWT can be further explored as a promising outcome in COPD. Copyright © 2018 by Daedalus Enterprises.
USDA-ARS?s Scientific Manuscript database
Vegetation recovery and fuel accumulation rates following wildfire are useful measures of ecosystem resilience, yet few studies have quantified these variables over 10 years post-fire. Conventional wisdom is that recovery time to pre-fire condition will be slower as a function of burn severity, as i...
Eriksson, Kerstin; Wikström, Lotta; Fridlund, Bengt; Årestedt, Kristofer; Broström, Anders
2017-11-01
To compare different levels of self-rated pain and determine if they predict anticipated early physical recovery in patients undergoing general and orthopaedic surgery. Previous research has indicated that average self-rated pain reflects patients' ability to recover the same day. However, there is a knowledge gap about the feasibility of using average pain ratings to predict patients' physical recovery for the next day. Descriptive, quantitative repeated measures. General and orthopaedic inpatients (n = 479) completed a questionnaire (October 2012-January 2015) about pain and recovery. Average pain intensity at rest and during activity was based on the Numeric Rating Scale and divided into three levels (0-3, 4-6, 7-10). Three out of five dimensions from the tool "Postoperative Recovery Profile" were used. Because few suffered severe pain, general and orthopaedic patients were analysed together. Binary logistic regression analysis showed that average pain intensity postoperative day 1 significantly predicted the impact on recovery day 2, except nausea, gastrointestinal function and bladder function when pain at rest and also nausea, appetite changes, and bladder function when pain during activity. High pain ratings (NRS 7-10) demonstrated to be a better predictor for recovery compared with moderate ratings (NRS 4-6), day 2, as it significantly predicted more items in recovery. Pain intensity reflected general and orthopaedic patients' physical recovery postoperative day 1 and predicted recovery for day 2. By monitoring patients' pain and impact on recovery, patients' need for support becomes visible which is valuable during hospital stays. © 2017 John Wiley & Sons Ltd.
Determinants of functional recovery in older adults surgically treated for cancer.
Hodgson, Nancy A; Given, Charles W
2004-01-01
The purpose of this study was to examine the psychosocial and disease-specific factors that influence functional recovery in older adults newly diagnosed with cancer. Multivariate logistic regression models were estimated using panel data from a sample of community-residing adults older than 65 years surgically treated for lung, prostate, breast, or colorectal cancer (N = 172). Data were obtained between 1993 and 1997 during interviews 4 to 6 weeks after cancer surgery for Wave 1 and 14 to 16 weeks after hospital discharge for Wave 2. The outcome measure, functional recovery, was determined by comparing the physical function and physical role subscales of Medical Outcomes Study (MOS) SF-36 over time. Findings showed that prostatectomy patients were more likely to recover by Wave 2 when compared to individuals with lung, colon, or breast resections. Comorbidities and symptom severity were each significantly associated with a decreased probability of recovery. Pain and fatigue were the most common and most severe symptoms reported, regardless of primary site. Psychological well-being was a significant factor influencing functional recovery when age, comorbidities, site of disease, and symptom severity were controlled. The results clearly point to the need for psychological support following cancer surgery.
Rapid Recovery of Visual Function Associated with Blue Cone Ablation in Zebrafish
Hagerman, Gordon F.; Noel, Nicole C. L.; Cao, Sylvia Y.; DuVal, Michèle G.; Oel, A. Phillip; Allison, W. Ted
2016-01-01
Hurdles in the treatment of retinal degeneration include managing the functional rewiring of surviving photoreceptors and integration of any newly added cells into the remaining second-order retinal neurons. Zebrafish are the premier genetic model for such questions, and we present two new transgenic lines allowing us to contrast vision loss and recovery following conditional ablation of specific cone types: UV or blue cones. The ablation of each cone type proved to be thorough (killing 80% of cells in each intended cone class), specific, and cell-autonomous. We assessed the loss and recovery of vision in larvae via the optomotor behavioural response (OMR). This visually mediated behaviour decreased to about 5% or 20% of control levels following ablation of UV or blue cones, respectively (P<0.05). We further assessed ocular photoreception by measuring the effects of UV light on body pigmentation, and observed that photoreceptor deficits and recovery occurred (p<0.01) with a timeline coincident to the OMR results. This corroborated and extended previous conclusions that UV cones are required photoreceptors for modulating body pigmentation, addressing assumptions that were unavoidable in previous experiments. Functional vision recovery following UV cone ablation was robust, as measured by both assays, returning to control levels within four days. In contrast, robust functional recovery following blue cone ablation was unexpectedly rapid, returning to normal levels within 24 hours after ablation. Ablation of cones led to increased proliferation in the retina, though the rapid recovery of vision following blue cone ablation was demonstrated to not be mediated by blue cone regeneration. Thus rapid visual recovery occurs following ablation of some, but not all, cone subtypes, suggesting an opportunity to contrast and dissect the sources and mechanisms of outer retinal recovery during cone photoreceptor death and regeneration. PMID:27893779
Nagao, Ryan J; Lundy, Scott; Khaing, Zin Z; Schmidt, Christine E
2011-07-01
Acellular grafts are a viable option for use in nerve reconstruction surgeries. Recently, our lab created a novel optimized decellularization procedure that removes immunological material while leaving the majority of the extracellular matrix structure intact. The optimized acellular (OA) graft has been shown to elicit an immune response equal to or less than that elicited by the isograft, the analog of the autograft in the rat model. We investigated the performance of the OA graft to provide functional recovery in a long-term study. We performed a long-term functional regeneration evaluation study using the sciatic functional index to quantify recovery of Lewis rats at regular time intervals for up to 52 weeks after graft implantation following 1 cm sciatic nerve resection. OA grafts were compared against other decellularized methods (Sondell treatment and thermal decellularization), as well as the isograft and primary neurorrhaphy. The OA graft supported comparable functional recovery to the isograft and superior regeneration to thermal and Sondell decellularization methods. Furthermore, the OA graft promoted early recovery to a greater degree compared to acellular grafts obtained using either the thermal or the Sondell methods. Equivalent functional recovery to the isograft suggests that the OA nerve graft may be a future clinical alternative to the current autologous tissue graft.
Backes, Daan; Rinkel, Gabriel J E; van der Schaaf, Irene C; Nij Bijvank, Jenny A; Verweij, Bon H; Visser-Meily, Johanna M A; Post, Marcel W; Algra, Ale; Vergouwen, Mervyn D I
2015-06-01
The eventual goal of preventive treatment of unruptured intracranial aneurysms is to increase the number of life years with high life satisfaction. Insight in the time with reduced functioning, working capacity, and life satisfaction after aneurysm treatment is pivotal to balance the pros and cons of preventive aneurysm occlusion. We sent a questionnaire on time-to-recovery to preintervention functioning and return-to-work and life satisfaction to patients treated for an unruptured aneurysm between 2000 and 2013. Changes in life satisfaction before treatment, during recovery, and at follow-up were assessed with Wilcoxon signed-rank tests. The questionnaire was sent to 159 patients of whom 110 (69%) responded. The mean follow-up time after aneurysm treatment was 6 years (SD 4). Fifty-four patients had endovascular and 56 had microsurgical occlusion. Complete recovery to preintervention functioning was reported by 81% (95% confidence interval [CI], 74-88) of patients, with a median time-to-recovery of 3 months (range 0-48). Complete work recovery was reported by 78% (95% CI, 66-87) of patients. The proportion of patients with high life satisfaction reduced from 76% (95% CI, 67-84) before treatment to 52% (95% CI, 43-61) during the period of recovery (P<0.01) and restored largely at long-term follow-up (67% [95% CI, 59-76], P=0.08). Life satisfaction is significantly reduced during the period of recovery after treatment of unruptured aneurysms. In the long-term, ≈1 out of 5 patients reports incomplete recovery. These treatment effects should be kept in mind when considering preventive aneurysm treatment. Prospective studies are needed to better compare these losses in patients treated for unruptured aneurysms with those who had subarachnoid hemorrhage. © 2015 American Heart Association, Inc.
Evaluating post-disaster ecosystem resilience using MODIS GPP data
NASA Astrophysics Data System (ADS)
Frazier, Amy E.; Renschler, Chris S.; Miles, Scott B.
2013-04-01
An integrated community resilience index (CRI) quantifies the status, exposure, and recovery of the physical, economic, and socio-cultural capital for a specific target community. However, most CRIs do not account for the recovery of ecosystem functioning after extreme events, even though many aspects of a community depend on the services provided by the natural environment. The primary goal of this study was to monitor the recovery of ecosystem functionality (ecological capital) using remote sensing-derived gross primary production (GPP) as an indicator of 'ecosystem-wellness' and assess the effect of resilience of ecological capital on the recovery of a community via an integrated CRI. We developed a measure of ecosystem resilience using remotely sensed GPP data and applied the modeling prototype ResilUS in a pilot study for a four-parish coastal community in southwestern Louisiana, USA that was impacted by Hurricane Rita in 2005. The results illustrate that after such an extreme event, the recovery of ecological capital varies according to land use type and may take many months to return to full functionality. This variable recovery can potentially impact the recovery of certain businesses that rely heavily on ecosystem services such as agriculture, forestry, fisheries, and tourism.
Reducing excessive GABAergic tonic inhibition promotes post-stroke functional recovery
Clarkson, Andrew N.; Huang, Ben S.; MacIsaac, Sarah E.; Mody, Istvan; Carmichael, S. Thomas
2010-01-01
Stroke is a leading cause of disability; but no pharmacological therapy is currently available for promoting recovery. The brain region adjacent to stroke damage, the peri-infarct zone, is critical for rehabilitation, as it exhibits heightened neuroplasticity, allowing sensorimotor functions to re-map from damaged areas1–3. Thus, understanding the neuronal properties constraining this plasticity is important to developing new treatments. Here we show that after a stroke in mice, tonic neuronal inhibition is increased in the peri-infarct zone. This increased tonic inhibition is mediated by extrasynaptic GABAA receptors (GABAARs) and is caused by an impairment in GABA transporter (GAT-3/4) function. To counteract the heightened inhibition, we administered in vivo a benzodiazepine inverse agonist specific for the α5-subunit-containing extrasynaptic GABAARs at a delay after stroke. This treatment produced an early and sustained recovery of motor function. Genetically lowering the number of α5 or δ-subunit-containing GABAARs responsible for tonic inhibition also proved beneficial for post-stroke recovery, consistent with the therapeutic potential of diminishing extrasynaptic GABAAR function. Together, our results identify new pharmacological targets and provide the rationale for a novel strategy to promote recovery after stroke and possibly other brain injuries. PMID:21048709
Navarro, Xavier
2016-02-01
Peripheral nerve injuries usually lead to severe loss of motor, sensory and autonomic functions in the patients. Due to the complex requirements for adequate axonal regeneration, functional recovery is often poorly achieved. Experimental models are useful to investigate the mechanisms related to axonal regeneration and tissue reinnervation, and to test new therapeutic strategies to improve functional recovery. Therefore, objective and reliable evaluation methods should be applied for the assessment of regeneration and function restitution after nerve injury in animal models. This review gives an overview of the most useful methods to assess nerve regeneration, target reinnervation and recovery of complex sensory and motor functions, their values and limitations. The selection of methods has to be adequate to the main objective of the research study, either enhancement of axonal regeneration, improving regeneration and reinnervation of target organs by different types of nerve fibres, or increasing recovery of complex sensory and motor functions. It is generally recommended to use more than one functional method for each purpose, and also to perform morphological studies of the injured nerve and the reinnervated targets. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
RECOVERY OF VASCULAR FUNCTION AFTER EXPOSURE TO A SINGLE BOUT OF SEGMENTAL VIBRATION
Krajnak, Kristine; Waugh, Stacey; Miller, G. Roger; Johnson, Claud
2015-01-01
Work rotation schedules may be used to reduce the negative effects of vibration on vascular function. This study determined how long it takes vascular function to recover after a single exposure to vibration in rats (125 Hz, acceleration 5g). The responsiveness of rat-tail arteries to the vasoconstricting factor UK14304, an α2C-adrenoreceptor agonist, and the vasodilating factor acetylcholine (ACh) were measured ex vivo 1, 2, 7, or 9 d after exposure to a single bout of vibration. Vasoconstriction induced by UK14304 returned to control levels after 1 d of recovery. However, re-dilation induced by ACh did not return to baseline until after 9 d of recovery. Exposure to vibration exerted prolonged effects on peripheral vascular function, and altered vascular responses to a subsequent exposure. To optimize the positive results of work rotation schedules, it is suggested that studies assessing recovery of vascular function after exposure to a single bout of vibration be performed in humans. PMID:25072825
Wattananit, Somsak; Tornero, Daniel; Graubardt, Nadine; Memanishvili, Tamar; Monni, Emanuela; Tatarishvili, Jemal; Miskinyte, Giedre; Ge, Ruimin; Ahlenius, Henrik; Lindvall, Olle; Schwartz, Michal; Kokaia, Zaal
2016-04-13
Stroke is a leading cause of disability and currently lacks effective therapy enabling long-term functional recovery. Ischemic brain injury causes local inflammation, which involves both activated resident microglia and infiltrating immune cells, including monocytes. Monocyte-derived macrophages (MDMs) exhibit a high degree of functional plasticity. Here, we determined the role of MDMs in long-term spontaneous functional recovery after middle cerebral artery occlusion in mice. Analyses by flow cytometry and immunocytochemistry revealed that monocytes home to the stroke-injured hemisphere., and that infiltration peaks 3 d after stroke. At day 7, half of the infiltrating MDMs exhibited a bias toward a proinflammatory phenotype and the other half toward an anti-inflammatory phenotype, but during the subsequent 2 weeks, MDMs with an anti-inflammatory phenotype dominated. Blocking monocyte recruitment using the anti-CCR2 antibody MC-21 during the first week after stroke abolished long-term behavioral recovery, as determined in corridor and staircase tests, and drastically decreased tissue expression of anti-inflammatory genes, including TGFβ, CD163, and Ym1. Our results show that spontaneously recruited monocytes to the injured brain early after the insult contribute to long-term functional recovery after stroke. For decades, any involvement of circulating immune cells in CNS repair was completely denied. Only over the past few years has involvement of monocyte-derived macrophages (MDMs) in CNS repair received appreciation. We show here, for the first time, that MDMs recruited to the injured brain early after ischemic stroke contribute to long-term spontaneous functional recovery through inflammation-resolving activity. Our data raise the possibility that inadequate recruitment of MDMs to the brain after stroke underlies the incomplete functional recovery seen in patients and that boosting homing of MDMs with an anti-inflammatory bias to the injured brain tissue may be a new therapeutic approach to promote long-term improvement after stroke. Copyright © 2016 the authors 0270-6474/16/364182-14$15.00/0.
McCully, Belinda H; Connelly, Christopher R; Fair, Kelly A; Holcomb, John B; Fox, Erin E; Wade, Charles E; Bulger, Eileen M; Schreiber, Martin A
2017-07-01
Altered coagulation function after trauma can contribute to development of venous thromboembolism (VTE). Severe trauma impairs coagulation function, but the trajectory for recovery is not known. We hypothesized that enhanced, early recovery of coagulation function increases VTE risk in severely injured trauma patients. Secondary analysis was performed on data from the Pragmatic Randomized Optimal Platelet and Plasma Ratio (PROPPR) trial, excluding patients who died within 24 hours or were on pre-injury anticoagulants. Patient characteristics, adverse outcomes, and parameters of platelet function and coagulation (thromboelastography) were compared from admission to 72 hours between VTE (n = 83) and non-VTE (n = 475) patients. A p value < 0.05 indicates significance. Despite similar patient demographics, VTE patients exhibited hypercoagulable thromboelastography parameters and enhanced platelet function at admission (p < 0.05). Both groups exhibited hypocoagulable thromboelastography parameters, platelet dysfunction, and suppressed clot lysis (low clot lysis at 30 minutes) 2 hours after admission (p < 0.05). The VTE patients exhibited delayed coagulation recovery (a significant change compared with 2 hours) of K-value (48 vs 24 hours), α-angle (no recovery), maximum amplitude (24 vs 12 hours), and clot lysis at 30 minutes (48 vs 12 hours). Platelet function recovery mediated by arachidonic acid (72 vs 4 hours), ADP (72 vs 12 hours), and collagen (48 vs 12 hours) was delayed in VTE patients. The VTE patients had lower mortality (4% vs 13%; p < 0.05), but fewer hospital-free days (0 days [interquartile range 0 to 8 days] vs 10 days [interquartile range 0 to 20 days]; p < 0.05) and higher complication rates (p < 0.05). Recovery from platelet dysfunction and coagulopathy after severe trauma were delayed in VTE patients. Suppressed clot lysis and compensatory mechanisms associated with altered coagulation that can potentiate VTE formation require additional investigation. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Bartolomeo, Paolo; Thiebaut de Schotten, Michel
2016-12-01
Recent evidence revealed the importance of inter-hemispheric communication for the compensation of functional deficits after brain damage. This review summarises the biological consequences observed using histology as well as the longitudinal findings measured with magnetic resonance imaging methods in brain damaged animals and patients. In particular, we discuss the impact of post-stroke brain hyperactivity on functional recovery in relation to time. The reviewed evidence also suggests that the proportion of the preserved functional network both in the lesioned and in the intact hemispheres, rather than the simple lesion location, determines the extent of functional recovery. Hence, future research exploring longitudinal changes in patients with brain damage may unveil potential biomarkers underlying functional recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Verney, J; Martin, V; Ratel, S; Chavanelle, V; Bargetto, M; Etienne, M; Chaplais, E; Le Ruyet, P; Bonhomme, C; Combaret, L; Guillet, C; Boisseau, N; Sirvent, P; Dardevet, D
2017-01-01
Effect of 3 different dairy protein sources on the recovery of muscle function after limb immobilization in old rats. Longitudinal animal study. Institut National de la Recherche Agronomique (INRA). The study took part in a laboratory setting. Old rats were subjected to unilateral hindlimb immobilization for 8 days and then allowed to recover with 3 different dietary proteins: casein, soluble milk proteins or whey proteins for 49 days. Body weight, muscle mass, muscle fibre size, isometric, isokinetic torque, muscle fatigability and muscle oxidative status were measured before and at the end of the immobilization period and during the recovery period i.e 7, 21, 35 and 49 days post immobilization. In contrast to the casein diet, soluble milk proteins and whey proteins were efficient to favor muscle mass recovery after cast immobilization during aging. By contrast, none of the 3 diary proteins was able to improve muscle strength, power and fatigability showing a discrepancy between the recovery of muscle mass and function. However, the soluble milk proteins allowed a better oxidative capacity in skeletal muscle during the rehabilitation period. Whey proteins and soluble milk proteins improve muscle mass recovery after immobilization-induced muscle atrophy in old rats but do not allow muscle functional property restoration.
Jones, Holly P
2010-07-01
Invasive species are widespread and can have devastating effects on biota, especially insular biota. Invasive species eradications are increasingly employed to promote island recovery to preinvasion states. However, it remains unclear if additional restoration actions may be required on islands that were once heavily reliant on seabird guano for ecosystem functions. Active seabird augmentation has been suggested as necessary to exact ecosystem recovery on contemporary timescales in some cases. I use two experiments on offshore islands in Cook Strait, New Zealand, to test the hypothesis that seabird restoration will restore island ecosystem functioning following invasive rodent removal. The first is a small-scale single-island fertilization experiment that simulates seabird recovery. This experiment tested the recovery potential of offshore islands and was used to infer the density of seabirds needed to elicit ecosystem recovery. The second is a large-scale natural experiment that takes advantage of eight islands with differing rodent eradication and seabird restoration histories. I compared ecosystem functioning variables (delta 15N, C:N ratios in soil, plants, and spiders, as well as arthropod abundance and diversity) on two islands that had rodents eradicated and two islands undergoing seabird augmentation with two control islands (never invaded by rodents) and two positive control islands (currently invaded by rodents). The results suggest that islands do have the potential for recovery given nutrient amendments, but that islands with rodents eradicated and islands undergoing seabird augmentation have not recovered most of their ecosystem function. Finer, intra-island analysis showed that seabird restoration projects have the potential to speed the recovery process, but that the projects on the studied seabird restoration islands were not advanced enough to produce island-wide recovery. The results suggest that high seabird densities (5-10 burrows/m2) are needed to promote recovery to never-invaded control levels. Seabird augmentation, through chick translocation and/or social facilitation with decoys, vocalization playbacks, and/or mirrors can supplement passive seabird recovery on islands where seabirds have been extirpated or extremely reduced by invasive predators. Such restoration efforts may be necessary to promote ecosystem recovery on contemporary timescales.
NASA Technical Reports Server (NTRS)
Phillips, Tiffany; Arzeno, Natalia M.; Stenger, Michael; Lee, Stuart M. C.; Bloomberg, Jacob J.; Platts, Steven H.
2011-01-01
The overall objective of the functional task test (FTT) is to correlate spaceflight-induced physiological adaptations with changes in performance of high priority exploration mission-critical tasks. This presentation will focus on the recovery from fall/stand test (RFST), which measures the cardiovascular response to the transition from the prone posture (simulated fall) to standing in normal gravity, as well as heart rate (HR) during 11 functional tasks. As such, this test describes some aspects of spaceflight-induced cardiovascular deconditioning and the course of recovery in Space Shuttle and International Space Station (ISS) astronauts. The sensorimotor and neuromuscular components of the FTT are described in two separate abstracts: Functional Task Test 1 and 3.
Principles of proportional recovery after stroke generalize to neglect and aphasia.
Marchi, N A; Ptak, R; Di Pietro, M; Schnider, A; Guggisberg, A G
2017-08-01
Motor recovery after stroke can be characterized into two different patterns. A majority of patients recover about 70% of initial impairment, whereas some patients with severe initial deficits show little or no improvement. Here, we investigated whether recovery from visuospatial neglect and aphasia is also separated into two different groups and whether similar proportions of recovery can be expected for the two cognitive functions. We assessed 35 patients with neglect and 14 patients with aphasia at 3 weeks and 3 months after stroke using standardized tests. Recovery patterns were classified with hierarchical clustering and the proportion of recovery was estimated from initial impairment using a linear regression analysis. Patients were reliably clustered into two different groups. For patients in the first cluster (n = 40), recovery followed a linear model where improvement was proportional to initial impairment and achieved 71% of maximal possible recovery for both cognitive deficits. Patients in the second cluster (n = 9) exhibited poor recovery (<25% of initial impairment). Our findings indicate that improvement from neglect or aphasia after stroke shows the same dichotomy and proportionality as observed in motor recovery. This is suggestive of common underlying principles of plasticity, which apply to motor and cognitive functions. © 2017 EAN.
Zhang, Z; Guth, L; Steward, O
1998-01-01
Partial lesions of the mammalian spinal cord result in an immediate motor impairment that recovers gradually over time; however, the cellular mechanisms responsible for the transient nature of this paralysis have not been defined. A unique opportunity to identify those injury-induced cellular responses that mediate the recovery of function has arisen from the discovery of a unique mutant strain of mice in which the onset of Wallerian degeneration is dramatically delayed. In this strain of mice (designated WldS for Wallerian degeneration, slow), many of the cellular responses to spinal cord injury are also delayed. We have used this experimental animal model to evaluate possible causal relationships between these delayed cellular responses and the onset of functional recovery. For this purpose, we have compared the time course of locomotor recovery in C57BL/6 (control) mice and in WldS (mutant) mice by hemisecting the spinal cord at T8 and evaluating locomotor function at daily postoperative intervals. The time course of locomotor recovery (as determined by the Tarlov open-field walking procedure) was substantially delayed in mice carrying the WldS mutation: C57BL/6 control mice began to stand and walk within 6 days (mean Tarlov score of 4), whereas mutant mice did not exhibit comparable locomotor function until 16 days postoperatively. (a) The rapid return of locomotor function in the C57BL/6 mice suggests that the recovery resulted from processes of functional plasticity rather than from regeneration or collateral sprouting of nerve fibers. (b) The marked delay in the return of locomotor function in WldS mice indicates that the processes of neuroplasticity are induced by degenerative changes in the damaged neurons. (c) These strains of mice can be effectively used in future studies to elucidate the specific biochemical and physiological alterations responsible for inducing functional plasticity and restoring locomotor function after spinal cord injury.
Licciardone, John C; Gatchel, Robert J; Aryal, Subhash
2016-03-01
Little is known about recovery after spinal manipulation in patients with low back pain (LBP). To assess recovery from chronic LBP after a short regimen of osteopathic manipulative treatment (OMT) in a responder analysis of the OSTEOPAThic Health outcomes In Chronic low back pain (OSTEOPATHIC) Trial. A randomized double-blind, sham-controlled trial was conducted to determine the efficacy of 6 OMT sessions over 8 weeks. Recovery was assessed at week 12 using a composite measure of pain recovery (10 mm or less on a 100-mm visual analog scale) and functional recovery (2 or less on the Roland-Morris Disability Questionnaire for back-specific functioning). The RRs and numbers-needed-to-treat (NNTs) for recovery with OMT were measured, and corresponding cumulative distribution functions were plotted according to baseline LBP intensity and back-specific functioning. Multiple logistic regression was used to compute the OR for recovery with OMT while simultaneously controlling for potential confounders. Sensitivity analyses were performed to corroborate the primary results. There were 345 patients who met neither of the recovery criteria at baseline in the primary analyses and 433 patients who met neither or only 1 of these criteria in the sensitivity analyses. There was a large treatment effect for recovery with OMT (RR, 2.36; 95% CI, 1.31-4.24; P=.003), which was associated with a clinically relevant NNT (8.9; 95% CI, 5.4-25.5). This significant finding persisted after adjustment for potential confounders (OR, 2.92; 95% CI, 1.43-5.97; P=.003). There was also a significant interaction effect between OMT and comorbid depression (P=.02), indicating that patients without depression were more likely to recover from chronic LBP with OMT (RR, 3.21; 95% CI, 1.59-6.50; P<.001) (NNT, 6.5; 95% CI, 4.2-14.5). The cumulative distribution functions demonstrated optimal RR and NNT responses in patients with moderate to severe levels of LBP intensity and back-specific dysfunction at baseline. Similar results were observed in the sensitivity analyses. The OMT regimen was associated with significant and clinically relevant measures for recovery from chronic LBP. A trial of OMT may be useful before progressing to other more costly or invasive interventions in the medical management of patients with chronic LBP. (ClinicalTrials.gov number NCT00315120).
The impact of adverse child and adult experiences on recovery from serious mental illness.
Stumbo, Scott P; Yarborough, Bobbi Jo H; Paulson, Robert I; Green, Carla A
2015-12-01
The purpose of this study was to compare effects of adverse childhood experiences and adverse adult experiences on recovery from serious mental illnesses. As part of a mixed-methods study of recovery from serious mental illnesses, we interviewed and administered questionnaires to 177 members of a not-for-profit health plan over a 2-year period. Participants had a diagnosis of bipolar disorder, affective psychosis, schizophrenia, or schizoaffective disorder. Data for analyses came from standardized self-reported measures; outcomes included recovery, functioning, quality of life, and psychiatric symptoms. Adverse events in childhood and adulthood were evaluated as predictors. Child and adult exposures to adverse experiences were high, at 91% and 82%, respectively. Cumulative lifetime exposure to adverse experiences (childhood plus adult experiences) was 94%. In linear regression analyses, adverse adult experiences were more important predictors of outcomes than adverse childhood experiences. Adult experiences were associated with lower recovery scores, quality of life, mental and physical functioning and social functioning and greater psychiatric symptoms. Emotional neglect in adulthood was associated with lower recovery scores. Early and repeated exposure to adverse events was common in this sample of people with serious mental illnesses. Adverse adult experiences were stronger predictors of worse functioning and lower recovery levels than were childhood experiences. Focusing clinical attention on adult experiences of adverse or traumatic events may result in greater benefit than focusing on childhood experiences alone. (c) 2015 APA, all rights reserved).
Kukla, Marina; Lysaker, Paul H; Roe, David
2014-08-01
Interest in recovery from schizophrenia has been growing steadily, with much of the focus on remission from psychotic symptoms and a return to functioning. Less is known about the experience of subjective recovery and its relationships with other important outcomes, such as quality of life and the formation and sustenance of social connections. This study sought to address this gap in knowledge by examining the links between self perceived recovery, symptoms, and the social components of quality of life. Sixty eight veterans with schizophrenia-spectrum disorders who were participating in a study of cognitive remediation and work were concurrently administered the Recovery Assessment Scale, Positive and Negative Syndrome Scale, and the Heinrichs-Carpenter Quality of Life Scale (QLS). Linear regression analyses demonstrated that subjective recovery moderated the relationship between positive symptoms and both QLS intrapsychic foundations scores and QLS instrumental role functioning after controlling for negative symptoms. Further examination of this interaction revealed that for individuals with substantial positive symptoms, higher levels of subjective recovery were associated with better instrumental role functioning and intrapsychic foundational abilities. Greater self perceived recovery is linked with stronger quality of life, both in regards to the cognitive and affective bases for socialization and active community involvement, even in the presence of substantial psychotic symptoms. Clinical implications of these findings are discussed. Published by Elsevier Inc.
Furrer, Marc A; Vilaseca, Antoni; Corradi, Renato B; Boxler, Silvan; Thalmann, George N; Nguyen, Daniel P
2018-06-01
A growing number of men undergo repeat biopsies prior to radical prostatectomy for prostate cancer. However, the long-term impact of repeat biopsies on functional outcomes in this patient population remains unelucidated. Thus, we compared functional outcomes between patients who underwent single biopsy versus repeat biopsies before radical prostatectomy. From 1996 to 2015, 1015 consecutive patients underwent radical prostatectomy, and subsequently had urinary continence and erectile function assessed for >2 years follow-up. One-fourth of patients (275; 27%) had ≥2 biopsies before prostatectomy. Logistic regression models tested whether repeat biopsy before prostatectomy predicted continence or erectile function recovery. For the overall cohort, continence rates were 84%, 92%, 96%, and 98% at 3, 6, 12, and 24 months, respectively. Repeat biopsy before prostatectomy was associated with lower continence rate at 3 months compared to single biopsy (P = 0.03); however, no significant differences were observed at 6, 12, or 24 months. In multivariable analyses adjusting for age, body mass index and diabetes/cardiovascular disease/smoking, the association between repeat biopsy and lower likelihood of continence at 3 months remained (odds ratio 0.67, 95% confidence interval 0.47-0.97; P = 0.03). Overall erectile function recovery rates were 16%, 33%, 51%, and 55% at 3, 6, 12, and 24 months, respectively. No difference in erectile function recovery rates was seen at any time point for single biopsy versus repeat biopsy. In multivariable analyses, repeat biopsy was not predictive of erectile function recovery at any time point. Repeat biopsy before radical prostatectomy impairs early continence after surgery. However, erectile function recovery and mid-term to long-term continence are not affected. These data support the current trend towards active surveillance and delayed local treatment in patients with low- to intermediate-risk prostate cancer. © 2018 Wiley Periodicals, Inc.
Adolescent Anorexia Nervosa: cognitive performance after weight recovery.
Lozano-Serra, Estefanía; Andrés-Perpiña, Susana; Lázaro-García, Luisa; Castro-Fornieles, Josefina
2014-01-01
Although there is no definitive consensus on the impairment of neuropsychological functions, most studies of adults with Anorexia Nervosa (AN) find impaired functioning in cognitive domains such as visual-spatial abilities. The objective of this study is to assess the cognitive functions in adolescents with AN before and after weight recovery and to explore the relationship between cognitive performance and menstruation. Twenty-five female adolescents with AN were assessed by a neuropsychological battery while underweight and then following six months of treatment and weight recovery. Twenty-six healthy female subjects of a similar age were also evaluated at both time points. Underweight patients with AN showed worse cognitive performance than control subjects in immediate recall, organization and time taken to copy the Rey's Complex Figure Test (RCFT). After weight recovery, AN patients presented significant improvements in all tests, and differences between patients and controls disappeared. Patients with AN and persistence of amenorrhea at follow-up (n=8) performed worse on Block Design, delayed recall of Visual Reproduction and Stroop Test than patients with resumed menstruation (n=14) and the control group, though the two AN groups were similar in body mass index, age and psychopathological scale scores. Weight recovery improves cognitive functioning in adolescents with AN. The normalization of neuropsychological performance is better in patients who have recovered at least one menstrual cycle. The normalization of hormonal function seems to be essential for the normalization of cognitive performance, even in adolescents with a very short recovery time. © 2013.
Zabor, Emily C; Furberg, Helena; Lee, Byron; Campbell, Steven; Lane, Brian R; Thompson, R Houston; Antonio, Elvis Caraballo; Noyes, Sabrina L; Zaid, Harras; Jaimes, Edgar A; Russo, Paul
2018-04-01
We sought to confirm the findings from a previous single institution study of 572 patients from Memorial Sloan Kettering Cancer Center in which we found that 49% of patients recovered to the preoperative estimated glomerular filtration rate within 2 years following radical nephrectomy for renal cell carcinoma. A multicenter retrospective study was performed in 1,928 patients using data contributed from 3 independent centers. The outcome of interest was postoperative recovery to the preoperative estimated glomerular filtration rate. Data were analyzed using cumulative incidence and competing risks regression with death from any cause treated as a competing event. This study demonstrated that 45% of patients had recovered to the preoperative estimated glomerular filtration rate by 2 years following radical nephrectomy. Furthermore, this study confirmed that recovery of renal function differed according to preoperative renal function such that patients with a lower preoperative estimated glomerular filtration rate had an increased chance of recovery. This study also suggested that larger tumor size and female gender were significantly associated with an increased chance of renal function recovery. In this multicenter retrospective study we confirmed that in the long term a large proportion of patients recover to preoperative renal function following radical nephrectomy for kidney tumors. Recovery is more likely among those with a lower preoperative estimated glomerular filtration rate. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Stößel, Maria; Rehra, Lena; Haastert-Talini, Kirsten
2017-10-01
The rat median nerve injury and repair model gets increasingly important for research on novel bioartificial nerve grafts. It allows follow-up evaluation of the recovery of the forepaw functional ability with several sensitive techniques. The reflex-based grasping test, the skilled forelimb reaching staircase test, as well as electrodiagnostic recordings have been described useful in this context. Currently, no standard values exist, however, for comparison or comprehensive correlation of results obtained in each of the three methods after nerve gap repair in adult rats. Here, we bilaterally reconstructed 7-mm median nerve gaps with autologous nerve grafts (ANG) or autologous muscle-in-vein grafts (MVG), respectively. During 8 and 12 weeks of observation, functional recovery of each paw was separately monitored using the grasping test (weekly), the staircase test, and noninvasive electrophysiological recordings from the thenar muscles (both every 4 weeks). Evaluation was completed by histomorphometrical analyses at 8 and 12 weeks postsurgery. The comprehensive evaluation detected a significant difference in the recovery of forepaw functional motor ability between the ANG and MVG groups. The correlation between the different functional tests evaluated precisely displayed the recovery of distinct levels of forepaw functional ability over time. Thus, this multimodal evaluation model represents a valuable preclinical model for peripheral nerve reconstruction approaches.
Fluet, Gerard G.; Patel, Jigna; Qiu, Qinyin; Yarossi, Matthew; Massood, Supriya; Adamovich, Sergei V.; Tunik, Eugene; Merians, Alma S.
2016-01-01
Purpose The complexity of upper extremity (UE) behavior requires recovery of near normal neuromuscular function to minimize residual disability following a stroke. This requirement places a premium on spontaneous recovery and neuroplastic adaptation to rehabilitation by the lesioned hemisphere. Motor skill learning is frequently cited as a requirement for neuroplasticity. Studies examining the links between training, motor learning, neuroplasticity, and improvements in hand motor function are indicated. Methods This case study describes a patient with slow recovering hand and finger movement (Total Upper Extremity Fugl–Meyer examination score = 25/66, Wrist and Hand items = 2/24 on poststroke day 37) following a stroke. The patient received an intensive eight-session intervention utilizing simulated activities that focused on the recovery of finger extension, finger individuation, and pinch-grasp force modulation. Results Over the eight sessions, the patient demonstrated improvements on untrained transfer tasks, which suggest that motor learning had occurred, as well a dramatic increase in hand function and corresponding expansion of the cortical motor map area representing several key muscles of the paretic hand. Recovery of hand function and motor map expansion continued after discharge through the three-month retention testing. Conclusion This case study describes a neuroplasticity based intervention for UE hemiparesis and a model for examining the relationship between training, motor skill acquisition, neuroplasticity, and motor function changes. PMID:27669997
Fingelkurts, Andrew A; Fingelkurts, Alexander A
2017-09-01
In this report, we describe the case of a patient who sustained extremely severe traumatic brain damage with diffuse axonal injury in a traffic accident and whose recovery was monitored during 6 years. Specifically, we were interested in the recovery dynamics of 3-dimensional components of selfhood (a 3-dimensional construct model for the complex experiential selfhood has been recently proposed based on the empirical findings on the functional-topographical specialization of 3 operational modules of brain functional network responsible for the self-consciousness processing) derived from the electroencephalographic (EEG) signal. The analysis revealed progressive (though not monotonous) restoration of EEG functional connectivity of 3 modules of brain functional network responsible for the self-consciousness processing, which was also paralleled by the clinically significant functional recovery. We propose that restoration of normal integrity of the operational modules of the self-referential brain network may underlie the positive dynamics of 3 aspects of selfhood and provide a neurobiological mechanism for their recovery. The results are discussed in the context of recent experimental studies that support this inference. Studies of ongoing recovery after severe brain injury utilizing knowledge about each separate aspect of complex selfhood will likely help to develop more efficient and targeted rehabilitation programs for patients with brain trauma.
Kim, Jong Hun; Kim, Kyung Hwa; Choi, Jong Bum; Kuh, Ja Hong
2016-03-01
After tricuspid valve surgery for long-standing tricuspid regurgitation associated with right ventricular failure, reverse remodelling of the enlarged right ventricle, including recovery of right ventricular systolic function, is unpredictable. We present the case of a 31-year old man with early reduction of dilated right ventricular dimensions and delayed recovery of impaired right ventricular systolic function after valve repair for traumatic tricuspid regurgitation lasting 16 years. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
2014-10-01
atrophy. Interestingly, there is a clinical phenomenon that stretching can lead to muscle fiber hypertrophy , but that doesn’t appear to be...specific muscle groups) on functional recovery after spinal cord injury in a rat model. We have undertaken these studies because of an observation we...spinal cord injury, locomotor recovery, physical therapy, muscle stretch, joint range- of-motion, rat. Overall Project Summary: In this, the
Objective and automated measurement of dynamic vision functions
NASA Technical Reports Server (NTRS)
Flom, M. C.; Adams, A. J.
1976-01-01
A phoria stimulus array and electro-oculographic (EOG) arrangements for measuring motor and sensory responses of subjects subjected to stress or drug conditions are described, along with experimental procedures. Heterophoria (as oculomotor function) and glare recovery time (time required for photochemical and neural recovery after exposure to a flash stimulus) are measured, in research aimed at developing automated objective measurement of dynamic vision functions. Onset of involuntary optokinetic nystagmus in subjects attempting to track moving stripes (while viewing through head-mounted binocular eyepieces) after exposure to glare serves as an objective measure of glare recovery time.
Ishida, Akimasa; Isa, Kaoru; Umeda, Tatsuya; Kobayashi, Kazuto; Kobayashi, Kenta; Hida, Hideki
2016-01-01
Intensive rehabilitation is believed to induce use-dependent plasticity in the injured nervous system; however, its causal relationship to functional recovery is unclear. Here, we performed systematic analysis of the effects of forced use of an impaired forelimb on the recovery of rats after lesioning the internal capsule with intracerebral hemorrhage (ICH). Forced limb use (FLU) group rats exhibited better recovery of skilled forelimb functions and their cortical motor area with forelimb representation was restored and enlarged on the ipsilesional side. In addition, abundant axonal sprouting from the reemerged forelimb area was found in the ipsilateral red nucleus after FLU. To test the causal relationship between the plasticity in the cortico-rubral pathway and recovery, loss-of-function experiments were conducted using a double-viral vector technique, which induces selective blockade of the target pathway. Blockade of the cortico-rubral tract resulted in deficits of the recovered forelimb function in FLU group rats. These findings suggest that the cortico-rubral pathway is a substrate for recovery induced by intensive rehabilitation after ICH. SIGNIFICANCE STATEMENT The research aimed at determining the causal linkage between reorganization of the motor pathway induced by intensive rehabilitative training and recovery after stroke. We clarified the expansion of the forelimb representation area of the ipsilesional motor cortex by forced impaired forelimb use (FLU) after lesioning the internal capsule with intracerebral hemorrhaging (ICH) in rats. Anterograde tracing showed robust axonal sprouting from the forelimb area to the red nucleus in response to FLU. Selective blockade of the cortico-rubral pathway by the novel double-viral vector technique clearly revealed that the increased cortico-rubral axonal projections had causal linkage to the recovery of reaching movements induced by FLU. Our data demonstrate that the cortico-rubral pathway is responsible for the effect of intensive limb use. PMID:26758837
Schiff, Nicholas D.
2013-01-01
Purpose of review Standard neurorehabilitation approaches have limited impact on motor recovery in patients with severe injuries. Consideration of the contributions of impaired arousal offers a novel approach to understand and enhance recovery. Recent findings Animal and human neuroimaging studies are elucidating the neuroanatomical bases of arousal and of arousal regulation, the process by which the cerebrum mobilizes resources. Studies of patients with disorders of consciousness have revealed that recovery of these processes is associated with marked improvements in motor performance. Recent studies have also demonstrated that patients with less severe brain injuries also have impaired arousal, manifesting as diminished sustained attention, fatigue and apathy. In these less severely injured patients it is difficult to connect disorders of arousal with motor recovery due to a lack of measures of arousal independent of motor function. Summary Arousal impairment is common after brain injury and likely plays a significant role in recovery of motor function. A more detailed understanding of this connection will help to develop new therapeutic strategies applicable for a wide range of patients. This requires new tools that continuously and objectively measure arousal in patients with brain injury, to correlate with detailed measures of motor performance and recovery. PMID:22002078
Secchi, Francesca; Pagliarani, Chiara; Zwieniecki, Maciej A
2017-06-01
Xylem parenchyma cells [vessel associated cells (VACs)] constitute a significant fraction of the xylem in woody plants. These cells are often closely connected with xylem vessels or tracheids via simple pores (remnants of plasmodesmata fields). The close contact and biological activity of VACs during times of severe water stress and recovery from stress suggest that they are involved in the maintenance of xylem transport capacity and responsible for the restoration of vessel/tracheid functionality following embolism events. As recovery from embolism requires the transport of water across xylem parenchyma cell membranes, an understanding of stem-specific aquaporin expression patterns, localization and activity is a crucial part of any biological model dealing with embolism recovery processes in woody plants. In this review, we provide a short overview of xylem parenchyma cell biology with a special focus on aquaporins. In particular we address their distributions and activity during the development of drought stress, during the formation of embolism and the subsequent recovery from stress that may result in refilling. Complemented by the current biological model of parenchyma cell function during recovery from stress, this overview highlights recent breakthroughs on the unique ability of long-lived perennial plants to undergo cycles of embolism-recovery related to drought/rewetting or freeze/thaw events. © 2016 John Wiley & Sons Ltd.
Ecto-domain phosphorylation promotes functional recovery from spinal cord injury
Suehiro, Kenji; Nakamura, Yuka; Xu, Shuai; Uda, Youichi; Matsumura, Takafumi; Yamaguchi, Yoshiaki; Okamura, Hitoshi; Yamashita, Toshihide; Takei, Yoshinori
2014-01-01
Inhibition of Nogo-66 receptor (NgR) can promote recovery following spinal cord injury. The ecto-domain of NgR can be phosphorylated by protein kinase A (PKA), which blocks activation of the receptor. Here, we found that infusion of PKA plus ATP into the damaged spinal cord can promote recovery of locomotor function. While significant elongation of cortical-spinal axons was not detectable even in the rats showing enhanced recovery, neuronal precursor cells were observed in the region where PKA plus ATP were directly applied. NgR1 was expressed in neural stem/progenitor cells (NSPs) derived from the adult spinal cord. Both an NgR1 antagonist NEP1-40 and ecto-domain phosphorylation of NgR1 promote neuronal cell production of the NSPs, in vitro. Thus, inhibition of NgR1 in NSPs can promote neuronal cell production, which could contribute to the enhanced recovery of locomotor function following infusion of PKA and ATP. PMID:24826969
Integrated Treatment to Achieve Functional Recovery for First-Episode Psychosis
Valencia, Marcelo; Juarez, Francisco; Ortega, Hector
2012-01-01
This study describes an integrated treatment approach that was implemented to enhance functional recovery in first-episode psychotic patients. Patients were randomized to two treatment conditions: either to an integrated treatment approach: pharmacotherapy, psychosocial treatment, and psychoeducation (experimental group: N = 39) or to medication alone (control group: N = 34). Patients were evaluated at baseline and after one year of treatment. Functional recovery was assessed according to symptomatic and functional remission. At the end of treatment, experimental patients showed a 94.9% of symptomatic remission compared to 58.8% of the control group. Functional remission was 56.4% for the experimental group and 3.6% for the control group, while 56.4% of the experimental group met both symptomatic and functional remission criteria and were considered recovered compared to 2.9% of the control group. PMID:22970366
Micropuncture studies of the recovery phase of myohemoglobinuric acute renal failure in the rat
Oken, Donald E.; DiBona, Gerald F.; McDonald, Franklin D.
1970-01-01
Micropuncture studies of the recovery phase of glycerol-induced myohemoglobinuric acute renal failure were performed in rats whose blood urea nitrogen (BUN) had fallen at least 20% below its peak value. The glomerular filtration rate (GFR) of individual nephrons in a single kidney in the recovery period generally either was in the normal range or minimal. Each animal's BUN concentration at the time of the study was inversely related to the proportion of functioning surface nephrons, but did not correlate with individual nephron GFR values. Proximal tubule fractional water absorption was significantly depressed as manifested by both depressed inulin (TF/P) values and supernormal volumes of collections, a finding which, in the absence of a urea-induced osmotic diuresis, suggests impaired sodium transport by the damaged nephron. The mean proximal tubule hydrostatic pressure in recovery was normal and there was little variation in pressure among functioning nephrons. It is concluded that recovery from this model of acute renal failure reflects the progressive recruitment of increasing numbers of functioning nephrons. The recovery of individual nephron glomerular filtration, once begun, was rapid and complete. No evidence could be adduced that the gradual return of renal function towards normal reflects a slow release of tubular obstruction or repair of disrupted tubular epithelium. Rather, recovery appeared to be directly attributable to the return of an adequate effective glomerular filtration pressure. Significant limitation in proximal tubule water absorption persisted after individual nephron GFR had returned to normal or supernormal values in this model of experimental acute renal failure in the rat, a finding which readily accounts for the diuresis associated with the recovery phase of this syndrome. PMID:5443173
Rothrock, Robert J; Steinberger, Jeremy M; Badgery, Henry; Hecht, Andrew C; Cho, Samuel K; Caridi, John M; Deiner, Stacie
2018-05-21
Background Context As increasing numbers of elderly Americans undergo spinal surgery, it is important to identify which patients are at highest risk for poor cognitive and functional recovery. Frailty is a geriatric syndrome which has been closely linked to poor outcomes, and short form screening may be a helpful tool for preoperative identification of at risk patients. Purpose To conduct a pilot study on the usefulness of a short-form screening tool to identify elderly patients at increased risk for prolonged cognitive and functional recovery following elective spine surgery. Study Design/Setting Prospective, comparative cohort study. Patient Sample 100 patients over age 65 undergoing elective spinal surgery (cervical or lumbar) at a single, large academic medical center from 2013-2014. Outcome Measures FRAIL scale, Quality of Recovery Scale (PQRS), and Instrumental Activities (IADLs) scores. Methods Included patients were given the FRAIL scale and stratified as robust, pre-frail, or frail. Post-operative Quality of Recovery Scale (PQRS) and Instrumental Activities (IADLs) scores were also obtained. Patients were re-examined at 1 day, 3 days, 1 month, and 3 months after surgery for cognitive recovery at 3-months, and secondarily, functional recovery at 3-months. This study was funded in part by grants from the National Institute on Aging (K23-17-015, National Institutes of Health, Bethesda, Maryland, USA) and the American Federation for Aging Research (New York City, NY, USA). Results At 3-months, only 50% of frail patients had recovered to their cognitive baseline compared to 60.7% of pre-frail and 69.2% of robust patients (trend). At 3-months, 66.7% of frail patients had recovered to their functional baseline compared to 57% of pre-frail and 76.9% of robust patients (trend). Using multivariate regression modelling, at 3 months, frail patients were less likely to have recovered to their cognitive baseline compared to pre-frail and robust patients (OR 0.39, CI 0.131-1.161). Conclusions This pilot study demonstrates a trend towards poorer cognitive recovery 3-months following elective spinal surgery for frail patients. Frailty screening can help pre-operatively identify patients who may experience protracted cognitive and functional recovery. Copyright © 2018. Published by Elsevier Inc.
Qiu, Kaiyang; Xie, Yingzhong; Xu, Dongmei; Pott, Richard
2018-05-15
The effects of biodiversity on ecosystem functions have been extensively studied, but little is known about the effects of ecosystem functions on biodiversity. This knowledge is important for understanding biodiversity-ecosystem functioning relationships. Desertification reversal is a significant global challenge, but the factors that play key roles in this process remain unclear. Here, using data sampled from areas undergoing desertification reversal, we identify the dominant soil factors that play a role in vegetation recovery with ordinary least squares and structural equation modelling. We found that ecosystem functions related to the cycling of soil carbon (organic C, SOC), nitrogen (total N, TN), and potassium (available K, AK) had the most substantial effects on vegetation recovery. The effects of these ecosystem functions were simultaneously influenced by the soil clay, silt and coarse sand fractions and the soil water content. Our findings suggest that K plays a critical role in ecosystem functioning and is a limiting factor in desertification reversal. Our results provide a scientific basis for desertification reversal. Specifically, we found that plant biodiversity may be regulated by N, phosphorus (P) and K cycling. Collectively, biodiversity may respond to ecosystem functions, the conservation and enhancement of which can promote the recovery of vegetation.
PLANKTON RESPIRATION AND BIOMASS AS FUNCTIONAL INDICATORS OF RECOVERY IN RESTORED PRAIRIE WETLANDS
Reliable ecological indicators of wetland integrity are necessary for assessing recovery of restored wetlands, yet little consensus currently exists on which indicators are most appropriate. We employed indicators derived from simple, standard measures of ecosystem function selec...
Predicting functional recovery after acute ankle sprain.
O'Connor, Sean R; Bleakley, Chris M; Tully, Mark A; McDonough, Suzanne M
2013-01-01
Ankle sprains are among the most common acute musculoskeletal conditions presenting to primary care. Their clinical course is variable but there are limited recommendations on prognostic factors. Our primary aim was to identify clinical predictors of short and medium term functional recovery after ankle sprain. A secondary analysis of data from adult participants (N = 85) with an acute ankle sprain, enrolled in a randomized controlled trial was undertaken. The predictive value of variables (age, BMI, gender, injury mechanism, previous injury, weight-bearing status, medial joint line pain, pain during weight-bearing dorsiflexion and lateral hop test) recorded at baseline and at 4 weeks post injury were investigated for their prognostic ability. Recovery was determined from measures of subjective ankle function at short (4 weeks) and medium term (4 months) follow ups. Multivariate stepwise linear regression analyses were undertaken to evaluate the association between the aforementioned variables and functional recovery. Greater age, greater injury grade and weight-bearing status at baseline were associated with lower function at 4 weeks post injury (p<0.01; adjusted R square=0.34). Greater age, weight-bearing status at baseline and non-inversion injury mechanisms were associated with lower function at 4 months (p<0.01; adjusted R square=0.20). Pain on medial palpation and pain on dorsiflexion at 4 weeks were the most valuable prognostic indicators of function at 4 months (p< 0.01; adjusted R square=0.49). The results of the present study provide further evidence that ankle sprains have a variable clinical course. Age, injury grade, mechanism and weight-bearing status at baseline provide some prognostic information for short and medium term recovery. Clinical assessment variables at 4 weeks were the strongest predictors of recovery, explaining 50% of the variance in ankle function at 4 months. Further prospective research is required to highlight the factors that best inform the expected convalescent period, and risk of recurrence.
GABAergic drug use and global, cognitive, and motor functional outcomes after stroke.
Schwitzguébel, A J-P; Benaïm, C; Carda, S; Torea Filgueira, A M; Frischknecht, R; Rapin, P-A
2016-12-01
In animal models and healthy volunteers, the use of GABA A receptor agonists (GABA-AGs) seem deleterious for functional recovery. The agents are widely used for subacute stroke, but their effect on functional recovery remains unclear. We aimed to evaluate the association between GABA-AG use and functional recovery after stroke. We retrospectively recruited 434 survivors of subacute stroke admitted for inpatient rehabilitation between 2000 and 2013 in our institution (107 with and 327 without GABA-AG use). We used multivariate regression to assess the association of GABA-AG use and successful functional recovery, defined as reaching, between admission and discharge, the minimal clinically important difference (MCID) of 22 points on the global Functional Independence Measure (FIM). Secondary analyses were the associations of GABA-AG with cognitive and motor FIM MCID and constant GABA-AG exposure (24h/24 GABA-AG) with global, cognitive and motor FIM MCID. A new estimation of the MCID was performed with the standard error of measurement. Reaching the global FIM MCID was associated with GABA-AG use (adjusted odds ratio [aOR] 0.54 [95% CI 0.31-0.91], P=0.02) as well as 24h/24 GABA-AG use (aOR 0.25 [0.08-0.83]; P=0.02). Furthermore, GABA-AG and 24h/24 GABA-AG use was inversely but not always significantly associated with reaching the cognitive FIM MCID (aOR 0.56, P=0.07; aOR 0.26, P=0.06, respectively) and motor FIM MCID (aOR 0.51, P=0.07; aOR 0.13, P=0.01, respectively). The estimated MCID was 19 for global FIM, 4 for cognitive FIM, and 16 for motor FIM. GABA-AG use is associated with not reaching successful functional recovery during stroke rehabilitation. Randomised trials are needed to formally establish the potential deleterious effect of GABA-AG use on functional recovery. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Organism-Sediment Interactions Govern Post-Hypoxia Recovery of Ecosystem Functioning
Van Colen, Carl; Rossi, Francesca; Montserrat, Francesc; Andersson, Maria G. I.; Gribsholt, Britta; Herman, Peter M. J.; Degraer, Steven; Vincx, Magda; Ysebaert, Tom; Middelburg, Jack J.
2012-01-01
Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning. PMID:23185440
Community dynamics and ecosystem simplification in a high-CO2 ocean.
Kroeker, Kristy J; Gambi, Maria Cristina; Micheli, Fiorenza
2013-07-30
Disturbances are natural features of ecosystems that promote variability in the community and ultimately maintain diversity. Although it is recognized that global change will affect environmental disturbance regimes, our understanding of the community dynamics governing ecosystem recovery and the maintenance of functional diversity in future scenarios is very limited. Here, we use one of the few ecosystems naturally exposed to future scenarios of environmental change to examine disturbance and recovery dynamics. We examine the recovery patterns of marine species from a physical disturbance across different acidification regimes caused by volcanic CO2 vents. Plots of shallow rocky reef were cleared of all species in areas of ambient, low, and extreme low pH that correspond to near-future and extreme scenarios for ocean acidification. Our results illustrate how acidification decreases the variability of communities, resulting in homogenization and reduced functional diversity at a landscape scale. Whereas the recovery trajectories in ambient pH were highly variable and resulted in a diverse range of assemblages, recovery was more predictable with acidification and consistently resulted in very similar algal-dominated assemblages. Furthermore, low pH zones had fewer signs of biological disturbance (primarily sea urchin grazing) and increased recovery rates of the dominant taxa (primarily fleshy algae). Together, our results highlight how environmental change can cause ecosystem simplification via environmentally mediated changes in community dynamics in the near future, with cascading impacts on functional diversity and ecosystem function.
Lee, S; Ueno, M; Yamashita, T
2011-01-01
Remodeling of the remnant neuronal network after brain injury possibly mediates spontaneous functional recovery; however, the mechanisms inducing axonal remodeling during spontaneous recovery remain unclear. Here, we show that altered γ-aminobutyric acid (GABA) signaling is crucial for axonal remodeling of the contralesional cortex after traumatic brain injury. After injury to the sensorimotor cortex in mice, we found a significant decrease in the expression of GABAAR-α1 subunits in the intact sensorimotor cortex for 2 weeks. Motor functions, assessed by grid walk and cylinder tests, spontaneously improved in 4 weeks after the injury to the sensorimotor cortex. With motor recovery, corticospinal tract (CST) axons from the contralesional cortex sprouted into the denervated side of the cervical spinal cord at 2 and 4 weeks after the injury. To determine the functional implications of the changes in the expression of GABAAR-α1 subunits, we infused muscimol, a GABA R agonist, into the contralesional cortex for a week after the injury. Compared with the vehicle-treated mice, we noted significantly inhibited recovery in the muscimol-treated mice. Further, muscimol infusion greatly suppressed the axonal sprouting into the denervated side of the cervical spinal cord. In conclusion, recovery of motor function and axonal remodeling of the CST following cortical injury requires suppressed GABAAR subunit expression and decreased GABAergic signaling. PMID:21412279
2012-06-06
Different recovery profiles of coagulation factors, thrombin generation, and coagulation function after hemorrhagic shock in pigs Wenjun Z. Martini ...Defense. Address for reprints: Wenjun Z. Martini , PhD, The US Army Institute of Surgical Research, 3698 Chambers Pass, Ft. Sam Houston, San Antonio, TX...control number 1. REPORT DATE 01 SEP 2015 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Different recovery profiles of
Kuiper, Jisca S; Oude Voshaar, Richard C; Zuidema, Sytse U; Stolk, Ronald P; Zuidersma, Marij; Smidt, Nynke
2017-10-01
Poor social functioning is associated with cognitive decline in older adults. It is unclear whether social functioning is also associated with subjective memory complaints (SMC). We investigated the association between social functioning and incident SMC and SMC recovery. A population-based sample of 8762 older adults (aged ≥65 years) with good objective cognitive functioning at baseline (MMSE ≥26) from the LifeLines Cohort Study were followed for 1.5 years. Self-reported SMC were measured at baseline and after 1.5 years follow-up. Aspects of social functioning included marital status, household composition, social network size, social activity, quality of social relationships, social support, affection, behavioral confirmation, and status. Thirteen percent (513/3963) developed SMC during follow-up (incident SMC). Multivariate logistic regression analyses (adjusted for age, gender, education level, physical activity, alcohol use, smoking status, depression, arrhythmia, myocardial infarction, heart failure, stroke) showed that participants with better feelings of affection, behavioral confirmation and stable good social support had a lower risk of incident SMC. Thirty-four percent (1632/4799) reported recovery. Participants with good social functioning at baseline on all determinants reported more SMC recovery. People who remained stable in a relationship, stable in good quality of social relationships or increased in quality of social relationships more often report SMC recovery. Good social functioning is associated with less incident SMC and more SMC recovery over a follow-up period of 1.5 years. Albeit future confirmative studies are needed, we argue for targeting also social functioning when designing multidomain interventions to prevent or slow down cognitive decline. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Stimulus electrodiagnosis and motor and functional evaluations during ulnar nerve recovery
Fernandes, Luciane F. R. M.; Oliveira, Nuno M. L.; Pelet, Danyelle C. S.; Cunha, Agnes F. S.; Grecco, Marco A. S.; Souza, Luciane A. P. S.
2016-01-01
BACKGROUND: Distal ulnar nerve injury leads to impairment of hand function due to motor and sensorial changes. Stimulus electrodiagnosis (SE) is a method of assessing and monitoring the development of this type of injury. OBJECTIVE: To identify the most sensitive electrodiagnostic parameters to evaluate ulnar nerve recovery and to correlate these parameters (Rheobase, Chronaxie, and Accommodation) with motor function evaluations. METHOD: A prospective cohort study of ten patients submitted to ulnar neurorrhaphy and evaluated using electrodiagnosis and motor assessment at two moments of neural recovery. A functional evaluation using the DASH questionnaire (Disability of the Arm, Shoulder, and Hand) was conducted at the end to establish the functional status of the upper limb. RESULTS: There was significant reduction only in the Chronaxie values in relation to time of injury and side (with and without lesion), as well as significant correlation of Chronaxie with the motor domain score. CONCLUSION: Chronaxie was the most sensitive SE parameter for detecting differences in neuromuscular responses during the ulnar nerve recovery process and it was the only parameter correlated with the motor assessment. PMID:26786072
Effect of chewing gum on the postoperative recovery of gastrointestinal function
Ge, Wei; Chen, Gang; Ding, Yi-Tao
2015-01-01
Postoperative gastrointestinal dysfunction remains a source of morbidity and the major determinant of length of stay after abdominal operation. There are many different reasons for postoperative gastrointestinal dysfunction such as stress response, perioperative interventions, bowel manipulation and so on. The mechanism of enhanced recovery from postoperative gastrointestinal dysfunction with the help of chewing gum is believed to be the cephalic-vagal stimulation of digestion which increases the promotability of neural and humoral factors that act on different parts of the gastrointestinal tract. Recently, there were a series of randomized controlled trials to confirm the role of chewing gum in the recovery of gastrointestinal function. The results suggested that chewing gum enhanced early recovery of bowel function following abdominal surgery expect the gastrointestinal surgery. However, the effect of chewing gum in gastrointestinal surgery was controversial. PMID:26550107
Wu, Xuehai; Zou, Qihong; Hu, Jin; Tang, Weijun; Mao, Ying; Gao, Liang; Zhu, Jianhong; Jin, Yi; Wu, Xin; Lu, Lu; Zhang, Yaojun; Zhang, Yao; Dai, Zhengjia; Gao, Jia-Hong; Weng, Xuchu; Northoff, Georg; Giacino, Joseph T.; He, Yong
2015-01-01
For accurate diagnosis and prognostic prediction of acquired brain injury (ABI), it is crucial to understand the neurobiological mechanisms underlying loss of consciousness. However, there is no consensus on which regions and networks act as biomarkers for consciousness level and recovery outcome in ABI. Using resting-state fMRI, we assessed intrinsic functional connectivity strength (FCS) of whole-brain networks in a large sample of 99 ABI patients with varying degrees of consciousness loss (including fully preserved consciousness state, minimally conscious state, unresponsive wakefulness syndrome/vegetative state, and coma) and 34 healthy control subjects. Consciousness level was evaluated using the Glasgow Coma Scale and Coma Recovery Scale-Revised on the day of fMRI scanning; recovery outcome was assessed using the Glasgow Outcome Scale 3 months after the fMRI scanning. One-way ANOVA of FCS, Spearman correlation analyses between FCS and the consciousness level and recovery outcome, and FCS-based multivariate pattern analysis were performed. We found decreased FCS with loss of consciousness primarily distributed in the posterior cingulate cortex/precuneus (PCC/PCU), medial prefrontal cortex, and lateral parietal cortex. The FCS values of these regions were significantly correlated with consciousness level and recovery outcome. Multivariate support vector machine discrimination analysis revealed that the FCS patterns predicted whether patients with unresponsive wakefulness syndrome/vegetative state and coma would regain consciousness with an accuracy of 81.25%, and the most discriminative region was the PCC/PCU. These findings suggest that intrinsic functional connectivity patterns of the human posteromedial cortex could serve as a potential indicator for consciousness level and recovery outcome in individuals with ABI. SIGNIFICANCE STATEMENT Varying degrees of consciousness loss and recovery are commonly observed in acquired brain injury patients, yet the underlying neurobiological mechanisms remain elusive. Using a large sample of patients with varying degrees of consciousness loss, we demonstrate that intrinsic functional connectivity strength in many brain regions, especially in the posterior cingulate cortex and precuneus, significantly correlated with consciousness level and recovery outcome. We further demonstrate that the functional connectivity pattern of these regions can predict patients with unresponsive wakefulness syndrome/vegetative state and coma would regain consciousness with an accuracy of 81.25%. Our study thus provides potentially important biomarkers of acquired brain injury in clinical diagnosis, prediction of recovery outcome, and decision making for treatment strategies for patients with severe loss of consciousness. PMID:26377477
Lee, J; Park, E; Lee, A; Chang, W H; Kim, D-S; Kim, Y-H
2017-10-01
Brain connectivity analysis has been widely used to investigate brain plasticity and recovery-related indicators of patients with stroke. However, results remain controversial because of interindividual variability of initial impairment and subsequent recovery of function. In this study, we aimed to investigate the differences in network plasticity and motor recovery-related indicators according to initial severity. We divided participants (16 males and 14 females, aged 54.2 ± 12.0 years) into groups of different severity by Fugl-Mayer Assessment score, i.e. moderate (50-84), severe (20-49) and extremely severe (<20) impairment groups. Longitudinal resting-state functional magnetic resonance imaging data were acquired at 2 weeks and 3 months after onset. The differences in network plasticity and recovery-related indicators between groups were investigated using network distance and graph measurements. As the level of impairment increased, the network balance was more disrupted. Network balance, interhemispheric connectivity and network efficiency were recovered at 3 months only in the moderate impairment group. However, this was not the case in the extremely severe impairment group. A single connection strength between the ipsilesional primary motor cortex and ventral premotor cortex was implicated in the recovery of motor function for the extremely severe impairment group. The connections of the ipsilesional primary motor cortex-ventral premotor cortex were positively associated with motor recovery as the patients were more severely impaired. Differences in plasticity and recovery-related indicators of motor networks were noted according to impairment severity. Our results may suggest meaningful implications for recovery prediction and treatment strategies in future stroke research. © 2017 EAN.
Thermal In-Pouch Microwave Sterilization
2011-06-30
dynamic range, ’ precision, ■ accuracy, ’ recovery (function of the amount of yogurt added to vial), ■ specificity (TOO Page-24 Quarterly...8217 accuracy, ■ recovery (function of the amount of yogurt added to vial). specificity (TOO Page-24 Quarterly Report For the Period Ending 30 June
Ochi, Kentaro; Ohashi, Toru; Watanabe, Shoji
2003-02-01
The incidence of inferior vestibular nerve disorders in patients suffering from unilateral vestibular neuritis and the recovery of these disorders were evaluated by monitoring the vestibular-evoked myogenic potential (VEMP). Eight patients ranged from 21 to 73 years that suffered from unilateral vestibular neuritis underwent VEMP and caloric testing. Abnormal VEMP was observed in two of the eight patients with unilateral vestibular neuritis. Two patients were diagnosed as having an inferior vestibular nerve disorder. One of these patients showed recovery of the inferior vestibular nerve function as assessed by the VEMP. Disorders of the inferior vestibular nerve function and their recovery was confirmed by our current results. The time course of recoveries of the superior and inferior vestibular nerve systems were similar in the two patients.
Jeanneret, Valerie; Yepes, Manuel
2016-01-01
Advances in neurocritical care and interventional neuroradiology have led to a significant decrease in acute ischemic stroke (AIS) mortality. In contrast, due to the lack of an effective therapeutic strategy to promote neuronal recovery among AIS survivors, cerebral ischemia is still a leading cause of disability in the world. Ischemic stroke has a harmful impact on synaptic structure and function, and plasticity-mediated synaptic recovery is associated with neurological improvement following an AIS. Dendritic spines (DSs) are specialized dendritic protrusions that receive most of the excitatory input in the brain. The deleterious effect of cerebral ischemia on DSs morphology and function has been associated with impaired synaptic transmission and neurological deterioration. However, these changes are reversible if cerebral blood flow is restored on time, and this recovery has been associated with neurological improvement following an AIS. Tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) are two serine proteases that besides catalyzing the conversion of plasminogen into plasmin in the intravascular and pericellular environment, respectively, are also are efficient inductors of synaptic plasticity. Accordingly, recent evidence indicates that both, tPA and uPA, protect DSs from the metabolic stress associated with the ischemic injury, and promote their morphological and functional recovery during the recovery phase from an AIS. Here we will review data indicating that plasticity-induced changes in DSs and the associated post-synaptic density play a pivotal role in the recovery process from AIS, making special emphasis on the role of tPA and uPA in this process. PMID:26846991
Long-term recovery of normal sexual function in testicular cancer survivors.
Capogrosso, Paolo; Boeri, Luca; Ferrari, Matteo; Ventimiglia, Eugenio; La Croce, Giovanni; Capitanio, Umberto; Briganti, Alberto; Damiano, Rocco; Montorsi, Francesco; Salonia, Andrea
2016-01-01
Testicular cancer (TC) is the most common solid cancer in men between the third and fourth decade of life. Due to successful treatment approaches, TC survivors (TCSs) have long life expectancy, but with numerous potential long-term sequelae, including sexual dysfunction. We investigated predictors of long-term normal sexual function (SF) recovery in TCSs. Sociodemographic, medical, and psychometric data were analyzed in 143 Caucasian-European TCSs, who underwent orchiectomy at a single institution. Health-significant comorbidities were scored with the Charlson Comorbidity Index (CCI). Patients completed the International Index of Erectile Function (IIEF). Statistical models tested the association between predictors (including age at surgery, body mass index, CCI, and adjuvant therapy: radiotherapy [RT], chemotherapy [CT], CT followed by retroperitoneal lymph node dissection [RPLND] and RPLND alone) and the long-term recovery of normal SF (defined as IIEF-erectile function [EF] ≥26, and sexual desire [SD], intercourse satisfaction [IS] orgasmic function [OF], and overall satisfaction [OS] domain scores in the upper tertiles). At a mean follow-up of 86 months, 35 (25.5%) TCSs had erectile dysfunction (ED), with 16 (11.2%) experiencing severe ED. Median time of EF recovery was 60, 60, and 70 months after CT, RT, and RPLND, respectively. Only adjuvant RT emerged as an independent predictor of nonrecovery of normal EF (HR: 0.55, P= 0.01). Neither adjuvant CT nor CT plus RPLND or RPLND alone significantly impaired the recovery of normal erections. Adjuvant therapy was not associated with impaired recovery of normal sexuality as a whole, considering the IIEF-SD, -OF, -IS, and OS domains.
Morgan, Wayne J; Wagener, Jeffrey S; Pasta, David J; Millar, Stefanie J; VanDevanter, Donald R; Konstan, Michael W
2017-06-01
Children with cystic fibrosis often experience acute declines in lung function. We previously showed that such declines are not always treated with antibiotics, but we did not assess whether treatment improves the likelihood of recovery. To determine whether new antibiotic treatment was associated with recovery from acute FEV 1 decline. We studied episodes of FEV 1 decline (≥10% from baseline) in the Epidemiologic Study of Cystic Fibrosis. Treatments were hospitalization, home intravenous antibiotic, new inhaled oral quinolone, or other oral antibiotic. We used logistic regression to evaluate whether treatment was associated with recovery to baseline or near baseline. Logistic regression of 9,875 patients showed that new antibiotic treatment was associated with an increased likelihood of recovery to 90% of baseline (P < 0.001), especially for hospitalization compared with no new antibiotic (odds ratio [OR], 2.79; 95% confidence interval, 2.41-3.23). All four outpatient treatments were associated with greater likelihood of recovery compared with no treatment (OR, 1.27-1.64). Inpatient treatment was better than outpatient treatment (OR, 1.94; 95% confidence interval, 1.68-2.23). Treatment-type ORs were similar across recovery criteria and levels of baseline lung function. New antibiotic therapy, and especially inpatient treatment, is associated with greater likelihood of recovery after acute decline in FEV 1 . Benefits extend across all disease stages and are especially important in patients with high lung function, who are at greatest risk for FEV 1 decline.
Au, Ngan Pan Bennett; Kumar, Gajendra; Asthana, Pallavi; Tin, Chung; Mak, Yim Ling; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie
2016-05-27
Ciguatera fish poisoning (CFP) results from consumption of tropical reef fish containing ciguatoxins (CTXs). Pacific (P)-CTX-1 is among the most potent known CTXs and the predominant source of CFP in the endemic region responsible for the majority of neurological symptoms in patients. Chronic and persistent neurological symptoms occur in some CFP patients, which often result in incomplete functional recovery for years. However, the direct effects of exposure to CTXs remain largely unknown. In present study, we exposed mice to CTX purified from ciguatera fish sourced from the Pacific region. P-CTX-1 was detected in peripheral nerves within hours and persisted for two months after exposure. P-CTX-1 inhibited axonal regrowth from axotomized peripheral neurons in culture. P-CTX-1 exposure reduced motor function in mice within the first two weeks of exposure before returning to baseline levels. These pre-exposed animals exhibited delayed sensory and motor functional recovery, and irreversible motor deficits after peripheral nerve injury in which formation of functional synapses was impaired. These findings are consistent with reduced muscle function, as assessed by electromyography recordings. Our study provides strong evidence that the persistence of P-CTX-1 in peripheral nerves reduces the intrinsic growth capacity of peripheral neurons, resulting in delayed functional recovery after injury.
Tubular Recovery after Acute Kidney Injury.
Fattah, Hadi; Vallon, Volker
2018-05-31
A significant portion of patients who are affected by acute kidney injury (AKI) do not fully recover due to largely unclear reasons. Restoration of tubular function has been proposed to be a prerequisite for glomerular filtration rate (GFR) recovery. Proximal tubular cells dedifferentiate during the tubular injury phase, which is required for subsequent cell proliferation and replacement of lost epithelial cells. Experimental studies indicate that some cells fail to redifferentiate and continue to produce growth factors (e.g., transforming growth factor β) that can induce fibrosis. Preclinical studies provide first evidence for beneficial effects of inhibiting glucose transport in the proximal tubule in models of ischemia-reperfusion injury. Comparing renal RNA sequencing data with kidney function during recovery from varying levels of AKI may provide new cues with regard to the sequence of events and help identify key determinants of recovery from AKI. Key Messages: Tubular recovery after AKI is vital for recovery of kidney function including improvement of GFR, and likely determines which patients fully recover from AKI or progress to chronic kidney disease. There is a need to better understand the sequence of events and the processes of tubular cell proliferation and repair, including safe strategies to intervene. The temporary inhibition of selected tubular transport processes, possibly in selected nephron regions, may provide an opportunity to improve tubular cell energetics and facilitate tubular cell recovery with consequences for kidney outcome. © 2018 S. Karger AG, Basel.
Minett, Geoffrey M.; Duffield, Rob
2013-01-01
Prolonged intermittent-sprint exercise (i.e., team sports) induce disturbances in skeletal muscle structure and function that are associated with reduced contractile function, a cascade of inflammatory responses, perceptual soreness, and a delayed return to optimal physical performance. In this context, recovery from exercise-induced fatigue is traditionally treated from a peripheral viewpoint, with the regeneration of muscle physiology and other peripheral factors the target of recovery strategies. The direction of this research narrative on post-exercise recovery differs to the increasing emphasis on the complex interaction between both central and peripheral factors regulating exercise intensity during exercise performance. Given the role of the central nervous system (CNS) in motor-unit recruitment during exercise, it too may have an integral role in post-exercise recovery. Indeed, this hypothesis is indirectly supported by an apparent disconnect in time-course changes in physiological and biochemical markers resultant from exercise and the ensuing recovery of exercise performance. Equally, improvements in perceptual recovery, even withstanding the physiological state of recovery, may interact with both feed-forward/feed-back mechanisms to influence subsequent efforts. Considering the research interest afforded to recovery methodologies designed to hasten the return of homeostasis within the muscle, the limited focus on contributors to post-exercise recovery from CNS origins is somewhat surprising. Based on this context, the current review aims to outline the potential contributions of the brain to performance recovery after strenuous exercise. PMID:24550837
Andrew, Emily; Mercier, Eric; Nehme, Ziad; Bernard, Stephen; Smith, Karen
2018-05-01
Understanding the prognosis of elderly out-of-hospital cardiac arrest (OHCA) patients is vital to informing resuscitation and advanced care planning decisions. However, short-term outcomes such as survival to hospital discharge do not account for post-arrest quality of life. We describe the 12-month functional recovery and health-related quality of life (HR-QOL) of elderly OHCA survivors, including those arresting in aged care facilities. We conducted a retrospective analysis of Victorian Ambulance Cardiac Arrest Registry data for all OHCA survivors to hospital discharge aged ≥65 years between 1 January 2010 and 30 June 2016. The influence of age on functional recovery and independent living was assessed using multivariable logistic regression. During the study period, 20,103 elderly OHCAs were attended, 9016 (44.9%) of whom received a resuscitation attempt. In total, 876 (9.7%) patients survived to hospital discharge and 777 were alive 12 months post-arrest. Of these, 651 participated in 12-month follow-up (response rate 83.8%). Most (60.6%) resided at home without additional care and 66.6% reported a good functional recovery, however both measures decreased with increasing age (p < 0.001). Mental HR-QOL increased with increasing age and was significantly better than the age- and sex-matched Australian population. Each 10-year increase in age was associated with a 40.8% (95%CI 25.6-53.0%) reduction in the odds of good functional recovery, and a 65.8% (95%CI 55.8-73.5%) reduction in the odds of living independently. Of the 2575 OHCAs in an aged care facility, 2.2% survived to hospital discharge, however no patient reported a good 12-month functional recovery. Most elderly OHCA survivors resided independently with good functionality 12 months post-arrest. However, increasing age was associated with less favourable outcomes. New strategies are needed with regard to resuscitation in aged care facilities. Copyright © 2018 Elsevier B.V. All rights reserved.
Plasticity of language-related brain function during recovery from stroke.
Thulborn, K R; Carpenter, P A; Just, M A
1999-04-01
This study was undertaken to correlate functional recovery from aphasia after acute stroke with the temporal evolution of the anatomic, physiological, and functional changes as measured by MRI. Blood oxygenation level-dependent contrast and echo-planar MRI were used to map language comprehension in 6 normal adults and in 2 adult patients during recovery from acute stroke presenting with aphasia. Perfusion, diffusion, sodium, and conventional anatomic MRI were used to follow physiological and structural changes. The normal activation pattern for language comprehension showed activation predominately in left-sided Wernicke's and Broca's areas, with laterality ratios of 0.8 and 0.3, respectively. Recovery of the patient confirmed as having a completed stroke affecting Broca's area occurred rapidly with a shift of activation to the homologous region in the right hemisphere within 3 days, with continued rightward lateralization over 6 months. In the second patient, in whom mapping was performed fortuitously before stroke, recovery of a Wernicke's aphasia showed a similar increasing rightward shift in activation recruitment over 9 months after the event. Recovery of aphasia in adults can occur rapidly and is concomitant with an activation pattern that changes from left to a homologous right hemispheric pattern. Such recovery occurs even when the stroke evolves to completion. Such plasticity must be considered when evaluating stroke interventions based on behavioral and neurological measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Lei; Liu, Yi; Zhao, Hua
Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediatedmore » transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a promising strategy for peripheral nerve repair.« less
Jin, Xiao-Fei; Wang, Shan; Shen, Min; Wen, Xin; Han, Xin-Rui; Wu, Jun-Chang; Tang, Gao-Zhuo; Wu, Dong-Mei; Lu, Jun; Zheng, Yuan-Lin
2017-09-01
This study was designed in order to investigate the effects between rehabilitation training on the apoptosis of nerve cells and the recovery of neural and motor functions of rats with ischemic stroke by way of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) and nuclear factor E2-related factor 2/antioxidant responsive element (Nrf2/ARE) signaling pathways. In total, 110 healthy adult male Sprague-Dawley (SD) rats were selected in order to take part in this study. Ninety SD rats were used in order to establish the middle cerebral artery occlusion (MCAO), among which 80 rats were randomly assigned as part of the natural recovery, natural recovery+Rp-PI3K (the rats injected with PI3K/Akt inhibitor LY294002), rehabilitation training, and rehabilitation training+Rp-PI3K groups. Meanwhile, 20 rats were selected as part of the sham operation group. The neural and motor functions of these rats were evaluated using a balance beam test and the Bederson score. The mRNA expressions of PI3K, Akt, Nrf2 and HO-1 were measured using an RT-qPCR. The protein expressions of PI3K, p-PI3K, Akt, p-Akt, Nrf2 and HO-1 were also detected by using western blotting and the immunohistochemistry process. The cell cycle and cell apoptosis were detected by using a flow cytometry and TUNEL assay. The sham operation group exhibited lower neural and motor function scores than other groups. At the 7, 14, and 21 d marks of this study, the neural and motor function scores were increased in the natural recovery, natural recovery+Rp-PI3K, and rehabilitation training+Rp-PI3K groups in comparison with the rehabilitation training group but found to be decreased in the natural recovery group in comparison with the natural recovery+Rp-PI3K group. In comparison with the sham operation group, expressions of PI3K, Nrf2 and HO-1, and proportions of p-PI3K/PI3K and p-Akt/Akt were all higher in the natural recovery, rehabilitation training, and rehabilitation training+Rp-PI3K groups. Same trends were found in the rehabilitation training group in comparison with the natural recovery and rehabilitation training+Rp-PI3K groups, as well as in the natural recovery group in comparison with the natural recovery+Rp-PI3K group. In comparison with the sham operation and rehabilitation training groups, hippocampal nerve cells at G1 phase and the cells apoptosis were both elevated in the other three groups which were found to be decreased in the natural recovery group in comparison with the natural recovery+Rp-PI3K group. Our results indicated that the rehabilitation training can inhibit the apoptosis of nerve cells as well as promote the recovery of both neural Rehabilitation training in rats with IS. Copyright © 2017 Elsevier Inc. All rights reserved.
Logic design for dynamic and interactive recovery.
NASA Technical Reports Server (NTRS)
Carter, W. C.; Jessep, D. C.; Wadia, A. B.; Schneider, P. R.; Bouricius, W. G.
1971-01-01
Recovery in a fault-tolerant computer means the continuation of system operation with data integrity after an error occurs. This paper delineates two parallel concepts embodied in the hardware and software functions required for recovery; detection, diagnosis, and reconfiguration for hardware, data integrity, checkpointing, and restart for the software. The hardware relies on the recovery variable set, checking circuits, and diagnostics, and the software relies on the recovery information set, audit, and reconstruct routines, to characterize the system state and assist in recovery when required. Of particular utility is a handware unit, the recovery control unit, which serves as an interface between error detection and software recovery programs in the supervisor and provides dynamic interactive recovery.
Lee, Myung Mo; Cho, Hwi-Young; Song, Chang Ho
2012-08-01
The purpose of this study was to evaluate the effects of the mirror therapy program on upper-limb motor recovery and motor function in patients with acute stroke. Twenty-six patients who had an acute stroke within 6 mos of study commencement were assigned to the experimental group (n = 13) or the control group (n = 13). Both experimental and control group members participated in a standard rehabilitation program, but only the experimental group members additionally participated in mirror therapy program, for 25 mins twice a day, five times a week, for 4 wks. The Fugl-Meyer Assessment, Brunnstrom motor recovery stage, and Manual Function Test were used to assess changes in upper-limb motor recovery and motor function after intervention. In upper-limb motor recovery, the scores of Fugl-Meyer Assessment (by shoulder/elbow/forearm items, 9.54 vs. 4.61; wrist items, 2.76 vs. 1.07; hand items, 4.43 vs. 1.46, respectively) and Brunnstrom stages for upper limb and hand (by 1.77 vs. 0.69 and 1.92 vs. 0.50, respectively) were improved more in the experimental group than in the control group (P < 0.05). In upper-limb motor function, the Manual Function Test score (by shoulder item, 5.00 vs. 2.23; hand item, 5.07 vs. 0.46, respectively) was significantly increased in the experimental group compared with the control group (P < 0.01). No significant differences were found between the groups for the coordination items in Fugl-Meyer Assessment. This study confirms that mirror therapy program is an effective intervention for upper-limb motor recovery and motor function improvement in acute stroke patients. Additional research on mirror therapy program components, intensity, application time, and duration could result in it being used as a standardized form of hand rehabilitation in clinics and homes.
Recovery: what does this mean to patients with low back pain?
Hush, Julia M; Refshauge, Kathryn; Sullivan, Gerard; De Souza, Lorraine; Maher, Christopher G; McAuley, James H
2009-01-15
To explore patients' perceptions of recovery from low back pain, about which little is known. A qualitative study was conducted in which 36 participants, either recovered or unrecovered from low back pain, participated in focus groups. Interviews were audiorecorded and transcribed verbatim. Framework analysis was used to identify emergent themes and domains of recovery. Patients' views of recovery encompassed a range of factors that can be broadly classified into the domains of symptom attenuation, improved capacity to perform a broad scope of self-defined functional activities, and achievement of an acceptable quality of life. An interactive model is proposed to describe the relationships between these domains, cognitive appraisal of the pain experience, and self-rated recovery. Pain attenuation alone was not a reliable indicator of recovery. The construct of recovery for typical back pain patients seeking primary care is more complex than previously recognized and is a highly individual construct, determined by appraisal of the impact of symptoms on daily functional activities as well as quality of life factors. These findings will be valuable for reassessing how to optimize measures of recovery from low back pain by addressing the spectrum of factors patients consider meaningful.
Social Relationships, Gender, and Recovery From Mobility Limitation Among Older Americans
Clarke, Philippa J.; Pavela, Greg
2015-01-01
Objectives. Evidence suggests social relationships may be important facilitators for recovery from functional impairment, but the extant literature is limited in its measurement of social relationships including an over emphasis on filial social support and a paucity of nationally representative data. Methods. Using data from Waves 4–9 (1998–2008) of the Health and Retirement Study (HRS), this research examines the association between social relationships and recovery from severe mobility limitation (i.e., difficulty walking one block or across the room) among older Americans. Using a more nuanced measure of recovery that includes complete and partial recovery, a series of discrete-time event history models with multiple competing recovery outcomes were estimated using multinomial logistic regression. Results. Providing instrumental support to peers increased the odds of complete and partial recovery from severe mobility limitation, net of numerous social, and health factors. Having relatives living nearby decreased the odds of complete recovery, while being engaged in one’s neighborhood increased the odds of partial recovery. The influence of partner status on partial and complete recovery varied by gender, whereby partnered men were more likely to experience recovery relative to partnered women. The effect of neighborhood engagement on partial recovery also varied by gender. Disengaged women were the least likely to experience partial recovery compared with any other group. Discussion. The rehabilitative potential of social relationships has important policy implications. Interventions aimed at encouraging older adults with mobility limitation to be engaged in their neighborhoods and/or provide instrumental support to peers may improve functional health outcomes. PMID:25583597
Chang, Chun-Ju; Lin, Na-Ling; Lee, Mel S; Chern, Jen-Suh
2015-01-01
To understand the progression of recovery in postural stability and physical functioning after patients received the minimally invasive total hip arthroplasty (MTHA), we monitor the pain level, functional capacity, and postural stability before and after operation within one year. In total of 23 subjects in our study, we found out that MTHA was effective in relieving pain in first 2 weeks and restoring the hip joint integrity, but the postural stability was influenced especially in tandem stand in both anterior-posterior and medial-lateral directions. The recovery of postural stability and functional capacity in one year duration fluctuated and no consistent improvement tendency was found. We suggested clinicians designing postsurgery rehabilitation program for consistent and progressive long-term recovery of postural stability and fall prevention to optimize surgical results and prevent undesired postoperative consequences.
Research Area 3: Mathematical Sciences: 3.4, Discrete Mathematics and Computer Science
2015-06-10
013-0043-1 Charles Chui, Hrushikesh Mhaskar. MRA contextual-recovery extension of smooth functions on manifolds, Applied and Computational Harmonic...753507. International Society for Optics and Photonics, 2010. [5] C. K. Chui and H. N. Mhaskar. MRA contextual-recovery extension of smooth functions on
Goldberg, Joseph F; Ng-Mak, Daisy; Siu, Cynthia; Chuang, Chien-Chia; Rajagopalan, Krithika; Loebel, Antony
2017-04-01
This post-hoc analysis assessed rates of symptomatic and functional remission, as well as recovery (combination of symptomatic and functional remission), in patients treated with lurasidone for major depressive disorder (MDD) associated with subthreshold hypomanic symptoms (mixed features). Patients with MDD plus two or three manic symptoms (defined as per the DSM-5 mixed-features specifier) were randomly assigned to flexible-dose lurasidone 20-60 mg/day (n=109) or placebo (n=100) for 6 weeks, followed by a 3-month open-label, flexible-dose extension study for U.S. sites only (n=48). Cross-sectional recovery was defined as the presence of both symptomatic remission (Montgomery-Åsberg Depression Rating Scale score ≤ 12) and functional remission (all Sheehan Disability Scale [SDS] domain scores ≤3) at week 6, and at both months 1 and 3 of the extension study ("sustained recovery"). A significantly higher proportion of lurasidone-treated patients (31.3%) achieved recovery (assessed cross-sectionally) compared to placebo (12.2%, p=0.002) at week 6. The number of manic symptoms at baseline moderated the effect size for attaining cross-sectional recovery for lurasidone treatment (vs. placebo) (p=0.028). Sustained recovery rates were higher in patients initially treated with lurasidone (20.8%) versus placebo (12.5%). In this post-hoc analysis of a placebo-controlled study with open-label extension that involved patients with MDD and mixed features, lurasidone was found to significantly improve the rate of recovery at 6 weeks (vs. placebo) that was sustained at month 3 of the extension study. The presence of two (as opposed to three) manic symptoms moderated recovery at the acute study endpoint.
Improving functional outcomes with recreational therapy.
Sorensen, B; Luken, K
1999-01-01
If you suddenly were incapacitated, wouldn't you expect your health care team to use interventions that were cost-effective, relevant to your recovery goals, and conducive to improved functional outcomes? Recreational therapy (RT), also known as therapeutic recreation, is a value-added treatment mode that contributes to improved functioning, independence, and recovery. This article provides information about RT, its accessibility, and its benefits.
Wieraszko, Andrzej
2008-01-01
Abstract The objective of the study was to determine whether physical exercise combined with epidural spinal cord magnetic stimulation could improve recovery after injury of the spinal cord. Spinal cord lesioning in mice resulted in reduced locomotor function and negatively affected the muscle strength tested in vitro. Acrobatic exercise attenuated the behavioral effects of spinal cord injury. The exposure to magnetic fields facilitated further this improvement. The progress in behavioral recovery was correlated with reduced muscle degeneration and enhanced muscle contraction. The acrobatic exercise combined with stimulation with magnetic fields significantly facilitates behavioral recovery and muscle physiology in mice following spinal cord injury. PMID:18986227
Brown, AK; Woller, SA; Moreno, G; Grau, JW; Hook, MA
2011-01-01
Study design This was designed as an experimental study. Objectives Locomotor training is one of the most effective strategies currently available for facilitating recovery of function after an incomplete spinal cord injury (SCI). However, there is still controversy regarding the timing of treatment initiation for maximal recovery benefits. To address this issue, the present study compares the effects of exercise initiated in the acute and secondary phase of SCI. Setting Texas A&M University, College Station, TX, USA. Methods Rats received a moderate spinal contusion injury and began an exercise program 1 (D1-EX) or 8 days (D8-EX) later. They were individually placed into transparent exercise balls for 60 min per day, for 14 consecutive days. Control rats were placed in exercise balls that were rendered immobile. Motor and sensory recovery was assessed for 28 days after injury. Results The D1-EX rats recovered significantly more locomotor function (BBB scale) than controls and D8-EX rats. Moreover, analyses revealed that rats in the D8-EX group had significantly lower tactile reactivity thresholds compared with control and D1-EX rats, and symptoms of allodynia were not reversed by exercise. Rats in the D8-EX group also had significantly larger areas of damage across spinal sections caudal to the injury center compared with the D1-EX group. Conclusion These results indicate that implementing an exercise regimen in the acute phase of SCI maximizes the potential for recovery of function. PMID:21242998
Comani, Silvia; Schinaia, Lorenzo; Tamburro, Gabriella; Velluto, Lucia; Sorbi, Sandro; Conforto, Silvia; Guarnieri, Biancamaria
2015-01-01
One post-stroke patient underwent neuro-motor rehabilitation of one upper limb with a novel system combining a passive robotic device, Virtual Reality training applications and high resolution electroencephalography (HR-EEG). The outcome of the clinical tests and the evaluation of the kinematic parameters recorded with the robotic device concurred to highlight an improved motor recovery of the impaired limb despite the age of the patient, his compromised motor function, and the start of rehabilitation at the 3rd week post stroke. The time frequency and functional source analysis of the HR-EEG signals permitted to quantify the functional changes occurring in the brain in association with the rehabilitation motor tasks, and to highlight the recovery of the neuro-motor function.
Dose-Response Effects of Exercise Duration and Recovery on Cognitive Functioning.
Crush, Elizabeth A; Loprinzi, Paul D
2017-12-01
We examined the effects of different acute exercise durations and recovery periods on cognitive function in a counterbalanced, cross-over randomized controlled experiment. We placed 352 participants, aged 18 to 35 years into one of 16 experimental groups. Each participant visited the laboratory twice, separated by a 1-week washout period. Either Visit 1 or 2 consisted of an acute bout of moderate-intensity treadmill exercise (10, 20, 30, 45, or 60 minutes) followed by a period of rest (5, 15, or 30 minutes) before taking a set of five cognitive tests; the other visit consisted only of completing the cognitive tests (no exercise). Cognitive tests sampled multiple cognitive parameters, including reasoning, concentration, memory, attention, and planning. We found that a short recovery period (i.e., 5 minutes) may have a less favorable effect on planning ability but may be beneficial for memory. In addition, for various exercise durations and recovery periods, a Group × Time × Resting (nonexercise) A cognitive interaction effect was observed such that for both memory and inhibitory cognitive ability, acute exercise (vs. no exercise) had an enhancement effect for those with lower resting cognitive functioning. The length of the acute exercise recovery period and resting cognitive ability most influenced the association between exercise and cognitive function.
Brown, Daniel K; Barton, Jo L; Gladwell, Valerie F
2013-06-04
A randomized crossover study explored whether viewing different scenes prior to a stressor altered autonomic function during the recovery from the stressor. The two scenes were (a) nature (composed of trees, grass, fields) or (b) built (composed of man-made, urban scenes lacking natural characteristics) environments. Autonomic function was assessed using noninvasive techniques of heart rate variability; in particular, time domain analyses evaluated parasympathetic activity, using root-mean-square of successive differences (RMSSD). During stress, secondary cardiovascular markers (heart rate, systolic and diastolic blood pressure) showed significant increases from baseline which did not differ between the two viewing conditions. Parasympathetic activity, however, was significantly higher in recovery following the stressor in the viewing scenes of nature condition compared to viewing scenes depicting built environments (RMSSD; 50.0 ± 31.3 vs 34.8 ± 14.8 ms). Thus, viewing nature scenes prior to a stressor alters autonomic activity in the recovery period. The secondary aim was to examine autonomic function during viewing of the two scenes. Standard deviation of R-R intervals (SDRR), as change from baseline, during the first 5 min of viewing nature scenes was greater than during built scenes. Overall, this suggests that nature can elicit improvements in the recovery process following a stressor.
2013-01-01
A randomized crossover study explored whether viewing different scenes prior to a stressor altered autonomic function during the recovery from the stressor. The two scenes were (a) nature (composed of trees, grass, fields) or (b) built (composed of man-made, urban scenes lacking natural characteristics) environments. Autonomic function was assessed using noninvasive techniques of heart rate variability; in particular, time domain analyses evaluated parasympathetic activity, using root-mean-square of successive differences (RMSSD). During stress, secondary cardiovascular markers (heart rate, systolic and diastolic blood pressure) showed significant increases from baseline which did not differ between the two viewing conditions. Parasympathetic activity, however, was significantly higher in recovery following the stressor in the viewing scenes of nature condition compared to viewing scenes depicting built environments (RMSSD; 50.0 ± 31.3 vs 34.8 ± 14.8 ms). Thus, viewing nature scenes prior to a stressor alters autonomic activity in the recovery period. The secondary aim was to examine autonomic function during viewing of the two scenes. Standard deviation of R-R intervals (SDRR), as change from baseline, during the first 5 min of viewing nature scenes was greater than during built scenes. Overall, this suggests that nature can elicit improvements in the recovery process following a stressor. PMID:23590163
Motoneuron regeneration accuracy and recovery of gait after femoral nerve injuries in rats.
Kruspe, M; Thieme, H; Guntinas-Lichius, O; Irintchev, A
2014-11-07
The rat femoral nerve is a valuable model allowing studies on specificity of motor axon regeneration. Despite common use of this model, the functional consequences of femoral nerve lesions and their relationship to precision of axonal regeneration have not been evaluated. Here we assessed gait recovery after femoral nerve injuries of varying severity in adult female Wistar rats using a video-based approach, single-frame motion analysis (SFMA). After nerve crush, recovery was complete at 4 weeks after injury (99% of maximum 100% as estimated by a recovery index). Functional restoration after nerve section/suture was much slower and incomplete (84%) even 20 weeks post-surgery. A 5-mm gap between the distal and proximal nerve stumps additionally delayed recovery and worsened the outcome (68% recovery). As assessed by retrograde labeling in the same rats at 20 weeks after injury, the anatomical outcome was also dependent on lesion severity. After nerve crush, 97% of the femoral motoneurons (MNs) had axons correctly projecting only into the distal quadriceps branch of the femoral nerve. The percentage of correctly projecting MNs was only 55% and 15% after nerve suture and gap repair, respectively. As indicated by regression analyses, better functional recovery was associated with higher numbers of correctly projecting MNs and, unexpectedly, lower numbers of MNs projecting to both muscle and skin. The data show that type of nerve injury and repair profoundly influence selectivity of motor reinnervation and, in parallel, functional outcome. The results also suggest that MNs' projection patterns may influence their contribution to muscle performance. In addition to the experiments described above, we performed repeated measurements and statistical analyses to validate the SFMA. The results revealed high accuracy and reproducibility of the SFMA measurements. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Bardone-Cone, Anna M.; Harney, Megan B.; Maldonado, Christine R.; Lawson, Melissa A.; Robinson, D. Paul; Smith, Roma; Tosh, Aneesh
2009-01-01
Conceptually, eating disorder recovery should include physical, behavioral, and psychological components, but such a comprehensive approach has not been consistently employed. Guided by theory and recent recovery research, we identified a “fully recovered” group (n=20) based on physical (body mass index), behavioral (absence of eating disorder behaviors), and psychological (Eating Disorder Examination-Questionnaire) indices, and compared them with groups of partially recovered (n=15), active eating disorder (n=53), and healthy controls (n=67). The fully recovered group was indistinguishable from controls on all eating disorder-related measures used, while the partially recovered group was less disordered than the active eating disorder group on some measures, but not on body image. Regarding psychosocial functioning, both the fully and partially recovered groups had psychosocial functioning similar to the controls, but there was a pattern of more of the partially recovered group reporting eating disorder aspects interfering with functioning. Regarding other psychopathology, the fully recovered group was no more likely than the controls to experience current Axis I pathology, but they did have elevated rates of current anxiety disorder. Results suggest that a stringent definition of recovery from an eating disorder is meaningful. Clinical implications and future directions regarding defining eating disorder recovery are discussed. PMID:19945094
Traumatic superior orbital fissure syndrome: assessment of cranial nerve recovery in 33 cases.
Chen, Chien-Tzung; Wang, Theresa Y; Tsay, Pei-Kwei; Huang, Faye; Lai, Jui-Pin; Chen, Yu-Ray
2010-07-01
Superior orbital fissure syndrome is a rare complication that occurs in association with craniofacial trauma. The characteristics of superior orbital fissure syndrome are attributable to a constellation of cranial nerve III, IV, and VI palsies. This is the largest series describing traumatic superior orbital fissure syndrome that assesses the recovery of individual cranial nerve function after treatment. In a review from 1988 to 2002, 33 patients with superior orbital fissure syndrome were identified from 11,284 patients (0.3 percent) with skull and facial fractures. Severity of cranial nerve injury and functional recovery were evaluated by extraocular muscle movement. Patients were evaluated on average 6 days after initial injury, and average follow-up was 11.8 months. There were 23 male patients. The average age was 31 years. The major mechanism of injury was motorcycle accident (67 percent). Twenty-two received conservative treatment, five were treated with steroids, and six patients underwent surgical decompression of the superior orbital fissure. After initial injury, cranial nerve VI suffered the most damage, whereas cranial nerve IV sustained the least. In the first 3 months, recovery was greatest in cranial nerve VI. At 9 months, function was lowest in cranial nerve VI and highest in cranial nerve IV. Eight patients (24 percent) had complete recovery of all cranial nerves. Functional recovery of all cranial nerves reached a plateau at 6 months after trauma. Cranial nerve IV suffered the least injury, whereas cranial nerve VI experienced the most neurologic deficits. Cranial nerve palsies improved to their final recovery endpoints by 6 months. Surgical decompression is considered when there is evidence of bony compression of the superior orbital fissure.
Abrahamsen, Jenny Foss; Haugland, Cathrine; Ranhoff, Anette Hylen
2016-01-01
The objective of the present study was to investigate 1) the role of different admission diagnoses and 2) the degree of functional loss, on the rate of recovery of older patients after acute hospitalization. Furthermore, to compare the predictive value of simple assessments that can be carried out in a hospital lacking geriatric service, with assessments including geriatric screening tests. Prospective, observational cohort study, including 961community dwelling patients aged ≥ 70 years, transferred from medical, cardiac, pulmonary and orthopedic acute hospital departments to intermediate care in nursing home. Functional assessment with Barthel index (BI) was performed at admission to the nursing home and further geriatric assessment tests was performed during the first week. Logistic regression models with and without geriatric assessment were compared concerning the patients having 1) slow recovery (nursing home stay up to 2 months before return home) or, 2) poor recovery (dead or still in nursing home at 2 months). Slow recovery was independently associated with a diagnosis of non-vertebral fracture, BI subgroups 50-79 and <50, and, in the model including geriatric assessment, also with cognitive impairment. Poor recovery was more complex, and independently associated both with BI < 50, receiving home care before admission, higher age, admission with a non-vertebral fracture, and in the geriatric assessment model, cognitive impairment. Geriatric assessment is optimal for determining the recovery potential of older patients after acute hospitalization. As some hospitals lack geriatric services and ability to perform geriatric screening tests, a simpler assessment based on admission diagnoses and ADL function (BI), gives good information regarding the possible rehabilitation time and possibility to return home.
E2F4 Promotes Neuronal Regeneration and Functional Recovery after Spinal Cord Injury in Zebrafish
Sasagawa, Shota; Nishimura, Yuhei; Hayakawa, Yuka; Murakami, Soichiro; Ashikawa, Yoshifumi; Yuge, Mizuki; Okabe, Shiko; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio
2016-01-01
Mammals exhibit poor recovery after spinal cord injury (SCI), whereas non-mammalian vertebrates exhibit significant spontaneous recovery after SCI. The mechanisms underlying this difference have not been fully elucidated; therefore, the purpose of this study was to investigate these mechanisms. Using comparative transcriptome analysis, we demonstrated that genes related to cell cycle were significantly enriched in the genes specifically dysregulated in zebrafish SCI. Most of the cell cycle-related genes dysregulated in zebrafish SCI were down-regulated, possibly through activation of e2f4. Using a larval zebrafish model of SCI, we demonstrated that the recovery of locomotive function and neuronal regeneration after SCI were significantly inhibited in zebrafish treated with an E2F4 inhibitor. These results suggest that activation of e2f4 after SCI may be responsible, at least in part, for the significant recovery in zebrafish. This provides novel insight into the lack of recovery after SCI in mammals and informs potential therapeutic strategies. PMID:27242526
White matter changes linked to visual recovery after nerve decompression
Paul, David A.; Gaffin-Cahn, Elon; Hintz, Eric B.; Adeclat, Giscard J.; Zhu, Tong; Williams, Zoë R.; Vates, G. Edward; Mahon, Bradford Z.
2015-01-01
The relationship between the integrity of white matter tracts and cortical function in the human brain remains poorly understood. Here we use a model of reversible white matter injury, compression of the optic chiasm by tumors of the pituitary gland, to study the structural and functional changes that attend spontaneous recovery of cortical function and visual abilities after surgical tumor removal and subsequent decompression of the nerves. We show that compression of the optic chiasm leads to demyelination of the optic tracts, which reverses as quickly as 4 weeks after nerve decompression. Furthermore, variability across patients in the severity of demyelination in the optic tracts predicts visual ability and functional activity in early cortical visual areas, and pre-operative measurements of myelination in the optic tracts predicts the magnitude of visual recovery after surgery. These data indicate that rapid regeneration of myelin in the human brain is a significant component of the normalization of cortical activity, and ultimately the recovery of sensory and cognitive function, after nerve decompression. More generally, our findings demonstrate the utility of diffusion tensor imaging as an in vivo measure of myelination in the human brain. PMID:25504884
Fossati, Nicola; Di Trapani, Ettore; Gandaglia, Giorgio; Dell'Oglio, Paolo; Umari, Paolo; Buffi, Nicolò Maria; Guazzoni, Giorgio; Mottrie, Alexander; Gaboardi, Franco; Montorsi, Francesco; Briganti, Alberto; Suardi, Nazareno
2017-09-01
To test the impact of surgeon experience on urinary continence (UC) recovery after robot-assisted radical prostatectomy (RARP). The study included 1477 consecutive patients treated with RARP by four surgeons between 2006 and 2014. UC recovery was defined as being completely dry over a 24-hour period at follow-up. Surgeon experience was coded as the total number of RARP performed by the surgeon before the patient's operation. Multivariable analysis tested the association between surgeon experience and UC recovery. Covariates consisted of patient age, Charlson comorbidity index, preoperative International Index of Erectile Function-Erectile Function domain (IIEF-EF), nerve-sparing surgery (none vs unilateral vs bilateral), and preoperative risk groups (low- vs intermediate- vs high risk). The number of cases performed by each surgeon was 541, 413, 411, and 112, respectively. Median follow-up was 24 months (inter-quartile range: 18, 40). The UC recovery rate at 1 year after surgery was 82%. At multivariable analyses, surgeon experience represented an independent predictor of UC recovery (hazard ratio: 1.02, p < 0.001). The surgical learning curve was similar among surgeons, moving linearly from ∼60% of UC rate at the initial cases to almost 90% after more than 400 procedures. In patients undergoing RARP, surgeon experience is a significant predictor of UC recovery. The surgical learning curve of UC recovery does not reach a plateau even after more than 100 cases, suggesting a continuous improvement of the surgical technique. These findings deserve attention for patient counseling and future comparative studies evaluating functional outcomes after RARP.
A General Approach to the Geostationary Transfer Orbit Mission Recovery
NASA Technical Reports Server (NTRS)
Faber, Nicolas; Aresini, Andrea; Wauthier, Pascal; Francken, Philippe
2007-01-01
This paper discusses recovery scenarios for geosynchronous satellites injected in a non-nominal orbit due to a launcher underperformance. The theory on minimum-fuel orbital transfers is applied to develop an operational tool capable to design a recovery mission. To obtain promising initial guesses for the recovery three complementary techniques are used: p-optimized impulse function contouring, a numerical impulse function minimization and the solutions to the switching equations. The tool evaluates the feasibility of a recovery with the on-board propellant of the spacecraft and performs the complete mission design. This design takes into account for various mission operational constraints such as e.g., the requirement of multiple finite-duration burns, third-body orbital perturbations, spacecraft attitude constraints and ground station visibility. In a final case study, we analyze the consequences of a premature breakdown of an upper rocket stage engine during injection on a geostationary transfer orbit, as well as the possible recovery solution with the satellite on-board propellant.
Shen, Z Q; Xu, J J; Lin, J F
2013-11-01
Functional hypothalamic amenorrhea (FHA) refers to a functional menstrual disorder with various causes and presentations. Recovery of menstrual cyclicity is common in long-term follow-up but the affecting factors remain unknown. To explore factors affecting the menstrual resumption and to evaluate the pituitary response to gonadotropin-releasing hormone (GnRH) in FHA. Thirty cases with FHA were recruited. All subjects were put on continuous 1 mg/day estradiol valerate orally and followed up monthly. Recovery was defined as the occurrence of at least three consecutive regular cycles. Responder referred to those who recovered within two years of therapy. Gonadotropin response to the 50 μg GnRH challenge was tested every three months. Nineteen (63.3%) subjects recovered with a mean time to recovery of 26.8 months. Time to recovery was negatively correlated with body mass index (BMI) before and by amenorrhea. Twentyone cases had undertaken therapy for more than two years and 10 of them recovered. BMI before and by amenorrhea were negatively correlated with the recovery. Significant increase of serum luteinizing hormone (LH) and LH response to GnRH were noted after recovery. Menstrual resumption was common in FHA undertaking estrogen replacement therapy (ERT). The likelihood of recovery was affected by their BMI before and by amenorrhea but not by the weight gain during therapy. Low serum LH and attenuated LH response to GnRH were the main features of pituitary deficiency in FHA. The menstrual resumption in FHA was accompanied by the recovery of serum LH and the LH response to GnRH.
Loss of c-Kit function impairs arteriogenesis in a mouse model of hindlimb ischemia.
Hernandez, Diana R; Artiles, Adriana; Duque, Juan C; Martinez, Laisel; Pinto, Mariana T; Webster, Keith A; Velazquez, Omaida C; Vazquez-Padron, Roberto I; Lassance-Soares, Roberta M
2018-04-01
Arteriogenesis is a process whereby collateral vessels remodel usually in response to increased blood flow and/or wall stress. Remodeling of collaterals can function as a natural bypass to alleviate ischemia during arterial occlusion. Here we used a genetic approach to investigate possible roles of tyrosine receptor c-Kit in arteriogenesis. Mutant mice with loss of c-Kit function (Kit W/W-v ), and controls were subjected to hindlimb ischemia. Blood flow recovery was evaluated pre-, post-, and weekly after ischemia. Foot ischemic damage and function were assessed between days 1 to 14 post-ischemia while collaterals remodeling were measured 28 days post-ischemia. Both groups of mice also were subjected to wild type bone marrow cells transplantation 3 weeks before hindlimb ischemia to evaluate possible contributions of defective bone marrow c-Kit expression on vascular recovery. Kit W/W-v mice displayed impaired blood flow recovery, greater ischemic damage and foot dysfunction after ischemia compared to controls. Kit W/W-v mice also demonstrated impaired collateral remodeling consistent with flow recovery findings. Because arteriogenesis is a biological process that involves bone marrow-derived cells, we investigated which source of c-Kit signaling (bone marrow or vascular) plays a major role in arteriogenesis. Kit W/W-v mice transplanted with bone marrow wild type cells exhibited similar phenotype of impaired blood flow recovery, greater tissue ischemic damage and foot dysfunction as nontransplanted Kit W/W-v mice. This study provides evidence that c-Kit signaling is required during arteriogenesis. Also, it strongly suggests a vascular role for c-Kit signaling because rescue of systemic c-Kit activity by bone marrow transplantation did not augment the functional recovery of Kit W/W-v mouse hindlimbs. Copyright © 2017 Elsevier Inc. All rights reserved.
Shim, Woo H; Suh, Ji-Yeon; Kim, Jeong K; Jeong, Jaeseung; Kim, Young R
2016-01-01
Neurological recovery after stroke has been extensively investigated to provide better understanding of neurobiological mechanism, therapy, and patient management. Recent advances in neuroimaging techniques, particularly functional MRI (fMRI), have widely contributed to unravel the relationship between the altered neural function and stroke-affected brain areas. As results of previous investigations, the plastic reorganization and/or gradual restoration of the hemodynamic fMRI responses to neural stimuli have been suggested as relevant mechanisms underlying the stroke recovery process. However, divergent study results and modality-dependent outcomes have clouded the proper interpretation of variable fMRI signals. Here, we performed both evoked and resting state fMRI (rs-fMRI) to clarify the link between the fMRI phenotypes and post-stroke functional recovery. The experiments were designed to examine the altered neural activity within the contra-lesional hemisphere and other undamaged brain regions using rat models with large unilateral stroke, which despite the severe injury, exhibited nearly full recovery at ∼6 months after stroke. Surprisingly, both blood oxygenation level-dependent and blood volume-weighted (CBVw) fMRI activities elicited by electrical stimulation of the stroke-affected forelimb were completely absent, failing to reveal the neural origin of the behavioral recovery. In contrast, the functional connectivity maps showed highly robust rs-fMRI activity concentrated in the contra-lesional ventromedial nucleus of thalamus (VM). The negative finding in the stimuli-induced fMRI study using the popular rat middle cerebral artery model denotes weak association between the fMRI hemodynamic responses and neurological improvement. The results strongly caution the indiscreet interpretation of stroke-affected fMRI signals and demonstrate rs-fMRI as a complementary tool for efficiently characterizing stroke recovery.
Optogenetic rewiring of thalamocortical circuits to restore function in the stroke injured brain
Tennant, Kelly A.; Taylor, Stephanie L.; White, Emily R.; Brown, Craig E.
2017-01-01
To regain sensorimotor functions after stroke, surviving neural circuits must reorganize and form new connections. Although the thalamus is critical for processing and relaying sensory information to the cortex, little is known about how stroke affects the structure and function of these connections, or whether a therapeutic approach targeting these circuits can improve recovery. Here we reveal with in vivo calcium imaging that stroke in somatosensory cortex dampens the excitability of surviving thalamocortical circuits. Given this deficit, we hypothesized that chronic transcranial window optogenetic stimulation of thalamocortical axons could facilitate recovery. Using two-photon imaging, we show that optogenetic stimulation promotes the formation of new and stable thalamocortical synaptic boutons, without impacting axon branch dynamics. Stimulation also enhances the recovery of somatosensory cortical circuit function and forepaw sensorimotor abilities. These results demonstrate that an optogenetic approach can rewire thalamocortical circuits and restore function in the damaged brain. PMID:28643802
Fan, Yang-teng; Lin, Keh-chung; Liu, Ho-ling; Chen, Yao-liang; Wu, Ching-yi
2015-01-01
Diffusion tensor imaging (DTI) studies indicate the structural integrity of the ipsilesional corticospinal tract (CST) and the transcallosal motor tract, which are closely linked to stroke recovery. However, the individual contribution of these 2 fibers on different levels of outcomes remains unclear. Here, we used DTI tractography to investigate whether structural changes of the ipsilesional CST and the transcallosal motor tracts associate with motor and functional recovery after stroke rehabilitation. Ten participants with post-acute stroke underwent the Fugl-Meyer Assessment (FMA), the Wolf Motor Function Test (WMFT), the Functional Independence Measure (FIM), and DTI before and after bilateral robotic training. All participants had marked improvements in motor performance, functional use of the affected arm, and independence in daily activities. Increased fractional anisotropy (FA) in the ipsilesional CST and the transcallosal motor tracts was noted from pre-treatment to the end of treatment. Participants with higher pre-to-post differences in FA values of the transcallosal motor tracts had greater gains in the WMFT and the FIM scores. A greater improvement on the FMA was coupled with increased FA changes along the ipsilesional CST. These findings suggest 2 different structural indicators for post-stroke recovery separately at the impairment-based and function-based levels.
Anke, Audny; Andelic, Nada; Skandsen, Toril; Knoph, Rein; Ader, Tiina; Manskow, Unn; Sigurdardottir, Solrun; Røe, Cecilie
2015-01-01
(1) To examine the impact of demographic and acute injury-related variables on functional recovery and life satisfaction after severe traumatic brain injury (sTBI) and (2) to test whether postinjury functioning, postconcussive symptoms, emotional state, and functional improvement are related to life satisfaction. Prospective national multicenter study. Level 1 trauma centers in Norway. 163 adults with sTBI. Functional recovery between 3 and 12 months postinjury measured with Glasgow Outcome Scale Extended, Rivermead Postconcussion Symptoms Questionnaire, Hospital Anxiety and Depression Scale, and satisfaction with life situation. 60% of cases experienced functional improvement from 3 to 12 months postinjury. Multivariate logistic regression analysis revealed that discharge to a rehabilitation department from acute care (odds ratio [OR] = 2.14; P < .05) and fewer days with artificial ventilation (OR = 1.04; P < .05) were significantly related to improvement. At 12 months postinjury, 85% were independent in daily activities. Most participants (63%) were satisfied with their life situation. Regression analysis revealed that older age (>65 years), low education, better functional outcome, and the absence of depressive and postconcussion symptoms were significant (P < .05) predictors of life satisfaction. Functional improvement was significantly associated with emotional state but not to life satisfaction. Following sTBI, approximately two-thirds of survivors improve between 3 and 12 months postinjury and are satisfied with their life. Direct discharge from acute care to specialized rehabilitation appears to increase functional recovery.
Elias, Joëlle; van Dongen, Ivo M; Hoebers, Loes P; Ouweneel, Dagmar M; Claessen, Bimmer E P M; Råmunddal, Truls; Laanmets, Peep; Eriksen, Erlend; van der Schaaf, René J; Ioanes, Dan; Nijveldt, Robin; Tijssen, Jan G; Hirsch, Alexander; Henriques, José P S
2017-07-19
The Evaluating Xience and left ventricular function in PCI on occlusiOns afteR STEMI (EXPLORE) trial did not show a significant benefit of percutaneous coronary intervention (PCI) of the concurrent chronic total occlusion (CTO) in ST-segment elevation myocardial infarction (STEMI) patients on global left ventricular (LV) systolic function. However a possible treatment effect will be most pronounced in the CTO territory. Therefore, we aimed to study the effect of CTO PCI compared to no-CTO PCI on the recovery of regional LV function, particularly in the CTO territory. Using cardiovascular magnetic resonance (CMR) we studied 180 of the 302 EXPLORE patients with serial CMR (baseline and 4 months follow-up). Segmental wall thickening (SWT) was quantified on cine images by an independent core laboratory. Dysfunctional segments were defined as SWT < 45%. Dysfunctional segments were further analyzed by viability (transmural extent of infarction (TEI) ≤50%.). All outcomes were stratified for randomization treatment. In the dysfunctional segments in the CTO territory recovery of SWT was better after CTO PCI compared to no-CTO PCI (ΔSWT 17 ± 27% vs 11 ± 23%, p = 0.03). This recovery was most pronounced in the dysfunctional but viable segments(TEI < 50%) (ΔSWT 17 ± 27% vs 11 ± 22%, p = 0.02). Furthermore in the CTO territory, recovery of SWT was significantly better in the dysfunctional segments in patients with Rentrop grade 2-3 collaterals compared to grade 0-1 collaterals to the CTO (16 ± 26% versus 11 ± 24%, p = 0.04). CTO PCI compared with no-CTO PCI is associated with a greater recovery of regional systolic function in the CTO territory, especially in the dysfunctional but viable segments. Further research is needed to evaluate the use of CMR in selecting post-STEMI patients for CTO PCI and the effect of regional LV function recovery on clinical outcome. Trialregister.nl NTR1108 , Date registered NTR: 30-okt-2007.
Byrne, Nikole J; Levasseur, Jody; Sung, Miranda M; Masson, Grant; Boisvenue, Jamie; Young, Martin E; Dyck, Jason R B
2016-05-15
Impaired cardiac substrate metabolism plays an important role in heart failure (HF) pathogenesis. Since many of these metabolic changes occur at the transcriptional level of metabolic enzymes, it is possible that this loss of metabolic flexibility is permanent and thus contributes to worsening cardiac function and/or prevents the full regression of HF upon treatment. However, despite the importance of cardiac energetics in HF, it remains unclear whether these metabolic changes can be normalized. In the current study, we investigated whether a reversal of an elevated aortic afterload in mice with severe HF would result in the recovery of cardiac function, substrate metabolism, and transcriptional reprogramming as well as determined the temporal relationship of these changes. Male C57Bl/6 mice were subjected to either Sham or transverse aortic constriction (TAC) surgery to induce HF. After HF development, mice with severe HF (% ejection fraction < 30) underwent a second surgery to remove the aortic constriction (debanding, DB). Three weeks following DB, there was a near complete recovery of systolic and diastolic function, and gene expression of several markers for hypertrophy/HF were returned to values observed in healthy controls. Interestingly, pressure-overload-induced left ventricular hypertrophy (LVH) and cardiac substrate metabolism were restored at 1-week post-DB, which preceded functional recovery. The regression of severe HF is associated with early and dramatic improvements in cardiac energy metabolism and LVH normalization that precede restored cardiac function, suggesting that metabolic and structural improvements may be critical determinants for functional recovery. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Ojeda, José M; Kohout, Isolda; Cuestas, Eduardo
2013-01-01
Haemolytic uremic syndrome (HUS) is the most common cause of acute renal failure and the second leading cause of chronic renal failure in children. The factors that affect incomplete renal function recovery prior to hospital admission are poorly understood. To analyse the risk factors that determine incomplete recovery of renal function prior to hospitalisation in children with HUS. A retrospective case-control study. age, sex, duration of diarrhoea, bloody stools, vomiting, fever, dehydration, previous use of antibiotics, and incomplete recovery of renal function (proteinuria, hypertension, reduced creatinine clearance, and chronic renal failure during follow-up). Patients of both sexes under 15 years of age were included. Of 36 patients, 23 were males (65.3%; 95%CI: 45.8 to 80.9), with an average age of 2.5 ± 1.4 years. Twenty-one patients required dialysis (58%; 95% CI: 40.8 to 75.8), and 13 (36.1%; 95% CI: 19.0 to 53.1) did not recover renal function. In the bivariate model, the only significant risk factor was dehydration (defined as weight loss >5%) [(OR: 5.3; 95% CI: 1.4 to 12.3; P=.0220]. In the multivariate analysis (Cox multiple regression), only dehydration was marginally significant (HR: 95.823; 95% CI: 93.175 to 109.948; P=.085). Our data suggest that dehydration prior to admission may be a factor that increases the risk of incomplete recovery of renal function during long-term follow-up in children who develop HUS D+. Consequently, in patients with diarrhoea who are at risk of HUS, dehydration should be strongly avoided during outpatient care to preserve long-term renal function. These results must be confirmed by larger prospective studies.
Yan, Liwei; Yao, Zhi; Lin, Tao; Zhu, Qingtang; Qi, Jian; Gu, Liqiang; Fang, Jintao; Zhou, Xiang
2017-01-01
Peripheral nerve injury therapy in the clinic remains less than satisfactory. The gold standard of treatment for long peripheral nerve defects is autologous nerve grafts; however, numerous clinical complications are associated with this treatment. As tissue engineering has developed, tissue-engineered nerve grafts (TENGs) have shown potential applications as alternatives to autologous nerve grafts. To verify the important role of the biomimetic pathway of fascicle design in TENGs, we designed an animal model to study the role of the precise matching of fascicles in the effectiveness of nerve function recovery. 24 Sprague-Dawley rats were divided randomly into three groups (eight/group) that corresponded to 100% fascicle matching (100%FM), 50%FM and 0%FM. We selected Sprague–Dawley rat long-gap (15 mm) sciatic nerve defects. In the 6 weeks after surgery, we found that the 100%FM group showed the most effective functional recovery among the three groups. The 100%FM group showed better functional recovery on the basis of the sciatic functional index than the 50%FM and 0%FM groups. According to histological evaluation, the 100%FM group showed more regenerating nerve fibres. Moreover, in terms of the prevention of muscle atrophy, the 100%FM group showed excellent physiological outcomes. The 100%FM as tissue-engineered scaffolds can enhance nerve regeneration and effective functional recovery after the repair of large nerve defects. The results of this study provide a theoretical basis for future TENG designs including biomimetic fascicle pathways for repairing long nerve defects. PMID:28914740
Rombola, Angela M.; Rousseau, Celeste A.; Mercier, Lynne M.; Fitzpatrick, Garrett M.; Reier, Paul J.; Fuller, David D.; Lane, Michael A.
2015-01-01
Abstract Cervical spinal cord injury (cSCI) disrupts bulbospinal projections to motoneurons controlling the upper limbs, resulting in significant functional impairments. Ongoing clinical and experimental research has revealed several lines of evidence for functional neuroplasticity and recovery of upper extremity function after SCI. The underlying neural substrates, however, have not been thoroughly characterized. The goals of the present study were to map the intraspinal motor circuitry associated with a defined upper extremity muscle, and evaluate chronic changes in the distribution of this circuit following incomplete cSCI. Injured animals received a high cervical (C2) lateral hemisection (Hx), which compromises supraspinal input to ipsilateral spinal motoneurons controlling the upper extremities (forelimb) in the adult rat. A battery of behavioral tests was used to characterize the time course and extent of forelimb motor recovery over a 16 week period post-injury. A retrograde transneuronal tracer – pseudorabies virus – was used to define the motor and pre-motor circuitry controlling the extensor carpi radialis longus (ECRL) muscle in spinal intact and injured animals. In the spinal intact rat, labeling was observed unilaterally within the ECRL motoneuron pool and within spinal interneurons bilaterally distributed within the dorsal horn and intermediate gray matter. No changes in labeling were observed 16 weeks post-injury, despite a moderate degree of recovery of forelimb motor function. These results suggest that recovery of the forelimb function assessed following C2Hx injury does not involve recruitment of new interneurons into the ipsilateral ECRL motor pathway. However, the functional significance of these existing interneurons to motor recovery requires further exploration. PMID:25625912
A meta-analysis of functional group responses to forest recovery outside of the tropics.
Spake, Rebecca; Ezard, Thomas H G; Martin, Philip A; Newton, Adrian C; Doncaster, C Patrick
2015-12-01
Both active and passive forest restoration schemes are used in degraded landscapes across the world to enhance biodiversity and ecosystem service provision. Restoration is increasingly also being implemented in biodiversity offset schemes as compensation for loss of natural habitat to anthropogenic development. This has raised concerns about the value of replacing old-growth forest with plantations, motivating research on biodiversity recovery as forest stands age. Functional diversity is now advocated as a key metric for restoration success, yet it has received little analytical attention to date. We conducted a meta-analysis of 90 studies that measured differences in species richness for functional groups of fungi, lichens, and beetles between old-growth control and planted or secondary treatment forests in temperate, boreal, and Mediterranean regions. We identified functional-group-specific relationships in the response of species richness to stand age after forest disturbance. Ectomycorrhizal fungi averaged 90 years for recovery to old-growth values (between 45 years and unrecoverable at 95% prediction limits), and epiphytic lichens took 180 years to reach 90% of old-growth values (between 140 years and never for recovery to old-growth values at 95% prediction limits). Non-saproxylic beetle richness, in contrast, decreased as stand age of broadleaved forests increased. The slow recovery by some functional groups essential to ecosystem functioning makes old-growth forest an effectively irreplaceable biodiversity resource that should be exempt from biodiversity offsetting initiatives. © 2015 The Authors Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Meyer, Sarah; Verheyden, Geert; Brinkmann, Nadine; Dejaeger, Eddy; De Weerdt, Willy; Feys, Hilde; Gantenbein, Andreas R; Jenni, Walter; Laenen, Annouschka; Lincoln, Nadina; Putman, Koen; Schuback, Birgit; Schupp, Wilfried; Thijs, Vincent; De Wit, Liesbet
2015-06-01
Recovery of patients within the first 6 months after stroke is well documented, but there has been little research on long-term recovery. The aim of this study was to analyze functional and motor recovery between admission to rehabilitation centres and 5 years after stroke. This follow-up of the Collaborative Evaluation of Rehabilitation in Stroke Across Europe study, included patients from 4 European rehabilitation centres. Patients were assessed on admission, at 2 and 6 months, and 5 years after stroke, using the Barthel Index, Rivermead Motor Assessment Gross Function, Leg and Trunk function, and Arm function. Linear mixed models were used, corrected for baseline characteristics. To account for the drop-out during follow-up, the analysis is likelihood-based (assumption of missingness at random). A total of 532 patients were included in this study, of which 238 were followed up at 5 years post stroke. Mean age at stroke onset was 69 (±10 SD) years, 53% were men, 84% had ischemic strokes, and 53% had left-sided motor impairment. Linear mixed model analysis revealed a significant deterioration for all 4 outcomes between 6 months and 5 years (P<0.0001). Scores at 2 months were not statistically significant different from scores at 5 years after stroke. Higher age (P<0.0001) and increasing stroke severity on admission (P<0.0001) negatively affected long-term functional and motor recovery. Five-year follow-up revealed deterioration in functional and motor outcome, with a return to the level measured at 2 months. Increasing age and increasing stroke severity negatively affected recovery up to 5 years after stroke. © 2015 American Heart Association, Inc.
Remsik, Alexander; Young, Brittany; Vermilyea, Rebecca; Kiekoefer, Laura; Abrams, Jessica; Elmore, Samantha Evander; Schultz, Paige; Nair, Veena; Edwards, Dorothy; Williams, Justin; Prabhakaran, Vivek
2016-01-01
Stroke is a leading cause of acquired disability resulting in distal upper extremity functional motor impairment. Stroke mortality rates continue to decline with advances in healthcare and medical technology. This has led to an increased demand for advanced, personalized rehabilitation. Survivors often experience some level of spontaneous recovery shortly after their stroke event; yet reach a functional plateau after which there is exiguous motor recovery. Nevertheless, studies have demonstrated the potential for recovery beyond this plateau. Non-traditional neurorehabilitation techniques, such as those incorporating the brain-computer interface (BCI), are being investigated for rehabilitation. BCIs may offer a gateway to the brain’s plasticity and revolutionize how humans interact with the world. Non-invasive BCIs work by closing the proprioceptive feedback loop with real-time, multi-sensory feedback allowing for volitional modulation of brain signals to assist hand function. BCI technology potentially promotes neuroplasticity and Hebbian-based motor recovery by rewarding cortical activity associated with sensory-motor rhythms through use with a variety of self-guided and assistive modalities. PMID:27112213
ERIC Educational Resources Information Center
Castellanos, Nazareth P.; Paul, Nuria; Ordonez, Victoria E.; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomas; del-Pozo, Francisco; Maestu, Fernando
2010-01-01
Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on…
Piao, Songzhe; Park, Juhyun; Son, Hwancheol; Jeong, Hyeon; Cho, Sung Yong
2016-05-01
To compare the perioperative relative renal function and determine predictors of deterioration and recovery of separate renal function in patients with renal stones >10 mm and who underwent mini-percutaneous nephrolithotomy or retrograde intra-renal surgery. A main stone >10 mm or stones growing, high-risk stone formers and extracorporeal shock-wave lithotripsy-resistant stones were prospectively included in 148 patients. Patients with bilateral renal stones and anatomical deformities were excluded. Renal function was evaluated by estimated glomerular filtration rate, 99m-technetium dimercaptosuccinic acid and 99m-technetium diethylenetriamine pentaacetate prior to intervention and at postoperative 3 months. Logistic regression analyses were performed to find predictors of functional deterioration and recovery. The overall stone-free rate was 85.1 %. A third of patients (53/148, 35.8 %) with renal stones >10 mm showed deterioration of separate renal function. Mean renal function of operative sites showed 58.2 % (36.8 %/63.2 %) of that of contralateral sites in these patients. Abnormal separate renal function showed postoperative recovery in 31 patients (58.5 %). Three cases (5.7 %) showed deterioration of separate renal function despite no presence of remnant stones. Improvement rates of the abnormal separate renal function did not differ according to the type of surgery. The presence of hydronephrosis and three or more stones were significant predictors for renal function deterioration. Female gender and three or more stones were significantly correlated with postoperative recovery. Mini-percutaneous nephrolithotomy or retrograde intra-renal surgery was effective and safe for renal function preservation. Patients with multiple large stones should be considered for candidates of active surgical removal.
Radial nerve palsy in mid/distal humeral fractures: is early exploration effective?
Keighley, Geffrey; Hermans, Deborah; Lawton, Vidya; Duckworth, David
2018-03-01
Radial nerve palsies are a common complication with displaced distal humeral fractures. This case series examines the outcomes of early operative exploration and decompression of the nerve with fracture fixation with the view that this provides a solid construct for optimisation of nerve recovery. A total of 10 consecutive patients with a displaced distal humeral fracture and an acute radial nerve palsy were treated by the senior author by open reduction and internal fixation of the distal humerus and exploration and decompression of the radial nerve. Motor function and sensation of the radial nerve was assessed in the post-operative period every 2 months or until full recovery of the radial nerve function had occurred. All patients (100%) had recovery of motor and sensation function of their upper limb in the radial nerve distribution over a 12-month period. Recovery times ranged between 4 and 32 weeks, with the median time to recovery occurring at 26 weeks and the average time to full recovery being 22.9 weeks. Wrist extension recovered by an average of 3 months (range 2-26 weeks) and then finger extension started to recover 2-6 weeks after this. Disability of the arm, shoulder and hand scores ranged from 0 to 11.8 at greater than 1 year post-operatively. Our study demonstrated that early operative exploration of the radial nerve when performing an open stabilization of displaced distal humeral fractures resulted in a 100% recovery of the radial nerve. © 2017 Royal Australasian College of Surgeons.
Prediction of motor recovery after stroke: advances in biomarkers.
Stinear, Cathy M
2017-10-01
Stroke remains a leading cause of adult disability, and the recovery of motor function after stroke is crucial for the patient to regain independence. However, making accurate predictions of a patient's motor recovery and outcome is difficult when based on clinical assessment alone. Clinical assessment of motor impairment within a few days of stroke can help to predict subsequent recovery, while neurophysiological and neuroimaging biomarkers of corticomotor structure and function can help to predict both motor recovery and motor outcome after stroke. The combination of biomarkers can provide clinically useful information when planning the personalised rehabilitation of a patient. These biomarkers can also be used for patient selection and stratification in trials investigating rehabilitation interventions that are initiated early after stroke. Ongoing multicentre trials that incorporate motor biomarkers could help to bring their use into routine clinical practice. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pareja Sierra, T; Bartolomé Martín, I; Rodríguez Solís, J; Bárcena Goitiandia, L; Torralba González de Suso, M; Morales Sanz, M D; Hornillos Calvo, M
Due to its high prevalence and serious consequences it is very important to be well aware of factors that might be related to medical complications, mortality, hospital stay and functional recovery in elderly patients with hip fracture. A prospective study of a group of 130 patients aged over 75 years admitted for osteoporotic hip fracture. Their medical records, physical and cognitive status prior to the fall, fracture type and surgical treatment, medical complications and functional and social evolution after hospitalization were evaluated. Patients with greater physical disability, more severe cognitive impairment and those who lived in a nursing home before the fracture had worse functional recovery after surgery. Treatment with intravenous iron to reduce transfusions reduced hospital stay and improved walking ability. Infections and heart failure were the most frequent medical complications and were related to a longer hospital stay. The prescription of nutritional supplements for the patients with real indication improved their physical recovery after the hip fracture CONCLUSIONS: Evaluation of physical, cognitive and social status prior to hip fracture should be the basis of an individual treatment plan because of its great prognostic value. Multidisciplinary teams with continuous monitoring of medical problems should prevent and treat complications as soon as possible. Intravenous iron and specific nutritional supplements can improve functional recovery six months after hip fracture. Copyright © 2017 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.
Prediction of recovery of motor function after stroke.
Stinear, Cathy
2010-12-01
Stroke is a leading cause of disability. The ability to live independently after stroke depends largely on the reduction of motor impairment and the recovery of motor function. Accurate prediction of motor recovery assists rehabilitation planning and supports realistic goal setting by clinicians and patients. Initial impairment is negatively related to degree of recovery, but inter-individual variability makes accurate prediction difficult. Neuroimaging and neurophysiological assessments can be used to measure the extent of stroke damage to the motor system and predict subsequent recovery of function, but these techniques are not yet used routinely. The use of motor impairment scores and neuroimaging has been refined by two recent studies in which these investigations were used at multiple time points early after stroke. Voluntary finger extension and shoulder abduction within 5 days of stroke predicted subsequent recovery of upper-limb function. Diffusion-weighted imaging within 7 days detected the effects of stroke on caudal motor pathways and was predictive of lasting motor impairment. Thus, investigations done soon after stroke had good prognostic value. The potential prognostic value of cortical activation and neural plasticity has been explored for the first time by two recent studies. Functional MRI detected a pattern of cortical activation at the acute stage that was related to subsequent reduction in motor impairment. Transcranial magnetic stimulation enabled measurement of neural plasticity in the primary motor cortex, which was related to subsequent disability. These studies open interesting new lines of enquiry. WHERE NEXT?: The accuracy of prediction might be increased by taking into account the motor system's capacity for functional reorganisation in response to therapy, in addition to the extent of stroke-related damage. Improved prognostic accuracy could also be gained by combining simple tests of motor impairment with neuroimaging, genotyping, and neurophysiological assessment of neural plasticity. The development of algorithms to guide the sequential combinations of these assessments could also further increase accuracy, in addition to improving rehabilitation planning and outcomes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Mehrholz, Jan; Mückel, Simone; Oehmichen, Frank; Pohl, Marcus
2014-01-01
Introduction Critical illness myopathy (CIM) and polyneuropathy (CIP) are common complications of critical illness that frequently occur together. Both cause so called intensive care unit (ICU)-acquired muscle weakness. This weakness of limb muscles increases morbidity and delay rehabilitation and recovery of walking ability. Although full recovery has been reported people with severe weakness may take months to improve walking. Focused physical rehabilitation of people with ICU-acquired muscle weakness is therefore of great importance. However, although physical rehabilitation is common, detailed knowledge about the pattern and the time course of recovery of walking function are not well understood. Therefore, the aim of the General Weakness Syndrome Therapy (GymNAST) study is to describe the time course of recovery of walking function and other activities of daily living in these patients. Methods and analysis We conduct a prospective cohort study of people with ICU-acquired muscle weakness with defined diagnosis of CIM or CIP. Based on our sample size calculation, approximately 150 patients will be recruited from the ICU of our hospital in Germany. Amount and content of physical rehabilitation, clinical tests for example, muscle strength and motor function and neuropsychological assessments will be used as independent variables. The primary outcomes will include recovery of walking function and mobility. Secondary outcomes will include global motor function, activities in daily life and participation. Ethics and dissemination The study is being carried out in agreement with the Declaration of Helsinki and conducted with the approval of the local medical Ethics Committee (Landesärztekammer Sachsen, Germany, reference number EK-BR-32/13-1) and with the understanding and written consent of each patient's guardian. The results of this study will be published in peer-reviewed journals and disseminated to the medical society and general public. PMID:25344484
Social Relationships, Gender, and Recovery From Mobility Limitation Among Older Americans.
Latham, Kenzie; Clarke, Philippa J; Pavela, Greg
2015-09-01
Evidence suggests social relationships may be important facilitators for recovery from functional impairment, but the extant literature is limited in its measurement of social relationships including an over emphasis on filial social support and a paucity of nationally representative data. Using data from Waves 4-9 (1998-2008) of the Health and Retirement Study (HRS), this research examines the association between social relationships and recovery from severe mobility limitation (i.e., difficulty walking one block or across the room) among older Americans. Using a more nuanced measure of recovery that includes complete and partial recovery, a series of discrete-time event history models with multiple competing recovery outcomes were estimated using multinomial logistic regression. Providing instrumental support to peers increased the odds of complete and partial recovery from severe mobility limitation, net of numerous social, and health factors. Having relatives living nearby decreased the odds of complete recovery, while being engaged in one's neighborhood increased the odds of partial recovery. The influence of partner status on partial and complete recovery varied by gender, whereby partnered men were more likely to experience recovery relative to partnered women. The effect of neighborhood engagement on partial recovery also varied by gender. Disengaged women were the least likely to experience partial recovery compared with any other group. The rehabilitative potential of social relationships has important policy implications. Interventions aimed at encouraging older adults with mobility limitation to be engaged in their neighborhoods and/or provide instrumental support to peers may improve functional health outcomes. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Locomotor function after long-duration space flight: effects and motor learning during recovery.
Mulavara, Ajitkumar P; Feiveson, Alan H; Fiedler, James; Cohen, Helen; Peters, Brian T; Miller, Chris; Brady, Rachel; Bloomberg, Jacob J
2010-05-01
Astronauts returning from space flight and performing Earth-bound activities must rapidly transition from the microgravity-adapted sensorimotor state to that of Earth's gravity. The goal of the current study was to assess locomotor dysfunction and recovery of function after long-duration space flight using a test of functional mobility. Eighteen International Space Station crewmembers experiencing an average flight duration of 185 days performed the functional mobility test (FMT) pre-flight and post-flight. To perform the FMT, subjects walked at a self selected pace through an obstacle course consisting of several pylons and obstacles set up on a base of 10-cm-thick, medium-density foam for a total of six trials per test session. The primary outcome measure was the time to complete the course (TCC, in seconds). To assess the long-term recovery trend of locomotor function after return from space flight, a multilevel exponential recovery model was fitted to the log-transformed TCC data. All crewmembers exhibited altered locomotor function after space flight, with a median 48% increase in the TCC. From the fitted model we calculated that a typical subject would recover to 95% of his/her pre-flight level at approximately 15 days post-flight. In addition, to assess the early motor learning responses after returning from space flight, we modeled performance over the six trials during the first post-flight session by a similar multilevel exponential relation. We found a significant positive correlation between measures of long-term recovery and early motor learning (P < 0.001) obtained from the respective models. We concluded that two types of recovery processes influence an astronaut's ability to re-adapt to Earth's gravity environment. Early motor learning helps astronauts make rapid modifications in their motor control strategies during the first hours after landing. Further, this early motor learning appears to reinforce the adaptive realignment, facilitating re-adaptation to Earth's 1-g environment on return from space flight.
Mewhort, Holly E M; Turnbull, Jeannine D; Satriano, Alessandro; Chow, Kelvin; Flewitt, Jacqueline A; Andrei, Adin-Cristian; Guzzardi, David G; Svystonyuk, Daniyil A; White, James A; Fedak, Paul W M
2016-05-01
Infarcted myocardium can remodel after successful reperfusion, resulting in left ventricular dilation and heart failure. Epicardial infarct repair (EIR) using a bioinductive extracellular matrix (ECM) biomaterial is a novel surgical approach to promote endogenous myocardial repair and functional recovery after myocardial infarction. Using a pre-clinical porcine model of coronary ischemia-reperfusion, we assessed the effects of EIR on regional functional recovery, safety, and possible mechanisms of benefit. An ECM biomaterial (CorMatrix ECM) was applied to the epicardium after 75 minutes of coronary ischemia in a porcine model. Following ischemia-reperfusion injury, animals were randomly assigned in 2:1 fashion to EIR (n = 8) or sham treatment (n = 4). Serial cardiac magnetic resonance imaging was performed on normal (n = 4) and study animals at baseline (1 week) and 6 weeks after treatment. Myocardial function and tissue characteristics were assessed. Functional myocardial recovery was significantly increased by EIR compared with sham treatment (change in regional myocardial contraction at 6 weeks, 28.6 ± 14.0% vs 4.2 ± 13.5% wall thickening, p < 0.05). Animals receiving EIR had reduced adhesions compared with animals receiving sham treatment (1.44 ± 0.51 vs 3.08 ± 0.89, p < 0.05). Myocardial fibrosis was not increased, and EIR did not cause myocardial constriction, as left ventricular compliance by passive pressure distention at matched volumes was similar between groups (13.9 ± 4.0 mm Hg in EIR group vs 16.0 ± 5.2 mm Hg in sham group, p = 0.61). Animals receiving EIR showed evidence of vasculogenesis in the region of functional recovery. In addition to the beneficial effects of successful reperfusion, EIR using a bioinductive ECM enhances myocardial repair and functional recovery. Clinical translation of EIR early after myocardial infarction as an adjunct to surgical revascularization may be warranted in the future. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Functional recovery is considered the most important target: a survey of dedicated professionals
2014-01-01
Background The aim of this study was to survey the relative importance of postoperative recovery targets and perioperative care items, as perceived by a large group of international dedicated professionals. Methods A questionnaire with eight postoperative recovery targets and 13 perioperative care items was mailed to participants of the first international Enhanced Recovery After Surgery (ERAS) congress and to authors of papers with a clear relevance to ERAS in abdominal surgery. The responders were divided into categories according to profession and region. Results The recovery targets ‘To be completely free of nausea’, ‘To be independently mobile’ and ‘To be able to eat and drink as soon as possible’ received the highest score irrespective of the responder's profession or region of origin. Equally, the care items ‘Optimizing fluid balance’, ‘Preoperative counselling’ and ‘Promoting early and scheduled mobilisation’ received the highest score across all groups. Conclusions Functional recovery, as in tolerance of food without nausea and regained mobility, was considered the most important target of recovery. There was a consistent uniformity in the way international dedicated professionals scored the relative importance of recovery targets and care items. The relative rating of the perioperative care items was not dependent on the strength of evidence supporting the items. PMID:25089195
Wilson, Laura J; Cockburn, Emma; Paice, Katherine; Sinclair, Scott; Faki, Tanwir; Hills, Frank A; Gondek, Marcela B; Wood, Alyssa; Dimitriou, Lygeri
2018-01-01
Cryotherapy is an increasingly popular recovery strategy used in an attempt to attenuate the negative impact of strenuous physical activity on subsequent exercise. Therefore, this study aimed to assess the effects of whole body cryotherapy (WBC) and cold water immersion (CWI) on markers of recovery following a marathon. Thirty-one endurance trained males completed a marathon. Participants were randomly assigned to a CWI, WBC or placebo group. Perceptions of muscle soreness, training stress and markers of muscle function were recorded before the marathon and at 24 and 48 h post exercise. Blood samples were taken at baseline, post intervention and 24 and 48 h post intervention to assess inflammation and muscle damage. WBC had a harmful effect on muscle function compared to CWI post marathon. WBC positively influenced perceptions of training stress compared to CWI. With the exception of C-reactive protein (CRP) at 24 and 48 h, neither cryotherapy intervention positively influenced blood borne markers of inflammation or structural damage compared to placebo. The findings show WBC has a negative impact on muscle function, perceptions of soreness and a number of blood parameters compared to CWI, contradicting the suggestion that WBC may be a superior recovery strategy. Further, cryotherapy is no more effective than a placebo intervention at improving functional recovery or perceptions of training stress following a marathon. These findings lend further evidence to suggest that treatment belief and the placebo effect may be largely responsible for the beneficial effects of cryotherapy on recovery following a marathon.
Recovery from schizophrenia and the recovery model.
Warner, Richard
2009-07-01
The recovery model refers to subjective experiences of optimism, empowerment and interpersonal support, and to a focus on collaborative treatment approaches, finding productive roles for user/consumers, peer support and reducing stigma. The model is influencing service development around the world. This review will assess whether optimism about outcome from serious mental illness and other tenets of the recovery model are borne out by recent research. Remission of symptoms has been precisely defined, but the definition of 'recovery' is a more diffuse concept that includes such factors as being productive and functioning independently. Recent research and a large, earlier body of data suggest that optimism about outcome from schizophrenia is justified. A substantial proportion of people with the illness will recover completely and many more will regain good social functioning. Outcome is better for people in the developing world. Mortality for people with schizophrenia is increasing but is lower in the developing world. Working appears to help people recover from schizophrenia, and recent advances in vocational rehabilitation have been shown to be effective in countries with differing economies and labor markets. A growing body of research supports the concept that empowerment is an important component of the recovery process. Key tenets of the recovery model - optimism about recovery from schizophrenia, the importance of access to employment and the value of empowerment of user/consumers in the recovery process - are supported by the scientific research. Attempts to reduce the internalized stigma of mental illness should enhance the recovery process.
Recovery after third-molar surgery: the effects of age and sex.
Phillips, Ceib; Gelesko, Savannah; Proffit, William R; White, Raymond P
2010-12-01
In this study, we assessed the effects of age and sex on quality-of-life recovery after third-molar surgery. Healthy subjects scheduled for removal of third molars were recruited at multiple sites for this study. Each patient was given a condition-specific instrument to be completed each postsurgery day for 14 days. Lifestyle and oral-function recovery were assessed by using a 5-point Likert-type scale. Recovery was defined as the number of days until the patient reported no or little trouble. Recovery from pain was defined as the number of days until no medications were taken. For each quality-of-life item, a Cox regression analysis was performed to assess the effects of age and sex on recovery after controlling for surgical-procedure variables. Nine hundred fifty-eight subjects treated at 9 academic centers and 12 community practices were enrolled. Except for ability to open the mouth, recovery for all quality-of-life items for those 21 years or older significantly (P < 0.02) lagged behind recovery for younger subjects. Recovery for female subjects was significantly longer than for male subjects for all outcomes (P < 0.01). Patients older than 21 and those who are female should be informed before removal of all 4 third molars that their oral function, lifestyle, and pain recovery will be prolonged compared with those who are younger and male. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
ERIC Educational Resources Information Center
Kelly, Michelle P.; Leader, Geraldine; Reed, Phil
2015-01-01
The current experiment investigated the extent to which three variables (autism severity, nonverbal intellectual functioning, and verbal intellectual functioning) are associated with over-selective responding in a group of children with Autism Spectrum Disorder. This paper also analyzed the association of these three variables with the recovery of…
The 24 hour recovery kinetics from n starvation in Phaeodactylum tricornutum and Emiliania huxleyi.
Zhao, Yan; Wang, You; Quigg, Antonietta
2015-08-01
The response of N (nitrate) starved cells of the diatom Phaeodactylum tricornutum and the coccolithophore Emiliania huxleyi to a pulse of new N were measured to investigate rapid cellular and photosynthetic recovery kinetics. The changes of multiple parameters were followed over 24 h. In P. tricornutum, the recovery of Fv /Fm (the maximum quantum yield of PS II) and σPSII (the functional absorption cross-section for PSII) started within the first hour, much earlier than other parameters. Cellular pigments did not recover during the 24 h but the chlorophyll (chl) a/carotenoid ratios increased to levels measured in the controls. Cell division was independent of the recovery of chl a. In E. huxleyi, the recovery of Fv /Fm and σPSII started after an hour, synchronous with the increase in cellular organic N and chl a with pigments fully recovered within 14 h. P. tricornutum prioritized the recovery of its photosynthetic functions and cell divisions while E. huxleyi did not follow this pattern. We hypothesize that the different recovery strategies between the two species allow P. tricornutum to be more competitive when N pulses are introduced into N-limited water while E. huxleyi is adapted to N scarce waters where such pulses are infrequent. These findings are consistent with successional patterns observed in coastal environments. This is one of only a few studies exploring recovery kinetics of cellular functions and photosynthesis after nitrogen stress in phytoplankton. Our results can be used to enhance ecological models linking phytoplankton traits to species diversity and community structure. © 2015 Phycological Society of America.
Compression socks and functional recovery following marathon running: a randomized controlled trial.
Armstrong, Stuart A; Till, Eloise S; Maloney, Stephen R; Harris, Gregory A
2015-02-01
Compression socks have become a popular recovery aid for distance running athletes. Although some physiological markers have been shown to be influenced by wearing these garments, scant evidence exists on their effects on functional recovery. This research aims to shed light onto whether the wearing of compression socks for 48 hours after marathon running can improve functional recovery, as measured by a timed treadmill test to exhaustion 14 days following marathon running. Athletes (n = 33, age, 38.5 ± 7.2 years) participating in the 2012 Melbourne, 2013 Canberra, or 2013 Gold Coast marathons were recruited and randomized into the compression sock or placebo group. A graded treadmill test to exhaustion was performed 2 weeks before and 2 weeks after each marathon. Time to exhaustion, average and maximum heart rates were recorded. Participants were asked to wear their socks for 48 hours immediately after completion of the marathon. The change in treadmill times (seconds) was recorded for each participant. Thirty-three participants completed the treadmill protocols. In the compression group, average treadmill run to exhaustion time 2 weeks after the marathon increased by 2.6% (52 ± 103 seconds). In the placebo group, run to exhaustion time decreased by 3.4% (-62 ± 130 seconds), P = 0.009. This shows a significant beneficial effect of compression socks on recovery compared with placebo. The wearing of below-knee compression socks for 48 hours after marathon running has been shown to improve functional recovery as measured by a graduated treadmill test to exhaustion 2 weeks after the event.
Fernandez, Bruno; Cardebat, Dominique; Demonet, Jean-François; Joseph, Pierre Alain; Mazaux, Jean-Michel; Barat, Michel; Allard, Michèle
2004-09-01
The goal of this study was to develop a functional MRI (fMRI) paradigm robust and reproducible enough in healthy subjects to be adapted for a follow-up study aiming at evaluating the anatomical substratum of recovery in poststroke aphasia. Ten right-handed subjects were studied longitudinally using fMRI (7 of them being scanned twice) and compared with a patient with conduction aphasia during the first year of stroke recovery. Controls exhibited reproducible activation patterns between subjects and between sessions during language tasks. In contrast, the patient exhibited dynamic changes in brain activation pattern, particularly in the phonological task, during the 2 fMRI sessions. At 1 month after stroke, language homotopic right areas were recruited, whereas large perilesional left involvement occurred later (12 months). We first demonstrate intersubject robustness and intrasubject reproducibility of our paradigm in 10 healthy subjects and thus its validity in a patient follow-up study over a stroke recovery time course. Indeed, results suggest a spatiotemporal poststroke brain reorganization involving both hemispheres during the recovery course, with an early implication of a new contralateral functional neural network and a later implication of an ipsilateral one.
Mechanisms of recovery of visual function in adult amblyopia through a tailored action video game.
Vedamurthy, Indu; Nahum, Mor; Bavelier, Daphne; Levi, Dennis M
2015-02-26
Amblyopia is a deficit in vision that arises from abnormal visual experience early in life. It was long thought to develop into a permanent deficit, unless properly treated before the end of the sensitive period for visual recovery. However, a number of studies now suggest that adults with long-standing amblyopia may at least partially recover visual acuity and stereopsis following perceptual training. Eliminating or reducing interocular suppression has been hypothesized to be at the root of these changes. Here we show that playing a novel dichoptic video game indeed results in reduced suppression, improved visual acuity and, in some cases, improved stereopsis. Our relatively large cohort of adults with amblyopia, allowed us, for the first time, to assess the link between visual function recovery and reduction in suppression. Surprisingly, no significant correlation was found between decreased suppression and improved visual function. This finding challenges the prevailing view and suggests that while dichoptic training improves visual acuity and stereopsis in adult amblyopia, reduced suppression is unlikely to be at the root of visual recovery. These results are discussed in the context of their implication on recovery of amblyopia in adults.
Mechanisms of recovery of visual function in adult amblyopia through a tailored action video game
Vedamurthy, Indu; Nahum, Mor; Bavelier, Daphne; Levi, Dennis M.
2015-01-01
Amblyopia is a deficit in vision that arises from abnormal visual experience early in life. It was long thought to develop into a permanent deficit, unless properly treated before the end of the sensitive period for visual recovery. However, a number of studies now suggest that adults with long-standing amblyopia may at least partially recover visual acuity and stereopsis following perceptual training. Eliminating or reducing interocular suppression has been hypothesized to be at the root of these changes. Here we show that playing a novel dichoptic video game indeed results in reduced suppression, improved visual acuity and, in some cases, improved stereopsis. Our relatively large cohort of adults with amblyopia, allowed us, for the first time, to assess the link between visual function recovery and reduction in suppression. Surprisingly, no significant correlation was found between decreased suppression and improved visual function. This finding challenges the prevailing view and suggests that while dichoptic training improves visual acuity and stereopsis in adult amblyopia, reduced suppression is unlikely to be at the root of visual recovery. These results are discussed in the context of their implication on recovery of amblyopia in adults. PMID:25719537
Loebel, Antony; Siu, Cynthia; Rajagopalan, Krithika; Pikalov, Andrei; Cucchiaro, Josephine; Ketter, Terence A
2015-11-01
In this post-hoc analysis, rates of remission and recovery were evaluated in patients with bipolar depression treated with lurasidone. Outpatients meeting DSM-IV-TR criteria for bipolar I depression, were randomized to 6 weeks of once-daily, double-blind treatment with lurasidone 20-60mg, lurasidone 80-120mg or placebo, followed by a 6-month, open-label, flexible-dose, lurasidone continuation study. Recovery was defined as meeting criteria for combined symptomatic remission (Montgomery-Asberg Depression Rating Scale total score ≤12) and functional remission (all Sheehan Disability Scale domain scores ≤3) sustained for at least 3 months in the 6-month continuation study. A significantly higher proportion of lurasidone-treated patients met criteria for combined symptomatic remission and functional remission (33.3%, 91/273) compared to the placebo group (21.0%, 30/143, p<0.05, NNT=9) at the 6-week study endpoint. In the 6-month continuation study, the proportion of lurasidone-treated patients achieving sustained recovery was 60.7% (85/140) and 44.9% (31/69), for patients who continued lurasidone treatment and who switched from placebo to lurasidone, respectively. The definition of recovery used has not been previously validated and the analysis was post hoc. Lack of a control group in the continuation study limits data interpretation. Recovery in patients with bipolar depression was assessed based on rates of combined symptomatic and functional remission sustained over time. A majority of patients initially treated with lurasidone in the acute phase achieved recovery status in the continuation study. Treatment with lurasidone (vs. placebo) earlier in the course of the bipolar depressive episode increased the likelihood of subsequent recovery. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Pleiotrophin promotes functional recovery after neural transplantation in rats.
Hida, Hideki; Masuda, Tadashi; Sato, Toyohiro; Kim, Tae-Sun; Misumi, Sachiyo; Nishino, Hitoo
2007-01-22
Pleiotrophin promotes survival of dopaminergic neurons in vitro. To investigate whether pleiotrophin promotes survival of grafted dopaminergic neurons in vivo, donor cells from ventral mesencephalon were treated with pleiotrophin (100 ng/ml) during cell preparation and grafted into striatum of hemi-Parkinson model rats. Functional recovery in methamphetamine-induced rotations was improved, and more tyrosine hydroxylase-positive cells survived in the striatum in the pleiotrophin-treated group. Pleiotrophin addition to cells just before transplantation also resulted in better functional recovery; however, no caspase-3 activation was seen during cell preparation. Interestingly, the effect of pleiotrophin on the survival was additive to that of glial-cell line-derived neutropic factor. These results revealed that pleiotrophin had effects on donor cells in neural transplantation in vivo.
ERIC Educational Resources Information Center
Tseng, Ming-Yueh; Shyu, Yea-Ing L.; Liang, Jersey
2012-01-01
Purpose To assess the effects of an interdisciplinary intervention on the trajectories of functional recovery among older patients with hip fracture during 2 years after hospitalization. Design and Methods In a randomized controlled trial with 24-month follow-up, 162 patients [greater than or equal to]60 years were enrolled after hip-fracture…
Occupational therapy in India: focus on functional recovery and need for empowerment
Samuel, Reema; Jacob, K. S.
2017-01-01
While there have been significant advances in treatments for mental disorders over the past century, cure for many mental disorders remains elusive. The complex problems of mental illness require a multi-sectoral, multi-disciplinary and multi-dimensional approach to care. The need for focus on biopsychosocial model rather than on biomedical practise, client-centred rather than physician-oriented care, personal rather than clinical recovery, are often preached but rarely practiced. The lack of emphasis on functioning and the limited workforce and evidence base complicate issues related to the care of people with chronic mental illness in India. The role of occupational therapy in bridging the gap between symptomatic improvement and functional recovery is discussed. PMID:28827877
Lacour, Michel; Bernard-Demanze, Laurence
2015-01-01
This review questions the relationships between the plastic events responsible for the recovery of vestibular function after a unilateral vestibular loss (vestibular compensation), which has been well described in animal models in the last decades, and the vestibular rehabilitation (VR) therapy elaborated on a more empirical basis for vestibular loss patients. The main objective is not to propose a catalog of results but to provide clinicians with an understandable view on when and how to perform VR therapy, and why VR may benefit from basic knowledge and may influence the recovery process. With this perspective, 10 major recommendations are proposed as ways to identify an optimal functional recovery. Among them are the crucial role of active and early VR therapy, coincidental with a post-lesion sensitive period for neuronal network remodeling, the instructive role that VR therapy may play in this functional reorganization, the need for progression in the VR therapy protocol, which is based mainly on adaptation processes, the necessity to take into account the sensorimotor, cognitive, and emotional profile of the patient to propose individual or “à la carte” VR therapies, and the importance of motivational and ecologic contexts. More than 10 general principles are very likely, but these principles seem crucial for the fast recovery of vestibular loss patients to ensure good quality of life. PMID:25610424
Ocular toxicity and functional vision recovery in a patient treated with hydroxychloroquine.
Rodríguez-Hurtado, Francisco Jorge; Sáez-Moreno, José Antonio; Rodríguez-Ferrer, José Manuel
2015-01-01
We report the case of a 64-year-old woman with rheumatoid arthritis and Sjögren's syndrome, treated during 48 months with hydroxychloroquine that was removed after an ophthalmological evaluation showed bilateral vision loss associated with paracentral scotoma in the visual field, fundoscopic macular pigmentary changes, and severely impaired central multifocal electrorretinogram (mfERG). Twelve months after treatment withdrawal, visual acuity and central mfERG had surprisingly improved. This is an unusual case of functional recovery after treatment withdrawal. We consider that central mfERG is a more sensitive test than pattern electrorretinogram in the detection of retinal toxicity and functional vision recovery after hydroxychloroquine treatment cessation. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.
[Rehabilitation of children with apallic syndrome of traumatic or ischemic etiology].
Jović, Stevan; Cutović, Milisav; Konstantinović, Ljubica; Lazović, Milica; Jović, Marko
2006-01-01
Apallic syndrome may be defined as the complete lack of cortical function - paragnosia and parapraxia. Vegetative functions and other sub cortical functions are maintained (sleep rhythm, suckling and swallowing reflex). The aim of the study was to investigate the recovery of children with Apallic syndrome depending on the etiology and differences among various modalities like self-care, motor control and speech during rehabilitation. The study was conducted among eight children (mean age 9.4) (SD-2.6). Four had a post-traumatic and four Apallic syndrome of ischemic etiology. Friedman and Kruskal-Wallis tests were used for statistical analysis. There was no evident difference in recovery among children with Apallic syndrome of different etiology. In regard to self-care, motor control and speech, all children showed the same level of improvement during rehabilitation therapy. These results correspond with similar research findings. Rehabilitation is essential to aid recovery and it does not depend on the etiology. Recovery success is the same regardless of the chosen modality.
Alvarez-Añorve, Mariana Y; Quesada, Mauricio; Sánchez-Azofeifa, G Arturo; Avila-Cabadilla, Luis Daniel; Gamon, John A
2012-05-01
The function of most ecosystems has been altered by human activities. To asses the recovery of plant communities, we must evaluate the recovery of plant functional traits. The seasonally dry tropical forest (SDTF), a highly threatened ecosystem, is assumed to recover relatively quickly from disturbance, but an integrated evaluation of recovery in floristic, structural, and functional terms has not been performed. In this study we aimed to (a) compare SDTF plant functional, floristic, and structural change along succession; (b) identify tree functional groups; and (c) explore the spectral properties of different successional stages. Across a SDTF successional gradient, we evaluated the change of species composition, vegetation structure, and leaf spectral reflectance and functional traits (related to water use, light acquisition, nutrient conservation, and CO(2) acquisition) of 25 abundant tree species. A complete recovery of SDTF takes longer than the time period inferred from floristic or structural data. Plant functional traits changed along succession from those that maximize photoprotection and heat dissipation in early succession, where temperature is an environmental constraint, to those that enhance light acquisition in late succession, where light may be limiting. A spectral indicator of plant photosynthetic performance (photochemical reflectance index) discriminated between early and late succession. This constitutes a foundation for further exploration of remote sensing technologies for studying tropical succession. A functional approach should be incorporated as a regular descriptor of forest succession because it provides a richer understanding of vegetation dynamics than is offered by either the floristic or structural approach alone.
Functional Recovery in Major Depressive Disorder: Focus on Early Optimized Treatment.
Habert, Jeffrey; Katzman, Martin A; Oluboka, Oloruntoba J; McIntyre, Roger S; McIntosh, Diane; MacQueen, Glenda M; Khullar, Atul; Milev, Roumen V; Kjernisted, Kevin D; Chokka, Pratap R; Kennedy, Sidney H
2016-09-01
This article presents the case that a more rapid, individualized approach to treating major depressive disorder (MDD) may increase the likelihood of achieving full symptomatic and functional recovery for individual patients and that studies show it is possible to make earlier decisions about appropriateness of treatment in order to rapidly optimize that treatment. A PubMed search was conducted using terms including major depressive disorder, early improvement, predictor, duration of untreated illness, and function. English-language articles published before September 2015 were included. Additional studies were found within identified research articles and reviews. Thirty antidepressant studies reporting predictor criteria and outcome measures are included in this review. Studies were reviewed to extract definitions of predictors, outcome measures, and results of the predictor analysis. Results were summarized separately for studies reporting effects of early improvement, baseline characteristics, and duration of untreated depression. Shorter duration of the current depressive episode and duration of untreated depression are associated with better symptomatic and functional outcomes in MDD. Early improvement of depressive symptoms predicts positive symptomatic outcomes (response and remission), and early functional improvement predicts an increased likelihood of functional remission. The approach to treatment of depression that exhibits the greatest potential for achieving full symptomatic and functional recovery is early optimized treatment: early diagnosis followed by rapid individualized treatment. Monitoring symptoms and function early in treatment is crucial to ensuring that patients do not remain on ineffective or poorly tolerated treatment, which may delay recovery and heighten the risk of residual functional deficits. © Copyright 2016 Physicians Postgraduate Press, Inc.
Physical Exercise Promotes Recovery of Neurological Function after Ischemic Stroke in Rats
Zheng, Hai-Qing; Zhang, Li-Ying; Luo, Jing; Li, Li-Li; Li, Menglin; Zhang, Qingjie; Hu, Xi-Quan
2014-01-01
Although physical exercise is an effective strategy for treatment of ischemic stroke, the underlying protective mechanisms are still not well understood. It has been recently demonstrated that neural progenitor cells play a vital role in the recovery of neurological function (NF) through differentiation into mature neurons. In the current study, we observed that physical exercise significantly reduced the infarct size and improved damaged neural functional recovery after an ischemic stroke. Furthermore, we found that the treatment not only exhibited a significant increase in the number of neural progenitor cells and neurons but also decreased the apoptotic cells in the peri-infarct region, compared to a control in the absence of exercise. Importantly, the insulin-like growth factor-1 (IGF-1)/Akt signaling pathway was dramatically activated in the peri-infarct region of rats after physical exercise training. Therefore, our findings suggest that physical exercise directly influences the NF recovery process by increasing neural progenitor cell count via activation of the IGF-1/Akt signaling pathway. PMID:24945308
Ninagawa, Nana Takenaka; Isobe, Eri; Hirayama, Yuri; Murakami, Rumi; Komatsu, Kazumi; Nagai, Masataka; Kobayashi, Mami; Kawabata, Yuka; Torihashi, Shigeko
2013-08-01
We previously established that mesenchymal stem cells originating from mouse embryonic stem (ES) cells (E-MSCs) showed markedly higher potential for differentiation into skeletal muscles in vitro than common mesenchymal stem cells (MSCs). Further, the E-MSCs exhibited a low risk for teratoma formation. Here we evaluate the potential of E-MSCs for differentiation into skeletal muscles in vivo and reveal the regeneration and functional recovery of injured muscle by transplantation. E-MSCs were transplanted into the tibialis anterior (TA) muscle 24 h following direct clamping. After transplantation, the myogenic differentiation of E-MSCs, TA muscle regeneration, and re-innervation were morphologically analyzed. In addition, footprints and gaits of each leg under spontaneous walking were measured by CatWalk XT, and motor functions of injured TA muscles were precisely analyzed. Results indicate that >60% of transplanted E-MSCs differentiated into skeletal muscles. The cross-sectional area of the injured TA muscles of E-MSC-transplanted animals increased earlier than that of control animals. E-MSCs also promotes re-innervation of the peripheral nerves of injured muscles. Concerning function of the TA muscles, we reveal that transplantation of E-MSCs promotes the recovery of muscles. This is the first report to demonstrate by analysis of spontaneous walking that transplanted cells can accelerate the functional recovery of injured muscles. Taken together, the results show that E-MSCs have a high potential for differentiation into skeletal muscles in vivo as well as in vitro. The transplantation of E-MSCs facilitated the functional recovery of injured muscles. Therefore, E-MSCs are an efficient cell source in transplantation.
Ninagawa, Nana Takenaka; Isobe, Eri; Hirayama, Yuri; Murakami, Rumi; Komatsu, Kazumi; Nagai, Masataka; Kobayashi, Mami; Kawabata, Yuka
2013-01-01
Abstract We previously established that mesenchymal stem cells originating from mouse embryonic stem (ES) cells (E-MSCs) showed markedly higher potential for differentiation into skeletal muscles in vitro than common mesenchymal stem cells (MSCs). Further, the E-MSCs exhibited a low risk for teratoma formation. Here we evaluate the potential of E-MSCs for differentiation into skeletal muscles in vivo and reveal the regeneration and functional recovery of injured muscle by transplantation. E-MSCs were transplanted into the tibialis anterior (TA) muscle 24 h following direct clamping. After transplantation, the myogenic differentiation of E-MSCs, TA muscle regeneration, and re-innervation were morphologically analyzed. In addition, footprints and gaits of each leg under spontaneous walking were measured by CatWalk XT, and motor functions of injured TA muscles were precisely analyzed. Results indicate that >60% of transplanted E-MSCs differentiated into skeletal muscles. The cross-sectional area of the injured TA muscles of E-MSC–transplanted animals increased earlier than that of control animals. E-MSCs also promotes re-innervation of the peripheral nerves of injured muscles. Concerning function of the TA muscles, we reveal that transplantation of E-MSCs promotes the recovery of muscles. This is the first report to demonstrate by analysis of spontaneous walking that transplanted cells can accelerate the functional recovery of injured muscles. Taken together, the results show that E-MSCs have a high potential for differentiation into skeletal muscles in vivo as well as in vitro. The transplantation of E-MSCs facilitated the functional recovery of injured muscles. Therefore, E-MSCs are an efficient cell source in transplantation. PMID:23914336
Cold water immersion recovery following intermittent-sprint exercise in the heat.
Pointon, Monique; Duffield, Rob; Cannon, Jack; Marino, Frank E
2012-07-01
This study examined the effects of cold water immersion (CWI) on recovery of neuromuscular function following simulated team-sport exercise in the heat. Ten male team-sport athletes performed two sessions of a 2 × 30-min intermittent-sprint exercise (ISE) in 32°C and 52% humidity, followed by a 20-min CWI intervention or passive recovery (CONT) in a randomized, crossover design. The ISE involved a 15-m sprint every minute separated by bouts of hard running, jogging and walking. Voluntary and evoked neuromuscular function, ratings of perceived muscle soreness (MS) and blood markers for muscle damage were measured pre- and post-exercise, immediately post-recovery, 2-h and 24-h post-recovery. Measures of core temperature (Tcore), heart rate (HR), capillary blood and perceptions of exertion, thermal strain and thirst were also recorded at the aforementioned time points. Post-exercise maximal voluntary contraction (MVC) and activation (VA) were reduced in both conditions and remained below pre-exercise values for the 24-h recovery (P < 0.05). Increased blood markers of muscle damage were observed post-exercise in both conditions and remained elevated for the 24-h recovery period (P < 0.05). Comparative to CONT, the post-recovery rate of reduction in Tcore, HR and MS was enhanced with CWI whilst increasing MVC and VA (P < 0.05). In contrast, 24-h post-recovery MVC and activation were significantly higher in CONT compared to CWI (P = 0.05). Following exercise in the heat, CWI accelerated the reduction in thermal and cardiovascular load, and improved MVC alongside increased central activation immediately and 2-h post-recovery. However, despite improved acute recovery CWI resulted in an attenuated MVC 24-h post-recovery.
Lee, Wei Li; Low, Hong Yee
2016-01-01
Micro- and nanoscale surface textures, when optimally designed, present a unique approach to improve surface functionalities. Coupling surface texture with shape memory polymers may generate reversibly tuneable surface properties. A shape memory polyetherurethane is used to prepare various surface textures including 2 μm- and 200 nm-gratings, 250 nm-pillars and 200 nm-holes. The mechanical deformation via stretching and recovery of the surface texture are investigated as a function of length scales and shapes. Results show the 200 nm-grating exhibiting more deformation than 2 μm-grating. Grating imparts anisotropic and surface area-to-volume effects, causing different degree of deformation between gratings and pillars under the same applied macroscopic strain. Full distribution of stress within the film causes the holes to deform more substantially than the pillars. In the recovery study, unlike a nearly complete recovery for the gratings after 10 transformation cycles, the high contribution of surface energy impedes the recovery of holes and pillars. The surface textures are shown to perform a switchable wetting function. This study provides insights into how geometric features of shape memory surface patterns can be designed to modulate the shape programming and recovery, and how the control of reversibly deformable surface textures can be applied to transfer microdroplets. PMID:27026290
Busse, Jason W.; Bhandari, Mohit; Guyatt, Gordon H.; Heels-Ansdell, Diane; Kulkarni, Abhaya V.; Mandel, Scott; Sanders, David; Schemitsch, Emil; Swiontkowski, Marc; Tornetta, Paul; Wai, Eugene; Walter, Stephen D.
2011-01-01
Objective To explore the role of patients’ beliefs in their likelihood of recovery from severe physical trauma. Methods We developed and validated an instrument designed to capture the impact of patients’ beliefs on functional recovery from injury; the Somatic Pre-occupation and Coping (SPOC) questionnaire. At 6-weeks post-surgical fixation, we administered the SPOC questionnaire to 359 consecutive patients with operatively managed tibial shaft fractures. We constructed multivariable regression models to explore the association between SPOC scores and functional outcome at 1-year, as measured by return to work and short form-36 (SF-36) physical component summary (PCS) and mental component summary (MCS) scores. Results In our adjusted multivariable regression models that included pre-injury SF-36 scores, SPOC scores at 6-weeks post-surgery accounted for 18% of the variation in SF-36 PCS scores and 18% of SF-36 MCS scores at 1-year. In both models, 6-week SPOC scores were a far more powerful predictor of functional recovery than age, gender, fracture type, smoking status, or the presence of multi-trauma. Our adjusted analysis found that for each 14 point increment in SPOC score at 6-weeks (14 chosen on the basis of half a standard deviation of the mean SPOC score) the odds of returning to work at 1-year decreased by 40% (odds ratio = 0.60; 95% CI = 0.50 to 0.73). Conclusion The SPOC questionnaire is a valid measurement of illness beliefs in tibial fracture patients and is highly predictive of their long-term functional recovery. Future research should explore if these results extend to other trauma populations and if modification of unhelpful illness beliefs is feasible and would result in improved functional outcomes. PMID:22011635
Takeoka, Aya; Vollenweider, Isabel; Courtine, Grégoire; Arber, Silvia
2014-12-18
Spinal cord injuries alter motor function by disconnecting neural circuits above and below the lesion, rendering sensory inputs a primary source of direct external drive to neuronal networks caudal to the injury. Here, we studied mice lacking functional muscle spindle feedback to determine the role of this sensory channel in gait control and locomotor recovery after spinal cord injury. High-resolution kinematic analysis of intact mutant mice revealed proficient execution in basic locomotor tasks but poor performance in a precision task. After injury, wild-type mice spontaneously recovered basic locomotor function, whereas mice with deficient muscle spindle feedback failed to regain control over the hindlimb on the lesioned side. Virus-mediated tracing demonstrated that mutant mice exhibit defective rearrangements of descending circuits projecting to deprived spinal segments during recovery. Our findings reveal an essential role for muscle spindle feedback in directing basic locomotor recovery and facilitating circuit reorganization after spinal cord injury. Copyright © 2014 Elsevier Inc. All rights reserved.
Maximising functional recovery following hip fracture in frail seniors.
Beaupre, Lauren A; Binder, Ellen F; Cameron, Ian D; Jones, C Allyson; Orwig, Denise; Sherrington, Cathie; Magaziner, Jay
2013-12-01
This review discusses factors affecting recovery following hip fracture in frail older people as well as interventions associated with improved functional recovery. Prefracture function, cognitive status, co-morbidities, depression, nutrition and social support impact recovery and may interact to affect post-fracture outcome. There is mounting evidence that exercise is beneficial following hip fracture with higher-intensity/duration programmes showing more promising outcomes. Pharmacologic management for osteoporosis has benefits in preventing further fractures, and interest is growing in pharmacologic treatments for post-fracture loss of muscle mass and strength. A growing body of evidence suggests that sub-populations - those with cognitive impairment, residing in nursing homes or males - also benefit from rehabilitation after hip fracture. Optimal post-fracture care may entail the use of multiple interventions; however, more work is needed to determine optimal exercise components, duration and intensity as well as exploring the impact of multimodal interventions that combine exercise, pharmacology, nutrition and other interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Miconazole enhances nerve regeneration and functional recovery after sciatic nerve crush injury.
Lin, Tao; Qiu, Shuai; Yan, Liwei; Zhu, Shuang; Zheng, Canbin; Zhu, Qingtang; Liu, Xiaolin
2018-05-01
Improving axonal outgrowth and remyelination is crucial for peripheral nerve regeneration. Miconazole appears to enhance remyelination in the central nervous system. In this study we assess the effect of miconazole on axonal regeneration using a sciatic nerve crush injury model in rats. Fifty Sprague-Dawley rats were divided into control and miconazole groups. Nerve regeneration and myelination were determined using histological and electrophysiological assessment. Evaluation of sensory and motor recovery was performed using the pinprick assay and sciatic functional index. The Cell Counting Kit-8 assay and Western blotting were used to assess the proliferation and neurotrophic expression of RSC 96 Schwann cells. Miconazole promoted axonal regrowth, increased myelinated nerve fibers, improved sensory recovery and walking behavior, enhanced stimulated amplitude and nerve conduction velocity, and elevated proliferation and neurotrophic expression of RSC 96 Schwann cells. Miconazole was beneficial for nerve regeneration and functional recovery after peripheral nerve injury. Muscle Nerve 57: 821-828, 2018. © 2017 Wiley Periodicals, Inc.
Maximising functional recovery following hip fracture in frail seniors
Beaupre, Lauren A.; Binder, Ellen F.; Cameron, Ian D.; Jones, C. Allyson; Orwig, Denise; Sherrington, Cathie; Magaziner, Jay
2015-01-01
This review discusses factors affecting recovery following hip fracture in frail older people as well as interventions associated with improved functional recovery. Prefracture function, cognitive status, co-morbidities, depression, nutrition and social support impact recovery and may interact to affect post-fracture outcome. There is mounting evidence that exercise is beneficial following hip fracture with higher-intensity/duration programmes showing more promising outcomes. Pharmacologic management for osteoporosis has benefits in preventing further fractures, and interest is growing in pharmacologic treatments for post-fracture loss of muscle mass and strength. A growing body of evidence suggests that sub-populations – those with cognitive impairment, residing in nursing homes or males – also benefit from rehabilitation after hip fracture. Optimal post-fracture care may entail the use of multiple interventions; however, more work is needed to determine optimal exercise components, duration and intensity as well as exploring the impact of multimodal interventions that combine exercise, pharmacology, nutrition and other interventions. PMID:24836335
Ding, Yuetong; Qu, Yibo; Feng, Jia; Wang, Meizhi; Han, Qi; So, Kwok-Fai; Wu, Wutian; Zhou, Libing
2014-01-01
Brachial plexus injury (BPI) and experimental spinal root avulsion result in loss of motor function in the affected segments. After root avulsion, significant motoneuron function is restored by re-implantation of the avulsed root. How much this functional recovery depends on corticospinal inputs is not known. Here, we studied that question using Celsr3|Emx1 mice, in which the corticospinal tract (CST) is genetically absent. In adult mice, we tore off right C5–C7 motor and sensory roots and re-implanted the right C6 roots. Behavioral studies showed impaired recovery of elbow flexion in Celsr3|Emx1 mice compared to controls. Five months after surgery, a reduced number of small axons, and higher G-ratio of inner to outer diameter of myelin sheaths were observed in mutant versus control mice. At early stages post-surgery, mutant mice displayed lower expression of GAP-43 in spinal cord and of myelin basic protein (MBP) in peripheral nerves than control animals. After five months, mutant animals had atrophy of the right biceps brachii, with less newly formed neuromuscular junctions (NMJs) and reduced peak-to-peak amplitudes in electromyogram (EMG), than controls. However, quite unexpectedly, a higher motoneuron survival rate was found in mutant than in control mice. Thus, following root avulsion/re-implantation, the absence of the CST is probably an important reason to hamper axonal regeneration and remyelination, as well as target re-innervation and formation of new NMJ, resulting in lower functional recovery, while fostering motoneuron survival. These results indicate that manipulation of corticospinal transmission may help improve functional recovery following BPI. PMID:25003601
Plow, Ela B; Obretenova, Souzana N; Halko, Mark A; Kenkel, Sigrid; Jackson, Mary Lou; Pascual-Leone, Alvaro; Merabet, Lotfi B
2011-09-01
To standardize a protocol for promoting visual rehabilitative outcomes in post-stroke hemianopia by combining occipital cortical transcranial direct current stimulation (tDCS) with Vision Restoration Therapy (VRT). A comparative case study assessing feasibility and safety. A controlled laboratory setting. Two patients, both with right hemianopia after occipital stroke damage. METHODS AND OUTCOME MEASUREMENTS: Both patients underwent an identical VRT protocol that lasted 3 months (30 minutes, twice a day, 3 days per week). In patient 1, anodal tDCS was delivered to the occipital cortex during VRT training, whereas in patient 2 sham tDCS with VRT was performed. The primary outcome, visual field border, was defined objectively by using high-resolution perimetry. Secondary outcomes included subjective characterization of visual deficit and functional surveys that assessed performance on activities of daily living. For patient 1, the neural correlates of visual recovery were also investigated, by using functional magnetic resonance imaging. Delivery of combined tDCS with VRT was feasible and safe. High-resolution perimetry revealed a greater shift in visual field border for patient 1 versus patient 2. Patient 1 also showed greater recovery of function in activities of daily living. Contrary to the expectation, patient 2 perceived greater subjective improvement in visual field despite objective high-resolution perimetry results that indicated otherwise. In patient 1, visual function recovery was associated with functional magnetic resonance imaging activity in surviving peri-lesional and bilateral higher-order visual areas. Results of preliminary case comparisons suggest that occipital cortical tDCS may enhance recovery of visual function associated with concurrent VRT through visual cortical reorganization. Future studies may benefit from incorporating protocol refinements such as those described here, which include global capture of function, control for potential confounds, and investigation of underlying neural substrates of recovery. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Fluet, Gerard G; Patel, Jigna; Qiu, Qinyin; Yarossi, Matthew; Massood, Supriya; Adamovich, Sergei V; Tunik, Eugene; Merians, Alma S
2017-07-01
The complexity of upper extremity (UE) behavior requires recovery of near normal neuromuscular function to minimize residual disability following a stroke. This requirement places a premium on spontaneous recovery and neuroplastic adaptation to rehabilitation by the lesioned hemisphere. Motor skill learning is frequently cited as a requirement for neuroplasticity. Studies examining the links between training, motor learning, neuroplasticity, and improvements in hand motor function are indicated. This case study describes a patient with slow recovering hand and finger movement (Total Upper Extremity Fugl-Meyer examination score = 25/66, Wrist and Hand items = 2/24 on poststroke day 37) following a stroke. The patient received an intensive eight-session intervention utilizing simulated activities that focused on the recovery of finger extension, finger individuation, and pinch-grasp force modulation. Over the eight sessions, the patient demonstrated improvements on untrained transfer tasks, which suggest that motor learning had occurred, as well a dramatic increase in hand function and corresponding expansion of the cortical motor map area representing several key muscles of the paretic hand. Recovery of hand function and motor map expansion continued after discharge through the three-month retention testing. This case study describes a neuroplasticity based intervention for UE hemiparesis and a model for examining the relationship between training, motor skill acquisition, neuroplasticity, and motor function changes. Implications for rehabilitation Intensive hand and finger rehabilitation activities can be added to an in-patient rehabilitation program for persons with subacute stroke. Targeted training of the thumb may have an impact on activity level function in persons with upper extremity hemiparesis. Untrained transfer tasks can be utilized to confirm that training tasks have elicited motor learning. Changes in cortical motor maps can be used to document changes in brain function which can be used to evaluate changes in motor behavior persons with subacute stroke.
Pump dependence of the dynamics of quantum dot based waveguide absorbers
NASA Astrophysics Data System (ADS)
Viktorov, Evgeny A.; Erneux, Thomas; Piwonski, Tomasz; Pulka, Jaroslaw; Huyet, Guillaume; Houlihan, John
2012-06-01
The nonlinear two stage recovery of quantum dot based reverse-biased waveguide absorbers is investigated experimentally and analytically as a function of the initial ground state occupation probability of the dot. The latter is controlled experimentally by the pump pulse power. The slow stage of the recovery is exponential and its basic timescale is independent of pump power. The fast stage of the recovery is a logistic function which we analyze in detail. The relative strength of slow to fast components is highlighted and the importance of higher order absorption processes at the highest pump level is demonstrated.
Early Functional Connectome Integrity and 1-Year Recovery in Comatose Survivors of Cardiac Arrest.
Sair, Haris I; Hannawi, Yousef; Li, Shanshan; Kornbluth, Joshua; Demertzi, Athena; Di Perri, Carol; Chabanne, Russell; Jean, Betty; Benali, Habib; Perlbarg, Vincent; Pekar, James; Luyt, Charles-Edouard; Galanaud, Damien; Velly, Lionel; Puybasset, Louis; Laureys, Steven; Caffo, Brian; Stevens, Robert D
2018-04-01
Purpose To assess whether early brain functional connectivity is associated with functional recovery 1 year after cardiac arrest (CA). Materials and Methods Enrolled in this prospective multicenter cohort were 46 patients who were comatose after CA. Principal outcome was cerebral performance category at 12 months, with favorable outcome (FO) defined as cerebral performance category 1 or 2. All participants underwent multiparametric structural and functional magnetic resonance (MR) imaging less than 4 weeks after CA. Within- and between-network connectivity was measured in dorsal attention network (DAN), default-mode network (DMN), salience network (SN), and executive control network (ECN) by using seed-based analysis of resting-state functional MR imaging data. Structural changes identified with fluid-attenuated inversion recovery and diffusion-weighted imaging sequences were analyzed by using validated morphologic scales. The association between connectivity measures, structural changes, and the principal outcome was explored with multivariable modeling. Results Patients underwent MR imaging a mean 12.6 days ± 5.6 (standard deviation) after CA. At 12 months, 11 patients had an FO. Patients with FO had higher within-DMN connectivity and greater anticorrelation between SN and DMN and between SN and ECN compared with patients with unfavorable outcome, an effect that was maintained after multivariable adjustment. Anticorrelation of SN-DMN predicted outcomes with higher accuracy than fluid-attenuated inversion recovery or diffusion-weighted imaging scores (area under the receiver operating characteristic curves, respectively, 0.88, 0.74, and 0.71). Conclusion MR imaging-based measures of cerebral functional network connectivity obtained in the acute phase of CA were independently associated with FO at 1 year, warranting validation as early markers of long-term recovery potential in patients with anoxic-ischemic encephalopathy. © RSNA, 2017.
NASA Technical Reports Server (NTRS)
Witzmann, F. A.; Kim, D. H.; Fitts, R. H.
1982-01-01
The present study was undertaken to characterize the time course and extent of recovery in the isometric and isotonic contractile properties of fast and slow skeletal muscle following 6 wk of hindlimb immobilization. Female Sprague-Dawley rats were randomly assigned to an immobilized group or a control group. The results of the study show that fast and slow skeletal muscles possess the ability to completely recover normal contractile function following 6 wk of hindlimb immobilization. The rate of recovery is dependent on the fiber type composition of the affected muscle.
Carmina, Enrico; Fruzzetti, Franca; Lobo, Roger A
2018-04-01
Since features of polycystic ovary syndrome (PCOS) have been found to be prevalent in women with functional hypothalamic amenorrhea (FHA), we wished to determine what happens to these features after recovery of menstrual function in FHA Design: Prospective cohort study. Twenty-eight women with FHA and 30 age-matched ovulatory controls were studied. Twenty-eight women with FHA and 30 age-matched ovulatory controls were studied. We measured serum estradiol, LH, FSH, testosterone, DHEAS, anti-Mullerian hormone (AMH), body mass index, and ovarian morphology on transvaginal ultrasound. At baseline, 12 of the 28 women (43%) had increased AMH (>4.7 ng/mL), and higher testosterone and larger ovaries compared to the other 16 women with normal AMH. One year after recovery of menstrual function, in the 12 women with increased AMH, serum AMH, testosterone and ovarian size decreased, while LH and estradiol increased. At one year, only one of the 12 women in the high AMH group developed clinical features of PCOS. In the majority of women with FHA who have PCOS-like features, these features may be due to the hypothalamic state and appear to be reversible. Few women may develop clinical PCOS after recovery.
Kikuchi, K; Nishino, K; Ohyu, H
2000-03-31
The present investigation was conducted to document a role of L-threo-3,4-dihydroxyphenylserine (L-DOPS), precursor of L-norepinephrine (NE), in the functional recovery from beam-walking performance deficits in rats after unilateral sensorimotor cortex ablation. L-DOPS was administered simultaneously with benserazide (BSZ; a peripheral aromatic amino acid decarboxylase inhibitor), and the regional contents of NE in the cerebral cortex, hippocampus, and cerebellum were assayed. Behavioral recovery was demonstrated by the rats treated with L-DOPS and BSZ, and the rate of recovery was significantly different from that of either BSZ-treated or vehicle-treated control rats. The NE tissue levels in the three discrete regions of the rat brain were significantly elevated in the experimental rats receiving both L-DOPS and BSZ. The present studies indicate that increasing NE levels by the precursor L-DOPS may be responsible for facilitating behavioral recovery from beam-walking performance deficits in rats, and further suggest that L-DOPS may become one of the candidate compounds for further clinical human trials promoting functional recovery after injuries to the cerebral cortex.
Z. Sacharuk, Viviane; A. Lovatel, Gisele; Ilha, Jocemar; Marcuzzo, Simone; Severo do Pinho, Alexandre; L. Xavier, Léder; A. Zaro, Milton; Achaval, Matilde
2011-01-01
INTRODUCTION: Peripheral nerves are often damaged by direct mechanical injury, diseases, and tumors. The peripheral nerve injuries that result from these conditions can lead to a partial or complete loss of motor, sensory, and autonomic functions, which in turn are related to changes in skin temperature, in the involved segments of the body. The aim of this study was to evaluate the changes in hind paw skin temperature after sciatic nerve crush in rats in an attempt to determine whether changes in skin temperature correlate with the functional recovery of locomotion. METHODS: Wistar rats were divided into three groups: control (n = 7), sham (n = 25), and crush (n = 25). All groups were subjected to thermographic, functional, and histological assessments. RESULTS: ΔT in the crush group was different from the control and sham groups at the 1st, 3rd and 7rd postoperative days (p<0.05). The functional recovery from the crush group returned to normal values between the 3rd and 4th week post-injury, and morphological analysis of the nerve revealed incomplete regeneration at the 4th week after injury. DISCUSSION: This study is the first demonstration that sciatic nerve crush in rats induces an increase in hind paw skin temperature and that skin temperature changes do not correlate closely with functional recovery PMID:21876984
Neuropsychological and Cognitive Correlates of Recovery in Anorexia Nervosa.
Harper, Jessica A; Brodrick, Brooks; Van Enkevort, Erin; McAdams, Carrie J
2017-11-01
To identify clinical or cognitive measures either predictive of illness trajectory or altered with sustained weight recovery in adult women with anorexia nervosa. Participants were recruited from prior studies of women with anorexia nervosa (AN-C) and in weight-recovery following anorexia nervosa (AN-WR). Participants completed a neuropsychological battery at baseline and clinical assessments at both baseline and follow-up. Groups based on clinical outcome (continued eating disorder, AN-CC; newly in recovery, AN-CR; sustained weight-recovery, AN-WR) were compared by using one-way ANOVAs with Bonferroni-corrected post hoc comparisons. Women with continued eating disorder had poorer neuropsychological function and self-competence at baseline than AN-CR. AN-CR showed changes in depression and externalizing bias, a measure of self-related attributions. AN-WR differed from both AN-CC and AN-CR at baseline in externalizing bias, but only from AN-CC at outcome. Neuropsychological function when recently ill may be a prognostic factor, while externalizing bias may provide a clinical target for recovery. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.
Recovery of vestibular function following hair cell destruction by streptomycin
NASA Technical Reports Server (NTRS)
Jones, T. A.; Nelson, R. C.
1992-01-01
Can the vestibular periphery of warm-blooded vertebrates recover functionally from severe sensory hair cell loss? Recent findings in birds suggest a mechanism for recovery but in fact no direct functional evidence has been reported. We produced vestibular hair cell lesions using the ototoxic agent streptomycin sulfate (600 mg/kg/day, 8 days, chicks, Gallus domesticus). Compound action potentials of the vestibular nerve were used as a direct measure of peripheral vestibular function. Vestibular thresholds, neural activation latencies and amplitudes were documented. Eight days of drug treatment elevated thresholds significantly (P < 0.001) and eliminated all but remnants of vestibular activity. Virtually complete physiological recovery occurred in all animals studied over a period of 70 days following treatment. Thresholds recovered within two weeks of drug treatment whereas the return of response morphologies including activation latencies and amplitudes required an additional 6-8 weeks.
Recovery of the immune system after exercise.
Peake, Jonathan M; Neubauer, Oliver; Walsh, Neil P; Simpson, Richard J
2017-05-01
The notion that prolonged, intense exercise causes an "open window" of immunodepression during recovery after exercise is well accepted. Repeated exercise bouts or intensified training without sufficient recovery may increase the risk of illness. However, except for salivary IgA, clear and consistent markers of this immunodepression remain elusive. Exercise increases circulating neutrophil and monocyte counts and reduces circulating lymphocyte count during recovery. This lymphopenia results from preferential egress of lymphocyte subtypes with potent effector functions [e.g., natural killer (NK) cells, γδ T cells, and CD8 + T cells]. These lymphocytes most likely translocate to peripheral sites of potential antigen encounter (e.g., lungs and gut). This redeployment of effector lymphocytes is an integral part of the physiological stress response to exercise. Current knowledge about changes in immune function during recovery from exercise is derived from assessment at the cell population level of isolated cells ex vivo or in blood. This assessment can be biased by large changes in the distribution of immune cells between blood and peripheral tissues during and after exercise. Some evidence suggests that reduced immune cell function in vitro may coincide with changes in vivo and rates of illness after exercise, but more work is required to substantiate this notion. Among the various nutritional strategies and physical therapies that athletes use to recover from exercise, carbohydrate supplementation is the most effective for minimizing immune disturbances during exercise recovery. Sleep is an important aspect of recovery, but more research is needed to determine how sleep disruption influences the immune system of athletes. Copyright © 2017 the American Physiological Society.
Starkey, Michelle L; Bleul, Christiane; Kasper, Hansjörg; Mosberger, Alice C; Zörner, Björn; Giger, Stefan; Gullo, Miriam; Buschmann, Frank; Schwab, Martin E
2014-07-01
Functional recovery following central nervous system injuries is strongly influenced by rehabilitative training. In the clinical setting, the intensity of training and the level of motivation for a particular task are known to play important roles. With increasing neuroscience studies investigating the effects of training and rehabilitation, it is important to understand how the amount and type of training of individuals influences outcome. However, little is known about the influence of spontaneous "self-training" during daily life as it is often uncontrolled, not recorded, and mostly disregarded. Here, we investigated the effects of the intensity of self-training on motor skill acquisition in normal, intact rats and on the recovery of functional motor behavior following spinal cord injury in adult rats. We used a custom-designed small animal tracking system, "RatTrack," to continuously record the activity of multiple rats, simultaneously in a complex Natural Habitat-enriched environment. Naïve, adult rats performed high-intensity, self-motivated motor training, which resulted in them out-performing rats that were conventionally housed and trained on skilled movement tasks, for example, skilled prehension (grasping) and ladder walking. Following spinal cord injury the amount of self-training was correlated with improved functional recovery. These data suggest that high-impact, self-motivated training leads to superior skill acquisition and functional recovery than conventional training paradigms. These findings have important implications for the design of animal studies investigating rehabilitation and for the planning of human rehabilitation programs. © The Author(s) 2014.
Leaf litter arthropod responses to tropical forest restoration.
Cole, Rebecca J; Holl, Karen D; Zahawi, Rakan A; Wickey, Philipp; Townsend, Alan R
2016-08-01
Soil and litter arthropods represent a large proportion of tropical biodiversity and perform important ecosystem functions, but little is known about the efficacy of different tropical forest restoration strategies in facilitating their recovery in degraded habitats. We sampled arthropods in four 7- to 8-year-old restoration treatments and in nearby reference forests. Sampling was conducted during the wet and dry seasons using extractions from litter and pitfall samples. Restoration treatments were replicated in 50 × 50-m plots in four former pasture sites in southern Costa Rica: plantation - trees planted throughout the plot; applied nucleation/islands - trees planted in patches of different sizes; and natural regeneration - no tree planting. Arthropod abundance, measures of richness and diversity, and a number of functional groups were greater in the island treatment than in natural regeneration or plantation treatments and, in many cases, were similar to reference forest. Litter and pitfall morphospecies and functional group composition in all three restoration treatments were significantly different than reference sites, but island and plantation treatments showed more recovery than natural regeneration. Abundance and functional group diversity showed a much greater degree of recovery than community composition. Synthesis and applications: The less resource-intensive restoration strategy of planting tree islands was more effective than tree plantations in restoring arthropod abundance, richness, and functional diversity. None of the restoration strategies, however, resulted in similar community composition as reference forest after 8 years of recovery, highlighting the slow rate of recovery of arthropod communities after disturbance, and underscoring the importance of conservation of remnant forests in fragmented landscapes.
Enhancing Propriospinal Relays to Improve Functional Recovery After SCI
2017-10-01
injury to the spinal cord. We have completed experiments for subtask 1 – 4 of specific aim 1 and subtasks 1 for specific aim 2. This Aim 2 of the...previously observed PAP2 to induce robust regeneration in a dorsal hemisection model and thought it might enhance regeneration and sprouting after the more...spontaneous recovery is often observed after incomplete injuries, leading to partial recovery over time. Spontaneous recovery is thought to be
Alghannam, Abdullah F.; Betts, James A.
2018-01-01
The importance of post-exercise recovery nutrition has been well described in recent years, leading to its incorporation as an integral part of training regimes in both athletes and active individuals. Muscle glycogen depletion during an initial prolonged exercise bout is a main factor in the onset of fatigue and so the replenishment of glycogen stores may be important for recovery of functional capacity. Nevertheless, nutritional considerations for optimal short-term (3–6 h) recovery remain incompletely elucidated, particularly surrounding the precise amount of specific types of nutrients required. Current nutritional guidelines to maximise muscle glycogen availability within limited recovery are provided under the assumption that similar fatigue mechanisms (i.e., muscle glycogen depletion) are involved during a repeated exercise bout. Indeed, recent data support the notion that muscle glycogen availability is a determinant of subsequent endurance capacity following limited recovery. Thus, carbohydrate ingestion can be utilised to influence the restoration of endurance capacity following exhaustive exercise. One strategy with the potential to accelerate muscle glycogen resynthesis and/or functional capacity beyond merely ingesting adequate carbohydrate is the co-ingestion of added protein. While numerous studies have been instigated, a consensus that is related to the influence of carbohydrate-protein ingestion in maximising muscle glycogen during short-term recovery and repeated exercise capacity has not been established. When considered collectively, carbohydrate intake during limited recovery appears to primarily determine muscle glycogen resynthesis and repeated exercise capacity. Thus, when the goal is to optimise repeated exercise capacity following short-term recovery, ingesting carbohydrate at an amount of ≥1.2 g kg body mass−1·h−1 can maximise muscle glycogen repletion. The addition of protein to carbohydrate during post-exercise recovery may be beneficial under circumstances when carbohydrate ingestion is sub-optimal (≤0.8 g kg body mass−1·h−1) for effective restoration of muscle glycogen and repeated exercise capacity. PMID:29473893
2014-01-01
Background The pattern and factors influencing the lung function recovery in the first postoperative days are still not fully elucidated, especially in patients at increased risk. Methods Prospective study on 60 patients at increased risk, who underwent a lung resection for primary lung cancer. Inclusion criteria: complete resection and one or more known risk factors in form of COPD, cardiovascular disorders, advanced age or other comorbidities. Previous myocardial infarction, myocardial revascularization or stenting, cardiac rhythm disorders, arterial hypertension and myocardiopathy determined the increased cardiac risk. The severity of COPD was graded according to GOLD criteria. The trend of the postoperative lung function recovery was assessed by performing spirometry with a portable spirometer. Results Cardiac comorbidity existed in 55%, mild and moderate COPD in 20% and 35% of patients respectively. Measured values of FVC% and FEV1% on postoperative days one, three and seven, showed continuous improvement, with significant difference between the days of measurement, especially between days three and seven. There was no difference in the trend of the lung function recovery between patients with and without postoperative complications. Whilst pO2 was decreasing during the first three days in a roughly parallel fashion in patients with respiratory, surgical complications and in patients without complications, a slight hypercapnia registered on the first postoperative day was gradually abolished in all groups except in patients with cardiac complications. Conclusion Extent of the lung resection and postoperative complications do not significantly influence the trend of the lung function recovery after lung resection for lung cancer. PMID:24884793
Ercegovac, Maja; Subotic, Dragan; Zugic, Vladimir; Jakovic, Radoslav; Moskovljevic, Dejan; Bascarevic, Slavisa; Mujovic, Natasa
2014-05-19
The pattern and factors influencing the lung function recovery in the first postoperative days are still not fully elucidated, especially in patients at increased risk. Prospective study on 60 patients at increased risk, who underwent a lung resection for primary lung cancer. complete resection and one or more known risk factors in form of COPD, cardiovascular disorders, advanced age or other comorbidities. Previous myocardial infarction, myocardial revascularization or stenting, cardiac rhythm disorders, arterial hypertension and myocardiopathy determined the increased cardiac risk. The severity of COPD was graded according to GOLD criteria. The trend of the postoperative lung function recovery was assessed by performing spirometry with a portable spirometer. Cardiac comorbidity existed in 55%, mild and moderate COPD in 20% and 35% of patients respectively. Measured values of FVC% and FEV1% on postoperative days one, three and seven, showed continuous improvement, with significant difference between the days of measurement, especially between days three and seven. There was no difference in the trend of the lung function recovery between patients with and without postoperative complications. Whilst pO2 was decreasing during the first three days in a roughly parallel fashion in patients with respiratory, surgical complications and in patients without complications, a slight hypercapnia registered on the first postoperative day was gradually abolished in all groups except in patients with cardiac complications. Extent of the lung resection and postoperative complications do not significantly influence the trend of the lung function recovery after lung resection for lung cancer.
Yang, Byung Il; Song, Bo Kyoung; Joung, Sang Mi
2017-01-01
[Purpose] The purpose of this study was to determine whether two-handed task training is effective on motor learning of injured cerebral cortex activation and upper extremity function recovery after stroke. [Subjects and Methods] Two hemiplegic subjects participated in this study: one patient was affected on the dominant side of the body and the other was affected on the non-dominant side of the body, and both scored in the range of 58–66 in the Fugl-Meyer assessment. The excitability of the corticospinal tract and Manual Function Test were examined. [Results] The excitability of the corticospinal tract and the Manual Function Test showed significant differences in the activation of both sides of the cerebral cortex and in the variation in learning effect of upper extremity motor function recovery in patients with hemiplegic non-dominant hand (left). [Conclusion] The results suggested that two-handed task training had a different influence on dominant hand (right) and non-dominant hand (left) motor recovery. PMID:28210051
Geissler, Sydney A; Sabin, Alexandra L; Besser, Rachel R; Gooden, Olivia M; Shirk, Bryce D; Nguyen, Quan M; Khaing, Zin Z; Schmidt, Christine E
2018-04-01
Demyelination that results from disease or traumatic injury, such as spinal cord injury (SCI), can have a devastating effect on neural function and recovery. Many researchers are examining treatments to minimize demyelination by improving oligodendrocyte availability in vivo. Transplantation of stem and oligodendrocyte progenitor cells is a promising option, however, trials are plagued by undirected differentiation. Here we introduce a biomaterial that has been optimized to direct the differentiation of neural progenitor cells (NPCs) toward oligodendrocytes as a cell delivery vehicle after SCI. A collagen-based hydrogel was modified to mimic the mechanical properties of the neonatal spinal cord, and components present in the developing extracellular matrix were included to provide appropriate chemical cues to the NPCs to direct their differentiation toward oligodendrocytes. The hydrogel with cells was then transplanted into a unilateral cervical contusion model of SCI to examine the functional recovery with this treatment. Six behavioral tests and histological assessment were performed to examine the in vivo response to this treatment. Our results demonstrate that we can achieve a significant increase in oligodendrocyte differentiation of NPCs compared to standard culture conditions using a three-component biomaterial composed of collagen, hyaluronic acid, and laminin that has mechanical properties matched to those of neonatal neural tissue. Additionally, SCI rats with hydrogel transplants, with and without NPCs, showed functional recovery. Animals transplanted with hydrogels with NPCs showed significantly increased functional recovery over six weeks compared to the media control group. The three-component hydrogel presented here has the potential to provide cues to direct differentiation in vivo to encourage regeneration of the central nervous system.
Portinari, Mattia; Ascanelli, Simona; Targa, Simone; Dos Santos Valgode, Elisabete Maria; Bonvento, Barbara; Vagnoni, Emidia; Camerani, Stefano; Verri, Marco; Volta, Carlo Alberto; Feo, Carlo V
2018-05-01
The enhanced recovery program for perioperative care of the surgical patient reduces postoperative metabolic response and organ dysfunction, accelerating functional recovery. The aim of this study was to determine the impact on postoperative recovery and cost-effectiveness of implementing a colorectal enhanced recovery program in an Italian academic centre. A prospective series of consecutive patients (N = 100) undergoing elective colorectal resection completing a standardized enhanced recovery program in 2013-2015 (ERP group) was compared to patients (N = 100) operated at the same institution in 2010-2011 (Pre-ERP group) before introducing the program. The exclusion criteria were: >80 years old, ASA score of IV, a stage IV TNM, and diagnosis of inflammatory bowel disease. The primary outcome was hospital length of stay which was used as a proxy of functional recovery. Secondary outcomes included: postoperative complications, 30-day readmission and mortality, protocol adherence, nursing workload, cost-effectiveness, and factors predicting prolonged hospital stay. The ERP group patient satisfaction was also evaluated. Hospital stay was significantly reduced in the ERP versus the Pre-ERP group (4 versus 8 days) as well as nursing workload, with no increase in postoperative complications, 30-day readmission or mortality. ERP group protocol adherence (81%) and patient satisfaction were high. Conventional perioperative protocol was the only independent predictor of prolonged hospital stay. Total mean direct costs per patient were significantly higher in the Pre-ERP versus the ERP group (6796.76 versus 5339.05 euros). Implementing a colorectal enhanced recovery program is feasible, efficient for functional recovery and hospital stay reduction, safe, and cost-effective. High patient satisfaction and nursing workload reduction may also be expected, but high protocol adherence is necessary. Copyright © 2018 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Su, Bi-ying; Liu, Shao-nan; Li, Xiao-yan
2011-11-01
To study the train of thoughts and procedures for developing the theoretical framework and the item pool of the peri-operative recovery scale for integrative medicine, thus making preparation for the development of this scale and psychometric testing. Under the guidance for Chinese medicine theories and the guidance for developing psychometric scale, the theoretical framework and the item pool of the scale were initially laid out by literature retrieval, and expert consultation, etc. The scale covered the domains of physical function, mental function, activity function, pain, and general assessment. Besides, social function is involved, which is suitable for pre-operative testing and long-term therapeutic efficacy testing after discharge from hospital. Each domain should cover correlated Zang-Fu organs, qi, blood, and the patient-reported outcomes. Totally 122 items were initially covered in the item pool according to theoretical framework of the scale. The peri-operative recovery scale of integrative medicine was the embodiment of the combination of Chinese medicine theories and patient-reported outcome concepts. The scale could reasonably assess the peri-operative recovery outcomes of patients treated by integrative medicine.
Wen, Zunjia; Shen, Meifen; Wu, Chao; Ding, Jianping; Mei, Binbin
2017-04-18
Gum chewing has been reported to enhance the intestinal function recovery after caesarean section, current perspectives and practice guidelines vary widely on the use of gum chewing, more studies on the role of gum chewing after caesarean section are needed. We performed a comprehensive, systematic meta-analysis of randomized controlled trials (RCTs) on the efficacy of gum chewing after caesarean section. Studies were identified by searching EMBASE et al database (until June 30, 2016). Summary odd ratios or weighted mean differences with 95% confidence intervals were calculated for each outcome with fixed- or random-effects model. Ten RCTs with a total of 1659 women were included in our meta-analysis. Gum chewing provided significant benefits in reducing the time to first passage of flatus, first defecation, first bowel sound, first bowel movement and the length of hospital stay, but not in the time to first feeling of hunger. Gun chewing hastens the intestinal function recovery after caesarean section and offers a safe and inexpensive option. High-quality and larger-scale RCTs are still warranted to clarify the role of gum chewing in intestinal function recovery after caesarean section.
ERIC Educational Resources Information Center
Ueno, Masaki; Hayano, Yasufumi; Nakagawa, Hiroshi; Yamashita, Toshihide
2012-01-01
Brain injury that results in an initial behavioural deficit is frequently followed by spontaneous recovery. The intrinsic mechanism of this functional recovery has never been fully understood. Here, we show that reorganization of the corticospinal tract induced by target-derived brain-derived neurotrophic factor is crucial for spontaneous recovery…
Ma, Junxiong; Yu, Hailong; Liu, Jun; Chen, Yu; Wang, Qi; Xiang, Liangbi
2016-01-01
Curcumin is capable of promoting peripheral nerve regeneration in normal condition. However, it is unclear whether its beneficial effect on nerve regeneration still exists under diabetic mellitus. The present study was designed to investigate such a possibility. Diabetes in rats was developed by a single dose of streptozotocin at 50 mg/kg. Immediately after nerve crush injury, the diabetic rats were intraperitoneally administrated daily for 4 weeks with curcumin (50 mg/kg, 100 mg/kg and 300 mg/kg), or normal saline, respectively. The axonal regeneration was investigated by morphometric analysis and retrograde labeling. The functional recovery was evaluated by electrophysiological studies and behavioral analysis. Axonal regeneration and functional recovery was significantly enhanced by curcumin, which were significantly better than those in vehicle saline group. In addition, high doses of curcumin (100 mg/kg and 300 mg/kg) achieved better axonal regeneration and functional recovery than low dose (50 mg/kg). In conclusion, curcumin is capable of promoting nerve regeneration after sciatic nerve crush injury in diabetes mellitus, highlighting its therapeutic values as a neuroprotective agent for peripheral nerve injury repair in diabetes mellitus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
[Clinical application of functional near-infrared spectroscopy in rehabilitation medicine].
Mihara, Masahito; Yagura, Hajime; Hatakenaka, Megumi; Hattori, Noriaki; Miyai, Ichiro
2010-02-01
Functional near-infrared spectroscopy (fNIRS) is an effective tool to non-invasively investigate cerebral oxygenation and hemodynamics. fNIRS as well as other functional neuroimaging techniques including functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) have been used for investigating the neural mechanisms of functional recovery after a stroke or a traumatic brain injury. fNIRS has several advantages over other neuroimaging techniques in terms of clinical application in the field of rehabilitation medicine. In addition to its portability and low equipment cost, fNIRS does not require strict motion restriction during measurement, unlike other functional imaging techniques. Therefore, this technique enables the examination of cortical activation during physically dynamic activities, like gait or balance perturbation. Studies using fNIRS have revealed several implications for gait recovery after stroke. These studies have shown that the medial sensorimotor cortex (SMC) and the supplementary motor area (SMA) are mainly involved in steadying gait and that the prefrontal cortex (PFC) is involved in the adjustment of walking speed. In hemiparetic patients, lateralization of SMC activation during gait is reduced, and additional cortical activations in the premotor cortex and PFC during gait became evident after focused rehabilitation for several months. The cortical activation pattern may be modified after different types of rehabilitative interventions. These results imply that fNIRS data is a potential biomarker for functional recovery and the response to rehabilitative interventions. Although further studies are required, fNIRS might provide useful information for customizing rehabilitation programs in order to enhance functional recovery.
Calabrese, Edward J; Iavicoli, Ivo; Calabrese, Vittorio; Cory-Slechta, Deborah A; Giordano, James
2018-05-01
This paper assessed approximately 30 studies, mostly involving occupationally exposed subjects, concerning the extent to which those who developed elemental mercury (Hg)-induced central and/or peripheral neurotoxicities from chronic or acute exposures recover functionality and/or performance. While some recovery occurred in the vast majority of cases, the extent of such recoveries varied considerably by individual and endpoint. Factors accounting for the extensive inter-individual variation in toxicity and recovery were not specifically assessed such as age, gender, diet, environmental enrichment, chelation strategies and dose-rate. While the data indicate that psychomotor endpoints often show substantial and relatively rapid (i.e., 2-6 months) recovery and that neuropsychological endpoints display slower and less complete recovery, generalizations are difficult due to highly variable study designs, use of different endpoints measured between studies, different Hg exposures based on blood/urine concentrations and Hg dose-rates, the poor capacity for replicating findings due to the unpredictable/episodic nature of harmful exposures to elemental Hg, and the inconsistency of the initiation of studies after induced toxicities and the differing periods of follow up during recovery periods. Finally, there is strikingly limited animal model literature on the topic of recovery/reversibility of elemental Hg toxicity, a factor which significantly contributes to the overall marked uncertainties for predicting the rate and magnitude of recovery and the factors that affect it. Copyright © 2018 Elsevier Inc. All rights reserved.
Elison, Sarah; Davies, Glyn; Ward, Jonathan
2016-07-28
There is a growing literature around substance use disorder treatment outcomes measures. Various constructs have been suggested as being appropriate for measuring recovery outcomes, including "recovery capital" and "treatment progression." However, these previously proposed constructs do not measure changes in psychosocial functioning during the recovery process. Therefore, a new psychometric assessment, the "Recovery Progression Measure" (RPM), has been developed to measure this recovery oriented psychosocial change. The aims of this study were to evaluate the reliability and factor structure of the RPM via data collected from 2218 service users being treated for their substance dependence. Data were collected from service users accessing the Breaking Free Online (BFO) substance use disorder treatment and recovery program, which has within its baseline assessment a 36-item psychometric measure previously developed by the authors to assess the six areas of functioning described in the RPM. Reliability analyses and exploratory factor analyses (EFA) were conducted to examine the underlying factor structure of the RPM measure. Internal reliability of the RPM measure was found to be excellent (α > .70) with the overall assessment to have reliability α = .89, with item-total correlations revealing moderate-excellent reliability of individual items. EFA revealed the RPM to contain an underlying factor structure of eight components. This study provides initial data to support the reliability of the RPM as a recovery measure. Further work is now underway to extend these findings, including convergent and predictive validity analyses.
Sánchez-Sánchez, M Luz; Belda-Lois, Juan-Manuel; Mena-Del Horno, Silvia; Viosca-Herrero, Enrique; Igual-Camacho, Celedonia; Gisbert-Morant, Beatriz
2018-05-05
A major goal in stroke rehabilitation is the establishment of more effective physical therapy techniques to recover postural stability. Functional Principal Component Analysis provides greater insight into recovery trends. However, when missing values exist, obtaining functional data presents some difficulties. The purpose of this study was to reveal an alternative technique for obtaining the Functional Principal Components without requiring the conversion to functional data beforehand and to investigate this methodology to determine the effect of specific physical therapy techniques in balance recovery trends in elderly subjects with hemiplegia post-stroke. A randomized controlled pilot trial was developed. Thirty inpatients post-stroke were included. Control and target groups were treated with the same conventional physical therapy protocol based on functional criteria, but specific techniques were added to the target group depending on the subjects' functional level. Postural stability during standing was quantified by posturography. The assessments were performed once a month from the moment the participants were able to stand up to six months post-stroke. The target group showed a significant improvement in postural control recovery trend six months after stroke that was not present in the control group. Some of the assessed parameters revealed significant differences between treatment groups (P < 0.05). The proposed methodology allows Functional Principal Component Analysis to be performed when data is scarce. Moreover, it allowed the dynamics of recovery of two different treatment groups to be determined, showing that the techniques added in the target group increased postural stability compared to the base protocol. Copyright © 2018 Elsevier Ltd. All rights reserved.
Caffeine delays autonomic recovery following acute exercise.
Bunsawat, Kanokwan; White, Daniel W; Kappus, Rebecca M; Baynard, Tracy
2015-11-01
Impaired autonomic recovery of heart rate (HR) following exercise is associated with an increased risk of sudden death. Caffeine, a potent stimulator of catecholamine release, has been shown to augment blood pressure (BP) and sympathetic nerve activity; however, whether caffeine alters autonomic function after a bout of exercise bout remains unclear. In a randomized, crossover study, 18 healthy individuals (26 ± 1 years; 23.9 ± 0.8 kg·m(-2)) ingested caffeine (400 mg) or placebo pills, followed by a maximal treadmill test to exhaustion. Autonomic function and ventricular depolarization/repolarization were determined using heart rate variability (HRV) and corrected QT interval (QTc), respectively, at baseline, 5, 15, and 30 minutes post-exercise. Maximal HR (HRmax) was greater with caffeine (192 ± 2 vs. 190 ± 2 beat·min(-1), p < 0.05). During recovery, HR, mean arterial pressure (MAP), and diastolic blood pressure (DBP) remained elevated with caffeine (p < 0.05). Natural log transformation of low-to-high frequency ratio (LnLF/LnHF) of HRV was increased compared with baseline at all time points in both trials (p < 0.05), with less of an increase during 5 and 15 minutes post-exercise in the caffeine trial (p < 0.05). QTc increased from baseline at all time points in both trials, with greater increases in the caffeine trial (p < 0.05). Caffeine ingestion disrupts post-exercise autonomic recovery because of increased sympathetic nerve activity. The prolonged sympathetic recovery time could subsequently hinder baroreflex function during recovery and disrupt the stability of autonomic function, potentiating a pro-arrhythmogenic state in young adults. © The European Society of Cardiology 2014.
The effects of memantine on recovery, cognitive functions, and pain after propofol anesthesia.
Emik, Ulku; Unal, Yusuf; Arslan, Mustafa; Demirel, Cengiz Bekir
2016-01-01
Postoperative cognitive dysfunction refers to the problems associated with thought and memory that are often experienced after major surgery. The aim of this study is to evaluate the effects of intraperitoneally administered memantine on recovery, cognitive functions, and pain after propofol anesthesia. The study was conducted in Gazi University Animal Research Laboratory, Ankara, Turkey in January 2012. Twenty-four adult female Wistar Albino rats weighing 170-270g were educated for 300s in the radial arm maze (RAM) over three days. Group P was administered 150mgkg(-1) of intraperitoneal (IP) propofol; Group M was given 1mgkg(-1) of IP memantine; and Group MP was given 1mgkg(-1) of IP memantine before being administered 150mgkg(-1) of IP propofol. The control group received only IP saline. RAM and hot plate values were obtained after recovery from the groups that received propofol anesthesia and 30min after the administration of drugs in other two groups. The duration of recovery for Group MP was significantly shorter than Group P (p<0.001), and the number of entries and exits in the RAM by Group MP was significantly higher during the first hour when compared to Group P (p<0.0001). Hot plate values, on the other hand, were found to be significantly increased in all groups when compared to the control values, aside from Group C (p<0.0001). In this study, memantine provided shorter recovery times, better cognitive functions, and reduced postoperative pain. From this study, we find that memantine has beneficial effects on recovery, cognitive functions, and pain after propofol anesthesia. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Fox, Emily J.; Tester, Nicole J.; Phadke, Chetan P.; Nair, Preeti M.; Senesac, Claudia R.; Howland, Dena R.
2010-01-01
Background and Purpose The authors previously reported on walking recovery in a nonambulatory child with chronic, severe, incomplete cervical spinal cord injury (SCI) after 76 sessions of locomotor training (LT). Although clinical measures did not predict his recovery, reciprocal patterned leg movements developed, affording recovery of independent walking with a reverse rolling walker. The long-term functional limitations and secondary complications often associated with pediatric-onset SCI necessitate continued follow-up of children with SCI. Therefore, the purpose of this case report is to describe this child's walking function and musculoskeletal growth and development during the 2 years since his participation in an LT program and subsequent walking recovery. Case Description Following LT, the child attended elementary school as a full-time ambulator. He was evaluated 1 month (baseline), 1 year, and 2 years after LT. Examination of walking function included measures of walking independence, gait speed and spatiotemporal parameters, gait kinematics, and daily step activity. Growth and development were assessed by tracking his height, weight, incidence of musculoskeletal complications, and gross motor task performance. Outcomes Over the 2 years, the child continued to ambulate independently with a reverse rolling walker, increasing his fastest gait speed. Spatiotemporal and kinematic features of his walking improved, and daily step activity increased. Height and weight remained on their preinjury trajectory and within age-appropriate norms. The child experienced only minor musculoskeletal complications. Additionally, he gained the ability to use reciprocal patterned leg movements during locomotor tasks such as assisted stair climbing and independent tricycle pedaling. Conclusions Two years after recovery of walking, this child with incomplete SCI had maintained and improved his walking function and experienced age-appropriate growth and development. PMID:20299409
Fox, Emily J; Tester, Nicole J; Phadke, Chetan P; Nair, Preeti M; Senesac, Claudia R; Howland, Dena R; Behrman, Andrea L
2010-05-01
The authors previously reported on walking recovery in a nonambulatory child with chronic, severe, incomplete cervical spinal cord injury (SCI) after 76 sessions of locomotor training (LT). Although clinical measures did not predict his recovery, reciprocal patterned leg movements developed, affording recovery of independent walking with a reverse rolling walker. The long-term functional limitations and secondary complications often associated with pediatric-onset SCI necessitate continued follow-up of children with SCI. Therefore, the purpose of this case report is to describe this child's walking function and musculoskeletal growth and development during the 2 years since his participation in an LT program and subsequent walking recovery. Following LT, the child attended elementary school as a full-time ambulator. He was evaluated 1 month (baseline), 1 year, and 2 years after LT. Examination of walking function included measures of walking independence, gait speed and spatiotemporal parameters, gait kinematics, and daily step activity. Growth and development were assessed by tracking his height, weight, incidence of musculoskeletal complications, and gross motor task performance. Over the 2 years, the child continued to ambulate independently with a reverse rolling walker, increasing his fastest gait speed. Spatiotemporal and kinematic features of his walking improved, and daily step activity increased. Height and weight remained on their preinjury trajectory and within age-appropriate norms. The child experienced only minor musculoskeletal complications. Additionally, he gained the ability to use reciprocal patterned leg movements during locomotor tasks such as assisted stair climbing and independent tricycle pedaling. Two years after recovery of walking, this child with incomplete SCI had maintained and improved his walking function and experienced age-appropriate growth and development.
Enhancing Sparsity by Reweighted l(1) Minimization
2008-07-01
recovery depends on the sparsity level k. The dashed curves represent a reweighted ℓ1 algorithm that outperforms the traditional unweighted ℓ1...approach (solid curve ). (a) Performance after 4 reweighting iterations as a function of ǫ. (b) Performance with fixed ǫ = 0.1 as a function of the number of...signal recovery (declared when ‖x0 − x‖ℓ∞ ≤ 10−3) for the unweighted ℓ1 algorithm as a function of the sparsity level k. The dashed curves represent the
Haque, Shafiul; Khan, Saif; Wahid, Mohd; Dar, Sajad A; Soni, Nipunjot; Mandal, Raju K; Singh, Vineeta; Tiwari, Dileep; Lohani, Mohtashim; Areeshi, Mohammed Y; Govender, Thavendran; Kruger, Hendrik G; Jawed, Arshad
2016-01-01
For a commercially viable recombinant intracellular protein production process, efficient cell lysis and protein release is a major bottleneck. The recovery of recombinant protein, cholesterol oxidase (COD) was studied in a continuous bead milling process. A full factorial response surface methodology (RSM) design was employed and compared to artificial neural networks coupled with genetic algorithm (ANN-GA). Significant process variables, cell slurry feed rate (A), bead load (B), cell load (C), and run time (D), were investigated and optimized for maximizing COD recovery. RSM predicted an optimum of feed rate of 310.73 mL/h, bead loading of 79.9% (v/v), cell loading OD 600 nm of 74, and run time of 29.9 min with a recovery of ~3.2 g/L. ANN-GA predicted a maximum COD recovery of ~3.5 g/L at an optimum feed rate (mL/h): 258.08, bead loading (%, v/v): 80%, cell loading (OD 600 nm ): 73.99, and run time of 32 min. An overall 3.7-fold increase in productivity is obtained when compared to a batch process. Optimization and comparison of statistical vs. artificial intelligence techniques in continuous bead milling process has been attempted for the very first time in our study. We were able to successfully represent the complex non-linear multivariable dependence of enzyme recovery on bead milling parameters. The quadratic second order response functions are not flexible enough to represent such complex non-linear dependence. ANN being a summation function of multiple layers are capable to represent complex non-linear dependence of variables in this case; enzyme recovery as a function of bead milling parameters. Since GA can even optimize discontinuous functions present study cites a perfect example of using machine learning (ANN) in combination with evolutionary optimization (GA) for representing undefined biological functions which is the case for common industrial processes involving biological moieties.
Haque, Shafiul; Khan, Saif; Wahid, Mohd; Dar, Sajad A.; Soni, Nipunjot; Mandal, Raju K.; Singh, Vineeta; Tiwari, Dileep; Lohani, Mohtashim; Areeshi, Mohammed Y.; Govender, Thavendran; Kruger, Hendrik G.; Jawed, Arshad
2016-01-01
For a commercially viable recombinant intracellular protein production process, efficient cell lysis and protein release is a major bottleneck. The recovery of recombinant protein, cholesterol oxidase (COD) was studied in a continuous bead milling process. A full factorial response surface methodology (RSM) design was employed and compared to artificial neural networks coupled with genetic algorithm (ANN-GA). Significant process variables, cell slurry feed rate (A), bead load (B), cell load (C), and run time (D), were investigated and optimized for maximizing COD recovery. RSM predicted an optimum of feed rate of 310.73 mL/h, bead loading of 79.9% (v/v), cell loading OD600 nm of 74, and run time of 29.9 min with a recovery of ~3.2 g/L. ANN-GA predicted a maximum COD recovery of ~3.5 g/L at an optimum feed rate (mL/h): 258.08, bead loading (%, v/v): 80%, cell loading (OD600 nm): 73.99, and run time of 32 min. An overall 3.7-fold increase in productivity is obtained when compared to a batch process. Optimization and comparison of statistical vs. artificial intelligence techniques in continuous bead milling process has been attempted for the very first time in our study. We were able to successfully represent the complex non-linear multivariable dependence of enzyme recovery on bead milling parameters. The quadratic second order response functions are not flexible enough to represent such complex non-linear dependence. ANN being a summation function of multiple layers are capable to represent complex non-linear dependence of variables in this case; enzyme recovery as a function of bead milling parameters. Since GA can even optimize discontinuous functions present study cites a perfect example of using machine learning (ANN) in combination with evolutionary optimization (GA) for representing undefined biological functions which is the case for common industrial processes involving biological moieties. PMID:27920762
Lubrini, G; Martín-Montes, A; Díez-Ascaso, O; Díez-Tejedor, E
2018-04-01
Our conception of the mind-brain relationship has evolved from the traditional idea of dualism to current evidence that mental functions result from brain activity. This paradigm shift, combined with recent advances in neuroimaging, has led to a novel definition of brain functioning in terms of structural and functional connectivity. The purpose of this literature review is to describe the relationship between connectivity, brain lesions, cerebral plasticity, and functional recovery. Assuming that brain function results from the organisation of the entire brain in networks, brain dysfunction would be a consequence of altered brain network connectivity. According to this approach, cognitive and behavioural impairment following brain damage result from disrupted functional organisation of brain networks. However, the dynamic and versatile nature of these circuits makes recovering brain function possible. Cerebral plasticity allows for functional reorganisation leading to recovery, whether spontaneous or resulting from cognitive therapy, after brain disease. Current knowledge of brain connectivity and cerebral plasticity provides new insights into normal brain functioning, the mechanisms of brain damage, and functional recovery, which in turn serve as the foundations of cognitive therapy. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Herrera-Guzmán, Ixchel; Gudayol-Ferré, Esteve; Herrera-Abarca, Jorge E; Herrera-Guzmán, Daniel; Montelongo-Pedraza, Pedro; Padrós Blázquez, Ferran; Peró-Cebollero, Maribel; Guàrdia-Olmos, Joan
2010-06-01
Cognitive disturbances in Major Depressive Disorder (MDD) could persist beyond the symptomatic phase of the illness. However, the works addressing this topic did not usually account for the possible impact of medication on the cognitive functions of depressed patients. The present study aims to investigate whether MDD patients in remission treated with selective serotonin reuptake inhibitors (SSRI) or dual serotonergic-noradrenergic reuptake inhibitors (SNRI) show cognitive deficits, to study whether the same patients suffer neuropsychological disturbances when they are unmedicated and in recovery phase, and if the previous pharmacological treatment used to achieve the remission of MDD clinical symptoms had any effect in the profile of these patients' cognitive performance in the recovery phase. Thirty-six subjects with MDD treated with escitalopram and 37 depressed patients with duloxetine were compared both in remission phase and 24 weeks later, when they were unmedicated and in recovery phase. They were also compared, in both moments, to 37 healthy subjects. The control subjects showed a broader better cognitive performance than MDD patients in both measurement moments, but several cognitive functions improved over time. Also, the patients treated with SNRI performed better in memory tests than the SNRI-treated patients in remission phase, and in recovery phase. Our sample size is somewhat small, and we followed our patients only for 6months after treatment. Cognitive functions improve over time in patients with MDD beyond the remission phase, and the antidepressant treatment class used in acute depressive phase could influence his/her memory improvement. Copyright 2009 Elsevier B.V. All rights reserved.
Magaziner, Jay; Chiles, Nancy; Orwig, Denise
2017-01-01
Hip fracture is a significant public health problem affecting an estimated 1.6 million persons annually. The consequences of hip fracture are also significant, with more than half of those who sustain a fracture either dying or not returning to functional abilities present before fracture required to function independently. The Baltimore Hip Studies (BHS) is a program of research that for more than 30 years has been doing investigations to identify, develop, and evaluate strategies to optimize recovery from hip fracture. This paper provides an overview of known outcomes and recovery patterns following a hip fracture, which are derived primarily from the BHS. Target areas and timing for interventions based on this recovery sequence are suggested. The paper concludes with a discussion of some of the areas that the next generation of studies needs to concentrate on in order to advance knowledge about the care of hip fracture patients to maximize their recovery. PMID:26484873
Zhang, Jingmiao; Mu, Xiali; Breker, Dane A; Li, Ying; Gao, Zongliang; Huang, Yonglu
2017-01-01
Statins have a positive impact on ischemic stroke outcome. It has been reported that statin have neuroprotective function after ischemic stroke in addition to lipid-lowering effect in animal model. However, the neuroprotective function of statin after stroke has not been confirmed in clinical studies. The aim of this study was to evaluate in a clinical model if statins induce neuroprotection after stroke. We, therefore, assessed serum brain-derived neurotrophic factor (BDNF) levels and functional recovery in atherothrombotic stroke patients and investigated their relationship with atorvastatin treatment. Seventy-eight patients with atherothrombotic stroke were enrolled and randomly assigned to atorvastatin treatment group or placebo control group. Neurological function after stroke was assessed with the National Institutes of Health Stroke Scale, modified Rankin Scale (mRS) and Barthel Index (BI). The serum BDNF levels were both measured at 1 day and 6 weeks after stroke. Linear regression was used to assess the association between BDNF levels and neurological function scores. The mRS and BI were markedly improved in the atorvastatin group when compared to placebo at 6 weeks after stroke. The serum BDNF levels in atorvastatin group were significantly elevated by 6 weeks after stroke and higher than the BDNF levels in controls. In addition, the serum BDNF levels significantly correlated with mRS and BI after stroke. Our results demonstrated that atorvastatin treatment was associated with the increased BDNF level and improved functional recovery after atherothrombotic stroke. This study indicates that atorvastatin-related elevation in the BDNF level may promote functional recovery in stroke patients.
Coronary wave energy: a novel predictor of functional recovery after myocardial infarction.
De Silva, Kalpa; Foster, Paul; Guilcher, Antoine; Bandara, Asela; Jogiya, Roy; Lockie, Tim; Chowiencyzk, Phil; Nagel, Eike; Marber, Michael; Redwood, Simon; Plein, Sven; Perera, Divaka
2013-04-01
Revascularization after acute coronary syndromes provides prognostic benefit, provided that the subtended myocardium is viable. The microcirculation and contractility of the subtended myocardium affect propagation of coronary flow, which can be characterized by wave intensity analysis. The study objective was to determine in acute coronary syndromes whether early wave intensity analysis-derived microcirculatory (backward) expansion wave energy predicts late viability, defined by functional recovery. Thirty-one patients (58±11 years) were enrolled after non-ST elevation myocardial infarction. Regional left ventricular function and late-gadolinium enhancement were assessed by cardiac magnetic resonance imaging, before and 3 months after revascularization. The backward-traveling (microcirculatory) expansion wave was derived from wave intensity analysis of phasic coronary pressure and velocity in the infarct-related artery, whereas mean values were used to calculate hyperemic microvascular resistance. Twelve-hour troponin T, left ventricular ejection fraction, and percentage late-gadolinium enhancement mass were 1.35±1.21 µg/L, 56±11%, and 8.4±6.0%, respectively. The infarct-related artery backward-traveling (microcirculatory) expansion wave was inversely correlated with late-gadolinium enhancement infarct mass (r=-0.81; P<0.0001) and strongly predicted regional left ventricular recovery (r=0.68; P=0.001). By receiver operating characteristic analysis, a backward-traveling (microcirculatory) expansion wave threshold of 2.8 W m(-2) s(-2)×10(5) predicted functional recovery with sensitivity and specificity of 0.91 and 0.82 (AUC 0.88). Hyperemic microvascular resistance correlated with late-gadolinium enhancement mass (r=0.48; P=0.03) but not left ventricular recovery (r=-0.34; P=0.07). The microcirculation-derived backward expansion wave is a new index that correlates with the magnitude and location of infarction, which may allow for the prediction of functional myocardial recovery. Coronary wave intensity analysis may facilitate myocardial viability assessment during cardiac catheterization.
Use of cognitive behavior therapy for functional hypothalamic amenorrhea.
Berga, Sarah L; Loucks, Tammy L
2006-12-01
Behaviors that chronically activate the hypothalamic-pituitary-adrenal (HPA) axis and/or suppress the hypothalamic-pituitary-thyroidal (HPT) axis disrupt the hypothalamic-pituitary-gonadal axis in women and men. Individuals with functional hypothalamic hypogonadism typically engage in a combination of behaviors that concomitantly heighten psychogenic stress and increase energy demand. Although it is not widely recognized clinically, functional forms of hypothalamic hypogonadism are more than an isolated disruption of gonadotropin-releasing hormone (GnRH) drive and reproductive compromise. Indeed, women with functional hypothalamic amenorrhea display a constellation of neuroendocrine aberrations that reflect allostatic adjustments to chronic stress. Given these considerations, we have suggested that complete neuroendocrine recovery would involve more than reproductive recovery. Hormone replacement strategies have limited benefit because they do not ameliorate allostatic endocrine adjustments, particularly the activation of the adrenal and the suppression of the thyroidal axes. Indeed, the rationale for the use of sex steroid replacement is based on the erroneous assumption that functional forms of hypothalamic hypogonadism represent only or primarily an alteration in the hypothalamic-pituitary-gonadal axis. Potential health consequences of functional hypothalamic amenorrhea, often termed stress-induced anovulation, may include an increased risk of cardiovascular disease, osteoporosis, depression, other psychiatric conditions, and dementia. Although fertility can be restored with exogenous administration of gonadotropins or pulsatile GnRH, fertility management alone will not permit recovery of the adrenal and thyroidal axes. Initiating pregnancy with exogenous means without reversing the hormonal milieu induced by chronic stress may increase the likelihood of poor obstetrical, fetal, or neonatal outcomes. In contrast, behavioral and psychological interventions that address problematic behaviors and attitudes, such as cognitive behavior therapy (CBT), have the potential to permit resumption of full ovarian function along with recovery of the adrenal, thyroidal, and other neuroendocrine aberrations. Full endocrine recovery potentially offers better individual, maternal, and child health.
A robust functional-data-analysis method for data recovery in multichannel sensor systems.
Sun, Jian; Liao, Haitao; Upadhyaya, Belle R
2014-08-01
Multichannel sensor systems are widely used in condition monitoring for effective failure prevention of critical equipment or processes. However, loss of sensor readings due to malfunctions of sensors and/or communication has long been a hurdle to reliable operations of such integrated systems. Moreover, asynchronous data sampling and/or limited data transmission are usually seen in multiple sensor channels. To reliably perform fault diagnosis and prognosis in such operating environments, a data recovery method based on functional principal component analysis (FPCA) can be utilized. However, traditional FPCA methods are not robust to outliers and their capabilities are limited in recovering signals with strongly skewed distributions (i.e., lack of symmetry). This paper provides a robust data-recovery method based on functional data analysis to enhance the reliability of multichannel sensor systems. The method not only considers the possibly skewed distribution of each channel of signal trajectories, but is also capable of recovering missing data for both individual and correlated sensor channels with asynchronous data that may be sparse as well. In particular, grand median functions, rather than classical grand mean functions, are utilized for robust smoothing of sensor signals. Furthermore, the relationship between the functional scores of two correlated signals is modeled using multivariate functional regression to enhance the overall data-recovery capability. An experimental flow-control loop that mimics the operation of coolant-flow loop in a multimodular integral pressurized water reactor is used to demonstrate the effectiveness and adaptability of the proposed data-recovery method. The computational results illustrate that the proposed method is robust to outliers and more capable than the existing FPCA-based method in terms of the accuracy in recovering strongly skewed signals. In addition, turbofan engine data are also analyzed to verify the capability of the proposed method in recovering non-skewed signals.
Gu, Zhen; Li, Fengqiao; Zhang, Yi Ping; Shields, Lisa B E; Hu, Xiaoling; Zheng, Yiyan; Yu, Panpan; Zhang, Yongjie; Cai, Jun; Vitek, Michael P; Shields, Christopher B
2013-04-01
Considering demyelination is the pathological hallmark of multiple sclerosis (MS), reducing demyelination and/or promoting remyelination is a practical therapeutic strategy to improve functional recovery for MS. An apolipoprotein E (apoE)-mimetic peptide COG112 has previously demonstrated therapeutic efficacy on functional and histological recovery in a mouse experimental autoimmune encephalomyelitis (EAE) model of human MS. In the current study, we further investigated whether COG112 promotes remyelination and improves functional recovery in lysolecithin induced focal demyelination in the white matter of spinal cord in mice. A focal demyelination model was created by stereotaxically injecting lysolecithin into the bilateral ventrolateral funiculus (VLF) of T8 and T9 mouse spinal cords. Immediately after lysolecithin injection mice were treated with COG112, prefix peptide control or vehicle control for 21 days. The locomotor function of the mice was measured by the beam walking test and Basso Mouse Scale (BMS) assessment. The nerve transmission of the VLF of mice was assessed in vivo by transcranial magnetic motor evoked potentials (tcMMEPs). The histological changes were also examined by by eriochrome cyanine staining, immunohistochemistry staining and electron microscopy (EM) method. The area of demyelination in the spinal cord was significantly reduced in the COG112 group. EM examination showed that treatment with COG112 increased the thickness of myelin sheaths and the numbers of surviving axons in the lesion epicenter. Locomotor function was improved in COG112 treated animals when measured by the beam walking test and BMS assessment compared to controls. TcMMEPs also demonstrated the COG112-mediated enhancement of amplitude of evoked responses. The apoE-mimetic COG112 demonstrates a favorable combination of activities in suppressing inflammatory response, mitigating demyelination and in promoting remyelination and associated functional recovery in animal model of CNS demyelination. These data support that apoE-mimetic strategy may represent a promising therapy for MS and other demyelination disorders.
Kristo, Gert; Raemaekers, Mathijs; Rutten, Geert-Jan; de Gelder, Beatrice; Ramsey, Nick F
2015-03-01
Despite many claims of functional reorganization following tumour surgery, empirical studies that investigate changes in functional activation patterns are rare. This study investigates whether functional recovery following surgical treatment in patients with a low-grade glioma in the left hemisphere is linked to inter-hemispheric reorganization. Based on literature, we hypothesized that reorganization would induce changes in the spatial pattern of activation specifically in tumour homologue brain areas in the healthy right hemisphere. An experimental group (EG) of 14 patients with a glioma in the left hemisphere near language related brain areas, and a control group of 6 patients with a glioma in the right, non-language dominant hemisphere were scanned before and after resection. In addition, an age and gender matched second control group of 18 healthy volunteers was scanned twice. A verb generation task was used to map language related areas and a novel technique was used for data analysis. Contrary to our hypothesis, we found that functional recovery following surgery of low-grade gliomas cannot be linked to functional reorganization in language homologue brain areas in the healthy, right hemisphere. Although elevated changes in the activation pattern were found in patients after surgery, these were largest in brain areas in proximity to the surgical resection, and were very similar to the spatial pattern of the brain shift following surgery. This suggests that the apparent perilesional functional reorganization is mostly caused by the brain shift as a consequence of surgery. Perilesional functional reorganization can however not be excluded. The study suggests that language recovery after transient post-surgical language deficits involves recovery of functioning of the presurgical language system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Baumüller, E; Schaller, S J; Chiquito Lama, Y; Frick, C G; Bauhofer, T; Eikermann, M; Fink, H; Blobner, M
2015-05-01
A train-of-four ratio (TOFR) ≥0.9 measured by quantitative neuromuscular monitoring is accepted as an indication of sufficient neuromuscular recovery for extubation, even though many postsynaptic acetylcholine receptors may still be inhibited. We investigated whether antagonism with sugammadex after spontaneous recovery to TOFR≥0.9 further improves muscle function or subjective well-being. Following recovery to TOFR≥0.9 and emergence from anaesthesia, 300 patients randomly received either sugammadex 1.0 mg kg(-1) or placebo. Fine motor function (Purdue Pegboard Test) and maximal voluntary grip strength were measured before and after surgery (before and after test drug administration). At discharge from the postanaesthesia care unit, well-being was assessed with numerical analogue scales and the Quality-of-Recovery Score 40 (QoR-40). Patients' fine motor function [6 (sd 4) vs 15 (3) pegs (30 s)(-1), P<0.05] and maximal voluntary grip strength (284 (126) vs 386 (125) N, P<0.05) were significantly lower after anaesthesia compared with the pre-anaesthesia baseline. After sugammadex or placebo, motor function was significantly improved in both groups but did not reach the preoperative level. There was no difference between groups at any time. Global well-being was unaffected (QoR-40: placebo, 174 vs 185; sugammadex, 175 vs 186, P>0.05). Antagonizing rocuronium at TOF≥0.9 with sugammadex 1.0 mg kg(-) (1) did not improve patients' motor function or well-being when compared with placebo. Our data support the view that TOFR≥0.9 measured by electromyography signifies sufficient recovery of neuromuscular function. The trial is registered at ClinicalTrials.gov (NCT01101139). © The Author 2014. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Psychological stress impairs short-term muscular recovery from resistance exercise.
Stults-Kolehmainen, Matthew A; Bartholomew, John B
2012-11-01
The primary aim of this study was to determine whether chronic mental stress moderates recovery of muscular function, perceived energy, fatigue, and soreness in the first hour after a bout of strenuous resistance exercise. Thirty-one undergraduate resistance training students (age = 20.26 ± 1.34 yr) completed the Perceived Stress Scale and Undergraduate Stress Questionnaire (USQ; a measure of life event stress) and completed fitness testing. After 5 to 14 d of recovery, they performed an acute heavy-resistance exercise protocol (10-repetition maximum (RM) leg press test plus six sets: 80%-100% of 10 RM). Maximal isometric force (MIF) was assessed before exercise, after exercise, and at 20, 40, and 60 min postexercise. Participants also reported their levels of perceived energy, fatigue, and soreness. Recovery data were analyzed with hierarchical linear modeling growth curve analysis. Life event stress significantly moderated linear (P = 0.013) and squared (P = 0.05) recovery of MIF. This relationship held even when the model was adjusted for fitness, workload, and training experience. Likewise, perceived stress moderated linear recovery of MIF (P = 0.023). Neither USQ nor Perceived Stress Scale significantly moderated changes in energy, fatigue, or soreness. Life event stress and perceived stress both moderated the recovery of muscular function, but not psychological responses, in the first hour after strenuous resistance exercise.
NASA Astrophysics Data System (ADS)
Lim, Y. G.; Kim, W. J.
2017-03-01
The characteristics of the recovery stress and strain of an ultrafine-grained Ni-50.2 at% Ti alloy prepared by high-ratio differential speed rolling (HRDSR) were examined, and the factors that influence the recovery stress and strain and the relation between the two were studied. After HRDSR, both the recovery stress and strain were enhanced compared to the initial condition. The subsequent annealing treatment at 673 K, however, reduced the shape recovery properties. The constitutive equation showing that the maximum recovery stress is a sole function of the recovery strain was developed. The recovery strain increased as the yield stress increased. Thus, the maximum recovery stress increased with an increase in yield stress. The recovery stress measured at room temperature (i.e., residual recovery stress) was, on the other hand, affected by the yield stress as well as the austenite-to-martensite transformation temperature. As the yield stress increased and as the martensitic transformation temperature decreased, the residual recovery stress increased.
Kim, Jung Hee; Lee, Byoung-Hee
2015-06-01
The objective of this study was to evaluate the effects of mirror therapy in combination with biofeedback functional electrical stimulation (BF-FES) on motor recovery of the upper extremities after stroke. Twenty-nine patients who suffered a stroke > 6 months prior participated in this study and were randomly allocated to three groups. The BF-FES + mirror therapy and FES + mirror therapy groups practiced training for 5 × 30 min sessions over a 4-week period. The control group received a conventional physical therapy program. The following clinical tools were used to assess motor recovery of the upper extremities: electrical muscle tester, electrogoniometer, dual-inclinometer, electrodynamometer, the Box and Block Test (BBT) and Jabsen Taylor Hand Function Test (JHFT), the Functional Independence Measure, the Modified Ashworth Scale, and the Stroke Specific Quality of Life (SSQOL) assessment. The BF-FES + mirror therapy group showed significant improvement in wrist extension as revealed by the Manual Muscle Test and Range of Motion (p < 0.05). The BF-FES + mirror therapy group showed significant improvement in the BBT, JTHT, and SSQOL compared with the FES + mirror therapy group and control group (p < 0.05). We found that BF-FES + mirror therapy induced motor recovery and improved quality of life. These results suggest that mirror therapy, in combination with BF-FES, is feasible and effective for motor recovery of the upper extremities after stroke. Copyright © 2014 John Wiley & Sons, Ltd.
Dhamapurkar, Samira Kashinath; Rose, Anita; Florschutz, Gerhard; Wilson, Barbara A
2016-01-01
Recovery of consciousness and recovery of function among patients with prolonged disorders of consciousness rarely occur. Those patients who do regain consciousness typically remain with severe disability. The aim of this retrospective study is to suggest that continuing improvement is possible in a survivor of catastrophic brain injury after being in a prolonged state of disordered consciousness. This retrospective single case study follows the progress of a 29 year old man, I.J, who sustained a severe traumatic brain injury following an assault in October 2011. He was in a vegetative state for 15 months and in a minimally conscious state for a further 4 months. This was followed by a slow and steady recovery of motor and cognitive functions. At 3 years post-injury I.J is considered to be moderately disabled. He is now living in the community with continuing outpatient support. On the disability rating scale his level of functioning is rated as mildly dependent. This study shows that continuing recovery to a level of moderate disability is possible, even after a prolonged disorder of consciousness. Intense multi-disciplinary long-term rehabilitation and cranioplasty may be contributing factors for such an unexpected recovery.
An Integrated Recovery-oriented Model (IRM) for mental health services: evolution and challenges.
Frost, Barry G; Tirupati, Srinivasan; Johnston, Suzanne; Turrell, Megan; Lewin, Terry J; Sly, Ketrina A; Conrad, Agatha M
2017-01-17
Over past decades, improvements in longer-term clinical and personal outcomes for individuals experiencing serious mental illness (SMI) have been moderate, although recovery has clearly been shown to be possible. Recovery experiences are inherently personal, and recovery can be complex and non-linear; however, there are a broad range of potential recovery contexts and contributors, both non-professional and professional. Ongoing refinement of recovery-oriented models for mental health (MH) services needs to be fostered. This descriptive paper outlines a service-wide Integrated Recovery-oriented Model (IRM) for MH services, designed to enhance personally valued health, wellbeing and social inclusion outcomes by increasing access to evidenced-based psychosocial interventions (EBIs) within a service context that supports recovery as both a process and an outcome. Evolution of the IRM is characterised as a series of five broad challenges, which draw together: relevant recovery perspectives; overall service delivery frameworks; psychiatric and psychosocial rehabilitation approaches and literature; our own clinical and service delivery experience; and implementation, evaluation and review strategies. The model revolves around the person's changing recovery needs, focusing on underlying processes and the service frameworks to support and reinforce hope as a primary catalyst for symptomatic and functional recovery. Within the IRM, clinical rehabilitation (CR) practices, processes and partnerships facilitate access to psychosocial EBIs to promote hope, recovery, self-agency and social inclusion. Core IRM components are detailed (remediation of functioning; collaborative restoration of skills and competencies; and active community reconnection), together with associated phases, processes, evaluation strategies, and an illustrative IRM scenario. The achievement of these goals requires ongoing collaboration with community organisations. Improved outcomes are achievable for people with a SMI. It is anticipated that the IRM will afford MH services an opportunity to validate hope, as a critical element for people with SMI in assuming responsibility and developing skills in self-agency and advocacy. Strengthening recovery-oriented practices and policies within MH services needs to occur in tandem with wide-ranging service evaluation strategies.
Le Berre, Anne-Pascale; Fama, Rosemary; Sullivan, Edith V
2017-08-01
Alcoholism is a complex and dynamic disease, punctuated by periods of abstinence and relapse, and influenced by a multitude of vulnerability factors. Chronic excessive alcohol consumption is associated with cognitive deficits, ranging from mild to severe, in executive functions, memory, and metacognitive abilities, with associated impairment in emotional processes and social cognition. These deficits can compromise efforts in initiating and sustaining abstinence by hampering efficacy of clinical treatment and can obstruct efforts in enabling good decision making success in interpersonal/social interactions, and awareness of cognitive and behavioral dysfunctions. Despite evidence for differences in recovery levels of selective cognitive processes, certain deficits can persist even with prolonged sobriety. Herein is presented a review of alcohol-related cognitive impairments affecting component processes of executive functioning, memory, and the recently investigated cognitive domains of metamemory, social cognition, and emotional processing; also considered are trajectories of cognitive recovery with abstinence. Finally, in the spirit of critical review, limitations of current knowledge are noted and avenues for new research efforts are proposed that focus on (i) the interaction among emotion-cognition processes and identification of vulnerability factors contributing to the development of emotional and social processing deficits and (ii) the time line of cognitive recovery by tracking alcoholism's dynamic course of sobriety and relapse. Knowledge about the heterochronicity of cognitive recovery in alcoholism has the potential of indicating at which points during recovery intervention may be most beneficial. Copyright © 2017 by the Research Society on Alcoholism.
Barskova, Tatjana; Wilz, Gabriele
2007-10-15
One goal of the study was to test specific hypotheses concerning the interdependence of the stroke survivors' recovery and their caregiving partners' attitudes and health. The other aim was to find an applicable method for investigating causal effects on the rehabilitation of chronically sick persons in longitudinal studies with medium-sized samples. The recovery of 81 stroke survivors regarding the physical and mental functioning in everyday life and their caregiving partners' health and attitudes were assessed twice, once after the patients left the hospital and again one year later. We applied the structure equation modeling and the cross-lagged partial correlation analysis (CLPC) for testing causal effects. Particularly stroke victims' cognitive and emotional recovery seems to be influenced by psychosocial factors such as the caregiving partners' acceptance of a post-stroke life-situation. In contrast to this, the research suggests that the patients' recovery regarding physical functioning is not substantially affected by the partners, rather the patients' difficulties with motor functioning influence their partners' health. Caregivers merit attention as part of rehabilitation interventions. We recommend the CLPC for investigating causal effects in the complex interdependence of chronically sick persons' convalescence and their family members' health and state of mind in medium-sized samples.
Khodaparast, Navid; Hays, Seth A.; Sloan, Andrew M.; Fayyaz, Tabbassum; Hulsey, Daniel R.; Rennaker, Robert L.; Kilgard, Michael P.
2014-01-01
Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into three groups: vagus nerve stimulation during rehab, vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), pre-lesion training, post-lesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed one week of recovery before post-lesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All seventeen trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to pre-lesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to pre-lesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared to rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation. PMID:24553102
Estes, James A.; Tinker, M. Tim; Bodkin, James L.
2010-01-01
Recovery criteria for depleted species or populations normally are based on demographic measures, the goal being to maintain enough individuals over a sufficiently large area to assure a socially tolerable risk of future extinction. Such demographically based recovery criteria may be insufficient to restore the functional roles of strongly interacting species. We explored the idea of developing a recovery criterion for sea otters (Enhydra lutris) in the Aleutian archipelago on the basis of their keystone role in kelp forest ecosystems. We surveyed sea otters and rocky reef habitats at 34 island-time combinations. The system nearly always existed in either a kelp-dominated or deforested phase state, which was predictable from sea otter density. We used a resampling analysis of these data to show that the phase state at any particular island can be determined at 95% probability of correct classification with information from as few as six sites. When sea otter population status (and thus the phase state of the kelp forest) was allowed to vary randomly among islands, just 15 islands had to be sampled to estimate the true proportion that were kelp dominated (within 10%) with 90% confidence. We conclude that kelp forest phase state is a more appropriate, sensitive, and cost-effective measure of sea otter recovery than the more traditional demographically based metrics, and we suggest that similar approaches have broad potential utility in establishing recovery criteria for depleted populations of other functionally important species.
Limited recovery of soil microbial activity after transient exposure to gasoline vapors.
Modrzyński, Jakub J; Christensen, Jan H; Mayer, Philipp; Brandt, Kristian K
2016-09-01
During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial growth ([(3)H]leucine incorporation). Microbial activity was strongly stimulated and inhibited at low and high exposure levels, respectively. Microbial growth efficiency decreased with increasing exposure, but rebounded during the recovery phase for low-dose treatments. Although benzene, toluene, ethylbenzene and xylene (BTEX) concentrations decreased by 83-97% during the recovery phase, microbial activity in high-dose treatments did not recover and numbers of viable bacteria were 3-4 orders of magnitude lower than in control soil. Re-inoculation with active soil microorganisms failed to restore microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient exposure to high, but environmentally relevant, levels of gasoline VOCs which therefore may compromise ecosystem services provided by microorganisms even after extensive soil VOC dissipation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Large Extremity Peripheral Nerve Repair
2013-10-01
show that the PTB method can provide fixation strengths approaching that of conventional microsurgery and that the PTB repair is unlikely to be...biomaterial during long periods of recovery associated with large nerve deficit reconstruction and long nerve grafts. As with the human amnion nerve...functional recovery model (SFI, sciatic function index) using PTB/xHAM wrap compared to standard (suture) of care microsurgery . Demonstrated improved nerve
[Effect factors analysis of knee function recovery after distal femoral fracture operation].
Bei, Chaoyong; Wang, Ruiying; Tang, Jicun; Li, Qiang
2009-09-01
To investigate the effect factors of knee function recovery after operation in distal femoral fractures. From January 2001 to May 2007, 92 cases of distal femoral fracture were treated. There were 50 males and 42 females, aged 20-77 years old (average 46.7 years old). Fracture was caused by traffic accident in 48 cases, by falling from height in 26 cases, by bruise in 12 cases and by tumble in 6 cases. According to Müller's Fracture classification, there were 29 cases of type A, 12 cases of type B and 51 cases of type C. According to American Society of Anesthesiologists (ASA) classification, there were 21 cases of grade I, 39 cases of grade II, 24 cases of grade III, and 8 cases of grade IV. The time from injury to operation was 4 hours to 24 days with an average of 7 days. Anatomical plate was used in 43 cases, retrograde interlocking intramedullary nail in 37 cases, and bone screws, bolts and internal fixation with Kirschner pins in 12 cases. After operation, the HSS knee function score was used to evaluate efficacy. Ten related factors were applied for statistical analysis, to knee function recovery after operation in distal femoral fractures, such as age, sex, preoperative ASA classification, injury to surgery time, fracture type, treatment, reduction quality, functional exercise after operation, whether or not CPM functional training and postoperative complications. Wound healed by first intention in 88 cases, infection occurred in 4 cases. All patients followed up 16-32 months with an average of 23.1 months. Clinical union of fracture was achieved within 3-7 months after operation. Extensor device adhesions and the scope of activities of <80 degrees occurred in 29 cases, traumatic arthritis in 25 cases, postoperative fracture displacement in 6 cases, mild knee varus or valgus in 7 cases and implant loosening in 6 cases. According to HSS knee function score, the results were excellent in 52 cases, good in 15 cases, fair in 10 cases and poor in 15 cases with an excellent and good rate of 72.83%. Single factor analysis showed that age, preoperative ASA classification, fracture type, reduction quality, whether or not CPM functional exercise, and postoperative complications were significantly in knee function recovery (P < 0.05). logistic regression analysis showed that the fracture type, quality of reduction, whether or not CPM functional exercise, and age were major factors in the knee joint function recovery. Age, preoperative ASA classification, fracture type, reduction quality, and whether or not CPM functional training, postoperative complications factors may affect the knee joint function recovery. Adjustment to the patient's preoperative physical status, fractures anatomic reduction and firm fixation, early postoperative active and passive functional exercises, less postoperative complications can maximize the restoration of knee joint function.
Holtom-Viesel, Anita; Allan, Steven
2014-02-01
The objectives of this review were to systematically identify and evaluate quantitative research comparing family functioning (a) in eating disorder families with control families, (b) in families with different eating disorder diagnoses (c) perceptions of different family members and (d) the relationship between family functioning and recovery. This adds to the findings of previous reviews of family functioning by including data from control families, the range of diagnoses, and focusing on recovery. Findings were considered in relation to models of family functioning. Using specific search criteria, 17 research papers were identified and evaluated. Findings indicated that eating disorder families reported worse family functioning than control families but there was little evidence for a typical pattern of family dysfunction. A consistent pattern of family dysfunction for different diagnoses was not suggested but patients consistently rated their family as more dysfunctional than one or both of their parents. With respect to outcome and recovery, those with more positive perceptions of family functioning generally had more positive outcomes, irrespective of severity of eating disorder. Conclusions were limited by inconsistent findings and methodological issues. Further research is needed into the relationship between family functioning and outcome and the assessment of family functioning beyond self-report. © 2013.
Misdirection of Regenerating Axons and Functional Recovery Following Sciatic Nerve Injury in Rats
Hamilton, Shirley K.; Hinkle, Marcus L.; Nicolini, Jennifer; Rambo, Lindsay N.; Rexwinkle, April M.; Rose, Sam J.; Sabatier, Manning J.; Backus, Deborah; English, Arthur W.
2013-01-01
Poor functional recovery found after peripheral nerve injury has been attributed to the misdirection of regenerating axons to reinnervate functionally inappropriate muscles. We applied brief electrical stimulation (ES) to the common fibular (CF) but not the tibial (Tib) nerve just prior to transection and repair of the entire rat sciatic nerve, to attempt to influence the misdirection of its regenerating axons. The specificity with which regenerating axons reinnervated appropriate targets was evaluated physiologically using compound muscle action potentials (M responses) evoked from stimulation of the two nerve branches above the injury site. Functional recovery was assayed using the timing of electromyography (EMG) activity recorded from the tibialis anterior (TA) and soleus (Sol) muscles during treadmill locomotion and kinematic analysis of hindlimb locomotor movements. Selective ES of the CF nerve resulted in restored M-responses at earlier times than in unstimulated controls in both TA and Sol muscles. Stimulated CF axons reinnervated inappropriate targets to a greater extent than unstimulated Tib axons. During locomotion, functional antagonist muscles, TA and Sol, were coactivated both in stimulated rats and in unstimulated but injured rats. Hindlimb kinematics in stimulated rats were comparable to untreated rats, but significantly different from intact controls. Selective ES promotes enhanced axon regeneration but does so with decreased fidelity of muscle reinnervation. Functional recovery is neither improved nor degraded, suggesting that compensatory changes in the outputs of the spinal circuits driving locomotion may occur irrespective of the extent of misdirection of regenerating axons in the periphery. PMID:21120925
Shin, Hwa Kyung; Cho, Sang Hyun; Jeon, Hye-seon; Lee, Young-Hee; Song, Jun Chan; Jang, Sung Ho; Lee, Chu-Hee; Kwon, Yong Hyun
2008-09-19
We investigated the effect of electromyography (EMG)-triggered neuromuscular electrical stimulation (NMES; EMG-stim) on functional recovery of the hemiparetic hand and the related cortical activation pattern in chronic stroke patients. We enrolled 14 stroke patients, who were randomly assigned to the EMG-stim (n=7) or the control groups (n=7). The EMG-stim was applied to the wrist extensor of the EMG-stim group for two sessions (30 min/session) a day, five times per week for 10 weeks. Four functional tests (box and block, strength, the accuracy index, and the on/offset time of muscle contraction) and functional MRI (fMRI) were performed before and after treatment. fMRI was measured at 1.5 T in parallel with timed finger flexion-extension movements at a fixed rate. Following treatment, the EMG-stim group showed a significant improvement in all functional tests. The main cortical activation change with such functional improvement was shifted from the ipsilateral sensorimotor cortex (SMC) to the contralateral SMC. We demonstrated that 10-week EMG-stim can induce functional recovery and change of cortical activation pattern in the hemiparetic hand of chronic stroke patients.
Zhang, Yongming; Qiu, Binghui; Wang, Jinbiao; Yao, Yi; Wang, Chunlin; Liu, Jiachuan
2017-07-01
The purpose of this study was to investigate the effects of brain-derived neurotrophic factor (BDNF)-transfected bone marrow mesenchymal stem cells (BMSCs) on neural functional recovery and synaptophysin expression in rats with cerebral infarction (CI). A total of 120 healthy Sprague Dawley rats were randomly divided into sham group, control group, and model group. Craniotomy was conducted and neurological function defect scoring was used to verify the model. BDNF containing recombinant plasmid was transfected into rat BMSCs, which was verified by flow cytometry and Western Blot. After injection of the transfected BMSCs, neural functional recovery of the CI rats and synaptophysin expression were measured. After the CI rat model was established, magnetic resonance (MR) imaging, 2, 3, 5- triphenyl tetrazolium chloride (TTC) staining, and the neurological function defect scoring determined the success of the model. CD34 (-), CD45 (-), CD29 (+), and CD90 (+) cells detected showed that the obtained BMSCs have high purity. BDNF protein was highly expressed in the BMSCs successfully transfected with the recombinant plasmid. Balance beam walking score, rotating bar walking score, and screen test score were significantly lower, while synaptophysin expression was higher in the BDNF model group than those in the non-BDNF model group and sham group with time extension. BDNF can increase synaptic plasticity and neurogenesis and have a promotional role in neural functional recovery and synaptophysin expression in rats with CI. BDNF-transfected BMSCs may therefore have better treatment efficacy for CI clinically.
Predicting Recovery from Episodes of Major Depression
Solomon, David A.; Leon, Andrew C.; Coryell, William; Mueller, Timothy I.; Posternak, Michael; Endicott, Jean; Keller, Martin B.
2008-01-01
Background This study examined psychosocial functioning as a predictor of recovery from episodes of unipolar major depression. Methods 231 subjects diagnosed with major depressive disorder according to Research Diagnostic Criteria were prospectively followed for up to 20 years as part of the NIMH Collaborative Depression Study. The association between psychosocial functioning and recovery from episodes of unipolar major depression was analyzed with a mixed-effects logistic regression model which controlled for cumulative morbidity, defined as the amount of time ill with major depression during prospective follow-up. Recovery was defined as at least eight consecutive weeks with either no symptoms of major depression, or only one or two symptoms at a mild level of severity. Results In the mixed-effects model, a one standard deviation increase in psychosocial impairment was significantly associated with a 22% decrease in the likelihood of subsequent recovery from an episode of major depression (OR = 0.78, 95% CI: 0.74–0.82, Z = −3.17, p < 0.002). Also, a one standard deviation increase in cumulative morbidity was significantly associated with a 61% decrease in the probability of recovery (OR = 0.3899, 95% CI: 0.3894–0.3903, Z = −7.21, p < 0.001). Limitations The generalizability of the study is limited in so far as subjects were recruited as they sought treatment at academic medical centers. The analyses examined the relationship between psychosocial functioning and recovery from major depression, and did not include episodes of minor depression. Furthermore, this was an observational study and the investigators did not control treatment. Conclusions Assessment of psychosocial impairment may help identify patients less likely to recover from an episode of major depression. PMID:17920692
Integrated risk and recovery monitoring of ecosystem restorations on contaminated sites
Hooper, Michael J.; Glomb, Stephen J.; Harper, David; Hoelzle, Timothy B.; McIntosh, Lisa M.; Mulligan, David R.
2016-01-01
Ecological restorations of contaminated sites balance the human and ecological risks of residual contamination with the benefits of ecological recovery and the return of lost ecological function and ecosystem services. Risk and recovery are interrelated dynamic conditions, changing as remediation and restoration activities progress through implementation into long-term management and ecosystem maturation. Monitoring restoration progress provides data critical to minimizing residual contaminant risk and uncertainty, while measuring ecological advancement toward recovery goals. Effective monitoring plans are designed concurrently with restoration plan development and implementation and are focused on assessing the effectiveness of activities performed in support of restoration goals for the site. Physical, chemical, and biotic measures characterize progress toward desired structural and functional ecosystem components of the goals. Structural metrics, linked to ecosystem functions and services, inform restoration practitioners of work plan modifications or more substantial adaptive management actions necessary to maintain desired recovery. Monitoring frequency, duration, and scale depend on specific attributes and goals of the restoration project. Often tied to restoration milestones, critical assessment of monitoring metrics ensures attainment of risk minimization and ecosystem recovery. Finally, interpretation and communication of monitoring findings inform and engage regulators, other stakeholders, the scientific community, and the public. Because restoration activities will likely cease before full ecosystem recovery, monitoring endpoints should demonstrate risk reduction and a successional trajectory toward the condition established in the restoration goals. A detailed assessment of the completed project's achievements, as well as unrealized objectives, attained through project monitoring, will determine if contaminant risk has been minimized, if injured resources have recovered, and if ecosystem services have been returned. Such retrospective analysis will allow better planning for future restoration goals and strengthen the evidence base for quantifying injuries and damages at other sites in the future.
Bellone, John A; Murray, Jeffrey R; Jorge, Paolo; Fogel, Travis G; Kim, Mary; Wallace, Desiree R; Hartman, Richard E
2018-02-13
We tested whether supplementing with pomegranate polyphenols can enhance cognitive/functional recovery after stroke. In this parallel, block-randomized clinical trial, we administered commercially-available pomegranate polyphenol or placebo pills twice per day for one week to adult inpatients in a comprehensive rehabilitation setting starting approximately 2 weeks after stroke. Pills contained 1 g of polyphenols derived from whole pomegranate, equivalent to levels in approximately 8 oz of juice. Placebo pills were similar to the pomegranate pills except that they contained only lactose. Of the 163 patients that were screened, 22 were eligible and 16 were randomized (8 per group). We excluded one subject per group from the neuropsychological analyses since they were lost to follow-up, but we included all subjects in the analysis of functional data since outcome data were available. Clinicians and subjects were blinded to group assignment. Neuropsychological testing (primary outcome: Repeatable Battery for the Assessment of Neuropsychological Status) and functional independence scores were used to determine changes in cognitive and functional ability. Pomegranate-treated subjects demonstrated more neuropsychological and functional improvement and spent less time in the hospital than placebo controls. Pomegranate polyphenols enhanced cognitive and functional recovery after stroke, justifying pursuing larger clinical trials.
Effect of intermittent hypoxia on neuro-functional recovery post brain ischemia in mice.
Qiao, Yanxiang; Liu, Zhenfang; Yan, Xianliang; Luo, Chuanming
2015-04-01
Intermittent hypoxia was a simulation of a high-altitude environment. Neuro-inflammation post brain ischemia was considered as a vital impact which contributed to cognitive-functional deficit. The isoform of nitric oxide synthase (iNOS) was an inflammation factor secreted by microglias in neuro-inflammation. In this study, we established a high-altitude environment as the hypoxic condition. Twenty mice were selected and randomized into a hypoxia group (n = 10) or a normoxia group (n = 10) post three vessel occlusion-induced brain ischemia. An enhancement of cognitive-functional recovery was presented in the hypoxia group by survival neuron counting and revealed by the Morris water maze test. Meanwhile, a high level of hypoxia-inducable factor 1 (HIF-1) expression associated with a lower expression of iNOS was observed in the border between infarcts and normal tissue of the hippocampus in the hypoxia group. However, these phenomenons were blocked by HIF-1 inhibition. This suggested that the acceleration of cognitive-functional recovery induced by intermittent hypoxia may depend on HIF-1 activating. An imitation of the hypoxic condition with or without HIF-1 inhibition was operated on the BV-2 cell. A high level of HIF-1 expression associated with a lower-level expression of iNOS was performed in the hypoxic condition. These data suggested that intermittent hypoxia can accelerate cognitive function recovery through attenuating neuro-inflammation.
Nagata, Kazuya; Itaka, Keiji; Baba, Miyuki; Uchida, Satoshi; Ishii, Takehiko; Kataoka, Kazunori
2014-06-10
The recovery of neurologic function after peripheral nerve injury often remains incomplete because of the prolonged reinnervation process, which leads to skeletal muscle atrophy and articular contracture from disuse over time. To rescue the skeletal muscle and promote functional recovery, insulin-like growth factor-1 (IGF-1), a potent myogenic factor, was introduced into the muscle by hydrodynamic injection of IGF-1-expressing plasmid DNA using a biocompatible nonviral gene carrier, a polyplex nanomicelle. In a mouse model of sciatic nerve injury, the introduction of IGF-1 into the skeletal muscle of the paralyzed limb effectively alleviated a decrease in muscle weight compared with that in untreated control mice. Histologic analysis of the muscle revealed the IGF-1-expressing plasmid DNA (pDNA) to have a myogenic effect, inducing muscle hypertrophy with the upregulation of the myogenic regulatory factors, myogenin and MyoD. The evaluation of motor function by walking track analysis revealed that the group that received the hydrodynamic injection of IGF-1-expressing pDNA using the polyplex nanomicelle had significantly early recovery of motor function compared with groups receiving negative control pDNA and untreated controls. Early recovery of sensation in the distal area of sciatic nerve injury was also induced by the introduction of IGF-1-expressing pDNA, presumably because of the effect of secreted IGF-1 protein in the vicinity of the injured sciatic nerve exerting a synergistic effect with muscle hypertrophy, inducing a more favorable prognosis. This approach of introducing IGF-1 into skeletal muscle is promising for the treatment of peripheral nerve injury by promoting early motor function recovery. Copyright © 2014 Elsevier B.V. All rights reserved.
Shetty, Pavan K; Galeffi, Francesca; Turner, Dennis A.
2014-01-01
Prolonged hypoxia leads to irreversible loss of neuronal function and metabolic impairment of nicotinamide adenine dinucleotide recycling (between NAD+ and NADH) immediately after reoxygenation, resulting in NADH hyperoxidation. We test whether addition of nicotinamide (to enhance NAD+ levels) or PARP-1 inhibition (to prevent consumption of NAD+) can be effective in improving either loss of neuronal function or hyperoxidation following severe hypoxic injury in hippocampal slices. After severe, prolonged hypoxia (maintained for 3 min after spreading depression) there was hyperoxidation of NADH following reoxygenation, an increased soluble NAD+/NADH ratio, loss of neuronal field excitatory post-synaptic potential (fEPSP) and decreased ATP content. Nicotinamide incubation (5 mM) 2 hr prior to hypoxia significantly increased total NAD(H) content, improved neuronal recovery, enhanced ATP content, and prevented NADH hyperoxidation. The nicotinamide-induced increase in total soluble NAD(H) was more significant in the cytosolic compartment than within mitochondria. Prolonged incubation with PJ-34 (>1hr) led to enhanced baseline NADH fluorescence prior to hypoxia, as well as improved neuronal recovery, NADH hyperoxidation and ATP content on recovery from severe hypoxia and reoxygenation. In this acute model of severe neuronal dysfunction prolonged incubation with either nicotinamide or PJ-34 prior to hypoxia improved recovery of neuronal function, enhanced NADH reduction and ATP content, but neither treatment restored function when administered during or after prolonged hypoxia and reoxygenation. PMID:24184921
High-Temperature Shape Memory Behavior of Semicrystalline Polyamide Thermosets.
Li, Ming; Guan, Qingbao; Dingemans, Theo J
2018-05-21
We have explored semicrystalline poly(decamethylene terephthalamide) (PA 10T) based thermosets as single-component high-temperature (>200 °C) shape memory polymers (SMPs). The PA 10T thermosets were prepared from reactive thermoplastic precursors. Reactive phenylethynyl (PE) functionalities were either attached at the chain termini or placed as side groups along the polymer main chain. The shape fixation and recovery performance of the thermoset films were investigated using a rheometer in torsion mode. By controlling the M n of the reactive oligomers, or the PE concentration of the PE side-group functionalized copolyamides, we were able to design dual-shape memory PA 10T thermosets with a broad recovery temperature range of 227-285 °C. The thermosets based on the 1000 g mol -1 reactive PE precursor and the copolyamide with 15 mol % PE side groups show the highest fixation rate (99%) and recovery rate (≥90%). High temperature triple-shape memory behavior can be achieved as well when we use the melt transition ( T m ≥ 200 °C) and the glass transition ( T g = ∼125 °C) as the two switches. The recovery rate of the two recovery steps are highly dependent on the crystallinity of the thermosets and vary within a wide range of 74%-139% and 40-82% for the two steps, respectively. Reversible shape memory events could also be demonstrated when we perform a forward and backward deformation in a triple shape memory cycle. We also studied the angular recovery velocity as a function of temperature, which provides a thermokinematic picture of the shape recovery process and helps to program for desired shape memory behavior.
High-Temperature Shape Memory Behavior of Semicrystalline Polyamide Thermosets
2018-01-01
We have explored semicrystalline poly(decamethylene terephthalamide) (PA 10T) based thermosets as single-component high-temperature (>200 °C) shape memory polymers (SMPs). The PA 10T thermosets were prepared from reactive thermoplastic precursors. Reactive phenylethynyl (PE) functionalities were either attached at the chain termini or placed as side groups along the polymer main chain. The shape fixation and recovery performance of the thermoset films were investigated using a rheometer in torsion mode. By controlling the Mn of the reactive oligomers, or the PE concentration of the PE side-group functionalized copolyamides, we were able to design dual-shape memory PA 10T thermosets with a broad recovery temperature range of 227–285 °C. The thermosets based on the 1000 g mol–1 reactive PE precursor and the copolyamide with 15 mol % PE side groups show the highest fixation rate (99%) and recovery rate (≥90%). High temperature triple-shape memory behavior can be achieved as well when we use the melt transition (Tm ≥ 200 °C) and the glass transition (Tg = ∼125 °C) as the two switches. The recovery rate of the two recovery steps are highly dependent on the crystallinity of the thermosets and vary within a wide range of 74%–139% and 40–82% for the two steps, respectively. Reversible shape memory events could also be demonstrated when we perform a forward and backward deformation in a triple shape memory cycle. We also studied the angular recovery velocity as a function of temperature, which provides a thermokinematic picture of the shape recovery process and helps to program for desired shape memory behavior. PMID:29742899
Meli, Paula; Holl, Karen D.; Rey Benayas, José María; Jones, Holly P.; Jones, Peter C.; Montoya, Daniel; Moreno Mateos, David
2017-01-01
Global forest restoration targets have been set, yet policy makers and land managers lack guiding principles on how to invest limited resources to achieve them. We conducted a meta-analysis of 166 studies in naturally regenerating and actively restored forests worldwide to answer: (1) To what extent do floral and faunal abundance and diversity and biogeochemical functions recover? (2) Does recovery vary as a function of past land use, time since restoration, forest region, or precipitation? (3) Does active restoration result in more complete or faster recovery than passive restoration? Overall, forests showed a high level of recovery, but the time to recovery depended on the metric type measured, past land use, and region. Abundance recovered quickly and completely, whereas diversity recovered slower in tropical than in temperate forests. Biogeochemical functions recovered more slowly after agriculture than after logging or mining. Formerly logged sites were mostly passively restored and generally recovered quickly. Mined sites were nearly always actively restored using a combination of planting and either soil amendments or recontouring topography, which resulted in rapid recovery of the metrics evaluated. Actively restoring former agricultural land, primarily by planting trees, did not result in consistently faster or more complete recovery than passively restored sites. Our results suggest that simply ending the land use is sufficient for forests to recover in many cases, but more studies are needed that directly compare the value added of active versus passive restoration strategies in the same system. Investments in active restoration should be evaluated relative to the past land use, the natural resilience of the system, and the specific objectives of each project. PMID:28158256
Meli, Paula; Holl, Karen D; Rey Benayas, José María; Jones, Holly P; Jones, Peter C; Montoya, Daniel; Moreno Mateos, David
2017-01-01
Global forest restoration targets have been set, yet policy makers and land managers lack guiding principles on how to invest limited resources to achieve them. We conducted a meta-analysis of 166 studies in naturally regenerating and actively restored forests worldwide to answer: (1) To what extent do floral and faunal abundance and diversity and biogeochemical functions recover? (2) Does recovery vary as a function of past land use, time since restoration, forest region, or precipitation? (3) Does active restoration result in more complete or faster recovery than passive restoration? Overall, forests showed a high level of recovery, but the time to recovery depended on the metric type measured, past land use, and region. Abundance recovered quickly and completely, whereas diversity recovered slower in tropical than in temperate forests. Biogeochemical functions recovered more slowly after agriculture than after logging or mining. Formerly logged sites were mostly passively restored and generally recovered quickly. Mined sites were nearly always actively restored using a combination of planting and either soil amendments or recontouring topography, which resulted in rapid recovery of the metrics evaluated. Actively restoring former agricultural land, primarily by planting trees, did not result in consistently faster or more complete recovery than passively restored sites. Our results suggest that simply ending the land use is sufficient for forests to recover in many cases, but more studies are needed that directly compare the value added of active versus passive restoration strategies in the same system. Investments in active restoration should be evaluated relative to the past land use, the natural resilience of the system, and the specific objectives of each project.
Lerner, Michael Z; Matsushita, Takashi; Lankford, Karen L; Radtke, Christine; Kocsis, Jeffery D; Young, Nwanmegha O
2014-11-01
Intravenous administration of mesenchymal stem cells (MSCs) has been recently shown to enhance functional recovery after stroke and spinal cord injury. The therapeutic properties of MSCs are attributed to their secretion of a variety of potent antiinflammatory and neurotrophic factors. We hypothesize that intravenous administration of MSCs after recurrent laryngeal nerve (RLN) injury in the rat may enhance functional recovery. Animal Research. Twelve 250-gram Sprague-Dawley rats underwent a controlled crush injury to the left RLN. After confirming postoperative vocal fold immobility, each rat was intravenously infused with either green fluorescent protein-expressing MSCs or control media in a randomized and blinded fashion. Videolaryngoscopy was performed weekly. The laryngoscopy video recordings were reviewed and rated by a fellowship-trained laryngologist who remained blinded to the intervention using a 0 to 3 scale. At 1 week postinjury, the MSC-infused group showed a trend for higher average functional recovery scores compared to the control group (2.2 vs 1.3), but it did not reach statistical significance (P value of 0.06). By 2 weeks, however, both groups exhibited complete return of function. These pilot data indicate that with complete nerve transection by crush injury of the RLN in rat, there is complete recovery of vocal fold mobility at 2 weeks. At 1 week postinjury, animals receiving intravenous infusion of MSCs showed a trend for greater functional recovery, suggesting a potential beneficial effect of MSCs; however, this did not reach statistical significance. Therefore, no definite conclusions can be drawn from these data and further study is required. N/A. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
Treatment of asymptomatic UTI in older delirious medical in-patients: A prospective cohort study.
Dasgupta, Monidipa; Brymer, Chris; Elsayed, Sameer
2017-09-01
Despite clinical practice guidelines, asymptomatic bacteriuria (ASB) in older people is frequently treated. A common reason for treating ASB is a change in mental status. To determine how often asymptomatic UTI is treated in older medically ill delirious individuals and its association with functional recovery. Consecutive older medical in-patients were screened for delirium, and followed in hospital. Treatment for asymptomatic UTI was defined as documented treatment for a possible urinary tract infection with antibiotics, without concurrent infectious or urinary symptoms. The primary outcome was functional recovery at discharge or 3 months post-discharge. Poor functional recovery was defined by any one of death, new permanent long-term institutionalization or decreased ability to perform activities of daily living. The study sample comprised 343 delirious in-patients, of which 237 (69%) had poor functional recovery. Ninety two (27%) delirious in-patients were treated for asymptomatic UTI. Treatment for asymptomatic UTI was associated with poor functional recovery compared to other delirious in-patients (RR 1.30, 95% CI: 1.14-1.48 overall). Similar results were seen when the analysis was restricted to only bacteriuric delirious individuals. Seven (7.5%) individuals treated for asymptomatic UTI developed Clostridium difficile infection compared to eight (3.2%) in the remainder of the delirious cohort (OR 2.45, 95% CI: 0.86-6.96). These results suggest that treatment of asymptomatic UTI in older medical in-patients with delirium is common, and of questionable benefit. Further research is needed to establish guidelines to minimize over-treatment of UTI in older delirious in-patients. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Geissler, Sydney A.; Sabin, Alexandra L.; Besser, Rachel R.; Gooden, Olivia M.; Shirk, Bryce D.; Nguyen, Quan M.; Khaing, Zin Z.; Schmidt, Christine E.
2018-04-01
Objective. Demyelination that results from disease or traumatic injury, such as spinal cord injury (SCI), can have a devastating effect on neural function and recovery. Many researchers are examining treatments to minimize demyelination by improving oligodendrocyte availability in vivo. Transplantation of stem and oligodendrocyte progenitor cells is a promising option, however, trials are plagued by undirected differentiation. Here we introduce a biomaterial that has been optimized to direct the differentiation of neural progenitor cells (NPCs) toward oligodendrocytes as a cell delivery vehicle after SCI. Approach. A collagen-based hydrogel was modified to mimic the mechanical properties of the neonatal spinal cord, and components present in the developing extracellular matrix were included to provide appropriate chemical cues to the NPCs to direct their differentiation toward oligodendrocytes. The hydrogel with cells was then transplanted into a unilateral cervical contusion model of SCI to examine the functional recovery with this treatment. Six behavioral tests and histological assessment were performed to examine the in vivo response to this treatment. Main results. Our results demonstrate that we can achieve a significant increase in oligodendrocyte differentiation of NPCs compared to standard culture conditions using a three-component biomaterial composed of collagen, hyaluronic acid, and laminin that has mechanical properties matched to those of neonatal neural tissue. Additionally, SCI rats with hydrogel transplants, with and without NPCs, showed functional recovery. Animals transplanted with hydrogels with NPCs showed significantly increased functional recovery over six weeks compared to the media control group. Significance. The three-component hydrogel presented here has the potential to provide cues to direct differentiation in vivo to encourage regeneration of the central nervous system.
Pan, Yao; Abell, Guy C J; Bodelier, Paul L E; Meima-Franke, Marion; Sessitsch, Angela; Bodrossy, Levente
2014-08-01
Little is understood about the relationship between microbial assemblage history, the composition and function of specific functional guilds and the ecosystem functions they provide. To learn more about this relationship we used methane oxidizing bacteria (MOB) as model organisms and performed soil microcosm experiments comprised of identical soil substrates, hosting distinct overall microbial diversities(i.e., full, reduced and zero total microbial and MOB diversities). After inoculation with undisturbed soil, the recovery of MOB activity, MOB diversity and total bacterial diversity were followed over 3 months by methane oxidation potential measurements and analyses targeting pmoA and 16S rRNA genes. Measurement of methane oxidation potential demonstrated different recovery rates across the different treatments. Despite different starting microbial diversities, the recovery and succession of the MOB communities followed a similar pattern across the different treatment microcosms. In this study we found that edaphic parameters were the dominant factor shaping microbial communities over time and that the starting microbial community played only a minor role in shaping MOB microbial community.
Hitting a Moving Target: Basic Mechanisms of Recovery from Acquired Developmental Brain Injury
Giza, Christopher C.; Kolb, Bryan; Harris, Neil G.; Asarnow, Robert F.; Prins, Mayumi L.
2009-01-01
Acquired brain injuries represent a major cause of disability in the pediatric population. Understanding responses to developmental acquired brain injuries requires knowledge of the neurobiology of normal development, age-at-injury effects and experience-dependent neuroplasticity. In the developing brain, full recovery cannot be considered as a return to the premorbid baseline, since ongoing maturation means that cerebral functioning in normal individuals will continue to advance. Thus, the recovering immature brain has to ‘hit a moving target’ to achieve full functional recovery, defined as parity with age-matched uninjured peers. This review will discuss the consequences of developmental injuries such as focal lesions, diffuse hypoxia and traumatic brain injury (TBI). Underlying cellular and physiological mechanisms relevant to age-at-injury effects will be described in considerable detail, including but not limited to alterations in neurotransmission, connectivity/network functioning, the extracellular matrix, response to oxidative stress and changes in cerebral metabolism. Finally, mechanisms of experience-dependent plasticity will be reviewed in conjunction with their effects on neural repair and recovery. PMID:19956795
The reliability and validity of the Maryland Assessment of Recovery in Serious Mental Illness Scale.
Drapalski, Amy L; Medoff, Deborah; Dixon, Lisa; Bellack, Alan
2016-05-30
The current study aims to further evaluate the psychometric properties of the Maryland Assessment of Recovery in Serious Mental Illness (MARS), a relatively new instrument designed to assess personal recovery status in individuals with serious mental illness. Two hundred and fifty individuals with serious mental illness receiving outpatient mental health treatment completed a baseline assessment which included the MARS and measures to assess recovery-related constructs, clinical outcomes, and social and community functioning. The MARS demonstrated excellent internal consistency and test-retest reliability. Good construct validity was evidenced by strong positive relationships between the MARS and recovery-related constructs (e.g. hope, empowerment, self-efficacy, and personal agency) and a strong negative relationship with self-stigma. Divergent validity was demonstrated by weaker relationships with cognitive and social functioning. The confirmatory factor analysis did not confirm the unitary factor structure found in previous research. Given the equivocal result of the CFA, additional exploratory work is needed to determine if a more complex factor structure is present. This study provides addition support for the psychometric soundness of the MARS and subsequently, its potential use as a measure of personal recovery status in people with serious mental illness. Published by Elsevier Ireland Ltd.
Recovery of a tropical stream after a harvest-related chlorine poisoning event.
EFFIE A. GREATHOUSE; JAMES G. MARCH; PRINGLE; CATHERINE M.
2005-01-01
1. Harvest-related poisoning events are common in tropical streams, yet research on stream recovery has largely been limited to temperate streams and generally does not include any measures of ecosystem function, such as leaf breakdown. 2. We assessed recovery of a second-order, high-gradient stream draining the Luquillo Experimental Forest, Puerto Rico, 3 months after...
Marshall, Sarah L; Crowe, Trevor P; Oades, Lindsay G; Deane, Frank F; Kavanagh, David J
2007-03-01
This Open Forum examines research on case management that draws on consumer perspectives. It clarifies the extent of consumer involvement and whether evaluations were informed by recovery perspectives. Searches of three databases revealed 13 studies that sought to investigate consumer perspectives. Only one study asked consumers about experiences of recovery. Most evaluations did not adequately assess consumers' views, and active consumer participation in research was rare. Supporting an individual's recovery requires commitment to a recovery paradigm that incorporates traditional symptom reduction and improved functioning, with broader recovery principles, and a shift in focus from illness to well-being. It also requires greater involvement of consumers in the implementation of case management and ownership of their own recovery process, not just in research that evaluates the practice.
Noninvasive Strategies to Promote Functional Recovery after Stroke
Mauro, Alessandro; Rossi, Ferdinando; Carulli, Daniela
2013-01-01
Stroke is a common and disabling global health-care problem, which is the third most common cause of death and one of the main causes of acquired adult disability in many countries. Rehabilitation interventions are a major component of patient care. In the last few years, brain stimulation, mirror therapy, action observation, or mental practice with motor imagery has emerged as interesting options as add-on interventions to standard physical therapies. The neural bases for poststroke recovery rely on the concept of plasticity, namely, the ability of central nervous system cells to modify their structure and function in response to external stimuli. In this review, we will discuss recent noninvasive strategies employed to enhance functional recovery in stroke patients and we will provide an overview of neural plastic events associated with rehabilitation in preclinical models of stroke. PMID:23864962
Brain pathways to recovery from alcohol dependence.
Cui, Changhai; Noronha, Antonio; Warren, Kenneth R; Koob, George F; Sinha, Rajita; Thakkar, Mahesh; Matochik, John; Crews, Fulton T; Chandler, L Judson; Pfefferbaum, Adolf; Becker, Howard C; Lovinger, David; Everitt, Barry J; Egli, Mark; Mandyam, Chitra D; Fein, George; Potenza, Marc N; Harris, R Adron; Grant, Kathleen A; Roberto, Marisa; Meyerhoff, Dieter J; Sullivan, Edith V
2015-08-01
This article highlights the research presentations at the satellite symposium on "Brain Pathways to Recovery from Alcohol Dependence" held at the 2013 Society for Neuroscience Annual Meeting. The purpose of this symposium was to provide an up to date overview of research efforts focusing on understanding brain mechanisms that contribute to recovery from alcohol dependence. A panel of scientists from the alcohol and addiction research field presented their insights and perspectives on brain mechanisms that may underlie both recovery and lack of recovery from alcohol dependence. The four sessions of the symposium encompassed multilevel studies exploring mechanisms underlying relapse and craving associated with sustained alcohol abstinence, cognitive function deficit and recovery, and translational studies on preventing relapse and promoting recovery. Gaps in our knowledge and research opportunities were also discussed. Published by Elsevier Inc.
Brain Pathways to Recovery from Alcohol Dependence
Cui, Changhai; Noronha, Antonio; Warren, Kenneth; Koob, George F.; Sinha, Rajita; Thakkar, Mahesh; Matochik, John; Crews, Fulton T.; Chandler, L. Judson; Pfefferbaum, Adolf; Becker, Howard C.; Lovinger, David; Everitt, Barry; Egli, Mark; Mandyam, Chitra; Fein, George; Potenza, Marc N.; Harris, R. Adron; Grant, Kathleen A.; Roberto, Marisa; Meyerhoff, Dieter J.; Sullivan, Edith V.
2015-01-01
This article highlights the research presentations at the satellite symposium on “Brain Pathways to Recovery from Alcohol Dependence” held at the 2013 Society for Neuroscience Annual Meeting. The purpose of this symposium was to provide an up to date overview of research efforts focusing on understanding brain mechanisms that contribute to recovery from alcohol dependence. A panel of scientists from the alcohol and addiction research field presented their insights and perspectives on brain mechanisms that may underlie both recovery and lack of recovery from alcohol dependence. The four sessions of the symposium encompassed multilevel studies exploring mechanisms underlying relapse and craving associated with sustained alcohol abstinence, cognitive function deficit and recovery, and translational studies on preventing relapse and promoting recovery. Gaps in our knowledge and research opportunities were also discussed. PMID:26074423
Tong, Ling-Ling; Ding, You-Quan; Jing, Hong-Bo; Li, Xuan-Yang; Qi, Jian-Guo
2015-05-06
Peripheral nerve functional recovery after injuries relies on both axon regeneration and remyelination. Both axon regeneration and remyelination require intimate interactions between regenerating neurons and their accompanying Schwann cells. Previous studies have shown that motor and sensory neurons are intrinsically different in their regeneration potentials. Moreover, denervated Schwann cells accompanying myelinated motor and sensory axons have distinct gene expression profiles for regeneration-associated growth factors. However, it is unknown whether differential motor and sensory functional recovery exists. If so, the particular one among axon regeneration and remyelination responsible for this difference remains unclear. Here, we aimed to establish an adult rat sciatic nerve crush model with the nonserrated microneedle holders and measured rat motor and sensory functions during regeneration. Furthermore, axon regeneration and remyelination was evaluated by morphometric analysis of electron microscopic images on the basis of nerve fiber classification. Our results showed that Aα fiber-mediated motor function was successfully recovered in both male and female rats. Aδ fiber-mediated sensory function was partially restored in male rats, but completely recovered in female littermates. For both male and female rats, the numbers of regenerated motor and sensory axons were quite comparable. However, remyelination was diverse among myelinated motor and sensory nerve fibers. In detail, Aβ and Aδ fibers incompletely remyelinated in male, but not female rats, whereas Aα fibers fully remyelinated in both sexes. Our result indicated that differential motor and sensory functional recovery in male but not female adult rats is associated with remyelination rather than axon regeneration after sciatic nerve crush.
Puig-Antich, J; Lukens, E; Davies, M; Goetz, D; Brennan-Quattrock, J; Todak, G
1985-05-01
Psychosocial relationships with parents, peers, and siblings, as well as school functioning, were measured at two points in time by parental interview in 21 prepubertal children: during an episode of major depression and after they had sustained an affective recovery from the index episode for at least four months. School functioning was completely normalized, but deficits in the child's intrafamilial and extra-familial relationships had improved only partially. The pattern of improvement was merely quantitative. Moderate deficits during the depressive episode reached, after affective recovery, the level of the normal control group. In contrast, severe deficits only improved to a moderate level of severity. It is suggested that treating the affective disorder is not sufficient in many children with major depression and that efficacy studies of psychotherapeutic interventions in affectively recovered children are needed.
The mirror neuron system in post-stroke rehabilitation
2013-01-01
Different treatments for stroke patients have been proposed; among them the mirror therapy and motion imagery lead to functional recovery by providing a cortical reorganization. Up today the basic concepts of the current literature on mirror neurons and the major findings regarding the use of mirror therapy and motor imagery as potential tools to promote reorganization and functional recovery in post-stroke patients. Bibliographic research was conducted based on publications over the past thirteen years written in English in the databases Scielo, Pubmed/MEDLINE, ISI Web of Knowledge. The studies showed how the interaction among vision, proprioception and motor commands promotes the recruitment of mirror neurons, thus providing cortical reorganization and functional recovery of post-stroke patients. We conclude that the experimental advances on Mirror Neurons will bring new rational therapeutic approaches to post-stroke rehabilitation. PMID:24134862
The mirror neuron system in post-stroke rehabilitation.
Carvalho, Diana; Teixeira, Silmar; Lucas, Marina; Yuan, Ti-Fei; Chaves, Fernanda; Peressutti, Caroline; Machado, Sergio; Bittencourt, Juliana; Menéndez-González, Manuel; Nardi, Antonio Egidio; Velasques, Bruna; Cagy, Mauricio; Piedade, Roberto; Ribeiro, Pedro; Arias-Carrión, Oscar
2013-10-17
Different treatments for stroke patients have been proposed; among them the mirror therapy and motion imagery lead to functional recovery by providing a cortical reorganization. Up today the basic concepts of the current literature on mirror neurons and the major findings regarding the use of mirror therapy and motor imagery as potential tools to promote reorganization and functional recovery in post-stroke patients. Bibliographic research was conducted based on publications over the past thirteen years written in English in the databases Scielo, Pubmed/MEDLINE, ISI Web of Knowledge. The studies showed how the interaction among vision, proprioception and motor commands promotes the recruitment of mirror neurons, thus providing cortical reorganization and functional recovery of post-stroke patients. We conclude that the experimental advances on Mirror Neurons will bring new rational therapeutic approaches to post-stroke rehabilitation.
Longitudinal Changes of Resting-State Functional Connectivity during Motor Recovery after Stroke
Park, Chang-hyun; Chang, Won Hyuk; Ohn, Suk Hoon; Kim, Sung Tae; Bang, Oh Young; Pascual-Leone, Alvaro; Kim, Yun-Hee
2013-01-01
Background and Purpose Functional magnetic resonance imaging (fMRI) studies could provide crucial information on the neural mechanisms of motor recovery in stroke patients. Resting-state fMRI is applicable to stroke patients who are not capable of proper performance of the motor task. In this study, we explored neural correlates of motor recovery in stroke patients by investigating longitudinal changes in resting-state functional connectivity of the ipsilesional primary motor cortex (M1). Methods A longitudinal observational study using repeated fMRI experiments was conducted in 12 patients with stroke. Resting-state fMRI data were acquired four times over a period of 6 months. Patients participated in the first session of fMRI shortly after onset, and thereafter in subsequent sessions at 1, 3, and 6 months after onset. Resting-state functional connectivity of the ipsilesional M1 was assessed and compared with that of healthy subjects. Results Compared with healthy subjects, patients demonstrated higher functional connectivity with the ipsilesional frontal and parietal cortices, bilateral thalamus, and cerebellum. Instead, functional connectivity with the contralesional M1 and occipital cortex were decreased in stroke patients. Functional connectivity between the ipsilesional and contralesional M1 showed the most asymmetry at 1 month after onset to the ipsilesional side. Functional connectivity of the ipsilesional M1 with the contralesional thalamus, supplementary motor area, and middle frontal gyrus at onset was positively correlated with motor recovery at 6 months after stroke. Conclusions Resting-state fMRI elicited distinctive but comparable results with previous task-based fMRI, presenting complementary and practical values for use in the study of stroke patients. PMID:21441147
Bui, Tuan V; Stifani, Nicolas; Akay, Turgay; Brownstone, Robert M
2016-01-01
The spinal cord has the capacity to coordinate motor activities such as locomotion. Following spinal transection, functional activity can be regained, to a degree, following motor training. To identify microcircuits involved in this recovery, we studied a population of mouse spinal interneurons known to receive direct afferent inputs and project to intermediate and ventral regions of the spinal cord. We demonstrate that while dI3 interneurons are not necessary for normal locomotor activity, locomotor circuits rhythmically inhibit them and dI3 interneurons can activate these circuits. Removing dI3 interneurons from spinal microcircuits by eliminating their synaptic transmission left locomotion more or less unchanged, but abolished functional recovery, indicating that dI3 interneurons are a necessary cellular substrate for motor system plasticity following transection. We suggest that dI3 interneurons compare inputs from locomotor circuits with sensory afferent inputs to compute sensory prediction errors that then modify locomotor circuits to effect motor recovery. DOI: http://dx.doi.org/10.7554/eLife.21715.001 PMID:27977000
Kim, HyunJin; Lee, GyuChang; Song, ChangHo
2014-04-01
Motor recovery of the upper extremity in stroke patients is an important goal of rehabilitation. In particular, motor recovery can be accelerated when physical and cognitive interventions are combined. Thus, the aim of this study was to investigate the effects of functional electrical stimulation (FES) with mirror therapy (MT) on motor function of upper extremity in stroke patients. Twenty-seven stroke patients were recruited, and the 23 subjects who met the inclusion criteria were randomly allocated into 2 groups: the experimental group (n = 12) and the control group (n = 11). Both groups received conventional rehabilitation training for 60 minutes/day and 5 days/week for 4 weeks. In addition, members of the experimental group received FES with MT and members of the control group received FES without MT for 30 minutes/day and 5 days/week for 4 weeks. Immediately before and after intervention, motor recovery was measured using the Fugl-Meyer (FM) assessment, Brunnstrom's motor recovery stage (BMRS), the Manual Function Test (MFT), and the Box and Block Test (BBT). Significant upper extremity motor improvements were observed in the experimental and control groups according to the FM, BMRS, MFT, and BBT (P < .05). In particular, FM subscores for wrist, hand, and co-ordination and MFT subscores for hand function were more significantly improved in the experimental group (P < .05). Motor functions of the upper extremity were improved by FES with MT versus controls. The study shows that FES with MT during poststroke rehabilitation may effectively improve motor functions of the upper extremity. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.
JPRS Report, Science & Technology, USSR: Life Sciences
1989-02-10
29 Effects of Regulatory Peptides on Recovery of Visual Functions in Retinitis Pigmentosa [N. B. Kostelyanets, O. B. Ilyinskiy, et al; FIZIOLOGIYA...Western. UDC 612.812 Effects of Regulatory Peptides on Recovery of Visual Functions in Retinitis Pigmentosa 18400030a Moscow FIZIOLOGIYA CHELOVEKA in...et al.; BIOORGANICHESKAYA KHIMIYA, Vol 14 No 3, Mar 88] .. 3 Synthesis and Properties of C13-Dependent Retinals [S. V. Yeremin, B. I. Mitsner, et
Lokk, J; Salman Roghani, R; Delbari, A
2011-04-01
Amphetamine-like drugs are reported to enhance motor recovery and activities of daily living (ADL) in stroke rehabilitation, but results from trials with humans are inconclusive. This study is aimed at investigating whether levodopa (LD) and/or methylphenidate (MPH) in combination with physiotherapy could improve functional motor recovery and ADL in patients with stroke. A randomized, double-blind, placebo-controlled trial with ischemic stroke patients randomly allocated to one of four treatment groups of either MPH, LD or MPH+LD or placebo combined with physiotherapy was performed. Motor function, ADL, and stroke severity were assessed by Fugl-Meyer (FM), Barthel index (BI), and National Institute of Health Stroke Scale (NIHSS) at baseline, 15, 90, and 180 days respectively. All participants showed recovery of motor function and ADL during treatment and at 6-month follow-up. There were slightly but significant differences in BI and NIHSS compared to placebo at the 6-month follow-up. Ischemic chronic stroke patients having MPH and/or LD in combination with physiotherapy showed a slight ADL and stroke severity improvement over time. Future studies should address the issue of the optimal therapeutic window and dosage of medications to identify those patients who would benefit most. © 2010 John Wiley & Sons A/S.
2011-01-01
Background Recovery patterns of upper extremity motor function have been described in several longitudinal studies, but most of these studies have had selected samples, short follow up times or insufficient outcomes on motor function. The general understanding is that improvements in upper extremity occur mainly during the first month after the stroke incident and little if any, significant recovery can be gained after 3-6 months. The purpose of this study is to describe the recovery of upper extremity function longitudinally in a non-selected sample initially admitted to a stroke unit with first ever stroke, living in Gothenburg urban area. Methods/Design A sample of 120 participants with a first-ever stroke and impaired upper extremity function will be consecutively included from an acute stroke unit and followed longitudinally for one year. Assessments are performed at eight occasions: at day 3 and 10, week 3, 4 and 6, month 3, 6 and 12 after onset of stroke. The primary clinical outcome measures are Action Research Arm Test and Fugl-Meyer Assessment for Upper Extremity. As additional measures, two new computer based objective methods with kinematic analysis of arm movements are used. The ABILHAND questionnaire of manual ability, Stroke Impact Scale, grip strength, spasticity, pain, passive range of motion and cognitive function will be assessed as well. At one year follow up, two patient reported outcomes, Impact on Participation and Autonomy and EuroQol Quality of Life Scale, will be added to cover the status of participation and aspects of health related quality of life. Discussion This study comprises a non-selected population with first ever stroke and impaired arm function. Measurements are performed both using traditional clinical assessments as well as computer based measurement systems providing objective kinematic data. The ICF classification of functioning, disability and health is used as framework for the selection of assessment measures. The study design with several repeated measurements on motor function will give us more confident information about the recovery patterns after stroke. This knowledge is essential both for optimizing rehabilitation planning as well as providing important information to the patient about the recovery perspectives. Trial registration ClinicalTrials.gov: NCT01115348 PMID:21612620
Development of an Integrated Theory of Surgical Recovery in Older Adults.
Ann DiMaria-Ghalili, Rose
2016-01-01
Experts argue the health care system is not prepared to meet the unique needs of older surgical patients, including how to provide the best care during the recovery phase. Nutrition plays a critical role in the recovery of surgical patients. Since older adults are at risk for malnutrition, examining the role of nutrition as a mediator for surgical recovery across the care continuum in older adults is critical. Presently there is a paucity of frameworks, models, and guidelines that integrate the role of nutrition on the trajectory of postoperative recovery in older surgical patients. The purpose of this article is to introduce the Integrated Theory of Surgical Recovery in Older Adults, an interdisciplinary middle-range theory, so that scholars, researchers, and clinicians can use this framework to promote recovery from surgery in older adults by considering the contribution of mediators of recovery (nutritional status, functional status, and frailty) unique to the older adults.
Sihvonen, Aleksi J; Särkämö, Teppo; Ripollés, Pablo; Leo, Vera; Saunavaara, Jani; Parkkola, Riitta; Rodríguez-Fornells, Antoni; Soinila, Seppo
2017-09-12
Brain damage causing acquired amusia disrupts the functional music processing system, creating a unique opportunity to investigate the critical neural architectures of musical processing in the brain. In this longitudinal fMRI study of stroke patients (N = 41) with a 6-month follow-up, we used natural vocal music (sung with lyrics) and instrumental music stimuli to uncover brain activation and functional network connectivity changes associated with acquired amusia and its recovery. In the acute stage, amusic patients exhibited decreased activation in right superior temporal areas compared to non-amusic patients during instrumental music listening. During the follow-up, the activation deficits expanded to comprise a wide-spread bilateral frontal, temporal, and parietal network. The amusics showed less activation deficits to vocal music, suggesting preserved processing of singing in the amusic brain. Compared to non-recovered amusics, recovered amusics showed increased activation to instrumental music in bilateral frontoparietal areas at 3 months and in right middle and inferior frontal areas at 6 months. Amusia recovery was also associated with increased functional connectivity in right and left frontoparietal attention networks to instrumental music. Overall, our findings reveal the dynamic nature of deficient activation and connectivity patterns in acquired amusia and highlight the role of dorsal networks in amusia recovery.
Ozawa, I; Saito, K; Sugita, K; Sato, K; Akiba, M; Sugo, T
2000-08-04
A porous hollow-fiber membrane capable of recovery of germanium from a liquid stream was prepared by radiation-induced graft polymerization of an epoxy-group-containing vinyl monomer, glycidyl methacrylate, and subsequent functionalization with 2,2'-iminodiethanol, di-2-propanolamine, N-methylglucamine, and 3-amino-1,2-propanediol. The functional group density was as high as 1.4 mol per kg of the resultant hollow fiber. The polymer chains containing functional groups surrounding the pores enabled a high-speed recovery of germanium during permeation of a germanium oxide (GeO2) solution through the pores of the hollow fiber. Because of a negligible diffusional mass-transfer resistance, germanium concentration changes with the effluent volume, i.e., breakthrough curves, overlapped irrespective of the residence time of the solution, which ranged from 0.37 to 3.7 s across the hollow fiber. After repeated use of adsorption and elution, the adsorption capacity did not deteriorate.
Yousuf, Seema; Atif, Fahim; Sayeed, Iqbal; Tang, Huiling; Wang, Jun; Stein, Donald G
2015-01-01
Most pre-clinical stroke studies address the acute phase after injury, with less attention to long-term effects of injury, treatment, and experimental testing itself. We addressed these questions: 1) Will functional deficits persist up to 8 weeks following transient stroke in older animals? 2) Will functional deficits resolve spontaneously, with time and/or repeated behavioral testing? Male Sprague-Dawley rats (12 months) were pre-trained on behavioral tasks to provide baseline data and then underwent transient middle artery occlusion (tMCAO) or sham surgery. We measured motor, sensory, cognitive and gait impairments over 8 weeks, and the extent of hemispheric brain infarction. One cohort underwent behavioral testing once at 8 weeks post-stroke (LT); a second cohort (RLT) was tested at 3, 6 and 8 weeks post-stroke. Significant deficits were exhibited in all functional outcomes in both cohorts after 8 weeks. We observed some recovery in some behavioral parameters in both cohorts at 8 weeks. Deficits persist for at least 8 weeks after tMCAO. The greater spontaneous recovery seen in the RLT groups suggest that repeated testing did reduce the severity of these stroke-induced impairments. These findings have implications for designing future studies of agents to induce long-term functional recovery following stroke.
Renal Function Recovery with Total Artificial Heart Support.
Quader, Mohammed A; Goodreau, Adam M; Shah, Keyur B; Katlaps, Gundars; Cooke, Richard; Smallfield, Melissa C; Tchoukina, Inna F; Wolfe, Luke G; Kasirajan, Vigneshwar
2016-01-01
Heart failure patients requiring total artificial heart (TAH) support often have concomitant renal insufficiency (RI). We sought to quantify renal function recovery in patients supported with TAH at our institution. Renal function data at 30, 90, and 180 days after TAH implantation were analyzed for patients with RI, defined as hemodialysis supported or an estimated glomerular filtration rate (eGFR) less than 60 ml/min/1.73 m. Between January 2008 and December 2013, 20 of the 46 (43.5%) TAH recipients (age 51 ± 9 years, 85% men) had RI, mean preoperative eGFR of 48 ± 7 ml/min/1.73 m. Renal function recovery was noted at each follow-up interval: increment in eGFR (ml/min/1.73 m) at 30, 90, and 180 days was 21 ± 35 (p = 0.1), 16.5 ± 18 (p = 0.05), and 10 ± 9 (p = 0.1), respectively. Six patients (30%) required preoperative dialysis. Of these, four recovered renal function, one remained on dialysis, and one died. Six patients (30%) required new-onset dialysis. Of these, three recovered renal function and three died. Overall, 75% (15 of 20) of patients' renal function improved with TAH support. Total artificial heart support improved renal function in 75% of patients with pre-existing significant RI, including those who required preoperative dialysis.
Pérez-Cruzado, David; Merchán-Baeza, Jose Antonio; González-Sánchez, Manuel; Cuesta-Vargas, Antonio I
2017-04-01
Stroke is a leading cause of disability in developed countries. One of the most widespread techniques in clinical practice is mirror therapy (MT). To determine the effectiveness of MT over other methods of intervention in the recovery of upper limb function in people who have had a stroke. A systematic review was conducted. The search string was established based on the last systematic review about MT that dated from 2009: "upper extremity" OR "upper limb "AND "mirror therapy" AND stroke. For this search Pubmed, Scopus and SciELO databases were used. Fifteen studies were included in the systematic review. Recovery of the upper limb, upper limb function and gross manual dexterity were frequently measured in these studies. In the primary variables in promoting recovery, MT alone showed better results in acute and chronic stroke patients in upper limb functioning than either conventional rehabilitation (CR) or CR plus MT. PROSPERO registration number: CRD42015026869. © 2016 Occupational Therapy Australia.
The mediating effect of psychological distress on functional dependence in stroke patients.
Huang, Hui-Chuan; Huang, Li-Kai; Hu, Chaur-Jong; Chang, Chien-Hung; Lee, Hsin-Chien; Chi, Nai-Fang; Shyu, Meei-Ling; Chang, Hsiu-Ju
2014-12-01
To explore varied forms of psychological distress and to determine the mediating influence of psychological distress on functional outcomes in stroke patients. Previous studies attest to the influence of depression on poststroke functional recovery. While there is evidence for neuropathological deficits that occur after stroke to be associated with psychological distress, few studies have explored the effect of various types of psychological distress on functional recovery. A cross-sectional study was used. Data were collected from 178 first-time stroke patients. Study variables included demographic and disease characteristics (stroke location and stroke syndrome classification), psychological distress (the Chinese language version of the Emotional and Social Dysfunction Questionnaire) and functional outcome (Barthel index). Regression and mediation models were used to evaluate the effect of psychological distress on functional outcome. Results revealed that stroke patients experience various forms of mild psychological distress, including anger, helplessness, emotional dyscontrol, indifference, inertia and euphoria, after stroke. Regression and mediation analyses further confirmed that various forms of psychological distress significantly mediated the effect of severe stroke syndromes on functional dependence. The various forms of psychological distress after stroke might play a mediating role in functional recovery and explain how stroke severity affects functional dependence. By understanding the nature of various forms of psychological distress, healthcare professionals should adopt appropriate assessment instruments and design effective interventions to help improve mental and physical function of stroke patients. © 2014 John Wiley & Sons Ltd.
Transcranial direct current stimulation for motor recovery of upper limb function after stroke.
Lüdemann-Podubecká, Jitka; Bösl, Kathrin; Rothhardt, Sandra; Verheyden, Geert; Nowak, Dennis Alexander
2014-11-01
Changes in neural processing after stroke have been postulated to impede recovery from stroke. Transcranial direct current stimulation has the potential to alter cortico-spinal excitability and thereby might be beneficial in stroke recovery. We review the pertinent literature prior to 30/09/2013 on transcranial direct current stimulation in promoting motor recovery of the affected upper limb after stroke. We found overall 23 trials (they included 523 participants). All stimulation protocols pride on interhemispheric imbalance model. In a comparative approach, methodology and effectiveness of (a) facilitation of the affected hemisphere, (b) inhibition of the unaffected hemisphere and (c) combined application of transcranial direct current stimulation over the affected and unaffected hemispheres to treat impaired hand function after stroke are presented. Transcranial direct current stimulation is associated with improvement of the affected upper limb after stroke, but current evidence does not support its routine use. Copyright © 2014 Elsevier Ltd. All rights reserved.
Motor recovery after stroke: a systematic review.
Langhorne, Peter; Coupar, Fiona; Pollock, Alex
2009-08-01
Loss of functional movement is a common consequence of stroke for which a wide range of interventions has been developed. In this Review, we aimed to provide an overview of the available evidence on interventions for motor recovery after stroke through the evaluation of systematic reviews, supplemented by recent randomised controlled trials. Most trials were small and had some design limitations. Improvements in recovery of arm function were seen for constraint-induced movement therapy, electromyographic biofeedback, mental practice with motor imagery, and robotics. Improvements in transfer ability or balance were seen with repetitive task training, biofeedback, and training with a moving platform. Physical fitness training, high-intensity therapy (usually physiotherapy), and repetitive task training improved walking speed. Although the existing evidence is limited by poor trial designs, some treatments do show promise for improving motor recovery, particularly those that have focused on high-intensity and repetitive task-specific practice.
Kakinoki, Ryosuke; Duncan, Scott F M; Ikeguchi, Ryosuke; Ohta, Souichi; Nankaku, Manabu; Sakai, Hiroshi; Noguchi, Takashi; Kaizawa, Yukitoshi; Akagi, Masao
2017-06-01
Previous animal studies demonstrated that the sensory and motor functions in ipsilesional upper limbs that had been reconstructed by CC7 transfer eventually associated with the contralesional brain cortices that had originally mediated the functions of the ipsilesional upper limbs before brachial plexus injury (BPI). Our hypothesis was that the same findings would be seen in humans. Four patients with total BPI treated with CC7 transfer were included. Changes in the locations of the activated areas in the primary motor (M1) and somatosensory (S1) cortices corresponding to the motor outputs to and sensory inputs from the ipsilesional limbs were investigated using functional near-infrared spectroscopy (fNIRS) 2-3 years and 6-7 years after surgery. One patient was excluded from the evaluation of motor function after CC7 transfer. The motor and sensory functions of the ipsilesional upper limb in all patients were still controlled by the ipsilesional brain hemisphere 2-3 years after CC7 transfer. The reconstructed motions of the ipsilesional upper limbs correlated with the contralesional M1 in one patient and the bilateral M1s in another patient (both of whom demonstrated good motor recovery in the ipsilesional upper limbs) and with the ipsilesional M1 in a third patient with poor motor recovery in the ipsilesional upper limb. Sensory stimulation of the ipsilesional hands 6-7 years after CC7 transfer activated the contralesional S1 in two patients who achieved good sensory recovery in the ipsilesional hands but activated the ipsilesional S1 in the other two patients with poor sensory recovery of the ipsilesional hands. Transhemispheric transposition of the activated brain cortices associated with the recovery of motor and sensory functions of the ipsilesional upper limbs was seen in patients with CC7 transfer as has been reported for animal models of CC7 transfer.
Bulstra, Liselotte F; Rbia, Nadia; Kircher, Michelle F; Spinner, Robert J; Bishop, Allen T; Shin, Alexander Y
2017-12-08
OBJECTIVE Reconstructive options for brachial plexus lesions continue to expand and improve. The purpose of this study was to evaluate the prevalence and quality of restored elbow extension in patients with brachial plexus injuries who underwent transfer of the spinal accessory nerve to the motor branch of the radial nerve to the long head of the triceps muscle with an intervening autologous nerve graft and to identify patient and injury factors that influence functional triceps outcome. METHODS A total of 42 patients were included in this retrospective review. All patients underwent transfer of the spinal accessory nerve to the motor branch of the radial nerve to the long head of the triceps muscle as part of their reconstruction plan after brachial plexus injury. The primary outcome was elbow extension strength according to the modified Medical Research Council muscle grading scale, and signs of triceps muscle recovery were recorded using electromyography. RESULTS When evaluating the entire study population (follow-up range 12-45 months, mean 24.3 months), 52.4% of patients achieved meaningful recovery. More specifically, 45.2% reached Grade 0 or 1 recovery, 19.1% obtained Grade 2, and 35.7% improved to Grade 3 or better. The presence of a vascular injury impaired functional outcome. In the subgroup with a minimum follow-up of 20 months (n = 26), meaningful recovery was obtained by 69.5%. In this subgroup, 7.7% had no recovery (Grade 0), 19.2% had recovery to Grade 1, and 23.1% had recovery to Grade 2. Grade 3 or better was reached by 50% of patients, of whom 34.5% obtained Grade 4 elbow extension. CONCLUSIONS Transfer of the spinal accessory nerve to the radial nerve branch to the long head of the triceps muscle with an interposition nerve graft is an adequate option for restoration of elbow extension, despite the relatively long time required for reinnervation. The presence of vascular injury impairs functional recovery of the triceps muscle, and the use of shorter nerve grafts is recommended when and if possible.
Embryonic stem cells improve skeletal muscle recovery after extreme atrophy in mice.
Artioli, Guilherme Giannini; De Oliveira Silvestre, João Guilherme; Guilherme, João Paulo Limongi França; Baptista, Igor Luchini; Ramos, Gracielle Vieira; Da Silva, Willian José; Miyabara, Elen Haruka; Moriscot, Anselmo Sigari
2015-03-01
We injected embryonic stem cells into mouse tibialis anterior muscles subjected to botulinum toxin injections as a model for reversible neurogenic atrophy. Muscles were exposed to botulinum toxin for 4 weeks and allowed to recover for up to 6 weeks. At the onset of recovery, a single muscle injection of embryonic stem cells was administered. The myofiber cross-sectional area, single twitch force, peak tetanic force, time-to-peak force, and half-relaxation time were determined. Although the stem cell injection did not affect the myofiber cross-sectional area gain in recovering muscles, most functional parameters improved significantly compared with those of recovering muscles that did not receive the stem cell injection. Muscle function recovery was accelerated by embryonic stem cell delivery in this durable neurogenic atrophy model. We conclude that stem cells should be considered a potential therapeutic tool for recovery after extreme skeletal muscle atrophy. © 2014 Wiley Periodicals, Inc.
Roshal, L M; Tzyb, A F; Pavlova, L N; Soushkevitch, G N; Semenova, J B; Javoronkov, L P; Kolganova, O I; Konoplyannikov, A G; Shevchuk, A S; Yujakov, V V; Karaseva, O V; Ivanova, T F; Chernyshova, T A; Konoplyannikova, O A; Bandurko, L N; Marey, M V; Sukhikh, G T
2009-07-01
We studied the effect of systemic transplantation of human stem cells from various tissues on cognitive functions of the brain in rats during the delayed period after experimental brain injury. Stem cells were shown to increase the efficacy of medical treatment with metabolic and symptomatic drugs for recovery of cognitive functions. They accelerated the formation of the conditioned defense response. Fetal neural stem cells had a stronger effect on some parameters of cognitive function 2 months after brain injury. The efficacy of bone marrow mesenchymal stem cells from adult humans or fetuses was higher 3 months after brain injury.
Iglesias, Jose; Frank, Elliot; Mehandru, Sushil; Davis, John M; Levine, Jerrold S
2013-07-13
Renal dysfunction occurs commonly in patients awaiting orthotopic liver transplantation (OLT) for end-stage liver disease. The use of simultaneous liver-kidney transplantation has increased in the MELD scoring era. As patients may recover renal function after OLT, identifying factors predictive of renal recovery is a critical issue, especially given the scarcity of available organs. Employing the UNOS database, we sought to identify donor- and patient-related predictors of renal recovery among 1720 patients with pre-OLT renal dysfunction and transplanted from 1989 to 2005. Recovery of renal function post-OLT was defined as a composite endpoint of serum creatinine (SCr) ≤1.5 mg/dL at discharge and survival ≥29 days. Pre-OLT renal dysfunction was defined as any of the following: SCr ≥2 mg/dL at any time while awaiting OLT or need for renal replacement therapy (RRT) at the time of registration and/or OLT. Independent predictors of recovery of renal function post-OLT were absence of hepatic allograft dysfunction, transplantation during MELD era, recipient female sex, decreased donor age, decreased recipient ALT at time of OLT, decreased recipient body mass index at registration, use of anti-thymocyte globulin as induction therapy, and longer wait time from registration. Contrary to popular belief, a requirement for RRT, even for prolonged periods in excess of 8 weeks, was not an independent predictor of failure to recover renal function post-OLT. These data indicate that the duration of renal dysfunction, even among those requiring RRT, is a poor way to discriminate reversible from irreversible renal dysfunction.
Performance Evaluation of Cloud Service Considering Fault Recovery
NASA Astrophysics Data System (ADS)
Yang, Bo; Tan, Feng; Dai, Yuan-Shun; Guo, Suchang
In cloud computing, cloud service performance is an important issue. To improve cloud service reliability, fault recovery may be used. However, the use of fault recovery could have impact on the performance of cloud service. In this paper, we conduct a preliminary study on this issue. Cloud service performance is quantified by service response time, whose probability density function as well as the mean is derived.
Compensatory role of the cortico-rubro-spinal tract in motor recovery after stroke
Rüber, Theodor
2012-01-01
Objectives: Studies on nonhuman primates have demonstrated that the cortico-rubro-spinal system can compensate for damage to the pyramidal tract (PT). In humans, so-called alternate motor fibers (aMF), which may comprise the cortico-rubro-spinal tract, have been suggested to play a similar role in motor recovery after stroke. Using diffusion tensor imaging, we examined PT and aMF in the context of human motor recovery by relating their microstructural properties to functional outcome in chronic stroke patients. Methods: PT and aMF were reconstructed based on their origins in primary motor, dorsal premotor, and supplementary motor cortices in 18 patients and 10 healthy controls. The patients' degree of motor recovery was assessed using the Wolf Motor Function Test (WMFT). Results: Compared to controls, fractional anisotropy (FA) was lower along ipsilesional PT and aMF in chronic stroke patients, but clusters of higher FA were found bilaterally in aMF within the vicinity of the red nuclei. FA along ipsilesional PT and aMF and within the red nuclei correlated significantly with WMFT scores. Probabilistic connectivity of aMF originating from ipsilesional primary motor cortex was higher in patients, whereas the ipsilesional PT exhibited lower connectivity compared to controls. Conclusions: The strong correlations observed between microstructural properties of bilateral red nuclei and the level of motor function in chronic stroke patients indicate possible remodeling during recovery. Our results shed light on the role of different corticofugal motor tracts, and highlight a compensatory function of the cortico-rubro-spinal system which may be used as a target in future restorative treatments. PMID:22843266
Stinear, Cathy M; Petoe, Matthew A; Anwar, Samir; Barber, Peter Alan; Byblow, Winston D
2014-01-01
The ability to live independently after stroke depends on the recovery of upper limb function. We hypothesized that bilateral priming with active-passive movements before upper limb physiotherapy would promote rebalancing of corticomotor excitability and would accelerate upper limb recovery at the subacute stage. A single-center randomized controlled trial of bilateral priming was conducted with 57 patients randomized at the subacute stage after first-ever ischemic stroke. The PRIMED group made device-assisted mirror symmetrical bimanual movements before upper limb physiotherapy, every weekday for 4 weeks. The CONTROL group was given intermittent cutaneous electric stimulation of the paretic forearm before physiotherapy. Assessments were made at baseline, 6, 12, and 26 weeks. The primary end point was the proportion of patients who reached their plateau for upper limb function at 12 weeks, measured with the Action Research Arm Test. Odds ratios indicated that PRIMED participants were 3× more likely than controls to reach their recovery plateau by 12 weeks. Intention-to-treat and per-protocol analyses showed a greater proportion of PRIMED participants achieved their plateau by 12 weeks (intention to treat, χ2=4.25; P=0.039 and per protocol, χ2=3.99; P=0.046). ANOVA of per-protocol data showed PRIMED participants had greater rebalancing of corticomotor excitability than controls at 12 and 26 weeks and interhemispheric inhibition at 26 weeks (all P<0.05). Bilateral priming accelerated recovery of upper limb function in the initial weeks after stroke. URL: http://www.anzctr.org.au. Unique identifier: ANZCTR1260900046822.
Lau, Brian C; Collins, Michael W; Lovell, Mark R
2011-06-01
Concussions affect an estimated 136 000 high school athletes yearly. Computerized neurocognitive testing has been shown to be appropriately sensitive and specific in diagnosing concussions, but no studies have assessed its utility to predict length of recovery. Determining prognosis during subacute recovery after sports concussion will help clinicians more confidently address return-to-play and academic decisions. To quantify the prognostic ability of computerized neurocognitive testing in combination with symptoms during the subacute recovery phase from sports-related concussion. Cohort study (prognosis); Level of evidence, 2. In sum, 108 male high school football athletes completed a computer-based neurocognitive test battery within 2.23 days of injury and were followed until returned to play as set by international guidelines. Athletes were grouped into protracted recovery (>14 days; n = 50) or short-recovery (≤14 days; n = 58). Separate discriminant function analyses were performed using total symptom score on Post-Concussion Symptom Scale, symptom clusters (migraine, cognitive, sleep, neuropsychiatric), and Immediate Postconcussion Assessment and Cognitive Testing neurocognitive scores (verbal memory, visual memory, reaction time, processing speed). Multiple discriminant function analyses revealed that the combination of 4 symptom clusters and 4 neurocognitive composite scores had the highest sensitivity (65.22%), specificity (80.36%), positive predictive value (73.17%), and negative predictive value (73.80%) in predicting protracted recovery. Discriminant function analyses of total symptoms on the Post-Concussion Symptom Scale alone had a sensitivity of 40.81%; specificity, 79.31%; positive predictive value, 62.50%; and negative predictive value, 61.33%. The 4 symptom clusters alone discriminant function analyses had a sensitivity of 46.94%; specificity, 77.20%; positive predictive value, 63.90%; and negative predictive value, 62.86%. Discriminant function analyses of the 4 computerized neurocognitive scores alone had a sensitivity of 53.20%; specificity, 75.44%; positive predictive value, 64.10%; and negative predictive value, 66.15%. The use of computerized neurocognitive testing in conjunction with symptom clusters results improves sensitivity, specificity, positive predictive value, and negative predictive value of predicting protracted recovery compared with each used alone. There is also a net increase in sensitivity of 24.41% when using neurocognitive testing and symptom clusters together compared with using total symptoms on Post-Concussion Symptom Scale alone.
Supin, Alexander Ya; Nachtigall, Paul E; Breese, Marlee
2007-01-01
False killer whale Pseudorca crassidens auditory brainstem responses (ABR) were recorded using a double-click stimulation paradigm specifically measuring the recovery of the second response (to the test click) as a function of the inter-click interval (ICI) at various levels of the conditioning and test click. At all click intensities, the slopes of recovery functions were almost constant: 0.6-0.8 microV per ICI decade. Therefore, even when the conditioning-to-test-click level ratio was kept constant, the duration of recovery was intensity-dependent: The higher intensity the longer the recovery. The conditioning-to-test-click level ratio strongly influenced the recovery time: The higher the ratio, the longer the recovery. The dependence was almost linear using a logarithmic ICI scale with a rate of 25-30 dB per ICI decade. These data were used for modeling the interaction between the emitted click and the echo during echolocation, assuming that the two clicks simulated the transmitted and echo clicks. This simulation showed that partial masking of the echo by the preceding emitted click may explain the independence of echo-response amplitude of target distance. However, the distance range where this mechanism is effective depends on the emitted click level: The higher the level, the greater the range. @ 2007 Acoustical Society of America.
Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition
2014-01-01
Background Rats exhibit extremely limited motor function recovery after total transection of the spinal cord (SCT). We previously reported that SM-216289, a semaphorin3A inhibitor, enhanced axon regeneration and motor function recovery in SCT adult rats. However, these effects were limited because most regenerated axons likely do not connect to the right targets. Thus, rebuilding the appropriate connections for regenerated axons may enhance recovery. In this study, we combined semaphorin3A inhibitor treatment with extensive treadmill training to determine whether combined treatment would further enhance the “rewiring” of regenerated axons. In this study, which aimed for clinical applicability, we administered a newly developed, potent semaphorin3A inhibitor, SM-345431 (Vinaxanthone), using a novel drug delivery system that enables continuous drug delivery over the period of the experiment. Results Treatment with SM-345431 using this delivery system enhanced axon regeneration and produced significant, but limited, hindlimb motor function recovery. Although extensive treadmill training combined with SM-345431 administration did not further improve axon regeneration, hindlimb motor performance was restored, as evidenced by the significant improvement in the execution of plantar steps on a treadmill. In contrast, control SCT rats could not execute plantar steps at any point during the experimental period. Further analyses suggested that this strategy reinforced the wiring of central pattern generators in lumbar spinal circuits, which, in turn, led to enhanced motor function recovery (especially in extensor muscles). Conclusions This study highlights the importance of combining treatments that promote axon regeneration with specific and appropriate rehabilitations that promote rewiring for the treatment of spinal cord injury. PMID:24618249
Key Planning Factors for Recovery from a Chemical Warfare Agent Incident
2012-07-01
confusion and degradation of public trust. Such consequences were brought to light for the U.S. during the Fukushima Daiichi nuclear power plant...appendices follow : the first describing the relationships among the National Disaster Recovery Framework Recovery Support Functions, the National...phases of action following a disaster incident— short-, intermediate-, and long-term—that can overlap, sometimes considerably. As shown in Figure 2
Goldstein, L B
1995-03-13
The ability of rats to traverse a narrow elevated beam has been used to quantitate recovery of hindlimb motor function after unilateral injury to the sensorimotor cortex. We tested the hypothesis that the rate of spontaneous beam-walking recovery varies with the side of the cortex lesion. Groups of rats that were trained at the beam-walking task underwent suction-ablation of either the right or left hindlimb sensorimotor cortex. There was no difference in hindlimb motor function between the groups on the first post-operative beam-waking trial carried out the day after cortex ablation and no difference between the groups in overall recovery rates over the next two weeks. Subsequent analyses of lesion surface parameters showed no differences in lesion size or extent. Regardless of the side of the lesion, there were also no differences between the right and left hemispheres in norepinephrine content of the lesioned or contralateral cortex. We conclude that the side of sensorimotor cortex ablation injury does not differentially affect the rate of spontaneous motor recovery as measured with the beam-walking task.
Nakano, Yuzo; Miyake, Hideaki; Chiba, Koji; Fujisawa, Masato
2014-01-01
Erectile dysfunction (ED) is a major complication after radical prostatectomy (RP); however, debate continues regarding the efficacy of penile rehabilitation in the recovery of the postoperative erectile function (EF). This study included a total of 103 consecutive sexually active Japanese men with localized prostate cancer undergoing nerve-sparing RP, and analyzed the postoperative EF, focusing on the significance of penile rehabilitation. In this series, 24 and 79 patients underwent bilateral and unilateral nerve-sparing RPs, respectively, and 10 or 20 mg of vardenafil was administered to 35 patients at least once weekly, who agreed to undergo penile rehabilitation. Twelve months after RP, 48 (46.6%) of the 103 patients were judged to have recovered EF sufficient for sexual intercourse without any assistance. The proportion of patients who recovered EF in those undergoing penile rehabilitation (60.0%) was significantly greater than that in those without penile rehabilitation (38.2%). Of several parameters examined, the preoperative International Index of Erectile Function-5 (IIEF-5) score and nerve-sparing procedure were significantly associated with the postoperative EF recovery rates in patients with and without management by penile rehabilitation, respectively. Furthermore, univariate analysis identified the preoperative IIEF-5 score, nerve-sparing procedure and penile rehabilitation as significant predictors of EF recovery, among which the preoperative IIEF-5 score and nerve-sparing procedure appeared to be independently associated with EF recovery. Considering these findings, despite the lack of independent significance, penile rehabilitation with low-dose vardenafil could exert a beneficial effect on EF recovery in Japanese men following nerve-sparing RP. PMID:24994781
Ditunno, P L; Patrick, M; Stineman, M; Morganti, B; Townson, A F; Ditunno, J F
2006-09-01
Direct observation of a constrained consensus-building process in three culturally independent five-person panels of rehabilitation professionals from the US, Italy and Canada. To illustrate cultural differences in belief among rehabilitation professionals about the relative importance of alternative functional goals during spinal cord injury (SCI) rehabilitation. Spinal Cord Injury Units in Philadelphia-USA, Rome-Italy and Vancouver-Canada. Each of the three panels came to independent consensus about recovery priorities in SCI utilizing the features resource trade-off game. The procedure involves trading imagined levels of independence (resources) across different functional items (features) assuming different stages of recovery. Sphincter management was of primary importance to all three groups. The Italian and Canadian rehabilitation professionals, however, showed preference for walking over wheelchair mobility at lower stages of assumed recovery, whereas the US professionals set wheelchair independence at a higher priority than walking. These preliminary results suggest cross-cultural recovery priority differences among SCI rehabilitation professionals. These dissimilarities in preference may reflect disparities in values, cultural expectations and health care policies.
Saturation-inversion-recovery: A method for T1 measurement
NASA Astrophysics Data System (ADS)
Wang, Hongzhi; Zhao, Ming; Ackerman, Jerome L.; Song, Yiqiao
2017-01-01
Spin-lattice relaxation (T1) has always been measured by inversion-recovery (IR), saturation-recovery (SR), or related methods. These existing methods share a common behavior in that the function describing T1 sensitivity is the exponential, e.g., exp(- τ /T1), where τ is the recovery time. In this paper, we describe a saturation-inversion-recovery (SIR) sequence for T1 measurement with considerably sharper T1-dependence than those of the IR and SR sequences, and demonstrate it experimentally. The SIR method could be useful in improving the contrast between regions of differing T1 in T1-weighted MRI.
Estigoni, Eduardo H.; Fornusek, Che; Hamzaid, Nur Azah; Hasnan, Nazirah; Smith, Richard M.; Davis, Glen M.
2014-01-01
This study investigated whether the relationship between muscle torque and m-waves remained constant after short recovery periods, between repeated intervals of isometric muscle contractions induced by functional electrical stimulation (FES). Eight subjects with spinal cord injury (SCI) were recruited for the study. All subjects had their quadriceps muscles group stimulated during three sessions of isometric contractions separated by 5 min of recovery. The evoked-electromyographic (eEMG) signals, as well as the produced torque, were synchronously acquired during the contractions and during short FES bursts applied during the recovery intervals. All analysed m-wave variables changed progressively throughout the three contractions, even though the same muscle torque was generated. The peak to peak amplitude (PtpA), and the m-wave area (Area) were significantly increased, while the time between the stimulus artefact and the positive peak (PosT) were substantially reduced when the muscles became fatigued. In addition, all m-wave variables recovered faster and to a greater extent than did torque after the recovery intervals. We concluded that rapid recovery intervals between FES-evoked exercise sessions can radically interfere in the use of m-waves as a proxy for torque estimation in individuals with SCI. This needs to be further investigated, in addition to seeking a better understanding of the mechanisms of muscle fatigue and recovery. PMID:25479324
Estigoni, Eduardo H; Fornusek, Che; Hamzaid, Nur Azah; Hasnan, Nazirah; Smith, Richard M; Davis, Glen M
2014-12-03
This study investigated whether the relationship between muscle torque and m-waves remained constant after short recovery periods, between repeated intervals of isometric muscle contractions induced by functional electrical stimulation (FES). Eight subjects with spinal cord injury (SCI) were recruited for the study. All subjects had their quadriceps muscles group stimulated during three sessions of isometric contractions separated by 5 min of recovery. The evoked-electromyographic (eEMG) signals, as well as the produced torque, were synchronously acquired during the contractions and during short FES bursts applied during the recovery intervals. All analysed m-wave variables changed progressively throughout the three contractions, even though the same muscle torque was generated. The peak to peak amplitude (PtpA), and the m-wave area (Area) were significantly increased, while the time between the stimulus artefact and the positive peak (PosT) were substantially reduced when the muscles became fatigued. In addition, all m-wave variables recovered faster and to a greater extent than did torque after the recovery intervals. We concluded that rapid recovery intervals between FES-evoked exercise sessions can radically interfere in the use of m-waves as a proxy for torque estimation in individuals with SCI. This needs to be further investigated, in addition to seeking a better understanding of the mechanisms of muscle fatigue and recovery.
NASA Astrophysics Data System (ADS)
Lockwood, J. A.; Webber, W. R.; Jokipii, J. R.
1985-08-01
Recent data indicating that the solar modulation effects are propagated outward in the heliospheric cavity suggest that the 11-year cosmic ray modulation can best be described by a dynamic time dependent model. In this context an understanding of the recovery characteristics of large transient Forbush type decreases is important. This includes the typical recovery time at a fixed energy at 1 AU as well as at large heliocentric radial distances, the energy dependence of the recovery time at 1 Au, and the dependence of the time for the intensity to decrease to the minimum in the transient decreases as a function of distance. These transient decreases are characterized by their asymmetrical decrease and recovery times, generally 1 to 2 days and 3 to 10 days respectively at approx. 1 AU. Near earth these are referred to as Forbush decreases, associated witha shock or blast wave passage. At R equal to or greater than + or - 10 AU, these transient decreases may represent the combined effects of several shock waves that have merged together.
Goldberg, Jenna D; Zheng, Junting; Ratan, Ravin; Small, Trudy N; Lai, Kuan-Chi; Boulad, Farid; Castro-Malaspina, Hugo; Giralt, Sergio A; Jakubowski, Ann A; Kernan, Nancy A; O'Reilly, Richard J; Papadopoulos, Esperanza B; Young, James W; van den Brink, Marcel R M; Heller, Glenn; Perales, Miguel-Angel
2017-08-01
Infection, relapse, and GVHD can complicate allogeneic hematopoietic stem cell transplantation (allo-HSCT). Although the effect of poor immune recovery on infection risk is well-established, there are limited data on the effect of immune reconstitution on relapse and survival, especially following T-cell depletion (TCD). To characterize the pattern of immune reconstitution in the first year after transplant and its effects on survival and relapse, we performed a retrospective study in 375 recipients of a myeloablative TCD allo-HSCT for hematologic malignancies. We noted that different subsets recover sequentially, CD8 + T cells first, followed by total CD4 + and naïve CD4 + T cells, indicating thymic recovery during the first year after HSCT. In the multivariate model, a fully HLA-matched donor and recovery of T-cell function, assessed by PHA response at 6 months, were the only factors independently associated with OS and EFS. In conclusion, T-cell recovery is an important predictor of outcome after TCD allo-HSCT.
Grover, Sandeep; Hazari, Nandita; Aneja, Jitender; Chakrabarti, Subho; Sharma, Sunil; Avasthi, Ajit
2016-12-01
The goal of treatment in mental illness has evolved from a symptom-based approach to a personal recovery-based approach. The aim of this study was to evaluate the predictors of personal recovery among patients with bipolar disorder. A total of 185 patients with bipolar disorder, currently in remission, were evaluated on Recovery Assessment Scale (RAS), Internalized Stigma of Mental Illness Scale (ISMIS), Brief Religious coping scale (RCOPE), Duke University Religiosity Index (DUREL), Religiousness Measures Scale, Hamilton depression rating scale (HDRS), Young Mania rating scale (YMRS) and Global Assessment of Functioning (GAF) scale. The mean age of the sample was 40.5 (standard deviation (SD), 11.26) years. Majority of the participants were male, married, working, Hindu by religion and belonged to extended/joint families of urban background. In the regression analysis, RAS scores were predicted significantly by discrimination experience, stereotype endorsement and alienation domains of ISMIS, level of functioning as assessed by GAF, residual depressive symptoms as assessed by HDRS and occupational status. The level of variance explained for total RAS score and various RAS domains ranged from 36.2% to 46.9%. This study suggests that personal recovery among patients with bipolar disorder is affected by stigma, level of functioning, residual depressive symptoms and employment status of patients with bipolar disorder. © The Author(s) 2016.
Sarasso, S; Santhanam, P; Määtta, S; Poryazova, R; Ferrarelli, F; Tononi, G; Small, S L
2010-09-01
Stroke is associated with long-term functional deficits. Behavioral interventions are often effective in promoting functional recovery and plastic changes. Recent studies in normal subjects have shown that sleep, and particularly slow wave activity (SWA), is tied to local brain plasticity and may be used as a sensitive marker of local cortical reorganization after stroke. In a pilot study, we assessed the local changes induced by a single exposure to a therapeutic session of IMITATE (Intensive Mouth Imitation and Talking for Aphasia Therapeutic Effects), a behavioral therapy used for recovery in patients with post-stroke aphasia. In addition, we measured brain activity changes with functional magnetic resonance imaging (fMRI) in a language observation task before, during and after the full IMITATE rehabilitative program. Speech production improved both after a single exposure and the full therapy program as measured by the Western Aphasia Battery (WAB) Repetition subscale. We found that IMITATE induced reorganization in functionally-connected, speech-relevant areas in the left hemisphere. These preliminary results suggest that sleep hd-EEGs, and the topographical analysis of SWA parameters, are well suited to investigate brain plastic changes underpinning functional recovery in neurological disorders.
Fibronectin EDA forms the chronic fibrotic scar after contusive spinal cord injury.
Cooper, John G; Jeong, Su Ji; McGuire, Tammy L; Sharma, Sripadh; Wang, Wenxia; Bhattacharyya, Swati; Varga, John; Kessler, John A
2018-04-27
Gliosis and fibrosis after spinal cord injury (SCI) lead to formation of a scar that is an impediment to axonal regeneration. Fibrotic scarring is characterized by the accumulation of fibronectin, collagen, and fibroblasts at the lesion site. The mechanisms regulating fibrotic scarring after SCI and its effects on axonal elongation and functional recovery are not well understood. In this study, we examined the effects of eliminating an isoform of fibronectin containing the Extra Domain A domain (FnEDA) on both fibrosis and on functional recovery after contusion SCI using male and female FnEDA-null mice. Eliminating FnEDA did not reduce the acute fibrotic response but markedly diminished chronic fibrotic scarring after SCI. Glial scarring was unchanged after SCI in FnEDA-null mice. We found that FnEDA was important for the long-term stability of the assembled fibronectin matrix during both the subacute and chronic phases of SCI. Motor functional recovery was significantly improved, and there were increased numbers of axons in the lesion site compared to wildtype mice, suggesting that the chronic fibrotic response is detrimental to recovery. Our data provide insight into the mechanisms of fibrosis after SCI and suggest that disruption of fibronectin matrix stability by targeting FnEDA represents a potential therapeutic strategy for promoting recovery after SCI. Copyright © 2018 Elsevier Inc. All rights reserved.
Carmel, Jason B; Kimura, Hiroki; Martin, John H
2014-01-08
Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with functional improvement. Electrical stimulation of motor cortex augments sprouting of intact CST axons and promotes functional recovery when applied soon after injury. We hypothesized that electrical stimulation of motor cortex in the intact hemisphere after chronic lesion of the CST in the other hemisphere would restore function through ipsilateral control. To test motor skill, rats were trained and tested to walk on a horizontal ladder with irregularly spaced rungs. Eight weeks after injury, produced by pyramidal tract transection, half of the rats received forelimb motor cortex stimulation of the intact hemisphere. Rats with injury and stimulation had significantly improved forelimb control compared with rats with injury alone and achieved a level of proficiency similar to uninjured rats. To test whether recovery of forelimb function was attributable to ipsilateral control, we selectively inactivated the stimulated motor cortex using the GABA agonist muscimol. The dose of muscimol we used produces strong contralateral but no ipsilateral impairments in naive rats. In rats with injury and stimulation, but not those with injury alone, inactivation caused worsening of forelimb function; the initial deficit was reinstated. These results demonstrate that electrical stimulation can promote recovery of motor function when applied late after injury and that motor control can be exerted from the ipsilateral motor cortex. These results suggest that the uninjured motor cortex could be targeted for brain stimulation in people with large unilateral CST lesions.
Neural Stability, Sparing, and Behavioral Recovery Following Brain Damage
ERIC Educational Resources Information Center
LeVere, T. E.
1975-01-01
The present article discusses the possibility that behavioral recovery following brain damage is not dependent on the functional reorganization of neural tissue but is rather the result of the continued normal operation of spared neural mechanisms. (Editor)
NASA Astrophysics Data System (ADS)
Nudo, Randolph J.; Wise, Birute M.; Sifuentes, Frank; Milliken, Garrett W.
1996-06-01
Substantial functional reorganization takes place in the motor cortex of adult primates after a focal ischemic infarct, as might occur in stroke. A subtotal lesion confined to a small portion of the representation of one hand was previously shown to result in a further loss of hand territory in the adjacent, undamaged cortex of adult squirrel monkeys. In the present study, retraining of skilled hand use after similar infarcts resulted in prevention of the loss of hand territory adjacent to the infarct. In some instances, the hand representations expanded into regions formerly occupied by representations of the elbow and shoulder. Functional reorganization in the undamaged motor cortex was accompanied by behavioral recovery of skilled hand function. These results suggest that, after local damage to the motor cortex, rehabilitative training can shape subsequent reorganization in the adjacent intact cortex, and that the undamaged motor cortex may play an important role in motor recovery.
Effect of incorporating low intensity exercise into the recovery period after a rugby match.
Suzuki, M; Umeda, T; Nakaji, S; Shimoyama, T; Mashiko, T; Sugawara, K
2004-08-01
The psychological and physiological condition of athletes affect both their performance in competitions and their health. Rugby is an intense sport which appears to impose psychological and physiological stress on players. However, there have been few studies of the most appropriate resting techniques to deliver effective recovery from a match. To compare the difference in recovery after a match using resting techniques with or without exercise. Fifteen Japanese college rugby football players were studied. Seven performed only normal daily activities and eight performed additional low intensity exercise during the post-match rest period. Players were examined just before and immediately after the match and one and two days after the match. Blood biochemistry and two neutrophil functions, phagocytic activity and oxidative burst, were measured to assess physiological condition, and the profile of mood states (POMS) scores were examined to evaluate psychological condition. Immediately after the match, muscle damage, decreases in neutrophil functions, and mental fatigue were observed in both groups. Muscle damage and neutrophil functions recovered with time almost equally in the two groups, but the POMS scores were significantly decreased only in subjects in the low intensity exercise group. Rugby matches impose both physiological and psychological stress on players. The addition of low intensity exercise to the rest period did not adversely affect physiological recovery and had a significantly beneficial effect on psychological recovery by enhancing relaxation.
Zahoor, Rizwan; Zhao, Wenqing; Dong, Haoran; Snider, John L; Abid, Muhammad; Iqbal, Babar; Zhou, Zhiguo
2017-10-01
To investigate whether potassium (K) application enhances the potential of cotton (Gossypium hirsutum L.) plants to maintain physiological functions during drought and recovery, low K-sensitive (Siza 3) and -tolerant (Simian 3) cotton cultivars were exposed to three K rates (0, 150, and 300 K 2 O kg ha -1 ) and either well-watered conditions or severe drought stress followed by a recovery period. Under drought stress, cotton plants showed a substantial decline in leaf water potential, stomatal conductance, photosynthetic rate, and the maximum and actual quantum yield of PSII, resulting in greater non-photochemical quenching and lipid peroxidation as compared to well-watered plants. However, plants under K application not only showed less of a decline in these traits but also displayed greater potential to recover after rewatering as compared to the plants without K application. Plants receiving K application showed lower lipid peroxidation, higher antioxidant enzyme activities, and increased proline accumulation as compared to plants without K application. Significant relationships between rates of photosynthetic recovery and K application were observed. The cultivar Siza 3 exhibited a more positive response to K application than Simian 3. The results suggest that K application enhances the cotton plant's potential to maintain functionality under drought and facilitates recovery after rewatering. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Valovich McLeod, Tamara; Bay, R Curtis; Lam, Kenneth C; Snyder Valier, Alison R
2018-05-31
Our purpose was to determine the association between concussion recovery and health-related quality of life (HRQOL). Secondary school athletic training facilities. Patients (N = 122) with a concussion. Prospective, longitudinal cohort. The Pediatric Quality-of-Life Inventory (PedsQL), PedsQL Multidimensional Fatigue Scale (MFS), and Headache Impact Test-6 (HIT-6) were completed at preseason and days 3 (D3), 10 (D10), and 30 (D30) postconcussion. The independent variable was the recovery group. Interactions between group and time (P < .001) were noted for all PedsQL subscales, except Social Functioning (P = .75). Significantly lower scores were found among Prolonged than in Short on D3 (P < .05). Significant interactions (P < .001) were also noted for all MFS subscales. Pairwise comparisons for General and Sleep subscales revealed Prolonged had lower scores than Short and Moderate on D3 and D10. A group by time interaction was found for the HIT-6 (P < .001), with scores being higher (P < .01) in Prolonged than in Short on D3 and D10. Adolescents with a prolonged recovery demonstrated lower HRQOL in the immediate days postinjury, particularly in physical and school functioning, fatigue, and headache. There was a strong association between recovery length and school functioning. Additional research is needed to understand how to minimize the impact of concussion on HRQOL.
Ma, Jian-Xiong; Zhang, Lu-Kai; Kuang, Ming-Jie; Zhao, Jie; Wang, Ying; Lu, Bin; Sun, Lei; Ma, Xin-Long
2018-03-01
A meta-analysis to evaluate the efficacy of preoperative training on functional recovery in patients undergoing total knee arthroplasty. Randomized controlled trials (RCTs) about relevant studies were searched from PubMed (1996-2017.4), Embase (1980-2017.4), and the Cochrane Library (CENTRAL 2017.4). Nine studies which evaluated the effect of preoperative training on functional recovery in patients undergoing TKA were included in our meta-analysis. Meta-analysis results were collected and analyzed by Review Manager 5.3 (Copenhagen: The Nordic Cochrane Center the Collaboration 2014). Nine studies containing 777 patients meet the inclusion criteria. Our pooled data analysis indicated that preoperative training was as effective as the control group in terms of visual analogue scale(VAS) score at ascend stairs (P = 0.41) and descend stars (P = 0.80), rang of motion (ROM) of flexion (P = 0.86) and extension (P = 0.60), short form 36 (SF-36) of physical function score (P = 0.07) and bodily pain score (P = 0.39), western Ontario and Macmaster universities osteoarthritis index (WOMAC) function score (P = 0.10), and time up and go (P = 0.28). While differences were found in length of stay (P < 0.05). Our meta-analysis demonstrated that preoperative training have the similar efficacy on functional recovery in patients following total knee arthroplasty compared with control group. However, high quality studies with more patients were needed in future. Copyright © 2018 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Reversal of soft-tissue local anesthesia with phentolamine mesylate in adolescents and adults.
Hersh, Elliot V; Moore, Paul A; Papas, Athena S; Goodson, J Max; Navalta, Laura A; Rogy, Siegfried; Rutherford, Bruce; Yagiela, John A
2008-08-01
The authors conducted two multicenter, randomized, double-blinded, controlled Phase III clinical trials to study the efficacy and safety of phentolamine mesylate (PM) in shortening the duration and burden of soft-tissue anesthesia. The study involved 484 subjects who received one of four commercially available local anesthetic solutions containing vasoconstrictors for restorative or scaling procedures. On completion of the dental procedure, subjects randomly received a PM or a sham injection (an injection in which a needle does not penetrate the soft tissue) in the same site as the local anesthetic injection. The investigators measured the duration of soft-tissue anesthesia by using standardized lip- and tongue-tapping procedures every five minutes for five hours. They also evaluated functional measures and subject-perceived altered function, sensation, appearance and safety. Median recovery times in the lower lip and tongue for subjects in the PM group were 70 minutes and 60 minutes, respectively. Median recovery times in the lower lip and tongue for subjects in the sham group were 155 minutes and 125 minutes, respectively. Upper lip median recovery times were 50 minutes for subjects in the PM group and 133 minutes for subjects in the sham group. These differences were significant (P < .0001). Recovery from actual functional deficits and subject-perceived altered function, sensation and appearance also showed significant differences between the PM and the sham groups. PM was efficacious and safe in reducing the duration of local anesthetic- induced soft-tissue numbness and its associated functional deficits. Clinicians can use PM to accelerate reversal of soft-tissue anesthesia and the associated functional deficits.
Wang, Zun-Rong; Wang, Ping; Xing, Liang; Mei, Li-Ping; Zhao, Jun; Zhang, Tong
2017-11-01
Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238).
Wang, Zun-rong; Wang, Ping; Xing, Liang; Mei, Li-ping; Zhao, Jun; Zhang, Tong
2017-01-01
Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238). PMID:29239328
Tullos, Nathan; Stewart, Nicholas J.; Surles, Bret
2015-01-01
Percutaneous transluminal renal angioplasty/stenting (PTRAS) is frequently used to treat renal artery stenosis and renovascular disease (RVD); however, renal function is restored in less than one half of the cases. This study was designed to test a novel intervention that could refine PTRAS and enhance renal recovery in RVD. Renal function was quantified in pigs after 6 weeks of chronic RVD (induced by unilateral renal artery stenosis), established renal damage, and hypertension. Pigs with RVD then underwent PTRAS and were randomized into three groups: placebo (RVD+PTRAS), chronic endothelin-A receptor (ET-A) blockade (RVD+PTRAS+ET-A), and chronic dual ET-A/B blockade (RVD+PTRAS+ET-A/B) for 4 weeks. Renal function was again evaluated after treatments, and then, ex vivo studies were performed on the stented kidney. PTRAS resolved renal stenosis, attenuated hypertension, and improved renal function but did not resolve renal microvascular rarefaction, remodeling, or renal fibrosis. ET-A blocker therapy after PTRAS significantly improved hypertension, microvascular rarefaction, and renal injury and led to greater recovery of renal function. Conversely, combined ET-A/B blockade therapy blunted the therapeutic effects of PTRAS alone or PTRAS followed by ET-A blockade. These data suggest that ET-A receptor blockade therapy could serve as a coadjuvant intervention to enhance the outcomes of PTRAS in RVD. These results also suggest that ET-B receptors are important for renal function in RVD and may contribute to recovery after PTRAS. Using clinically available compounds and techniques, our results could contribute to both refinement and design of new therapeutic strategies in chronic RVD. PMID:25377076
Deng, Qingqing; Chang, Yanqun; Cheng, Xiaomao; Luo, Xingang; Zhang, Jing; Tang, Xiaoyuan
2018-05-01
Mild hypoxia conditioning induced by repeated episodes of transient ischemia is a clinically applicable method for protecting the brain against injury after hypoxia-ischemic brain damage. To assess the effect of repeated mild hypoxia postconditioning on brain damage and long-term neural functional recovery after hypoxia-ischemic brain damage. Rats received different protocols of repeated mild hypoxia postconditioning. Seven-day-old rats with hypoxia ischemic brain damage (HIBD) from the left carotid ligation procedure plus 2 h hypoxic stress (8% O 2 at 37 °C) were further receiving repeated mild hypoxia intermittently. The gross anatomy, functional analyses, hypoxia inducible factor 1 alpha (HIF-1a) expression, and neuronal apoptosis of the rat brains were subsequently examined. Compared to the HIBD group, rats postconditioned with mild hypoxia had elevated HIF-1a expression, more Nissl-stain positive cells in their brain tissue and their brains functioned better in behavioral analyses. The recovery of the brain function may be directly linked to the inhibitory effect of HIF-1α on neuronal apoptosis. Furthermore, there were significantly less neuronal apoptosis in the hippocampal CA1 region of the rats postconditioned with mild hypoxia, which might also be related to the higher HIF-1a expression and better brain performance. Overall, these results suggested that postconditioning of neonatal rats after HIBD with mild hypoxia increased HIF-1a expression, exerted a neuroprotective effect and promoted neural functional recovery. Repeated mild hypoxia postconditioning protects neonatal rats with HIBD against brain damage and improves neural functional recovery. Our results may have clinical implications for treating infants with HIBD. Copyright © 2018 Elsevier Inc. All rights reserved.
"I struggle to count my blessings": recovery after hip fracture from the patients' perspective.
Bruun-Olsen, Vigdis; Bergland, Astrid; Heiberg, Kristi Elisabeth
2018-01-19
Recovery outlooks of physical functioning and quality of life after hip fracture have not changed significantly over the past 25 years. Previous research has mainly dealt with causalities and acute treatment, while the recovery process from the patients' perspective has been less comprehensively described. Expanded knowledge of what the patients consider important in their recovery process may have important consequences for how these patients are treated in the future and thereby on future patient outcomes. The aim presently is therefore to explore how elderly patients with hip fracture enrolled in an ongoing RCT have experienced their recovery process. The study was qualitative in design. Eight frail elderly in recovery after hip fracture (aged 69-91) were interviewed in their home four months after their fracture. The interviews covered issues related to their experiences of facilitators and barriers throughout the different stages in the recovery process. The patients were already enrolled in an ongoing randomized controlled trial, examining the effects of habitual functional training during their short term stays at nursing homes. The patients were chosen strategically according to age, gender, and participation in rehabilitation. The interviews were recorded, transcribed and subjected to a method of systematic text condensation inspired by Giorgi's phenomenological method. The results revealed that the patients' experiences of the recovery process fell into three main themes: "Feeling vulnerable", "A span between self-reliance and dependency" and "Disruption from a normal life". The feeling of gloominess and vulnerability persisted throughout. Being in recovery was also experienced as a tension between self-reliance and dependency; a disrupted life where loss of mobility and the impact of age was profoundly present. Being in recovery after hip fracture was experienced as a life breaking event. Based on these findings, increased focus on individualized treatment to each patient through each stage of the recovery process should be emphasized.
Sacre, J W; Jellis, C L; Coombes, J S; Marwick, T H
2012-09-01
Poor prognosis associated with blunted post-exercise heart-rate recovery may reflect autonomic dysfunction. This study sought the accuracy of post-exercise heart-rate recovery in the diagnosis of cardiac autonomic neuropathy, which represents a serious, but often unrecognized complication of Type 2 diabetes. Clinical assessment of cardiac autonomic neuropathy and maximal treadmill exercise testing for heart-rate recovery were performed in 135 patients with Type 2 diabetes and negative exercise echocardiograms. Cardiac autonomic neuropathy was defined by abnormalities in ≥ 2 of 7 autonomic function markers, including four cardiac reflex tests and three indices of short-term (5-min) heart-rate variability. Heart-rate recovery was defined at 1-, 2- and 3-min post-exercise. Patients with cardiac autonomic neuropathy (n = 27; 20%) had lower heart-rate recovery at 1-, 2- and 3-min post-exercise (P < 0.01). Heart-rate recovery demonstrated univariate associations with autonomic function markers (r-values 0.20-0.46, P < 0.05). Area under the receiver-operating characteristic curve revealed good diagnostic performance of all heart-rate recovery parameters (range 0.80-0.83, P < 0.001). Optimal cut-offs for heart-rate recovery at 1-, 2- and 3-min post-exercise were ≤ 28 beats/min (sensitivity 93%, specificity 69%), ≤ 50 beats/min (sensitivity 96%, specificity 63%) and ≤ 52 beats/min (sensitivity 70%, specificity 84%), respectively. These criteria predicted cardiac autonomic neuropathy independently of relevant clinical and exercise test information (adjusted odds ratios 7-28, P < 0.05). Post-exercise heart-rate recovery provides an accurate diagnostic test for cardiac autonomic neuropathy in Type 2 diabetes. The high sensitivity and modest specificity suggests heart-rate recovery may be useful to screen for patients requiring clinical autonomic evaluation. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.
Recovery Expectations and Long-term Prognosis of Patients With Coronary Heart Disease
Barefoot, John C.; Brummett, Beverly H.; Williams, Redford B.; Siegler, Ilene C.; Helms, Michael J.; Boyle, Stephen H.; Clapp-Channing, Nancy E.; Mark, Daniel B.
2013-01-01
Background Expectations of patients regarding their prospects for recovery have been shown to predict subsequent physical and social functioning. Evidence regarding the impact of expectations on clinical outcomes is limited. Methods At the inpatient service of a tertiary care hospital, we evaluated beliefs of patients undergoing coronary angiography about their prognosis as predictors of long-term survival and 1-year functional status. Baseline assessments, including a measure of expectations for recovery, were obtained during hospitalization with mortality follow-up for approximately 15 years. Patients with significant obstructive coronary artery disease were interviewed while in the hospital and enrolled in follow-up. Functional status was assessed at baseline and 1 year later with questionnaires reflecting physical capabilities. Analyses controlled for age, sex, disease severity, comorbidities, treatments, demographics, depressive symptoms, social support, and functional status. There were 1637 total deaths, 885 from cardiovascular causes, in the 2818 patients in these analyses. The outcomes were total mortality, cardiovascular mortality, and 1-year functional status. Results Expectations were positively associated with survival after controlling for background and clinical disease indicators. For a difference equivalent to an inter-quartile range of expectations, the hazard ratio (HR) for total mortality was 0.76 (95% confidence interval [CI], 0.71–0.82) and 0.76 (95% CI, 0.69–0.83) for cardiovascular mortality. The HRs were 0.83 (95% CI, 0.76–0.91) and 0.79 (95% CI, 0.70–0.89) with further adjustments for demographic and psychosocial covariates. Similar associations (P<.001) were observed for functional status. Conclusion Recovery expectations at baseline were positively associated with long-term survival and functioning in patients with coronary artery disease. PMID:21357800
Recovery expectations and long-term prognosis of patients with coronary heart disease.
Barefoot, John C; Brummett, Beverly H; Williams, Redford B; Siegler, Ilene C; Helms, Michael J; Boyle, Stephen H; Clapp-Channing, Nancy E; Mark, Daniel B
2011-05-23
Expectations of patients regarding their prospects for recovery have been shown to predict subsequent physical and social functioning. Evidence regarding the impact of expectations on clinical outcomes is limited. At the inpatient service of a tertiary care hospital, we evaluated beliefs of patients undergoing coronary angiography about their prognosis as predictors of long-term survival and 1-year functional status. Baseline assessments, including a measure of expectations for recovery, were obtained during hospitalization with mortality follow-up for approximately 15 years. Patients with significant obstructive coronary artery disease were interviewed while in the hospital and enrolled in follow-up. Functional status was assessed at baseline and 1 year later with questionnaires reflecting physical capabilities. Analyses controlled for age, sex, disease severity, comorbidities, treatments, demographics, depressive symptoms, social support, and functional status. There were 1637 total deaths, 885 from cardiovascular causes, in the 2818 patients in these analyses. The outcomes were total mortality, cardiovascular mortality, and 1-year functional status. Expectations were positively associated with survival after controlling for background and clinical disease indicators. For a difference equivalent to an interquartile range of expectations, the hazard ratio (HR) for total mortality was 0.76 (95% confidence interval [CI], 0.71-0.82) and 0.76 (95% CI, 0.69-0.83) for cardiovascular mortality. The HRs were 0.83 (95% CI, 0.76-0.91) and 0.79 (95% CI, 0.70-0.89) with further adjustments for demographic and psychosocial covariates. Similar associations (P < .001) were observed for functional status. Recovery expectations at baseline were positively associated with long-term survival and functioning in patients with coronary artery disease.
Sawhney, Simon; Mitchell, Mhairi; Marks, Angharad; Fluck, Nick; Black, Corrinda
2015-01-06
To summarise the evidence from studies of acute kidney injury (AKI) with regard to the effect of pre-AKI renal function and post-AKI renal function recovery on long-term mortality and renal outcomes, and to assess whether these factors should be taken into account in future prognostic studies. A systematic review of observational studies listed in Medline and EMBASE from 1990 to October 2012. All AKI studies in adults with data on baseline kidney function to identify AKI; with outcomes either stratified by pre-AKI and/or post-AKI kidney function, or described by the timing of the outcomes. Long-term mortality and worsening chronic kidney disease (CKD). Of 7385 citations, few studies met inclusion criteria, reported baseline kidney function and stratified by pre-AKI or post-AKI function. For mortality outcomes, three studies compared patients by pre-AKI renal function and six by post-AKI function. For CKD outcomes, two studies compared patients by pre-AKI function and two by post-AKI function. The presence of CKD pre-AKI (compared with AKI alone) was associated with doubling of mortality and a fourfold to fivefold increase in CKD outcomes. Non-recovery of kidney function was associated with greater mortality and CKD outcomes in some studies, but findings were inconsistent varying with study design. Two studies also reported that risk of poor outcome reduced over time post-AKI. Meta-analysis was precluded by variations in definitions for AKI, CKD and recovery. The long-term prognosis after AKI varies depending on cause and clinical setting, but it may also, in part, be explained by underlying pre-AKI and post-AKI renal function rather than the AKI episode itself. While carefully considered in clinical practice, few studies address these factors and with inconsistent study design. Future AKI studies should report pre-AKI and post-AKI function consistently as additional factors that may modify AKI prognosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Shang, Fei-Fei; Zhao, Wei; Zhao, Qi; Liu, Jia; Li, Da-Wei; Zhang, Hua; Zhou, Xin-Fu; Li, Cheng-Yun; Wang, Ting-Hua
2013-10-08
It is well known that trauma is frequently accompanied by spontaneous functional recovery after spinal cord injury (SCI), but the underlying mechanisms remain elusive. In this study, BBB scores showed a gradual return of locomotor functions after SCT. Proteomics analysis revealed 16 differential protein spots in the gastrocnemius muscle between SCT and normal rats. Of these differential proteins, eukaryotic translation initiation factor 5A1 (elf-5A1), a highly conserved molecule throughout eukaryotes, exhibited marked upregulation in the gastrocnemius muscle after SCT. To study the role of eIF-5A1 in the restoration of hindlimb locomotor functions following SCT, we used siRNA to downregulate the mRNA level of eIF-5A1. Compared with untreated SCT control rats, those subjected to eIF-5A1 knockdown exhibited impaired functional recovery. Moreover, gene expression microarrays and bioinformatic analysis showed high correlation between three main signal pathways (ErbB, MAPK and neurotrophin signal pathways) and eIF-5A1. These signal pathways regulate cell proliferation, differentiation and neurocyte growth. Consequently, eIF-5A1 played a pivotal role via these signal pathways in hindlimb locomotor functional recovery after SCT, which could pave the way for the development of a new strategy for the treatment of spinal cord injury in clinical trials. Copyright © 2012. Published by Elsevier B.V.
Tijssen, Marsha; van Cingel, Robert; de Visser, Enrico; Nijhuis-van der Sanden, Maria
2016-07-01
To describe data of short- and midterm results of hip arthroscopy patients based on patient-reported hip function, hip functional performance and return to sports activities. Observational cohort study. Sports medical center. 37 recreational athletes (21 men) at least six months after finishing rehabilitation for hip arthroscopy. International Hip Outcome Tool 33 (IHOT-33), Pain Visual Analogue Scale (VAS), Global Perceived Effect Scale (GPE), sports questionnaires and hip functional performance tests. At a mean follow-up time of 2.3 years, 81% of participants reported improvement on the GPE and 84% returned to sports activities. The mean IHOT-33 score was 69.3; the mean VAS score was 35.0. Range of motion (ROM) and strength were within the 90% Limb Symmetry Index (LSI) limit, except for hip internal rotation ROM. A full recovery of hip functional performance, as measured with balance and hop tests, was established based on the 90% LSI limit. The overall short- and midterm results of these follow-up data show good recovery of hip arthroscopy patients on patient-reported outcomes, functional performance and return to sports activities. The functional performance tests used in this study seem adequate for measuring recovery in hip arthroscopy patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Panken, Guus; Verhagen, Arianne P; Terwee, Caroline B; Heymans, Martijn W
2017-08-01
Study Design Systematic review and validation study. Background Many prognostic models of knee pain outcomes have been developed for use in primary care. Variability among published studies with regard to patient population, outcome measures, and relevant prognostic factors hampers the generalizability and implementation of these models. Objectives To summarize existing prognostic models in patients with knee pain in a primary care setting and to develop and internally validate new summary prognostic models. Methods After a sensitive search strategy, 2 reviewers independently selected prognostic models for patients with nontraumatic knee pain and assessed the methodological quality of the included studies. All predictors of the included studies were evaluated, summarized, and classified. The predictors assessed in multiple studies of sufficient quality are presented in this review. Using data from the Musculoskeletal System Study (BAS) cohort of patients with a new episode of knee pain, recruited consecutively by Dutch general medical practitioners (n = 372), we used predictors with a strong level of evidence to develop new prognostic models for each outcome measure and internally validated these models. Results Sixteen studies were eligible for inclusion. We considered 11 studies to be of sufficient quality. None of these studies validated their models. Five predictors with strong evidence were related to function and 6 to recovery, and were used to compose 2 prognostic models for patients with knee pain at 1 year. Running these new models in another data set showed explained variances (R 2 ) of 0.36 (function) and 0.33 (recovery). The area under the curve of the recovery model was 0.79. After internal validation, the adjusted R 2 values of the models were 0.30 (function) and 0.20 (recovery), and the area under the curve was 0.73. Conclusion We developed 2 valid prognostic models for function and recovery for patients with nontraumatic knee pain, based on predictors with strong evidence. A longer duration of complaints predicted poorer function but did not adequately predict chance of recovery. Level of Evidence Prognosis, levels 1a and 1b. J Orthop Sports Phys Ther 2017;47(8):518-529. Epub 16 Jun 2017. doi:10.2519/jospt.2017.7142.
Bindawas, Saad M.; Mawajdeh, Hussam M.; Vennu, Vishal S.; Alhaidary, Hisham M.
2017-01-01
Objective: To examine the functional recovery differences after stroke rehabilitation in patients with uni- or bilateral hemiparesis. Methods: In this retrospective study, we included data from the medical record of all 383 patients with uni- or bilateral hemiparesis after stroke who were admitted to King Fahad Medical City-Rehabilitation Hospital between 2008 and 2014 in Riyadh, Kingdom of Saudi Arabia. According to the site of hemiparesis, we classified patients into 3 groups: right hemiparesis (n=208), left hemiparesis (n=157), and bilateral hemipareses (n=18). The patients (n=49) who did not have either site of hemiparesis were excluded. The Functional Independence Measures (FIM) instrument was used to assess the score at admission and discharge. A post hoc test was conducted to examine the functional recovery differences between groups. Multiple regression analyses were used to confirm the findings. Results: Amongst the three groups, there were significant (p<0.05) differences in the total-FIM score as well as motor- and cognitive-FIM sub-scores between admission and discharge of stroke rehabilitation. The differences were significantly greater in the bilateral hemipareses group than in either unilateral hemiparesis group. Multiple regression analyses also confirmed that the site of hemiparesis significantly (p<0.05) differs in the total-FIM score as well as motor-FIM and cognitive-FIM sub-scores. Conclusion: Our results demonstrate that differences in functional recovery after stroke rehabilitation may be influenced by the site of hemiparesis after stroke. PMID:28678212
Recovery after local extinction: factors affecting re-establishment of alpine lake zooplankton.
Knapp, Roland A; Sarnelle, Orlando
2008-12-01
The introduction of fishes into naturally fishless mountain lakes often results in the extirpation of large-bodied zooplankton species. The ability to predict whether or not particular species will recover following fish removal is critically important for the design and implementation of lake restoration efforts but is currently not possible because of a lack of information on what factors affect recovery. The objective of this study was to identify the factors influencing recovery probability in two large-bodied zooplankton species following fish removal. We predicted that (1) Daphnia melanica would have a higher probability of recovery than Hesperodiaptomus shoshone due to differences in reproductive mode (D. melanica is parthenogenetic, H. shoshone is obligately sexual), (2) recovery probability would be a decreasing function of fish residence time due to the negative relationship between fish residence time and size of the egg bank, and (3) recovery probability would be an increasing function of lake depth as a consequence of a positive relationship between lake depth and egg bank size. To test these predictions, we sampled contemporary zooplankton populations and collected paleolimnological data from 44 naturally fishless lakes that were stocked with trout for varying lengths of time before reverting to a fishless condition. D. melanica had a significantly higher probability of recovery than did H. shoshone (0.82 vs. 0.54, respectively). The probability of recovery for H. shoshone was also significantly influenced by lake depth, fish residence time, and elevation, but only elevation influenced the probability of recovery in D. melanica. These results are consistent with between-species differences in reproductive mode combined with the much greater longevity of diapausing eggs in D. melanica than in H. shoshone. Our data also suggest that H. shoshone will often fail to recover in lakes with fish residence times exceeding 50 years.
Coral reef recovery dynamics in a changing world
NASA Astrophysics Data System (ADS)
Graham, N. A. J.; Nash, K. L.; Kool, J. T.
2011-06-01
Coral reef ecosystems are degrading through multiple disturbances that are becoming more frequent and severe. The complexities of this degradation have been studied in detail, but little work has assessed characteristics that allow reefs to bounce back and recover between pulse disturbance events. We quantitatively review recovery rates of coral cover from pulse disturbance events among 48 different reef locations, testing the relative roles of disturbance characteristics, reef characteristics, connectivity and anthropogenic influences. Reefs in the western Pacific Ocean had the fastest recovery, whereas reefs in the geographically isolated eastern Pacific Ocean were slowest to recover, reflecting regional differences in coral composition, fish functional diversity and geographic isolation. Disturbances that opened up large areas of benthic space recovered quickly, potentially because of nonlinear recovery where recruitment rates were high. The type of disturbance had a limited effect on subsequent rates of reef recovery, although recovery was faster following crown-of-thorns starfish outbreaks. This inconsequential role of disturbance type may be in part due to the role of unaltered structural complexity in maintaining key reef processes, such as recruitment and herbivory. Few studies explicitly recorded potential ecological determinants of recovery, such as recruitment rates, structural complexity of habitat and the functional composition of reef-associated fish. There was some evidence of slower recovery rates within protected areas compared with other management systems and fished areas, which may reflect the higher initial coral cover in protected areas rather than reflecting a management effect. A better understanding of the driving role of processes, structural complexity and diversity on recovery may enable more appropriate management actions that support coral-dominated ecosystems in our changing climate.
Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise.
Kraemer, William J; Ratamess, Nicholas A; Nindl, Bradley C
2017-03-01
The complexity and redundancy of the endocrine pathways during recovery related to anabolic function in the body belie an oversimplistic approach to its study. The purpose of this review is to examine the role of resistance exercise (RE) on the recovery responses of three major anabolic hormones, testosterone, growth hormone(s), and insulin-like growth factor 1. Each hormone has a complexity related to differential pathways of action as well as interactions with binding proteins and receptor interactions. Testosterone is the primary anabolic hormone, and its concentration changes during the recovery period depending on the upregulation or downregulation of the androgen receptor. Multiple tissues beyond skeletal muscle are targeted under hormonal control and play critical roles in metabolism and physiological function. Growth hormone (GH) demonstrates differential increases in recovery with RE based on the type of GH being assayed and workout being used. IGF-1 shows variable increases in recovery with RE and is intimately linked to a host of binding proteins that are essential to its integrative actions and mediating targeting effects. The RE stress is related to recruitment of muscle tissue with the glandular release of hormones as signals to target tissues to support homeostatic mechanisms for metabolism and tissue repair during the recovery process. Anabolic hormones play a crucial role in the body's response to metabolism, repair, and adaptive capabilities especially in response to anabolic-type RE. Changes of these hormones following RE during recovery in the circulatory biocompartment of blood are reflective of the many mechanisms of action that are in play in the repair and recovery process. Copyright © 2017 the American Physiological Society.
Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke
Liu, Zhongwu; Chopp, Michael
2015-01-01
Astrocytes are the most abundant cell type within the central nervous system. They play essential roles in maintaining normal brain function, as they are a critical structural and functional part of the tripartite synapses and the neurovascular unit, and communicate with neurons, oligodendrocytes and endothelial cells. After an ischemic stroke, astrocytes perform multiple functions both detrimental and beneficial, for neuronal survival during the acute phase. Aspects of the astrocytic inflammatory response to stroke may aggravate the ischemic lesion, but astrocytes also provide benefit for neuroprotection, by limiting lesion extension via anti-excitotoxicity effects and releasing neurotrophins. Similarly, during the late recovery phase after stroke, the glial scar may obstruct axonal regeneration and subsequently reduce the functional outcome; however, astrocytes also contribute to angiogenesis, neurogenesis, synaptogenesis, and axonal remodeling, and thereby promote neurological recovery. Thus, the pivotal involvement of astrocytes in normal brain function and responses to an ischemic lesion designates them as excellent therapeutic targets to improve functional outcome following stroke. In this review, we will focus on functions of astrocytes and astrocyte-mediated events during stroke and recovery. We will provide an overview of approaches on how to reduce the detrimental effects and amplify the beneficial effects of astrocytes on neuroprotection and on neurorestoration post stroke, which may lead to novel and clinically relevant therapies for stroke. PMID:26455456
Optimization of parameters for enhanced oil recovery from enzyme treated wild apricot kernels.
Rajaram, Mahatre R; Kumbhar, Baburao K; Singh, Anupama; Lohani, Umesh Chandra; Shahi, Navin C
2012-08-01
Present investigation was undertaken with the overall objective of optimizing the enzymatic parameters i.e. moisture content during hydrolysis, enzyme concentration, enzyme ratio and incubation period on wild apricot kernel processing for better oil extractability and increased oil recovery. Response surface methodology was adopted in the experimental design. A central composite rotatable design of four variables at five levels was chosen. The parameters and their range for the experiments were moisture content during hydrolysis (20-32%, w.b.), enzyme concentration (12-16% v/w of sample), combination of pectolytic and cellulolytic enzyme i.e. enzyme ratio (30:70-70:30) and incubation period (12-16 h). Aspergillus foetidus and Trichoderma viride was used for production of crude enzyme i.e. pectolytic and cellulolytic enzyme respectively. A complete second order model for increased oil recovery as the function of enzymatic parameters fitted the data well. The best fit model for oil recovery was also developed. The effect of various parameters on increased oil recovery was determined at linear, quadric and interaction level. The increased oil recovery ranged from 0.14 to 2.53%. The corresponding conditions for maximum oil recovery were 23% (w.b.), 15 v/w of the sample, 60:40 (pectolytic:cellulolytic), 13 h. Results of the study indicated that incubation period during enzymatic hydrolysis is the most important factor affecting oil yield followed by enzyme ratio, moisture content and enzyme concentration in the decreasing order. Enzyme ratio, incubation period and moisture content had insignificant effect on oil recovery. Second order model for increased oil recovery as a function of enzymatic hydrolysis parameters predicted the data adequately.
Mostajeran, M; Edvinsson, L; Warfvinge, K; Singh, R; Ansar, S
2017-04-01
Extracellular signal-regulated kinase (ERK) 1/2 is activated during acute phase of stroke and contributes to stroke pathology. We have found that acute treatment with MEK1/2 inhibitors decreases infarct size and neurological deficits 2 days after experimental stroke. However, it is not known whether benefits of this inhibition persist long-term. Therefore, the aim of this study was to assess neurological function, infarct size and recovery processes 14 days after stroke in male rats to determine long-term outcome following acute treatment with the MEK1/2 inhibitor U0126. Transient middle cerebral artery occlusion was induced in male rats. U0126 or vehicle was given at 0 and 24 h of reperfusion. Neurological function was assessed by staircase, 6-point and 28-point neuroscore tests up to 14 days after induction of stroke. At day 14, infarct volumes were determined and recovery processes were evaluated by measuring protein expression of the tyrosine kinase receptor Tie-2 and nestin. Levels of p-ERK1/2 protein were determined. Acute treatment with U0126 significantly improved long-term functional recovery, reduced infarct size, and enhanced Tie-2 and nestin protein expression at 14 days post-stroke. There was no residual blockade of p-ERK1/2 at this time point. It is demonstrated that benefits of early treatment with U0126 persist beyond subacute phase of ischaemic stroke in male rats. Prevention of ERK1/2 activation in the acute phase results in improved long-term functional outcome and enhances later-stage recovery processes. These results expand our understanding of the benefits and promise of using MEK1/2 inhibitors in stroke recovery. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Peter, Valsa S; Babitha, G S; Bonga, S E Wendelaar; Peter, M C Subhash
2013-01-15
We examined the effects of carbaryl (1-naphthyl methylcarbamate; sevin), a carbamate pesticide, on interrenal and thyroid activities and mitochondrial rich (MR) cell function in climbing perch to understand the physiological basis of toxicity acclimation in this fish to the chemical stressor. Carbaryl exposure (5-20 mg L(-1)) for 48 h increased cortisol and glucose, but decreased the T(3) level without affecting T(4) concentration in the plasma. These responses of the carbaryl-exposed fish were nullified and a rise in plasma T(4) occurred in these fish when they were kept for 96 h recovery in clean water. A tight plasma mineral control was indicated in the carbaryl-exposed fish as reflected by the unchanged plasma Na, K, Ca and inorganic phosphate levels. The ouabain-sensitive Na(+), K(+)-ATPase activity showed an increase in the gills but the intestinal and renal tissues showed little response to carbaryl treatment. However, substantial increases in the intestinal and renal Na(+), K(+)-ATPase activities occurred in the recovery fish. The MR cells in the branchial epithelia showed a strong Na(+), K(+)-ATPase immunoreactivity to carbaryl treatment indicating an activated MR cell function. The numerical MR cell density remained unchanged, but stretching of secondary gill lamellae as part of gill remodeling occurred during carbaryl exposure. The increased surface of these lamellae with abundant MR cells as a result of its migration into the lamellar surface points to marked structural and functional modifications of these cells in the carbaryl-treated fish which is likely to a target for carbaryl action. The rise in plasma T(4) and the restoration of normal branchial epithelia in the recovery fish indicate a thyroidal involvement in the recovery response and survival. Our data thus provide evidence that carbaryl exposure and its recovery evoke interrenal and thyroid disruption in this fish leading to a modified osmotic response including an altered MR cell function. Copyright © 2012 Elsevier B.V. All rights reserved.
The recovery imperative: a critical examination of mid-life women's recovery from depression.
O'Brien, Wendy
2012-08-01
Australia, like other countries in neo-liberal democracies, is grappling with the gendered health 'problem' of depression. More concerning is the issue of recovery and relapse, with depression being the third largest cause of disability-adjusted life years (DALY). In addition, advanced liberal discourses of health position recovery as an exercise of individual responsibility to return to a functioning and productive norm and prevent recurrence. This moral enterprise of health articulates a 'recovery imperative' which overlooks the gendered context which may have created the conditions for women's depression and may in turn impede their recovery. Drawing on insights from governmentality and feminist post-structuralism, the article critically examines the effects of normalized recovery discourses on women's subjectivities. Data for the study were collected between 2005 and 2007 through in-depth interviews with 31 mid-life Australian women. Three key themes; 'in' recovery, 'eight out of ten' recovered, and recovering the authentic self, illustrate how the 'recovery imperative' may be implicated in perpetuating the cycle of recovery and relapse. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hübler, Merla J; Buchman, Timothy G
2008-02-01
To model the effects of system connectedness on recovery of dysfunctional tissues. One-dimensional elementary cellular automata models with small-world features, where the center-input for a few cells comes not from itself but, with a given probability, from another cell. This probability represents the connectivity of the network. The long-range connections are chosen randomly to survey the potential influences of distant information flowing into a local region. MATLAB and Mathematica computing environments. None. None. We determined the recovery rate of the entropy after perturbing a uniformly dormant system. We observed that the recovery of normal activity after perturbation of a dormant system had the characteristics of an epidemic. Moreover, we found that the rate of recovery to normal steady-state activity increased rapidly even for small amounts of long-range connectivity. Findings obtained through numerical simulation were verified through analytical solutions. This study links our hypothesis that multiple organ function syndromes represent recoupling failure with a mathematical model showing the contribution of such coupling to reactivation of dormant systems. The implication is that strategies aimed not at target tissues or target organs but rather at restoring the quality and quantity of interconnections across those tissues and organs may be a novel therapeutic strategy.
Nowak, Izabela; Sabariego, Carla; Świtaj, Piotr; Anczewska, Marta
2016-07-11
Schizophrenia is a disabling disease that impacts all major life areas. There is a growing need for meeting the challenge of disability from a perspective that extends symptomatic reduction. Therefore, this study aimed to systematically review the extent to which traditional and "third wave" cognitive - behavioral (CBT) interventions address the whole scope of disabilities experienced by people with lived experience of schizophrenia using the WHO's International Classification of Functioning, Disability and Health (ICF) as a frame of reference. It also explores if current CBT interventions focus on recovery and what is their impact on disability domains. Medline and PsycINFO databases were searched for studies published in English between January 2009 and December 2015. Abstracts and full papers were screened against pre-defined selection criteria by two reviewers. Methodological quality of included studies was assessed by two independent raters using the Effective Public Health Practice Project Quality assessment tool for quantitative studies (EPHPP) guidelines. A total of 50 studies were included, 35 studies evaluating traditional CBT interventions and 15 evaluating "third wave" approaches. Overall, traditional CBT interventions addressed more disability domains than "third wave" approaches and mostly focused on mental functions reflecting schizophrenia psychopathology. Seven studies met the inclusion criteria of recovery-oriented interventions. The majority of studies evaluating these interventions had however a high risk of bias, therefore evidence on their effectiveness is inconclusive. Traditional CBT interventions address more disability domains than "third wave" therapies, however both approaches focus mostly on mental functions that reflect schizophrenia psychopathology. There are also few interventions that focus on recovery. These results indicate that CBT interventions going beyond symptom reduction are still needed. Recovery-focused CBT interventions seem to be a promising treatment approach as they target disability from a broader perspective including activity and participation domains. Although their effectiveness is inconclusive, they reflect users' views of recovery and trends towards improvement of mood, negative symptoms and functioning are shown.
Leitner, Damian; Miller, Harry; Libben, Maya
2018-06-25
Few studies have examined the relationship between cognition and function for acute stroke inpatients utilizing comprehensive methods. This study aimed to assess the relationship of a neuropsychological model, above and beyond a baseline model, with concurrent functional status across multiple domains in the early weeks of stroke recovery and rehabilitation. Seventy-four acute stroke patients were administered a comprehensive neuropsychological assessment. Functional domains of ability, adjustment, and participation were assessed using the Mayo-Portland Adaptability Inventory - 4 (MPAI-4). Hierarchical linear regression was used to assess a neuropsychological model comprised of cognitive tests scores on domains of executive function, memory, and visuospatial-constructional skills (VSC), after accounting for a baseline model comprised of common demographic and stroke variants used to predict outcome. The neuropsychological model was significantly associated, above and beyond the baseline model, with MPAI-4 Ability, Participation, and Total scores (all p-values < .05). The strength of association varied across functional domains. Analyzing tests of executive function, the Color Trails Test-Part 2 predicted MPAI-4 Participation (β = -.46, p = .001), and Total score (β = -.32, p = .02). Neuropsychological assessment contributes independently to the determination of multiple domains of functional function, above and beyond common medical variants of stroke, in the early weeks of recovery and rehabilitation. Multiple tests of executive function are recommended to develop a greater appreciation of a patient's concurrent functional abilities.
Links, Jonathan M; Schwartz, Brian S; Lin, Sen; Kanarek, Norma; Mitrani-Reiser, Judith; Sell, Tara Kirk; Watson, Crystal R; Ward, Doug; Slemp, Cathy; Burhans, Robert; Gill, Kimberly; Igusa, Tak; Zhao, Xilei; Aguirre, Benigno; Trainor, Joseph; Nigg, Joanne; Inglesby, Thomas; Carbone, Eric; Kendra, James M
2018-02-01
Policy-makers and practitioners have a need to assess community resilience in disasters. Prior efforts conflated resilience with community functioning, combined resistance and recovery (the components of resilience), and relied on a static model for what is inherently a dynamic process. We sought to develop linked conceptual and computational models of community functioning and resilience after a disaster. We developed a system dynamics computational model that predicts community functioning after a disaster. The computational model outputted the time course of community functioning before, during, and after a disaster, which was used to calculate resistance, recovery, and resilience for all US counties. The conceptual model explicitly separated resilience from community functioning and identified all key components for each, which were translated into a system dynamics computational model with connections and feedbacks. The components were represented by publicly available measures at the county level. Baseline community functioning, resistance, recovery, and resilience evidenced a range of values and geographic clustering, consistent with hypotheses based on the disaster literature. The work is transparent, motivates ongoing refinements, and identifies areas for improved measurements. After validation, such a model can be used to identify effective investments to enhance community resilience. (Disaster Med Public Health Preparedness. 2018;12:127-137).
Kaegi, Sibille; Schwab, Martin E; Dietz, Volker; Fouad, Karim
2002-07-01
This investigation was designed to study the spontaneous functional recovery of adult rats with incomplete spinal cord injury (SCI) at thoracic level during a time course of 2 weeks. Daily testing sessions included open field locomotor examination and electromyographic (EMG) recordings from a knee extensor (vastus lateralis, VL) and an ankle flexor muscle (tibialis anterior, TA) in the hindlimbs of treadmill walking rats. The BBB score (a locomotor score named after Basso et al., 1995, J. Neurotrauma, 12, 1-21) and various measures from EMG recordings were analysed (i.e. step cycle duration, rhythmicity of limb movements, flexor and extensor burst duration, EMG amplitude, root-mean-square, activity overlap between flexor and extensor muscles and hindlimb coupling). Directly after SCI, a marked drop in locomotor ability occurred in all rats with subsequent partial recovery over 14 days. The recovery was most pronounced during the first week. Significant changes were noted in the recovery of almost all analysed EMG measures. Within the 14 days of recovery, many of these measures approached control levels. Persistent abnormalities included a prolonged flexor burst and increased activity overlap between flexor and extensor muscles. Activity overlap between flexor and extensor muscles might be directly caused by altered descending input or by maladaptation of central pattern generating networks and/or sensory feedback.
Recovery of Waste Heat from Propellant Forced-Air Dry House
1978-12-01
function of bulk air side film heat transfer coefficient and diffusivity 66 15. Dry house waste heat recovery system instrumentation 67 16. Sample data...inlet condition by, maintaining the exhaust temperature above the NG dew point. The set point is adjustable to accommodate various propel- lant and...system. In dry cycle operation, an overall energy recovery effectiveness of about 40% was measured for winter operation when the exhaust temperature
Modulation of brain plasticity in stroke: a novel model for neurorehabilitation.
Di Pino, Giovanni; Pellegrino, Giovanni; Assenza, Giovanni; Capone, Fioravante; Ferreri, Florinda; Formica, Domenico; Ranieri, Federico; Tombini, Mario; Ziemann, Ulf; Rothwell, John C; Di Lazzaro, Vincenzo
2014-10-01
Noninvasive brain stimulation (NIBS) techniques can be used to monitor and modulate the excitability of intracortical neuronal circuits. Long periods of cortical stimulation can produce lasting effects on brain function, paving the way for therapeutic applications of NIBS in chronic neurological disease. The potential of NIBS in stroke rehabilitation has been of particular interest, because stroke is the main cause of permanent disability in industrial nations, and treatment outcomes often fail to meet the expectations of patients. Despite promising reports from many clinical trials on NIBS for stroke recovery, the number of studies reporting a null effect remains a concern. One possible explanation is that the interhemispheric competition model--which posits that suppressing the excitability of the hemisphere not affected by stroke will enhance recovery by reducing interhemispheric inhibition of the stroke hemisphere, and forms the rationale for many studies--is oversimplified or even incorrect. Here, we critically review the proposed mechanisms of synaptic and functional reorganization after stroke, and suggest a bimodal balance-recovery model that links interhemispheric balancing and functional recovery to the structural reserve spared by the lesion. The proposed model could enable NIBS to be tailored to the needs of individual patients.
Chan, Hugh; Paur, Helen; Vernon, Anthony C.; Zabarsky, Virginia; Datla, Krishna P.; Croucher, Martin J.; Dexter, David T.
2010-01-01
Clinical trials have demonstrated positive proof of efficacy of dual metabotropic glutamate receptor 2/3 (mGluR2/3) agonists in both anxiety and schizophrenia. Importantly, evidence suggests that these drugs may also be neuroprotective against glutamate excitotoxicity, implicated in the pathogenesis of Parkinson's disease (PD). However, whether this neuroprotection also translates into functional recovery is unclear. In the current study, we examined the neuroprotective efficacy of the dual mGluR2/3 agonist, 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC), and whether this is accompanied by behavioral recovery in a rodent 6-hydroxydopamine (6-OHDA) model of PD. We now report that delayed post lesion treatment with 2R,4R-APDC (10 nmol), results in robust neuroprotection of the nigrostriatal system, which translated into functional recovery as measured by improved forelimb use asymmetry and reduced (+)-amphetamine-induced rotation compared to vehicle treated animals. Interestingly, these beneficial effects were associated with a decrease in microglial markers in the SNc, which may suggest an antiinflammatory action of this drug. PMID:20948891
Judge, Lawrence W; Burke, Jeanmarie R
2010-06-01
To determine the effects of training sessions, involving high-resistance, low-repetition bench press exercise, on strength recovery patterns, as a function of gender and training background. The subjects were 12 athletes (6 males and 6 females) and age-matched college students of both genders (4 males and 4 females). The subjects completed a 3-wk resistance training program involving a bench press exercise, 3 d/wk, to become familiar with the testing procedure. After the completion of the resistance training program, the subjects, on three consecutive weeks, participated in two testing sessions per week, baseline session and recovery session. During the testing sessions, subjects performed five sets of the bench press exercise at 50% to 100% of perceived five repetition maximum (5-RM). Following the weekly baseline sessions, subjects rested during a 4-, 24-, or 48-h recovery period. Strength measurements were estimates of one repetition maximum (1-RM), using equivalent percentages for the number of repetitions completed by the subject at the perceived 5-RM effort of the bench press exercise. The full-factorial ANOVA model revealed a Gender by Recovery Period by Testing Session interaction effect, F(2, 32) = 10.65; P < .05. Among male subjects, decreases in estimated 1-RM were detected at the 4- and 24-h recovery times. There were no differences in muscle strength among the female subjects, regardless of recovery time. For bench press exercises, using different recovery times of 48 h for males and 4 h for females may optimize strength development as a function of gender.
Social cognitive theory of posttraumatic recovery: the role of perceived self-efficacy.
Benight, Charles C; Bandura, Albert
2004-10-01
The present article integrates findings from diverse studies on the generalized role of perceived coping self-efficacy in recovery from different types of traumatic experiences. They include natural disasters, technological catastrophes, terrorist attacks, military combat, and sexual and criminal assaults. The various studies apply multiple controls for diverse sets of potential contributors to posttraumatic recovery. In these different multivariate analyses, perceived coping self-efficacy emerges as a focal mediator of posttraumatic recovery. Verification of its independent contribution to posttraumatic recovery across a wide range of traumas lends support to the centrality of the enabling and protective function of belief in one's capability to exercise some measure of control over traumatic adversity.
Effectiveness of the second-stage rehabilitation in stroke patients with cognitive impairment.
Milinavičienė, Eglė; Rastenytė, Daiva; Kriščiūnas, Aleksandras
2011-01-01
The aim of this study was to evaluate the recovery of functional status and effectiveness of the second-stage rehabilitation depending on the degree of cognitive impairment in stroke patients. The study sample comprised 226 stroke patients at the Viršužiglis Hospital of rehabilitation, Hospital of Lithuanian University of Health Sciences. Functional status was evaluated with the Functional Independence Measure, cognitive function with the Mini-Mental Status Examination scale, and severity of neurologic condition with the National Institutes of Health Stroke Scale. The patients were divided into 4 study groups based on cognitive impairment: severe, moderate, mild, or no impairment. More than half (53%) of all cases were found to have cognitive impairment, while patients with different degree of cognitive impairment were equally distributed: mild impairment (18%), moderate impairment (17%), and severe impairment (18%). Improvement of functional status was observed in all study groups (P<0.001). In the patients with moderate and severe cognitive impairment, cognitive recovery was significantly more expressed than in other study groups (P<0.001). Insufficient recovery of functional status was significantly associated with hemiplegia (OR, 11.15; P=0.015), urinary incontinence (OR, 14.91; P<0.001), joint diseases (OR, 5.52; P=0.022), heart diseases (OR, 4.10; P=0.041), and severe cognitive impairment (OR, 15.18; P<0.001), while moderate and mild cognitive impairment was not associated with the recovery of functional status. During the second-stage rehabilitation of stroke patients, functional status as well as cognitive and motor skills were improved both in patients with and without cognitive impairment; however, the patients who were diagnosed with severe or moderate cognitive impairment at the beginning of second-stage rehabilitation showed worse neurological and functional status during the whole second-stage rehabilitation than the patients with mild or no cognitive impairment.
May, Emily M.; Hunter, Bronwyn A.; Jason, Leonard A.
2017-01-01
This article evaluates how a plurality of research methods has served a research program that has functioned in a much-needed area of research: the role of housing and recovery residences in addiction recovery. The review focuses on one mutually supportive recovery residence model, called Oxford House, which represents more than 1,700 democratic, self-governing residences. To date, there has been no comprehensive evaluation of the research methods used with Oxford House or any other recovery residence. In this article, research methods, including study designs and data analyses, are summarized for 114 peer-reviewed empirical studies that included data on Oxford Houses or Oxford House residents. This review of a pluralistic research program can inform community researchers about the value of recovery residences, the many ways in which recovery residences may be assessed, and the benefits of using multiple methods. Implications for future recovery residence research are discussed. PMID:28839344
May, Emily M; Hunter, Bronwyn A; Jason, Leonard A
2017-01-01
This article evaluates how a plurality of research methods has served a research program that has functioned in a much-needed area of research: the role of housing and recovery residences in addiction recovery. The review focuses on one mutually supportive recovery residence model, called Oxford House, which represents more than 1,700 democratic, self-governing residences. To date, there has been no comprehensive evaluation of the research methods used with Oxford House or any other recovery residence. In this article, research methods, including study designs and data analyses, are summarized for 114 peer-reviewed empirical studies that included data on Oxford Houses or Oxford House residents. This review of a pluralistic research program can inform community researchers about the value of recovery residences, the many ways in which recovery residences may be assessed, and the benefits of using multiple methods. Implications for future recovery residence research are discussed.
Wong, Kah-Hui; Naidu, Murali; David, Pamela; Abdulla, Mahmood Ameen; Abdullah, Noorlidah; Kuppusamy, Umah Rani; Sabaratnam, Vikineswary
2011-01-01
Nerve crush injury is a well-established axonotmetic model in experimental regeneration studies to investigate the impact of various pharmacological treatments. Hericium erinaceus is a temperate mushroom but is now being cultivated in tropical Malaysia. In this study, we investigated the activity of aqueous extract of H. erinaceus fresh fruiting bodies in promoting functional recovery following an axonotmetic peroneal nerve injury in adult female Sprague-Dawley rats by daily oral administration. The aim was to investigate the possible use of this mushroom in the treatment of injured nerve. Functional recovery was assessed in behavioral experiment by walking track analysis. Peroneal functional index (PFI) was determined before surgery and after surgery as rats showed signs of recovery. Histological examinations were performed on peroneal nerve by immunofluorescence staining and neuromuscular junction by combined silver-cholinesterase stain. Analysis of PFI indicated that return of hind limb function occurred earlier in rats of aqueous extract or mecobalamin (positive control) group compared to negative control group. Regeneration of axons and reinnervation of motor endplates in extensor digitorum longus muscle in rats of aqueous extract or mecobalamin group developed better than in negative control group. These data suggest that daily oral administration of aqueous extract of H. erinaceus fresh fruiting bodies could promote the regeneration of injured rat peroneal nerve in the early stage of recovery. PMID:21941586
Cuevas, P; Outeiriño, L A; Azanza, C; Giménez-Gallego, G
2013-01-01
Among the age-related diseases that affect vision, age-related macular degeneration is the most frequent cause of blindness in patients older than 60 years. In this communication, we report the full anatomical and functional recovery of a patient diagnosed with wet age-related macular degeneration 1 year after a single intravitreal injection of dobesilate. PMID:24225910
Merritt, Edward K; Cannon, Megan V; Hammers, David W; Le, Long N; Gokhale, Rohit; Sarathy, Apurva; Song, Tae J; Tierney, Matthew T; Suggs, Laura J; Walters, Thomas J; Farrar, Roger P
2010-09-01
Skeletal muscle injury resulting in tissue loss poses unique challenges for surgical repair. Despite the regenerative potential of skeletal muscle, if a significant amount of tissue is lost, skeletal myofibers will not grow to fill the injured area completely. Prior work in our lab has shown the potential to fill the void with an extracellular matrix (ECM) scaffold, resulting in restoration of morphology, but not functional recovery. To improve the functional outcome of the injured muscle, a muscle-derived ECM was implanted into a 1 x 1 cm(2), full-thickness defect in the lateral gastrocnemius (LGAS) of Lewis rats. Seven days later, bone-marrow-derived mesenchymal stem cells (MSCs) were injected directly into the implanted ECM. Partial functional recovery occurred over the course of 42 days when the LGAS was repaired with an MSC-seeded ECM producing 85.4 +/- 3.6% of the contralateral LGAS. This was significantly higher than earlier recovery time points (p < 0.05). The specific tension returned to 94 +/- 9% of the contralateral limb. The implanted MSC-seeded ECM had more blood vessels and regenerating skeletal myofibers than the ECM without cells (p < 0.05). The data suggest that the repair of a skeletal muscle defect injury by the implantation of a muscle-derived ECM seeded with MSCs can improve functional recovery after 42 days.
Brain-machine interfaces in neurorehabilitation of stroke.
Soekadar, Surjo R; Birbaumer, Niels; Slutzky, Marc W; Cohen, Leonardo G
2015-11-01
Stroke is among the leading causes of long-term disabilities leaving an increasing number of people with cognitive, affective and motor impairments depending on assistance in their daily life. While function after stroke can significantly improve in the first weeks and months, further recovery is often slow or non-existent in the more severe cases encompassing 30-50% of all stroke victims. The neurobiological mechanisms underlying recovery in those patients are incompletely understood. However, recent studies demonstrated the brain's remarkable capacity for functional and structural plasticity and recovery even in severe chronic stroke. As all established rehabilitation strategies require some remaining motor function, there is currently no standardized and accepted treatment for patients with complete chronic muscle paralysis. The development of brain-machine interfaces (BMIs) that translate brain activity into control signals of computers or external devices provides two new strategies to overcome stroke-related motor paralysis. First, BMIs can establish continuous high-dimensional brain-control of robotic devices or functional electric stimulation (FES) to assist in daily life activities (assistive BMI). Second, BMIs could facilitate neuroplasticity, thus enhancing motor learning and motor recovery (rehabilitative BMI). Advances in sensor technology, development of non-invasive and implantable wireless BMI-systems and their combination with brain stimulation, along with evidence for BMI systems' clinical efficacy suggest that BMI-related strategies will play an increasing role in neurorehabilitation of stroke. Copyright © 2014. Published by Elsevier Inc.
2013-10-01
of this award, we have found that stretching negatively influences locomotor function in animals with both acute (within days) and chronic (after 3...stretching is stopped, and both acute and chronic animals show a similar time course of recovery. Finally, in very preliminary studies, we have found...glove, data acquisition system and software work very well. The results demonstrate that forces about the ankle of the rat during therapeutic
Shinohe, Yutaka; Higuchi, Satomi; Sasaki, Makoto; Sato, Masahito; Noda, Mamoru; Joh, Shigeharu; Satoh, Kenichi
2016-12-07
Conscious sedation with propofol sometimes causes amnesia while keeping the patient awake. However, it remains unknown how propofol compromises the memory function. Therefore, we investigated the changes in brain activation induced by visual stimulation during and after conscious sedation with propofol using serial functional MRI. Healthy volunteers received a target-controlled infusion of propofol, and underwent functional MRI scans with a block-design paradigm of visual stimulus before, during, and after conscious sedation. Random-effect model analyses were performed using Statistical Parametric Mapping software. Among the areas showing significant activation in response to the visual stimulus, the visual cortex and fusiform gyrus were significantly suppressed in the sedation session and tended to recover in the early-recovery session of ∼20 min (P<0.001, uncorrected). In contrast, decreased activations of the hippocampus, thalamus, inferior frontal cortex (ventrolateral prefrontal cortex), and cerebellum were maintained during the sedation and early-recovery sessions (P<0.001, uncorrected) and were recovered in the late-recovery session of ∼40 min. Temporal changes in the signals from these areas varied in a manner comparable to that described by the random-effect model analysis (P<0.05, corrected). In conclusion, conscious sedation with propofol may cause prolonged suppression of the activation of memory-related structures, such as the hippocampus, during the early-recovery period, which may lead to transient amnesia.
2015-10-01
AWARD NUMBER: W81XWH-12-1-0587 TITLE: Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord...3. DATES COVERED (From - To) 30Sep2014 - 29Sep2015 4. TITLE AND SUBTITLE Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on...ABSTRACT Essentially all spinal cord injured patients receive stretching therapies beginning within the first few weeks post-injury. Despite this fact
Smeda, John S; Daneshtalab, Noriko
2017-09-01
We assessed whether the superior restoration of cerebrovascular function after hemorrhagic stroke by losartan versus captopril treatment was due to better BP, uremia, uricaemia, or aldosterone control in Kyoto Wistar stroke-prone-hypertensive rats and evaluated whether elevated angiotensin II (A2) levels enhanced the effectiveness of losartan treatment. Constriction was studied in the middle cerebral arteries (MCAs) using a pressure myograph. Post-stroke survival increased from 21 to 310 and 189days respectively with losartan and captopril treatment. Neither treatment reduced BP, both reversed uremia and hyperaldosteronism equally after 7days. Plasma uric acid remained low. At stroke, MCA constriction to pressure (PDC), protein kinase C (PKC) activation, depolarization, and sarcoplasmic Ca 2+ were attenuated. Endothelial-dependent-vasodilation by bradykinin and endogenous NO release were lost. Both treatments recovered these functions within 7days. These functions deteriorated after 116days of captopril but not losartan treatment. Inhibiting A2 formation during losartan treatment didn't alter BP or vascular recovery. The superior recovery of PDC by losartan over captopril was not produced by better BP, uremia or aldosterone control or elevated A2. PDC recovery was associated with improved PKC function and enhanced basal NO release. The re-establishment of PDC could reduce cerebrovascular over-perfusion and hematoma expansion after stroke. Copyright © 2017 Elsevier Inc. All rights reserved.
Numb rats walk - a behavioural and fMRI comparison of mild and moderate spinal cord injury.
Hofstetter, Christoph P; Schweinhardt, Petra; Klason, Tomas; Olson, Lars; Spenger, Christian
2003-12-01
Assessment of sensory function serves as a sensitive measure for predicting the functional outcome following spinal cord injury in patients. However, little is known about loss and recovery of sensory function in rodent spinal cord injury models as most tests of sensory functions rely on behaviour and thus motor function. We used functional magnetic resonance imaging (fMRI) to investigate cortical and thalamic BOLD-signal changes in response to limb stimulation following mild or moderate thoracic spinal cord weight drop injury in Sprague-Dawley rats. While there was recovery of close to normal hindlimb motor function as determined by open field locomotor testing following both degrees of injury, recovery of hindlimb sensory function as determined by fMRI and hot plate testing was only seen following mild injury and not following moderate injury. Thus, moderate injury can lead to near normal hindlimb motor function in animals with major sensory deficits. Recovered fMRI signals following mild injury had a partly altered cortical distribution engaging also ipsilateral somatosensory cortex and the cingulate gyrus. Importantly, thoracic spinal cord injury also affected sensory representation of the upper nonaffected limbs. Thus, cortical and thalamic activation in response to forelimb stimulation was significantly increased 16 weeks after spinal cord injury compared to control animals. We conclude that both forelimb and hindlimb cortical sensory representation is altered following thoracic spinal cord injury. Furthermore tests of sensory function that are independent of motor behaviour are needed in rodent spinal cord injury research.
Restoring voluntary control of locomotion after paralyzing spinal cord injury.
van den Brand, Rubia; Heutschi, Janine; Barraud, Quentin; DiGiovanna, Jack; Bartholdi, Kay; Huerlimann, Michèle; Friedli, Lucia; Vollenweider, Isabel; Moraud, Eduardo Martin; Duis, Simone; Dominici, Nadia; Micera, Silvestro; Musienko, Pavel; Courtine, Grégoire
2012-06-01
Half of human spinal cord injuries lead to chronic paralysis. Here, we introduce an electrochemical neuroprosthesis and a robotic postural interface designed to encourage supraspinally mediated movements in rats with paralyzing lesions. Despite the interruption of direct supraspinal pathways, the cortex regained the capacity to transform contextual information into task-specific commands to execute refined locomotion. This recovery relied on the extensive remodeling of cortical projections, including the formation of brainstem and intraspinal relays that restored qualitative control over electrochemically enabled lumbosacral circuitries. Automated treadmill-restricted training, which did not engage cortical neurons, failed to promote translesional plasticity and recovery. By encouraging active participation under functional states, our training paradigm triggered a cortex-dependent recovery that may improve function after similar injuries in humans.
Miralpeix, Ester; Nick, Alpa M; Meyer, Larissa A; Cata, Juan; Lasala, Javier; Mena, Gabriel E; Gottumukkala, Vijaya; Iniesta-Donate, Maria; Salvo, Gloria; Ramirez, Pedro T
2016-05-01
Enhanced recovery after surgery (ERAS) programs aim to hasten functional recovery and improve postoperative outcomes. However, there is a paucity of data on ERAS programs in gynecologic surgery. We reviewed the published literature on ERAS programs in colorectal surgery, general gynecologic surgery, and gynecologic oncology surgery to evaluate the impact of such programs on outcomes, and to identify key elements in establishing a successful ERAS program. ERAS programs are associated with shorter length of hospital stay, a reduction in overall health care costs, and improvements in patient satisfaction. We suggest an ERAS program for gynecologic oncology practice involving preoperative, intraoperative, and postoperative strategies including; preadmission counseling, avoidance of preoperative bowel preparation, use of opioid-sparing multimodal perioperative analgesia (including loco-regional analgesia), intraoperative goal-directed fluid therapy (GDT), and use of minimally invasive surgical techniques with avoidance of routine use of nasogastric tube, drains and/or catheters. Postoperatively, it is important to encourage early feeding, early mobilization, timely removal of tubes and drains, if present, and function oriented multimodal analgesia regimens. Successful implementation of an ERAS program requires a multidisciplinary team effort and active participation of the patient in their goal-oriented functional recovery program. However, future outcome studies should evaluate the efficacy of an intervention within the pathway, include objective measures of symptom burden and control, study measures of functional recovery, and quantify outcomes of the program in relation to the rates of adherence to the key elements of care in gynecologic oncology such as oncologic outcomes and return to intended oncologic therapy (RIOT). Copyright © 2016 Elsevier Inc. All rights reserved.
2013-01-01
Background Renal dysfunction occurs commonly in patients awaiting orthotopic liver transplantation (OLT) for end-stage liver disease. The use of simultaneous liver-kidney transplantation has increased in the MELD scoring era. As patients may recover renal function after OLT, identifying factors predictive of renal recovery is a critical issue, especially given the scarcity of available organs. Methods Employing the UNOS database, we sought to identify donor- and patient-related predictors of renal recovery among 1720 patients with pre-OLT renal dysfunction and transplanted from 1989 to 2005. Recovery of renal function post-OLT was defined as a composite endpoint of serum creatinine (SCr) ≤1.5 mg/dL at discharge and survival ≥29 days. Pre-OLT renal dysfunction was defined as any of the following: SCr ≥2 mg/dL at any time while awaiting OLT or need for renal replacement therapy (RRT) at the time of registration and/or OLT. Results Independent predictors of recovery of renal function post-OLT were absence of hepatic allograft dysfunction, transplantation during MELD era, recipient female sex, decreased donor age, decreased recipient ALT at time of OLT, decreased recipient body mass index at registration, use of anti-thymocyte globulin as induction therapy, and longer wait time from registration. Contrary to popular belief, a requirement for RRT, even for prolonged periods in excess of 8 weeks, was not an independent predictor of failure to recover renal function post-OLT. Conclusion These data indicate that the duration of renal dysfunction, even among those requiring RRT, is a poor way to discriminate reversible from irreversible renal dysfunction. PMID:23849513
Dow, Douglas E.; Zhan, Wen-Zhi; Sieck, Gary C.; Mantilla, Carlos B.
2014-01-01
Respiration is impaired by disruption of the central drive for inspiration to the diaphragm muscle (DIAm). Some function may recover involving nerve regeneration, reinnervation or neuroplasticity. A research animal model involves inducing hemiparesis of the DIAm and monitoring any recovery under different conditions. Methods to accurately track the level of functional recovery are needed. In this study, an algorithm was developed and tested to quantify the relative amount of electromyogram (EMG) activity that temporally correlated for an experimental (EXP) hemi-DIAm with its intact contralateral hemi-DIAm. An average rectified value (ARV) trace was calculated. A template was formed of the ARV trace of the intact hemi-DIAm, with higher positive values corresponding with periods of inspirations and lower negative values corresponding with quiet periods. This template was multiplied by the EXP ARV trace to reward (more positive) periods of correlating activity, and punish (more negative) periods of high activity on the EXP side that corresponded with quiet periods on the intact side. The average integrated value was the index of correlating contralateral activity (ICCA). A negative ICCA value indicated no net correlation of activity, and a positive value indicated a net correlation of activity. The algorithm was tested on rats having the conditions of control or hemi-paresis induced by denervatation (DNV), tetrodotoxin administration (TTX) or cervical spinal hemi-section (SH). Control had high positive ICCA values, and DNV had negative values. TTX maintained negative ICCA values at 3, 7 and 14 days, indicating a lack of functional recovery. SH maintained negative values at 3 and 7 days, but a subset had positive values at 14 days indicating some functional recovery. PMID:19965125
The impact of depression and diabetes mellitus on older workers' functioning.
Stynen, D; Jansen, N W H; Kant, I J
2015-12-01
Using the International Classification of Functioning, Disability and Health as a framework, this study investigates the impact of depression and diabetes mellitus on older workers' functioning (problems with concentration, physical functioning, need for recovery and work and social participation restrictions). The study focuses on how these chronic conditions, in their interaction with the work context, affect older workers' functioning, which may be an important precursor of early retirement. Older workers (≥ 45years) with depression (n=127) or diabetes mellitus (n=107) enrolled in the prospective Maastricht Cohort Study (MCS) were followed between October 2008 and October 2012. Linear, logistic and Cox regression analyses were performed to investigate the effect of these health conditions on workers' functioning compared to a reference group of older workers without a chronic condition (n=1612). The interaction with participants' working conditions (psychological job demands, decision latitude and strenuous work) was also analysed. Compared to the reference group, depression and diabetes mellitus were (over time) positively related with need for recovery caseness and restrictions in social participation but not with restrictions in work participation. Depression was positively related with concentration problems and need for recovery, whereas diabetes mellitus was negatively related with physical functioning. Finally, the relationship between functioning and depression and diabetes mellitus depends on working conditions. Older workers with depression or diabetes mellitus are vulnerable to losses in specific domains of functioning. The impact on functioning varies across working conditions, providing insight for disease-tailored preventive measures. Copyright © 2015 Elsevier Inc. All rights reserved.
Doubly stochastic radial basis function methods
NASA Astrophysics Data System (ADS)
Yang, Fenglian; Yan, Liang; Ling, Leevan
2018-06-01
We propose a doubly stochastic radial basis function (DSRBF) method for function recoveries. Instead of a constant, we treat the RBF shape parameters as stochastic variables whose distribution were determined by a stochastic leave-one-out cross validation (LOOCV) estimation. A careful operation count is provided in order to determine the ranges of all the parameters in our methods. The overhead cost for setting up the proposed DSRBF method is O (n2) for function recovery problems with n basis. Numerical experiments confirm that the proposed method not only outperforms constant shape parameter formulation (in terms of accuracy with comparable computational cost) but also the optimal LOOCV formulation (in terms of both accuracy and computational cost).
Zhou, Long-Jiang; Wang, Wei; Zhao, Yi; Liu, Chun-Feng; Zhang, Xin-Jiang; Liu, Zhen-Sheng; Li, Hua-Dong
2017-11-01
This study aimed to investigate the correlation between the functional magnetic resonance imaging (fMRI) pattern and the motor function recovery of an affected limb during the passive movement of the affected limb at an early stage of the striatocapsular infarction (SCI). A total of 17 patients with an acute stage of SCI and 3 healthy volunteers as controls were included in this study. fMRI scans of passive movement were performed on the affected limbs of stroke patients within 1 week of onset. Follow-ups were carried out for the motor functions of the affected limbs (before fMRI scan, 1 month, and 3 months after the scan). The control group showed that the activation was mainly located in the contralateral sensorimotor cortex (SMC) and the bilateral supplementary motor area (SMA). The fMRI scan region of interest for stroke patients can be divided into 3 types: type I includes mainly the affected side, bilateral SMC, and SMA with activation; type II includes SMC on the affected side and SMA with activation; type III includes only SMC on the affected side or M1 with activation. The recovery of type I patients was better and faster, while the recovery of type II patients was better but slower, but recovery of type III patients was poorer and slower. Multiple cortical activation patterns were noted during the passive movement of the affected limbs at an early stage of SCI, and a correlation was found between the different activation patterns and the clinical prognosis of patients. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Selected Analytical Methods for Environmental Remediation and Recovery (SAM) - Home
The SAM Home page provides access to all information provided in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM), and includes a query function allowing users to search methods by analyte, sample type and instrumentation.
O'Brien, S; McFarland, J; Kealy, B; Pullela, A; Saunders, J; Cullen, W; Meagher, D
2012-09-01
There is increasing interest in the application of recovery principles in mental health services. We studied the implementation of a programme of intensive case management (ICM) emphasizing recovery principles in a community mental health service in Ireland. Eighty service attenders with severe and enduring illness characterized by significant ongoing disability were randomized into (1) a group receiving a programme of ICM and (2) a group receiving treatment as usual (TAU). Groups were compared before and after the programme for general psychopathology using the Brief Psychiatric Rating Scale (BPRS) (clinician rated) and How are You? scale (self-rated). The Functional Analysis of Care Environments (FACE) scale provided assessment of multiple functional domains. The overall group (mean age 44.5 ± 13.2 years; 60% male) had mean total Health of the Nation Outcome Scale (HoNOS) scale scores of 10.5 ± 4.6, with problems in social functioning especially prominent (mean social subscale score 5.0 ± 2.7). The ICM group were younger (p < 0.01) with higher baseline scores on the HoNOS social subscale and BPRS (p < 0.05). An analysis of covariance, controlling for these baseline differences, indicated greater improvement in BPRS scores (p = 0.001), How are You? scores (p = 0.02) and FACE domains for cognition, symptoms and interpersonal relationships (all p < 0.001) in the ICM group. The ICM group underwent greater changes in structured daily activities that were linked to improved BPRS scores (p = 0.01). A programme of ICM emphasizing recovery principles resulted in significant improvement across psychopathological and functional domains. Improvements were linked to enhanced engagement with structured daily activities. Recovery-oriented practices can be integrated into existing mental health services and provided alongside traditional models of care.
Aguilar-Arredondo, Andrea; Zepeda, Angélica
2018-07-01
The dentate gyrus (DG) is a neurogenic structure that exhibits functional and structural reorganization after injury. Neurogenesis and functional recovery occur after brain damage, and the possible relation between both processes is a matter of study. We explored whether neurogenesis and the activation of new neurons correlated with DG recovery over time. We induced a DG lesion in young adult rats through the intrahippocampal injection of kainic acid and analyzed functional recovery and the activation of new neurons after animals performed a contextual fear memory task (CFM) or a control spatial exploratory task. We analyzed the number of BrdU+ cells that co-localized with doublecortin (DCX) or with NeuN within the damaged DG and evaluated the number of cells in each population that were labelled with the activity marker c-fos after either task. At 10 days post-lesion (dpl), a region of the granular cell layer was devoid of cells, evidencing the damaged area, whereas at 30 dpl this region was significantly smaller. At 10 dpl, the number of BrdU+/DCX+/c-fos positive cells was increased compared to the sham-lesion group, but CFM was impaired. At 30 dpl, a significantly greater number of BrdU+/NeuN+/c-fos positive cells was observed than at 10 dpl, and activation correlated with CFM recovery. Performance in the spatial exploratory task induced marginal c-fos immunoreactivity in the BrdU+/NeuN+ population. We demonstrate that neurons born after the DG was damaged survive and are activated in a time- and task-dependent manner and that activation of new neurons occurs along functional recovery.
Kulboka, Arūnas; Veikutis, Vincentas; Pauza, Dainius Haroldas; Lekas, Raimundas
2003-01-01
The aims of present study were to verify the topography of the intracardiac nerve subplexuses (INS) by using electrophysiological methods, its relations with sinoatrial (SA) node function and to investigate possibility of selective surgical SA node denervation. Fifteen mongrel dogs of either sex weighing 8 to 15 kg were used for electrophysiological studies. Both cervical vagosympathetic trunks were isolated and crushed by tight ligatures. Nervus subplexuses destructions were performed by cryocoagulation in three zones located around the right superior vena cava: ventral, lateral and dorsal. The sinus rhythm, SA node function recovery time, AV node conductivity, AV node and atrial effective refractory period were measured. Five experiments in each of three zones were performed. Experimental data show that destruction of the epicardial nerves has different effect on electrophysiological parameters. After destruction of the anterior zone of the right atrium the sinus rhythm decreased on an average by 11.6%; SA node function recovery time prolonged by 7.2%; AV node conductivity decreased by 13.1%; AV node effective refractory period prolonged by 12.9% and atrial effective refractory period, by 10.9 %. Measurements of electrophysiological parameters after intravenous injection of atropine sulphate show that sinus rhythm decreased on an average by 23.4%; SA node function recovery time increased by 9.1%; the conductivity of AV node decreased by 10.2%; AV node effective refractory period prolonged by 15.4% and atrial effective refractory period, by 13.2%. After destruction of the intracardiac nerves of the lateral zone, the sinus rhythm decreased by 15.7%; SA node function recovery time increased by 16.3%; AV node conductivity decreased by 8.3%; AV node effective refractory period and atrial effective refractory period prolonged by 11.9% and 10.0%, respectively. After the atropine sulphate intravenous injection, the sinus rhythm decreased on an average by 7.1%, SA node function recovery time prolonged by 7.1%, AV conductivity decreased by 9.1%, AV node effective refractory period increased by 12.4%, and atrial effective refractory period prolonged by 12.5%. After destruction of the nerves in the dorsal zone the changes of electrophysiological parameters were opposite to those obtained after destruction of the nerve tracts in the anterior or lateral zones: the sinus rhythm increased on an average by 4.3%; SA node function recovery time shortened by 8.8%; AV conductivity increased by 9.7%; AV node and atrial effective refractory period decreased by 12.3% and 12.1%, respectively. After intravenous atropine sulphate infusion, sinus rhythm decreased on an average by 8.3%; SA node function recovery time prolonged by 9.6%; AV node conductivity decreased by 5%; AV node and atrial effective refractory period prolonged by 4.2% and 5.2%, respectively. The average changes of electrophysiological parameters before and after INS destruction shows that cryocoagulation of ventral and lateral zones eliminates the effects of sympathetic tone to SA and AV nodal activity. Cryocoagulation of dorsal zone eliminates the effects of nervus vagus to both nodal structures. These findings shows the possibility alter or correct SA node function by making selective surgical SA node denervation.
Thompson, Alina; Lipp, Ottmar V
2017-05-01
Extant literature suggests that extinction training delivered during the memory reconsolidation period is superior to traditional extinction training in the reduction of fear recovery, as it targets the original fear memory trace. At present it is debated whether different types of fear memories are differentially sensitive to behavioral manipulations of reconsolidation. Here, we examined post-reconsolidation recovery of fear as a function of conditioned stimulus (CS) fear-relevance, using the unconditioned stimulus (US) to reactivate and destabilize conditioned fear memories. Participants (N = 56; 25 male; M = 24.39 years, SD = 7.71) in the US-reactivation and control group underwent differential fear conditioning to fear-relevant (spiders/snakes) and fear-irrelevant (geometric shapes) CSs on Day 1. On Day 2, participants received either reminded (US-reactivation) or non-reminded extinction training. Tests of fear recovery, conducted 24 h later, revealed recovery of differential electrodermal responding to both classes of CSs in the control group, but not in the US-reactivation group. These findings indicate that the US reactivation-extinction procedure eliminated recovery of extinguished responding not only to fear-irrelevant, but also to fear-relevant CSs. Contrasting previous reports, our findings show that post-reconsolidation recovery of conditioned responding is not a function of CS fear-relevance and that persistent reduction of fear, conditioned to fear-relevant CSs, can be achieved through behavioral manipulations of reconsolidation. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Peripheral nerve repair: 30 centuries of scientific research].
Desouches, C; Alluin, O; Mutaftschiev, N; Dousset, E; Magalon, G; Boucraut, J; Feron, F; Decherchi, P
2005-11-01
Nerve injury compromises sensory and motor functions. Techniques of peripheral nerve repair are based on our knowledge regarding regeneration. Microsurgical techniques introduced in the late 1950s and widely developed for the past 20 years have improved repairs. However, functional recovery following a peripheral mixed nerve injury is still incomplete. Good motor and sensory function after nerve injury depends on the reinnervation of the motor end plates and sensory receptors. Nerve regeneration does not begin if the cell body has not survived the initial injury or if it is unable to initiate regeneration. The regenerated axons must reach and reinnervate the appropriate target end-organs in a timely fashion. Recovery of motor function requires a critical number of motor axons reinnervating the muscle fibers. Sensory recovery is possible if the delay in reinnervation is short. Many additional factors influence the success of nerve repair or reconstruction. The timing of the repair, the level of injury, the extent of the zone of injury, the technical skill of the surgeon, and the method of repair and reconstruction contribute to the functional outcome after nerve injury. This review presents the recent advances in understanding of neural regeneration and their application to the management of primary repairs and nerve gaps.
Environmental Control and Life Support System
NASA Technical Reports Server (NTRS)
Ray, Charles; Adams, Alan
1990-01-01
Viewgraphs on the Environmental Control and Life Support System (ECLSS) for the space station are presented. The ECLSS is divided into six subsystems: temperature and humidity control (THC), atmosphere control and supply (ACS), atmosphere revitalization (AR), fire detection and suppression (FDS), water recovery management (WRM), and waste management (WM). Topics covered include: ECLSS subsystem functions; ECLSS distributed system; ECLSS functional distribution; CO2 removal; CO2 reduction; oxygen generation; urine processor; and potable water recovery.
Okabe, Naohiko; Himi, Naoyuki; Maruyama-Nakamura, Emi; Hayashi, Norito; Narita, Kazuhiko; Miyamoto, Osamu
2017-01-01
Task-specific rehabilitative training is commonly used for chronic stroke patients. Axonal remodeling is believed to be one mechanism underlying rehabilitation-induced functional recovery, and significant roles of the corticospinal pathway have previously been demonstrated. Brainstem-spinal pathways, as well as the corticospinal tract, have been suggested to contribute to skilled motor function and functional recovery after brain injury. However, whether axonal remodeling in the brainstem-spinal pathways is a critical component for rehabilitation-induced functional recovery is not known. In this study, rats were subjected to photothrombotic stroke in the caudal forelimb area of the primary motor cortex and received rehabilitative training with a skilled forelimb reaching task for 4 weeks. After completion of the rehabilitative training, the retrograde tracer Fast blue was injected into the contralesional lower cervical spinal cord. Fast blue-positive cells were counted in 32 brain areas located in the cerebral cortex, hypothalamus, midbrain, pons, and medulla oblongata. Rehabilitative training improved motor performance in the skilled forelimb reaching task but not in the cylinder test, ladder walk test, or staircase test, indicating that rehabilitative skilled forelimb training induced task-specific recovery. In the histological analysis, rehabilitative training significantly increased the number of Fast blue-positive neurons in the ipsilesional rostral forelimb area and secondary sensory cortex. However, rehabilitative training did not alter the number of Fast blue-positive neurons in any areas of the brainstem. These results indicate that rehabilitative skilled forelimb training enhances axonal remodeling selectively in the corticospinal pathway, which suggests a critical role of cortical plasticity, rather than brainstem plasticity, in task-specific recovery after subtotal motor cortex destruction.
Himi, Naoyuki; Maruyama-Nakamura, Emi; Hayashi, Norito; Narita, Kazuhiko; Miyamoto, Osamu
2017-01-01
Task-specific rehabilitative training is commonly used for chronic stroke patients. Axonal remodeling is believed to be one mechanism underlying rehabilitation-induced functional recovery, and significant roles of the corticospinal pathway have previously been demonstrated. Brainstem-spinal pathways, as well as the corticospinal tract, have been suggested to contribute to skilled motor function and functional recovery after brain injury. However, whether axonal remodeling in the brainstem-spinal pathways is a critical component for rehabilitation-induced functional recovery is not known. In this study, rats were subjected to photothrombotic stroke in the caudal forelimb area of the primary motor cortex and received rehabilitative training with a skilled forelimb reaching task for 4 weeks. After completion of the rehabilitative training, the retrograde tracer Fast blue was injected into the contralesional lower cervical spinal cord. Fast blue-positive cells were counted in 32 brain areas located in the cerebral cortex, hypothalamus, midbrain, pons, and medulla oblongata. Rehabilitative training improved motor performance in the skilled forelimb reaching task but not in the cylinder test, ladder walk test, or staircase test, indicating that rehabilitative skilled forelimb training induced task-specific recovery. In the histological analysis, rehabilitative training significantly increased the number of Fast blue-positive neurons in the ipsilesional rostral forelimb area and secondary sensory cortex. However, rehabilitative training did not alter the number of Fast blue-positive neurons in any areas of the brainstem. These results indicate that rehabilitative skilled forelimb training enhances axonal remodeling selectively in the corticospinal pathway, which suggests a critical role of cortical plasticity, rather than brainstem plasticity, in task-specific recovery after subtotal motor cortex destruction. PMID:29095902
Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c.
Pan, Bifeng; Askew, Charles; Galvin, Alice; Heman-Ackah, Selena; Asai, Yukako; Indzhykulian, Artur A; Jodelka, Francine M; Hastings, Michelle L; Lentz, Jennifer J; Vandenberghe, Luk H; Holt, Jeffrey R; Géléoc, Gwenaëlle S
2017-03-01
Because there are currently no biological treatments for hearing loss, we sought to advance gene therapy approaches to treat genetic deafness. We focused on Usher syndrome, a devastating genetic disorder that causes blindness, balance disorders and profound deafness, and studied a knock-in mouse model, Ush1c c.216G>A, for Usher syndrome type IC (USH1C). As restoration of complex auditory and balance function is likely to require gene delivery systems that target auditory and vestibular sensory cells with high efficiency, we delivered wild-type Ush1c into the inner ear of Ush1c c.216G>A mice using a synthetic adeno-associated viral vector, Anc80L65, shown to transduce 80-90% of sensory hair cells. We demonstrate recovery of gene and protein expression, restoration of sensory cell function, rescue of complex auditory function and recovery of hearing and balance behavior to near wild-type levels. The data represent unprecedented recovery of inner ear function and suggest that biological therapies to treat deafness may be suitable for translation to humans with genetic inner ear disorders.
2016-01-01
Locomotor training is a classic rehabilitation approach utilized with the aim of improving sensorimotor function and walking ability in people with spinal cord injury (SCI). Recent studies have provided strong evidence that locomotor training of persons with clinically complete, motor complete, or motor incomplete SCI induces functional reorganization of spinal neuronal networks at multisegmental levels at rest and during assisted stepping. This neuronal reorganization coincides with improvements in motor function and decreased muscle cocontractions. In this review, we will discuss the manner in which spinal neuronal circuits are impaired and the evidence surrounding plasticity of neuronal activity after locomotor training in people with SCI. We conclude that we need to better understand the physiological changes underlying locomotor training, use physiological signals to probe recovery over the course of training, and utilize established and contemporary interventions simultaneously in larger scale research studies. Furthermore, the focus of our research questions needs to change from feasibility and efficacy to the following: what are the physiological mechanisms that make it work and for whom? The aforementioned will enable the scientific and clinical community to develop more effective rehabilitation protocols maximizing sensorimotor function recovery in people with SCI. PMID:27293901
Characterization and recovery of Deep Sub Micron (DSM) technologies behavior under radiation
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Wang, Xiao
2005-01-01
This paper serves a twofold purpose: characterize the behavior of a reconfigurable chip exposed to radiation; and demonstrate a method for functionality recovery due to Total Ionizing Dose (TID) effects. The experiments are performed using a PL developed reconfigurable device, a Field Programmable Transistor Array (FPTA). The paper initially describes experiments on the characterization of the NMOS transistor behavior for TID values up to 300krad. The behavior of analog and digital circuits downloaded onto the FPTA chip is also assessed for TID effects. This paper also presents a novel approach for circuit functionality recovery due to radiation effects based on Evolvable Hardware. The key idea is to reconfigure a programmable device, in-situ, to compensate, or bypass its degraded or damaged components. Experiments with total radiation dose up to 300kRad show that while the functionality of a variety of circuits, including digital gates, a rectifier and a Digital to Analog Converter implemented on a FPTA-2 chip is degraded/lost at levels before 200kRad, the correct functionality can be recovered through the proposed evolutionary approach and the chips are able to survive higher radiation, for several functions in excess of total radiation dose of 250kRad.
Lam, Ching-yu; Tay, Laura; Chan, Mark; Ding, Yew Yoong; Chong, Mei Sian
2014-09-01
To describe the recovery trajectories of delirium and to determine factors predicting the course of recovery and adverse outcome. A prospective observational study. Geriatric monitoring unit (GMU), a five-bed unit specializing in managing older adults with delirium. Individuals admitted to the GMU between December 2010 and August 2012 (N = 234; mean age 84.1 ± 7.4). Information was collected on demographic characteristics; comorbidities; severity of illness; functional status; and daily cognitive, Delirium Rating Scale, Revised-98 (DRS-R98) severity, and functional scoring. Resolution of delirium, and thus GMU discharge, was determined according to clinical assessment. The primary outcome was residual subsyndromal delirium (SSD) (DRS-R98 severity ≥13) upon GMU discharge. Univariate and multivariate methods were used to determine the predictors of residual SSD and adverse outcomes (inpatient mortality and incident nursing home admission upon discharge). Participants with residual SSD had a slower recovery in terms of delirium severity, cognition, and functional status than those with no residual SSD. Residual SSD predictors included underlying dementia, admission DRS-R98 severity, DRS-R98 severity on Day 1 minus Day 3 of GMU stay, and admission modified Barthel Index. Only presence of residual SSD at discharge predicted adverse outcomes (odds ratio = 5.27, 95% confidence interval = 1.43-19.47). Individuals with residual SSD had prolonged recovery trajectory of delirium. These new insights into the recovery trajectories of delirium may help formulate early discharge planning and provide the basis for future research on delirium treatment. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.
Examining Differences in Patterns of Sensory and Motor Recovery After Stroke With Robotics.
Semrau, Jennifer A; Herter, Troy M; Scott, Stephen H; Dukelow, Sean P
2015-12-01
Developing a better understanding of the trajectory and timing of stroke recovery is critical for developing patient-centered rehabilitation approaches. Here, we quantified proprioceptive and motor deficits using robotic technology during the first 6 months post stroke to characterize timing and patterns in recovery. We also make comparisons of robotic assessments to traditional clinical measures. One hundred sixteen subjects with unilateral stroke were studied at 4 time points: 1, 6, 12, and 26 weeks post stroke. Subjects performed robotic assessments of proprioceptive (position sense and kinesthesia) and motor function (unilateral reaching task and bimanual object hit task), as well as several clinical measures (Functional Independence Measure, Purdue Pegboard, and Chedoke-McMaster Stroke Assessment). One week post stroke, many subjects displayed proprioceptive (48% position sense and 68% kinesthesia) and motor impairments (80% unilateral reaching and 85% bilateral movement). Interindividual recovery on robotic measures was highly variable. However, we characterized recovery as early (normal by 6 weeks post stroke), late (normal by 26 weeks post stroke), or incomplete (impaired at 26 weeks post stroke). Proprioceptive and motor recovery often followed different timelines. Across all time points, robotic measures were correlated with clinical measures. These results highlight the need for more sensitive, targeted identification of sensory and motor deficits to optimize rehabilitation after stroke. Furthermore, the trajectory of recovery for some individuals with mild to moderate stroke may be much longer than previously considered. © 2015 American Heart Association, Inc.
Avila-Luna, Alberto; Gálvez-Rosas, Arturo; Alfaro-Rodríguez, Alfonso; Reyes-Legorreta, Celia; Garza-Montaño, Paloma; González-Piña, Rigoberto; Bueno-Nava, Antonio
2018-01-15
The sensorimotor cortex and the striatum are interconnected by the corticostriatal pathway, suggesting that cortical injury alters the striatal function that is associated with skilled movements and motor learning, which are functions that may be modulated by dopamine (DA). In this study, we explored motor coordination and balance in order to investigate whether the activation of D 1 receptors (D 1 Rs) modulates functional recovery after cortical injury. The results of the beam-walking test showed motor deficit in the injured group at 24, 48 and 96h post-injury, and the recovery time was observed at 192h after cortical injury. In the sham and injured rats, systemic administration of the D 1 R antagonist SCH-23390 (1mg/kg) alone at 24, 48, 96 and 192h significantly (P<0.01) increased the motor deficit, while administration of the D 1 R agonist SKF-38393 alone (2, 3 and 4mg/kg) at 24, 48, 96 and 192h post-injury did not produce a significant difference; however, the co-administration of SKF-38393 and SCH-23390 prevented the antagonist-induced increase in the motor deficit. The cortical+striatal injury showed significantly increased the motor deficit at 24, 48, 96 and 192h post-injury (P<0.01) but did not show recovery at 192h. In conclusion, the administration of the D 1 R agonist did not accelerate the motor recovery, but the activation of D 1 Rs maintained motor coordination, confirming that an intact striatum may be necessary for achieving recovery. Copyright © 2017 Elsevier B.V. All rights reserved.
Baumann, Cory W; Otis, Jeffrey S
2015-12-01
The stress inducible 70 kDa heat shock protein (Hsp70) is instrumental to efficient morphological and functional recovery following skeletal muscle injury because of its roles in protein quality control and molecular signalling. Therefore, in attempt to improve recovery, Hsp70 expression was increased with 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) prior to and following an intramuscular injection of barium chloride (BaCl2) into the tibialis anterior (TA) of healthy young mice. To assess recovery, regenerating fibre cross-sectional area (CSA) of the TA and in vivo peak isometric torque produced by the anterior crural muscles (TA, extensor digitorum longus and extensor hallucis muscles) were analyzed for up to 3 weeks after the injury. Because treatment of 17-AAG and Hsp70 are known to influence inflammatory and myogenic signalling, tumor necrosis factor-α (TNF-α) and myogenin content were also assessed. This study reports that 17-AAG was effective at up-regulating Hsp70 expression, increasing content fivefold in the uninjured muscle. However, this significant increase in Hsp70 content did not enhance morphological or functional recovery following the injury, as the return of regenerating fibre CSA and in vivo peak isometric torque did not differ compared to that of the injured muscle from the vehicle treated mice. Treatment with 17-AAG also altered TNF-α and myogenin content, increasing both to a greater extent after the injury. Together, these findings demonstrate that although 17-AAG may alter molecular makers of regeneration, it does not improve recovery following BaCl2-induced skeletal muscle injury in healthy young mice. © 2015 Wiley Publishing Asia Pty Ltd.
Laudet, Alexandre; Timko, Christine; Hill, Thomas
2014-01-01
The costs of addiction are well documented, but the potential benefits of recovery are less well known. Similarly, substance use issues among both active duty military personnel and veterans are well known but their recovery experiences remain underinvestigated. Furthermore, little is known about whether and how addiction and recovery experiences differ between veterans and non-veterans. This knowledge can help refine treatment and recovery support services. Capitalizing on a national study of individuals in recovery (N = 3,208), we compare addiction and recovery experiences among veterans (n = 481) and non-veterans. Veterans' addiction phase was 4 years longer than non-veterans and they experienced significantly more financial and legal problems. Dramatic improvements in functioning were observed across the board in recovery with subgroup differences leveling off. We discuss possible strategies to address the specific areas where veterans are most impaired in addiction and note study limitations including the cross-sectional design.
Laudet, Alexandre; Timko, Christine; Hill, Thomas
2014-01-01
The costs of addiction are well documented but the potential benefits of recovery are less well known. Similarly, substance use issues among both active duty military personnel and veterans are well known but their recovery experiences remain under-investigated. Further, little is known about whether and how addiction and recovery experiences differ between veterans and non veterans. This knowledge can help refine treatment and recovery support services. Capitalizing on a national study of persons in recovery (N = 3,208) we compare addiction and recovery experiences among veterans (N = 481) and non veterans. Vets’ addiction phase was 4 years longer than non vets and they experienced significantly more financial and legal problems. Dramatic improvements in functioning were observed across the board in recovery with subgroup differences leveling off. We discuss possible strategies to address the specific areas where vets are most impaired in addiction and note study limitations including the cross-sectional design. PMID:24783976
Newell, Karl M; Verhoeven, F Martijn
2017-01-01
This paper addresses the change in movement dynamics in rehabilitation through discussing issues that pertain to the question as to whether the principles of re-learning in functional recovery are the same as those of original learning. The many varieties of disease and injury states lead to significant differences in the constraints to action and these impairments in turn influence the pathway of change in re-learning and/or recovery of function. These altered constraints channel the effectiveness of many conditions and strategies of practice that influence learning and performance. Nevertheless, it is proposed that there is a small set of principles for the change in dynamics of motor learning, which drive the continuously evolving stability and instability of movement forms through the lifespan. However, this common set of dynamical principles is realized in individual pathways of change in the movement dynamics of learning, re-learning and recovery of function. The inherent individual differences of humans and environments insure that the coordination, control and skill of movement rehabilitation are challenged in distinct ways by the changing constraints arising from the many manifestations of disease and injury. Implications for rehabilitation The many varieties of disease and injury states lead to significant differences in the constraints to action that in turn influence the pathway of change in re-learning and/or recovery of function, and the effectiveness of the many conditions/strategies of practice to influence learning and performance. There are a small set of principles for the change in dynamics of motor learning that drive the continuously evolving ebb and flow of stability and instability of movement forms through the lifespan. The inherent individual differences of humans and environments insure that the coordination, control and skill of movement rehabilitation are uniquely challenged by the changing constraints arising from the many manifestations of disease and injury.
Timing of Locomotor Recovery from Anoxia Modulated by the white Gene in Drosophila
Xiao, Chengfeng; Robertson, R. Meldrum
2016-01-01
Locomotor recovery from anoxia follows the restoration of disordered ion distributions and neuronal excitability. The time taken for locomotor recovery after 30 sec anoxia (around 10 min) is longer than the time for the propagation of action potentials to be restored (<1 min) in Drosophila wild type. We report here that the white (w) gene modulates the timing of locomotor recovery. Wild-type flies displayed fast and consistent recovery of locomotion from anoxia, whereas mutants of w showed significantly delayed and more variable recovery. Genetic analysis including serial backcrossing revealed a strong association between the w locus and the timing of locomotor recovery, and haplo-insufficient function of w+ in promoting fast recovery. The locomotor recovery phenotype was independent of classic eye pigmentation, although both are associated with the w gene. Introducing up to four copies of mini-white (mw+) into w1118 was insufficient to promote fast and consistent locomotor recovery. However, flies carrying w+ duplicated to the Y chromosome showed wild-type-like fast locomotor recovery. Furthermore, Knockdown of w by RNA interference (RNAi) in neurons but not glia delayed locomotor recovery, and specifically, knockdown of w in subsets of serotonin neurons was sufficient to delay the locomotor recovery. These data reveal an additional role for w in modulating the timing of locomotor recovery from anoxia. PMID:27029736
Prospective study of recovery from copperhead snake envenomation: an observational study.
Lavonas, Eric J; Gerardo, Charles J
2015-05-15
Although much is known about signs, symptoms, and management in the acute phase of crotaline snake envenomation, little is known about signs, symptoms, function, and quality of life during the recovery phase. The purpose of this observational pilot investigation is to evaluate the utility of several clinical outcome instruments in the setting of copperhead snakebite, and to characterize the clinical course of recovery. This is a multi-center prospective, open-label, observational study of patients envenomated by copperhead snakes. We administered the Disabilities of the Arm, Shoulder, and Hand (DASH), Lower Extremity Functional Scale (LEFS), Patient-Specific Functional Scale (PSFS), Work Productivity and Ability Impairment: Special Health Problem (WPAI: SHP), Patients' Global Impression of Change (PGIC), Patient's Global Assessment of Recovery (PGAR), and SF-36 instruments, obtained numeric pain rating scales, and measured grip strength, walking speed, and swelling prior to hospital discharge and 3, 7, 14, 21, and 28 days after envenomation. 20 subjects were enrolled; none were lost to follow-up. Most (80%) had moderate severity swelling, and most (75%) received antivenom. Across the broad range of measures, abnormalities of pain, swelling, impairments of physical and role function, and quality of life persisted for 7-14 days in most subjects. Validated self-reported outcome measures, such as the DASH, LEFS, PSFS, PGIC, SF-36, and the daily activities impairment portion of the WPAI: SHP were more responsive than measurements of swelling or walking speed. Data quality issues limited the utility of the work impairment portion of the WPAI: SHP. Residual signs, symptoms, and impairment in some subjects lasted through the 28-day study period. The study design precluded any assessment of the effectiveness of antivenom. Signs, symptoms, impaired function, and decreased quality of life typically last 7 - 14 days after copperhead envenomation. Several tools appear responsive and useful in studying recovery from pit viper envenomation. ClinicalTrials.gov NCT01651299.
Recovery of laryngeal function after intraoperative injury to the recurrent laryngeal nerve
Hydman, Jonas; Svensson, Mikael
2015-01-01
Loss of function in the recurrent laryngeal nerve (RLN) during thyroid/parathyroid surgery, despite a macroscopically intact nerve, is a challenge which highlights the sensitivity and complexity of laryngeal innervation. Furthermore, the uncertain prognosis stresses a lack of capability to diagnose the reason behind the impaired function. There is a great deal of literature considering risk factors, surgical technique and mechanisms outside the nerve affecting the incidence of RLN paresis during surgery. To be able to prognosticate recovery in cases of laryngeal dysfunction and voice changes after thyroid surgery, the surgeon would first need to define the presence, location, and type of laryngeal nerve injury. There is little data describing the events within the nerve and the neurobiological reasons for the impaired function related to potential recovery and prognosis. In addition, very little data has been presented in order to clarify any differences between the transient and permanent injury of the RLN. This review aims, from an anatomical and neurobiological perspective, to provide an update on the current understandings of surgically-induced injury to the laryngeal nerves. PMID:25713777
Music listening enhances cognitive recovery and mood after middle cerebral artery stroke.
Särkämö, Teppo; Tervaniemi, Mari; Laitinen, Sari; Forsblom, Anita; Soinila, Seppo; Mikkonen, Mikko; Autti, Taina; Silvennoinen, Heli M; Erkkilä, Jaakko; Laine, Matti; Peretz, Isabelle; Hietanen, Marja
2008-03-01
We know from animal studies that a stimulating and enriched environment can enhance recovery after stroke, but little is known about the effects of an enriched sound environment on recovery from neural damage in humans. In humans, music listening activates a wide-spread bilateral network of brain regions related to attention, semantic processing, memory, motor functions, and emotional processing. Music exposure also enhances emotional and cognitive functioning in healthy subjects and in various clinical patient groups. The potential role of music in neurological rehabilitation, however, has not been systematically investigated. This single-blind, randomized, and controlled trial was designed to determine whether everyday music listening can facilitate the recovery of cognitive functions and mood after stroke. In the acute recovery phase, 60 patients with a left or right hemisphere middle cerebral artery (MCA) stroke were randomly assigned to a music group, a language group, or a control group. During the following two months, the music and language groups listened daily to self-selected music or audio books, respectively, while the control group received no listening material. In addition, all patients received standard medical care and rehabilitation. All patients underwent an extensive neuropsychological assessment, which included a wide range of cognitive tests as well as mood and quality of life questionnaires, one week (baseline), 3 months, and 6 months after the stroke. Fifty-four patients completed the study. Results showed that recovery in the domains of verbal memory and focused attention improved significantly more in the music group than in the language and control groups. The music group also experienced less depressed and confused mood than the control group. These findings demonstrate for the first time that music listening during the early post-stroke stage can enhance cognitive recovery and prevent negative mood. The neural mechanisms potentially underlying these effects are discussed.
Burello, Lorena; De Bartolo, Paola; Gelfo, Francesca; Foti, Francesca; Angelucci, Francesco; Petrosini, Laura
2012-01-01
Since brain injuries in adulthood are a leading cause of long-term disabilities, the development of rehabilitative strategies able to impact on functional outcomes requires detailing adaptive neurobiological responses. Functional recovery following brain insult is mainly ascribed to brain neuroplastic properties although the close linkage between neuronal plasticity and functional recovery is not yet fully clarified. The present study analyzed the reactive responses of pre-cerebellar (inferior olive, lateral reticular nucleus and pontine nuclei) and deep cerebellar nuclei after a hemicerebellectomy, considering the great plastic potential of the cerebellar system in physiological and pathological conditions. The time course of the plastic reorganization following cerebellar lesion was investigated by monitoring the Growth Associated Protein-43 (GAP-43) immunoreactivity. The time course of recovery from cerebellar symptoms was also assessed to parallel behavioral and neurobiological parameters. A key role of GAP-43 in neuronal reactive responses was evidenced. Neurons that underwent an axotomy as consequence of the right hemicerebellectomy (neurons of left inferior olive, right lateral reticular nucleus and left pontine nuclei) exhibited enhanced GAP-43 immunoreactivity and cell death. As for the not-axotomized neurons, we found enhanced GAP-43 immunoreactivity only in right pontine nuclei projecting to the spared (left) hemicerebellum. GAP-43 levels augmented also in the three deep cerebellar nuclei of the spared hemicerebellum, indicating the ponto-cerebellar circuit as crucially involved in functional recovery. Interestingly, each nucleus showed a distinct time course in GAP-43 immunoreactivity. GAP-43 levels peaked during the first post-operative week in the fastigial and interposed nuclei and after one month in the dentate nucleus. These results suggest that the earlier plastic events of the fastigial and interposed nuclei were driving compensation of the elementary features of posture and locomotion, while the later plastic events of the dentate nucleus were mediating the recovered ability to flexibly adjust the locomotor plan. Copyright © 2011. Published by Elsevier Inc.
[Present situation and prospect of enhanced recovery after surgery in pancreatic surgery].
Feng, Mengyu; Zhang, Taiping; Zhao, Yupei
2017-05-25
Enhanced recovery after surgery is a multimodal perioperative strategy according to the evidence-based medicine and multidisciplinary collaboration, aiming to improve the restoration of functional capacity after surgery by reducing surgical stress, optimal control of pain, early oral diet and early mobilization. Compared with other sub-specialty in general surgery, pancreatic surgery is characterized by complex disease, highly difficult procedure and more postoperative complications. Accordingly, pancreatic surgery shares a slow development in enhanced recovery after surgery. In this review, the feasibility, safety, application progress, prospect and controversy of enhanced recovery after surgery in pancreatic surgery are discussed.
2013-01-01
Stroke is a major cause of disability in the world. The activities of upper limb segments are often compromised following a stroke, impairing most daily tasks. Robotic training is now considered amongst the rehabilitation methods applied to promote functional recovery. However, the implementation of robotic devices remains a major challenge for the bioengineering and clinical community. Latest exoskeletons with multiple degrees of freedom (DOF) may become particularly attractive, because of their low apparent inertia, the multiple actuators generating large torques, and the fact that patients can move the arm in the normal wide workspace. A recent study published in JNER by Milot and colleagues underlines that training with a 6-DOF exoskeleton impacts positively on motor function in patients being in stable phase of recovery after a stroke. Also, multi-joint robotic training was not found to be superior to single-joint robotic training. Although it is often considered that rehabilitation should start from simple movements to complex functional movements as the recovery evolves, this study challenges this widespread notion whose scientific basis has remained uncertain. PMID:24354518
Pajewski, Russell; Gipson, Patrick; Heung, Michael
2018-01-01
Acute kidney injury (AKI) requiring dialysis complicates 1% of all hospital admissions, and up to 30% of survivors will still require dialysis at hospital discharge. There is a paucity of data to describe the postdischarge outcomes or to guide evidence-based dialysis management of this vulnerable population. Single-center, retrospective analysis of 100 consecutive patients with AKI who survived to hospital discharge and required outpatient dialysis. Data collection included baseline characteristics, hospitalization characteristics, and outpatient dialysis treatment variables. Primary outcome was dialysis independence 90 days after discharge. Overall, 43% of patients recovered adequate renal function to discontinue dialysis, with the majority recovering within 30 days post discharge. Worse baseline renal function was associated with lower likelihood of renal recovery. In the first week postdischarge, patients with subsequent nonrecovery of renal function had greater net fluid removal (5.3 vs. 4.1 L, P = 0.037), higher ultrafiltration rates (6.0 vs. 4.7 mL/kg/h, P = 0.041) and more frequent intradialytic hypotension (24.6% vs. 9.3% with 3 or more episodes, P = 0.049) compared to patients that later recovered. A significant proportion of AKI survivors will recover renal function following discharge. Outpatient intradialytic factors may influence subsequent renal function recovery. © 2017 International Society for Hemodialysis.
Fowler, David; Hodgekins, Jo; French, Paul; Marshall, Max; Freemantle, Nick; McCrone, Paul; Everard, Linda; Lavis, Anna; Jones, Peter B; Amos, Tim; Singh, Swaran; Sharma, Vimal; Birchwood, Max
2018-01-01
Provision of early intervention services has increased the rate of social recovery in patients with first-episode psychosis; however, many individuals have continuing severe and persistent problems with social functioning. We aimed to assess the efficacy of early intervention services augmented with social recovery therapy in patients with first-episode psychosis. The primary hypothesis was that social recovery therapy plus early intervention services would lead to improvements in social recovery. We did this single-blind, phase 2, randomised controlled trial (SUPEREDEN3) at four specialist early intervention services in the UK. We included participants who were aged 16-35 years, had non-affective psychosis, had been clients of early intervention services for 12-30 months, and had persistent and severe social disability, defined as engagement in less than 30 h per week of structured activity. Participants were randomly assigned (1:1), via computer-generated randomisation with permuted blocks (sizes of four to six), to receive social recovery therapy plus early intervention services or early intervention services alone. Randomisation was stratified by sex and recruitment centre (Norfolk, Birmingham, Lancashire, and Sussex). By necessity, participants were not masked to group allocation, but allocation was concealed from outcome assessors. The primary outcome was time spent in structured activity at 9 months, as measured by the Time Use Survey. Analysis was by intention to treat. This trial is registered with ISRCTN, number ISRCTN61621571. Between Oct 1, 2012, and June 20, 2014, we randomly assigned 155 participants to receive social recovery therapy plus early intervention services (n=76) or early intervention services alone (n=79); the intention-to-treat population comprised 154 patients. At 9 months, 143 (93%) participants had data for the primary outcome. Social recovery therapy plus early intervention services was associated with an increase in structured activity of 8·1 h (95% CI 2·5-13·6; p=0·0050) compared with early intervention services alone. No adverse events were deemed attributable to study therapy. Our findings show a clinically important benefit of enhanced social recovery on structured activity in patients with first-episode psychosis who received social recovery therapy plus early intervention services. Social recovery therapy might be useful in improving functional outcomes in people with first-episode psychosis, particularly in individuals not motivated to engage in existing psychosocial interventions targeting functioning, or who have comorbid difficulties preventing them from doing so. National Institute for Health Research. Copyright © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
Shirasaka, Tomonori; Miyagawa, Shigeru; Fukushima, Satsuki; Saito, Atsuhiro; Shiozaki, Motoko; Kawaguchi, Naomasa; Matsuura, Nariaki; Nakatani, Satoshi; Sakai, Yoshiki; Daimon, Takashi; Okita, Yutaka; Sawa, Yoshiki
2013-08-01
Cardiac functional deterioration in dilated cardiomyopathy (DCM) is known to be reversed by intramyocardial up-regulation of multiple cardioprotective factors, whereas a prostacyclin analog, ONO1301, has been shown to paracrinally activate interstitial cells to release a variety of protective factors. We here hypothesized that intramyocardial delivery of a slow-releasing form of ONO1301 (ONO1301SR) might activate regional myocardium to up-regulate cardiotherapeutic factors, leading to regional and global functional recovery in DCM. ONO1301 elevated messenger RNA and protein level of hepatocyte growth factor, vascular endothelial growth factor, and stromal-derived factor-1 of normal human dermal fibroblasts in a dose-dependent manner in vitro. Intramyocardial delivery of ONO1301SR, which is ONO1301 mixed with polylactic and glycolic acid polymer (PLGA), but not that of PLGA only, yielded significant global functional recovery in a canine rapid pacing-induced DCM model, assessed by echocardiography and cardiac catheterization (n = 5 each). Importantly, speckle-tracking echocardiography unveiled significant regional functional recovery in the ONO1301-delivered territory, consistent to significantly increased vascular density, reduced interstitial collagen accumulation, attenuated myocyte hypertrophy, and reversed mitochondrial structure in the corresponding area. Intramyocardial delivery of ONO1301SR, which is a PLGA-coated slow-releasing form of ONO1301, up-regulated multiple cardiotherapeutic factors in the injected territory, leading to region-specific reverse left ventricular remodeling and consequently a global functional recovery in a rapid-pacing-induced canine DCM model, warranting a further preclinical study to optimize this novel drug-delivery system to treat DCM. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Spasojevic, Marko J; Bahlai, Christie A; Bradley, Bethany A; Butterfield, Bradley J; Tuanmu, Mao-Ning; Sistla, Seeta; Wiederholt, Ruscena; Suding, Katharine N
2016-04-01
Understanding the mechanisms underlying ecosystem resilience - why some systems have an irreversible response to disturbances while others recover - is critical for conserving biodiversity and ecosystem function in the face of global change. Despite the widespread acceptance of a positive relationship between biodiversity and resilience, empirical evidence for this relationship remains fairly limited in scope and localized in scale. Assessing resilience at the large landscape and regional scales most relevant to land management and conservation practices has been limited by the ability to measure both diversity and resilience over large spatial scales. Here, we combined tools used in large-scale studies of biodiversity (remote sensing and trait databases) with theoretical advances developed from small-scale experiments to ask whether the functional diversity within a range of woodland and forest ecosystems influences the recovery of productivity after wildfires across the four-corner region of the United States. We additionally asked how environmental variation (topography, macroclimate) across this geographic region influences such resilience, either directly or indirectly via changes in functional diversity. Using path analysis, we found that functional diversity in regeneration traits (fire tolerance, fire resistance, resprout ability) was a stronger predictor of the recovery of productivity after wildfire than the functional diversity of seed mass or species richness. Moreover, slope, elevation, and aspect either directly or indirectly influenced the recovery of productivity, likely via their effect on microclimate, while macroclimate had no direct or indirect effects. Our study provides some of the first direct empirical evidence for functional diversity increasing resilience at large spatial scales. Our approach highlights the power of combining theory based on local-scale studies with tools used in studies at large spatial scales and trait databases to understand pressing environmental issues. © 2015 John Wiley & Sons Ltd.
Bilgin, Sevil; Guclu-Gunduz, Arzu; Oruckaptan, Hakan; Kose, Nezire; Celik, Bülent
2012-01-01
Fifty-one patients with mild (n = 14), moderate (n = 10) and severe traumatic brain injury (n = 27) received early rehabilitation. Level of consciousness was evaluated using the Glasgow Coma Score. Functional level was determined using the Glasgow Outcome Score, whilst mobility was evaluated using the Mobility Scale for Acute Stroke. Activities of daily living were assessed using the Barthel Index. Following Bobath neurodevelopmental therapy, the level of consciousness was significantly improved in patients with moderate and severe traumatic brain injury, but was not greatly influenced in patients with mild traumatic brain injury. Mobility and functional level were significantly improved in patients with mild, moderate and severe traumatic brain injury. Gait recovery was more obvious in patients with mild traumatic brain injury than in patients with moderate and severe traumatic brain injury. Activities of daily living showed an improvement but this was insignificant except for patients with severe traumatic brain injury. Nevertheless, complete recovery was not acquired at discharge. Multiple regression analysis showed that gait and Glasgow Coma Scale scores can be considered predictors of functional outcomes following traumatic brain injury. PMID:25624828
Sensation, mechanoreceptor, and nerve fiber function after nerve regeneration.
Krarup, Christian; Rosén, Birgitta; Boeckstyns, Michel; Ibsen Sørensen, Allan; Lundborg, Göran; Moldovan, Mihai; Archibald, Simon J
2017-12-01
Sensation is essential for recovery after peripheral nerve injury. However, the relationship between sensory modalities and function of regenerated fibers is uncertain. We have investigated the relationships between touch threshold, tactile gnosis, and mechanoreceptor and sensory fiber function after nerve regeneration. Twenty-one median or ulnar nerve lesions were repaired by a collagen nerve conduit or direct suture. Quantitative sensory hand function and sensory conduction studies by near-nerve technique, including tactile stimulation of mechanoreceptors, were followed for 2 years, and results were compared to noninjured hands. At both repair methods, touch thresholds at the finger tips recovered to 81 ± 3% and tactile gnosis only to 20 ± 4% (p < 0.001) of control. The sensory nerve action potentials (SNAPs) remained dispersed and areas recovered to 23 ± 2% and the amplitudes only to 7 ± 1% (P < 0.001). The areas of SNAPs after tactile stimulation recovered to 61 ± 11% and remained slowed. Touch sensation correlated with SNAP areas (p < 0.005) and was negatively related to the prolongation of tactile latencies (p < 0.01); tactile gnosis was not related to electrophysiological parameters. The recovered function of regenerated peripheral nerve fibers and reinnervated mechanoreceptors may differentially influence recovery of sensory modalities. Touch was affected by the number and function of regenerated fibers and mechanoreceptors. In contrast, tactile gnosis depends on the input and plasticity of the central nervous system (CNS), which may explain the absence of a direct relation between electrophysiological parameters and poor recovery. Dispersed maturation of sensory nerve fibers with desynchronized inputs to the CNS also contributes to the poor recovery of tactile gnosis. Ann Neurol 2017. Ann Neurol 2017;82:940-950. © 2017 American Neurological Association.
Brifault, Coralie; Gras, Marjorie; Liot, Donovan; May, Victor; Vaudry, David; Wurtz, Olivier
2015-02-01
Until now, except thrombolysis, the therapeutical strategies targeting the acute phase of cerebral ischemia have been proven ineffective, and no approach is available to attenuate the delayed cell death mechanisms and the resulting functional deficits in the late phase. Then, we investigated whether a targeted and delayed delivery of pituitary adenylate cyclase-activating polypeptide (PACAP), a peptide known to exert neuroprotective activities, may dampen delayed pathophysiological processes improving functional recovery. Three days after permanent focal ischemia, PACAP-producing stem cells were transplanted intracerebro ventricularly in nonimmunosuppressed mice. At 7 and 14 days post ischemia, the effects of this stem cell-based targeted delivery of PACAP on functional recovery, volume lesions, and inflammatory processes were analyzed. The delivery of PACAP in the vicinity of the infarct zone 3 days post stroke promotes fast, stable, and efficient functional recovery. This was correlated with a modulation of the postischemic inflammatory response. Transcriptomic and Ingenuity Pathway Analysis-based bioinformatic analyses identified several gene networks, functions, and key transcriptional factors, such as nuclear factor-κB, C/EBP-β, and Notch/RBP-J as PACAP's potential targets. Such PACAP-dependent immunomodulation was further confirmed by morphometric and phenotypic analyses of microglial cells showing increased number of Arginase-1(+) cells in mice treated with PACAP-expressing cells specifically, demonstrating the redirection of the microglial response toward a neuroprotective M2 phenotype. Our results demonstrated that immunomodulatory strategies capable of redirecting the microglial response toward a neuroprotective M2 phenotype in the late phase of brain ischemia could represent attractive options for stroke treatment in a new and unexploited therapeutical window. © 2014 American Heart Association, Inc.
Fey, Andreas; Schachner, Melitta; Irintchev, Andrey
2010-05-01
Assessment of motor abilities after sciatic nerve injury in rodents, in particular mice, relies exclusively on walking track (footprint) analysis despite known limitations of this method. Using principles employed recently for video-based motion analyses after femoral nerve and spinal cord injuries, we have designed and report here a novel approach for functional assessments after sciatic nerve lesions in mice. Functional deficits are estimated by angle and distance measurements on single video frames recorded during beam-walking and inclined ladder climbing. Analyses of adult C57BL/6J mice after crush of the sciatic, tibial, or peroneal nerve allowed the identification of six numerical parameters, detecting impairments of the plantar flexion of the foot and the toe spread. Some of these parameters, as well as footprint functional indices, revealed severe impairment after crush injury of the sciatic or tibial, but not the peroneal nerve, and complete recovery within 3 weeks after lesion. Other novel estimates, however, showed that complete recovery is reached as late as 2-3 months after sciatic nerve crush. These measures detected both tibial and peroneal dysfunction. In contrast to the complete restoration of function in wild-type mice (100%), our new parameters, in contrast to the sciatic functional index, showed incomplete recovery (85%) 90 days after sciatic nerve crush in mice deficient in the neural cell adhesion molecule (NCAM). We conclude that the novel video-based approach is more precise, sensitive, and versatile than established tests, allowing objective numerical assessment of different motor functions in a sciatic nerve injury paradigm in mice.
Li, Duan; Hambrecht-Wiedbusch, Viviane S; Mashour, George A
2017-01-01
Recent data from our laboratory demonstrate that high-frequency gamma connectivity across the cortex is present during consciousness and depressed during unconsciousness. However, these data were derived from static and well-defined states of arousal rather than during transitions that would suggest functional relevance. We also recently found that subanesthetic ketamine administered during isoflurane anesthesia accelerates recovery upon discontinuation of the primary anesthetic and increases gamma power during emergence. In the current study we re-analyzed electroencephalogram (EEG) data to test the hypothesis that functional cortical connectivity between anterior and posterior cortical regions would be increased during accelerated recovery induced by ketamine when compared to saline-treated controls. Rodents were instrumented with intracranial EEG electrodes and general anesthesia was induced with isoflurane anesthesia. After 37.5 min of continuous isoflurane anesthesia, a subanesthetic dose of ketamine (25 mg/kg intraperitoneal) was administered, with evidence of a 44% reduction in emergence time. In this study, we analyzed gamma and theta coherence (measure of undirected functional connectivity) and normalized symbolic transfer entropy (measure of directed functional connectivity) between frontal and parietal cortices during various levels of consciousness, with a focus on emergence from isoflurane anesthesia. During accelerated emergence in the ketamine-treated group, there was increased frontal-parietal coherence { p = 0.005, 0.05-0.23 [95% confidence interval (CI)]} and normalized symbolic transfer entropy [frontal to parietal: p < 0.001, 0.010-0.026 (95% CI); parietal to frontal: p < 0.001, 0.009-0.025 (95% CI)] in high-frequency gamma bandwidth as compared with the saline-treated group. Surrogates of cortical information exchange in high-frequency gamma are increased in association with accelerated recovery from anesthesia. This finding adds evidence suggesting a functional significance of high-gamma information transfer in consciousness.
Long-term functional recovery and compensation after cerebral ischemia in rats.
Girard, Sylvie; Murray, Katie N; Rothwell, Nancy J; Metz, Gerlinde A S; Allan, Stuart M
2014-08-15
Cerebral ischemia is one of the most common causes of disabilities in adults and leads to long-term motor and cognitive impairments with limited therapeutic possibilities. Treatment options have proven efficient in preclinical models of cerebral ischemia but have failed in the clinical setting. This limited translation may be due to the suitability of models used and outcomes measured as most studies have focused on the early period after injury with gross motor scales, which have limited correlation to the clinical situation. The aim of this study was to determine long-term functional outcomes after cerebral ischemia in rats, focusing on fine motor function, social and depressive behavior as clinically relevant measures. A secondary objective was to evaluate the effects of an anti-inflammatory treatment (interleukin-1 receptor antagonist (IL-1Ra)) on functional recovery and compensation. Infarct volume was correlated with long-term (25 days) impairments in fine motor skills, but not with emotional components of behavior. Motor impairments could not be detected using conventional neurological tests and only detailed analysis allowed differentiation between recovery and compensation. Acute systemic administration of IL-1Ra (at reperfusion) led to a faster and more complete recovery, but delayed (24h) IL-1Ra treatment had no effect. In summary functional assessment after brain injury requires detailed motor tests in order to address long-term impairments and compensation processes that are mediated by intact tissues. Functional deficits in skilled movement after brain injury represent ideal predictors of long-term outcomes and should become standard measures in the assessment of preclinical animal models. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Patterns of Recovery from Pain after Cesarean Delivery.
Booth, Jessica L; Sharpe, Emily E; Houle, Timothy T; Harris, Lynnette; Curry, Regina S; Aschenbrenner, Carol A; Eisenach, James C
2018-06-13
We know very little about the change in pain in the first 2 months after surgery. To address this gap, we studied 530 women scheduled for elective cesarean delivery who completed daily pain diaries for two months after surgery via text messaging. Over 82% of subjects missed fewer than 10 diary entries and were included in the analysis. Completers were more likely to be Caucasian, non-smokers, and with fewer previous pregnancies than non-completers. Daily worst pain intensity ratings for the previous 24 hours were fit to a log(time) function and allowed to change to a different function up to 3 times according to a Bayesian criterion. All women had at least one change point, occurring 22 ± 9 days postoperatively, and 81% of women had only one change, most commonly to a linear function at 0 pain. Approximately 9% of women were predicted to have pain 2 months after surgery, similar to previous observations. Cluster analysis revealed 6 trajectories of recovery from pain. Predictors of cluster membership included severity of acute pain, perceived stress, surgical factors, and smoking status. These data demonstrate feasibility but considerable challenges to this approach to data acquisition. The form of the initial process of recovery from pain is common to all women, with divergence of patterns at 2-4 weeks after cesarean delivery. The change point model accurately predicts recovery from pain, its parameters can be used to assess predictors of speed of recovery, and it may be useful for future observational, forecasting, and interventional trials.
Jang, Sung Ho; You, Sung H; Kwon, Yong-Hyun; Hallett, Mark; Lee, Mi Young; Ahn, Sang Ho
2005-01-01
Recovery mechanisms supporting upper extremity motor recovery following stroke are well established, but cortical mechanism associated with lower extremity motor recovery is unknown. The aim of this study was to assess cortical reorganization associated with lower extremity motor recovery in a hemiparetic patient. Six control subjects and a 17 year-old woman with left intracerebral hemorrhage due to an arterio-venous malformation rupture were evaluated. The motor function of the paretic (left) hip and knee had recovered slowly to the extent of her being able to overcome gravity for 10 months after the onset of stroke. However, her paretic upper extremity showed no significant motor recovery. Blood oxygenation level dependent (BOLD) functional MRI at 1.5 Tesla was used to determine the acutual location of cortical activation in the predefined regions of interest. Concurrently, Diffusion Tensor Imaging (DTI) in combination with a novel 3D-fiber reconstruction algorithm was utilized to investigate the pattern of the corticospinal pathway connectivity between the areas of the motor stream. All subjects' body parts were secured in the scanner and performed a sequential knee flexion-extension with a predetermined angle of 0-60 degrees at 0.5 Hz. Controls showed anticipated activation in the contralateral sensorimotor cortex (SM1) and the descending corticospinal fibers stemming from motor cortex. In contrast to control normal subjects, the stroke patient showed fMRI activation only in the unaffected (right) primary SM1 during either paretic or nonparetic knee movements. DTT fiber tracing data showed that the corticospinal tract fibers were found only in the unaffected hemisphere but not in the affected hemisphere. Our results indicate that an ipsilateral motor pathway from the unaffected (right) motor cortex to the paretic (right) leg was present in this patient. This study raises the potential that the contralesional (ipsilateral) SM1 is involved in cortical reorganization associated lower extremity motor recovery in stroke. This study is the first neuroimaging evidence that the combined fMRI and DTI fiber tracing can significantly expand the explanatory power of probing cortical reorganization underlying motor recovery mechanism in stroke.
Sreenivas, B Sudha; Sunitha, M S; Nataraj, S M; Dhar, Murali
2012-01-01
Smoking has deleterious effects on Pulmonary Function Test (PFT) parameters; however, evidences about recovery in ex-smokers are ambiguous. Therefore present study was conducted to quantify relative deterioration of PFT parameters and to assess reversibility of the same. A cross-sectional study was conducted on 84 bus-depot workers consisting of equal number of smokers, ex-smokers and non-smokers. PFT observations were obtained using Medspiror following standard methods and precautions. Comparisons among three groups were performed employing one-way ANOVA and post-hoc tests. There were substantial effects of smoking on PFT parameters (deterioration was up-to half). Partial recovery was found in all the parameters of ex-smokers. Frequency and duration of smoking were negatively correlated with some of the parameters. In conclusion, present study has demonstrated considerable deterioration of PFT parameters in smokers and indications of recovery in ex-smokers. Further detailed study with larger sample size and stricter definition of ex-smokers is recommended.
Kelley, Brian J.; Harel, Noam Y.; Kim, Chang-Yeon; Papademetris, Xenophon; Coman, Daniel; Wang, Xingxing; Hasan, Omar; Kaufman, Adam; Globinsky, Ronen; Staib, Lawrence H.; Cafferty, William B.J.; Hyder, Fahmeed
2014-01-01
Abstract Traumatic spinal cord injury (SCI) causes long-term disability with limited functional recovery linked to the extent of axonal connectivity. Quantitative diffusion tensor imaging (DTI) of axonal integrity has been suggested as a potential biomarker for prognostic and therapeutic evaluation after trauma, but its correlation with functional outcomes has not been clearly defined. To examine this application, female Sprague-Dawley rats underwent midthoracic laminectomy followed by traumatic spinal cord contusion of differing severities or laminectomy without contusion. Locomotor scores and hindlimb kinematic data were collected for 4 weeks post-injury. Ex vivo DTI was then performed to assess axonal integrity using tractography and fractional anisotropy (FA), a numerical measure of relative white matter integrity, at the injury epicenter and at specific intervals rostral and caudal to the injury site. Immunohistochemistry for tissue sparing was also performed. Statistical correlation between imaging data and functional performance was assessed as the primary outcome. All injured animals showed some recovery of locomotor function, while hindlimb kinematics revealed graded deficits consistent with injury severity. Standard T2 magnetic resonance sequences illustrated conventional spinal cord morphology adjacent to contusions while corresponding FA maps indicated graded white matter pathology within these adjacent regions. Positive correlations between locomotor (Basso, Beattie, and Bresnahan score and gait kinematics) and imaging (FA values) parameters were also observed within these adjacent regions, most strongly within caudal segments beyond the lesion. Evaluation of axonal injury by DTI provides a mechanism for functional recovery assessment in a rodent SCI model. These findings suggest that focused DTI analysis of caudal spinal cord should be studied in human cases in relationship to motor outcome to augment outcome biomarkers for clinical cases. PMID:24779685
Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.
Kitamura, Kazuya; Fujiyoshi, Kanehiro; Yamane, Jun-Ichi; Toyota, Fumika; Hikishima, Keigo; Nomura, Tatsuji; Funakoshi, Hiroshi; Nakamura, Toshikazu; Aoki, Masashi; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya
2011-01-01
Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.
Khaing, Zin Z; Geissler, Sydney A; Jiang, Shan; Milman, Brian D; Aguilar, Sandra V; Schmidt, Christine E; Schallert, Timothy
2012-02-10
Cervical spinal cord injury (cSCI) can cause devastating neurological deficits, including impairment or loss of upper limb and hand function. Recently there has been increasing interest in cervical spinal cord injury models because the majority of spinal cord injuries are at cervical levels. Here we examined spontaneous functional recovery of adult rats with either laminectomy or lateral hemisection of the cervical spinal cord at C3-C4. Behavioral tests were carried out, including the forelimb locomotor scale (FLS), a postural instability test (PIT), a pasta-handling test that has been used to assess forepaw digit function and latency to eat, forelimb use during vertical-lateral wall exploration in a cylindrical enclosure, and vibrissae-elicited forelimb placing tests. In addition, a forelimb step-alternation test was developed to assess functional recovery at 12 weeks post-injury. All tests detected cSCI-induced deficits relative to laminectomy. Interestingly, the severity of deficits in the forelimb step-alternation test was associated with more extensive spinal damage, greater impairment, and less recovery in the FLS and other tests. For the pasta-handling test we found that rats with a milder cervical injury (alternators) were more likely to use both forepaws together compared to rats with a more severe injury (non-alternators). In addition, using the PIT, we detected enhanced function of the good limb, suggesting that neural plasticity on the unaffected side of the spinal cord may have occurred to compensate for deficits in the impaired forelimb. These outcome measures should be useful for investigating neural events associated with cSCI, and for developing novel treatment strategies.
Human Hepatocyte Growth Factor Promotes Functional Recovery in Primates after Spinal Cord Injury
Kitamura, Kazuya; Fujiyoshi, Kanehiro; Yamane, Jun-ichi; Toyota, Fumika; Hikishima, Keigo; Nomura, Tatsuji; Funakoshi, Hiroshi; Nakamura, Toshikazu; Aoki, Masashi; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya
2011-01-01
Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI. PMID:22140459
EFFECT OF IMPACT STRESS ON MICROBIAL RECOVERY ON AN AGAR SURFACE
Microbial stress due to the impaction of microorganisms onto an agar collection surface was studied experimentally. he relative recovery rates of aerosolized Pseudomonas fluorescens and Micrococcus luteus were determined as a function of the impaction velocity by using a moving a...
Serra, Monica C
2018-01-01
Despite evidence that many of the consequences of stroke that hinder recovery (i.e., obesity, muscle atrophy, and functional declines) have nutritionally modifiable behavior components, little attention has been focused on the significance of nutrition beyond the acute phase of stroke. This literature review summarizes the evidence for and against the influence of nutrition on optimal recovery and rehabilitation in chronic (>6 months) stroke. The literature, which is mainly limited to cross-sectional studies, suggests that a suboptimal nutritional status, including an excess caloric intake, reduced protein intake, and micronutrient deficiencies, particularly the B-vitamins, vitamin D, and omega 3 fatty acids, may have deleterious effects on metabolic, physical, and psychological functioning in chronic stroke survivors. Careful evaluation of dietary intake, especially among those with eating disabilities and preexisting malnutrition, may aid in the identification of individuals at increased nutritional risk through which early intervention may benefit recovery and rehabilitation and prevent further complications after stroke.
Xiao, Meng; Zhang, Zhong-Zhi; Wang, Jing-Xiu; Zhang, Guang-Qing; Luo, Yi-Jing; Song, Zhao-Zheng; Zhang, Ji-Yuan
2013-11-01
The diversity of indigenous bacterial community and the functional species in the water samples from three production wells of a low permeability oil reservoir was investigated by high-throughput sequencing technology. The potential of application of indigenous bacteria for enhancing oil recovery was evaluated by examination of the effect of bacterial stimulation on the formation water-oil-rock surface interactions and micromodel test. The results showed that production well 88-122 had the most diverse bacterial community and functional species. The broth of indigenous bacteria stimulated by an organic nutrient activator at aerobic condition changed the wettability of the rock surface from oil-wet to water-wet. Micromodel test results showed that flooding using stimulated indigenous bacteria following water flooding improved oil recovery by 6.9% and 7.7% in fractured and unfractured micromodels, respectively. Therefore, the zone of low permeability reservoir has a great potential for indigenous microbial enhanced oil recovery. Copyright © 2013 Elsevier Ltd. All rights reserved.
Recovery in skeletal muscle contractile function after prolonged hindlimb immobilization
NASA Technical Reports Server (NTRS)
Fitts, R. H.; Brimmer, C. J.
1985-01-01
The effect of three-month hindlimb immobilization (IM) in rats on contractile properties of slow-twitch soleus (SOL), fast-twitch extensor digitorum longus, and fast-twitch superficial region of the vastus lateralis were measured after 0, 14, 28, 60, and 90 days of recovery on excized, horizontally suspended muscles stimulated electrically to maximal twitch tension. IM caused decreases in muscle-to-body weight ratios for all muscles, with no complete recovery even after 90 days. The contractile properties of the fast-twitch muscles were less affected by IM than those of the slow-twitch SOL. The SOL isometric twitch duration was shortened, due to reduced contraction and half-relaxation time, both of which returned to control levels after 14 days of recovery. The peak tetanic tension, P(O), g/sq cm,, decreased with IM by 46 percent in the SOL, but recovered by the 28th day. The maximum shortening velocity was not altered by IM in any of the muscles. Thus, normal contractile function could recover after prolonged limb IM.
Physical function impairment in survivors of critical illness in an ICU Recovery Clinic.
Bakhru, Rita N; Davidson, James F; Bookstaver, Rebecca E; Kenes, Michael T; Welborn, Kristin G; Morris, Peter E; Clark Files, D
2018-06-01
The aims were to 1) determine feasibility of measuring physical function in our ICU Recovery Clinic (RC), 2) determine if physical function was associated with 6-month re-hospitalization and 1-year mortality and 3) compare ICU survivors' physical function to other comorbid populations. We established the Wake Forest ICU RC. Patients were seen in clinic 1month following hospital discharge. Testing included the Short Form-36 questionnaire and Short Physical Performance Battery (SPPB). We related these measures to 6month re-hospitalizations and 1year mortality, and compared patients' functional performance with other comorbid populations. Thirty-six patients were seen in clinic from July 2014 to June 2015; the median SPPB score was 5 (IQR 5). The median SF-36 physical component summary score was 21.8 (IQR 28.8). Mortality was 14% at 1year. Of those who did not die by 1year, 35% were readmitted to our hospital within 6months of hospital discharge. SPPB scores demonstrated a non-significant trend with both mortality (p=0.06) and readmissions (p=0.09). ICU survivors' SPPB scores were significantly lower than those of other chronically ill populations (p<0.001). Physical function measurement in a recovery clinic is feasible and may inform subsequent morbidity and mortality. Copyright © 2018 Elsevier Inc. All rights reserved.
Ghizoni, Marcos Flávio; Bertelli, Jayme Augusto; Grala, Carolina Giesel; da Silva, Rosemeri Maurici
2013-01-01
Recovery from peripheral nerve repair is frequently incomplete. Hence drugs that enhance nerve regeneration are needed clinically. To study the effects of nandrolone decanoate in a model of deficient reinnervation in the rat. In 40 rats, a 40-mm segment of the left median nerve was removed and interposed between the stumps of a sectioned right median nerve. Starting 7 days after nerve grafting and continuing over a 6-month period, we administered nandrolone at a dose of 5 mg/kg/wk to half the rats (n = 20). All rats were assessed behaviorally for grasp function and nociceptive recovery for up to 6 months. At final assessment, reinnervated muscles were tested electrophysiologically and weighed. Results were compared between rats that had received versus not received nandrolone and versus 20 nongrafted controls. Rats in the nandrolone group recovered finger flexion faster. At 90 days postsurgery, they had recovered 42% of normal grasp strength versus just 11% in rats grafted but not treated with nandrolone. At 180 days, the average values for grasp strength recovery in the nandrolone and no-nandrolone groups were 40% and 33% of normal values for controls, respectively. At 180 days, finger flexor muscle twitch strength was 16% higher in treated versus nontreated rats. Thresholds for nociception were not detected in either group 90 days after nerve grafting. At 180 days, nociceptive thresholds were significantly lower in the nandrolone group. Nandrolone decanoate improved functional recovery in a model of deficient reinnervation.
Alway, Stephen E; Bennett, Brian T; Wilson, Joseph C; Sperringer, Justin; Mohamed, Junaith S; Edens, Neile K; Pereira, Suzette L
2015-02-01
In this study we tested the hypothesis that green tea extract (GTE) would improve muscle recovery after reloading following disuse. Aged (32 mo) Fischer 344 Brown Norway rats were randomly assigned to receive either 14 days of hindlimb suspension (HLS) or 14 days of HLS followed by normal ambulatory function for 14 days (recovery). Additional animals served as cage controls. The rats were given GTE (50 mg/kg body wt) or water (vehicle) by gavage 7 days before and throughout the experimental periods. Compared with vehicle treatment, GTE significantly attenuated the loss of hindlimb plantaris muscle mass (-24.8% vs. -10.7%, P < 0.05) and tetanic force (-43.7% vs. -25.9%, P <0.05) during HLS. Although GTE failed to further improve recovery of muscle function or mass compared with vehicle treatment, animals given green tea via gavage maintained the lower losses of muscle mass that were found during HLS (-25.2% vs. -16.0%, P < 0.05) and force (-45.7 vs. -34.4%, P < 0.05) after the reloading periods. In addition, compared with vehicle treatment, GTE attenuated muscle fiber cross-sectional area loss in both plantaris (-39.9% vs. -23.9%, P < 0.05) and soleus (-37.2% vs. -17.6%) muscles after HLS. This green tea-induced difference was not transient but was maintained over the reloading period for plantaris (-45.6% vs. -21.5%, P <0.05) and soleus muscle fiber cross-sectional area (-38.7% vs. -10.9%, P <0.05). GTE increased satellite cell proliferation and differentiation in plantaris and soleus muscles during recovery from HLS compared with vehicle-treated muscles and decreased oxidative stress and abundance of the Bcl-2-associated X protein (Bax), yet this did not further improve muscle recovery in reloaded muscles. These data suggest that muscle recovery following disuse in aging is complex. Although satellite cell proliferation and differentiation are critical for muscle repair to occur, green tea-induced changes in satellite cell number is by itself insufficient to improve muscle recovery following a period of atrophy in old rats. Copyright © 2015 the American Physiological Society.
EVALUATION OF ANALYTICAL REPORTING ERRORS GENERATED AS DESCRIBED IN SW-846 METHOD 8261A
SW-846 Method 8261A incorporates the vacuum distillation of analytes from samples, and their recoveries are characterized by internal standards. The internal standards measure recoveries with confidence intervals as functions of physical properties. The frequency the calculate...
Roh, Young Hak; Noh, Jung Ho; Gong, Hyun Sik; Baek, Goo Hyun
2017-12-01
Patients with low appendicular lean mass plus slow gait speed or weak grip strength are at risk for poor functional recovery after surgery for distal radius fracture, even when they have similar radiologic outcomes. Loss of skeletal muscle mass and consequent loss in muscle function associate with aging, and this condition negatively impacts the activities of daily living and increases elderly individuals' frailty to falls. Thus, patients with low appendicular lean mass would show different functional recovery compared to those without this condition after surgery for distal radius fracture (DRF). This study compares the functional outcomes after surgery for DRF in patients with or without low appendicular lean mass plus slowness or weakness. A total of 157 patients older than 50 years of age with a DRF treated via volar plate fixation were enrolled in this prospective study. A definition of low appendicular lean mass with slowness or weakness was based on the consensus of the Asian Working Group for Sarcopenia. The researchers compared functional assessments (wrist range of motion and Michigan Hand Questionnaire [MHQ]) and radiographic assessments (radial inclination, volar tilt, ulnar variance, and articular congruity) 12 months after surgery between patients with and without low appendicular lean mass plus slowness or weakness. Multivariable regression analyses were performed to determine whether appendicular lean mass, grip strength, gait speed, patient demographic, or injury characteristics accounted for the functional outcomes. Patients with low appendicular lean mass plus slowness or weakness showed a significantly lower recovery of MHQ score than those in the control group throughout 12 months. There was no significant difference in the range of motion between the groups. The radiologic outcomes showed no significant difference between groups in terms of volar tilt, radial inclination, or ulnar variance. According to multivariable regression analysis, the poor recovery of MHQ score was associated with an increase in age, weak grip strength, and lower appendicular lean mass, and these three factors accounted for 37% of the variation in the MHQ scores. Patients with low appendicular lean mass plus slowness or weakness are at risk for poor functional recovery after surgery for DRF, even when they have similar radiologic outcomes.
Zellers, Jennifer A; Cortes, Daniel H; Silbernagel, Karin Grävare
2016-12-01
Achilles tendon rupture results in significant functional deficits regardless of treatment strategy (surgical versus non-surgical intervention). Recovery post-rupture is highly variable, making comprehensive patient assessment critical. Assessment tools may change along the course of recovery as the patient progresses - for instance, moving from a seated heel-rise to standing heel-rise to jump testing. However, tools that serve as biomarkers for early recovery may be particularly useful in informing clinical decision-making. The purpose of this case report was to describe the progress of a young, athletic individual following Achilles tendon rupture managed non-surgically, using patient reported and functional performance outcome measures and comprehensively evaluating Achilles tendon structure and function incorporating a novel imaging technique (cSWE). The subject is a 26 year-old, female basketball coach who sustained an Achilles tendon rupture and was managed non-surgically. The subject was able to steadily progress using a gradual tendon loading treatment approach well-supported by the literature. Multiple evaluative techniques including the addition of diagnostic ultrasound imaging and continuous shear wave elastography (cSWE) to standard clinical tests and measures were used to assess patient-reported symptoms, tendon structure, and tendon functional performance. Five assessments were performed over the course of 2-14 months post-rupture. By the 14-month follow-up, the subject had achieved full self-reported function. Tendon structural and mechanical properties showed similar shear modulus by 14 months, however, viscosity continued to be lower and tendon length longer on the ruptured side. Functional performance, evidenced by the heel-rise test and jump tests, also showed a positive trajectory, however, deficits of 12-28% remained between ruptured and non-ruptured sides at 14 months. This case report outlines comprehensive outcomes assessment in an athletic individual following non-surgically managed Achilles tendon rupture using a wide variety of tools that capture different aspects of tendon health. Interestingly, the course of recovery of patient symptoms, functional performance, and tendon structure do not occur in the same time frame. Therefore, it is important to assess patient outcomes using multiple outcome measures encompassing different aspects of patient performance to ensure the patient is progressing steadily with rehabilitation. Level 4.
DiMartini, AF.; Dew, MA.; Butt, Z.; Simpson, MA.; Ladner, DP.; Smith, AR.; Hill-Callahan, P.; Gillespie, BW.
2015-01-01
Although sexual functioning is an important facet of living donor quality of life, it has not received extensive evaluation in this population. Using data from the Adult-to-Adult Living Donor Liver Transplantation Cohort Study, we examined donor sexual functioning across the donation process from the predonation evaluation to 3 months and 1 year postdonation. Donors (n=208) and a comparison group of non-donors (n=155) completed self-reported surveys with specific questions on sexual desire, satisfaction, orgasm, and (for men) erectile function. Across the three time points, donor sexual functioning was lower at the evaluation phase and 3 months postdonation than at one year postdonation. In the early recovery period, abdominal pain was associated with difficulty reaching orgasm (OR = 3.98, 95% CI 1.30–12.16), concerns over appearance with lower sexual desire (OR = 4.14, 95% CI 1.02–16.79), and not feeling back to normal was associated with dissatisfaction with sexual life (OR 3.58, 95% CI 1.43–8.99). Efforts to educate donors before the surgery and prepare them for the early recovery phase may improve recovery and reduce distress regarding sexual functioning. PMID:25779554
Borrat, Xavier; Ubre, Marta; Risco, Raquel; Gambús, Pedro L; Pedroso, Angela; Iglesias, Aina; Fernandez-Esparrach, Gloria; Ginés, Àngels; Balust, Jaume; Martínez-Palli, Graciela
2018-03-27
The use of sedation for diagnostic procedures including gastrointestinal endoscopy is rapidly growing. Recovery of cognitive function after sedation is important because it would be important for most patients to resume safe, normal life soon after the procedure. Computerized tests have shown being accurate descriptors of cognitive function. The purpose of the present study was to evaluate the time course of cognitive function recovery after sedation with propofol and remifentanil. A prospective observational double blind clinical study conducted in 34 young healthy adults undergoing elective outpatient colonoscopy under sedation with the combination of propofol and remifentanil using a target controlled infusion system. Cognitive function was measured using a validated battery of computerized cognitive tests (Cogstate™, Melbourne, Australia) at different predefined times: prior to starting sedation (Tbaseline), and then 10 min (T10), 40 min (T40) and 120 min (T120) after the end of colonoscopy. Tests included the assessment of psychomotor function, attention, visual memory and working memory. All colonoscopies were completed (median time: 26 min) without significant adverse events. Patients received a median total dose of propofol and remifentanil of 149 mg and 98 µg, respectively. Psychomotor function and attention declined at T10 but were back to baseline values at T40 for all patients. The magnitude of psychomotor task reduction was large (d = 0.81) however 100% of patients were recovered at T40. Memory related tasks were not affected 10 min after ending sedation. Cognitive impairment in attention and psychomotor function after propofol and remifentanil sedation was significant and large and could be easily detected by computerized cognitive tests. Even though, patients were fully recovered 40 min after ending the procedure. From a cognitive recovery point of view, larger studies should be undertaken to propose adequate criteria for discharge after sedation.
Adaptive neuroplastic responses in early and late hemispherectomized monkeys.
Burke, Mark W; Kupers, Ron; Ptito, Maurice
2012-01-01
Behavioural recovery in children who undergo medically required hemispherectomy showcase the remarkable ability of the cerebral cortex to adapt and reorganize following insult early in life. Case study data suggest that lesions sustained early in childhood lead to better recovery compared to those that occur later in life. In these children, it is possible that neural reorganization had begun prior to surgery but was masked by the dysfunctional hemisphere. The degree of neural reorganization has been difficult to study systematically in human infants. Here we present a 20-year culmination of data on our nonhuman primate model (Chlorocebus sabeus) of early-life hemispherectomy in which behavioral recovery is interpreted in light of plastic processes that lead to the anatomical reorganization of the early-damaged brain. The model presented here suggests that significant functional recovery occurs after the removal of one hemisphere in monkeys with no preexisting neurological dysfunctions. Human and primate studies suggest a critical role for subcortical and brainstem structures as well as corticospinal tracts in the neuroanatomical reorganization which result in the remarkable behavioral recovery following hemispherectomy. The non-human primate model presented here offers a unique opportunity for studying the behavioral and functional neuroanatomical reorganization that underlies developmental plasticity.
Physical therapy for facial paralysis: a tailored treatment approach.
Brach, J S; VanSwearingen, J M
1999-04-01
Bell palsy is an acute facial paralysis of unknown etiology. Although recovery from Bell palsy is expected without intervention, clinical experience suggests that recovery is often incomplete. This case report describes a classification system used to guide treatment and to monitor recovery of an individual with facial paralysis. The patient was a 71-year-old woman with complete left facial paralysis secondary to Bell palsy. Signs and symptoms were assessed using a standardized measure of facial impairment (Facial Grading System [FGS]) and questions regarding functional limitations. A treatment-based category was assigned based on signs and symptoms. Rehabilitation involved muscle re-education exercises tailored to the treatment-based category. In 14 physical therapy sessions over 13 months, the patient had improved facial impairments (initial FGS score= 17/100, final FGS score= 68/100) and no reported functional limitations. Recovery from Bell palsy can be a complicated and lengthy process. The use of a classification system may help simplify the rehabilitation process.
Elbogen, Eric B; Tiegreen, Joshua; Vaughan, Colleen; Bradford, Daniel W
2011-01-01
Although money management skills are essential for independent functioning in the community, when viewed from the framework of psychosocial rehabilitation, there have been few systematic models for teaching money management skills to consumers with psychiatric disabilities based on a recovery orientation. For those diagnosed with psychiatric disabilities, better money management has consistently been shown to be associated with superior quality of life, fewer hospitalizations, and greater self-efficacy. Consumers frequently indicate that learning how to budget and staying out of debt are among their top goals for recovery with mental illness. The current paper reviews the issues of money management and mental health among people with psychiatric disabilities and proposes a recovery-oriented approach to increasing money management skills to increase community functioning among consumers. Published literature, clinical cases, and financial literacy resources. Improving money management can lead to a number of benefits by helping consumers with psychiatric disabilities: 1) gain more knowledge about disability benefits, 2) improve basic financial skills, and 3) reduce vulnerability to financial exploitation. Future work on incorporating this model into psychiatric rehabilitation programs would address skills consumers can use in living, working, and social environments in a way that enhances consumer choice and promotes recovery.
McPherson, Jacob G.; Miller, Robert R.; Perlmutter, Steve I.
2015-01-01
Use-dependent movement therapies can lead to partial recovery of motor function after neurological injury. We attempted to improve recovery by developing a neuroprosthetic intervention that enhances movement therapy by directing spike timing-dependent plasticity in spared motor pathways. Using a recurrent neural–computer interface in rats with a cervical contusion of the spinal cord, we synchronized intraspinal microstimulation below the injury with the arrival of functionally related volitional motor commands signaled by muscle activity in the impaired forelimb. Stimulation was delivered during physical retraining of a forelimb behavior and throughout the day for 3 mo. Rats receiving this targeted, activity-dependent spinal stimulation (TADSS) exhibited markedly enhanced recovery compared with animals receiving targeted but open-loop spinal stimulation and rats receiving physical retraining alone. On a forelimb reach and grasp task, TADSS animals recovered 63% of their preinjury ability, more than two times the performance level achieved by the other therapy groups. Therapeutic gains were maintained for 3 additional wk without stimulation. The results suggest that activity-dependent spinal stimulation can induce neural plasticity that improves behavioral recovery after spinal cord injury. PMID:26371306
Loeber, Sabine; Duka, Theodora; Welzel Márquez, Helga; Nakovics, Helmut; Heinz, Andreas; Mann, Karl; Flor, Herta
2010-01-01
Several authors suggest that withdrawal from alcohol could cause neurotoxic lesions in the frontal lobe and thereby affect cognitive function. In line with this, previous studies have demonstrated greater cognitive impairment of alcohol-dependent patients with two or more previous detoxifications (Hi-detox) compared with patients with less than two detoxifications (Lo-detox). The aim of the present study was to investigate whether repeated withdrawal from alcohol affects recovery of cognitive function and is related to relapse. Forty-eight alcohol-dependent patients (Hi-detox: n = 31, Lo-detox: n = 17) and 36 healthy controls underwent a comprehensive neuropsychological test-battery. Patients were tested after completion of detoxification (T1) and 3 (T2, n = 35) and 6 (T3, n = 28) months after discharge. Healthy controls were tested at T1 (n = 36) and T2 (n = 16). Drinking behaviour was assessed at all times. Patients performed significantly worse than controls at T1 as well as T2 with regard to attention/executive function. Recovery of attention/executive function was observed within the second 3 months after discharge, but the Hi-detox group performed worse than the Lo-detox group. No association with relapse was observed. This study provides first evidence, that repeated withdrawal from alcohol might be associated with reduced brain plasticity as indicated by a delay of recovery from impairment of attention/executive function. However, little evidence was found for a direct influence of cognitive impairment on treatment success.
Assessment of NgR1 Function In Vivo After Spinal Cord Injury
Tong, Jing; Ren, Yi; Wang, Xiaowei; Dimopoulos, Vassilios G.; Kesler, Henry N.; Liu, Weimin; He, Xiaosheng; Nedergaard, Maiken; Huang, Jason H.
2014-01-01
Background: Neuronal Nogo-66 receptor 1 (NgR1) has attracted attention as a converging point for mediating the effects of myelin-associate inhibitory ligands in the CNS, establishing the growth restrictive environment, and limiting axon regeneration following traumatic injury. Objective: The importance of NgR1 has been undermined by several studies that have shown the lack of substantial axon regeneration following spinal cord injury (SCI) in NgR1 knockout or knockdown animal models. This study aims to investigate the factors that may be contributing to the discrepancy. Methods: We used mice carrying either a homozygous or heterozygous null mutation in the NgR1 gene and subjected them to either a moderate or severe SCI. Results: Locomotor function assessments revealed that the level of functional recovery is affected by the degree of injury suffered. NgR1 ablation enhanced local collateral sprouting in the mutant mice. Reactive astrocytes and chondroitin sulfate proteoglycans (CSPGs) are upregulated surrounding the injury site. MMP-9, which has been shown to degrade CSPGs, was significantly upregulated in the homozygous mutant mice compared to the heterozygous or wild-type mice. However, CSPG levels remained higher in the homozygous compared to the heterozygous mice, suggesting that CSPG-degrading activity of MMP-9 may require the presence of NgR1. Conclusion: Genetic ablation of NgR1 may lead to significant recovery in locomotor function following SCI. The difference in locomotor recovery we observed between the groups that suffered varying degrees of injury suggests that injury severity may be a confounding factor in functional recovery following SCI. PMID:24594926
Vattikonda, Anirudh; Surampudi, Bapi Raju; Banerjee, Arpan; Deco, Gustavo; Roy, Dipanjan
2016-08-01
Computational modeling of the spontaneous dynamics over the whole brain provides critical insight into the spatiotemporal organization of brain dynamics at multiple resolutions and their alteration to changes in brain structure (e.g. in diseased states, aging, across individuals). Recent experimental evidence further suggests that the adverse effect of lesions is visible on spontaneous dynamics characterized by changes in resting state functional connectivity and its graph theoretical properties (e.g. modularity). These changes originate from altered neural dynamics in individual brain areas that are otherwise poised towards a homeostatic equilibrium to maintain a stable excitatory and inhibitory activity. In this work, we employ a homeostatic inhibitory mechanism, balancing excitation and inhibition in the local brain areas of the entire cortex under neurological impairments like lesions to understand global functional recovery (across brain networks and individuals). Previous computational and empirical studies have demonstrated that the resting state functional connectivity varies primarily due to the location and specific topological characteristics of the lesion. We show that local homeostatic balance provides a functional recovery by re-establishing excitation-inhibition balance in all areas that are affected by lesion. We systematically compare the extent of recovery in the primary hub areas (e.g. default mode network (DMN), medial temporal lobe, medial prefrontal cortex) as well as other sensory areas like primary motor area, supplementary motor area, fronto-parietal and temporo-parietal networks. Our findings suggest that stability and richness similar to the normal brain dynamics at rest are achievable by re-establishment of balance. Copyright © 2016 Elsevier Inc. All rights reserved.
Insulin growth factor-I promotes functional recovery after a focal lesion in the dentate gyrus.
Liquitaya-Montiel, Adhemar; Aguilar-Arredondo, Andrea; Arias, Clorinda; Zepeda, Angélica
2012-11-01
The adult brain is plastic and able to reorganize structurally and functionally after damage. Growth factors are key molecules underlying the recovery process and among trophic molecules, Insulin-Like Growth Factor-I (IGF-I) is of particular interest given that it modulates neuronal and glial responses in the hippocampus including neurogenesis, which has been proposed as a mechanism of neurorepair. In this study we analyzed the effect of intracerebroventricular chronic infusion of IGF-I on functional recovery and morphological restoration after the induction of an excitotoxic lesion in the dentate gyrus (DG) of young-adult rats. Our results show that the lesion impairs contextual fear memory which is a DG dependent task, but not cued fear memory or performance in the open field motor task, which are independent of the DG integrity. Chronic administration of IGF-I, but not vehicle, promotes functional recovery to control levels in injured subjects. Analysis in NeuN immunoprocessed tissue revealed that the lesion volume was not different between groups and that the DG was not evidently restructured in the IGF-I treated group. Glial fibrillary acidic protein (GFAP) analysis revealed an increased astrocytic response in the injured region in both groups and Doublecortin (DCX) analysis showed a similar increase in number of newly born neurons in both groups. However, a remarkable increase in young neurons dendritic arborization was observed in the IGF-I treated group. These results provide evidence for IGF-I as a molecule mediating functional and cellular plasticity during a reorganization process after damage to a neurogenic niche.
Thibaut, Aurore; Simis, Marcel; Battistella, Linamara Rizzo; Fanciullacci, Chiara; Bertolucci, Federica; Huerta-Gutierrez, Rodrigo; Chisari, Carmelo; Fregni, Felipe
2017-01-01
What determines motor recovery in stroke is still unknown and finding markers that could predict and improve stroke recovery is a challenge. In this study, we aimed at understanding the neural mechanisms of motor function recovery after stroke using neurophysiological markers by means of cortical excitability (transcranial magnetic stimulation—TMS) and brain oscillations (electroencephalography—EEG). In this cross-sectional study, 55 subjects with chronic stroke (62 ± 14 yo, 17 women, 32 ± 42 months post-stroke) were recruited in two sites. We analyzed TMS measures (i.e., motor threshold—MT—of the affected and unaffected sides) and EEG variables (i.e., power spectrum in different frequency bands and different brain regions of the affected and unaffected hemispheres) and their correlation with motor impairment as measured by Fugl-Meyer. Multiple univariate and multivariate linear regression analyses were performed to identify the predictors of good motor function. A significant interaction effect of MT in the affected hemisphere and power in beta bandwidth over the central region for both affected and unaffected hemispheres was found. We identified that motor function positively correlates with beta rhythm over the central region of the unaffected hemisphere, while it negatively correlates with beta rhythm in the affected hemisphere. Our results suggest that cortical activity in the affected and unaffected hemisphere measured by EEG provides new insights on the association between high-frequency rhythms and motor impairment, highlighting the role of an excess of beta in the affected central cortical region in poor motor function in stroke recovery. PMID:28539912
Thibaut, Aurore; Simis, Marcel; Battistella, Linamara Rizzo; Fanciullacci, Chiara; Bertolucci, Federica; Huerta-Gutierrez, Rodrigo; Chisari, Carmelo; Fregni, Felipe
2017-01-01
What determines motor recovery in stroke is still unknown and finding markers that could predict and improve stroke recovery is a challenge. In this study, we aimed at understanding the neural mechanisms of motor function recovery after stroke using neurophysiological markers by means of cortical excitability (transcranial magnetic stimulation-TMS) and brain oscillations (electroencephalography-EEG). In this cross-sectional study, 55 subjects with chronic stroke (62 ± 14 yo, 17 women, 32 ± 42 months post-stroke) were recruited in two sites. We analyzed TMS measures (i.e., motor threshold-MT-of the affected and unaffected sides) and EEG variables (i.e., power spectrum in different frequency bands and different brain regions of the affected and unaffected hemispheres) and their correlation with motor impairment as measured by Fugl-Meyer. Multiple univariate and multivariate linear regression analyses were performed to identify the predictors of good motor function. A significant interaction effect of MT in the affected hemisphere and power in beta bandwidth over the central region for both affected and unaffected hemispheres was found. We identified that motor function positively correlates with beta rhythm over the central region of the unaffected hemisphere, while it negatively correlates with beta rhythm in the affected hemisphere. Our results suggest that cortical activity in the affected and unaffected hemisphere measured by EEG provides new insights on the association between high-frequency rhythms and motor impairment, highlighting the role of an excess of beta in the affected central cortical region in poor motor function in stroke recovery.
Beyond bricks and mortar: recent research on substance use disorder recovery management.
Dennis, Michael L; Scott, Christy K; Laudet, Alexandre
2014-04-01
Scientific advances in the past 15 years have clearly highlighted the need for recovery management approaches to help individuals sustain recovery from chronic substance use disorders. This article reviews some of the recent findings related to recovery management: (1) continuing care, (2) recovery management checkups, (3) 12-step or mutual aid, and (4) technology-based interventions. The core assumption underlying these approaches is that earlier detection and re-intervention will improve long-term outcomes by minimizing the harmful consequences of the condition and maximizing or promoting opportunities for maintaining healthy levels of functioning in related life domains. Economic analysis is important because it can take a year or longer for such interventions to offset their costs. The article also examines the potential of smartphones and other recent technological developments to facilitate more cost-effective recovery management options.
Letaif, Olavo Biraghi; Cristante, Alexandre Fogaça; Barros Filho, Tarcísio Eloy Pessoa de; Ferreira, Ricardo; Santos, Gustavo Bispo dos; Rocha, Ivan Dias da; Marcon, Raphael Martus
2015-10-01
To evaluate the functional and histological effects of estrogen as a neuroprotective agent after a standard experimentally induced spinal cord lesion. In this experimental study, 20 male Wistar rats were divided into two groups: one group with rats undergoing spinal cord injury (SCI) at T10 and receiving estrogen therapy with 17-beta estradiol (4mg/kg) immediately following the injury and after the placement of skin sutures and a control group with rats only subjected to SCI. A moderate standard experimentally induced SCI was produced using a computerized device that dropped a weight on the rat's spine from a height of 12.5 mm. Functional recovery was verified with the Basso, Beattie and Bresnahan scale on the 2nd, 7th, 14th, 21st, 28th, 35th and 42nd days after injury and by quantifying the motor-evoked potential on the 42nd day after injury. Histopathological evaluation of the SCI area was performed after euthanasia on the 42nd day. The experimental group showed a significantly greater functional improvement from the 28th to the 42nd day of observation compared to the control group. The experimental group showed statistically significant improvements in the motor-evoked potential compared with the control group. The results of pathological histomorphometry evaluations showed a better neurological recovery in the experimental group, with respect to the proportion and diameter of the quantified nerve fibers. Estrogen administration provided benefits in neurological and functional motor recovery in rats with SCI beginning at the 28th day after injury.
Letaif, Olavo Biraghi; Cristante, Alexandre Fogaça; de Barros Filho, Tarcísio Eloy Pessoa; Ferreira, Ricardo; dos Santos, Gustavo Bispo; da Rocha, Ivan Dias; Marcon, Raphael Martus
2015-01-01
OBJECTIVES: To evaluate the functional and histological effects of estrogen as a neuroprotective agent after a standard experimentally induced spinal cord lesion. METHODS: In this experimental study, 20 male Wistar rats were divided into two groups: one group with rats undergoing spinal cord injury (SCI) at T10 and receiving estrogen therapy with 17-beta estradiol (4mg/kg) immediately following the injury and after the placement of skin sutures and a control group with rats only subjected to SCI. A moderate standard experimentally induced SCI was produced using a computerized device that dropped a weight on the rat's spine from a height of 12.5 mm. Functional recovery was verified with the Basso, Beattie and Bresnahan scale on the 2nd, 7th, 14th, 21st, 28th, 35th and 42nd days after injury and by quantifying the motor-evoked potential on the 42nd day after injury. Histopathological evaluation of the SCI area was performed after euthanasia on the 42nd day. RESULTS: The experimental group showed a significantly greater functional improvement from the 28th to the 42nd day of observation compared to the control group. The experimental group showed statistically significant improvements in the motor-evoked potential compared with the control group. The results of pathological histomorphometry evaluations showed a better neurological recovery in the experimental group, with respect to the proportion and diameter of the quantified nerve fibers. CONCLUSIONS: Estrogen administration provided benefits in neurological and functional motor recovery in rats with SCI beginning at the 28th day after injury. PMID:26598084
Mayo, Nancy E; Feldman, Liane; Scott, Susan; Zavorsky, Gerald; Kim, Do Jun; Charlebois, Patrick; Stein, Barry; Carli, Francesco
2011-09-01
Abdominal surgery represents a physiologic stress and is associated with a period of recovery during which functional capacity is often diminished. "Prehabilitation" is a program to increase functional capacity in anticipation of an upcoming stressor. We reported recently the results of a randomized trial comparing 2 prehabilitation programs before colorectal surgery (stationary cycling plus weight training versus a recommendation to increase walking coupled with breathing exercises); however, adherence to the programs was low. The objectives of this study were to estimate: (1) the extent to which physical function could be improved with either prehabilitation program and identify variables associated with response; and (2) the impact of change in preoperative function on postoperative recovery. This study involved a reanalysis of data arising from a randomized trial. The primary outcome measure was functional walking capacity measured by the Six-Minute Walk Test; secondary outcomes were anxiety, depression, health-related quality of life, and complications (Clavien classification). Multiple linear regression was used to estimate the extent to which key variables predicted change in functional walking capacity over the prehabilitation and follow-up periods. We included 95 people who completed the prehabilitation phase (median, 38 days; interquartile range, 22-60), and 75 who were also evaluated postoperatively (mean, 9 weeks). During prehabilitation, 33% improved their physical function, 38% stayed within 20 m of their baseline score, and 29% deteriorated. Among those who improved, mental health, vitality, self-perceived health, and peak exercise capacity also increased significantly. Women were less likely to improve; low baseline walking capacity, anxiety, and the belief that fitness aids recovery were associated with improvements during prehabilitation. In the postoperative phase, the patients who had improved during prehabilitation were also more likely to have recovered to their baseline walking capacity than those with no change or deterioration (77% vs 59% and 32%; P = .0007). Patients who deteriorated were at greater risk of complications requiring reoperation and/or intensive care management. Significant predictors of poorer recovery included deterioration during prehabilitation, age >75 years, high anxiety, complications requiring intervention, and timing of follow-up assessment. In a group of patients undergoing scheduled colorectal surgery, meaningful changes in functional capacity can be achieved over several weeks of prehabilitation. Patients and those who care for them, especially those with poor physical capacity, should consider a prehabilitation regimen to enhance functional exercise capacity before colectomy. Copyright © 2011 Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Keller, Thomas; Colombi, Tino; Ruiz, Siul; Grahm, Lina; Reiser, René; Rek, Jan; Oberholzer, Hans-Rudolf; Schymanski, Stanislaus; Walter, Achim; Or, Dani
2016-04-01
Soil compaction due to agricultural vehicular traffic alters the geometrical arrangement of soil constituents, thereby modifying mechanical properties and pore spaces that affect a range of soil hydro-ecological functions. The ecological and economic costs of soil compaction are dependent on the immediate impact on soil functions during the compaction event, and a function of the recovery time. In contrast to a wealth of soil compaction information, mechanisms and rates of soil structure recovery remain largely unknown. A long-term (>10-yr) soil structure observatory (SSO) was established in 2014 on a loamy soil in Zurich, Switzerland, to quantify rates and mechanisms of structure recovery of compacted arable soil under different post-compaction management treatments. We implemented three initial compaction treatments (using a two-axle agricultural vehicle with 8 Mg wheel load): compaction of the entire plot area (i.e. track-by-track), compaction in wheel tracks, and no compaction. After compaction, we implemented four post-compaction soil management systems: bare soil (BS), permanent grass (PG), crop rotation without mechanical loosening (NT), and crop rotation under conventional tillage (CT). BS and PG provide insights into uninterrupted natural processes of soil structure regeneration under reduced (BS) and normal biological activity (PG). The two cropping systems (NT and CT) enable insights into soil structure recovery under common agricultural practices with minimal (NT) and conventional mechanical soil disturbance (CT). Observations include periodic sampling and measurements of soil physical properties, earthworm abundance, crop measures, electrical resistivity and ground penetrating radar imaging, and continuous monitoring of state variables - soil moisture, temperature, CO2 and O2 concentrations, redox potential and oxygen diffusion rates - for which a network of sensors was installed at various depths (0-1 m). Initial compaction increased soil bulk density to about half a metre, decreased gas and water transport functions (air permeability, gas diffusivity, saturated hydraulic conductivity), and increased mechanical impedance. Water infiltration at the soil surface was initially reduced by three orders of magnitude, but significantly recovered within a year. However, within the soil profile, recovery of transport properties is much smaller. Air permeability tended to recover more than gas diffusivity, suggesting that initial post-compaction recovery is initiated by new macropores (e.g. biopores). Tillage recovered topsoil bulk density but not topsoil transport functions. Compaction changed grass species composition in PG, and significantly reduced grass biomass in PG and crop yields in NT and CT.
Peripheral Nerve Regeneration by Secretomes of Stem Cells from Human Exfoliated Deciduous Teeth.
Sugimura-Wakayama, Yukiko; Katagiri, Wataru; Osugi, Masashi; Kawai, Takamasa; Ogata, Kenichi; Sakaguchi, Kohei; Hibi, Hideharu
2015-11-15
Peripheral nerve regeneration across nerve gaps is often suboptimal, with poor functional recovery. Stem cell transplantation-based regenerative therapy is a promising approach for axon regeneration and functional recovery of peripheral nerve injury; however, the mechanisms remain controversial and unclear. Recent studies suggest that transplanted stem cells promote tissue regeneration through a paracrine mechanism. We investigated the effects of conditioned media derived from stem cells from human exfoliated deciduous teeth (SHED-CM) on peripheral nerve regeneration. In vitro, SHED-CM-treated Schwann cells exhibited significantly increased proliferation, migration, and the expression of neuron-, extracellular matrix (ECM)-, and angiogenesis-related genes. SHED-CM stimulated neuritogenesis of dorsal root ganglia and increased cell viability. Similarly, SHED-CM enhanced tube formation in an angiogenesis assay. In vivo, a 10-mm rat sciatic nerve gap model was bridged by silicon conduits containing SHED-CM or serum-free Dulbecco's modified Eagle's medium. Light and electron microscopy confirmed that the number of myelinated axons and axon-to-fiber ratio (G-ratio) were significantly higher in the SHED-CM group at 12 weeks after nerve transection surgery. The sciatic functional index (SFI) and gastrocnemius (target muscle) wet weight ratio demonstrated functional recovery. Increased compound muscle action potentials and increased SFI in the SHED-CM group suggested sciatic nerve reinnervation of the target muscle and improved functional recovery. We also observed reduced muscle atrophy in the SHED-CM group. Thus, SHEDs may secrete various trophic factors that enhance peripheral nerve regeneration through multiple mechanisms. SHED-CM may therefore provide a novel therapy that creates a more desirable extracellular microenvironment for peripheral nerve regeneration.
Ansar, Siyam M; Fellows, Benjamin; Mispireta, Patrick; Mefford, O Thompson; Kitchens, Christopher L
2017-08-08
Thiolated poly(acrylic acid) (PAA-SH) functionalized gold nanoparticles were explored as a colloidal catalyst with potential application as a recoverable catalyst where the PAA provides pH-responsive dispersibility and phase transfer capability between aqueous and organic media. This system demonstrates complete nanoparticle recovery and redispersion over multiple reaction cycles without changes in nanoparticle morphology or reduction in conversion. The catalytic activity (rate constant) was reduced in subsequent reactions when recovery by aggregation was employed, despite unobservable changes in morphology or dispersibility. When colloidal catalyst recovery employed a pH induced phase transfer between two immiscible solvents, the catalytic activity of the recovered nanoparticles was unchanged over four cycles, maintaining the original rate constant and 100% conversion. The ability to recover and reuse colloidal catalysts by aggregation/redispersion and phase transfer methods that occur at low and high pH, respectively, could be used for different gold nanoparticle catalyzed reactions that occur at different pH conditions.
Vacuum distillation/vapor filtration water recovery
NASA Technical Reports Server (NTRS)
Honegger, R. J.; Neveril, R. B.; Remus, G. A.
1974-01-01
The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.
Lee, Hae In; Lee, Sae-Won; Kim, Nam Gyun; Park, Kyoung-Jun; Choi, Byung Tae; Shin, Yong-Il; Shin, Hwa Kyoung
2017-12-01
We aimed to investigate the effects of low-level light emitting diode therapy (LED-T) on the long-term functional outcomes after cerebral ischemia, and the optimal timing of LED-T initiation for achieving suitable functional recovery. Focal cerebral ischemia was induced in mice via photothrombosis. These mice were assigned to a sham-operated (control), ischemic (vehicle), or LED-T group [initiation immediately (acute), 4 days (subacute) or 10 days (delayed) after ischemia, followed by once-daily treatment for 7 days]. Behavioral outcomes were assessed 21 and 28 days post-ischemia, and histopathological analysis was performed 28 days post-ischemia. The acute and subacute LED-T groups showed a significant improvement in motor function up to 28 days post-ischemia, although no brain atrophy recovery was noted. We observed proliferating cells (BrdU + ) in the ischemic brain, and significant increases in BrdU + /GFAP + , BrdU + /DCX + , BrdU + /NeuN + , and CD31 + cells in the subacute LED-T group. However, the BrdU + /Iba-1 + cell count was reduced in the subacute LED-T group. Furthermore, the brain-derived neurotrophic factor (BDNF) was significantly upregulated in the subacute LED-T group. We concluded that LED-T administered during the subacute stage had a positive impact on the long-term functional outcome, probably via neuron and astrocyte proliferation, blood vessel reconstruction, and increased BDNF expression. Picture: The rotarod test for motor coordination showed that acute and subacute LED-T improves long-term functional recovery after cerebral ischemia. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A novel model for examining recovery of phonation after vocal nerve damage.
Bhama, Prabhat K; Hillel, Allen D; Merati, Albert L; Perkel, David J
2011-05-01
Recurrent laryngeal nerve injury remains a dominant clinical issue in laryngology. To date, no animal model of laryngeal reinnervation has offered an outcome measure that can reflect the degree of recovery based on vocal function. We present an avian model system for studying recovery of learned vocalizations after nerve injury. Prospective animal study. Digital recordings of bird song were made from 11 adult male zebra finches; nine birds underwent bilateral crushing of the nerve supplying the vocal organ, and two birds underwent sham surgery. Songs from all the birds were then recorded regularly and analyzed based on temporal and spectral characteristics using computer software. Indices were calculated to indicate the degree of similarity between preoperative and postoperative song. Nerve crush caused audible differences in song quality and significant drops (P<0.05) in measured spectral and, to a lesser degree, temporal indices. Spectral indices recovered significantly (mean=43.0%; standard deviation [SD]=40.7; P<0.02), and there was an insignificant trend toward recovery of temporal index (mean=28.0%; SD=41.4; P=0.0771). In five of the nine (56%) birds, there was a greater than 50% recovery of spectral indices within a 4-week period. Two birds exhibited substantially less recovery of spectral indices and two birds had a persistent decline in spectral indices. Recovery of temporal index was highly variable as well, ranging from persistent further declines of 45.1% to recovery of 87%. Neither sham bird exhibited significant (P>0.05) differences in song after nerve crush. The songbird model system allows functional analysis of learned vocalization after surgical damage to vocal nerves. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Zanarini, Mary C; Temes, Christina M; Frankenburg, Frances R; Reich, D Bradford; Fitzmaurice, Garrett M
2018-04-01
One purpose of this study was to determine the cumulative rates of excellent recovery for borderline patients and axis II comparison subjects followed prospectively for 20 years. Another purpose was to find the best set of baseline predictors of excellent recovery for borderline patients. A total of 290 inpatients meeting rigorous criteria for borderline personality disorder and 72 axis II comparison subjects completed semistructured interviews and self-report measures during their index admission. Subjects were reassessed prospectively over 10 contiguous two-year waves of follow-up. Thirty-nine percent of borderline patients and 73% of personality-disordered comparison subjects met our operationalized definition of excellent recovery (concurrent remission of borderline or another primary personality disorder, good social and full-time vocational functioning, and absence of an axis I disorder associated decreased social and/or vocational functioning). Five variables formed our multivariate predictive model of excellent recovery for borderline patients: higher IQ, good childhood work history, good adult vocational record, lower trait neuroticism, and higher trait agreeableness. The results of this study suggest that complete recovery is difficult for borderline patients to achieve even over long periods of time. They also suggest that competence displayed in both childhood and adulthood is the best predictor of this important outcome. Copyright © 2018 Elsevier B.V. All rights reserved.
Cavelti, M; Wirtz, M; Corrigan, P; Vauth, R
2017-03-01
The recovery framework has found its way into local and national mental health services and policies around the world, especially in English speaking countries. To promote this process, it is necessary to assess personal recovery validly and reliably. The Recovery Assessment Scale (RAS) is the most established measure in recovery research. The aim of the current study is to examine the factor structure of the German version of the RAS (RAS-G). One hundred and fifty-six German-speaking clients with schizophrenia or schizoaffective disorder from a community mental health service completed the RAS-G plus measures of recovery attitudes, self-stigma, psychotic symptoms, depression, and functioning. A confirmatory factor analysis of the original 24-item RAS version was conducted to examine its factor structure, followed by reliability and validity testing of the extracted factors. The CFA yielded five factors capturing 14 items which showed a substantial overlap with the original subscales Personal Confidence and Hope, Goal and Success Orientation, Willingness to Ask for Help, Reliance on Others, and No Domination by Symptoms. The factors demonstrated mean to excellent reliability (0.59-0.89) and satisfactory criterial validity by positive correlations with measures of recovery attitudes and functioning, and negative correlations with measures of self-stigma, and psychotic and depressive symptoms. The study results are discussed in the light of other studies examining the factor structure of the RAS. Overall, they support the use of the RAS-G as a means to promote recovery oriented services, policies, and research in German-speaking countries. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
2002-01-01
Dramatic losses of bone mineral density (BMD) and muscle strength are two of the best documented changes observed in humans after prolonged exposure to microgravity. Recovery of muscle upon return to a 1-G environment is well studied, however, far less is known about the rate and completeness of BMD recovery to pre-flight values. Using the mature tail-suspended adult rat model, this proposal will focus on the temporal course of recovery in tibial bone following a 28-d period of skeletal unloading. Through the study of bone density and muscle strength in the same animal, time-points during recovery from simulated microgravity will be identified when bone is at an elevated risk for fracture. These will occur due to the rapid recovery of muscle strength coupled with a slower recovery of bone, producing a significant mismatch in functional strength of these two tissues. Once the time-point of maximal mismatch is defined, various mechanical and pharmacological interventions will be tested at and around this time-point in attempt to minimize the functional difference of bone and muscle. The outcomes of this research will have high relevance for optimizing the rehabilitation of astronauts upon return to Earth, as well as upon landing on the Martian surface before assuming arduous physical tasks. Further. it will impact significantly on rehabilitation issues common to patients experiencing long periods of limb immobilization or bed rest.