Chancerel, Perrine; Bolland, Til; Rotter, Vera Susanne
2011-03-01
Waste electrical and electronic equipment (WEEE) contains gold in low but from an environmental and economic point of view relevant concentration. After collection, WEEE is pre-processed in order to generate appropriate material fractions that are sent to the subsequent end-processing stages (recovery, reuse or disposal). The goal of this research is to quantify the overall recovery rates of pre-processing technologies used in Germany for the reference year 2007. To achieve this goal, facilities operating in Germany were listed and classified according to the technology they apply. Information on their processing capacity was gathered by evaluating statistical databases. Based on a literature review of experimental results for gold recovery rates of different pre-processing technologies, the German overall recovery rate of gold at the pre-processing level was quantified depending on the characteristics of the treated WEEE. The results reveal that - depending on the equipment groups - pre-processing recovery rates of gold of 29 to 61% are achieved in Germany. Some practical recommendations to reduce the losses during pre-processing could be formulated. Defining mass-based recovery targets in the legislation does not set incentives to recover trace elements. Instead, the priorities for recycling could be defined based on other parameters like the environmental impacts of the materials. The implementation of measures to reduce the gold losses would also improve the recovery of several other non-ferrous metals like tin, nickel, and palladium.
Device and method to enhance availability of cluster-based processing systems
NASA Technical Reports Server (NTRS)
Lupia, David J. (Inventor); Ramos, Jeremy (Inventor); Samson, Jr., John R. (Inventor)
2010-01-01
An electronic computing device including at least one processing unit that implements a specific fault signal upon experiencing an associated fault, a control unit that generates a specific recovery signal upon receiving the fault signal from the at least one processing unit, and at least one input memory unit. The recovery signal initiates specific recovery processes in the at least one processing unit. The input memory buffers input data signals input to the at least one processing unit that experienced the fault during the recovery period.
Xie, Ming; Shon, Ho Kyong; Gray, Stephen R; Elimelech, Menachem
2016-02-01
Wastewater nutrient recovery holds promise for more sustainable water and agricultural industries. We critically review three emerging membrane processes - forward osmosis (FO), membrane distillation (MD) and electrodialysis (ED) - that can advance wastewater nutrient recovery. Challenges associated with wastewater nutrient recovery were identified. The advantages and challenges of applying FO, MD, and ED technologies to wastewater nutrient recovery are discussed, and directions for future research and development are identified. Emphasis is given to exploration of the unique mass transfer properties of these membrane processes in the context of wastewater nutrient recovery. We highlight that hybridising these membrane processes with existing nutrient precipitation process will lead to better management of and more diverse pathways for near complete nutrient recovery in wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Recovery Processes of Organic Acids from Fermentation Broths in the Biomass-Based Industry.
Li, Qian-Zhu; Jiang, Xing-Lin; Feng, Xin-Jun; Wang, Ji-Ming; Sun, Chao; Zhang, Hai-Bo; Xian, Mo; Liu, Hui-Zhou
2016-01-01
The new movement towards green chemistry and renewable feedstocks makes microbial production of chemicals more competitive. Among the numerous chemicals, organic acids are more attractive targets for process development efforts in the renewable-based biorefinery industry. However, most of the production costs in microbial processes are higher than that in chemical processes, among which over 60% are generated by separation processes. Therefore, the research of separation and purification processes is important for a promising biorefinery industry. This review highlights the progress of recovery processes in the separation and purification of organic acids, including their advantages and disadvantages, current situation, and future prospects in terms of recovery yields and industrial application.
New roads paved on losses: photovoice perspectives about recovery from mental illness.
Mizock, Lauren; Russinova, Zlatka; Shani, Roni
2014-11-01
People with serious mental illness face stigma that interferes with recovery. Photovoice is a method that integrates photography and writing, providing a valuable means for capturing the narratives of people with mental illness whose voices are often marginalized. The purpose of the present article is to explore the meaning of recovery for individuals with serious mental illness based on a qualitative analysis of a new photovoice-based intervention, Recovery Narrative Photovoice. This intervention focuses on promoting the process of recovery and sense of identity through the creation of empowering visual images and narratives of recovery for individuals with serious mental illness. In this article, we present iconographic and thematic analysis for the 23 photovoice works from two pilots of the Recovery Narrative Photovoice intervention. Results reveal several themes, including metaphors for mental illness, associated losses, recovery strategies, and recovery outcomes. A final theme pertains to recovery messages learned from the recovery process. © The Author(s) 2014.
Comprehensive process for the recovery of value and critical materials from electronic waste
Diaz, Luis A.; Lister, Tedd E.; Parkman, Jacob A.; ...
2016-04-08
The development of technologies that contribute to the proper disposal and treatment of electronic waste is not just an environmental need, but an opportunity for the recovery and recycle of valuable metals and critical materials. Value elements in electronic waste include gold, palladium, silver, copper, nickel, and rare earth elements (RE). Here, we present the development of a process that enables efficient recycling of metals from scrap mobile electronics. An electro recycling (ER) process, based on the regeneration of Fe 3+ as a weak oxidizer, is studied for the selective recovery of base metals while leaving precious metals for separatemore » extraction at reduced chemical demand. A separate process recovers rare earth oxides from magnets in electronics. Furthermore, recovery and extraction efficiencies ca. 90 % were obtained for the extraction of base metals from the non-ferromagnetic fraction in the two different solution matrices tested (H 2SO 4, and HCl). The effect of the pre-extraction of base metals in the increase of precious metals extraction efficiency was verified. On the other hand, the extraction of rare earths from the ferromagnetic fraction, performed by means of anaerobic extraction in acid media, was assessed for the selective recovery of rare earths. We developed a comprehensive flow sheet to process electronic waste to value products.« less
Calcium hydroxide as a processing base in alkali-aided pH-shift protein recovery process.
Paker, Ilgin; Jaczynski, Jacek; Matak, Kristen E
2017-02-01
Protein may be recovered by using pH shifts to solubilize and precipitate protein. Typically, sodium hydroxide is used as the processing base; however, this has been shown to significantly increase sodium in the final recovered protein. Protein was extracted from black bullhead catfish (Ameiurus melas) using a pH-shift method. Protein was solubilized using either sodium hydroxide (NaOH) or calcium hydroxide (Ca(OH) 2 ) and precipitated at pH 5.5 using hydrochloric acid (HCl). Protein solubility was greater when Ca(OH) 2 was used compared to NaOH during this process. Using Ca(OH) 2 as the processing base yielded the greatest lipid recovery (P < 0.05) at 77 g 100 g -1 , whereas the greatest (P < 0.05) protein recovery yield was recorded as 53 g 100 g -1 protein using NaOH. Protein solubilized with Ca(OH) 2 had more (P < 0.05) calcium in the protein fraction, whereas using NaOH increased (P < 0.05) sodium content. Results of our study showed that protein solubility was increased and the recovered protein had significantly more calcium when Ca(OH) 2 was used as the processing base. Results showed both NaOH and Ca(OH) 2 to be an effective processing base for pH-shift protein recovery processes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Clavin, C.; Petropoulos, Z.
2017-12-01
Recovery phase decision making processes, as compared to mitigation and response phase decision making processes, require communities make significant financial and capital decisions in the months after a disaster. Collectively, these investments may significantly contribute to the resilience of a community to future hazards. Pre-disaster administrative decisions are well-established within existing planning processes. Post-event recovery requires community decision makers to quickly evaluate technical proposals and manage significant recovery financial resources to ensure their community rebuilds in a manner that will be more resilient to future events. These technical and administrative hurdles in the aftermath of a disaster create a challenging atmosphere to make sound, scientifically-informed decisions leading to resilient recovery. In September 2013, a 1,000-year rain event that resulted in flooding throughout the Front Range of Colorado, significantly impacting Boulder County. While the event is long past, disaster recovery efforts still continue in parts of Boulder County. Boulder County officials formed a county collaborative that adapted the NIST Community Resilience Planning Guide for Buildings and Infrastructure Systems to facilitate a goals-based multi-criteria decision making process. Rather than use hazard-based information to guide infrastructure design, the county's decision process established time-to-recovery goals for infrastructure systems that were used as criteria for project design. This presentation explores the decision-making process employed by Boulder County to specify design standards for resilient rebuilding of infrastructure systems and examine how this infrastructure planning model could be extrapolated to other situations where there is uncertainty regarding future infrastructure design standards.
A Christian faith-based recovery theory: understanding God as sponsor.
Timmons, Shirley M
2012-12-01
This article reports the development of a substantive theory to explain an evangelical Christian-based process of recovery from addiction. Faith-based, 12-step, mutual aid programs can improve drug abstinence by offering: (a) an intervention option alone and/or in conjunction with secular programs and (b) an opportunity for religious involvement. Although literature on religion, spirituality, and addiction is voluminous, traditional 12-step programs fail to explain the mechanism that underpins the process of Christian-based recovery (CR). This pilot study used grounded theory to explore and describe the essence of recovery of 10 former crack cocaine-addicted persons voluntarily enrolled in a CR program. Data were collected from in-depth interviews during 4 months of 2008. Audiotapes were transcribed verbatim, and the constant comparative method was used to analyze data resulting in the basic social process theory, understanding God as sponsor. The theory was determined through writing theoretical memos that generated key elements that allow persons to recover: acknowledging God-centered crises, communicating with God, and planning for the future. Findings from this preliminary study identifies important factors that can help persons in recovery to sustain sobriety and program administrators to benefit from theory that guides the development of evidence-based addiction interventions.
The USEPA's National Risk Management Research Laboratory is investigating new separations materials and processes for removal and recovery of volatile organic compounds (VOCs) and toxic metals from wastestreams and industrial process streams. Research applying membrane-based perv...
Lignocentric analysis of a carbohydrate-producing lignocellulosic biorefinery process.
Narron, Robert H; Han, Qiang; Park, Sunkyu; Chang, Hou-Min; Jameel, Hasan
2017-10-01
A biologically-based lignocellulosic biorefinery process for obtaining carbohydrates from raw biomass was investigated across six diverse biomasses (three hardwoods & three nonwoods) for the purpose of decoding lignin's influence on sugar production. Acknowledging that lignin could positively alter the economics of an entire process if valorized appropriately, we sought to correlate the chemical properties of lignin within the process to the traditional metrics associated with carbohydrate production-cellulolytic digestibility and total sugar recovery. Based on raw carbohydrate, enzymatic recovery ranged from 40 to 64% w/w and total recovery ranged from 70 to 87% w/w. Using nitrobenzene oxidation to quantify non-condensed lignin structures, it was found that raw hardwoods bearing increasing non-condensed S/V ratios (2.5-5.1) render increasing total carbohydrate recovery from hardwood biomasses. This finding indicates that the chemical structure of hardwood lignin influences the investigated biorefinery process' ability to generate carbohydrates from a given raw hardwood feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.
Enhanced Recovery After Surgery: A Review.
Ljungqvist, Olle; Scott, Michael; Fearon, Kenneth C
2017-03-01
Enhanced Recovery After Surgery (ERAS) is a paradigm shift in perioperative care, resulting in substantial improvements in clinical outcomes and cost savings. Enhanced Recovery After Surgery is a multimodal, multidisciplinary approach to the care of the surgical patient. Enhanced Recovery After Surgery process implementation involves a team consisting of surgeons, anesthetists, an ERAS coordinator (often a nurse or a physician assistant), and staff from units that care for the surgical patient. The care protocol is based on published evidence. The ERAS Society, an international nonprofit professional society that promotes, develops, and implements ERAS programs, publishes updated guidelines for many operations, such as evidence-based modern care changes from overnight fasting to carbohydrate drinks 2 hours before surgery, minimally invasive approaches instead of large incisions, management of fluids to seek balance rather than large volumes of intravenous fluids, avoidance of or early removal of drains and tubes, early mobilization, and serving of drinks and food the day of the operation. Enhanced Recovery After Surgery protocols have resulted in shorter length of hospital stay by 30% to 50% and similar reductions in complications, while readmissions and costs are reduced. The elements of the protocol reduce the stress of the operation to retain anabolic homeostasis. The ERAS Society conducts structured implementation programs that are currently in use in more than 20 countries. Local ERAS teams from hospitals are trained to implement ERAS processes. Audit of process compliance and patient outcomes are important features. Enhanced Recovery After Surgery started mainly with colorectal surgery but has been shown to improve outcomes in almost all major surgical specialties. Enhanced Recovery After Surgery is an evidence-based care improvement process for surgical patients. Implementation of ERAS programs results in major improvements in clinical outcomes and cost, making ERAS an important example of value-based care applied to surgery.
NASA Astrophysics Data System (ADS)
Seyfpour, M.; Ghanei, S.; Mazinani, M.; Kashefi, M.; Davis, C.
2018-04-01
The recovery process in steel is usually investigated by conventional destructive tests that are expensive, time-consuming and also cumbersome. In this study, an alternative non-destructive test technique (based on eddy current testing) is used to characterise the recovery process during annealing of cold-rolled low-carbon steels. For assessing the reliability of eddy current results corresponding to different levels of recovery, X-ray line broadening analysis is also employed. It is shown that there is a strong relationship between eddy current outputs and the extent to which recovery occurs at different annealing temperatures. Accordingly, the non-destructive eddy current test technique represents the potential to be used as a reliable process for detection of the occurrence of recovery in the steel microstructure.
Robust signal recovery using the prolate spherical wave functions and maximum correntropy criterion
NASA Astrophysics Data System (ADS)
Zou, Cuiming; Kou, Kit Ian
2018-05-01
Signal recovery is one of the most important problem in signal processing. This paper proposes a novel signal recovery method based on prolate spherical wave functions (PSWFs). PSWFs are a kind of special functions, which have been proved having good performance in signal recovery. However, the existing PSWFs based recovery methods used the mean square error (MSE) criterion, which depends on the Gaussianity assumption of the noise distributions. For the non-Gaussian noises, such as impulsive noise or outliers, the MSE criterion is sensitive, which may lead to large reconstruction error. Unlike the existing PSWFs based recovery methods, our proposed PSWFs based recovery method employs the maximum correntropy criterion (MCC), which is independent of the noise distribution. The proposed method can reduce the impact of the large and non-Gaussian noises. The experimental results on synthetic signals with various types of noises show that the proposed MCC based signal recovery method has better robust property against various noises compared to other existing methods.
Economic evaluation of an electrochemical process for the recovery of metals from electronic waste.
Diaz, Luis A; Lister, Tedd E
2018-04-01
As the market of electronic devices continues to evolve, the waste stream generated from antiquated technology is increasingly view as an alternative to substitute primary sources of critical a value metals. Nevertheless, the sustainable recovery of materials can only be achieved by environmentally friendly processes that are economically competitive with the extraction from mineral ores. Hence, This paper presents the techno-economic assessment for a comprehensive process for the recovery of metals and critical materials from e-waste, which is based in an electrochemical recovery (ER) technology. Economic comparison is performed with the treatment of e-waste via smelting, which is currently the primary route for recycling metals from electronics. Results indicate that the electrochemical recovery process is a competitive alternative for the recovery of value from electronic waste when compared with the traditional black Cu smelting process. A significantly lower capital investment, 2.9 kg e-waste per dollar of capital investment, can be achieved with the ER process vs. 1.3 kg per dollar in the black Cu smelting process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alum, Absar; Rock, Channah; Abbaszadegan, Morteza
2014-01-01
For land application, biosolids are classified as Class A or Class B based on the levels of bacterial, viral, and helminths pathogens in residual biosolids. The current EPA methods for the detection of these groups of pathogens in biosolids include discrete steps. Therefore, a separate sample is processed independently to quantify the number of each group of the pathogens in biosolids. The aim of the study was to develop a unified method for simultaneous processing of a single biosolids sample to recover bacterial, viral, and helminths pathogens. At the first stage for developing a simultaneous method, nine eluents were compared for their efficiency to recover viruses from a 100 gm spiked biosolids sample. In the second stage, the three top performing eluents were thoroughly evaluated for the recovery of bacteria, viruses, and helminthes. For all three groups of pathogens, the glycine-based eluent provided higher recovery than the beef extract-based eluent. Additional experiments were performed to optimize performance of glycine-based eluent under various procedural factors such as, solids to eluent ratio, stir time, and centrifugation conditions. Last, the new method was directly compared with the EPA methods for the recovery of the three groups of pathogens spiked in duplicate samples of biosolids collected from different sources. For viruses, the new method yielded up to 10% higher recoveries than the EPA method. For bacteria and helminths, recoveries were 74% and 83% by the new method compared to 34% and 68% by the EPA method, respectively. The unified sample processing method significantly reduces the time required for processing biosolids samples for different groups of pathogens; it is less impacted by the intrinsic variability of samples, while providing higher yields (P = 0.05) and greater consistency than the current EPA methods.
Rollins, Angela L.
2015-01-01
The current study seeks to understand the concept of recovery from the perspectives of consumers and staff living and working in a supportive housing model designed to serve those with co-occurring disorder. Interview and focus group data were collected from consumers and staff from four housing programs. Data analyzed using an approach that combined case study and grounded theory methodologies demonstrate that: consumers’ and staff members’ views of recovery were highly compatible and resistant to abstinence-based definitions of recovery; recovery is personal; stability is a foundation for recovery; recovery is a process; and the recovery process is not linear. These themes are more consistent with mental health-focused conceptions of recovery than those traditionally used within the substance abuse field, and they help demonstrate how recovery can be influenced by the organization of services in which consumers are embedded. PMID:26388709
A recovery-based outreach program in rural Victoria.
Prabhu, Radha; Browne, Mark Oakley
2007-04-01
A recovery-based outreach program for people with severe mental illness in regional Victoria is described. The paper covers a description of the program, the services provided and outcomes achieved. The program emphasized active collaboration between patients and clinicians as outlined in the collaborative recovery model and recognized that recovery from mental illness is an individual, personal process. The program provided service to 108 people over 3 years and had a positive impact on clinicians, patients and carers. The benefits of recovery orientation, multidisciplinary teams, collaborative relationships and carer involvement are discussed. The paper highlights the need for a focus on recovery and comprehensive care for people with severe mental illness.
A recovery journey for people with personality disorder.
Castillo, Heather; Ramon, Shulamit; Morant, Nicola
2013-05-01
The study investigates the process of recovery for people diagnosed with personality disorder, a client group that suffers significant social exclusion known to impact on demand for health and other public services. It aims to examine efforts that attempt to reverse this social exclusion as an aspect of the recovery process. and The following study aims to (1) explore what recovery means to people with personality disorder; (2) develop a conceptual model of recovery in personality disorder; and (3) evaluate the contribution of the setting (The Haven) to recovery practice. The study uses a Participatory Action Research (PAR) design. Data was collected from 66 participants by focus groups and individual interviews. A map based on thematic analysis of data collected during the study is proposed of the recovery journey for people with this diagnosis, shown as a pyramid that represents a hierarchy of progress, from building trust through stages of recovery to social inclusion. The findings offer contributions to knowledge in terms of the service design and propose a new model of recovery in personality disorder. This is defined as a journey of small steps highlighting recovery as a process rather than a goal, leading to the emergence of the new concept of transitional recovery.
The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...
Jaensson, Maria; Dahlberg, Karuna; Eriksson, Mats; Grönlund, Åke; Nilsson, Ulrica
2015-09-11
In Sweden, day surgery is performed in almost 2 million patients per year. Patient satisfaction is closely related to potential adverse events during the recovery process. A way to empower patients and give them the opportunity to affect care delivery is to let them evaluate their recovery process. The most common evaluation method is a follow-up telephone call by a nurse one or two days after surgery. In recent years, mHealth apps have been used to evaluate the nurse-patient relationship for self-management in chronic diseases or to evaluate pain after surgery. To the best of our knowledge, no previous research has explored the recovery process after day surgery via mobile phone in a Swedish cohort. The objective of the study is to describe the process of developing a mobile phone app using a Swedish Web-based Quality of Recovery (SwQoR) questionnaire to evaluate postoperative recovery after day surgery. The development process included five steps: (1) setting up an interdisciplinary task force, (2) evaluating the potential needs of app users, (3) developing the Swedish Web version of a QoR questionnaire, (4) constructing a mobile phone app, and (5) evaluating the interface and design by staff working in a day-surgery department and patients undergoing day surgery. A task force including specialists in information and communication technology, eHealth, and nursing care worked closely together to develop a Web-based app. Modifications to the QoR questionnaire were inspired by instruments used in the field of recovery for both children and adults. The Web-based app, Recovery Assessment by Phone Points (RAPP) consists of two parts: (1) a mobile app installed on the patient's private mobile phone, and (2) an administrator interface for the researchers. The final version of the SwQoR questionnaire, which includes 31 items, was successfully installed in RAPP. The interface and the design were evaluated by asking for user opinions about the design and usefulness of the app with 10 day surgery patients. Some minor adjustments were made concerning text size and screen color. Taking advantage of joint expertise, a useable Web-based app adaptable to different technical platforms was constructed. In addition, the SwQoR was successfully transferred into digital format for use on mobile phones.
Cost Effective Recovery of Low-TDS Frac Flowback Water for Re-use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claire Henderson; Harish Acharya; Hope Matis
2011-03-31
The project goal was to develop a cost-effective water recovery process to reduce the costs and envi-ronmental impact of shale gas production. This effort sought to develop both a flowback water pre-treatment process and a membrane-based partial demineralization process for the treatment of the low-Total Dissolved Solids (TDS) portion of the flowback water produced during hydrofracturing operations. The TDS cutoff for consideration in this project is < 35,000 {approx} 45,000 ppm, which is the typical limit for economic water recovery employing reverse osmosis (RO) type membrane desalination processes. The ultimate objective is the production of clean, reclaimed water suitable formore » re-use in hydrofracturing operations. The team successfully compiled data on flowback composition and other attributes across multiple shale plays, identified the likely applicability of membrane treatment processes in those shales, and expanded the proposed product portfolio to include four options suitable for various reuse or discharge applications. Pretreatment technologies were evaluated at the lab scale and down-selected based upon their efficacy in removing key contaminants. The chosen technologies were further validated by performing membrane fouling studies with treated flowback water to demonstrate the technical feasibility of flowback treatment with RO membranes. Process flow schemes were constructed for each of the four product options based on experimental performance data from actual flowback water treatment studies. For the products requiring membrane treatment, membrane system model-ing software was used to create designs for enhanced water recovery beyond the typical seawater desalination benchmark. System costs based upon vendor and internal cost information for all process flow schemes were generated and are below target and in line with customer expectations. Finally, to account for temporal and geographic variability in flowback characteristics as well as local disposal costs and regulations, a parametric value assessment tool was created to assess the economic attractiveness of a given flowback recovery process relative to conventional disposal for any combination of anticipated flowback TDS and local disposal cost. It is concluded that membrane systems in combination with appropriate pretreatment technologies can provide cost-effective recovery of low-TDS flow-back water for either beneficial reuse or safe surface discharge.« less
Timing Recovery Strategies in Magnetic Recording Systems
NASA Astrophysics Data System (ADS)
Kovintavewat, Piya
At some point in a digital communications receiver, the received analog signal must be sampled. Good performance requires that these samples be taken at the right times. The process of synchronizing the sampler with the received analog waveform is known as timing recovery. Conventional timing recovery techniques perform well only when operating at high signal-to-noise ratio (SNR). Nonetheless, iterative error-control codes allow reliable communication at very low SNR, where conventional techniques fail. This paper provides a detailed review on the timing recovery strategies based on per-survivor processing (PSP) that are capable of working at low SNR. We also investigate their performance in magnetic recording systems because magnetic recording is a primary method of storage for a variety of applications, including desktop, mobile, and server systems. Results indicate that the timing recovery strategies based on PSP perform better than the conventional ones and are thus worth being employed in magnetic recording systems.
Microbial enhanced oil recovery: Entering the log phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryant, R.S.
1995-12-31
Microbial enhanced oil recovery (MEOR) technology has advanced internationally since 1980 from a laboratory-based evaluation of microbial processes to field applications. In order to adequately support the decline in oil production in certain areas, research on cost-effective technologies such as microbial enhanced oil recovery processes must focus on both near-term and long-term applications. Many marginal wells are desperately in need of an inexpensive improved oil recovery technology today that can assist producers in order to prevent their abandonment. Microbial enhanced waterflooding technology has also been shown to be an economically feasible technology in the United States. Complementary environmental research andmore » development will also be required to address any potential environmental impacts of microbial processes. In 1995 at this conference, the goal is to further document and promote microbial processes for improved oil recovery and related technology for solving environmental problems.« less
Elemental sulfur recovery process
Flytzani-Stephanopoulos, M.; Zhicheng Hu.
1993-09-07
An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.
Elemental sulfur recovery process
Flytzani-Stephanopoulos, Maria; Hu, Zhicheng
1993-01-01
An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.
Visual activity predicts auditory recovery from deafness after adult cochlear implantation.
Strelnikov, Kuzma; Rouger, Julien; Demonet, Jean-François; Lagleyre, Sebastien; Fraysse, Bernard; Deguine, Olivier; Barone, Pascal
2013-12-01
Modern cochlear implantation technologies allow deaf patients to understand auditory speech; however, the implants deliver only a coarse auditory input and patients must use long-term adaptive processes to achieve coherent percepts. In adults with post-lingual deafness, the high progress of speech recovery is observed during the first year after cochlear implantation, but there is a large range of variability in the level of cochlear implant outcomes and the temporal evolution of recovery. It has been proposed that when profoundly deaf subjects receive a cochlear implant, the visual cross-modal reorganization of the brain is deleterious for auditory speech recovery. We tested this hypothesis in post-lingually deaf adults by analysing whether brain activity shortly after implantation correlated with the level of auditory recovery 6 months later. Based on brain activity induced by a speech-processing task, we found strong positive correlations in areas outside the auditory cortex. The highest positive correlations were found in the occipital cortex involved in visual processing, as well as in the posterior-temporal cortex known for audio-visual integration. The other area, which positively correlated with auditory speech recovery, was localized in the left inferior frontal area known for speech processing. Our results demonstrate that the visual modality's functional level is related to the proficiency level of auditory recovery. Based on the positive correlation of visual activity with auditory speech recovery, we suggest that visual modality may facilitate the perception of the word's auditory counterpart in communicative situations. The link demonstrated between visual activity and auditory speech perception indicates that visuoauditory synergy is crucial for cross-modal plasticity and fostering speech-comprehension recovery in adult cochlear-implanted deaf patients.
Enhance gas processing with reflux heat-exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finn, A.J.
1994-05-01
Despite recent successes of membrane-based separations in low-throughput applications, cryogenic processing remains the best route for separating and purifying gas mixtures, especially when high recoveries are required. Now conventional units are being modified to yield even higher recoveries at lower costs. Throughout the chemical process industries (CPI), this is being accomplished with reflux or plate-fin exchangers, especially for processing of natural gas, and offgases from refineries and petrochemical facilities. The concept of utilizing a heat exchanger as a multi stage rectification device is not new. However, only in the last fifteen years or so has accurate design of reflux exchangersmore » become feasible. Also helpful have been the availability of prediction techniques for high-quality thermodynamic data, and process simulators that can rapidly solve the complex material, equilibrium and enthalpy relationships involved in simulating the performance of reflux exchangers. Four projects that show the value and effectiveness of reflux exchangers are discussed below in more detail. The first example considers hydrogen recovery from demethanizer overheads; the second highlights a low energy process for NGL and LPG recovery from natural gas. The third is a simple process for recovery of ethylene from fluid-catalytic cracker (FCC) offgas; and the fourth is a similar process for olefin recovery from dehydrogenation-reactor offgas.« less
EMERGING TECHNOLOGY SUMMARY: REMOVAL AND RECOVERY OF METAL IONS FROM GROUNDWATER
A series of bench-scale tests and an onsite pilot scale demonstration of Bio-Recovery Systems' AlgaSORB® technology for the removal and recovery of mercury-contaminated groundwaters were conducted under the SITE program. The AlgaSORB® process is based on the natural, very st...
Linam Ranch cryogenic gas plant: A design and operating retrospective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harwell, L.J.; Kuscinski, J.
1999-07-01
GPM Gas Corporation's Linam Ranch Gas Plant is the processing hub of their southeastern New Mexico gathering system, producing a y-grade NGL product which is pipelined primarily to the Phillips petrochemical complex at Sweeney, Texas, GPM acquired the facility near Hobbs, N.M. late in 1994 when it was still operating as a refrigerated lean oil plant, renamed it, and commenced an upgrade project culminating in its conversion to a high recovery cryogenic facility in early 1996 with a processing capacity of 150 MMscfd. Facilities that were upgraded included inlet liquids receiving and handling, the amine system, mol sieve dehydration, themore » sulfur recovery unit, inlet compression, and the propane refrigeration system. A Foxboro I/A DCS was also placed into operation. The lean oil system was replaced with a high recovery turboexpander unit supplied by KTI Fish based on their Flash Vapor Reflux (FVR) process. Resulting ethane recovery was greater than 95% for the new facilities. New residue compression units were installed including steam generators on the turbine exhausts, which complemented the existing plant steam system. During the three years since conversion to cryogenic operation, GPM has steadily improved plant operations. Expansion of the mol sieve dehydration system and retrofit of evaporation combustion air cooling on gas turbines have expanded nameplate capacity to 170 MMscfd while maintaining ethane recovery at 95%. Future expansion to 200 MMscfd with high recovery is achievable. In addition, creative use of the Foxboro DCS has been employed to implement advanced control schemes for handling inlet liquid slugs, gas and amine balancing for parallel amine contactors, improved sulfur recovery unit (SRU) trim air control, and constraint-based process optimization to maximize horsepower utilization and ethane recovery. Some challenges remain, leaving room for additional improvements. However, GPM's progress so far has resulted in a current ethane recovery level in excess of 97% when processing gas at the original design throughput of 150 MMscfd.« less
Towards Compensation Correctness in Interactive Systems
NASA Astrophysics Data System (ADS)
Vaz, Cátia; Ferreira, Carla
One fundamental idea of service-oriented computing is that applications should be developed by composing already available services. Due to the long running nature of service interactions, a main challenge in service composition is ensuring correctness of failure recovery. In this paper, we use a process calculus suitable for modelling long running transactions with a recovery mechanism based on compensations. Within this setting, we discuss and formally state correctness criteria for compensable processes compositions, assuming that each process is correct with respect to failure recovery. Under our theory, we formally interpret self-healing compositions, that can detect and recover from failures, as correct compositions of compensable processes.
Polarization-insensitive techniques for optical signal processing
NASA Astrophysics Data System (ADS)
Salem, Reza
2006-12-01
This thesis investigates polarization-insensitive methods for optical signal processing. Two signal processing techniques are studied: clock recovery based on two-photon absorption in silicon and demultiplexing based on cross-phase modulation in highly nonlinear fiber. The clock recovery system is tested at an 80 Gb/s data rate for both back-to-back and transmission experiments. The demultiplexer is tested at a 160 Gb/s data rate in a back-to-back experiment. We experimentally demonstrate methods for eliminating polarization dependence in both systems. Our experimental results are confirmed by theoretical and numerical analysis.
Heat and Mass Transfer Processes in Scrubber of Flue Gas Heat Recovery Device
NASA Astrophysics Data System (ADS)
Veidenbergs, Ivars; Blumberga, Dagnija; Vigants, Edgars; Kozuhars, Grigorijs
2010-01-01
The paper deals with the heat and mass transfer process research in a flue gas heat recovery device, where complicated cooling, evaporation and condensation processes are taking place simultaneously. The analogy between heat and mass transfer is used during the process of analysis. In order to prepare a detailed process analysis based on heat and mass process descriptive equations, as well as the correlation for wet gas parameter calculation, software in the
The lived experience of art making as a companion to the mental health recovery process.
Van Lith, Theresa; Fenner, Patricia; Schofield, Margot
2011-01-01
Art making is a common activity provided for consumers in mental health psychosocial rehabilitation services, yet there is little evidence available which examines its role in the recovery process. The current study inquires into mental health consumers' lived experiences of art making within psychosocial rehabilitation services and their views on how art making supports mental health recovery. This research used qualitative in-depth interviews to explore the role of art making in the mental health recovery journey. The sample comprised 18 consumer participants who attended art-based programs in two psychosocial services in Victoria, Australia. The 60-90 min interviews were analysed using interpretative phenomenological analysis. A total of 11 major themes were identified and organised into three areas: qualities conducive to the art making context, how the art making process benefits mental health recovery, and how the image or art product benefits mental health recovery. The 11 themes are described and illustrated from participant interviews. Consumers described art making as a transformative activity which enabled them to take greater control of their lives, resulting in feeling stronger, more confident, and more capable of driving their journey of recovery. The art product also served valuable roles in supporting their recovery. Art making is a highly valued activity by consumers, who suggest that innovative and strengths-based methods, such as art making, can facilitate recovery and self-expression. A key challenge for the field is to determine how such methods can be better integrated into mental health service delivery.
Recovery and Enumeration of Cryptosporidium parvum from Animal Fecal Matrices
Davies, Cheryl M.; Kaucner, Christine; Deere, Daniel; Ashbolt, Nicholas J.
2003-01-01
Accurate quantification of Cryptosporidium parvum oocysts in animal fecal deposits on land is an essential starting point for estimating watershed C. parvum loads. Due to the general poor performance and variable recovery efficiency of existing enumeration methods, protocols were devised based on initial dispersion of oocysts from feces by vortexing in 2 mM tetrasodium pyrophosphate, followed by immunomagnetic separation. The protocols were validated by using an internal control seed preparation to determine the levels of oocyst recovery for a range of fecal types. The levels of recovery of 102 oocysts from cattle feces (0.5 g of processed feces) ranged from 31 to 46%, and the levels of recovery from sheep feces (0.25 g of processed feces) ranged from 21% to 35%. The within-sample coefficients of variation for the percentages of recovery from five replicates ranged from 10 to 50%. The ranges for levels of recovery of oocysts from cattle, kangaroo, pig, and sheep feces (juveniles and adults) collected in a subsequent watershed animal fecal survey were far wider than the ranges predicted by the validation data. Based on the use of an internal control added to each fecal sample, the levels of recovery ranged from 0 to 83% for cattle, from 4 to 62% for sheep, from 1 to 42% for pigs, and from 40 to 73% for kangaroos. Given the variation in the levels of recovery of oocysts from different fecal matrices, it is recommended that an internal control be added to at least one replicate of every fecal sample analyzed to determine the percentage of recovery. Depending on the animal type and based on the lowest approximate percentages of recovery, between 10 and 100 oocysts g of feces−1 must be present to be detected. PMID:12732556
Integrated butanol recovery for an advanced biofuel: current state and prospects.
Xue, Chuang; Zhao, Jing-Bo; Chen, Li-Jie; Bai, Feng-Wu; Yang, Shang-Tian; Sun, Jian-Xin
2014-04-01
Butanol has recently gained increasing interest due to escalating prices in petroleum fuels and concerns on the energy crisis. However, the butanol production cost with conventional acetone-butanol-ethanol fermentation by Clostridium spp. was higher than that of petrochemical processes due to the low butanol titer, yield, and productivity in bioprocesses. In particular, a low butanol titer usually leads to an extremely high recovery cost. Conventional biobutanol recovery by distillation is an energy-intensive process, which has largely restricted the economic production of biobutanol. This article thus reviews the latest studies on butanol recovery techniques including gas stripping, liquid-liquid extraction, adsorption, and membrane-based techniques, which can be used for in situ recovery of inhibitory products to enhance butanol production. The productivity of the fermentation system is improved efficiently using the in situ recovery technology; however, the recovered butanol titer remains low due to the limitations from each one of these recovery technologies, especially when the feed butanol concentration is lower than 1 % (w/v). Therefore, several innovative multi-stage hybrid processes have been proposed and are discussed in this review. These hybrid processes including two-stage gas stripping and multi-stage pervaporation have high butanol selectivity, considerably higher energy and production efficiency, and should outperform the conventional processes using single separation step or method. The development of these new integrated processes will give a momentum for the sustainable production of industrial biobutanol.
Accelerated dynamic EPR imaging using fast acquisition and compressive recovery
NASA Astrophysics Data System (ADS)
Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L.
2016-12-01
Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques.
Hasson-Ohayon, Ilanit; Roe, David; Yanos, Philip T; Lysaker, Paul H
2016-12-01
Recent developments in mental health have emphasized recovery as an outcome for people with serious mental illness (SMI). Accordingly, several studies have attempted to evaluate the process and outcome of recovery-oriented psychosocial interventions. To review and discuss quantitative and qualitative findings from previous efforts to study the impact of five recovery-oriented interventions: Illness Management and Recovery (IMR), Narrative Enhancement and Cognitive Therapy (NECT), Supported Employment (SE), Supported Socialization (SS), and Family Psychoeducation. Reviewing the literature on studies that examine the effectiveness of these interventions by using both quantitative and qualitative approach. Qualitative findings in these studies augment quantitative findings and at times draw attention to unexpected findings and uniquely illuminate the effects of these interventions on self-reflective processes. There is a need for further exploration of how mixed-methods can be implemented to explore recovery-oriented outcomes. Critical questions regarding the implications of qualitative findings are posed.
Oliveira-Maia, Albino J; Mendonça, Carina; Pessoa, Maria J; Camacho, Marta; Gago, Joaquim
2016-01-01
Within clinical psychiatry, recovery from severe mental illness (SMI) has classically been defined according to symptoms and function (service-based recovery). However, service-users have argued that recovery should be defined as the process of overcoming mental illness, regaining self-control and establishing a meaningful life (customer-based recovery). Here, we aimed to compare customer-based and service-based recovery and clarify their differential relationship with other constructs, namely needs and quality of life. The study was conducted in 101 patients suffering from SMI, recruited from a rural community mental health setting in Portugal. Customer-based recovery and function-related service-based recovery were assessed, respectively, using a shortened version of the Mental Health Recovery Measure (MHRM-20) and the Global Assessment of Functioning score. The Camberwell Assessment of Need scale was used to objectively assess needs, while subjective quality of life was measured with the TL-30s scale. Using multiple linear regression models, we found that the Global Assessment of Functioning score was incrementally predictive of the MHRM-20 score, when added to a model including only clinical and demographic factors, and that this model was further incremented by the score for quality of life. However, in an alternate model using the Global Assessment of Functioning score as the dependent variable, while the MHRM-20 score contributed significantly to the model when added to clinical and demographic factors, the model was not incremented by the score for quality of life. These results suggest that, while a more global concept of recovery from SMI may be assessed using measures for service-based and customer-based recovery, the latter, namely the MHRM-20, also provides information about subjective well-being. Pending confirmation of these findings in other populations, this instrument could thus be useful for comprehensive assessment of recovery and subjective well-being in patients suffering from SMI.
Oliveira-Maia, Albino J.; Mendonça, Carina; Pessoa, Maria J.; Camacho, Marta; Gago, Joaquim
2016-01-01
Within clinical psychiatry, recovery from severe mental illness (SMI) has classically been defined according to symptoms and function (service-based recovery). However, service-users have argued that recovery should be defined as the process of overcoming mental illness, regaining self-control and establishing a meaningful life (customer-based recovery). Here, we aimed to compare customer-based and service-based recovery and clarify their differential relationship with other constructs, namely needs and quality of life. The study was conducted in 101 patients suffering from SMI, recruited from a rural community mental health setting in Portugal. Customer-based recovery and function-related service-based recovery were assessed, respectively, using a shortened version of the Mental Health Recovery Measure (MHRM-20) and the Global Assessment of Functioning score. The Camberwell Assessment of Need scale was used to objectively assess needs, while subjective quality of life was measured with the TL-30s scale. Using multiple linear regression models, we found that the Global Assessment of Functioning score was incrementally predictive of the MHRM-20 score, when added to a model including only clinical and demographic factors, and that this model was further incremented by the score for quality of life. However, in an alternate model using the Global Assessment of Functioning score as the dependent variable, while the MHRM-20 score contributed significantly to the model when added to clinical and demographic factors, the model was not incremented by the score for quality of life. These results suggest that, while a more global concept of recovery from SMI may be assessed using measures for service-based and customer-based recovery, the latter, namely the MHRM-20, also provides information about subjective well-being. Pending confirmation of these findings in other populations, this instrument could thus be useful for comprehensive assessment of recovery and subjective well-being in patients suffering from SMI. PMID:27857698
NASA Technical Reports Server (NTRS)
Long, Junsheng
1994-01-01
This thesis studies a forward recovery strategy using checkpointing and optimistic execution in parallel and distributed systems. The approach uses replicated tasks executing on different processors for forwared recovery and checkpoint comparison for error detection. To reduce overall redundancy, this approach employs a lower static redundancy in the common error-free situation to detect error than the standard N Module Redundancy scheme (NMR) does to mask off errors. For the rare occurrence of an error, this approach uses some extra redundancy for recovery. To reduce the run-time recovery overhead, look-ahead processes are used to advance computation speculatively and a rollback process is used to produce a diagnosis for correct look-ahead processes without rollback of the whole system. Both analytical and experimental evaluation have shown that this strategy can provide a nearly error-free execution time even under faults with a lower average redundancy than NMR.
Wisdom, Jennifer P; Saedi, Goal Auzeen; Green, Carla A
2009-07-01
This study elucidates the role of pets in recovery processes among adults with serious mental illness. Data derive from interviews with 177 HMO members with serious mental illness (52.2% women, average age 48.8 years) in the Study of Transitions and Recovery Strategies (STARS). Interviews and questionnaires addressed factors affecting recovery processes and included questions about pet ownership. Data were analyzed using a modified grounded theory method to identify the roles pets play in the recovery process. Primary themes indicate pets assist individuals in recovery from serious mental illness by (a) providing empathy and "therapy"; (b) providing connections that can assist in redeveloping social avenues; (c) serving as "family" in the absence of or in addition to human family members; and (d) supporting self-efficacy and strengthening a sense of empowerment. Pets appear to provide more benefits than merely companionship. Participants' reports of pet-related contributions to their well-being provide impetus to conduct more formal research on the mechanisms by which pets contribute to recovery and to develop pet-based interventions.
Physical therapy for facial paralysis: a tailored treatment approach.
Brach, J S; VanSwearingen, J M
1999-04-01
Bell palsy is an acute facial paralysis of unknown etiology. Although recovery from Bell palsy is expected without intervention, clinical experience suggests that recovery is often incomplete. This case report describes a classification system used to guide treatment and to monitor recovery of an individual with facial paralysis. The patient was a 71-year-old woman with complete left facial paralysis secondary to Bell palsy. Signs and symptoms were assessed using a standardized measure of facial impairment (Facial Grading System [FGS]) and questions regarding functional limitations. A treatment-based category was assigned based on signs and symptoms. Rehabilitation involved muscle re-education exercises tailored to the treatment-based category. In 14 physical therapy sessions over 13 months, the patient had improved facial impairments (initial FGS score= 17/100, final FGS score= 68/100) and no reported functional limitations. Recovery from Bell palsy can be a complicated and lengthy process. The use of a classification system may help simplify the rehabilitation process.
The power of theater to promote individual recovery and social change.
Faigin, David A; Stein, Catherine H
2010-03-01
Although theatrical activities are used in a variety of therapeutic settings, little attention has been paid to the ways that theater can enhance the recovery process and community integration for people living with psychiatric disabilities. Community-based theater involving people with psychiatric disabilities offers unique opportunities for personal growth, social connection, and advocacy efforts. This Open Forum posits that theater has the power to both facilitate individual recovery and improve the social conditions of people living with mental illness. Critical elements of theatrical activities that relate to processes of recovery and community integration are examined. Implications for future research and program development are discussed.
Energy or compost from green waste? - A CO{sub 2} - Based assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kranert, Martin, E-mail: martin.kranert@iswa.uni-stuttgart.d; Gottschall, Ralf; Bruns, Christian
2010-04-15
Green waste is increasingly extracted from the material recycling chain and, as a result of the financial subsidy arising from the German renewable energy law for the generation of energy from renewable raw materials; it is fed into the energy recovery process in biomass power stations. A reduction in climate relevant gases is also linked to the material recovery of green waste - in particular when using composts gained from the process as a new raw material in different types of potting compost and plant culture media as a replacement for peat. Unlike energy recovery, material valorisation is not currentlymore » subsidised. Through the analysis of material and energy valorisation methods for green waste, with particular emphasis on primary resource consumption and CO{sub 2}-balance, it could be determined that the use of green waste for energy generation and its recovery for material and peat replacement purposes can be considered to be on a par. Based on energy recovery or material oriented scenarios, it can be further deduced that no method on its own will achieve the desired outcome and that a combination of recycling processes is more likely to lead to a significant decrease of greenhouse gas emissions.« less
Fang, Yin; Leo, Sin-Yen; Ni, Yongliang; Wang, Junyu; Wang, Bingchen; Yu, Long; Dong, Zhe; Dai, Yuqiong; Basile, Vito; Taylor, Curtis; Jiang, Peng
2017-02-15
Traditional shape memory polymers (SMPs) are mostly thermoresponsive, and their applications in nano-optics are hindered by heat-demanding programming and recovery processes. By integrating a polyurethane-based shape memory copolymer with templating nanofabrication, reconfigurable/rewritable macroporous photonic crystals have been demonstrated. This SMP coupled with the unique macroporous structure enables unusual all-room-temperature shape memory cycles. "Cold" programming involving microscopic order-disorder transitions of the templated macropores is achieved by mechanically deforming the macroporous SMP membranes. The rapid recovery of the permanent, highly ordered photonic crystal structure from the temporary, disordered configuration can be triggered by multiple stimuli including a large variety of vapors and solvents, heat, and microwave radiation. Importantly, the striking chromogenic effects associated with these athermal and thermal processes render a sensitive and noninvasive optical methodology for quantitatively characterizing the intriguing nanoscopic shape memory effects. Some critical parameters/mechanisms that could significantly affect the final performance of SMP-based reconfigurable photonic crystals including strain recovery ratio, dynamics and reversibility of shape recovery, as well as capillary condensation of vapors in macropores, which play a crucial role in vapor-triggered recovery, can be evaluated using this new optical technology.
Polymeric nanospheres as a displacement fluid in enhanced oil recovery
NASA Astrophysics Data System (ADS)
Hendraningrat, Luky; Zhang, Julien
2015-12-01
This paper presents the investigation of using nanoscale polyacrylamide-based spheres (nanospheres) as a displacement fluid in enhanced oil recovery (EOR). Coreflood experiments were conducted to evaluate the impact of nanospheres and its concentration dispersed in model formation water on oil recovery during a tertiary oil recovery process. The coreflood results showed that nanospheres can enhance residual oil recovery in the sandstone rock samples and its concentration showed a significant impact into incremental oil. By evaluating the contact angle, it was observed that wettability alteration also might be involved in the possible oil displacement mechanism in this process together with fluid behavior and permeability to water that might divert injected fluid into unswept oil areas and enhance the residual oil recovery. These investigations promote nanospheres aqueous disperse solution as a potential displacement fluid in EOR.
Study on shape recovery speed of SMP, SMP composite, and SMP foam
NASA Astrophysics Data System (ADS)
Wu, Xuelian; Liu, Yanju; Leng, Jinsong
2008-03-01
Shape memory polymer (SMP) receives increasing attention along with its derivants - SMP composite and SMP foam in recent years. In this paper, after fabricating thermoset styrene-based SMP, SMP/carbon black (CB) composite and SMP foam, we studied their shape recovery speed in bending. Different from those reported in the literature, we propose a new approach, i.e., using infrared light, for actuating SMP materials for shape recovery. The results show that SMP, SMP/CB composite and SMP foam can recover to their original shape perfectly in a wide temperature range. Shape recovery speed of SMP composite is not uniform during the overall recovery process, and it is the same trend with SMP but not prominent with SMP foam. Repeatability of shape recovery speed for styrene-based SMP and SMP/CB composite are similarly stable and the former is the better, but it is so worse for SMP foam. Temperature-dependent of shape recovery speed test for styrene-based SMP and SMP/CB composite reveal that higher temperature increases their shape recovery speed.
An assessment of waste processing/resource recovery technologies for lunar/Mars life applications
NASA Technical Reports Server (NTRS)
Verostko, Charles E.; Packham, Nigel J. C.; Henninger, Donald H.
1992-01-01
NASA's future manned missions to explore the solar system are by nature of long duration, mandating extensive regeneration of life support consumables from wastes generated in space-based habitats. Long-duration exploration missions would otherwise be prohibitive due to the number and frequency of energy-intensive resupply missions from Earth. Resource recovery is therefore a critical component of the controlled ecological life support system (CELSS). In order to assess resource recovery technologies for CELSS applications, the Crew and Thermal Systems Division at NASA-Johnson Space Center convened a three-day workshop to assess potential resource recovery technologies for application in a space-based CELSS. This paper describes the methodology of assessing and ranking of these technologies. Recommendations and issues are identified. Evaluations focused on the processes for handling and treatment of inedible plant biomass, human waste, and human generated trash. Technologies were assessed on the basis of safety, reliability, technology readiness, and performance characteristics.
Measurement-based reliability/performability models
NASA Technical Reports Server (NTRS)
Hsueh, Mei-Chen
1987-01-01
Measurement-based models based on real error-data collected on a multiprocessor system are described. Model development from the raw error-data to the estimation of cumulative reward is also described. A workload/reliability model is developed based on low-level error and resource usage data collected on an IBM 3081 system during its normal operation in order to evaluate the resource usage/error/recovery process in a large mainframe system. Thus, both normal and erroneous behavior of the system are modeled. The results provide an understanding of the different types of errors and recovery processes. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model the system behavior. A sensitivity analysis is performed to investigate the significance of using a semi-Markov process, as opposed to a Markov process, to model the measured system.
NASA Astrophysics Data System (ADS)
Fryirs, K.
2016-12-01
In an `era of river repair' fluvial geomorphology has emerged as a key science in river management practice. Geomorphologists are ideally placed to use their science in an applied manner to provide guidance on the impact of floods and droughts, landuse and climate change, and water use on river forms, processes and evolution. Increasingly, fluvial geomorphologists are also asked to make forecasts about how systems might adjust in the future, and to work with managers to implement strategies on-the-ground. Using case study material from Eastern Australia (Bega, Hunter, Wollombi and Lockyer catchments) I will focus on how process-based understanding of rivers has developed and evolved to provide a coherent physical template for effective and proactive, river management practice. I will focus on four key principles and demonstrate how geomorphology has been, and should continue to be, used in process-based, recovery enhancement approaches to river management. How understanding the difference between river behaviour and river change is used to determine how a river is `expected' to function, and how to identify anomalous processes requiring a treatment response. How understanding evolutionary trajectory is used to make future forecasts on river condition and recovery potential, and how working with processes can enhance river recovery. How geomorphic information can be used as a physical template atop which to analyse a range of biotic processes and habitat outcomes. How geomorphic information is used to effectively prioritise and plan river conservation and rehabilitation activities as part of catchment and region-scale action plans.
"I struggle to count my blessings": recovery after hip fracture from the patients' perspective.
Bruun-Olsen, Vigdis; Bergland, Astrid; Heiberg, Kristi Elisabeth
2018-01-19
Recovery outlooks of physical functioning and quality of life after hip fracture have not changed significantly over the past 25 years. Previous research has mainly dealt with causalities and acute treatment, while the recovery process from the patients' perspective has been less comprehensively described. Expanded knowledge of what the patients consider important in their recovery process may have important consequences for how these patients are treated in the future and thereby on future patient outcomes. The aim presently is therefore to explore how elderly patients with hip fracture enrolled in an ongoing RCT have experienced their recovery process. The study was qualitative in design. Eight frail elderly in recovery after hip fracture (aged 69-91) were interviewed in their home four months after their fracture. The interviews covered issues related to their experiences of facilitators and barriers throughout the different stages in the recovery process. The patients were already enrolled in an ongoing randomized controlled trial, examining the effects of habitual functional training during their short term stays at nursing homes. The patients were chosen strategically according to age, gender, and participation in rehabilitation. The interviews were recorded, transcribed and subjected to a method of systematic text condensation inspired by Giorgi's phenomenological method. The results revealed that the patients' experiences of the recovery process fell into three main themes: "Feeling vulnerable", "A span between self-reliance and dependency" and "Disruption from a normal life". The feeling of gloominess and vulnerability persisted throughout. Being in recovery was also experienced as a tension between self-reliance and dependency; a disrupted life where loss of mobility and the impact of age was profoundly present. Being in recovery after hip fracture was experienced as a life breaking event. Based on these findings, increased focus on individualized treatment to each patient through each stage of the recovery process should be emphasized.
Biotechnology for the extractive metals industries
NASA Astrophysics Data System (ADS)
Brierley, James A.
1990-01-01
Biotechnology is an alternative process for the extraction of metals, the beneficiation of ores, and the recovery of metals from aqueous systems. Currently, microbial-based processes are used for leaching copper and uranium, enhancing the recovery of gold from refractory ores, and treating industrial wastewater to recover metal values. Future developments, emanating from fundamental and applied research and advances through genetic engineering, are expected to increase the use and efficiency of these biotechnological processes.
Pietila, Julia; Helander, Elina; Myllymaki, Tero; Korhonen, Ilkka; Jimison, Holly; Pavel, Misha
2015-01-01
Sleep is the most important period for recovering from daily stress and load. Assessment of the stress recovery during sleep is therefore, an important metric for care and quality of life. Heart rate variability (HRV) is a non-invasive marker of autonomic nervous system (ANS) activity, and HRV-based methods can be used to assess physiological recovery, characterized by parasympathetic domination of the ANS. HRV is affected by multiple factors of which some are unmodifiable (such as age and gender) but many are related to daily lifestyle choices (e.g. alcohol consumption, physical activity, sleeping times). The purpose of this study was to investigate the association of these aforementioned factors on HRV-based recovery during sleep on a large sample. Variable importance measures yielded by random forest were used for identifying the most relevant predictors of sleep-time recovery. The results emphasize the disturbing effects of alcohol consumption on sleep-time recovery. Good physical fitness is associated to good recovery, but acute physical activity seems to challenge or delay the recovery process for the next night. Longer sleeping time enables more recovery minutes, but the proportion of recovery (i.e. recovery efficiency) seems to peak around 7.0-7.25 hours of sleep.
Recovering selenium from copper refinery slimes
NASA Astrophysics Data System (ADS)
Hyvärinen, Olli; Lindroos, Leo; Yllö, Erkki
1989-07-01
The selenium contained within copper refinery slimes may be recovered advantageously by roasting at about 600°C. While roasting in air is inefficient, roasting in a sulfating atmosphere enables practically complete selenium recovery. Based on laboratory tests, a new selenium recovery process was adopted at Outokumpu Copper Refinery. In this process, sulfation is achieved by feeding sulfur dioxide and oxygen into the roasting furnace.
Accelerated dynamic EPR imaging using fast acquisition and compressive recovery.
Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L
2016-12-01
Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques. Copyright © 2016 Elsevier Inc. All rights reserved.
Chan, Randolph C H; Mak, Winnie W S; Chio, Floria H N; Tong, Alan C Y
2017-09-08
Well-being is not just the absence of mental disorder but also involves positive feelings and contentment (emotional well-being), meaningful engagement (psychological well-being), and contribution of one's community or society (social well-being). Recovery processes, which encompass mitigation of clinical symptomatology (clinical recovery), improvement in occupational, social, and adaptive functioning (functional recovery), and development of personally valued goals and identity (personal recovery), have demonstrated to be important markers of well-being. This study examined the relative contribution of clinical, functional, and personal recovery processes on well-being among individuals with schizophrenia and explored the effect of personal recovery on people with varying levels of symptom severity and functional ability. A longitudinal quantitative research design was used in which 181 people with schizophrenia spectrum disorders were assessed at baseline and 6 months. At baseline, 28.2% of the participants were considered as flourishing. Around half of the participants (52.5%) were moderately mentally healthy, while 19.3% were identified as languishing. Results showed that clinical recovery was predictive of better well-being at 6-month postbaseline. Personal recovery was found to positively predict well-being, above and beyond the effects of clinical and functional recovery. Moderation analysis showed that the effect of personal recovery on well-being did not depend on clinical and functional recovery, which implied that people with schizophrenia can participate in the process of personal recovery and enjoy positive well-being regardless of their clinical stability and functional competence. Given the robust salutogenic effect of personal recovery, greater emphasis should be placed on developing person-centered, strength-based, recovery-oriented services. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Solid waste management of a chemical-looping combustion plant using Cu-based oxygen carriers.
García-Labiano, Francisco; Gayán, Pilar; Adánez, Juan; De Diego, Luis F; Forero, Carmen R
2007-08-15
Waste management generated from a Chemical-Looping Combustion (CLC) plant using copper-based materials is analyzed by two ways: the recovery and recycling of the used material and the disposal of the waste. A copper recovery process coupled to the CLC plant is proposed to avoid the loss of active material generated by elutriation from the system. Solid residues obtained from a 10 kWth CLC prototype operated during 100 h with a CuO-Al2O3 oxygen carrier prepared by impregnation were used as raw material in the recovery process. Recovering efficiencies of approximately 80% were obtained in the process, where the final products were an eluate of Cu(NO3)2 and a solid. The eluate was used for preparation of new oxygen carriers by impregnation, which exhibited high reactivity for reduction and oxidation reactions as well as adequate physical and chemical properties to be used in a CLC plant. The proposed recovery process largely decreases the amount of natural resources (Cu and Al203) employed in a CLC power plant as well as the waste generated in the process. To determine the stability of the different solid streams during deposition in a landfill, these were characterized with respect to their leaching behavior according to the European Union normative. The solid residue finally obtained in the CLC plant coupled to the recovery process (composed by Al2O3 and CuAl2O4) can be classified as a stable nonreactive hazardous waste acceptable at landfills for nonhazardous wastes.
Wisdom, Jennifer P.; Saedi, Goal Auzeen; Green, Carla A.
2010-01-01
This study elucidates the role of pets in recovery processes among adults with serious mental illness. Data derive from interviews with 177 HMO members with serious mental illness (52.2% women, average age 48.8). Interviews and questionnaires addressed factors affecting recovery processes and included questions about pet ownership. Data were analyzed using a modified grounded theory method to identify the roles pets play in the recovery process. Primary themes indicate pets assist individuals in recovery from serious mental illness by (a) providing empathy and “therapy”; (b) providing connections that can assist in redeveloping social avenues; (c) serving as “family” in the absence of or in addition to human family members; and (d) supporting self-efficacy and strengthening a sense of empowerment. Pets appear to provide more benefits than merely companionship. Participants’ reports of pet-related contributions to their well-being provide impetus to conduct more formal research on the mechanisms by which pets contribute to recovery and to develop pet-based interventions. PMID:19839680
Chekli, Laura; Kim, Youngjin; Phuntsho, Sherub; Li, Sheng; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Ho Kyong
2017-02-01
The present study focused on the performance of the FDFO process to achieve simultaneous water reuse from wastewater and production of nutrient solution for hydroponic application. Bio-methane potential (BMP) measurements were firstly carried out to determine the effect of osmotic concentration of wastewater achieved in the FDFO process on the anaerobic activity. Results showed that 95% water recovery from the FDFO process is the optimum value for further AnMBR treatment. Nine different fertilizers were then tested based on their FO performance (i.e. water flux, water recovery and reverse salt flux) and final nutrient concentration. From this initial screening, ammonium phosphate monobasic (MAP), ammonium sulfate (SOA) and mono-potassium phosphate were selected for long term experiments to investigate the maximum water recovery achievable. After the experiments, hydraulic membrane cleaning was performed to assess the water flux recovery. SOA showed the highest water recovery rate, up to 76% while KH 2 PO 4 showed the highest water flux recovery, up to 75% and finally MAP showed the lowest final nutrient concentration. However, substantial dilution was still necessary to comply with the standards for fertigation even if the recovery rate was increased. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alam, Roshni; Figueiredo, Sabrina M; Balvardi, Saba; Nauche, Bénédicte; Landry, Tara; Lee, Lawrence; Mayo, Nancy E; Feldman, Liane S; Fiore, Julio F
2018-05-17
We initiated a research program to develop a novel patient-reported outcome measure (PROM) to assess postoperative recovery from the perspective of abdominal surgery patients. In light of FDA recommendations, the first stage of our program aimed to, based on previous literature and expert input, develop a hypothesized conceptual framework portraying the health domains that are potentially relevant to the process of recovery after abdominal surgery. This study was conducted in three phases: (1) systematic review to identify PROMs with measurement properties appraised in the context of recovery after abdominal surgery, (2) content analysis to categorize the health domains covered by the PROMs according to the ICF, and (3) two-round Delphi study to gain expert input regarding which of these health domains are relevant to the process of recovery. Participants were experts in perioperative care identified through two major surgical societies (35 invited). The systematic review identified 19 PROMs covering 66 ICF domains. 23 experts (66%) participated in the Delphi process. After Round 2, experts agreed that 22 health domains (8 body functions, 14 activities and participation) are potentially relevant to the process of recovery after abdominal surgery. These domains were organized into a diagram, representing our hypothesized conceptual framework. This hypothesized conceptual framework is an important first step in our research program and will be further refined based on in-depth qualitative interviews with patients. The sound methodological approach used to derive this framework may be valuable for studies aimed to develop PROMs according to FDA standards.
Downstream extraction process development for recovery of organic acids from a fermentation broth.
Bekatorou, Argyro; Dima, Agapi; Tsafrakidou, Panagiotia; Boura, Konstantina; Lappa, Katerina; Kandylis, Panagiotis; Pissaridi, Katerina; Kanellaki, Maria; Koutinas, Athanasios A
2016-11-01
The present study focused on organic acids (OAs) recovery from an acidogenic fermentation broth, which is the main problem regarding the use of OAs for production of ester-based new generation biofuels or other applications. Specifically, 10 solvents were evaluated for OAs recovery from aqueous media and fermentation broths. The effects of pH, solvent/OAs solution ratios and application of successive extractions were studied. The 1:1 solvent/OAs ratio showed the best recovery rates in most cases. Butyric and isobutyric acids showed the highest recovery rates (80-90%), while lactic, succinic, and acetic acids were poorly recovered (up to 45%). The OAs recovery was significantly improved by successive 10-min extractions. Alcohols presented the best extraction performance. The process using repeated extractions with 3-methyl-1-butanol led to the highest OAs recovery. However, 1-butanol can be considered as the most cost-effective option taking into account its price and availability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Magalhães Dahl, Catarina; de Araújo Carvalho, Maria C; Moscoso Teixeira de Mendonça, Joana; Mitkiewicz de Souza, Flávia; Wainstok Estivil Bustos, Mayra; Fernandes de Cintra Santos, Jacqueline; Marcos Lovisi, Giovani; Tavares Cavalcanti, Maria
2013-01-01
Peer support work has been increasingly incorporated by community services network in the context of mental health care paradigm shift; however, it is a relatively new device in Latin America. In this article, we will describe the qualification process of peer support workers for implementing a psychosocial intervention in the city of Rio de Janeiro. We use the following methodological strategies based on a narrative, participative and dialogical perspective: focus groups, knowledge transmission through a short course; visits to mental health services and field reports. We used a narrative analysis, building the following thematic categories: experience of the recovery process; what helps and what hinders in the recovery process; the role of the family; the role of community mental health services; prejudice among society and family members; the role of peer support work; challenges. From the users' perspective, recovery is tied to ups and downs and family can either help or disturb this process. Prejudice constitutes the main barrier for recovery. To have a social role and participating in training activities facilitate recovery. Users pointed out that it is necessary to have professional support for peer support work.
Optimization of Surfactant Mixtures and Their Interfacial Behavior for Advanced Oil Recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somasundaran, Prof. P.
2002-03-04
The objective of this project was to develop a knowledge base that is helpful for the design of improved processes for mobilizing and producing oil left untapped using conventional techniques. The main goal was to develop and evaluate mixtures of new or modified surfactants for improved oil recovery. In this regard, interfacial properties of novel biodegradable n-alkyl pyrrolidones and sugar-based surfactants have been studied systematically. Emphasis was on designing cost-effective processes compatible with existing conditions and operations in addition to ensuring minimal reagent loss.
Prediction of hemoglobin in blood donors using a latent class mixed-effects transition model.
Nasserinejad, Kazem; van Rosmalen, Joost; de Kort, Wim; Rizopoulos, Dimitris; Lesaffre, Emmanuel
2016-02-20
Blood donors experience a temporary reduction in their hemoglobin (Hb) value after donation. At each visit, the Hb value is measured, and a too low Hb value leads to a deferral for donation. Because of the recovery process after each donation as well as state dependence and unobserved heterogeneity, longitudinal data of Hb values of blood donors provide unique statistical challenges. To estimate the shape and duration of the recovery process and to predict future Hb values, we employed three models for the Hb value: (i) a mixed-effects models; (ii) a latent-class mixed-effects model; and (iii) a latent-class mixed-effects transition model. In each model, a flexible function was used to model the recovery process after donation. The latent classes identify groups of donors with fast or slow recovery times and donors whose recovery time increases with the number of donations. The transition effect accounts for possible state dependence in the observed data. All models were estimated in a Bayesian way, using data of new entrant donors from the Donor InSight study. Informative priors were used for parameters of the recovery process that were not identified using the observed data, based on results from the clinical literature. The results show that the latent-class mixed-effects transition model fits the data best, which illustrates the importance of modeling state dependence, unobserved heterogeneity, and the recovery process after donation. The estimated recovery time is much longer than the current minimum interval between donations, suggesting that an increase of this interval may be warranted. Copyright © 2015 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Luis A.; Clark, Gemma G.; Lister, Tedd E.
The rapid growth of the electronic waste can be viewed both as an environmental threat and as an attractive source of minerals that can reduce the mining of natural resources, and stabilize the market of critical materials, such as rare earths. Here in this article surface response methodology was used to optimize a previously developed electrochemical recovery process for base metals from electronic waste using a mild oxidant (Fe 3+). Through this process an effective extraction of base metals can be achieved enriching the concentration of precious metals and significantly reducing environmental impacts and operational costs associated with the wastemore » generation and chemical consumption. The optimization was performed using a bench-scale system specifically designed for this process. Operational parameters such as flow rate, applied current density and iron concentration were optimized to reduce the specific energy consumption of the electrochemical recovery process to 1.94 kWh per kg of metal recovered at a processing rate of 3.3 g of electronic waste per hour.« less
Diaz, Luis A.; Clark, Gemma G.; Lister, Tedd E.
2017-06-08
The rapid growth of the electronic waste can be viewed both as an environmental threat and as an attractive source of minerals that can reduce the mining of natural resources, and stabilize the market of critical materials, such as rare earths. Here in this article surface response methodology was used to optimize a previously developed electrochemical recovery process for base metals from electronic waste using a mild oxidant (Fe 3+). Through this process an effective extraction of base metals can be achieved enriching the concentration of precious metals and significantly reducing environmental impacts and operational costs associated with the wastemore » generation and chemical consumption. The optimization was performed using a bench-scale system specifically designed for this process. Operational parameters such as flow rate, applied current density and iron concentration were optimized to reduce the specific energy consumption of the electrochemical recovery process to 1.94 kWh per kg of metal recovered at a processing rate of 3.3 g of electronic waste per hour.« less
Silicon production process evaluations
NASA Technical Reports Server (NTRS)
1982-01-01
Chemical engineering analysis was continued for the HSC process (Hemlock Semiconductor Corporation) in which solar cell silicon is produced in a 1,000 MT/yr plant. Progress and status are reported for the primary engineering activities involved in the preliminary process engineering design of the plant base case conditions (96%), reaction chemistry (96%), process flow diagram (85%), material balance (85%), energy balance (60%), property data (60%), equipment design (40%), major equipment list (30%) and labor requirements (10%). Engineering design of the second distillation column (D-02, TCS column) in the process was completed. The design is based on a 97% recovery of the light key (TCS, trichlorosilane) in the distillate and a 97% recovery of the heavy key (TET, silicon tetrachloride) in the bottoms. At a reflux ratio of 2, the specified recovery of TCS and TET is achieved with 20 trays (equilibrium stages, N=20). Respective feed tray locations are 9, 12 and 15 (NF sub 1 = 9, NF sub 2 = 12,, and NF sub 3 = 15). A total condenser is used for the distillation which is conducted at a pressure of 90 psia.
Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching.
Li, Yunjiao; Perederiy, Ilya; Papangelakis, Vladimiros G
2008-04-01
Huge quantities of slag, a waste solid product of pyrometallurgical operations by the metals industry are dumped continuously around the world, posing a potential environmental threat due to entrained values of base metals and sulfur. High temperature pressure oxidative acid leaching of nickel smelter slags was investigated as a process to facilitate slag cleaning and selective dissolution of base metals for economic recovery. Five key parameters, namely temperature, acid addition, oxygen overpressure, solids loading and particle size, were examined on the process performance. Base metal recoveries, acid and oxygen consumptions were accurately measured, and ferrous/ferric iron concentrations were also determined. A highly selective leaching of valuable metals with extractions of >99% for nickel and cobalt, >97% for copper, >91% for zinc and <2.2% for iron was successfully achieved for 20 wt.% acid addition and 25% solids loading at 200-300 kPa O(2) overpressure at 250 degrees C in 2h. The acid consumption was measured to be 38.5 kg H(2)SO(4)/t slag and the oxygen consumption was determined as 84 kg O(2)/t slag which is consistent with the estimated theoretical oxygen consumption. The as-produced residue containing less than 0.01% of base metals, hematite and virtually zero sulfidic sulfur seems to be suitable for safe disposal. The process seems to be able to claim economic recovery of base metals from slags and is reliable and feasible.
Signal Coherence Recovery Using Acousto-Optic Fourier Transform Architectures
1990-06-14
processing of data in ground- and space-based applications. We have implemented a prototype one-dimensional time-integrating acousto - optic (AO) Fourier...theory of optimum coherence recovery (CR) applicable in computation-limited environments. We have demonstrated direct acousto - optic implementation of CR
Dynamics of functional failures and recovery in complex road networks
NASA Astrophysics Data System (ADS)
Zhan, Xianyuan; Ukkusuri, Satish V.; Rao, P. Suresh C.
2017-11-01
We propose a new framework for modeling the evolution of functional failures and recoveries in complex networks, with traffic congestion on road networks as the case study. Differently from conventional approaches, we transform the evolution of functional states into an equivalent dynamic structural process: dual-vertex splitting and coalescing embedded within the original network structure. The proposed model successfully explains traffic congestion and recovery patterns at the city scale based on high-resolution data from two megacities. Numerical analysis shows that certain network structural attributes can amplify or suppress cascading functional failures. Our approach represents a new general framework to model functional failures and recoveries in flow-based networks and allows understanding of the interplay between structure and function for flow-induced failure propagation and recovery.
Microfluidics: an enabling screening technology for enhanced oil recovery (EOR).
Lifton, Victor A
2016-05-21
Oil production is a critical industrial process that affects the entire world population and any improvements in its efficiency while reducing its environmental impact are of utmost societal importance. The paper reviews recent applications of microfluidics and microtechnology to study processes of oil extraction and recovery. It shows that microfluidic devices can be useful tools in investigation and visualization of such processes used in the oil & gas industry as fluid propagation, flooding, fracturing, emulsification and many others. Critical macro-scale processes that define oil extraction and recovery are controlled by the micro-scale processes based on wetting, adhesion, surface tension, colloids and other concepts of microfluidics. A growing number of research efforts demonstrates that microfluidics is becoming, albeit slowly, an accepted methodology in this area. We propose several areas of development where implementation of microfluidics may bring about deeper understanding and hence better control over the processes of oil recovery based on fluid propagation, droplet generation, wettability control. Studies of processes such as hydraulic fracturing, sand particle propagation in porous networks, high throughput screening of chemicals (for example, emulsifiers and surfactants) in microfluidic devices that simulate oil reservoirs are proposed to improve our understanding of these complicated physico-chemical systems. We also discuss why methods of additive manufacturing (3D printing) should be evaluated for quick prototyping and modification of the three-dimensional structures replicating natural oil-bearing rock formations for studies accessible to a wider audience of researchers.
An Integrated Recovery-oriented Model (IRM) for mental health services: evolution and challenges.
Frost, Barry G; Tirupati, Srinivasan; Johnston, Suzanne; Turrell, Megan; Lewin, Terry J; Sly, Ketrina A; Conrad, Agatha M
2017-01-17
Over past decades, improvements in longer-term clinical and personal outcomes for individuals experiencing serious mental illness (SMI) have been moderate, although recovery has clearly been shown to be possible. Recovery experiences are inherently personal, and recovery can be complex and non-linear; however, there are a broad range of potential recovery contexts and contributors, both non-professional and professional. Ongoing refinement of recovery-oriented models for mental health (MH) services needs to be fostered. This descriptive paper outlines a service-wide Integrated Recovery-oriented Model (IRM) for MH services, designed to enhance personally valued health, wellbeing and social inclusion outcomes by increasing access to evidenced-based psychosocial interventions (EBIs) within a service context that supports recovery as both a process and an outcome. Evolution of the IRM is characterised as a series of five broad challenges, which draw together: relevant recovery perspectives; overall service delivery frameworks; psychiatric and psychosocial rehabilitation approaches and literature; our own clinical and service delivery experience; and implementation, evaluation and review strategies. The model revolves around the person's changing recovery needs, focusing on underlying processes and the service frameworks to support and reinforce hope as a primary catalyst for symptomatic and functional recovery. Within the IRM, clinical rehabilitation (CR) practices, processes and partnerships facilitate access to psychosocial EBIs to promote hope, recovery, self-agency and social inclusion. Core IRM components are detailed (remediation of functioning; collaborative restoration of skills and competencies; and active community reconnection), together with associated phases, processes, evaluation strategies, and an illustrative IRM scenario. The achievement of these goals requires ongoing collaboration with community organisations. Improved outcomes are achievable for people with a SMI. It is anticipated that the IRM will afford MH services an opportunity to validate hope, as a critical element for people with SMI in assuming responsibility and developing skills in self-agency and advocacy. Strengthening recovery-oriented practices and policies within MH services needs to occur in tandem with wide-ranging service evaluation strategies.
Log-Based Recovery in Asynchronous Distributed Systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Kane, Kenneth Paul
1989-01-01
A log-based mechanism is described for restoring consistent states to replicated data objects after failures. Preserving a causal form of consistency based on the notion of virtual time is focused upon in this report. Causal consistency has been shown to apply to a variety of applications, including distributed simulation, task decomposition, and mail delivery systems. Several mechanisms have been proposed for implementing causally consistent recovery, most notably those of Strom and Yemini, and Johnson and Zwaenepoel. The mechanism proposed here differs from these in two major respects. First, a roll-forward style of recovery is implemented. A functioning process is never required to roll-back its state in order to achieve consistency with a recovering process. Second, the mechanism does not require any explicit information about the causal dependencies between updates. Instead, all necessary dependency information is inferred from the orders in which updates are logged by the object servers. This basic recovery technique appears to be applicable to forms of consistency other than causal consistency. In particular, it is shown how the recovery technique can be modified to support an atomic form of consistency (grouping consistency). By combining grouping consistency with casual consistency, it may even be possible to implement serializable consistency within this mechanism.
Makin, Sally; Gask, Linda
2012-03-01
OBJECTIVES. The aim of this project was to explore the added value of participation in an Arts on Prescription (AoP) programme to aid the process of recovery in people with common but chronic mental health problems that have already undergone a psychological 'talking'-based therapy. METHODS. The study utilized qualitative in-depth interviews with 15 clients with persistent anxiety and depression who had attended an 'AoP' service and had previously received psychological therapy. RESULTS and discussion. Attending AoP aided the process of recovery, which was perceived by participants as 'returning to normality' through enjoying life again, returning to previous activities, setting goals and stopping dwelling on the past. Most were positive about the benefits they had previously gained from talking therapies. However, these alone were not perceived as having been sufficient to achieve recovery. The AoP offered some specific opportunities in this regard, mediated by the therapeutic and effect of absorption in an activity, the specific creative potential of art, and the social aspects of attending the programme. CONCLUSIONS. For some people who experience persistent or relapsing common mental health problems, participation in an arts-based programme provides 'added value' in aiding recovery in ways not facilitated by talking therapies alone.
Processing and damage recovery of intrinsic self-healing glass fiber reinforced composites
NASA Astrophysics Data System (ADS)
Sordo, Federica; Michaud, Véronique
2016-08-01
Glass fiber reinforced composites with a self-healing, supramolecular hybrid network matrix were produced using a modified vacuum assisted resin infusion moulding process adapted to high temperature processing. The quality and fiber volume fraction (50%) of the obtained materials were assessed through microscopy and matrix burn-off methods. The thermo-mechanical properties were quantified by means of dynamic mechanical analysis, revealing very high damping properties compared to traditional epoxy-based glass fiber reinforced composites. Self-healing properties were assessed by three-point bending tests. A high recovery of the flexural properties, around 72% for the elastic modulus and 65% of the maximum flexural stress, was achieved after a resting period of 24 h at room temperature. Recovery after low velocity impact events was also visually observed. Applications for this intrinsic and autonomic self-healing highly reinforced composite material point towards semi-structural applications where high damping and/or integrity recovery after impact are required.
Data warehousing methods and processing infrastructure for brain recovery research.
Gee, T; Kenny, S; Price, C J; Seghier, M L; Small, S L; Leff, A P; Pacurar, A; Strother, S C
2010-09-01
In order to accelerate translational neuroscience with the goal of improving clinical care it has become important to support rapid accumulation and analysis of large, heterogeneous neuroimaging samples and their metadata from both normal control and patient groups. We propose a multi-centre, multinational approach to accelerate the data mining of large samples and facilitate data-led clinical translation of neuroimaging results in stroke. Such data-driven approaches are likely to have an early impact on clinically relevant brain recovery while we simultaneously pursue the much more challenging model-based approaches that depend on a deep understanding of the complex neural circuitry and physiological processes that support brain function and recovery. We present a brief overview of three (potentially converging) approaches to neuroimaging data warehousing and processing that aim to support these diverse methods for facilitating prediction of cognitive and behavioral recovery after stroke, or other types of brain injury or disease.
Recuperation de la matiere organique biodegradable presente dans l'effluent d'un MBBR a forte charge
NASA Astrophysics Data System (ADS)
Brosseau, Catherine
High-rate processes are receiving great interest due to their potential to favor the energy balance of water resource recovery facilities (WRRFs) either for their design or retrofit. Anaerobic digestion is a process that allows the valorization of organic biodegradable matter contained in sludge into biogas. This process also produces a stabilized sludge named digestate or biosolids that can be reused for agriculture purposes. This project proposed a secondary treatment train composed of a high-rate moving bed biofilm reactor (HR-MBBR) to biotransform colloidal and soluble biodegradable organics into particulate matter followed by an enhanced and compact physico-chemical separation process to recover mainly particulate organics and a part of the colloidal matter. A high-rate biological process operated at a low hydraulic retention time aimed at transforming colloidal and soluble fractions of organic matter into a particulate fraction for recovery by downstream separation process. The HR-MBBR effluent solids are known for their poor settleability, therefore requiring an efficient separation process downstream to ensure their recovery and to meet the effluent discharge regulations. The global objective of this project was to maximize the recovery of organic biodegradable matter for valorization into biogas by anaerobic digestion with an innovative treatment train combining an HR-MBBR and a separation process. The specific objectives of this report were 1) to characterize the HR-MBBR effluent solids and 2) to determine the efficiency of several physico-chemical separation processes combined with unbiodegradable or natural based coagulants and polymers. Effluents of lab-scale HR-MBBR fed with a synthetic soluble or domestic wastewater influent and the effluent of a full-scale HR-MBBR were used to evaluate the efficiency of separation processes adapted at bench-scale in jar-tests experiments. The processes studied were conventionnal settling, ballasted flocculation, dissolved air flotation and an innovative enhanced flotation process. Unlike conventional settling and dissolved air flotation, ballasted flocculation and enhanced flotation use a ballasted or flotation agent to accelerate the sludge settling or flotation rate. The original scientific hypothesis of this project is that the combination of enhanced flotation and natural based chemicals can meet a target total suspended solids (TSS) concentration of less or equal to 10 mg TSS/L in the clarified effluent of an HR-MBBR. The separation processes efficiencies were evaluated based on their TSS recoveries. Monitoring the chemical oxygen demand (COD) fractions allowed to better understand the underlying mechanisms of organic matter biotransformation and capture throughout the proposed treatment train. The concentration of solids expressed in TSS concentration in the MBBR effluent with a synthetic soluble influent was kept very low, from 27 to 61 mg TSS/L, which is about 2 to 9 times less than the expected concentration for an MBBR fed with domestic wastewater. Without the presence of particulate matter in the influent, the particulate matter in the MBBR effluent represented only the production of biomass detached by the shearing forces between the carriers. The TSS concentration and the efficiency of colloidal and soluble matter biotransformation into particulate matter increased with the MBBR hydraulic retention time. Wide volumetric particle size distributions ranging from 5 to 1000 mum in the lab-scale MBBR effluent were observed with a higher proportion of particles larger than 100 mum for a synthetic feed, and a higher proportion of small size particles of 30 mum for a domestic wastewater feed. The presence of lots of small size particles was attributed to unsettleable solids in the influent unchanged in the reactor. Despite the high proportion of large size particles for the MBBR with a synthetic feed, poor settleability of effluent solids was observed as static settling could only achieve TSS recoveries between 35 to 78%. Hence, coagulating agents were necessary to enhance the solids recovery. The combination of the innovative enhanced flotation process and unbiodegradable chemicals allowed to achieve TSS recovery efficiencies up to 97%. The enhanced flotation efficiency was reduced when using natural based chemicals, especially the natural based polymer which was not suited to treat waters with such high TSS concentrations. The hypothesis of the residual TSS concentration of 10 mg TSS/L was verified for half of the HR-MBBR operating conditions and the recovery efficiency did not seem to be influenced by the reactor hydraulic retention time, organic loading rate and temperature. More experiments are needed to confirm the effect of these parameters on TSS recovery efficiency. Although natural based chemicals reduced the coagulation and flocculation efficiency, they allowed a decrease in sludge production, which can represent a significant cost benefit. These chemicals resulted in an increase of 33 to 60% of the total COD of the MBBR effluent, compared to the unbiodegradable chemicals which only contributed about 2%. Natural based chemicals are recommended over unbiodegradable ones to promote the use of high biodegradability potential chemicals and to reduce the production of chemical sludge. However, to offset the increase of total COD, it may be required to add a treatment downstream to meet target secondary treatment COD concentration. Conventionnal settling and ballasted flocculation offered similar TSS recovery efficiencies to enhanced flottation (88% TSS recovery efficiency). The efficiency was reduced by 34% when using the dissolved air flotation process, much lower than the ones expected for such a separation process. The efficiency reduction was attributed to non-optimized and unadapted flotation lab-scale setups to treat medium strength wastewater. A similar innovative treatment train is currently being tested at pilot-scale in order to evaluate its carbon footprint and its potential to be eventually transposed to full-scale. Furthermore, the biodegradability and the biochemical methane production of the natural based chemicals are being determined. This project allowed to determine the potential of the innovative enhanced flotation process to recover the HR-MBBR solids when combined with natural based chemicals which are currently not often used in wastewater treatment for resource recovery.
The separation and recovery of VOCs from surfactant-containing aqueous solutions by a composite hollow fiber membrane-based pervaporation process has been studied. The process employed hydrophobic microporous polypropylene hollow fibers having a thin plasma polymerized silicon...
Ikehata, Keisuke; Zhao, Yuanyuan; Kulkarni, Harshad; Li, Yuan; Snyder, Shane A; Ishida, Kenneth P; Anderson, Michael A
2018-06-19
Reverse osmosis (RO)-based desalination and advanced water purification facilities have inherent challenges associated with concentrate management and disposal. Although enhanced permeate recovery and concentrate minimization are desired, membrane scaling due to inorganic constituents such as silica, calcium, phosphate, and iron hinders the process. To solve this problem, a new diatom-based photobiological process has been developed to remove these scaling constituents by biological uptake and precipitation. In this study, RO concentrate samples were collected from a full-scale advanced water reclamation facility in California and were treated in 3.8- and 57-L photobioreactors inoculated with a brackish water diatom Pseudostaurosira trainorii PEWL001 using light-emitting diode bulbs or natural sunlight as a light source. The photobiological treatment removed 95% of reactive silica and 64% of calcium and enabled additional water recovery using a secondary RO at a recovery rate up to 66%. This represents 95% overall recovery including 85% recovery in the primary RO unit. In addition to the scaling constituents, the photobiological treatment removed twelve pharmaceuticals and personal care products, as well as N-nitrosodimethylamine, from RO concentrate samples primarily via photolysis. This novel approach has a strong potential for application to brackish water desalination and advanced water purification in arid and semi-arid areas.
Moonesinghe, S Ramani; Grocott, Michael P W; Bennett-Guerrero, Elliott; Bergamaschi, Roberto; Gottumukkala, Vijaya; Hopkins, Thomas J; McCluskey, Stuart; Gan, Tong J; Mythen, Michael Monty G; Shaw, Andrew D; Miller, Timothy E
2017-01-01
This article sets out a framework for measurement of quality of care relevant to enhanced recovery pathways (ERPs) in elective colorectal surgery. The proposed framework is based on established measurement systems and/or theories, and provides an overview of the different approaches for improving clinical monitoring, and enhancing quality improvement or research in varied settings with different levels of available resources. Using a structure-process-outcome framework, we make recommendations for three hierarchical tiers of data collection. Core, Quality Improvement, and Best Practice datasets are proposed. The suggested datasets incorporate patient data to describe case-mix, process measures to describe delivery of enhanced recovery and clinical outcomes. The fundamental importance of routine collection of data for the initiation, maintenance, and enhancement of enhanced recovery pathways is emphasized.
Pump dependence of the dynamics of quantum dot based waveguide absorbers
NASA Astrophysics Data System (ADS)
Viktorov, Evgeny A.; Erneux, Thomas; Piwonski, Tomasz; Pulka, Jaroslaw; Huyet, Guillaume; Houlihan, John
2012-06-01
The nonlinear two stage recovery of quantum dot based reverse-biased waveguide absorbers is investigated experimentally and analytically as a function of the initial ground state occupation probability of the dot. The latter is controlled experimentally by the pump pulse power. The slow stage of the recovery is exponential and its basic timescale is independent of pump power. The fast stage of the recovery is a logistic function which we analyze in detail. The relative strength of slow to fast components is highlighted and the importance of higher order absorption processes at the highest pump level is demonstrated.
The extraction of bitumen from western oil sands. Annual report, July 1991--July 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.
1992-08-01
The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximatelymore » 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report.« less
Strand, Monica; Gammon, Deede; Ruland, Cornelia M
2017-04-07
The Internet is transforming mental health care services by increasing access to, and potentially improving the quality of, care. Internet-based interventions in mental health can potentially play a role in transitions from biomedical to recovery-oriented research and practices, but an overview of what this may entail, current work, and issues that need addressing, is lacking. The objective of this study is to describe Internet-based recovery-oriented interventions (referred to as e-recovery) and current research, and to identify gaps and issues relevant to advancing recovery research and practices through opportunities provided by the Internet. Five iterative stages of a scoping review framework were followed in searching and analyzing the literature. A recovery framework with four domains and 16 themes was used to deductively code intervention characteristics according to their support for recovery-oriented practices. Only Internet-based interventions used in conjunction with ongoing care were included. Twenty studies describing six e-recovery interventions were identified and originated in Australia, Finland, the Netherlands, Norway and USA. The domain supporting personal recovery was most clearly reflected in interventions, whereas the last three domains, i.e., promoting citizenship, organizational commitment and working relationship were less evident. Support for the formulation and follow-up of personal goals and preferences, and in accessing peer-support, were the characteristics shared by most interventions. Three of the six studies that employed a comparison group used randomization, and none presented definitive findings. None used recovery-oriented frameworks or specific recovery outcome measures. Four of the interventions were specific to a diagnosis. Research about how technologies might aid in illuminating and shaping recovery processes is in its formative stages. We recommend that future e-recovery research and innovation attend to four dimensions: evidence-supported interventions, new knowledge about personal recovery, values-based approaches and Internet as a facilitator for organizational transformation. The incremental changes facilitated by e-recovery may help propel a shift in mental health care toward recovery-oriented practices.
Tissue recovery practices and bioburden: a systematic review.
Brubaker, S; Lotherington, K; Zhao, Jie; Hamilton, B; Rockl, G; Duong, A; Garibaldi, A; Simunovic, N; Alsop, D; Dao, D; Bessemer, R; Ayeni, O R
2016-12-01
For successful transplantation, allografts should be free of microorganisms that may cause harm to the allograft recipient. Before or during recovery and subsequent processing, tissues can become contaminated. Effective tissue recovery methods, such as minimizing recovery times (<24 h after death) and the number of experienced personnel performing recovery, are examples of factors that can affect the rate of tissue contamination at recovery. Additional factors, such as minimizing the time after asystole to recovery and the total time it takes to perform recovery, the type of recovery site, the efficacy of the skin prep performed immediately prior to recovery of tissue, and certain technical recovery procedures may also result in control of the rate of contamination. Due to the heterogeneity of reported recovery practices and experiences, it cannot be concluded if the use of other barriers and/or hygienic precautions to avoid contamination have had an effect on bioburden detected after tissue recovery. Qualified studies are lacking which indicates a need exists for evidence-based data to support methods that reduce or control bioburden.
Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process.
Singh, Anupam; Upadhyay, Vaibhav; Upadhyay, Arun Kumar; Singh, Surinder Mohan; Panda, Amulya Kumar
2015-03-25
Formation of inclusion bodies in bacterial hosts poses a major challenge for large scale recovery of bioactive proteins. The process of obtaining bioactive protein from inclusion bodies is labor intensive and the yields of recombinant protein are often low. Here we review the developments in the field that are targeted at improving the yield, as well as quality of the recombinant protein by optimizing the individual steps of the process, especially solubilization of the inclusion bodies and refolding of the solubilized protein. Mild solubilization methods have been discussed which are based on the understanding of the fact that protein molecules in inclusion body aggregates have native-like structure. These methods solubilize the inclusion body aggregates while preserving the native-like protein structure. Subsequent protein refolding and purification results in high recovery of bioactive protein. Other parameters which influence the overall recovery of bioactive protein from inclusion bodies have also been discussed. A schematic model describing the utility of mild solubilization methods for high throughput recovery of bioactive protein has also been presented.
A model for improving endangered species recovery programs
NASA Astrophysics Data System (ADS)
Miller, Brian; Reading, Richard; Conway, Courtney; Jackson, Jerome A.; Hutchins, Michael; Snyder, Noel; Forrest, Steve; Frazier, Jack; Derrickson, Scott
1994-09-01
This paper discusses common organizational problems that cause inadequate planning and implementation processes of endangered species recovery across biologically dissimilar species. If these problems occur, even proven biological conservation techniques are jeopardized. We propose a solution that requires accountability in all phases of the restoration process and is based on cooperative input among government agencies, nongovernmental conservation organizations, and the academic community. The first step is formation of a task-oriented recovery team that integrates the best expertise into the planning process. This interdisciplinary team should be composed of people whose skills directly address issues critical for recovery. Once goals and procedures are established, the responsible agency (for example, in the United States, the US Fish and Wildlife Service) could divest some or all of its obligation for implementing the plan, yet still maintain oversight by holding implementing entities contractually accountable. Regular, periodic outside review and public documentation of the recovery team, lead agency, and the accomplishments of implementing bodies would permit evaluation necessary to improve performance. Increased cooperation among agency and nongovernmental organizations provided by this model promises a more efficient use of limited resources toward the conservation of biodiversity.
Environmentally friendly processes that aid human and environmental health include recovering, recycling, and reusing limited natural resources and waste materials. In this study, we re-used Iron-rich solid waste materials from water treatment plants to synthesize magnetic iron-o...
Plant-soil feedbacks and the reversal of desertification with climate change
USDA-ARS?s Scientific Manuscript database
Our objective was to provide a conceptual framework for perennial grass recovery in a series of wet years, which includes both plant-soil feedbacks that increase available water to grasses and effects of precipitation on a sequence of recovery-related processes. We tested hypotheses based on this fr...
Lunar resource recovery: A definition of requirements
NASA Technical Reports Server (NTRS)
Elsworth, D.; Kohler, J. L.; Alexander, S. S.
1992-01-01
The capability to locate, mine, and process the natural resources of the Moon will be an essential requirement for lunar base development and operation. The list of materials that will be necessary is extensive and ranges from oxygen and hydrogen for fuel and life support to process tailings for emplacement over habitats. Despite the resources need, little is known about methodologies that might be suitable for utilizing lunar resources. This paper examines some of the requirements and constraints for resource recovery and identifies key areas of research needed to locate, mine, and process extraterrestrial natural resources.
Borkman, Thomasina J.; Stunz, Aina; Kaskutas, Lee Ann
2016-01-01
Background The What is Recovery? (WIR) study identified specific elements of a recovery definition that people in substance abuse recovery from multiple pathways would endorse. Objectives To explain how participatory research contributed to the development of a comprehensive pool of items defining recovery; and to identify the commonality between the specific items endorsed by participants as defining recovery and the abstract components of recovery found in four important broad recovery definitions Methods A four-step, mixed-methods, iterative process was used to develop and pretest items (August 2010 to February 2012). Online survey recruitment (n=238) was done via email lists of individuals in recovery and electronic advertisements; 54 were selected for in-depth telephone interviews. Analyses using experientially-based and survey research criteria resulted in a revised item pool of 47 refined and specific items. The WIR items were matched with the components of four important definitions. Results Recovering participants (1) proposed and validated new items; (2) developed an alternative response category to the Likert; (3) suggested criteria for eliminating items irrelevant to recovery. The matching of WIR items with the components of important abstract definitions revealed extensive commonality. Conclusions, importance The WIR items define recovery as ways of being, as a growth and learning process involving internal values and self-awareness with moral dimensions. This is the first wide-scale research identifying specific items defining recovery, which can be used to guide service provision in Recovery-Oriented Systems of Care. PMID:27159851
Borkman, Thomasina Jo; Stunz, Aina; Kaskutas, Lee Ann
2016-07-28
The What is Recovery? (WIR) study identified specific elements of a recovery definition that people in substance abuse recovery from multiple pathways would endorse. To explain how participatory research contributed to the development of a comprehensive pool of items defining recovery; and to identify the commonality between the specific items endorsed by participants as defining recovery and the abstract components of recovery found in four important broad recovery definitions. A four-step, mixed-methods, iterative process was used to develop and pretest items (August 2010 to February 2012). Online survey recruitment (n = 238) was done via email lists of individuals in recovery and electronic advertisements; 54 were selected for in-depth telephone interviews. Analyses using experientially-based and survey research criteria resulted in a revised item pool of 47 refined and specific items. The WIR items were matched with the components of four important definitions. Recovering participants (1) proposed and validated new items; (2) developed an alternative response category to the Likert; (3) suggested criteria for eliminating items irrelevant to recovery. The matching of WIR items with the components of important abstract definitions revealed extensive commonality. The WIR items define recovery as ways of being, as a growth and learning process involving internal values and self-awareness with moral dimensions. This is the first wide-scale research identifying specific items defining recovery, which can be used to guide service provision in Recovery-Oriented Systems of Care.
Senden, R; Savelberg, H H C M; Adam, J; Grimm, B; Heyligers, I C; Meijer, K
2014-01-01
Dynamic imbalance caused by external perturbations to gait can successfully be counteracted by adequate recovery responses. The current study investigated how the recovery response is moderated by age, walking speed, muscle strength and speed of information processing. The gait pattern of 50 young and 45 elderly subjects was repeatedly perturbed at 20% and 80% of the first half of the swing phase using the Timed Rapid impact Perturbation (TRiP) set-up. Recovery responses were identified using 2D cameras. Muscular factors (dynamometer) and speed of information processing parameters (computer-based reaction time task) were determined. The stronger, faster reacting and faster walking young subjects recovered more often by an elevating strategy than elderly subjects. Twenty three per cent of the differences in recovery responses were explained by a combination of walking speed (B=-13.85), reaction time (B=-0.82), maximum extension strength (B=0.01) and rate of extension moment development (B=0.19). The recovery response that subjects employed when gait was perturbed by the TRiP set-up was modified by several factors; the individual contribution of walking speed, muscle strength and speed of information processing was small. Insight into remaining modifying factors is needed to assist and optimise fall prevention programmes. Copyright © 2013 Elsevier B.V. All rights reserved.
The Alternative Peer Group: A Developmentally Appropriate Recovery Support Model for Adolescents.
Nash, Angela; Collier, Crystal
2016-01-01
Recovery as the goal for substance use disorder treatment has been a key component of the Substance Abuse and Mental Health Services Administration's mission for the past decade. Consistent with their mission, there is a call for research and development of recovery-oriented systems of care to support affected individuals through all stages of the recovery process. Evidence is emerging to support recovery practice and research for adults, but recovery-oriented models for adolescents are scant. The Alternative Peer Group (APG) is a comprehensive adolescent recovery support model that integrates recovering peers and prosocial activities into evidence-based clinical practice. Employing APG participants' own words, this article will describe the essential elements and three theoretical frameworks underlying the APG model to illustrate how the APG serves as a developmentally appropriate recovery support service for adolescents with substance use disorder.
Space Reclamation for Uncoordinated Checkpointing in Message-Passing Systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Wang, Yi-Min
1993-01-01
Checkpointing and rollback recovery are techniques that can provide efficient recovery from transient process failures. In a message-passing system, the rollback of a message sender may cause the rollback of the corresponding receiver, and the system needs to roll back to a consistent set of checkpoints called recovery line. If the processes are allowed to take uncoordinated checkpoints, the above rollback propagation may result in the domino effect which prevents recovery line progression. Traditionally, only obsolete checkpoints before the global recovery line can be discarded, and the necessary and sufficient condition for identifying all garbage checkpoints has remained an open problem. A necessary and sufficient condition for achieving optimal garbage collection is derived and it is proved that the number of useful checkpoints is bounded by N(N+1)/2, where N is the number of processes. The approach is based on the maximum-sized antichain model of consistent global checkpoints and the technique of recovery line transformation and decomposition. It is also shown that, for systems requiring message logging to record in-transit messages, the same approach can be used to achieve optimal message log reclamation. As a final topic, a unifying framework is described by considering checkpoint coordination and exploiting piecewise determinism as mechanisms for bounding rollback propagation, and the applicability of the optimal garbage collection algorithm to domino-free recovery protocols is demonstrated.
Negro, Viviana; Mancini, Giuseppe; Ruggeri, Bernardo; Fino, Debora
2016-08-01
The citrus peels and residue of fruit juices production are rich in d-limonene, a cyclic terpene characterized by antimicrobial activity, which could hamper energy valorization bioprocess. Considering that limonene is used in nutritional, pharmaceutical and cosmetic fields, citrus by-products processing appear to be a suitable feedstock either for high value product recovery or energy bio-processes. This waste stream, more than 10MTon at 2013 in European Union (AIJN, 2014), can be considered appealing, from the view point of conducting a key study on limonene recovery, as its content of about 1%w/w of high value-added molecule. Different processes are currently being studied to recover or remove limonene from citrus peel to both prevent pollution and energy resources recovery. The present review is aimed to highlight pros and contras of different approaches suggesting an energy sustainability criterion to select the most effective one for materials and energy valorization. Copyright © 2016 Elsevier Ltd. All rights reserved.
Recovery of biotechnological products using aqueous two phase systems.
Phong, Win Nee; Show, Pau Loke; Chow, Yin Hui; Ling, Tau Chuan
2018-04-16
Aqueous two-phase system (ATPS) has been suggested as a promising separation tool in the biotechnological industry. This liquid-liquid extraction technique represents an interesting advance in downstream processing due to several advantages such as simplicity, rapid separation, efficiency, economy, flexibility and biocompatibility. Up to date, a range of biotechnological products have been successfully recovered from different sources with high yield using ATPS-based strategy. In view of the important potential contribution of the ATPS in downstream processing, this review article aims to provide latest information about the application of ATPS in the recovery of various biotechnological products in the past 7 years (2010-2017). Apart from that, the challenges as well as the possible future work and outlook of the ATPS-based recovery method have also been presented in this review article. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
78 FR 20393 - Cost Recovery for Permit Processing, Administration, and Enforcement
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-04
... by the general public.'' This charge is designed ``to recover the full cost to the Federal Government... general public. In keeping with Federal cost recovery policy, we are only proposing fees for those... based on the employees' salaries and benefits. The cost of travel includes travel associated with field...
Wallis, Ilka; Prommer, Henning; Pichler, Thomas; Post, Vincent; Norton, Stuart B; Annable, Michael D; Simmons, Craig T
2011-08-15
Aquifer storage and recovery (ASR) is an aquifer recharge technique in which water is injected in an aquifer during periods of surplus and withdrawn from the same well during periods of deficit. It is a critical component of the long-term water supply plan in various regions, including Florida, USA. Here, the viability of ASR as a safe and cost-effective water resource is currently being tested at a number of sites due to elevated arsenic concentrations detected during groundwater recovery. In this study, we developed a process-based reactive transport model of the coupled physical and geochemical mechanisms controlling the fate of arsenic during ASR. We analyzed multicycle hydrochemical data from a well-documented affected southwest Floridan site and evaluated a conceptual/numerical model in which (i) arsenic is initially released during pyrite oxidation triggered by the injection of oxygenated water (ii) then largely complexes to neo-formed hydrous ferric oxides before (iii) being remobilized during recovery as a result of both dissolution of hydrous ferric oxides and displacement from sorption sites by competing anions.
New perspectives for the design of sustainable bioprocesses for phosphorus recovery from waste.
Tarayre, Cédric; De Clercq, Lies; Charlier, Raphaëlle; Michels, Evi; Meers, Erik; Camargo-Valero, Miller; Delvigne, Frank
2016-04-01
Phosphate rock has long been used for the production of phosphorus based chemicals. However, considering the depletion of the reservoirs and the decrease of the quality of phosphate rocks, a potential market is now emerging for the recovery of phosphate from waste and its reuse for different applications. Notably, phosphate recovery from wastewater could be included in a circular economy approach. This review focuses on the use of microbial systems for phosphorus accumulation and recovery, by considering the actual range of analytical techniques available for the monitoring of phosphorus accumulating organisms, as well as the actual biochemical and metabolic engineering toolbox available for the optimization of bioprocesses. In this context, knowledge gathered from process, system and synthetic biology could potentially lead to innovative process design. Copyright © 2016 Elsevier Ltd. All rights reserved.
Model-based evaluation of struvite recovery from an in-line stripper in a BNR process (BCFS).
Hao, X D; van Loosdrecht, M C M
2006-01-01
Phosphate removal and recovery can be combined in BNR processes. This may be realised by struvite precipitation from the supernatant of the sludge in anaerobic compartments. This can be beneficial for either improving bio-P removal effluent quality or lowering the influent COD/P ratio required for bio-P removal. For this reason, a patented BNR process, BCFS, was developed and applied in The Netherlands. Several questions relating to P-recovery and behaviour of the system remain unclear and need to be ascertained. For this purpose, a modelling technique was employed in this study. With the help of a previous developed model describing carbon oxidation and nutrient removal, three cases were fully simulated. The simulations demonstrated that there was an optimal stripping flow rate and P-recovery would increase in costs and bio-P activity might be negatively affected due to decreased bio-P efficiency if this value was exceeded. The simulations indicated that the minimal COD(biod)/P ratio required for the effluent standard (1 g P/m3) could be lowered from 20 to 10 with 36% of P-recovery. A simulation with dynamic inflow revealed that the dynamic influent loads affected slightly the anaerobic supernatant phosphate concentration but the effluent phosphate concentration would not be affected with regular P-recovery.
Sun, Z H I; Xiao, Y; Sietsma, J; Agterhuis, H; Yang, Y
2016-11-01
Recovery of valuable metals from electronic waste has been highlighted by the EU directives. The difficulties for recycling are induced by the high complexity of such waste. In this research, copper could be selectively recovered using an ammonia-based process, from industrially processed information and communication technology (ICT) waste with high complexity. A detailed understanding on the role of ammonium salt was focused during both stages of leaching copper into a solution and the subsequent step for copper recovery from the solution. By comparing the reactivity of the leaching solution with different ammonium salts, their physiochemical behaviour as well as the leaching efficiency could be identified. The copper recovery rate could reach 95% with ammonium carbonate as the leaching salt. In the stage of copper recovery from the solution, electrodeposition was introduced without an additional solvent extraction step and the electrochemical behaviour of the solution was figured out. With a careful control of the electrodeposition conditions, the current efficiency could be improved to be 80-90% depending on the ammonia salts and high purity copper (99.9wt.%). This research provides basis for improving the recyclability and efficiency of copper recovery from such electronic waste and the whole process design for copper recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shawyer, Frances; Enticott, Joanne C; Brophy, Lisa; Bruxner, Annie; Fossey, Ellie; Inder, Brett; Julian, John; Kakuma, Ritsuko; Weller, Penelope; Wilson-Evered, Elisabeth; Edan, Vrinda; Slade, Mike; Meadows, Graham N
2017-05-08
Recovery features strongly in Australian mental health policy; however, evidence is limited for the efficacy of recovery-oriented practice at the service level. This paper describes the Principles Unite Local Services Assisting Recovery (PULSAR) Specialist Care trial protocol for a recovery-oriented practice training intervention delivered to specialist mental health services staff. The primary aim is to evaluate whether adult consumers accessing services where staff have received the intervention report superior recovery outcomes compared to adult consumers accessing services where staff have not yet received the intervention. A qualitative sub-study aims to examine staff and consumer views on implementing recovery-oriented practice. A process evaluation sub-study aims to articulate important explanatory variables affecting the interventions rollout and outcomes. The mixed methods design incorporates a two-step stepped-wedge cluster randomized controlled trial (cRCT) examining cross-sectional data from three phases, and nested qualitative and process evaluation sub-studies. Participating specialist mental health care services in Melbourne, Victoria are divided into 14 clusters with half randomly allocated to receive the staff training in year one and half in year two. Research participants are consumers aged 18-75 years who attended the cluster within a previous three-month period either at baseline, 12 (step 1) or 24 months (step 2). In the two nested sub-studies, participation extends to cluster staff. The primary outcome is the Questionnaire about the Process of Recovery collected from 756 consumers (252 each at baseline, step 1, step 2). Secondary and other outcomes measuring well-being, service satisfaction and health economic impact are collected from a subset of 252 consumers (63 at baseline; 126 at step 1; 63 at step 2) via interviews. Interview-based longitudinal data are also collected 12 months apart from 88 consumers with a psychotic disorder diagnosis (44 at baseline, step 1; 44 at step 1, step 2). cRCT data will be analyzed using multilevel mixed-effects modelling to account for clustering and some repeated measures, supplemented by thematic analysis of qualitative interview data. The process evaluation will draw on qualitative, quantitative and documentary data. Findings will provide an evidence-base for the continued transformation of Australian mental health service frameworks toward recovery. Australian and New Zealand Clinical Trial Registry: ACTRN12614000957695 . Date registered: 8 September 2014.
Moms Supporting Moms: Digital Storytelling With Peer Mentors in Recovery From Substance Use.
Paterno, Mary T; Fiddian-Green, Alice; Gubrium, Aline
2018-01-01
Substance use disorder (SUD) is a growing issue nationally, and SUD in pregnancy has significant consequences for mothers and their children. This article describes findings from a pilot project that used digital storytelling as a mechanism for understanding substance use and recovery from the perspective of women in recovery from SUD in pregnancy who worked as peer mentors with pregnant women currently experiencing SUD. Research on peer mentorship has primarily focused on outcomes for mentees but not the experience of the peer mentors themselves. In this qualitative study, a 3-day digital storytelling workshop was conducted with five women in recovery serving as peer mentors in their community. Each mentor also participated in an individual, in-depth interview. The digital storytelling workshop process helped peer mentors make linkages between their past substance use experiences to their present work of recovery, and fostered deep social connections between mentors through the shared experience. The workshop process also elicited a sense of hope among participants, which served as groundwork for developing advocacy-based efforts. Digital storytelling may be therapeutic for women in recovery and has the potential to be integrated into recovery programs to bolster hope and social support among participants.
Mak, Winnie W S; Chan, Randolph C H; Yau, Sania S W
2018-05-29
Considering the lack of existing measures on attitudes toward personal recovery and the need to acknowledge the cultural milieu in recovery attitude assessment, the present study developed and validated the Attitudes towards Recovery Questionnaire (ARQ) in a sample of people in recovery of mental illness, family carers, and mental health service providers in Hong Kong. The ARQ was developed based on existing literature and measures of recovery, and focus group discussions with various stakeholders. Findings of the multi-sample confirmatory factor analyses supported a five-factor structure: (1) resilience as a person in recovery, (2) self-appreciation and development, (3) self-direction, (4) family involvement, and (5) social ties and integration. The ARQ was positively correlated with recovery outcomes, empowerment, recovery knowledge, and recovery orientation of mental health services. As a tool for examining recovery attitudes, the ARQ informs us of the mindset across stakeholders and areas that need enhancement to facilitate the recovery process. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Zhai, Haozhou; Jian, Jianming; Hou, Shulin; San, Yunlong; Guo, Wensong; Sun, Yue; Gao, Mingqing
2018-03-01
The twine of residual film is an essential issue in the process of remnant residue recovery of the residual film recovery machine. It is difficult to clean up the residual film in the residual film recovery operation and to influence the subsequent film efficiency. Therefore, in response to this problem a composite tooth pocket residual film recovery device was designed. In this paper, the structure of the film recovery device design, theoretical analysis, simulation experiments, get the most appropriate film recovery device parameters. In addition, the residual film rate of the membrane is dramatically low, reaching about 1.3% only, and the operation of the whole machine is smoother, and the stability of the work is promoted. The operation of the film recovery device is very obvious. Lifting, in addition to the film rate has also been significantly improved to 93.88%
Fullagar, Simone; O'Brien, Wendy
2014-09-01
In Australia, like other advanced liberal democracies, the adoption of a recovery orientation was hailed as a major leap forward in mental health policy and service provision. We argue that this shift in thinking about the meaning of recovery requires further analysis of the gendered dimension of self-identity and relationships with the social world. In this article we focus on how mid-life women constructed meaning about recovery through their everyday practices of self-care within the gendered context of depression. Findings from our qualitative research with 31 mid-life women identified how the recovery process was complicated by relapses into depression, with many women critically questioning the limitations of biomedical treatment options for a more relational understanding of recovery. Participant stories revealed important tacit knowledge about recovery that emphasised the process of realising and recognising capacities and self-knowledge. We identify two central themes through which women's tacit knowledge of this changing relation to self in recovery is made explicit: the disciplined self of normalised recovery, redefining recovery and depression. The findings point to the need to reconsider how both recovery discourses and gendered expectations can complicate women's experiences of moving through depression. We argue for a different conceptualisation of recovery as a social practice through which women realise opportunities to embody different 'beings and doings'. A gendered understanding of what women themselves identify is important to their well-being, can contribute to more effective recovery oriented policies based on capability rather than deficit. Copyright © 2014 Elsevier Ltd. All rights reserved.
Investigation of recovery and recycling of rare earth elements from waste fluorescent lamp phosphors
NASA Astrophysics Data System (ADS)
Eduafo, Patrick Max
Characterization techniques and experimental measurements were used to evaluate a process for recycling rare earth elements (REEs) from spent fluorescent lamp phosphors. QEMSCAN analysis revealed that over 60% of the rare earth bearing minerals was less than 10 microm. A representative sample of the as-received feed contained 14.59 wt% total rare earth elements (TREE) and upon sieving to below 75 microm, the grade increased to 19.60 wt% REE with 98.75% recovery. Based on experimental work, a new process for extracting the chief REEs from end of life fluorescent lamps has been developed. The proposed flowsheet employs a three-stage leaching and precipitation process for selective extraction and recovery of the REEs. Hydrochloric acid was used as lixiviant in batch leach experiments on the phosphor powder. The maximum extraction obtained was 100% for both yttrium and europium under the following leaching conditions: 2.5 M HCl, 70°C, 1 hour, 180 g/L and 600 rpm. However, the solubility of cerium, lanthanum and terbium remained low at these conditions. Kinetic data of the leaching of yttrium and europium showed best fit to the logarithmic rate expression of the empirical model of leaching. Activation energy was calculated to be 77.49 kJ/mol for Y and 72.75 kJ/mol for Eu in the temperature range of 298 to 343 K. Precipitation tests demonstrate that at least 50% excess the stoichiometric amount of oxalic acid is needed to recover yttrium and europium efficiently to produce a pure (Y, Eu) mixed oxide. Total recovery of the REEs was achieved even at very low pH or without any base added. Over 99% pure mixed rare earth oxide at 99% recovery has been attained. An economic assessment of the developed process using operating and capital cost have be undertaken and based on the analysis of the three economic scenarios, two are economic and one is non-economic.
Sun, Zhi; Xiao, Y; Sietsma, J; Agterhuis, H; Yang, Y
2015-07-07
In recent years, recovery of metals from electronic waste within the European Union has become increasingly important due to potential supply risk of strategic raw material and environmental concerns. Electronic waste, especially a mixture of end-of-life electronic products from a variety of sources, is of inherently high complexity in composition, phase, and physiochemical properties. In this research, a closed-loop hydrometallurgical process was developed to recover valuable metals, i.e., copper and precious metals, from an industrially processed information and communication technology waste. A two-stage leaching design of this process was adopted in order to selectively extract copper and enrich precious metals. It was found that the recovery efficiency and extraction selectivity of copper both reached more than 95% by using ammonia-based leaching solutions. A new electrodeposition process has been proven feasible with 90% current efficiency during copper recovery, and the copper purity can reach 99.8 wt %. The residue from the first-stage leaching was screened into coarse and fine fractions. The coarse fraction was returned to be releached for further copper recovery. The fine fraction was treated in the second-stage leaching using sulfuric acid to further concentrate precious metals, which could achieve a 100% increase in their concentrations in the residue with negligible loss into the leaching solution. By a combination of different leaching steps and proper physical separation of light materials, this process can achieve closed-loop recycling of the waste with significant efficiency.
Rhenter, Pauline; Moreau, Delphine; Laval, Christian; Mantovani, Jean; Albisson, Amandine; Suderie, Guillaume; Boucekine, Mohamed; Tinland, Aurelie; Loubière, Sandrine; Greacen, Tim; Auquier, Pascal; Girard, Vincent
2018-03-14
This paper is a qualitative analysis of the effects of accompagnement , a support framework, on recovery trajectories of people with long-term homelessness and severe psychiatric disorders during 24 months in a Housing First-type program in France. A comprehensive methodology based on grounded theory was used to construct an interview guide, conduct multiple interviews with 35 Housing First participants sampled for heterogeneity, and produce memos on their trajectories before and after entering the program based on interview information. Thematic analysis of a representative subsample ( n = 13) of memos identified 12 objective factors and 6 subjective factors key to the recovery process. An in-depth re-analysis of the memos generated four recovery themes: (1) the need for secure space favorable to self-reflexivity; (2) a "honeymoon" effect; (3) the importance of even weak social ties; (4) support from and hope among peers. Three challenges to recovery were identified: (1) finding a balance between protection and risk; (2) breaking downward spirals; (3) bifurcating the trajectory. This study provides new insight into the recovery process, understood as a non-linear transformation of an experience-the relationship between objective life conditions and subjective perception of those conditions-which reinforces protective support over risk elements.
Rhenter, Pauline; Moreau, Delphine; Laval, Christian; Mantovani, Jean; Albisson, Amandine; Suderie, Guillaume; Boucekine, Mohamed; Tinland, Aurelie; Loubière, Sandrine; Greacen, Tim; Auquier, Pascal; Girard, Vincent
2018-01-01
This paper is a qualitative analysis of the effects of accompagnement, a support framework, on recovery trajectories of people with long-term homelessness and severe psychiatric disorders during 24 months in a Housing First-type program in France. A comprehensive methodology based on grounded theory was used to construct an interview guide, conduct multiple interviews with 35 Housing First participants sampled for heterogeneity, and produce memos on their trajectories before and after entering the program based on interview information. Thematic analysis of a representative subsample (n = 13) of memos identified 12 objective factors and 6 subjective factors key to the recovery process. An in-depth re-analysis of the memos generated four recovery themes: (1) the need for secure space favorable to self-reflexivity; (2) a “honeymoon” effect; (3) the importance of even weak social ties; (4) support from and hope among peers. Three challenges to recovery were identified: (1) finding a balance between protection and risk; (2) breaking downward spirals; (3) bifurcating the trajectory. This study provides new insight into the recovery process, understood as a non-linear transformation of an experience—the relationship between objective life conditions and subjective perception of those conditions—which reinforces protective support over risk elements. PMID:29538346
Oh, Jung-Hwa; Yang, Mi-jin; Yang, Young-Su; Park, Han-Jin; Heo, Sun Hee; Lee, Eun-Hee; Song, Chang-Woo; Yoon, Seokjoo
2009-02-01
Repeated exposure to welding fumes promotes a reversible increase in pulmonary disease risk, but the molecular mechanisms by which welding fumes induce lung injury and how the lung recovers from such insults are unclear. In the present study, pulmonary function and gene-expression profiles in the lung were analyzed by Affymetrix GeneChip microarray after 30 days of consecutive exposure to manual metal arc welding combined with stainless-steel (MMA-SS) welding fumes, and again after 30 days of recovery from MMA-SS fume exposure. In total, 577 genes were identified as being either up-regulated or down-regulated (over twofold changes, p < 0.05) in the lungs of low-dose or high-dose groups. Differentially expressed genes were classified based on a k-means clustering algorithm and biological functions and molecular networks were further analyzed using Ingenuity Pathways Analysis. Among the genes affected by exposure to or recovery from MMA-SS fumes, the transcriptional changes of 13 genes that were highly altered by treatment were confirmed by quantitative real-time PCR. Notably, Mmp12, Cd5l, Ccl7, Cxcl5, and Spp1 related to the immune response were up-regulated only in the exposure group, whereas Trem2, IgG-2a, Igh-1a, and Igh were persistently up-regulated in both the exposure and recovery groups. In addition, several genes that might play a role in the repair process of the lung were up-regulated exclusively in the recovery group. Collectively, these data may help elucidate the molecular mechanism of the recovery process of the lung after welding fume exposure.
Energy impact of cathode drying and solvent recovery during lithium-ion battery manufacturing
NASA Astrophysics Data System (ADS)
Ahmed, Shabbir; Nelson, Paul A.; Gallagher, Kevin G.; Dees, Dennis W.
2016-08-01
Successful deployment of electric vehicles requires maturity of the manufacturing process to reduce the cost of the lithium ion battery (LIB) pack. Drying the coated cathode layer and subsequent recovery of the solvent for recycle is a vital step in the lithium ion battery manufacturing plant and offers significant potential for cost reduction. A spreadsheet model of the drying and recovery of the solvent, is used to study the energy demand of this step and its contribution towards the cost of the battery pack. The base case scenario indicates that the drying and recovery process imposes an energy demand of ∼10 kWh per kg of the solvent n-methyl pyrrolidone (NMP), and is almost 45 times the heat needed to vaporize the NMP. For a plant producing 100 K battery packs per year for 10 kWh plug-in hybrid vehicles (PHEV), the energy demand is ∼5900 kW and the process contributes 107 or 3.4% to the cost of the battery pack. The cost of drying and recovery is equivalent to 1.12 per kg of NMP recovered, saving 2.08 per kg in replacement purchase.
Functional recovery in the avian ear after hair cell regeneration.
Smolders, J W
1999-01-01
Trauma to the inner ear in birds, due to acoustic overstimulation or ototoxic aminoglycosides, can lead to hair cell loss which is followed by regeneration of new hair cells. These processes are paralleled by hearing loss followed by significant functional recovery. After acoustic trauma, functional recovery is rapid and nearly complete. The early and major part of functional recovery after sound trauma occurs before regenerated hair cells become functional. Even very intense sound trauma causes loss of only a proportion of the hair cell population, mainly so-called short hair cells residing on the abneural mobile part of the avian basilar membrane. Uncoupling of the tectorial membrane from the hair cells during sound overexposure may serve as a protection mechanism. The rapid functional recovery after sound trauma appears not to be associated with regeneration of the lost hair cells, but with repair processes involving the surviving hair cells. Small residual functional deficits after recovery are most likely associated with the missing upper fibrous layer of the tectorial membrane which fails to regenerate after sound trauma. After aminoglycoside trauma, functional recovery is slower and parallels the structural regeneration more closely. Aminoglycosides cause damage to both types of hair cells, starting at the basal (high frequency) part of the basilar papilla. However, functional hearing loss and recovery also occur at lower frequencies, associated with areas of the papilla where hair cells survive. Functional recovery in these low frequency areas is complete, whereas functional recovery in high frequency areas with complete hair cell loss is incomplete, despite regeneration of the hair cells. Permanent residual functional deficits remain. This indicates that in low frequency regions functional recovery after aminoglycosides involves repair of nonlethal injury to hair cells and/or hair cell-neural synapses. In the high frequency regions functional recovery involves regenerated hair cells. The permanent functional deficits after the regeneration process in these areas are most likely associated with functional deficits in the regenerated hair cells or shortcomings in the synaptic reconnections of nerve fibers with the regenerated hair cells. In conclusion, the avian inner ear appears to be much more resistant to trauma than the mammalian ear and possesses a considerable capacity for functional recovery based on repair processes along with its capacity to regenerate hair cells. The functional recovery in areas with regenerated hair cells is considerable but incomplete.
Process Control for Precipitation Prevention in Space Water Recovery Systems
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam; Callahan, Michael R.; Muirhead, Dean
2015-01-01
The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, rotary distillation systems have been actively pursued by NASA as one of the technologies for water recovery from wastewater primarily comprised of human urine. A specific area of interest is the prevention of the formation of solids that could clog fluid lines and damage rotating equipment. To mitigate the formation of solids, operational constraints are in place that limits such that the concentration of key precipitating ions in the wastewater brine are below the theoretical threshold. This control in effected by limiting the amount of water recovered such that the risk of reaching the precipitation threshold is within acceptable limits. The water recovery limit is based on an empirically derived worst case wastewater composition. During the batch process, water recovery is estimated by monitoring the throughput of the system. NASA Johnson Space Center is working on means of enhancing the process controls to increase water recovery. Options include more precise prediction of the precipitation threshold. To this end, JSC is developing a means of more accurately measuring the constituent of the brine and/or wastewater. Another means would be to more accurately monitor the throughput of the system. In spring of 2015, testing will be performed to test strategies for optimizing water recovery without increasing the risk of solids formation in the brine.
Design and evaluation of a fault-tolerant multiprocessor using hardware recovery blocks
NASA Technical Reports Server (NTRS)
Lee, Y. H.; Shin, K. G.
1982-01-01
A fault-tolerant multiprocessor with a rollback recovery mechanism is discussed. The rollback mechanism is based on the hardware recovery block which is a hardware equivalent to the software recovery block. The hardware recovery block is constructed by consecutive state-save operations and several state-save units in every processor and memory module. When a fault is detected, the multiprocessor reconfigures itself to replace the faulty component and then the process originally assigned to the faulty component retreats to one of the previously saved states in order to resume fault-free execution. A mathematical model is proposed to calculate both the coverage of multi-step rollback recovery and the risk of restart. A performance evaluation in terms of task execution time is also presented.
NASA Astrophysics Data System (ADS)
Joulié, M.; Laucournet, R.; Billy, E.
2014-02-01
A hydrometallurgical process is developed to recover valuable metals of the lithium nickel cobalt aluminum oxide (NCA) cathodes from spent lithium-ion batteries (LIBs). Effect of parameters such as type of acid (H2SO4, HNO3 and HCl), acid concentration (1-4 mol L-1), leaching time (3-18 h) and leaching temperature (25-90 °C) with a solid to liquid ratio fixed at 5% (w/v) are investigated to determine the most efficient conditions of dissolution. The preliminary results indicate that HCl provides higher leaching efficiency. In optimum conditions, a complete dissolution is performed for Li, Ni, Co and Al. In the nickel and cobalt recovery process, at first the Co(II) in the leaching liquor is selectively oxidized in Co(III) with NaClO reagent to recover Co2O3, 3H2O by a selective precipitation at pH = 3. Then, the nickel hydroxide is precipitated by a base addition at pH = 11. The recovery efficiency of cobalt and nickel are respectively 100% and 99.99%.
Researchers at USEPA are testing and evaluating two commercial electrochemical technologies for the purification of rinse water and the recovery of copper and nickel from a variety of electroplating processes. One of the investigated technologies is based on the application of hi...
Lumber recovery from incense-cedar in central California.
Pong W.Y.; James M. Cahill
1988-01-01
A sample of 130 incense-cedar (Libocedrus decurrens Torr.) trees was selected from the Eldorado National Forest in California. The trees were felled and bucked into 403 woods-length logs and processed through a sawmill cutting Shop and Common grades of lumber. Recovery estimates are shown for woods-length logs based on Scribner board-foot scale and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokin, A.P.; Rimkevich, V.S.; Dem'yanova, L.P.
2009-05-15
Based on the physico-technical operations involved in the mineral processing technologies, the optimal production conditions are found for refractory fiber materials, aluminium, silicium, their compounds and other valued components. Ecologically safe and efficient aggregate technologies are developed for recovery of valued components from nonmetallic minerals and anthracides (brown coals).
Biodiesel production process from microalgae oil by waste heat recovery and process integration.
Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi
2015-10-01
In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Happell, Brenda; Byrne, Louise; Platania-Phung, Chris
2015-01-01
Recovery-oriented services are a goal for policy and practice in the Australian mental health service system. Evidence-based reform requires an instrument to measure knowledge of recovery concepts. The Recovery Knowledge Inventory (RKI) was designed for this purpose, however, its suitability and validity for student health professionals has not been evaluated. The purpose of the current article is to report the psychometric features of the RKI for measuring nursing students' views on recovery. The RKI, a self-report measure, consists of four scales: (I) Roles and Responsibilities, (II) Non-Linearity of the Recovery Process, (III) Roles of Self-Definition and Peers, and (IV) Expectations Regarding Recovery. Confirmatory and exploratory factor analyses of the baseline data (n = 167) were applied to assess validity and reliability. Exploratory factor analyses generally replicated the item structure suggested by the three main scales, however more stringent analyses (confirmatory factor analysis) did not provide strong support for convergent validity. A refined RKI with 16 items had internal reliabilities of α = .75 for Roles and Responsibilities, α = .49 for Roles of Self-Definition and Peers, and α = .72, for Recovery as Non-Linear Process. If the RKI is to be applied to nursing student populations, the conceptual underpinning of the instrument needs to be reworked, and new items should be generated to evaluate and improve scale validity and reliability.
Chan, Kevin K S; Mak, Winnie W S
2014-11-01
For people with schizophrenia living in the community and receiving outpatient care, the issues of stigma and discrimination and dearth of recovery-oriented services remain barriers to recovery and community integration. The experience of self-stigma and unmet recovery needs can occur regardless of symptom status or disease process, reducing life satisfaction and disrupting overall well-being. The present study examined the mediating role of self-stigma and unmet needs in the relationship between psychiatric symptom severity and subjective quality of life. Structural equation modeling and mediation analyses were conducted based on a community sample of 400 mental health consumers with schizophrenia spectrum disorders in Hong Kong. The model of self-stigma and unmet needs as mediators between symptom severity and subjective quality of life had good fit to the data (GFI = .93, CFI = .93, NNFI = .92, RMSEA = .06, χ(2)/df ratio = 2.62). A higher level of symptom severity was significantly associated with increased self-stigma (R (2) = .24) and a greater number of unmet needs (R (2) = .53). Self-stigma and unmet needs were in turn negatively related to subjective quality of life (R (2) = .45). It is essential that service providers and administrators make greater efforts to eliminate or reduce self-stigma and unmet recovery needs, which are associated with the betterment of the overall quality of life and long-term recovery. Both incorporating empowerment and advocacy-based interventions into recovery-oriented services and providing community-based, person-centered services to people based on personally defined needs are important directions for future recovery-oriented efforts.
Nakhaei, Maryam; Khankeh, Hamid Reza; Masoumi, Gholam Reza; Hosseini, Mohammad Ali; Parsa-Yekta, Zohreh
2016-01-01
Background Since life recovery after disasters is a subjective and multifaceted construct influenced by different factors, and survivors’ main concerns and experiences are not clear, the researchers intended to explore this process. Materials and Methods This study was conducted in 2011 - 2014 based on the grounded theory approach. Participants were selected by purposeful sampling followed by theoretical sampling to achieve conceptual and theoretical saturation. Data were collected through interviews, observation, focus group discussion, and document reviews. Data were analyzed by Strauss and Corbin’s (2008) recommended approach. Results Transcribed data from 26 interviews (managers, health care providers, and receivers), field notes, and other documents were analyzed, and 1,652 open codes were identified. The codes were categorized, using constant comparative analysis, into five main categories including reactive exposure, subsiding emotions, need for comprehensive health recovery, improvement of normalization (new normality achievement), and contextual factors. The process of life recovery after disaster was also explored. Conclusions The results clarified a deep perception of participants’ experiences after disaster. The path of life recovery after disasters involves participants’ striving to achieve a comprehensive health recovery, which starts with the need for all-inclusive health recovery as a main concern; this is the motivator for a responding strategy. This strategy is participatory, and the process is progressive; achievement of a new normality is the final goal, with new development and levels of empowerment. PMID:27703797
Enzymatic corn wet milling: engineering process and cost model
Ramírez, Edna C; Johnston, David B; McAloon, Andrew J; Singh, Vijay
2009-01-01
Background Enzymatic corn wet milling (E-milling) is a process derived from conventional wet milling for the recovery and purification of starch and co-products using proteases to eliminate the need for sulfites and decrease the steeping time. In 2006, the total starch production in USA by conventional wet milling equaled 23 billion kilograms, including modified starches and starches used for sweeteners and ethanol production [1]. Process engineering and cost models for an E-milling process have been developed for a processing plant with a capacity of 2.54 million kg of corn per day (100,000 bu/day). These models are based on the previously published models for a traditional wet milling plant with the same capacity. The E-milling process includes grain cleaning, pretreatment, enzymatic treatment, germ separation and recovery, fiber separation and recovery, gluten separation and recovery and starch separation. Information for the development of the conventional models was obtained from a variety of technical sources including commercial wet milling companies, industry experts and equipment suppliers. Additional information for the present models was obtained from our own experience with the development of the E-milling process and trials in the laboratory and at the pilot plant scale. The models were developed using process and cost simulation software (SuperPro Designer®) and include processing information such as composition and flow rates of the various process streams, descriptions of the various unit operations and detailed breakdowns of the operating and capital cost of the facility. Results Based on the information from the model, we can estimate the cost of production per kilogram of starch using the input prices for corn, enzyme and other wet milling co-products. The work presented here describes the E-milling process and compares the process, the operation and costs with the conventional process. Conclusion The E-milling process was found to be cost competitive with the conventional process during periods of high corn feedstock costs since the enzymatic process enhances the yields of the products in a corn wet milling process. This model is available upon request from the authors for educational, research and non-commercial uses. PMID:19154623
Takeuchi, Naoyuki; Izumi, Shin-Ichi
2015-01-01
Motor recovery after stroke involves developing new neural connections, acquiring new functions, and compensating for impairments. These processes are related to neural plasticity. Various novel stroke rehabilitation techniques based on basic science and clinical studies of neural plasticity have been developed to aid motor recovery. Current research aims to determine whether using combinations of these techniques can synergistically improve motor recovery. When different stroke neurorehabilitation therapies are combined, the timing of each therapeutic program must be considered to enable optimal neural plasticity. Synchronizing stroke rehabilitation with voluntary neural and/or muscle activity can lead to motor recovery by targeting Hebbian plasticity. This reinforces the neural connections between paretic muscles and the residual motor area. Homeostatic metaplasticity, which stabilizes the activity of neurons and neural circuits, can either augment or reduce the synergic effect depending on the timing of combination therapy and types of neurorehabilitation that are used. Moreover, the possibility that the threshold and degree of induced plasticity can be altered after stroke should be noted. This review focuses on the mechanisms underlying combinations of neurorehabilitation approaches and their future clinical applications. We suggest therapeutic approaches for cortical reorganization and maximal functional gain in patients with stroke, based on the processes of Hebbian plasticity and homeostatic metaplasticity. Few of the possible combinations of stroke neurorehabilitation have been tested experimentally; therefore, further studies are required to determine the appropriate combination for motor recovery. PMID:26157374
Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images
Zhou, Mingyuan; Chen, Haojun; Paisley, John; Ren, Lu; Li, Lingbo; Xing, Zhengming; Dunson, David; Sapiro, Guillermo; Carin, Lawrence
2013-01-01
Nonparametric Bayesian methods are considered for recovery of imagery based upon compressive, incomplete, and/or noisy measurements. A truncated beta-Bernoulli process is employed to infer an appropriate dictionary for the data under test and also for image recovery. In the context of compressive sensing, significant improvements in image recovery are manifested using learned dictionaries, relative to using standard orthonormal image expansions. The compressive-measurement projections are also optimized for the learned dictionary. Additionally, we consider simpler (incomplete) measurements, defined by measuring a subset of image pixels, uniformly selected at random. Spatial interrelationships within imagery are exploited through use of the Dirichlet and probit stick-breaking processes. Several example results are presented, with comparisons to other methods in the literature. PMID:21693421
Online intelligent controllers for an enzyme recovery plant: design methodology and performance.
Leite, M S; Fujiki, T L; Silva, F V; Fileti, A M F
2010-12-27
This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind. The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS), based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well. Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced error parameter (ITAE), lower power consumption, and better recovery of enzyme activity.
Online Intelligent Controllers for an Enzyme Recovery Plant: Design Methodology and Performance
Leite, M. S.; Fujiki, T. L.; Silva, F. V.; Fileti, A. M. F.
2010-01-01
This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind. The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS), based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well. Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced error parameter (ITAE), lower power consumption, and better recovery of enzyme activity. PMID:21234106
NASA Astrophysics Data System (ADS)
Gao, Yong; Liu, Jing; Yang, Yuan
2008-12-01
This paper analyses the reverse recovery characteristics and mechanism of SiGeC p-i-n diodes. Based on the integrated systems engineering (ISE) data, the critical physical models of SiGeC diodes are proposed. Based on hetero-junction band gap engineering, the softness factor increases over six times, reverse recovery time is over 30% short and there is a 20% decrease in peak reverse recovery current for SiGeC diodes with 20% of germanium and 0.5% of carbon, compared to Si diodes. Those advantages of SiGeC p-i-n diodes are more obvious at high temperature. Compared to lifetime control, SiGeC technique is more suitable for improving diode properties and the tradeoff between reverse recovery time and forward voltage drop can be easily achieved in SiGeC diodes. Furthermore, the high thermal-stability of SiGeC diodes reduces the costs of further process steps and offers more freedoms to device design.
Multimodal Deep Autoencoder for Human Pose Recovery.
Hong, Chaoqun; Yu, Jun; Wan, Jian; Tao, Dacheng; Wang, Meng
2015-12-01
Video-based human pose recovery is usually conducted by retrieving relevant poses using image features. In the retrieving process, the mapping between 2D images and 3D poses is assumed to be linear in most of the traditional methods. However, their relationships are inherently non-linear, which limits recovery performance of these methods. In this paper, we propose a novel pose recovery method using non-linear mapping with multi-layered deep neural network. It is based on feature extraction with multimodal fusion and back-propagation deep learning. In multimodal fusion, we construct hypergraph Laplacian with low-rank representation. In this way, we obtain a unified feature description by standard eigen-decomposition of the hypergraph Laplacian matrix. In back-propagation deep learning, we learn a non-linear mapping from 2D images to 3D poses with parameter fine-tuning. The experimental results on three data sets show that the recovery error has been reduced by 20%-25%, which demonstrates the effectiveness of the proposed method.
Silicon production process evaluations
NASA Technical Reports Server (NTRS)
1982-01-01
Engineering design of the third distillation column in the process was accomplished. The initial design is based on a 94.35% recovery of dichlorosilane in the distillate and a 99.9% recovery of trichlorosilane in the bottoms. The specified separation is achieved at a reflux ratio of 15 with 20 trays (equilibrium stages). Additional specifications and results are reported including equipment size, temperatures and pressure. Specific raw material requirements necessary to produce the silicon in the process are presented. The primary raw materials include metallurgical grade silicon, silicon tetrachloride, hydrogen, copper (catalyst) and lime (waste treatment). Hydrogen chloride is produced as by product in the silicon deposition. Cost analysis of the process was initiated during this reporting period.
Multispectral embedding-based deep neural network for three-dimensional human pose recovery
NASA Astrophysics Data System (ADS)
Yu, Jialin; Sun, Jifeng
2018-01-01
Monocular image-based three-dimensional (3-D) human pose recovery aims to retrieve 3-D poses using the corresponding two-dimensional image features. Therefore, the pose recovery performance highly depends on the image representations. We propose a multispectral embedding-based deep neural network (MSEDNN) to automatically obtain the most discriminative features from multiple deep convolutional neural networks and then embed their penultimate fully connected layers into a low-dimensional manifold. This compact manifold can explore not only the optimum output from multiple deep networks but also the complementary properties of them. Furthermore, the distribution of each hierarchy discriminative manifold is sufficiently smooth so that the training process of our MSEDNN can be effectively implemented only using few labeled data. Our proposed network contains a body joint detector and a human pose regressor that are jointly trained. Extensive experiments conducted on four databases show that our proposed MSEDNN can achieve the best recovery performance compared with the state-of-the-art methods.
Temperature effect on the recovery process in stretched Bombyx mori silk fibers
NASA Astrophysics Data System (ADS)
Aksakal, Baki
2016-01-01
The recovery process in stretched Bombyx mori silk fibers at different strain levels from 3% to 17% was investigated at room conditions during long period of time from 5 min to 20 days and more. How the temperature affects the recovery process in the silk fibers stretched at room conditions was examined at temperatures from 25 to 125 °C. The results of the recovery process at 25 °C revealed that although the recovery process from strain values higher than 3% strain continued slowly which caused quite high remaining deformation, a complete recovery from 3% strain was observed after 3 days. However, better recovery process was observed with increasing temperature which led to lower remaining deformations. For instance, a complete recovery from 6% strain was observed after 144 h and 3 h for the recovery process at 100 °C and 125 °C, respectively which indicates an important result that the deformations induced by stretching the silk fibers up to 6% strain are reversible and increasing temperature affects the velocity of this process significantly. The recovery process expressed in the strain (ε) and logarithm time coordinates showed a linear dependence for which a linear equation was proposed. Thus, this linear equation enables to estimate the required time for a complete recovery from different strain levels and remaining deformation at any stage of the recovery at different temperatures. The ATR-FTIR spectra of the stretched silk fibers during the recovery process revealed some changes in the absorbance ratios and shifts in the positions of the bands assigned to Cα-C, N-H stretching vibrations, and the Amide III mode. It was suggested that new formation of the hydrogen bonds between polypeptide chains especially in amorphous regions and the changes in the intra-sheet hydrogen bonds in β-sheet crystalline regions greatly contribute to the recovery process.
Lumber recovery from ponderosa pine in the Black Hills, South Dakota.
Marlin E. Plank
1985-01-01
A sample of 400 ponderosa pine (Pinus ponderosa Dougl. ex Laws.) trees was selected from each of two sale areas in the Black Hills National Forest, South Dakota. The logs were processed through two sawmills into 1-inch-thick boards. Estimates of volume and value recovery based on cubic volume and board foot volume are shown in tables and figures....
Americium recovery from reduction residues
Conner, W.V.; Proctor, S.G.
1973-12-25
A process for separation and recovery of americium values from container or bomb'' reduction residues comprising dissolving the residues in a suitable acid, adjusting the hydrogen ion concentration to a desired level by adding a base, precipitating the americium as americium oxalate by adding oxalic acid, digesting the solution, separating the precipitate, and thereafter calcining the americium oxalate precipitate to form americium oxide. (Official Gazette)
Kim, Daejin; Powell, Lawrence; Delmau, Lætitia H.; ...
2016-04-04
We present that the rare earth elements (REEs) play a vital role in the development of green energy and high-tech industries. In order to meet the fast-growing demand and to ensure sufficient supply of the REEs, it is essential to develop an efficient REE recovery process from post-consumer REE-containing products. In this research effort, we have developed a supported liquid membrane system utilizing polymeric hollow fiber modules to extract REEs from neodymium-based magnets with neutral extractants such as tetraoctyl digylcol amide (TODGA). The effect of process variables such as REE concentration, molar concentration of acid, and membrane area on REEmore » recovery was investigated. We have demonstrated the selective extraction and recovery of REEs such as Nd, Pr, and Dy without co-extraction of non-REEs from permanent NdFeB magnets through the supported liquid membrane system. The extracted REEs were then recovered by precipitation followed by the annealing step to obtain crystalline REE powders in nearly pure form. Finally, the recovered REE oxides were characterized by X-ray diffraction, scanning electron microscope coupled with energy-dispersive X-ray spectroscopy, and inductively coupled plasma–optical emission spectroscopy.« less
Mason, L; Peters, E; Williams, S C; Kumari, V
2017-01-17
Little is known about the psychobiological mechanisms of cognitive behavioural therapy for psychosis (CBTp) and which specific processes are key in predicting favourable long-term outcomes. Following theoretical models of psychosis, this proof-of-concept study investigated whether the long-term recovery path of CBTp completers can be predicted by the neural changes in threat-based social affective processing that occur during CBTp. We followed up 22 participants who had undergone a social affective processing task during functional magnetic resonance imaging along with self-report and clinician-administered symptom measures, before and after receiving CBTp. Monthly ratings of psychotic and affective symptoms were obtained retrospectively across 8 years since receiving CBTp, plus self-reported recovery at final follow-up. We investigated whether these long-term outcomes were predicted by CBTp-led changes in functional connections with dorsal prefrontal cortical and amygdala during the processing of threatening and prosocial facial affect. Although long-term psychotic symptoms were predicted by changes in prefrontal connections during prosocial facial affective processing, long-term affective symptoms were predicted by threat-related amygdalo-inferior parietal lobule connectivity. Greater increases in dorsolateral prefrontal cortex connectivity with amygdala following CBTp also predicted higher subjective ratings of recovery at long-term follow-up. These findings show that reorganisation occurring at the neural level following psychological therapy can predict the subsequent recovery path of people with psychosis across 8 years. This novel methodology shows promise for further studies with larger sample size, which are needed to better examine the sensitivity of psychobiological processes, in comparison to existing clinical measures, in predicting long-term outcomes.
Zhang, Zhi-Yuan; Zhang, Fu-Shen; Yao, TianQi
2017-10-01
The present study reports a mechanochemical (MC) process for effective recovery of copper (Cu) and precious metals (i.e. Pd and Ag) from e-waste scraps. Results indicated that the mixture of K 2 S 2 O 8 and NaCl (abbreviated as K 2 S 2 O 8 /NaCl hereafter) was the most effective co-milling reagents in terms of high recovery rate. After co-milling with K 2 S 2 O 8 /NaCl, soluble metallic compounds were produced and consequently benefit the subsequent leaching process. 99.9% of Cu and 95.5% of Pd in the e-waste particles could be recovered in 0.5mol/L diluted HCl in 15min. Ag was concentrated in the leaching residue as AgCl and then recovered in 1mol/L NH 3 solution. XRD and XPS analysis indicated that elemental metals in the raw materials were transformed into their corresponding oxidation state during ball milling process at low temperature, implying that solid-solid phase reactions is the reaction mechanism. Based on the results and thermodynamic parameters of the probable reactions, possible reaction pathways during ball milling were proposed. Suggestion on category of e-waste for ball milling process was put forward according to the experiment results. The designed metal recovery process of this study has the advantages of highly recovery rate and quick leaching speed. Thus, this study offers a promising and environmentally friendly method for recovering valuable metals from e-waste. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schiff, Nicholas D.
2013-01-01
Purpose of review Standard neurorehabilitation approaches have limited impact on motor recovery in patients with severe injuries. Consideration of the contributions of impaired arousal offers a novel approach to understand and enhance recovery. Recent findings Animal and human neuroimaging studies are elucidating the neuroanatomical bases of arousal and of arousal regulation, the process by which the cerebrum mobilizes resources. Studies of patients with disorders of consciousness have revealed that recovery of these processes is associated with marked improvements in motor performance. Recent studies have also demonstrated that patients with less severe brain injuries also have impaired arousal, manifesting as diminished sustained attention, fatigue and apathy. In these less severely injured patients it is difficult to connect disorders of arousal with motor recovery due to a lack of measures of arousal independent of motor function. Summary Arousal impairment is common after brain injury and likely plays a significant role in recovery of motor function. A more detailed understanding of this connection will help to develop new therapeutic strategies applicable for a wide range of patients. This requires new tools that continuously and objectively measure arousal in patients with brain injury, to correlate with detailed measures of motor performance and recovery. PMID:22002078
Error Recovery in the Time-Triggered Paradigm with FTT-CAN.
Marques, Luis; Vasconcelos, Verónica; Pedreiras, Paulo; Almeida, Luís
2018-01-11
Data networks are naturally prone to interferences that can corrupt messages, leading to performance degradation or even to critical failure of the corresponding distributed system. To improve resilience of critical systems, time-triggered networks are frequently used, based on communication schedules defined at design-time. These networks offer prompt error detection, but slow error recovery that can only be compensated with bandwidth overprovisioning. On the contrary, the Flexible Time-Triggered (FTT) paradigm uses online traffic scheduling, which enables a compromise between error detection and recovery that can achieve timely recovery with a fraction of the needed bandwidth. This article presents a new method to recover transmission errors in a time-triggered Controller Area Network (CAN) network, based on the Flexible Time-Triggered paradigm, namely FTT-CAN. The method is based on using a server (traffic shaper) to regulate the retransmission of corrupted or omitted messages. We show how to design the server to simultaneously: (1) meet a predefined reliability goal, when considering worst case error recovery scenarios bounded probabilistically by a Poisson process that models the fault arrival rate; and, (2) limit the direct and indirect interference in the message set, preserving overall system schedulability. Extensive simulations with multiple scenarios, based on practical and randomly generated systems, show a reduction of two orders of magnitude in the average bandwidth taken by the proposed error recovery mechanism, when compared with traditional approaches available in the literature based on adding extra pre-defined transmission slots.
Error Recovery in the Time-Triggered Paradigm with FTT-CAN
Pedreiras, Paulo; Almeida, Luís
2018-01-01
Data networks are naturally prone to interferences that can corrupt messages, leading to performance degradation or even to critical failure of the corresponding distributed system. To improve resilience of critical systems, time-triggered networks are frequently used, based on communication schedules defined at design-time. These networks offer prompt error detection, but slow error recovery that can only be compensated with bandwidth overprovisioning. On the contrary, the Flexible Time-Triggered (FTT) paradigm uses online traffic scheduling, which enables a compromise between error detection and recovery that can achieve timely recovery with a fraction of the needed bandwidth. This article presents a new method to recover transmission errors in a time-triggered Controller Area Network (CAN) network, based on the Flexible Time-Triggered paradigm, namely FTT-CAN. The method is based on using a server (traffic shaper) to regulate the retransmission of corrupted or omitted messages. We show how to design the server to simultaneously: (1) meet a predefined reliability goal, when considering worst case error recovery scenarios bounded probabilistically by a Poisson process that models the fault arrival rate; and, (2) limit the direct and indirect interference in the message set, preserving overall system schedulability. Extensive simulations with multiple scenarios, based on practical and randomly generated systems, show a reduction of two orders of magnitude in the average bandwidth taken by the proposed error recovery mechanism, when compared with traditional approaches available in the literature based on adding extra pre-defined transmission slots. PMID:29324723
NASA Technical Reports Server (NTRS)
Canaris, J.
1991-01-01
A new logic family, which is immune to single event upsets, is described. Members of the logic family are capable of recovery, regardless of the shape of the upsetting event. Glitch propagation from an upset node is also blocked. Logic diagrams for an Inverter, Nor, Nand, and Complex Gates are provided. The logic family can be implemented in a standard, commercial CMOS process with no additional masks. DC, transient, static power, upset recovery and layout characteristics of the new family, based on a commercial 1 micron CMOS N-Well process, are described.
NASA Astrophysics Data System (ADS)
de Alwis Pitts, Dilkushi A.; So, Emily
2017-12-01
The availability of Very High Resolution (VHR) optical sensors and a growing image archive that is frequently updated, allows the use of change detection in post-disaster recovery and monitoring for robust and rapid results. The proposed semi-automated GIS object-based method uses readily available pre-disaster GIS data and adds existing knowledge into the processing to enhance change detection. It also allows targeting specific types of changes pertaining to similar man-made objects such as buildings and critical facilities. The change detection method is based on pre/post normalized index, gradient of intensity, texture and edge similarity filters within the object and a set of training data. More emphasis is put on the building edges to capture the structural damage in quantifying change after disaster. Once the change is quantified, based on training data, the method can be used automatically to detect change in order to observe recovery over time in potentially large areas. Analysis over time can also contribute to obtaining a full picture of the recovery and development after disaster, thereby giving managers a better understanding of productive management and recovery practices. The recovery and monitoring can be analyzed using the index in zones extending from to epicentre of disaster or administrative boundaries over time.
Energy recovery from solid waste. Volume 2: Technical report. [pyrolysis and biodegradation
NASA Technical Reports Server (NTRS)
Huang, C. J.; Dalton, C.
1975-01-01
A systems analysis of energy recovery from solid waste demonstrates the feasibility of several current processes for converting solid waste to an energy form. The social, legal, environmental, and political factors are considered in depth with recommendations made in regard to new legislation and policy. Biodegradation and thermal decomposition are the two areas of disposal that are considered with emphasis on thermal decomposition. A technical and economic evaluation of a number of available and developing energy-recovery processes is given. Based on present technical capabilities, use of prepared solid waste as a fuel supplemental to coal seems to be the most economic process by which to recover energy from solid waste. Markets are considered in detail with suggestions given for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste, and a new pyrolysis process is suggested. An application of the methods of this study are applied to Houston, Texas.
Multi-laboratory survey of qPCR enterococci analysis method performance
Quantitative polymerase chain reaction (qPCR) has become a frequently used technique for quantifying enterococci in recreational surface waters, but there are several methodological options. Here we evaluated how three method permutations, type of mastermix, sample extract dilution and use of controls in results calculation, affect method reliability among multiple laboratories with respect to sample interference. Multiple samples from each of 22 sites representing an array of habitat types were analyzed using EPA Method 1611 and 1609 reagents with full strength and five-fold diluted extracts. The presence of interference was assessed three ways: using sample processing and PCR amplifications controls; consistency of results across extract dilutions; and relative recovery of target genes from spiked enterococci in water sample compared to control matrices with acceptable recovery defined as 50 to 200%. Method 1609, which is based on an environmental mastermix, was found to be superior to Method 1611, which is based on a universal mastermix. Method 1611 had over a 40% control assay failure rate with undiluted extracts and a 6% failure rate with diluted extracts. Method 1609 failed in only 11% and 3% of undiluted and diluted extracts analyses. Use of sample processing control assay results in the delta-delta Ct method for calculating relative target gene recoveries increased the number of acceptable recovery results. Delta-delta tended to bias recoveries fr
A Grounded Theory of Mothering in the Early Years for Women Recovering From Substance Use.
Marcellus, Lenora
2017-08-01
Women in recovery from addiction experience significant sociostructural barriers to reestablishing self, family, and home after having a baby. The aim of this grounded theory study was to describe pathways that women and their families followed and how transitions were experienced in the early years after receiving services through an integrated community-based maternity program. Eighteen women completed questionnaires and participated in a series of semistructured interviews over 2 years. The overall process women experienced was that of holding it together, which women did by restoring their sense of self during recovery, becoming a strong center for their family, and creating a sense of home no matter what the circumstances. Key elements supporting women in their transition to recovery and parenthood included longer term health, social, and recovery programs and services that addressed determinants of health (in particular, gender, housing, and income), and receiving support provided from strengths-based perspectives.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-20
A test version of the Orion crew module is on display for viewing by service members, base employees and their families at Naval Base San Diego in California, before Underway Recovery Test 5 (URT-5). NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test vehicle aboard the USS San Diego to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-20
A base employee and his family check out a test version of the Orion crew module at Naval Base San Diego in California before Underway Recovery Test 5 (URT-5). NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test vehicle aboard the USS San Diego to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Yadav, Kartikey K; Dasgupta, Kinshuk; Singh, Dhruva K; Varshney, Lalit; Singh, Harvinderpal
2015-03-06
Polyethersulfone-based beads encapsulating di-2-ethylhexyl phosphoric acid have been synthesized and evaluated for the recovery of rare earth values from the aqueous media. Percentage recovery and the sorption behavior of Dy(III) have been investigated under wide range of experimental parameters using these beads. Taguchi method utilizing L-18 orthogonal array has been adopted to identify the most influential process parameters responsible for higher degree of recovery with enhanced sorption of Dy(III) from chloride medium. Analysis of variance indicated that the feed concentration of Dy(III) is the most influential factor for equilibrium sorption capacity, whereas aqueous phase acidity influences the percentage recovery most. The presence of polyvinyl alcohol and multiwalled carbon nanotube modified the internal structure of the composite beads and resulted in uniform distribution of organic extractant inside polymeric matrix. The experiment performed under optimum process conditions as predicted by Taguchi method resulted in enhanced Dy(III) recovery and sorption capacity by polymeric beads with minimum standard deviation. Copyright © 2015 Elsevier B.V. All rights reserved.
Symbolic healing of early psychosis: psychoeducation and sociocultural processes of recovery.
Larsen, John Aggergaard
2007-09-01
This article analyzes sociocultural processes of recovery in a Danish mental health service providing two years of integrated biopsychosocial treatment following first-episode psychosis. The study is based on ethnographic research in the service and person-centered involvement with 15 clients. The analysis applies Dow's [1986 American Anthropologist 88:56-69] model of universal components of symbolic healing to elucidate sociocultural aspects of therapeutic efficacy that are alternatively disregarded as placebo or nonspecific effects. It is demonstrated how staff engaged with clients to deliver "psychoeducation" that provided scientific and biomedical theories about mental illness, constituting a shared "mythic world" that was accepted as an experiential truth and used to explain clients' illness experiences. The analysis highlights the need to supplement attention in Dow's model to the healing procedure with consideration of variability in the healing process. Depending on individual responses to the intervention, the staff's professional backgrounds and staff-client relationships different recovery models were applied. One suggested "episodic psychosis" and full recovery, and the other suggested "chronic schizophrenia" and the necessity of comprehensive life adjustments to the mental illness. The recovery models influenced clients' perspectives on illness and self as they engaged in identity work, negotiating future plans and individual life projects by including also alternative systems of explanation from the wider cultural repertoire.
Software fault tolerance in computer operating systems
NASA Technical Reports Server (NTRS)
Iyer, Ravishankar K.; Lee, Inhwan
1994-01-01
This chapter provides data and analysis of the dependability and fault tolerance for three operating systems: the Tandem/GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Based on measurements from these systems, basic software error characteristics are investigated. Fault tolerance in operating systems resulting from the use of process pairs and recovery routines is evaluated. Two levels of models are developed to analyze error and recovery processes inside an operating system and interactions among multiple instances of an operating system running in a distributed environment. The measurements show that the use of process pairs in Tandem systems, which was originally intended for tolerating hardware faults, allows the system to tolerate about 70% of defects in system software that result in processor failures. The loose coupling between processors which results in the backup execution (the processor state and the sequence of events occurring) being different from the original execution is a major reason for the measured software fault tolerance. The IBM/MVS system fault tolerance almost doubles when recovery routines are provided, in comparison to the case in which no recovery routines are available. However, even when recovery routines are provided, there is almost a 50% chance of system failure when critical system jobs are involved.
NASA Astrophysics Data System (ADS)
Drummond, Mark A.; Stier, Michael P.; Auch, Roger F.; Taylor, Janis L.; Griffith, Glenn E.; Riegle, Jodi L.; Hester, David J.; Soulard, Christopher E.; McBeth, Jamie L.
2015-11-01
The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8 % of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15 % of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83 %. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3 % of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory.
Drummond, Mark A.; Stier, Michael P.; Auch, Roger F.; Taylor, Janis L.; Griffith, Glenn E.; Hester, David J.; Riegle, Jodi L.; Soulard, Christopher E.; McBeth, Jamie L.
2015-01-01
The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8 % of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15 % of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83 %. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3 % of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory.
Drummond, Mark A; Stier, Michael P; Auch, Roger F; Taylor, Janis L; Griffith, Glenn E; Riegle, Jodi L; Hester, David J; Soulard, Christopher E; McBeth, Jamie L
2015-11-01
The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8% of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15% of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83%. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3% of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory.
NASA Astrophysics Data System (ADS)
Kim, Cheolsun; Lee, Woong-Bi; Ju, Gun Wu; Cho, Jeonghoon; Kim, Seongmin; Oh, Jinkyung; Lim, Dongsung; Lee, Yong Tak; Lee, Heung-No
2017-02-01
In recent years, there has been an increasing interest in miniature spectrometers for research and development. Especially, filter-array-based spectrometers have advantages of low cost and portability, and can be applied in various fields such as biology, chemistry and food industry. Miniaturization in optical filters causes degradation of spectral resolution due to limitations on spectral responses and the number of filters. Nowadays, many studies have been reported that the filter-array-based spectrometers have achieved resolution improvements by using digital signal processing (DSP) techniques. The performance of the DSP-based spectral recovery highly depends on the prior information of transmission functions (TFs) of the filters. The TFs vary with respect to an incident angle of light onto the filter-array. Conventionally, it is assumed that the incident angle of light on the filters is fixed and the TFs are known to the DSP. However, the incident angle is inconstant according to various environments and applications, and thus TFs also vary, which leads to performance degradation of spectral recovery. In this paper, we propose a method of incident angle estimation (IAE) for high resolution spectral recovery in the filter-array-based spectrometers. By exploiting sparse signal reconstruction of the L1- norm minimization, IAE estimates an incident angle among all possible incident angles which minimizes the error of the reconstructed signal. Based on IAE, DSP effectively provides a high resolution spectral recovery in the filter-array-based spectrometers.
ERIC Educational Resources Information Center
Reynolds, Meree; Wheldall, Kevin; Madelaine, Alison
2009-01-01
This rejoinder provides comment on issues raised by Schwartz, Hobsbaum, Briggs and Scull (2009) in their article about evidence-based practice and Reading Recovery (RR), written in response to Reynolds and Wheldall (2007). Particular attention is paid to the processes and findings of the What Works Clearinghouse evaluation of RR. The suggestion…
Error recovery in shared memory multiprocessors using private caches
NASA Technical Reports Server (NTRS)
Wu, Kun-Lung; Fuchs, W. Kent; Patel, Janak H.
1990-01-01
The problem of recovering from processor transient faults in shared memory multiprocesses systems is examined. A user-transparent checkpointing and recovery scheme using private caches is presented. Processes can recover from errors due to faulty processors by restarting from the checkpointed computation state. Implementation techniques using checkpoint identifiers and recovery stacks are examined as a means of reducing performance degradation in processor utilization during normal execution. This cache-based checkpointing technique prevents rollback propagation, provides rapid recovery, and can be integrated into standard cache coherence protocols. An analytical model is used to estimate the relative performance of the scheme during normal execution. Extensions to take error latency into account are presented.
Pervaporation and vapor permeation are membrane-based processes proposed as alternatives to conventional separation technologies. Applications range from organic solvent removal from water, ethanol or butanol recovery from fermentation broths, solvent/biofuel dehydration to meet ...
Pervaporation and vapor permeation are membrane-based processes which have been proposed as alternatives to conventional separation technologies. Applications range from organic solvent removal from water, ethanol or butanol recovery from dilute fermentation broths, solvent/biofu...
Kanehara, Akiko; Kotake, Risa; Miyamoto, Yuki; Kumakura, Yousuke; Morita, Kentaro; Ishiura, Tomoko; Shimizu, Kimiko; Fujieda, Yumiko; Ando, Shuntaro; Kondo, Shinsuke; Kasai, Kiyoto
2017-11-07
Personal recovery is increasingly recognised as an important outcome measure in mental health services. This study aimed to develop a Japanese version of the Questionnaire about the Process of Recovery (QPR-J) and test its validity and reliability. The study comprised two stages that employed the cross-sectional and prospective cohort designs, respectively. We translated the questionnaire using a standard translation/back-translation method. Convergent validity was examined by calculating Pearson's correlation coefficients with scores on the Recovery Assessment Scale (RAS) and the Short-Form-8 Health Survey (SF-8). An exploratory factor analysis (EFA) was conducted to examine factorial validity. We used intraclass correlation and Cronbach's alpha to examine the test-retest and internal consistency reliability of the QPR-J's 22-item full scale, 17-item intrapersonal and 5-item interpersonal subscales. We conducted an EFA along with a confirmatory factor analysis (CFA). Data were obtained from 197 users of mental health services (mean age: 42.0 years; 61.9% female; 49.2% diagnosed with schizophrenia). The QPR-J showed adequate convergent validity, exhibiting significant, positive correlations with the RAS and SF-8 scores. The QPR-J's full version, subscales, showed excellent test-retest and internal consistency reliability, with the exception of acceptable but relatively low internal consistency reliability for the interpersonal subscale. Based on the results of the CFA and EFA, we adopted the factor structure extracted from the original 2-factor model based on the present CFA. The QPR-J is an adequately valid and reliable measure of the process of recovery among Japanese users with mental health services.
Groves, Kate; Cryar, Adam; Walker, Michael; Quaglia, Milena
2018-01-01
Assessing the recovery of food allergens from solid processed matrixes is one of the most difficult steps that needs to be overcome to enable the accurate quantification of protein allergens by immunoassay and MS. A feasibility study is described herein applying International System of Units (SI)-traceably quantified milk protein solutions to assess recovery by an improved extraction method. Untargeted MS analysis suggests that this novel extraction method can be further developed to provide high recoveries for a broad range of food allergens. A solution of α-casein was traceably quantified to the SI for the content of α-S1 casein. Cookie dough was prepared by spiking a known amount of the SI-traceable quantified solution into a mixture of flour, sugar, and soya spread, followed by baking. A novel method for the extraction of protein food allergens from solid matrixes based on proteolytic digestion was developed, and its performance was compared with the performance of methods reported in the literature.
Wang, Jie-Sheng; Han, Shuang
2015-01-01
For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, a feed-forward neural network (FNN) based soft-sensor model optimized by the hybrid algorithm combining particle swarm optimization (PSO) algorithm and gravitational search algorithm (GSA) is proposed. Although GSA has better optimization capability, it has slow convergence velocity and is easy to fall into local optimum. So in this paper, the velocity vector and position vector of GSA are adjusted by PSO algorithm in order to improve its convergence speed and prediction accuracy. Finally, the proposed hybrid algorithm is adopted to optimize the parameters of FNN soft-sensor model. Simulation results show that the model has better generalization and prediction accuracy for the concentrate grade and tailings recovery rate to meet the online soft-sensor requirements of the real-time control in the flotation process. PMID:26583034
Exploring identity within the recovery process of people with serious mental illnesses.
Buckley-Walker, Kellie; Crowe, Trevor; Caputi, Peter
2010-01-01
To examine self-identity within the recovery processes of people with serious mental illnesses using a repertory grid methodology. Cross-sectional study involving 40 mental health service consumers. Participants rated different "self" and "other" elements on the repertory grid against constructs related to recovery, as well as other recovery focused measures. Perceptions of one's "ideal self" represented more advanced recovery in contrast to perceptions of "a person mentally unwell." Current perceptions of self were most similar to perceptions of "usual self" and least similar to "a person who is mentally unwell." Increased identification with one's "ideal self" reflected increased hopefulness in terms of recovery. The recovery repertory grid shows promise in clinical practice, in terms of exploring identity as a key variable within mental health recovery processes. Distance measures of similarity between various self-elements, including perceptions of others, maps logically against the recovery process of hope.
Functional recovery in patients with schizophrenia: recommendations from a panel of experts.
Lahera, Guillermo; Gálvez, José L; Sánchez, Pedro; Martínez-Roig, Miguel; Pérez-Fuster, J V; García-Portilla, Paz; Herrera, Berta; Roca, Miquel
2018-06-05
The management of schizophrenia is evolving towards a more comprehensive model based on functional recovery. The concept of functional recovery goes beyond clinical remission and encompasses multiple aspects of the patient's life, making it difficult to settle on a definition and to develop reliable assessment criteria. In this consensus process based on a panel of experts in schizophrenia, we aimed to provide useful insights on functional recovery and its involvement in clinical practice and clinical research. After a literature review of functional recovery in schizophrenia, a scientific committee of 8 members prepared a 75-item questionnaire, including 6 sections: (I) the concept of functional recovery (9 items), (II) assessment of functional recovery (23 items), (III) factors influencing functional recovery (16 items), (IV) psychosocial interventions and functional recovery (8 items), (V) pharmacological treatment and functional recovery (14 items), and (VI) the perspective of patients and their relatives on functional recovery (5 items). The questionnaire was sent to a panel of 53 experts, who rated each item on a 9-point Likert scale. Consensus was achieved in a 2-round Delphi dynamics, using the median (interquartile range) scores to consider consensus in either agreement (scores 7-9) or disagreement (scores 1-3). Items not achieving consensus in the first round were sent back to the experts for a second consideration. After the two recursive rounds, consensus was achieved in 64 items (85.3%): 61 items (81.3%) in agreement and 3 (4.0%) in disagreement, all of them from section II (assessment of functional recovery). Items not reaching consensus were related to the concepts of functional recovery (1 item, 1.3%), functional assessment (5 items, 6.7%), factors influencing functional recovery (3 items, 4.0%), and psychosocial interventions (2 items, 5.6%). Despite the lack of a well-defined concept of functional recovery, we identified a trend towards a common archetype of the definition and factors associated with functional recovery, as well as its applicability in clinical practice and clinical research.
Men, fire, and burns: Stories of fighting, healing, and emotions.
Thakrar, Sulaye; Hunter, Tevya A; Medved, Maria I; Hiebert-Murphy, Diane; Brockmeier, Jens; Sareen, Jitender; Logsetty, Sarvesh
2015-12-01
Burn recovery is a difficult process full of physical and psychological challenges. With increasing survival rates, there has been renewed interest in the psychological aspects of burn recovery. As men represent over 70% of all burn patients, it is particularly important to study how men experience and interpret this process. We interviewed a purposeful sample of ten adult male burn survivors from different age and cultural groups in the first 16 weeks of their recovery and asked them to discuss the problems they faced. Narrative analysis was used to interpret the interviews. In their narratives, the men tended to emphasize gains in their physical recovery; that is, they often used metaphors of "fighting" to demonstrate how committed they were to their healing. Further, they put less emphasis on the emotional aspects of their recovery. In our discussion, we compare these complex storylines to coping strategies identified in the literature and discuss why men may choose these strategies. Based on our findings we argue that it is important for health care providers to be aware of societal pressures which may influence burn survivors to minimize affective elements of burn recovery. Additionally, we encourage exploring and capitalizing on men's "fighting" stories during rehabilitation in order to foster an active role which men can take in their recovery. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Grisales Díaz, Víctor Hugo; Olivar Tost, Gerard
2017-01-01
Dual extraction, high-temperature extraction, mixture extraction, and oleyl alcohol extraction have been proposed in the literature for acetone, butanol, and ethanol (ABE) production. However, energy and economic evaluation under similar assumptions of extraction-based separation systems are necessary. Hence, the new process proposed in this work, direct steam distillation (DSD), for regeneration of high-boiling extractants was compared with several extraction-based separation systems. The evaluation was performed under similar assumptions through simulation in Aspen Plus V7.3 ® software. Two end distillation systems (number of non-ideal stages between 70 and 80) were studied. Heat integration and vacuum operation of some units were proposed reducing the energy requirements. Energy requirement of hybrid processes, substrate concentration of 200 g/l, was between 6.4 and 8.3 MJ-fuel/kg-ABE. The minimum energy requirements of extraction-based separation systems, feeding a water concentration in the substrate equivalent to extractant selectivity, and ideal assumptions were between 2.6 and 3.5 MJ-fuel/kg-ABE, respectively. The efficiencies of recovery systems for baseline case and ideal evaluation were 0.53-0.57 and 0.81-0.84, respectively. The main advantages of DSD were the operation of the regeneration column at atmospheric pressure, the utilization of low-pressure steam, and the low energy requirements of preheating. The in situ recovery processes, DSD, and mixture extraction with conventional regeneration were the approaches with the lowest energy requirements and total annualized costs.
Bacteria transport through porous media. Annual report, December 31, 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yen, T.F.
1986-09-01
The following five chapters in this report have been processed separately for inclusion in the Energy Data Base: (1) theoretical model of convective diffusion of motile and non-motile bacteria toward solid surfaces; (2) interfacial electrochemistry of oxide surfaces in oil-bearing sands and sandstones; (3) effects of sodium pyrophosphate additive on the ''huff and puff''/nutrient flooding MEOR process; (4) interaction of Escherichia coli B, B/4, and bacteriophage T4D with Berea sandstone rock in relation to enhanced oil recovery; and (5) transport of bacteria in porous media and its significance in microbial enhanced oil recovery.
Syrov, V N; Shakhmurova, G A; Khushbaktova, Z A
2008-01-01
Influence of phytoecdysteroids (isolated from Ajuga turkestanica) and bemithyl on the duration of swimming of laboratory animals (mice, rats) under various experimental conditions was studied. Turkesteron and cyasteron increased duration of dynamic work carried out by animals, decreased fatigue, and accelerated recovery processes to a greater extent that did bemithyl. The positive influence of phytoecdysteroids on the working capacity is based on the activation of metabolic processes in skeletal muscles, directed to support the homeostasis of energy production. Phytoecdysteroids also accelerate recovery of immune reactions which are decreased due to the exhausting physical work.
Apparatus and method for extraction of chemicals from aquifer remediation effluent water
McMurtrey, Ryan D.; Ginosar, Daniel M.; Moor, Kenneth S.; Shook, G. Michael; Moses, John M.; Barker, Donna L.
2002-01-01
An apparatus and method for extraction of chemicals from an aquifer remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating aquifers contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.
Method and system for extraction of chemicals from aquifer remediation effluent water
McMurtrey, Ryan D.; Ginosar, Daniel M.; Moor, Kenneth S.; Shook, G. Michael; Barker, Donna L.
2003-01-01
A method and system for extraction of chemicals from an groundwater remediation aqueous effluent are provided. The extraction method utilizes a critical fluid for separation and recovery of chemicals employed in remediating groundwater contaminated with hazardous organic substances, and is particularly suited for separation and recovery of organic contaminants and process chemicals used in surfactant-based remediation technologies. The extraction method separates and recovers high-value chemicals from the remediation effluent and minimizes the volume of generated hazardous waste. The recovered chemicals can be recycled to the remediation process or stored for later use.
NASA Astrophysics Data System (ADS)
Gu, Dongdong; Ma, Chenglong
2018-05-01
Selective laser melting (SLM) additive manufacturing technology was applied to synthesize NiTi-based composites via using ball-milled Ti, Ni, and TiC mixed powder. By transmission electron microscope (TEM) characterization, it indicated that the B2 (NiTi) matrix was obtained during SLM processing. In spite of more Ti content (the Ti/Ni ratio >1), a mass of Ni-rich intermetallic compounds containing Ni4Ti3 with nanostructure features and eutectic Ni3Ti around in-situ Ti6C3.75 dendrites were precipitated. Influence of the applied laser volume energy density (VED) on the morphology and content of Ni4Ti3 precipitate was investigated. Besides, nanoindentation test of the matrix was performed in order to assess pseudoelastic recovery behavior of SLM processed NiTi-based composites. At a relatively high VED of 533 J/mm3, the maximum pseudoelastic recovery was obtained due to the lowest content of Ni4Ti3 precipitates. Furthermore, the precipitation mechanism of in-situ Ni4Ti3 was present based on the redistribution of titanium element and thermodynamics analysis, and then the relationship of Ni4Ti3 precipitate, VED and pseudoelastic recovery behavior was also revealed.
Shen, Ye; Tan, Michelle Ting Ting; Chong, Clive; Xiao, Wende; Wang, Chi-Hwa
2017-10-01
Animal manure waste is considered as an environmental challenge especially in farming areas mainly because of gaseous emission and water pollution. Among all the pollutants emitted from manure waste, ammonia is of greatest concern as it could contribute to formation of aerosols in the air and could hardly be controlled by traditional disposal methods like landfill or composting. On the other hand, manure waste is also a renewable source for energy production. In this work, an environmental friendly animal waste disposal process with combined ammonia recovery and energy production was proposed and investigated both experimentally and economically. Lab-scale feasibility study results showed that 70% of ammonia in the manure waste could be converted to struvite as fertilizer, while solid manure waste was successfully gasified in a 10kW downdraft fixed-bed gasifier producing syngas with the higher heating value of 4.9MJ/(Nm 3 ). Based on experimental results, economic study for the system was carried out using a cost-benefit analysis to investigate the financial feasibility based on a Singapore case study. In addition, for comparison, schemes of gasification without ammonia removal and incineration were also studied for manure waste disposal. The results showed that the proposed gasification-based manure waste treatment process integrated with ammonia recovery was most financially viable. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ionic Liquids Enabling Revolutionary Closed-Loop Life Support
NASA Technical Reports Server (NTRS)
Brown, Brittany R.; Abney, Morgan B.; Karr, Laurel; Stanley, Christine M.; Paley, Steve
2017-01-01
Minimizing resupply from Earth is essential for future long duration manned missions. The current oxygen recovery system aboard the International Space Station is capable of recovering approximately 50% of the oxygen from metabolic carbon dioxide. For long duration manned missions, a minimum of 75% oxygen recovery is targeted with a goal of greater than 90%. Theoretically, the Bosch process can recover 100% of oxygen, making it a promising technology for oxygen recovery for long duration missions. However, the Bosch process produces elemental carbon which ultimately fouls the catalyst. Once the catalyst performance is compromised, it must be replaced resulting in undesired resupply mass. Based on the performance of a Bosch system designed by NASA in the 1990's, a three year Martian mission would require approximately 1315 kg (2850 lbs) of catalyst resupply. It may be possible to eliminate catalyst resupply with a fully regenerable system using an Ionic Liquid (IL)-based Bosch system. In 2016, we reported the feasibility of using ILs to produce an iron catalyst on a copper substrate and to regenerate the iron catalyst by extracting the iron from the copper substrate and product carbon. Additionally, we described a basic system concept for an IL-based Bosch. Here we report the results of efforts to scale catalyst preparation, to scale catalyst regeneration, and to scale the carbon formation processing rate of a single reactor.
Ionic Liquids Enabling Revolutionary Closed-Loop Life Support
NASA Technical Reports Server (NTRS)
Brown, Brittany R.; Abney, Morgan B.; Karr, Laurel J.; Stanley, Christine M.; Donovan, Dave N.; Palsey, Mark S.
2017-01-01
Minimizing resupply from Earth is essential for future long duration manned missions. The current oxygen recovery system aboard the International Space Station is capable of recovering approximately 50% of the oxygen from metabolic carbon dioxide. For long duration manned missions, a minimum of 75% oxygen recovery is targeted with a goal of greater than 90%. Theoretically, the Bosch process can recover 100% of oxygen, making it a promising technology for oxygen recovery for long duration missions. However, the Bosch process produces elemental carbon which ultimately fouls the catalyst. Once the catalyst performance is compromised, it must be replaced resulting in undesired resupply mass. Based on the performance of a Bosch system designed by NASA in the 1990's, a three year Martian mission would require approximately 1315 kg (2850 lbs) of catalyst resupply. It may be possible to eliminate catalyst resupply with a fully regenerable system using an Ionic Liquid (IL)-based Bosch system. In 2016, we reported the feasibility of using ILs to produce an iron catalyst on a copper substrate and to regenerate the iron catalyst by extracting the iron from the copper substrate and product carbon. Additionally, we described a basic system concept for an IL-based Bosch. Here we report the results of efforts to scale catalyst preparation, catalyst regeneration, and to scale the carbon formation processing rate of a single reactor.
NASA Astrophysics Data System (ADS)
Piao, Linfeng; Park, Hyungmin; Jo, Chris
2016-11-01
We present a theoretical model of the recovery rate of platelet and white blood cell in the process of centrifugal separation of platelet-rich plasma (PRP). For the practically used conditions in the field, the separation process is modeled as a one-dimensional particle sedimentation; a quasi-linear partial differential equation is derived based on the kinematic-wave theory. This is solved to determine the interface positions between supernatant-suspension and suspension-sediment, used to estimate the recovery rate of the plasma. While correcting the Brown's hypothesis (1989) claiming that the platelet recovery is linearly proportional to that of plasma, we propose a new correlation model for prediction of the platelet recovery, which is a function of the volume of whole blood, centrifugal acceleration and time. For a range of practical parameters, such as hematocrit, volume of whole blood and centrifugation (time and acceleration), the predicted recovery rate shows a good agreement with available clinical data. We propose that this model is further used to optimize the preparation method of PRP that satisfies the customized case. Supported by a Grant (MPSS-CG-2016-02) through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.
The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step...
The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step,...
Human Support Technology Research to Enable Exploration
NASA Technical Reports Server (NTRS)
Joshi, Jitendra
2003-01-01
Contents include the following: Advanced life support. System integration, modeling, and analysis. Progressive capabilities. Water processing. Air revitalization systems. Why advanced CO2 removal technology? Solid waste resource recovery systems: lyophilization. ISRU technologies for Mars life support. Atmospheric resources of Mars. N2 consumable/make-up for Mars life. Integrated test beds. Monitoring and controlling the environment. Ground-based commercial technology. Optimizing size vs capability. Water recovery systems. Flight verification topics.
Hope for recovery - how clinicians may facilitate this in their work.
Hobbs, Mia; Baker, Martyn
2012-04-01
The importance of having hope for recovery has been highlighted in numerous qualitative studies of recovery. It is identified as a vital part of this process, and guidelines suggest that service providers should therefore facilitate hope in their clinical work; however, they do not indicate how this guidance can be operationalised. To identify the sources of hope for recovery based on the accounts of people with experience of recovery; to ascertain how these accounts show service providers can facilitate such hope in their therapeutic work. Semi-structured interviews were conducted with eight people with experience of recovering from mental health problems. A grounded theory analysis was undertaken. A model conceptualising the role of hope in recovery was developed with three categories: "influence of others on hope", "personal hope" and "doing recovery". The model indicates a complex interaction between hope and recovery with an important role for social context and interpersonal relationships, including those with clinicians. Mental health service providers occupy a powerful position in relation to service users' hope, and must carefully consider how they communicate their own hopefulness about clients' recovery. Suggestions are made about facilitating hope for recovery.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-20
A base employee checks out an inflatable scale model of NASA’s Space Launch System rocket with Orion on the mobile launcher at Naval Base San Diego in California. Service members, base employees and their families had the opportunity to view a test version of the Orion crew module before Underway Recovery Test 5 (URT-5). NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test vehicle aboard the USS San Diego to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
NASA Astrophysics Data System (ADS)
Mehrpooya, Mehdi; Ansarinasab, Hojat; Moftakhari Sharifzadeh, Mohammad Mehdi; Rosen, Marc A.
2017-10-01
An integrated power plant with a net electrical power output of 3.71 × 105 kW is developed and investigated. The electrical efficiency of the process is found to be 60.1%. The process includes three main sub-systems: molten carbonate fuel cell system, heat recovery section and cryogenic carbon dioxide capturing process. Conventional and advanced exergoeconomic methods are used for analyzing the process. Advanced exergoeconomic analysis is a comprehensive evaluation tool which combines an exergetic approach with economic analysis procedures. With this method, investment and exergy destruction costs of the process components are divided into endogenous/exogenous and avoidable/unavoidable parts. Results of the conventional exergoeconomic analyses demonstrate that the combustion chamber has the largest exergy destruction rate (182 MW) and cost rate (13,100 /h). Also, the total process cost rate can be decreased by reducing the cost rate of the fuel cell and improving the efficiency of the combustion chamber and heat recovery steam generator. Based on the total avoidable endogenous cost rate, the priority for modification is the heat recovery steam generator, a compressor and a turbine of the power plant, in rank order. A sensitivity analysis is done to investigate the exergoeconomic factor parameters through changing the effective parameter variations.
Trust recovery model of Ad Hoc network based on identity authentication scheme
NASA Astrophysics Data System (ADS)
Liu, Jie; Huan, Shuiyuan
2017-05-01
Mobile Ad Hoc network trust model is widely used to solve mobile Ad Hoc network security issues. Aiming at the problem of reducing the network availability caused by the processing of malicious nodes and selfish nodes in mobile Ad Hoc network routing based on trust model, an authentication mechanism based on identity authentication mobile Ad Hoc network is proposed, which uses identity authentication to identify malicious nodes, And trust the recovery of selfish nodes in order to achieve the purpose of reducing network congestion and improving network quality. The simulation results show that the implementation of the mechanism can effectively improve the network availability and security.
Improved recovery of bacteriophage M13 using an ATPS-based bioprocess.
González-Mora, Alejandro; Ruiz-Ruiz, Federico; Benavides, Jorge; Rito-Palomares, Marco
2018-06-08
Aqueous two-phase systems (ATPS) have been widely exploited for the recovery and partial purification of biological compounds. Recently our research group characterized the primary recovery and partial purification of bacteriophage M13 using polymer-salt and ionic liquid-salt ATPS. From such study, it was concluded that PEG 400-potassium phosphate ATPS with a volume ratio (V R ) of 1 and 25% w/w TLL were the best suitable for the primary recovery of bacteriophage M13 from a crude extract, achieving a recovery yield of 83.3%. Although such system parameters were proven to be adequate for the recovery of the product of interest, it was concluded that further optimization was desirable and attainable by studying the effect of additional system parameters such as V R , concentration of neutral salt (M) and sample load (% w/w). This research work presents an optimization of a previously reported process for the recovery of bacteriophage M13 directly from a crude extract using ATPS. The increase in V R and sample load showed a positive effect in the recovery of M13 indicating an improved performance of the proposed ATPS. According to the results presented here, a system composed of PEG 400 17.2% (w/w), potassium phosphate 15.5% (w/w) and a sample load of 30% (w/w) allowed the recovery of M13 directly from a crude extract with a top phase recovery of 80.1%, representing an increase of 4.8 times in the final concentration and a reduction of 2.65 times in the processing costs. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.
ADVANCED SULFUR CONTROL CONCEPTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael
Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce themore » number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).« less
Integration of multispectral and SAR data for monitoring forest ecosystems recovery after fire
NASA Astrophysics Data System (ADS)
Stankova, Nataliya; Nedkov, Roumen; Ivanova, Iva; Avetisyan, Daniela
2017-09-01
The aim of this study is assessing the impacts and monitoring the condition and recovery processes of forest ecosystems after fire based on remote aerospace methods and data. To achieve this goal, satellite imagery in microwave and optical range of the spectrum were used. A hybrid model for assessing the instantaneous condition of forest ecosystems after fire that uses parallel data from optical and Synthetic Aperture Radar (SAR) was developed. Based on the three Tasseled Cap components (Brightness-BR, Greenness-GR and Wetness-W), a vector describing the current condition of the forest ecosystems was obtained and used as input data from the optical range. Results obtained by implementation of the proposed approach show that the integrated composite images of VIC and SAR represent the degree of recovery.
Bi, Sheng; Zeng, Xiao; Tang, Xin; Qin, Shujia; Lai, King Wai Chiu
2016-01-01
Compressive sensing (CS) theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%. PMID:26950127
Challenges of recovery in medium-term residential centers (camps)
Shamsalinia, Abbas; Nourozi, Kian; Khoshknab, Masoud Fallahi; Farhoudian, Ali
2014-01-01
Background: Addiction is a global problem for which effective treatment is crucial. Stopping the consumption of abused substances in a camp is a strong predictor of the success for the recovery process. The present study employed a qualitative approach to explore the camp recovery experiences in individuals with substance addictions. Methods: The research conducted in Iran’s northern cities with participants that included 17 men with a history of substance abuse, who were all engaged in the recovery process at the time of the study. They were invited to participate in the research based on a purposive and snowball sampling method. The data were collected by individual face-to-face and phone interviews using semi-structured questions. Data were then analyzed using conventional content analysis Results: three main categories were identified: selecting a camp: an appeal for rescue, substance deprivation crisis, and out of the frying pan into the frying pan or into the fire. Conclusion: Results showed that participants can be helped in the recovery process by the provision of public facilities and financial support for camps, by monitoring the performance of these centers and by attempting to address existing deficiencies. We concluded with three recommendations for improving services and preventing physical, psychological, and emotional damage to addicted individuals: remove unauthorized camps, establish camps with treatment designated to the needs of addicted individuals. PMID:25664307
NASA Astrophysics Data System (ADS)
Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin; Lister, Tedd E.
2017-09-01
Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally in an attempt to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. Nevertheless, current processes for recycling electronic waste only focus on certain metals as a result of feedstock and metal price uncertainties. In addition, there is a perception that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from U.S. HDDs, this article combines techno-economic information of an electro-hydrometallurgical process with end-of-life HDD availability in a simulation model. The results showed that adding REE recovery to an HDD base and precious metal recovery process was profitable given current prices. Recovered REEs from U.S. HDDs could meet up to 5.2% rest-of-world (excluding China) neodymium magnet demand. Feedstock, aluminum, and gold prices are key factors to recycling profitability. REEs contributed 13% to the co-recycling profit.
Fogarasi, Szabolcs; Imre-Lucaci, Florica; Imre-Lucaci, Arpád; Ilea, Petru
2014-05-30
The present study aims to develop an eco-friendly chemical-electrochemical process for the simultaneous recovery of copper and separation of a gold rich residue from waste printed circuit boards (WPCBs). The process was carried out by employing two different types of reactors coupled in series: a leaching reactor with a perforated rotating drum, for the dissolution of base metals and a divided electrochemical reactor for the regeneration of the leaching solution with the parallel electrowinning of copper. The process performances were evaluated on the basis of the dissolution efficiency, current efficiency and specific energy consumptions. Finally a process scale up was realized taking into consideration the optimal values of the operating parameters. The laboratory scale leaching plant allowed the recovery of a high purity copper deposit (99.04wt.%) at a current efficiency of 63.84% and specific energy consumption of 1.75kWh/kg cooper. The gold concentration in the remained solid residue was 25 times higher than the gold concentration in the initial WPCB samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Siciliano, A; De Rosa, S
2014-01-01
Land spreading of digestates causes the discharge of large quantities of nutrients into the environment, which contributes to eutrophication and depletion of dissolved oxygen in water bodies. For the removal of ammonia nitrogen, there is increasing interest in the chemical precipitation of struvite, which is a mineral that can be reused as a slow-release fertilizer. However, this process is an expensive treatment of digestate because large amounts of magnesium and phosphorus reagents are required. In this paper, a struvite precipitation-based process is proposed for an efficient recovery of digestate nutrients using low-cost reagents. In particular, seawater bittern, a by-product of marine salt manufacturing and bone meal, a by-product of the thermal treatment of meat waste, have been used as low-cost sources of magnesium and phosphorus, respectively. Once the operating conditions are defined, the process enables the removal of more than 90% ammonia load, the almost complete recovery of magnesium and phosphorus and the production of a potentially valuable precipitate containing struvite crystals.
Kinetic Modeling of Microbiological Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chongxuan; Fang, Yilin
Kinetic description of microbiological processes is vital for the design and control of microbe-based biotechnologies such as waste water treatment, petroleum oil recovery, and contaminant attenuation and remediation. Various models have been proposed to describe microbiological processes. This editorial article discusses the advantages and limiation of these modeling approaches in cluding tranditional, Monod-type models and derivatives, and recently developed constraint-based approaches. The article also offers the future direction of modeling researches that best suit for petroleum and environmental biotechnologies.
Leonhardt, Bethany L; Huling, Kelsey; Hamm, Jay A; Roe, David; Hasson-Ohayon, Ilanit; McLeod, Hamish J; Lysaker, Paul H
2017-11-01
Recovery from serious mental illness has historically not been considered a likely or even possible outcome. However, a range of evidence suggests the courses of SMI are heterogeneous with recovery being the most likely outcome. One barrier to studying recovery in SMI is that recovery has been operationalized in divergent and seemingly incompatible ways: as an objective outcome versus a subjective process. Areas covered: This paper offers a review of recovery as a subjective process and recovery as an objective outcome; contrasts methodologies utilized by each approach to assess recovery; reports rates and correlates of recovery; and explores the relationship between objective and subjective forms of recovery. Expert commentary: There are two commonalities of approaching recovery as a subjective process and an objective outcome: (i) the need to make meaning out of one's experiences to engage in either type of recovery and (ii) there exist many threats to engaging in meaning making that may impact the likelihood of moving toward recovery. We offer four clinical implications that stem from these two commonalities within a divided approach to the concept of recovery from SMI.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-20
A test version of the Orion crew module and an inflatable model of NASA’s Space Launch System rocket, Orion spacecraft and mobile launcher are on display at Naval Base San Diego in California, for viewing by service members, base employees and their families before Underway Recovery Test 5 (URT-5). NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test vehicle aboard the USS San Diego to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Nathoo, Jeeten; Randall, Dyllon Garth
2016-01-01
Membrane distillation (MD) could be applicable in zero liquid discharge applications. This is due to the fact that MD is applicable at high salinity ranges which are generally outside the scope of reverse osmosis (RO) applications, although this requires proper management of precipitating salts to avoid membrane fouling. One way of managing these salts is with MD crystallisation (MDC). This paper focuses on the applicability of MDC for the treatment of mining wastewater by thermodynamically modelling the aqueous chemistry of the process at different temperatures. The paper is based on the typical brine generated from an RO process in the South African coal mining industry and investigates the effect water recovery and operating temperature have on the salts that are predicted to crystallise out, the sequence in which they will crystallise out and purities as a function of the water recovery. The study confirmed the efficacy of using thermodynamic modelling as a tool for investigating and predicting the crystallisation aspects of the MDC process. The key finding from this work was that, for an MDC process, a purer product can be obtained at higher operating temperatures and recoveries because of the inverse solubility of calcium sulphate.
Puyol, Daniel; Batstone, Damien J; Hülsen, Tim; Astals, Sergi; Peces, Miriam; Krömer, Jens O
2016-01-01
Limits in resource availability are driving a change in current societal production systems, changing the focus from residues treatment, such as wastewater treatment, toward resource recovery. Biotechnological processes offer an economic and versatile way to concentrate and transform resources from waste/wastewater into valuable products, which is a prerequisite for the technological development of a cradle-to-cradle bio-based economy. This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle. As such, bioenergy in the form of biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic digestion processes) have been classic targets, whereby, direct transformation of lipidic biomass into biodiesel also gained attention. This concept is similar to previous biofuel concepts, but more sustainable, as third generation biofuels and other resources can be produced from waste biomass. The production of high value biopolymers (e.g., for bioplastics manufacturing) from organic acids, hydrogen, and methane is another option for carbon recovery. The recovery of carbon and nutrients can be achieved by organic fertilizer production, or single cell protein generation (depending on the source) which may be utilized as feed, feed additives, next generation fertilizers, or even as probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems can recover inorganics or synthesize organic products beyond the natural microbial metabolism. Anticipating the next generation of wastewater treatment plants driven by biological recovery technologies, this review is focused on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept.
Puyol, Daniel; Batstone, Damien J.; Hülsen, Tim; Astals, Sergi; Peces, Miriam; Krömer, Jens O.
2017-01-01
Limits in resource availability are driving a change in current societal production systems, changing the focus from residues treatment, such as wastewater treatment, toward resource recovery. Biotechnological processes offer an economic and versatile way to concentrate and transform resources from waste/wastewater into valuable products, which is a prerequisite for the technological development of a cradle-to-cradle bio-based economy. This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle. As such, bioenergy in the form of biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic digestion processes) have been classic targets, whereby, direct transformation of lipidic biomass into biodiesel also gained attention. This concept is similar to previous biofuel concepts, but more sustainable, as third generation biofuels and other resources can be produced from waste biomass. The production of high value biopolymers (e.g., for bioplastics manufacturing) from organic acids, hydrogen, and methane is another option for carbon recovery. The recovery of carbon and nutrients can be achieved by organic fertilizer production, or single cell protein generation (depending on the source) which may be utilized as feed, feed additives, next generation fertilizers, or even as probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems can recover inorganics or synthesize organic products beyond the natural microbial metabolism. Anticipating the next generation of wastewater treatment plants driven by biological recovery technologies, this review is focused on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept. PMID:28111567
Surfactant Based Enhanced Oil Recovery and Foam Mobility Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
George J. Hirasaki; Clarence A. Miller; Gary A. Pope
2005-07-01
Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacialmore » tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.« less
NASA Technical Reports Server (NTRS)
Westgate, P.; Kohlmann, K.; Hendrickson, R.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)
1992-01-01
Two approaches for biomass processing in Controlled Ecological Life Support Systems are compared in a literature survey. The approaches are based on (1) total oxidation of plant matter and (2) the potential of bioregenerative recovery.
Wayne Elmore
1989-01-01
The management and recovery of degraded riparian systems is a major conservation issue. Presently there are many grazing management strategies being applied based on the name of the technique with little incorporation of basic stream processes. Managers must understand the exact workings of grazing strategies and the individual processes of each stream before...
Technology for recovery of phosphorus from animal wastewater through calcium phosphate precipitation
USDA-ARS?s Scientific Manuscript database
A wastewater treatment process was developed for removal of phosphorus from livestock wastewater. The phosphorus is recovered as calcium phosphate with addition of only small quantities of liquid lime. The process is based on the distinct chemical equilibrium between phosphorus and calcium ions when...
Investigation of Copper Sorption by Sugar Beet Processing Lime Waste
In the western United States, sugar beet processing for sugar recovery generates a lime-based waste product (~250,000 Mg yr-1) that has little liming value in the region’s calcareous soils. This area has recently experienced an increase in dairy production, with dairi...
Genaidy, A M; Sequeira, R; Tolaymat, T; Kohler, J; Rinder, M
2008-12-15
This research examines lead recovery and recycling in lead-acid batteries (LAB) which account for 88% of US lead consumption. We explore strategies to maximize lead recovery and recycling in the LAB lifecycle. Currently, there is limited information on recycling rates for LAB in the published literature and is derived from a single source. Therefore, its recycling efforts in the US has been unclear so as to determine the maximum opportunities for metal recovery and recycling in the face of significant demands for LAB particularly in the auto industry. The research utilizes an evidence-based approach to: (1) determine recycling rates for lead recovery in the LAB product lifecycle for the US market; and (2) quantify and identify opportunities where lead recovery and recycling can be improved. A comprehensive electronic search of the published literature was conducted to gather information on different LAB recycling models and actual data used to calculate recycling rates based on product lifecycle for the US market to identify strategies for increasing lead recovery and recycling. The electronic search yielded five models for calculating LAB recycling rates. The description of evidence was documented for each model. Furthermore, an integrated model was developed to identify and quantify the maximum opportunities for lead recovery and recycling. Results showed that recycling rates declined during the period spanning from 1999 to 2006. Opportunities were identified for recovery and recycling of lead in the LAB product lifecycle. One can deduce the following from the analyses undertaken in this report: (1) lead recovery and recycling has been stable between 1999 and 2006; (2) lead consumption has increased at an annual rate of 2.25%, thus, the values derived in this study for opportunities dealing with lead recovery and recycling underestimate the amount of lead in scrap and waste generated; and (3) the opportunities for maximizing lead recovery and recycling are centered on spent batteries left with consumers, mishandled LAB sent to auto wreckers, slag resulting from recycling technology process inefficiencies, and lead lost in municipal waste.
Chambers, R Andrew; Wallingford, Sue C
2017-01-01
Interpersonal attachment and drug addiction share many attributes across their behavioral and neurobiological domains. Understanding the overlapping brain circuitry of attachment formation and addiction illuminates a deeper understanding of the pathogenesis of trauma-related mental illnesses and comorbid substance use disorders, and the extent to which ending an addiction is complicated by being a sort of mourning process. Attention to the process of addiction recovery-as a form of grieving-in which Kubler-Ross's stages of grief and Prochaska's stages of change are ultimately describing complementary viewpoints on a general process of neural network and attachment remodeling, could lead to more effective and integrative psychotherapy and medication strategies.
Recovery from a psychiatrist's viewpoint.
Diamond, Ronald J
2006-09-01
Recovery is not the same as cure. Recovery from mental illness is the process of having more to life than just illness. It is an ongoing process rather than simply a goal that can be achieved. Recovery from the stigma of mental illness may be as difficult as recovery from the illness itself. Several common, but incorrect, beliefs can interfere with the recovery process. Myths include the belief that the illness has an inherently downhill course, that rehabilitation is useful only after stabilization, and that people with schizophrenia can only work at low-level jobs. People who have schizophrenia have reported that their own process of recovery was helped by their determination to get better, an understanding of the illness, taking personal responsibility, having friends who accept them, an optimistic attitude, and spiritual beliefs that help them find meaning in life.
Feine, Ilan; Shpitzen, Moshe; Geller, Boris; Salmon, Eran; Peleg, Tsach; Roth, Jonathan; Gafny, Ron
2017-07-01
Electrical tapes (ETs) are a common component of improvised explosive devices (IEDs) used by terrorists or criminal organizations and represent a valuable forensic resource for DNA and latent fingerprints recovery. However, DNA recovery rates are typically low and usually below the minimal amount required for amplification. In addition, most DNA extraction methods are destructive and do not allow further latent fingerprints development. In the present study a cell culture based touch DNA model was used to demonstrate a two-step acetone-water DNA recovery protocol from ETs. This protocol involves only the adhesive side of the ET and increases DNA recovery rates by up to 70%. In addition, we demonstrated partially successful latent fingerprints development from the non-sticky side of the ETs. Taken together, this protocol maximizes the forensic examination of ETs and is recommended for routine casework processing. Copyright © 2017 Elsevier B.V. All rights reserved.
Orion Underway Recovery Test 5 (URT-5)
2016-10-26
The USS San Diego departs Naval Base San Diego in California on its way out to sea in the Pacific Ocean for the Orion Underway Recovery Test 5. NASA's Ground Systems Development and Operations Program and the U.S. Navy will practice recovery techniques using the well deck of the ship and a test version of the Orion crew module to prepare for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
Klingemann, Justyna Iwona
2012-01-01
The study provides an in-depth qualitative understanding of the maintenance stage when recovering from alcohol dependence with a focus on the broader social context of change of addictive behaviour. It explores the recovery as a subjective process within the abstinence-oriented Polish treatment system organized on the basis of the Minnesota model and is probes for group differences between treated and non-treated populations. The study is based on qualitative data from a media-recruited sample of 29 treated and non-treated former alcohol dependents (ICD-10) in Warsaw/Poland 2006/2007. They reported a recovery time of at least 2 years (M(recovery) = 11, SD = 9). In-depth, semi-structured interviews were analysed according to the problem-centred interview method using ATLAS.ti software. A wide range of maintenance strategies potentially contributing to the stabilization of recovery from alcohol dependence was identified. However, from the respondents' point of view, the change process is contingent upon the subjective weighing of specific maintenance factors and the importance attributed to their interplay. This includes time management as well as one's ability to invest available resources and strengths in shaping and pursuing personal goals. More commonalities than differences can be observed between groups during the maintenance stage, regardless of respondents' type of the pathway out of addiction. However, when confronting professional concepts of recovery with subjective accounts, only a subgroup conforms to the invasive, potentially normative definitions of recovery, while others do not link their recovery with identity transformation.
Elements That Define Recovery: The Experiential Perspective
Kaskutas, Lee Ann; Borkman, Thomasina J; Laudet, Alexandre; Ritter, Lois A; Witbrodt, Jane; Subbaraman, Meenakshi Sabina; Stunz, Aina; Bond, Jason
2014-01-01
Objective: Although recovery increasingly guides substance use disorder services and policy, definitions of recovery continue to lack specificity, thereby hindering measure development and research. The goal of this study was to move the substance use disorders field beyond broad definitions by empirically identifying the domains and specific elements of recovery as experienced by persons in recovery from diverse pathways. Method: An Internet-based survey was completed by 9,341 individuals (54% female) who self-identified as being in recovery, recovered, in medication-assisted recovery, or as having had a problem with alcohol or drugs (but no longer do). Respondents were recruited via extensive outreach with treatment and recovery organizations, electronic media, and self-help groups. The survey included 47 recovery elements developed through qualitative work followed by an iterative reduction process. Exploratory and confirmatory factor analyses were conducted using split-half samples, followed by sensitivity analyses for key sample groupings. Results: Four recovery domains with 35 recovery elements emerged: abstinence in recovery, essentials of recovery, enriched recovery, and spirituality of recovery. The four-factor structure was robust regardless of length of recovery, 12-step or treatment exposure, and current substance use status. Four uncommon elements did not load on any factor but are presented to indicate the diversity of definitions. Conclusions: Our empirical findings offer specific items that can be used in evaluating recovery-oriented systems of care. Researchers studying recovery should include measures that extend beyond substance use and encompass elements such as those examined here—e.g., self-care, concern for others, personal growth, and developing ways of being that sustain change in substance use. PMID:25343658
NASA Astrophysics Data System (ADS)
Feng, Cong; Chu, Man-sheng; Tang, Jue; Liu, Zheng-gen
2018-06-01
Smelting separations of Hongge vanadium-bearing titanomagnetite metallized pellets (HVTMP) prepared by gas-based direct reduction were investigated, and the effects of smelting parameters on the slag/metal separation behaviors were analyzed. Relevant mechanisms were elucidated using X-ray diffraction analysis, FACTSAGE 7.0 calculations, and scanning electron microscopy observations. The results show that, when the smelting temperature, time, and C/O ratio are increased, the recoveries of V and Cr of HVTMP in pig iron are improved, the recovery of Fe initially increases and subsequently decreases, and the recovery of TiO2 in slag decreases. When the smelting CaO/SiO2 ratio is increased, the recoveries of Fe, V, and Cr in pig iron increase and the recovery of TiO2 in slag initially increases and subsequently decreases. The appropriate smelting separation parameters for HVTMP are as follows: smelting temperature of 1873 K; smelting time of 30-50 min; C/O ratio of 1.25; and CaO/SiO2 ratio of 0.50. With these optimized parameters (smelting time: 30 min), the recoveries of Fe, V, Cr, and TiO2 are 99.5%, 91.24%, 92.41%, and 94.86%, respectively.
Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise.
Kraemer, William J; Ratamess, Nicholas A; Nindl, Bradley C
2017-03-01
The complexity and redundancy of the endocrine pathways during recovery related to anabolic function in the body belie an oversimplistic approach to its study. The purpose of this review is to examine the role of resistance exercise (RE) on the recovery responses of three major anabolic hormones, testosterone, growth hormone(s), and insulin-like growth factor 1. Each hormone has a complexity related to differential pathways of action as well as interactions with binding proteins and receptor interactions. Testosterone is the primary anabolic hormone, and its concentration changes during the recovery period depending on the upregulation or downregulation of the androgen receptor. Multiple tissues beyond skeletal muscle are targeted under hormonal control and play critical roles in metabolism and physiological function. Growth hormone (GH) demonstrates differential increases in recovery with RE based on the type of GH being assayed and workout being used. IGF-1 shows variable increases in recovery with RE and is intimately linked to a host of binding proteins that are essential to its integrative actions and mediating targeting effects. The RE stress is related to recruitment of muscle tissue with the glandular release of hormones as signals to target tissues to support homeostatic mechanisms for metabolism and tissue repair during the recovery process. Anabolic hormones play a crucial role in the body's response to metabolism, repair, and adaptive capabilities especially in response to anabolic-type RE. Changes of these hormones following RE during recovery in the circulatory biocompartment of blood are reflective of the many mechanisms of action that are in play in the repair and recovery process. Copyright © 2017 the American Physiological Society.
Mental health recovery: lived experience of consumers, carers and nurses.
Jacob, Sini; Munro, Ian; Taylor, Beverley Joan
2015-01-01
Background Mental health recovery is a prominent topic of discussion in the global mental health settings. The concept of mental health recovery brought about a major shift in the traditional philosophical views of many mental health systems. Aim The purpose of this article is to outline the results of a qualitative study on mental health recovery, which involved mental health consumers, carers and mental health nurses from an Area Mental Health Service in Victoria, Australia. This paper is Part One of the results that explored the meaning of recovery. Methods The study used van Manen's hermeneutic phenomenology to analyse the data. Findings Themes suggested that the cohort had varying views on recovery that were similar and dissimilar. The similar views were categorised under two processes involving the self, an internal process and an external process. These two processes involved reclaiming various aspects of oneself, living life, cure or absence of symptoms and contribution to community. The dissimilar views involved returning to pre-illness state and recovery was impossible. Conclusion This study highlights the need for placing importance on the person's sense of self in the recovery process.
Mental health recovery: Lived experience of consumers, carers and nurses.
Jacob, Sini; Munro, Ian; Taylor, Beverley Joan
2014-09-06
Abstract Background Mental health recovery is a prominent topic of discussion in the global mental health settings. The concept of mental health recovery brought about a major shift in the traditional philosophical views of many mental health systems. Aim The purpose of this article is to outline the results of a qualitative study on mental health recovery, which involved mental health consumers, carers and mental health nurses from an Area Mental Health Service in Victoria, Australia. This paper is part one of the results that explored the meaning of recovery. Methods The study used van Manen's hermeneutic phenomenology to analyse the data. Findings Themes suggested that the cohort had varying views on recovery that were similar and dissimilar. The similar views were categorised under two processes involving the self, an internal process and an external process. These two processes involved reclaiming various aspects of oneself, living life, cure or absence of symptoms and contribution to community. The dissimilar views involved returning to pre-illness state and recovery was impossible. Conclusion This study highlights the need for placing importance to the person's sense of self in the recovery process.
Mirkarimi, P B; Baker, S L; Montcalm, C; Folta, J A
2001-01-01
Extreme-ultraviolet lithography requires expensive multilayer-coated Zerodur or ULE optics with extremely tight figure and finish specifications. Therefore it is desirable to develop methods to recover these optics if they are coated with a nonoptimum multilayer films or in the event that the coating deteriorates over time owing to long-term exposure to radiation, corrosion, or surface contamination. We evaluate recoating, reactive-ion etching, and wet-chemical techniques for the recovery of Mo/Si and Mo/Be multilayer films upon Zerodur and ULE test optics. The recoating technique was successfully employed in the recovery of Mo/Si-coated optics but has the drawback of limited applicability. A chlorine-based reactive-ion etch process was successfully used to recover Mo/Si-coated optics, and a particularly large process window was observed when ULE optics were employed; this is an advantageous for large, curved optics. Dilute HCl wet-chemical techniques were developed and successfully demonstrated for the recovery of Mo/Be-coated optics as well as for Mo/Si-coated optics when Mo/Be release layers were employed; however, there are questions about the extendability of the HCl process to large optics and multiple coat and strip cycles. The technique of using carbon barrier layers to protect the optic during removal of Mo/Si in HF:HNO(3) also showed promise.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-28
... recovery of Cook Inlet belugas, which are listed as endangered under the ESA. The recovery planning process... effort to expedite the recovery plan process, NMFS will work towards incorporating relevant portions of... and Threatened Species: Notice of Intent to Prepare a Recovery Plan for Cook Inlet Beluga Whales...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boesch, Michael E.; Vadenbo, Carl, E-mail: vadenbo@ifu.baug.ethz.ch; Saner, Dominik
2014-02-15
Highlights: • An enhanced process-based LCA model for MSWI is featured and applied in case study. • LCA modeling of recent technological developments for metal recovery from fly ash. • Net release from Swiss MSWI 133 kg CO{sub 2}-eq/tonne waste from attributional LCA perspective. • Net savings from a consequential LCA perspective reach up to 303 kg CO{sub 2}-eq/tonne waste. • Impacts according to ReCiPe and CExD show similar pattern to climate change. - Abstract: A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeledmore » as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO{sub 2}-eq. generated in the incineration process, and 54 kg CO{sub 2}-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO{sub 2}-eq. Savings from energy recovery are in the range of 67 to 752 kg CO{sub 2}-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO{sub 2}-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles.« less
NASA Astrophysics Data System (ADS)
Palupi, Bekti; Supranto, Sediawan, Wahyudi Budi; Setyadji, Moch.
2017-05-01
This time, the natural resources of zircon sand is processed into several zirconium products which is utilized for various industries, such as ceramics, glass industry, metal industry and nuclear industry. The process of zircon sand into zirconium products through several stages, one of them is leaching process of Na2ZrO3 with HCl. In this research, several variations of recycle-rate/feed-rate had been done to determine the effect on leaching process. The leaching was processed at temperature of 90°C, ratio of Na2ZrO3:HCl = 1g:30mL, and 142 rotary per minute of stirring speed for 30 minutes with variation of recycle-rate/feed-rate such as 0.478, 0.299, 0.218, 0.171 and 0.141. The diameter size of Na2ZrO3 powder that used are 0.088 to 0.149 mm. This process was carried out in Continuous Stirred Tank Reactor (CSTR) series with recycle. Based on this research, the greater of the recycle-rate/feed-rate variable, the obtained Zr recovery decreased. The correlation between recycle-rate/feed-rate and Zr recovery is shown by the equation y = -146.91x + 103.51, where y is the Zr recovery and x is the recycle-rate/feed-rate. The highest Zr recovery was 90.52% obtained at recycle-rate/feed-rate 0.141. The mathematical modeling involving the probability model P(r) = 2β2r2 exp(-βr2) can be applied to this leaching process with Sum of Squared Errors (SSE) values in the range of 6×10-7 - 7×10-6.
Pyrolysis processing for solid waste resource recovery
NASA Technical Reports Server (NTRS)
Wojtowicz, Marek A. (Inventor); Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Suuberg, Eric M. (Inventor)
2007-01-01
Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.
Duke, Karen; Herring, Rachel; Thickett, Anthony; Thom, Betsy
2013-08-01
Based on documentary analyses and interviews with twenty key informants in 2012, this paper analyses the shift in British drugs policy towards "recovery" from the perspectives of major stakeholders. The processes involved in reopening the debate surrounding the role of substitution treatment and its re-emergence on to the policy agenda are examined. Drawing on Kingdon's work on agenda-setting, the ways in which methadone maintenance was challenged and defended by key stakeholders in the initial phase of policy development and the negotiation of a "recovery" focus as the organizing concept for British drugs policy are explored. Study limitations are noted.
Tensile deformation and recovery kinetics of Alloy 690. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, C.F.; Mayo, W.E.; Weissmann, S.
1992-07-01
The effect of carbon content, grain size and thermal history on the deformation behavior of nickel-base Alloy 690 has been investigated. Carbon content effects the yield strength of Mill Annealed (MA) material, but has no effect in Thermally Treated (TT) material. Also, no effect of carbon content on the workhardening rate was seen in either material. There was an effect of grain size as expected. An interesting aspect of this work showed that TT material consistently has a slightly higher Young`s modulus than the MA. As deformation moves into the plastic regime, the TT material displays a two stage hardeningmore » process. This consists of a low workhardening rate (n = 0.05), followed by a transition to the more normal workhardening rate (n=0.35). The MA material, on the other hand, does not exhibit the low n region. This unusual deformation behavior is attributable to the presence of planar slip which initiates at the grain boundary over the strain range of 0.2 to 0.7%. These observations are useful to explain the unexpectedly fast strain relaxation behavior seen in this alloy. The recovery kinetics of the alloy have also been studied. Rapid recovery with an activation energy of approximately 5.3 kj/mol occurs when the deformation level is low. This was attributed to a grain boundary self diffusion process. At higher strain levels, recovery is much slower with an activation energy of approximately 14 kJ/mol. This process was attributable to bulk diffusion. Based on TEM and X-ray rocking curve measurements, these results have been explained.« less
Tensile deformation and recovery kinetics of Alloy 690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, C.F.; Mayo, W.E.; Weissmann, S.
1992-07-01
The effect of carbon content, grain size and thermal history on the deformation behavior of nickel-base Alloy 690 has been investigated. Carbon content effects the yield strength of Mill Annealed (MA) material, but has no effect in Thermally Treated (TT) material. Also, no effect of carbon content on the workhardening rate was seen in either material. There was an effect of grain size as expected. An interesting aspect of this work showed that TT material consistently has a slightly higher Young's modulus than the MA. As deformation moves into the plastic regime, the TT material displays a two stage hardeningmore » process. This consists of a low workhardening rate (n = 0.05), followed by a transition to the more normal workhardening rate (n=0.35). The MA material, on the other hand, does not exhibit the low n region. This unusual deformation behavior is attributable to the presence of planar slip which initiates at the grain boundary over the strain range of 0.2 to 0.7%. These observations are useful to explain the unexpectedly fast strain relaxation behavior seen in this alloy. The recovery kinetics of the alloy have also been studied. Rapid recovery with an activation energy of approximately 5.3 kj/mol occurs when the deformation level is low. This was attributed to a grain boundary self diffusion process. At higher strain levels, recovery is much slower with an activation energy of approximately 14 kJ/mol. This process was attributable to bulk diffusion. Based on TEM and X-ray rocking curve measurements, these results have been explained.« less
RO brine treatment and recovery by biological activated carbon and capacitive deionization process.
Tao, Guihe; Viswanath, Bala; Kekre, Kiran; Lee, Lai Yoke; Ng, How Yong; Ong, Say Leong; Seah, Harry
2011-01-01
The generation of brine solutions from dense membrane (reverse osmosis, RO or nanofiltration, NF) water reclamation systems has been increasing worldwide, and the lack of cost effective disposal options is becoming a critical water resources management issue. In Singapore, NEWater is the product of a multiple barrier water reclamation process from secondary treated domestic effluent using MF/UF-RO and UV technologies. The RO brine (concentrates) accounts for more than 20% of the total flow treated. To increase the water recovery and treat the RO brine, a CDI based process with BAC as pretreatment was tested. The results show that ion concentrations in CDI product were low except SiO2 when compared with RO feed water. CDI product was passed through a RO and the RO permeate was of better quality including low SiO2 as compared to NEWater quality. It could be beneficial to use a dedicated RO operated at optimum conditions with better performance to recover the water. BAC was able to achieve 15-27% TOC removal of RO brine. CDI had been tested at a water recovery ranging from 71.6 to 92.3%. CDI based RO brine treatment could improve overall water recovery of NEWater production over 90%. It was found that calcium phosphate scaling and organic fouling was the major cause of CDI pressure increase. Ozone disinfection and sodium bisulfite dosing were able to reduce CDI fouling rate. For sustainable operation of CDI organic fouling control and effective organic fouling cleaning should be further studied.
Catalytic distillation water recovery subsystem
NASA Technical Reports Server (NTRS)
Budininkas, P.; Rasouli, F.
1985-01-01
An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.
Retrofitting the Williams Energy Services Ignacio Plant for higher throughput and recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, J.T.; Pitman, R.N.
1999-07-01
The Ignacio Plant located near Durango, Colorado was originally designed to process 346 MMscfd of feed gas and to recover approximately 82% of the contained ethane. Based on increasing volumes of available feed gas, Williams Energy Services (WES) undertook a study to investigate alternatives for increasing plant capacity and ethane recovery. This study led to the selection of Ortloff's Recycle Split-Vapor (RSV) process for retrofitting the existing facility because it offered several very important advantages: maximum utilization of existing equipment, a 30% increase in plant feed handling capacity and an increase in average ethane recovery to 94% without adding residuemore » compressors. This paper presents the comparative case analysis that led to the selection of the RSV design. It also describes the modifications required for the retrofit, all of which can be accomplished with minimum plant down time. The modified Ignacio Plant is scheduled for startup in March 1999.« less
Park, YoungAh; Fritz, Charlotte
2015-03-01
Research has indicated the importance of recovery from work stress for employee well-being and work engagement. However, very little is known about the specific factors that may support or hinder recovery in the context of dual-earner couples. This study proposes spousal recovery support as a potential resource that dual-earner couples can draw on to enhance their recovery experiences and well-being. It was hypothesized that spousal recovery support would be related to the recipient spouse's life satisfaction via his or her own recovery experiences (i.e., psychological detachment, relaxation, and mastery experiences). The study further investigated the crossover of life satisfaction between working spouses as a potential outcome of recovery processes. Data from 318 full-time employed married couples in South Korea were analyzed using structural equation modeling. Results showed that spousal recovery support was positively related to all 3 recovery experiences of the recipient spouse. Moreover, this recovery support was related to the recipient spouse's life satisfaction via relaxation and mastery experiences. Unexpectedly, psychological detachment was negatively related to life satisfaction, possibly indicating a suppression effect. Life satisfaction crossed over between working spouses. No gender differences were found in the hypothesized paths. Based on these findings, theoretical and practical implications are discussed, and future research directions are presented. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Bhave, Ramesh; Kuritz, Tanya; Powell, Lawrence; Adcock, Dale
2012-05-15
The objective of this paper is to describe the use of membranes for energy efficient biomass harvesting and dewatering. The dewatering of Nannochloropsis sp. was evaluated with polymeric hollow fiber and tubular inorganic membranes to demonstrate the capabilities of a membrane-based system to achieve microalgal biomass of >150 g/L (dry wt.) and ∼99% volume reduction through dewatering. The particle free filtrate containing the growth media is suitable for recycle and reuse. For cost-effective processing, hollow fiber membranes can be utilized to recover 90-95% media for recycle. Tubular membranes can provide additional media and water recovery to achieve target final concentrations. Based on the operating conditions used in this study and taking into scale-up considerations, an integrated hollow fiber-tubular membrane system can process microalgal biomass with at least 80% lower energy requirement compared to traditional processes. Backpulsing was found to be an effective flux maintenance strategy to minimize flux decline at high biomass concentration. An effective chemical cleaning protocol was developed for regeneration of fouled membranes.
Electrodialysis-based separation process for salt recovery and recycling from waste water
Tsai, S.P.
1997-07-08
A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants-containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid. 6 figs.
Electrodialysis-based separation process for salt recovery and recycling from waste water
Tsai, Shih-Perng
1997-01-01
A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.
Strauss, Maria; Mergl, Roland; Sander, Christian; Schönknecht, Peter; Hegerl, Ulrich
2015-01-01
Depressive episodes show large interindividual differences concerning their speed of onset and speed of recovery, which might suggest differences in underlying pathophysiological processes. The aim of the present study was to assess whether there is a relationship between the speed of onset and the speed of recovery from depressive episodes. The speed of onset and the speed of recovery from depression were assessed using a structured patient interview, the Onset of Depression Inventory (ODI). In total, 28 patients with bipolar depression and 91 patients with unipolar depression were included. The mean speed of onset of depression was significantly faster than the mean speed of recovery from depression (35.25, range 0-360 days vs. 59.60, range 0.13-720 days; Z = -3.40; p = 0.001). The correlation between these variables was positive, but numerically low (ρ = 0.22; p = 0.016). The speed of onset of the previous episode and that of the present episode were significantly correlated (ρ = 0.45; p < 0.001). Data are based on retrospective patient reports within a naturalistic study. While the speed of onset of depressive episodes has been found to show large interindividual variability and some intraindividual stability, the data of this study do not indicate that the neurobiological processes involved in the onset of and in the recovery from depressive episodes are closely linked. © 2014 S. Karger AG, Basel.
Patient Experiences of Recovery After Autologous Chondrocyte Implantation: A Qualitative Study
Toonstra, Jenny L.; Howell, Dana; English, Robert A.; Lattermann, Christian; Mattacola, Carl G.
2016-01-01
Context: The recovery process after autologous chondrocyte implantation (ACI) can be challenging for patients and clinicians alike due to significant functional limitations and a lengthy healing time. Understanding patients' experiences during the recovery process may assist clinicians in providing more individualized care. Objective: To explore and describe patients' experiences during the recovery process after ACI. Design: Qualitative study. Setting: Orthopaedic clinic. Patients or Other Participants: Participants from a single orthopaedic practice who had undergone ACI within the previous 12 months were purposefully selected. Data Collection and Analysis: Volunteers participated in 1-on-1 semistructured interviews to describe their recovery experiences after ACI. Data were analyzed using the process of horizontalization. Results: Seven patients (2 men, 5 women; age = 40.7 ± 7.5 years, time from surgery = 8.7 ± 4.2 months) participated. Four themes and 6 subthemes emerged from the data and suggested that the recovery process is a lengthy and emotional experience. Therapy provides optimism for the future but requires a collaborative effort among the patient, surgeon, rehabilitation provider, and patient's caregiver(s). Furthermore, patients expressed frustration that their expectations for recovery did not match the reality of the process, including greater dependence on caregivers than expected. Conclusions: Patients' expectations should be elicited before surgery and managed throughout the recovery process. Providing preoperative patient and caregiver education and encouraging preoperative rehabilitation can assist in managing expectations. Establishing realistic goals and expectations may improve rehabilitation adherence, encourage optimism for recovery, and improve outcomes in the long term. PMID:27835044
How to introduce a program of Enhanced Recovery after Surgery? The experience of the CAPIO group.
Verrier, J-F; Paget, C; Perlier, F; Demesmay, F
2016-12-01
The traditional model of hospital care has been challenged by the development of a care-management process that allows early patient autonomy (outpatient surgery, Enhanced Recovery after Surgery). Hospitalization has been transformed in response to this development, based on innovative medical and organizational strategies. Within a surgical service, the deployment of these processes requires the creation of a support structure, with re-organization of existing structures, analysis of potential obstacles, implementation of management tools, and ongoing follow-up of organizational function, clinical results, organizational and patient satisfaction. These will ultimately assess adaptation of structures within these new organizations. In this article, we share our insights based on experience gained over the past six years by surgical teams of the CAPIO group. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-28
... IFQ cost recovery process. This action proposes regulatory changes to Sec. 648.294(h) to reconcile the... different aspects of the cost recovery fee collection process, including Payment Responsibility, IFQ Fee... process for appealing the cost recovery fee. Under the appeals process, an IFQ allocation permit holder...
NASA Astrophysics Data System (ADS)
Kuleshova, E. A.; Gurovich, B. A.; Maltsev, D. A.; Frolov, A. S.; Bukina, Z. V.; Fedotova, S. V.; Saltykov, M. A.; Krikun, E. V.; Erak, D. Yu; Zhurko, D. A.; Safonov, D. V.; Zhuchkov, G. M.
2018-04-01
This study was carried out to evaluate the possibility of 1st generation VVER-440 reactors lifetime extension by recovery re-annealing with the respect to base metal (BM). Comprehensive studies of the structure and properties of BM templates (samples cut from the inner surface of the shells in beltline region) of operating VVER-440 reactor (after primary standard recovery annealing 475 °C/150 h and subsequent long-term re-irradiation within reactor pressure vessel (RPV)) were conducted. These templates were also subjected to laboratory re-annealing 475 °C/150 h. TEM, SEM and APT studies of BM after laboratory re-annealing revealed significant recovery of radiation-induced hardening elements (Cu-rich precipitates and dislocation loops). Simultaneously a process of strong phosphorus accumulation at grain boundaries occurs since annealing temperature corresponds to the maximum reversible temper brittleness development. The latter is not observed for VVER-440 weld metal (WM). Comparative assessment of the properties return level for the beltline BM templates after recovery re-annealing 475 °C/150 h showed that it does not reach the one typical for beltline WM after the same annealing.
Quantification of Protozoa and Viruses from Small Water Volumes
Bonilla, J. Alfredo; Bonilla, Tonya D.; Abdelzaher, Amir M.; Scott, Troy M.; Lukasik, Jerzy; Solo-Gabriele, Helena M.; Palmer, Carol J.
2015-01-01
Large sample volumes are traditionally required for the analysis of waterborne pathogens. The need for large volumes greatly limits the number of samples that can be processed. The goals of this study were to compare extraction and detection procedures for quantifying protozoan parasites and viruses from small volumes of marine water. The intent was to evaluate a logistically simpler method of sample collection and processing that would facilitate direct pathogen measures as part of routine monitoring programs. Samples were collected simultaneously using a bilayer device with protozoa capture by size (top filter) and viruses capture by charge (bottom filter). Protozoan detection technologies utilized for recovery of Cryptosporidium spp. and Giardia spp. were qPCR and the more traditional immunomagnetic separation—IFA-microscopy, while virus (poliovirus) detection was based upon qPCR versus plaque assay. Filters were eluted using reagents consistent with the downstream detection technologies. Results showed higher mean recoveries using traditional detection methods over qPCR for Cryptosporidium (91% vs. 45%) and poliovirus (67% vs. 55%) whereas for Giardia the qPCR-based methods were characterized by higher mean recoveries (41% vs. 28%). Overall mean recoveries are considered high for all detection technologies. Results suggest that simultaneous filtration may be suitable for isolating different classes of pathogens from small marine water volumes. More research is needed to evaluate the suitability of this method for detecting pathogens at low ambient concentration levels. PMID:26114244
Quantification of Protozoa and Viruses from Small Water Volumes.
Bonilla, J Alfredo; Bonilla, Tonya D; Abdelzaher, Amir M; Scott, Troy M; Lukasik, Jerzy; Solo-Gabriele, Helena M; Palmer, Carol J
2015-06-24
Large sample volumes are traditionally required for the analysis of waterborne pathogens. The need for large volumes greatly limits the number of samples that can be processed. The aims of this study were to compare extraction and detection procedures for quantifying protozoan parasites and viruses from small volumes of marine water. The intent was to evaluate a logistically simpler method of sample collection and processing that would facilitate direct pathogen measures as part of routine monitoring programs. Samples were collected simultaneously using a bilayer device with protozoa capture by size (top filter) and viruses capture by charge (bottom filter). Protozoan detection technologies utilized for recovery of Cryptosporidium spp. and Giardia spp. were qPCR and the more traditional immunomagnetic separation-IFA-microscopy, while virus (poliovirus) detection was based upon qPCR versus plaque assay. Filters were eluted using reagents consistent with the downstream detection technologies. Results showed higher mean recoveries using traditional detection methods over qPCR for Cryptosporidium (91% vs. 45%) and poliovirus (67% vs. 55%) whereas for Giardia the qPCR-based methods were characterized by higher mean recoveries (41% vs. 28%). Overall mean recoveries are considered high for all detection technologies. Results suggest that simultaneous filtration may be suitable for isolating different classes of pathogens from small marine water volumes. More research is needed to evaluate the suitability of this method for detecting pathogens at low ambient concentration levels.
NASA Technical Reports Server (NTRS)
Flynn, Michael; Shaw, Hali; Hyde, Deirdre; Beeler, David; Parodi, Jurek
2015-01-01
The Forward Osmosis Brine Drying (FOBD) system is based on a technique called forward osmosis (FO). FO is a membrane-based process where the osmotic potential between brine and a salt solution is equalized by the movement of water from the brine to the salt solution. The FOBD system is composed of two main elements, the FO bag and the salt regeneration system. This paper discusses the results of testing of the FO bag to determine the maximum water recovery ratio that can be attained using this technology. Testing demonstrated that the FO bag is capable of achieving a maximum brine water recovery ratio of the brine of 95%. The equivalent system mass was calculated to be 95 kg for a feed similar to the concentrated brine generated on the International Space Station and 86 kg for an Exploration brine. The results have indicated that the FOBD can process all the brine for a one year mission for between 11% to 10% mass required to bring the water needed to make up for water lost in the brine if not recycled. The FOBD saves 685 kg and when treating the International Space Station brine and it saves 829 kg when treating the Exploration brine. It was also demonstrated that saturated salt solutions achieve a higher water recovery ratios than solids salts do and that lithium chloride achieved a higher water recovery ratio than sodium chloride.
A multi-stage oil-water-separating process design for the sea oil spill recovery robot
NASA Astrophysics Data System (ADS)
Zhang, Min-ge; Wu, Jian-guo; Lin, Xinhua; Wang, Xiao-ming
2018-03-01
Oil spill have the most common pollution to the marine ecological environment. In the late stage of physical method recovery, because of the thin oil and the strong sea breeze, the recovery vessels has low efficiency and high energy consumption. This paper develops a multi-stage oil-water-separating process carried by the sea oil spill recovery robot in severe conditions. This design consists of three separation process, among which both the first and third process adopt corrugated sheets horizontal oil-water separator, while the second is hydraulic rotary breaker. This design also equiptment with rectifier and cyclone separator and other important components. This process has high flexibility and high recovery efficiency. The implement effect is significant.
Environmental Benefits and Burdens of Phosphorus Recovery from Municipal Wastewater.
Bradford-Hartke, Zenah; Lane, Joe; Lant, Paul; Leslie, Gregory
2015-07-21
The environmental benefits and burdens of phosphorus recovery in four centralized and two decentralized municipal wastewater systems were compared using life cycle assessment (LCA). In centralized systems, phosphorus recovered as struvite from the solids dewatering liquid resulted in an environmental benefit except for the terrestrial ecotoxicity and freshwater eutrophication impact categories, with power and chemical use offset by operational savings and avoided fertilizer production. Chemical-based phosphorus recovery, however, generally required more resources than were offset by avoided fertilizers, resulting in a net environmental burden. In decentralized systems, phosphorus recovery via urine source separation reduced the global warming and ozone depletion potentials but increased terrestrial ecotoxicity and salinization potentials due to application of untreated urine to land. Overall, mineral depletion and eutrophication are well-documented arguments for phosphorus recovery; however, phosphorus recovery does not necessarily present a net environmental benefit. While avoided fertilizer production does reduce potential impacts, phosphorus recovery does not necessarily offset the resources consumed in the process. LCA results indicate that selection of an appropriate phosphorus recovery method should consider both local conditions and other environmental impacts, including global warming, ozone depletion, toxicity, and salinization, in addition to eutrophication and mineral depletion impacts.
RECOVERY OF BY-PRODUCTS FROM ANIMAL WASTES: A LITERATURE REVIEW
The primary purpose of this report was to identify and summarize by-product-from-animal-wastes-recovery processes from the current literature. By-product recovery processes are distinguishable from wastes reuse and recycle processes by the formation of a chemically or physically ...
Majumdar, Angshul; Gogna, Anupriya; Ward, Rabab
2014-08-25
We address the problem of acquiring and transmitting EEG signals in Wireless Body Area Networks (WBAN) in an energy efficient fashion. In WBANs, the energy is consumed by three operations: sensing (sampling), processing and transmission. Previous studies only addressed the problem of reducing the transmission energy. For the first time, in this work, we propose a technique to reduce sensing and processing energy as well: this is achieved by randomly under-sampling the EEG signal. We depart from previous Compressed Sensing based approaches and formulate signal recovery (from under-sampled measurements) as a matrix completion problem. A new algorithm to solve the matrix completion problem is derived here. We test our proposed method and find that the reconstruction accuracy of our method is significantly better than state-of-the-art techniques; and we achieve this while saving sensing, processing and transmission energy. Simple power analysis shows that our proposed methodology consumes considerably less power compared to previous CS based techniques.
Chronic PTSD Treated with Metacognitive Therapy: An Open Trial
ERIC Educational Resources Information Center
Wells, Adrian; Welford, Mary; Fraser, Janelle; King, Paul; Mendel, Elizabeth; Wisely, Julie; Knight, Alice; Rees, David
2008-01-01
This paper reports on an open trial of metacognitive therapy (MCT) for chronic PTSD. MCT does not require imaginal reliving, prolonged exposure, or challenging of thoughts about trauma. It is based on an information-processing model of factors that impede normal and in-built recovery processes. It is targeted at modifying maladaptive styles of…
The Process of Divorce Recovery: A Review of the Research.
ERIC Educational Resources Information Center
Gastil, Richard W.
Many researchers have speculated over the nature of the divorce recovery process. Is the process similar to Kubler-Ross's stages of grief or does divorce recovery follow a unique process? This paper examines the current body of empirical research in an attempt to answer these questions. From the 91 sources analyzed, it was discovered that most of…
Recovery of Silver and Gold from Copper Anode Slimes
NASA Astrophysics Data System (ADS)
Chen, Ailiang; Peng, Zhiwei; Hwang, Jiann-Yang; Ma, Yutian; Liu, Xuheng; Chen, Xingyu
2015-02-01
Copper anode slimes, produced from copper electrolytic refining, are important industrial by-products containing several valuable metals, particularly silver and gold. This article provides a comprehensive overview of the development of the extraction processes for recovering silver and gold from conventional copper anode slimes. Existing processes, namely pyrometallurgical processes, hydrometallurgical processes, and hybrid processes involving the combination of pyrometallurgical and hydrometallurgical technologies, are discussed based in part on a review of the form and characteristics of silver and gold in copper anode slimes. The recovery of silver and gold in pyrometallurgical processes is influenced in part by the slag and matte/metal chemistry and related characteristics, whereas the extraction of these metals in hydrometallurgical processes depends on the leaching reagents used to break the structure of the silver- and gold-bearing phases, such as selenides. By taking advantage of both pyrometallurgical and hydrometallurgical techniques, high extraction yields of silver and gold can be obtained using such combined approaches that appear promising for efficient extraction of silver and gold from copper anode slimes.
Bedoya, Cesar; Cardona, Andrés; Galeano, July; Cortés-Mancera, Fabián; Sandoz, Patrick; Zarzycki, Artur
2017-12-01
The wound healing assay is widely used for the quantitative analysis of highly regulated cellular events. In this essay, a wound is voluntarily produced on a confluent cell monolayer, and then the rate of wound reduction (WR) is characterized by processing images of the same regions of interest (ROIs) recorded at different time intervals. In this method, sharp-image ROI recovery is indispensable to compensate for displacements of the cell cultures due either to the exploration of multiple sites of the same culture or to transfers from the microscope stage to a cell incubator. ROI recovery is usually done manually and, despite a low-magnification microscope objective is generally used (10x), repositioning imperfections constitute a major source of errors detrimental to the WR measurement accuracy. We address this ROI recovery issue by using pseudoperiodic patterns fixed onto the cell culture dishes, allowing the easy localization of ROIs and the accurate quantification of positioning errors. The method is applied to a tumor-derived cell line, and the WR rates are measured by means of two different image processing software. Sharp ROI recovery based on the proposed method is found to improve significantly the accuracy of the WR measurement and the positioning under the microscope.
Fingelkurts, Andrew A; Fingelkurts, Alexander A
2017-09-01
In this report, we describe the case of a patient who sustained extremely severe traumatic brain damage with diffuse axonal injury in a traffic accident and whose recovery was monitored during 6 years. Specifically, we were interested in the recovery dynamics of 3-dimensional components of selfhood (a 3-dimensional construct model for the complex experiential selfhood has been recently proposed based on the empirical findings on the functional-topographical specialization of 3 operational modules of brain functional network responsible for the self-consciousness processing) derived from the electroencephalographic (EEG) signal. The analysis revealed progressive (though not monotonous) restoration of EEG functional connectivity of 3 modules of brain functional network responsible for the self-consciousness processing, which was also paralleled by the clinically significant functional recovery. We propose that restoration of normal integrity of the operational modules of the self-referential brain network may underlie the positive dynamics of 3 aspects of selfhood and provide a neurobiological mechanism for their recovery. The results are discussed in the context of recent experimental studies that support this inference. Studies of ongoing recovery after severe brain injury utilizing knowledge about each separate aspect of complex selfhood will likely help to develop more efficient and targeted rehabilitation programs for patients with brain trauma.
Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery.
Al-Wahaibi, Yahya; Joshi, Sanket; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Shibulal, Biji
2014-02-01
The fermentative production of biosurfactants by Bacillus subtilis strain B30 and the evaluation of biosurfactant based enhanced oil recovery using core-flood were investigated. Different carbon sources (glucose, sucrose, starch, date molasses, cane molasses) were tested to determine the optimal biosurfactant production. The isolate B30 produced a biosurfactant that could reduce the surface tension and interfacial tension to 26.63±0.45 mN/m and 3.79±0.27 mN/m, respectively in less than 12h in both glucose or date molasses based media. A crude biosurfactant concentration of 0.3-0.5 g/l and critical micelle dilution (CMD) values of 1:8 were observed. The biosurfactants gave stable emulsions with wide range of hydrocarbons including light and heavy crude oil. The biosurfactants were partially purified and identified as a mixture of lipopeptides similar to surfactin, using high performance thin layer chromatography and Fourier transform infrared spectroscopy. The biosurfactants were stable over wide range of pH, salinity and temperatures. The crude biosurfactant preparation enhanced light oil recovery by 17-26% and heavy oil recovery by 31% in core-flood studies. The results are indicative of the potential of the strain for the development of ex situ microbial enhanced oil recovery processes using glucose or date molasses based minimal media. Copyright © 2013 Elsevier B.V. All rights reserved.
Directional filtering for block recovery using wavelet features
NASA Astrophysics Data System (ADS)
Hyun, Seung H.; Eom, Il K.; Kim, Yoo S.
2005-07-01
When images compressed with block-based compression techniques are transmitted over a noisy channel, unexpected block losses occur. Conventional methods that do not consider edge directions can cause blocked blurring artifacts. In this paper, we present a post-processing-based block recovery scheme using Haar wavelet features. The adaptive selection of neighboring blocks is performed based on the energy of wavelet subbands (EWS) and difference between DC values (DDC). The lost blocks are recovered by linear interpolation in the spatial domain using selected blocks. The method using only EWS performs well for horizontal and vertical edges, but not as well for diagonal edges. Conversely, only using DDC performs well for diagonal edges with the exception of line- or roof-type edge profiles. Therefore, we combine EWS and DDC for better results. The proposed directional recovery method is effective for the strong edge because exploit the varying neighboring blocks adaptively according to the edges and the directional information in the image. The proposed method outperforms the previous methods that used only fixed blocks.
NASA Astrophysics Data System (ADS)
Aryanti, Nita; Prihatiningtyas, Indah; Kusworo, Tutuk Djoko
2017-06-01
Ultrafiltration membrane has been successfully applied for oily waste water treatment. However, one significant drawback of membrane technology is fouling which is responsible for permeate flux decline as well as reducing membrane performance. One method commonly used to reduce fouling is a backwashing process. The backwashing is carried out by a push of reversed flow from permeate side to the feed side of a membrane to remove fouling on the membrane pore and release fouling release fouling layer on the external side. However, for adsorptive fouling, the backwashing process was not effective. On the other hand, Ozone demonstrated great performance for reducing organics fouling. Hence this research was focused on backwashing process with ozone for removing fouling due to ultrafiltration of petroleum based oil emulsion. Gasoline and diesel oil were selected as dispersed phase, while as continuous phase was water added with Tween 80 as a surfactant. This research found that the Ozone backwashing was effective to improve flux recovery. In ultrafiltration of gasoline emulsion, the flux recovery after Ozone backwashing was in the range of 42-74%. For ultrafiltration of diesel oil emulsion, the permeate flux recovery was about 35-84%. In addition, foulant deposition was proposed and predicting that foulant deposition for ultrafiltration of gasoline-in-water emulsion was surfactant as the top layer and the oil was underneath the surfactant. On the other hand, for ultrafiltration of diesel oil-in-water emulsion, the oil was predicted as a top layer above the surfactant foulant.
Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure.
Agatzini-Leonardou, S; Oustadakis, P; Tsakiridis, P E; Markopoulos, Ch
2008-09-15
Laboratory-scale research has focused on the recovery of titanium from red mud, which is obtained from bauxite during the Bayer process for alumina production. The leaching process is based on the extraction of this element with diluted sulfuric acid from red mud under atmospheric conditions and without using any preliminary treatment. Statistical design and analysis of experiments were used, in order to determine the main effects and interactions of the leaching process factors, which were: acid normality, temperature and solid to liquid ratio. The titanium recovery efficiency on the basis of red mud weight reached 64.5%. The characterization of the initial red mud, as well as this of the leached residues was carried out by X-ray diffraction, TG-DTA and scanning electron microscopy.
Methane Post-Processing for Oxygen Loop Closure
NASA Technical Reports Server (NTRS)
Greenwood, Zachary W.; Abney, Morgan B.; Miller, Lee
2016-01-01
State-of-the-art United States Atmospheric Revitalization carbon dioxide (CO2) reduction is based on the Sabatier reaction process, which recovers approximately 50% of the oxygen (O2) from crew metabolic CO2. Oxygen recovery from carbon dioxide is constrained by the limited availability of reactant hydrogen. Post-processing of methane to recover hydrogen with the Umpqua Research Company Plasma Pyrolysis Assembly (PPA) has the potential to further close the Atmospheric Revitalization oxygen loop. The PPA decomposes methane into hydrogen and hydrocarbons, predominantly acetylene, and a small amount of solid carbon. The hydrogen must then be purified before it can be recycled for additional oxygen recovery. Long duration testing and evaluation of a four crew-member sized PPA and a discussion of hydrogen recycling system architectures are presented.
Water recovery and management test support modeling for Space Station Freedom
NASA Technical Reports Server (NTRS)
Mohamadinejad, Habib; Bacskay, Allen S.
1990-01-01
The water-recovery and management (WRM) subsystem proposed for the Space Station Freedom program is outlined, and its computerized modeling and simulation based on a Computer Aided System Engineering and Analysis (CASE/A) program are discussed. A WRM test model consisting of a pretreated urine processing (TIMES), hygiene water processing (RO), RO brine processing using TIMES, and hygiene water storage is presented. Attention is drawn to such end-user equipment characteristics as the shower, dishwasher, clotheswasher, urine-collection facility, and handwash. The transient behavior of pretreated-urine, RO waste-hygiene, and RO brine tanks is assessed, as well as the total input/output to or from the system. The model is considered to be beneficial for pretest analytical predictions as a program cost-saving feature.
Optimizing the recovery of copper from electroplating rinse bath solution by hollow fiber membrane.
Oskay, Kürşad Oğuz; Kul, Mehmet
2015-01-01
This study aimed to recover and remove copper from industrial model wastewater solution by non-dispersive solvent extraction (NDSX). Two mathematical models were developed to simulate the performance of an integrated extraction-stripping process, based on the use of hollow fiber contactors using the response surface method. The models allow one to predict the time dependent efficiencies of the two phases involved in individual extraction or stripping processes. The optimal recovery efficiency parameters were determined as 227 g/L of H2SO4 concentration, 1.22 feed/strip ratio, 450 mL/min flow rate (115.9 cm/min. flow velocity) and 15 volume % LIX 84-I concentration in 270 min by central composite design (CCD). At these optimum conditions, the experimental value of recovery efficiency was 95.88%, which was in close agreement with the 97.75% efficiency value predicted by the model. At the end of the process, almost all the copper in the model wastewater solution was removed and recovered as CuSO4.5H2O salt, which can be reused in the copper electroplating industry.
Varying face occlusion detection and iterative recovery for face recognition
NASA Astrophysics Data System (ADS)
Wang, Meng; Hu, Zhengping; Sun, Zhe; Zhao, Shuhuan; Sun, Mei
2017-05-01
In most sparse representation methods for face recognition (FR), occlusion problems were usually solved via removing the occlusion part of both query samples and training samples to perform the recognition process. This practice ignores the global feature of facial image and may lead to unsatisfactory results due to the limitation of local features. Considering the aforementioned drawback, we propose a method called varying occlusion detection and iterative recovery for FR. The main contributions of our method are as follows: (1) to detect an accurate occlusion area of facial images, an image processing and intersection-based clustering combination method is used for occlusion FR; (2) according to an accurate occlusion map, the new integrated facial images are recovered iteratively and put into a recognition process; and (3) the effectiveness on recognition accuracy of our method is verified by comparing it with three typical occlusion map detection methods. Experiments show that the proposed method has a highly accurate detection and recovery performance and that it outperforms several similar state-of-the-art methods against partial contiguous occlusion.
Effectiveness of a web-based intervention for injured claimants: a randomized controlled trial.
Elbers, Nieke A; Akkermans, Arno J; Cuijpers, Pim; Bruinvels, David J
2013-07-20
There is considerable evidence showing that injured people who are involved in a compensation process show poorer physical and mental recovery than those with similar injuries who are not involved in a compensation process. One explanation for this reduced recovery is that the legal process and the associated retraumatization are very stressful for the claimant. The aim of this study was to empower injured claimants in order to facilitate recovery. Participants were recruited by three Dutch claims settlement offices. The participants had all been injured in a traffic crash and were involved in a compensation process. The study design was a randomized controlled trial. An intervention website was developed with (1) information about the compensation process, and (2) an evidence-based, therapist-assisted problem-solving course. The control website contained a few links to already existing websites. Outcome measures were empowerment, self-efficacy, health status (including depression, anxiety, and somatic symptoms), perceived fairness, ability to work, claims knowledge and extent of burden. The outcomes were self-reported through online questionnaires and were measured four times: at baseline, and at 3, 6, and 12 months. In total, 176 participants completed the baseline questionnaire after which they were randomized into either the intervention group (n=88) or the control group (n=88). During the study, 35 participants (20%) dropped out. The intervention website was used by 55 participants (63%). The health outcomes of the intervention group were no different to those of the control group. However, the intervention group considered the received compensation to be fairer (P<0.01). The subgroup analysis of intervention users versus nonusers did not reveal significant results. The intervention website was evaluated positively. Although the web-based intervention was not used enough to improve the health of injured claimants in compensation processes, it increased the perceived fairness of the compensation amount. Netherlands Trial Register NTR2360.
[Optimization of solid-phase extraction for enrichment of toxic organic compounds in water samples].
Zhang, Ming-quan; Li, Feng-min; Wu, Qian-yuan; Hu, Hong-ying
2013-05-01
A concentration method for enrichment of toxic organic compounds in water samples has been developed based on combined solid-phase extraction (SPE) to reduce impurities and improve recoveries of target compounds. This SPE method was evaluated in every stage to identify the source of impurities. Based on the analysis of Waters Oasis HLB without water samples, the eluent of SPE sorbent after dichloromethane and acetone contributed 85% of impurities during SPE process. In order to reduce the impurities from SPE sorbent, soxhlet extraction of dichloromethane followed by acetone and lastly methanol was applied to the sorbents for 24 hours and the results had proven that impurities were reduced significantly. In addition to soxhlet extraction, six types of prevalent SPE sorbents were used to absorb 40 target compounds, the lgK(ow) values of which were within the range of 1.46 and 8.1, and recovery rates were compared. It was noticed and confirmed that Waters Oasis HLB had shown the best recovery results for most of the common testing samples among all three styrenedivinylbenzene (SDB) polymer sorbents, which were 77% on average. Furthermore, Waters SepPak AC-2 provided good recovery results for pesticides among three types of activated carbon sorbents and the average recovery rates reached 74%. Therefore, Waters Oasis HLB and Waters SepPak AC-2 were combined to obtain a better recovery and the average recovery rate for the tested 40 compounds of this new SPE method was 87%.
“Recovery Came First”: Desistance versus Recovery in the Criminal Careers of Drug-Using Offenders
Colman, Charlotte; Vander Laenen, Freya
2012-01-01
The aim of our paper is to gain insight in the desistance process of drug-using offenders. We explore the components of change in the desistance process of drug-using offenders by using the cognitive transformation theory of Giordano et al. as a theoretical framework. The desistance process of drug-using offenders entails a two-fold process: desistance of criminal offending and recovery. The results however indicate that desistance is subordinate to recovery because of the fact that drug-using offenders especially see themselves as drug users and not as “criminals.” Their first goal was to start recovery from drug use. They were convinced that recovery from drug use would lead them to a stop in their offending. In the discussion, we explore the implications of this result for further research. PMID:23346020
NASA Astrophysics Data System (ADS)
Le, Huy Xuan; Matunaga, Saburo
2014-12-01
This paper presents an adaptive unscented Kalman filter (AUKF) to recover the satellite attitude in a fault detection and diagnosis (FDD) subsystem of microsatellites. The FDD subsystem includes a filter and an estimator with residual generators, hypothesis tests for fault detections and a reference logic table for fault isolations and fault recovery. The recovery process is based on the monitoring of mean and variance values of each attitude sensor behaviors from residual vectors. In the case of normal work, the residual vectors should be in the form of Gaussian white noise with zero mean and fixed variance. When the hypothesis tests for the residual vectors detect something unusual by comparing the mean and variance values with dynamic thresholds, the AUKF with real-time updated measurement noise covariance matrix will be used to recover the sensor faults. The scheme developed in this paper resolves the problem of the heavy and complex calculations during residual generations and therefore the delay in the isolation process is reduced. The numerical simulations for TSUBAME, a demonstration microsatellite of Tokyo Institute of Technology, are conducted and analyzed to demonstrate the working of the AUKF and FDD subsystem.
The kinematic recovery process of rhesus monkeys after spinal cord injury.
Wei, Rui-Han; Zhao, Can; Rao, Jia-Sheng; Zhao, Wen; Zhou, Xia; Tian, Peng-Yu; Song, Wei; Ji, Run; Zhang, Ai-Feng; Yang, Zhao-Yang; Li, Xiao-Guang
2018-05-16
After incomplete spinal cord injury (SCI), neural circuits may be plastically reconstructed to some degree, resulting in extensive functional locomotor recovery. The present study aimed to observe the post-SCI locomotor recovery of rhesus monkey hindlimbs and compare the recovery degrees of different hindlimb parts, thus revealing the recovery process of locomotor function. Four rhesus monkeys were chosen for thoracic hemisection injury. The hindlimb locomotor performance of these animals was recorded before surgery, as well as 6 and 12 weeks post-lesion. Via principal component analysis, the relevant parameters of the limb endpoint, pelvis, hindlimb segments, and joints were processed and analyzed. Twelve weeks after surgery, partial kinematic recovery was observed at the limb endpoint, shank, foot, and knee joints, and the locomotor performance of the ankle joint even recovered to the pre-lesion level; the elevation angle of the thigh and hip joints showed no obvious recovery. Generally, different parts of a monkey hindlimb had different spontaneous recovery processes; specifically, the closer the part was to the distal end, the more extensive was the locomotor function recovery. Therefore, we speculate that locomotor recovery may be attributed to plastic reconstruction of the motor circuits that are mainly composed of corticospinal tract. This would help to further understand the plasticity of motor circuits after spinal cord injury.
16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM ...
16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM RECOVERY PROCESSED RELATIVELY PURE MATERIALS AND SOLUTIONS AND SOLID RESIDUES WITH RELATIVELY LOW URANIUM CONTENT. URANIUM RECOVERY INVOLVED BOTH SLOW AND FAST PROCESSES. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazari, E.; Rashchi, F., E-mail: rashchi@ut.ac.ir; Saba, M.
2014-12-15
Highlights: • Leaching of vanadium and nickel from fly ash (14.43% V and 5.19% Ni) in sulfuric acid was performed. • Optimization of leaching parameters was carried out using a response surface methodology. • Using optimum conditions, 94.28% V and 81.01% Ni “actual recovery” was obtained. - Abstract: Simultaneous recovery of vanadium (V) and nickel (Ni), which are classified as two of the most hazardous metal species from power plant heavy fuel fly-ash, was studied using a hydrometallurgical process consisting of acid leaching using sulfuric acid. Leaching parameters were investigated and optimized in order to maximize the recovery of bothmore » vanadium and nickel. The independent leaching parameters investigated were liquid to solid ratio (S/L) (5–12.5 wt.%), temperature (45–80 °C), sulfuric acid concentration (5–25 v/v%) and leaching time (1–5 h). Response surface methodology (RSM) was used to optimize the process parameters. The most effective parameter on the recovery of both elements was found to be temperature and the least effective was time for V and acid concentration for Ni. Based on the results, optimum condition for metals recovery (actual recovery of ca.94% for V and 81% for Ni) was determined to be solid to liquid ratio of 9.15 wt.%, temperature of 80 °C, sulfuric acid concentration of 19.47 v/v% and leaching time of 2 h. The maximum V and Ni predicted recovery of 91.34% and 80.26% was achieved.« less
Effect of centrifugal fractionation protocols on quality and recovery rate of equine sperm.
Edmond, A J; Brinsko, S P; Love, C C; Blanchard, T L; Teague, S R; Varner, D D
2012-03-15
Centrifugal fractionation of semen is commonly done to improve quality of human semen in assisted-reproduction laboratories, allowing sperm separation based on their isopycnic points. Sperm with morphologic abnormalities are often more buoyant, promoting their retention above defined density media, with structurally normal sperm passing through the media following centrifugation. Three experiments were conducted to evaluate the effects of density-medium type, centrifuge-tube size, sperm number, and density-medium volume (column height) on stallion sperm quality and recovery rate in sperm pellets following centrifugation. In all three experiments, equine semen was initially centrifuged to increase sperm concentration. In Experiment 1, semen was layered over continuous or discontinuous gradients. For Experiment 2, semen was layered over three column heights of continuous gradients in 15- or 50-ml conical-bottom tubes. For Experiment 3, increasing sperm numbers were layered over continuous gradient in 15- or 50-ml conical-bottom tubes. Following centrifugation, sperm pellets were evaluated for sperm morphologic quality, motility, DNA integrity, and recovery rate. Centrifugal fractionation improved (P < 0.05) sperm morphology, motility, and DNA integrity, as compared to controls. The continuous gradient increased (P < 0.05) sperm recovery rate relative to the discontinuous gradient, whereas sperm processed in 15-ml tubes yielded higher velocity and higher recovery rates (P < 0.05 for each) than that processed in 50-ml tubes. Sperm recovery rate was not affected (P > 0.05) by column height of gradient. Increasing sperm number subjected to gradient centrifugation decreased (P < 0.05) sperm recovery rate when 15-ml tubes were used. Copyright © 2012 Elsevier Inc. All rights reserved.
Fostering Recovery from Life-Transforming Mental Health Disorders: A Synthesis and Model
Green, Carla A.
2012-01-01
In the past, “recovery” from serious mental health problems has been variously defined and generally considered rare. Current evidence suggests that some form of recovery is both possible and common, yet we know little about the processes that differentiate those who recover from those who do not. This paper discusses approaches to defining recovery, proposes a model for fostering, understanding, and studying recovery, and suggests questions for clinicians, researchers, and policy makers. The proposed model is a synthesis of work from the field of mental health as well as from other disciplines. Environment, resources, and strains, provide the backdrop for recovery; core recovery processes include development, learning, healing, and their primary behavioral manifestation, adaptation. Components facilitating recovery include sources of motivation (hope, optimism, and meaning), prerequisites for action (agency, control, and autonomy), and capacity (competence and dysfunction). Attending to these aspects of the recovery process could help shape clinical practice, and systems that provide and finance mental health care, in ways that promote recovery. PMID:23264751
Rare Earth Extraction from NdFeB Magnet Using a Closed-Loop Acid Process.
Kitagawa, Jiro; Uemura, Ryohei
2017-08-14
There is considerable interest in extraction of rare earth elements from NdFeB magnets to enable recycling of these elements. In practical extraction methods using wet processes, the acid waste solution discharge is a problem that must be resolved to reduce the environmental impact of the process. Here, we present an encouraging demonstration of rare earth element extraction from a NdFeB magnet using a closed-loop hydrochloric acid (HCl)-based process. The extraction method is based on corrosion of the magnet in a pretreatment stage and a subsequent ionic liquid technique for Fe extraction from the HCl solution. The rare earth elements are then precipitated using oxalic acid. Triple extraction has been conducted and the recovery ratio of the rare earth elements from the solution is approximately 50% for each extraction process, as compared to almost 100% recovery when using a one-shot extraction process without the ionic liquid but with sufficient oxalic acid. Despite its reduced extraction efficiency, the proposed method with its small number of procedures at almost room temperature is still highly advantageous in terms of both cost and environmental friendliness. This study represents an initial step towards realization of a closed-loop acid process for recycling of rare earth elements.
Dynamic Models and Coordination Analysis of Reverse Supply Chain with Remanufacturing
NASA Astrophysics Data System (ADS)
Yan, Nina
In this paper, we establish a reverse chain system with one manufacturer and one retailer under demand uncertainties. Distinguishing between the recycling process of the retailer and the remanufacturing process of the manufacturer, we formulate a two-stage dynamic model for reverse supply chain based on remanufacturing. Using buyback contract as coordination mechanism and applying dynamic programming the optimal decision problems for each stage are analyzed. It concluded that the reverse supply chain system could be coordinated under the given condition. Finally, we carry out numerical calculations to analyze the expected profits for the manufacturer and the retailer under different recovery rates and recovery prices and the outcomes validate the theoretical analyses.
Advances in in-situ product recovery (ISPR) in whole cell biotechnology during the last decade.
Van Hecke, Wouter; Kaur, Guneet; De Wever, Heleen
2014-11-15
The review presents the state-of-the-art in the applications of in-situ product recovery (ISPR) in whole-cell biotechnology over the last 10years. It summarizes various ISPR-integrated fermentation processes for the production of a wide spectrum of bio-based products. A critical assessment of the performance of various ISPR concepts with respect to the degree of product enrichment, improved productivity, reduced process flows and increased yields is provided. Requirements to allow a successful industrial implementation of ISPR are also discussed. Finally, supporting technologies such as online monitoring, mathematical modeling and use of recombinant microorganisms with ISPR are presented. Copyright © 2014 Elsevier Inc. All rights reserved.
Gohel, V; Ranganathan, K; Duan, G
2017-04-21
Conventional grain ethanol manufacturing is a high-temperature energy-intensive process comprising of multiple-unit operations when combined with lower ethanol recovery results in higher production cost. In liquefaction, jet cooking accounts for significant energy cost, while strong acid or base used for pH adjustment presents a safety hazard. A need is felt for sustainable ethanol manufacturing process that is less hazardous, consumes lower energy, and operates in a low pH range of 4.50-5.50. A single temperature liquefaction (STL) process that could efficiently operate at lower liquefaction temperature over a pH range of 4.50-5.50 was developed using rice and corn feedstock. Ethanol recovery witnessed at pH 4.5, 5.0, and 5.5 are 481.2 ± 1.5, 492.4 ± 1.5, and 493.6 ± 1.5 L MT -1 rice, respectively. Similarly, ethanol recovery witnessed at pH 4.5, 5.0, and 5.5 are 404.6 ± 1.3, 413.9 ± 0.8, and 412.4 ± 1.8 L MT -1 corn, respectively. The improvement in ethanol recovery is attributed to higher starch conversion by alpha-amylase even at pH as low as 4.50. Thus, the STL process operated at pH lower than 5.20 is poised to enhance sustainability by offering dual advantage of energy as well as chemical saving.
Stroke rehabilitation using noninvasive cortical stimulation: aphasia.
Mylius, Veit; Zouari, Hela G; Ayache, Samar S; Farhat, Wassim H; Lefaucheur, Jean-Pascal
2012-08-01
Poststroke aphasia results from the lesion of cortical areas involved in the motor production of speech (Broca's aphasia) or in the semantic aspects of language comprehension (Wernicke's aphasia). Such lesions produce an important reorganization of speech/language-specific brain networks due to an imbalance between cortical facilitation and inhibition. In fact, functional recovery is associated with changes in the excitability of the damaged neural structures and their connections. Two main mechanisms are involved in poststroke aphasia recovery: the recruitment of perilesional regions of the left hemisphere in case of small lesion and the acquisition of language processing ability in homotopic areas of the nondominant right hemisphere when left hemispheric language abilities are permanently lost. There is some evidence that noninvasive cortical stimulation, especially when combined with language therapy or other therapeutic approaches, can promote aphasia recovery. Cortical stimulation was mainly used to either increase perilesional excitability or reduce contralesional activity based on the concept of reciprocal inhibition and maladaptive plasticity. However, recent studies also showed some positive effects of the reinforcement of neural activities in the contralateral right hemisphere, based on the potential compensatory role of the nondominant hemisphere in stroke recovery.
Co-optimization of CO 2 -EOR and Storage Processes under Geological Uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ampomah, William; Balch, Robert; Will, Robert
This paper presents an integrated numerical framework to co-optimize EOR and CO 2 storage performance in the Farnsworth field unit (FWU), Ochiltree County, Texas. The framework includes a field-scale compositional reservoir flow model, an uncertainty quantification model and a neural network optimization process. The reservoir flow model has been constructed based on the field geophysical, geological, and engineering data. A laboratory fluid analysis was tuned to an equation of state and subsequently used to predict the thermodynamic minimum miscible pressure (MMP). A history match of primary and secondary recovery processes was conducted to estimate the reservoir and multiphase flow parametersmore » as the baseline case for analyzing the effect of recycling produced gas, infill drilling and water alternating gas (WAG) cycles on oil recovery and CO 2 storage. A multi-objective optimization model was defined for maximizing both oil recovery and CO 2 storage. The uncertainty quantification model comprising the Latin Hypercube sampling, Monte Carlo simulation, and sensitivity analysis, was used to study the effects of uncertain variables on the defined objective functions. Uncertain variables such as bottom hole injection pressure, WAG cycle, injection and production group rates, and gas-oil ratio among others were selected. The most significant variables were selected as control variables to be used for the optimization process. A neural network optimization algorithm was utilized to optimize the objective function both with and without geological uncertainty. The vertical permeability anisotropy (Kv/Kh) was selected as one of the uncertain parameters in the optimization process. The simulation results were compared to a scenario baseline case that predicted CO 2 storage of 74%. The results showed an improved approach for optimizing oil recovery and CO 2 storage in the FWU. The optimization process predicted more than 94% of CO 2 storage and most importantly about 28% of incremental oil recovery. The sensitivity analysis reduced the number of control variables to decrease computational time. A risk aversion factor was used to represent results at various confidence levels to assist management in the decision-making process. The defined objective functions were proved to be a robust approach to co-optimize oil recovery and CO 2 storage. The Farnsworth CO 2 project will serve as a benchmark for future CO 2–EOR or CCUS projects in the Anadarko basin or geologically similar basins throughout the world.« less
Co-optimization of CO 2 -EOR and Storage Processes under Geological Uncertainty
Ampomah, William; Balch, Robert; Will, Robert; ...
2017-07-01
This paper presents an integrated numerical framework to co-optimize EOR and CO 2 storage performance in the Farnsworth field unit (FWU), Ochiltree County, Texas. The framework includes a field-scale compositional reservoir flow model, an uncertainty quantification model and a neural network optimization process. The reservoir flow model has been constructed based on the field geophysical, geological, and engineering data. A laboratory fluid analysis was tuned to an equation of state and subsequently used to predict the thermodynamic minimum miscible pressure (MMP). A history match of primary and secondary recovery processes was conducted to estimate the reservoir and multiphase flow parametersmore » as the baseline case for analyzing the effect of recycling produced gas, infill drilling and water alternating gas (WAG) cycles on oil recovery and CO 2 storage. A multi-objective optimization model was defined for maximizing both oil recovery and CO 2 storage. The uncertainty quantification model comprising the Latin Hypercube sampling, Monte Carlo simulation, and sensitivity analysis, was used to study the effects of uncertain variables on the defined objective functions. Uncertain variables such as bottom hole injection pressure, WAG cycle, injection and production group rates, and gas-oil ratio among others were selected. The most significant variables were selected as control variables to be used for the optimization process. A neural network optimization algorithm was utilized to optimize the objective function both with and without geological uncertainty. The vertical permeability anisotropy (Kv/Kh) was selected as one of the uncertain parameters in the optimization process. The simulation results were compared to a scenario baseline case that predicted CO 2 storage of 74%. The results showed an improved approach for optimizing oil recovery and CO 2 storage in the FWU. The optimization process predicted more than 94% of CO 2 storage and most importantly about 28% of incremental oil recovery. The sensitivity analysis reduced the number of control variables to decrease computational time. A risk aversion factor was used to represent results at various confidence levels to assist management in the decision-making process. The defined objective functions were proved to be a robust approach to co-optimize oil recovery and CO 2 storage. The Farnsworth CO 2 project will serve as a benchmark for future CO 2–EOR or CCUS projects in the Anadarko basin or geologically similar basins throughout the world.« less
Pereira, Joana P C; Lopez-Gomez, Gustavo; Reyes, Noelia G; van der Wielen, Luuk A M; Straathof, Adrie J J
2017-07-01
The conceptual design of a bio-based process for 2-butanol production is presented for the first time. Considering a hypothetical efficient producing strain, a vacuum fermentation is proposed to alleviate product toxicity, but the main challenge is the energy-efficient product recovery from the vapor. Three downstream scenarios were examined for this purpose: 1) multi-stage vapor recompression; 2) temperature swing adsorption; and 3) vapor absorption. The processes were simulated using Aspen Plus, considering a production capacity of 101 kton/yr. Process optimization was performed targeting the minimum selling price of 2-butanol. The feasibility of the different configurations was analyzed based on the global energy requirements and capital expenditure. The use of integrated adsorption and absorption minimized the energy duty required for azeotrope purification, which represents 11% of the total operational expenditure in Scenario 1. The minimum selling price of 2-butanol as commodity chemical was estimated as 1.05 $/kg, 1.21 $/kg, and 1.03 $/kg regarding the fermentation integrated with downstream scenarios 1), 2), and 3), respectively. Significant savings in 2-butanol production could be achieved in the suggested integrated configurations if more efficient microbial strains were engineered, and more selective adsorption and absorption materials were found for product recovery. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thomas, Neil; Farhall, John; Foley, Fiona; Leitan, Nuwan Dominic; Villagonzalo, Kristi-Ann; Ladd, Emma; Nunan, Cassy; Farnan, Sue; Frankish, Rosalie; Smark, Tara; Rossell, Susan L; Sterling, Leon; Murray, Greg; Castle, David Jonathon; Kyrios, Michael
2016-01-01
For people with persisting psychotic disorders, personal recovery has become an important target of mental health services worldwide. Strongly influenced by mental health service consumer perspectives, personal recovery refers to being able to live a satisfying and contributing life irrespective of ongoing symptoms and disability. Contact with peers with shared lived experience is often cited as facilitative of recovery. We aimed to develop and pilot a novel recovery-based digitally supported intervention for people with a psychotic illness. We developed a website to be used on a tablet computer by mental health workers to structure therapeutic discussions about personal recovery. Central to the site was a series of video interviews of people with lived experience of psychosis discussing how they had navigated issues within their own recovery based on the Connectedness-Hope-Identity-Meaning-Empowerment model of recovery. We examined the feasibility and acceptability of an 8-session low intensity intervention using this site in 10 participants with persisting psychotic disorders and conducted a proof-of-concept analysis of outcomes. All 10 participants completed the full course of sessions, and it was possible to integrate use of the website into nearly all sessions. Participant feedback confirmed that use of the website was a feasible and acceptable way of working. All participants stated that they would recommend the intervention to others. Post-intervention, personal recovery measured by the Questionnaire for the Process of Recovery had improved by an average standardized effect of d = 0.46, 95% CI [0.07, 0.84], and 8 of the 10 participants reported that their mental health had improved since taking part in the intervention. In-session use of digital resources featuring peer accounts of recovery is feasible and acceptable and shows promising outcomes. A randomized controlled trial is the next step in evaluating the efficacy of this low intensity intervention when delivered in conjunction with routine mental health care.
Meng, Ran; Wu, Jin; Zhao, Feng; ...
2018-06-01
Understanding post-fire forest recovery is pivotal to the study of forest dynamics and global carbon cycle. Field-based studies indicated a convex response of forest recovery rate to burn severity at the individual tree level, related with fire-induced tree mortality; however, these findings were constrained in spatial/temporal extents, while not detectable by traditional optical remote sensing studies, largely attributing to the contaminated effect from understory recovery. For this work, we examined whether the combined use of multi-sensor remote sensing techniques (i.e., 1m simultaneous airborne imaging spectroscopy and LiDAR and 2m satellite multi-spectral imagery) to separate canopy recovery from understory recovery wouldmore » enable to quantify post-fire forest recovery rate spanning a large gradient in burn severity over large-scales. Our study was conducted in a mixed pine-oak forest in Long Island, NY, three years after a top-killing fire. Our studies remotely detected an initial increase and then decline of forest recovery rate to burn severity across the burned area, with a maximum canopy area-based recovery rate of 10% per year at moderate forest burn severity class. More intriguingly, such remotely detected convex relationships also held at species level, with pine trees being more resilient to high burn severity and having a higher maximum recovery rate (12% per year) than oak trees (4% per year). These results are one of the first quantitative evidences showing the effects of fire adaptive strategies on post-fire forest recovery, derived from relatively large spatial-temporal domains. Our study thus provides the methodological advance to link multi-sensor remote sensing techniques to monitor forest dynamics in a spatially explicit manner over large-scales, with important implications for fire-related forest management, and for constraining/benchmarking fire effect schemes in ecological process models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Ran; Wu, Jin; Zhao, Feng
Understanding post-fire forest recovery is pivotal to the study of forest dynamics and global carbon cycle. Field-based studies indicated a convex response of forest recovery rate to burn severity at the individual tree level, related with fire-induced tree mortality; however, these findings were constrained in spatial/temporal extents, while not detectable by traditional optical remote sensing studies, largely attributing to the contaminated effect from understory recovery. For this work, we examined whether the combined use of multi-sensor remote sensing techniques (i.e., 1m simultaneous airborne imaging spectroscopy and LiDAR and 2m satellite multi-spectral imagery) to separate canopy recovery from understory recovery wouldmore » enable to quantify post-fire forest recovery rate spanning a large gradient in burn severity over large-scales. Our study was conducted in a mixed pine-oak forest in Long Island, NY, three years after a top-killing fire. Our studies remotely detected an initial increase and then decline of forest recovery rate to burn severity across the burned area, with a maximum canopy area-based recovery rate of 10% per year at moderate forest burn severity class. More intriguingly, such remotely detected convex relationships also held at species level, with pine trees being more resilient to high burn severity and having a higher maximum recovery rate (12% per year) than oak trees (4% per year). These results are one of the first quantitative evidences showing the effects of fire adaptive strategies on post-fire forest recovery, derived from relatively large spatial-temporal domains. Our study thus provides the methodological advance to link multi-sensor remote sensing techniques to monitor forest dynamics in a spatially explicit manner over large-scales, with important implications for fire-related forest management, and for constraining/benchmarking fire effect schemes in ecological process models.« less
PROCESS DEVELOPMENT FOR THE RECOVERY OF CRITICAL MATERIALS FROM ELECTRONIC WASTE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lister, T. E.; Diaz, L. A.; Clark, G. G.
As electronic technology continues to evolve there is a growing need to develop processes which recover valuable material from antiquated technology. This need follows from the environmental challenges associated with the availability of raw materials and fast growing generation of electronic waste. Although just present in small quantities in electronic devices, the availability of raw materials, such as rare earths and precious metals, becomes critical for the production of high tech electronic devices and the development of green technologies (i.e. wind turbines, electric motors, and solar panels). Therefore, the proper recycling and processing of increasing volumes of electronic waste presentmore » an opportunity to stabilize the market of critical materials, reducing the demand of mined products, and providing a proper disposal and treatment of a hazardous waste stream. This paper will describe development and techno-economic assessment of a comprehensive process for the recovery of value and critical materials from electronic waste. This hydrometallurgical scheme aims to selectively recover different value segments in the materials streams (base metals, precious metals, and rare earths). The economic feasibility for the recovery of rare earths from electronic waste is mostly driven by the efficient recovery of precious metals, such as Au and Pd (ca. 80 % of the total recoverable value). Rare earth elements contained in magnets (speakers, vibrators and hard disk storage) can be recovered as a mixture of rare earths oxides which can later be reduced to the production of new magnets.« less
Barriers to the long-term recovery of individuals with disabilities following a disaster.
Stough, Laura M; Sharp, Amy N; Resch, J Aaron; Decker, Curt; Wilker, Nachama
2016-07-01
This study examines how pre-existing disabling conditions influenced the recovery process of survivors of Hurricane Katrina. It focuses specifically on the barriers that hindered the recovery process in these individuals. Focus groups were convened in four Gulf Coast states with 31 individuals with disabilities who lived in or around New Orleans, Louisiana, prior to Hurricane Katrina in August 2005. Qualitative data were analysed using grounded theory methodology. Five themes emerged as the most significant barriers to recovery: housing; transportation; employment; physical and mental health; and accessing recovery services. While these barriers to recovery were probably common to most survivors of the disaster, the research results suggest that disability status enhanced the challenges that participants experienced in negotiating the recovery process and in acquiring resources that accommodated their disabilities. The findings indicate that, when disaster recovery services and resources did not accommodate the needs of individuals with disabilities, recovery was hindered. Recovery efforts should include building accessible infrastructure and services that will allow for participation by all. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.
Outram, Victoria; Lalander, Carl-Axel; Lee, Jonathan G M; Davis, E Timothy; Harvey, Adam P
2016-11-01
The productivity of the Acetone Butanol Ethanol (ABE) fermentation can be significantly increased by application of various in situ product recovery (ISPR) techniques. There are numerous technically viable processes, but it is not clear which is the most economically viable in practice. There is little available information about the energy requirements and economics of ISPR for the ABE fermentation. This work compares various ISPR techniques based on UniSim process simulations of the ABE fermentation. The simulations provide information on the process energy and separation efficiency, which is fed into an economic assessment. Perstraction was the only technique to reduce the energy demand below that of a batch process, by approximately 5%. Perstraction also had the highest profit increase over a batch process, by 175%. However, perstraction is an immature technology, so would need significant development before being integrated to an industrial process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhou, Xian; Chen, Xue
2011-05-09
The digital coherent receivers combine coherent detection with digital signal processing (DSP) to compensate for transmission impairments, and therefore are a promising candidate for future high-speed optical transmission system. However, the maximum symbol rate supported by such real-time receivers is limited by the processing rate of hardware. In order to cope with this difficulty, the parallel processing algorithms is imperative. In this paper, we propose a novel parallel digital timing recovery loop (PDTRL) based on our previous work. Furthermore, for increasing the dynamic dispersion tolerance range of receivers, we embed a parallel adaptive equalizer in the PDTRL. This parallel joint scheme (PJS) can be used to complete synchronization, equalization and polarization de-multiplexing simultaneously. Finally, we demonstrate that PDTRL and PJS allow the hardware to process 112 Gbit/s POLMUX-DQPSK signal at the hundreds MHz range. © 2011 Optical Society of America
Effects of processing and dopant on radiation damage removal in silicon solar cells
NASA Technical Reports Server (NTRS)
Weinberg, I.; Brandhorst, H. W., Jr.; Swartz, C. K.; Mehta, S.
1982-01-01
Gallium and boron doped silicon solar cells, processed by ion-implantation followed by either laser or furnace anneal were irradiated by 1 MeV electrons and their post-irradiation recovery by thermal annealing determined. During the post-irradiation anneal, gallium-doped cells prepared by both processes recovered more rapidly and exhibited none of the severe reverse annealing observed for similarly processed 2 ohm-cm boron doped cells. Ion-implanted furnace annealed 0.1 ohm-cm boron doped cells exhibited the lowest post-irradiation annealing temperatures (200 C) after irradiation to 5 x 10 to the 13th e(-)/sq cm. The drastically lowered recovery temperature is attributed to the reduced oxygen and carbon content of the 0.1 ohm-cm cells. Analysis based on defect properties and annealing kinetics indicates that further reduction in annealing temperature should be attainable with further reduction in the silicon's carbon and/or divacancy content after irradiation.
Mechanistic Processes Controlling Gas Sorption in Shale Reservoirs
NASA Astrophysics Data System (ADS)
Schaef, T.; Loring, J.; Ilton, E. S.; Davidson, C. L.; Owen, T.; Hoyt, D.; Glezakou, V. A.; McGrail, B. P.; Thompson, C.
2014-12-01
Utilization of CO2 to stimulate natural gas production in previously fractured shale-dominated reservoirs where CO2 remains in place for long-term storage may be an attractive new strategy for reducing the cost of managing anthropogenic CO2. A preliminary analysis of capacities and potential revenues in US shale plays suggests nearly 390 tcf in additional gas recovery may be possible via CO2 driven enhanced gas recovery. However, reservoir transmissivity properties, optimum gas recovery rates, and ultimate fate of CO2 vary among reservoirs, potentially increasing operational costs and environmental risks. In this paper, we identify key mechanisms controlling the sorption of CH4 and CO2 onto phyllosilicates and processes occurring in mixed gas systems that have the potential of impacting fluid transfer and CO2 storage in shale dominated formations. Through a unique set of in situ experimental techniques coupled with molecular-level simulations, we identify structural transformations occurring to clay minerals, optimal CO2/CH4 gas exchange conditions, and distinguish between adsorbed and intercalated gases in a mixed gas system. For example, based on in situ measurements with magic angle spinning NMR, intercalation of CO2 within the montmorillonite structure occurs in CH4/CO2 gas mixtures containing low concentrations (<5 mol%) of CO2. A stable montmorillonite structure dominates during exposure to pure CH4 (90 bar), but expands upon titration of small fractions (1-3 mol%) of CO2. Density functional theory was used to quantify the difference in sorption behavior between CO2 and CH4 and indicates complex interactions occurring between hydrated cations, CH4, and CO2. The authors will discuss potential impacts of these experimental results on CO2-based hydrocarbon recovery processes.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
... State-licensed uranium recovery site, either conventional, heap leach, or in situ recovery. DATES... types of new uranium recovery facilities (conventional mills, heap leach facilities, and in situ... from the ground for processing at a mill. Rather, the ore is processed in-situ with the resulting...
2018-04-01
In the context of the White Book of Physical and Rehabilitation Medicine (PRM) in Europe, this paper deals with the fundamentals of PRM from a physiological perspective, looking at the human mechanisms both physical and behavioral which are at the base of PRM physicians' work. After a discussion on the development and evolution of PRM that leads to its unique and specific approach, the mechanisms considered include: - repairing processes (and potential of recovery evaluation): repairing processes are mainly related to the quantity and natural history of diseases and impairments, while potential of recovery is also linked to the individual and environmental factors; PRM physicians work on impairments to favor healing or recovery, and propose rehabilitation if there is a potential of recovery: this is related to the prognostic role of PRM physicians; - learning processes: PRM is the specialty of teaching new physical ways and behavioral approaches to make patients participate at best through improvement of impairments and modification of activities; in this perspective, during repair and rehabilitation processes, PRM physicians and the rehabilitation team are teachers of new motor and behavioral strategies; - compensatory processes (adaptation/habilitation/rehabilitation): PRM physicians teach patients how to adapt to the new (acquired) health condition using compensatory mechanisms based on other body structures/functions, behavioral changes and/or assistive devices (or technical aids) (prosthesis and orthosis); during growth PRM physicians aim at allowing a complete (and compensatory) development of the intact function, not to be impaired by the original disease; compensatory processes are related to activities; - management skills: PRM physicians are managers of people and resources; they manage patients and their caregivers, to teach and allow them to reach the best possible participation, also focusing on maintenance; they lead the team, with the aim to make it function at best for the sake of the patient; finally, they manage resource allocation for the functioning of patients and team; - communication skills: PRM physicians need to develop very good communication skills, so to teach, inform and educate patients and their caregivers: this will allow the proper behavioural changes and also the correct physical compensations.
NASA Astrophysics Data System (ADS)
Staszak, Katarzyna; Wieszczycka, Karolina
2018-04-01
The potential sources of metals from energy industries are discussed. The discussion is organized based on two main metal-contains wastes from power plants: ashes, slags from combustion process and spent catalysts from selective catalytic NOx reduction process with ammonia, known as SCR. The compositions, methods of metals recovery, based mainly on leaching process, and their further application are presented. Solid coal combustion wastes are sources of various compounds such as silica, alumina, iron oxide, and calcium. In the case of the spent SCR catalysts mainly two metals are considered: vanadium and tungsten - basic components of industrial ones.
Advanced heat pump for the recovery of volatile organic compounds
NASA Astrophysics Data System (ADS)
1992-03-01
Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total U.S. VOC emissions. The 'Toxic-Release Inventory' of the U.S. Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing, refrigerant production, and wood products production. The U.S. Department of Energy's (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase 1 report documents 3M's work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. The Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient, and economically priced.
Chen, Gila; Elisha, Ety; Timor, Uri; Ronel, Natti
2013-11-01
A qualitative phenomenological study of parents of addicted male adolescents who were residents of a Jewish therapeutic community (TC) describes and interprets the parents' perceptions of the recovery process. Deep, semistructured interviews with 14 parents provided the data. The parents' perceptions were clustered into three main themes of meaning: (a) the process of change, (b) the experiences of family members in the course of the son's recovery process, and (c) the parents' perception of the treatment at Retorno. According to the parents, the admission of their sons into the TC brought notable relief to the family life, which enabled the whole family to begin a recovery process. The findings support the positive criminology perspective that emphasizes the disintegration-integration vector as significant in the recovery process. Recommendations for intervention planning are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Richard; Heinrichs, Michael; Argumedo, Darwin
Objectives: Through this grant, Battelle proposes to address Area of Interest (AOI) 1 to develop a bench-scale technology to economically separate, extract, and concentrate mixed REEs from coal ash. U.S. coal and coal byproducts provide the opportunity for a domestic source of REEs. The DOE’s National Energy Technology Laboratory (NETL) has characterized various coal and coal byproducts samples and has found varying concentrations of REE ranging up to 1,000 parts per million by weight. The primary project objective is to validate the economic viability of recovering REEs from the coal byproduct coal ash using Battelle’s patented closed-loop Acid Digestion Processmore » (ADP). This will be accomplished by selecting coal sources with the potential to provide REE concentrations above 300 parts per million by weight, collecting characterization data for coal ash samples generated via three different methods, and performing a Techno-Economic Analysis (TEA) for the proposed process. The regional availability of REE-laden coal ash, the regional market for rare earth concentrates, and the system capital and operating costs for rare earth recovery using the ADP technology will be accounted for in the TEA. Limited laboratory testing will be conducted to generate the parameters needed for the design of a bench scale system for REE recovery. The ultimate project outcome will be the design for an optimized, closed loop process to economically recovery REEs such that the process may be demonstrated at the bench scale in a Phase 2 project. Project Description: The project will encompass evaluation of the ADP technology for the economic recovery of REEs from coal and coal ash. The ADP was originally designed and demonstrated for the U.S. Army to facilitate demilitarization of cast-cured munitions via acid digestion in a closed-loop process. Proof of concept testing has been conducted on a sample of Ohio-based Middle Kittanning coal and has demonstrated the feasibility of recovering REEs using the ADP technology. In AOI 1, Ohio coal sources with the potential to provide a consistent source of rare earth element concentrations above 300 parts per million will be identified. Coal sample inventories from West Virginia and Pennsylvania will also be assessed for purposes of comparison. Three methods of preparing the coal ash will be evaluated for their potential to enhance the technical feasibility and economics of REE recovery. Three sources of coal ash are targeted for evaluation of the economics of REE recovery in this project: (1) coal ash from power generation stations, to include fly ash and/or bottom ash, (2) ash generated in a lower temperature ashing process, and (3) ash residual from Battelle’s coal liquefaction process. Making use of residual ash from coal liquefaction processes directly leverages work currently being conducted by Battelle for DOE NETL in response to DE-FOA-0000981 entitled “Greenhouse Gas Emissions Reductions Research and Development Leading to Cost-Competitive Coal-to-Liquids Based Jet Fuel Production.” Using the sample characterization results and regional information regarding REE concentration, availability and cost, a TEA will be developed. The previously generated laboratory testing results for leaching and REE recovery via the ADP will be used to perform the TEA, along with common engineering assumptions for scale up of equipment and labor costs. Finally, upon validation of the economic feasibility of the process by the TEA, limited laboratory testing will be performed to support the design of a bench scale system. In a future project phase, it is envisioned that the bench scale system will be constructed and operated to prove the process on a continuous basis.« less
Analysis of backward error recovery for concurrent processes with recovery blocks
NASA Technical Reports Server (NTRS)
Shin, K. G.; Lee, Y. H.
1982-01-01
Three different methods of implementing recovery blocks (RB's). These are the asynchronous, synchronous, and the pseudo recovery point implementations. Pseudo recovery points so that unbounded rollback may be avoided while maintaining process autonomy are proposed. Probabilistic models for analyzing these three methods under standard assumptions in computer performance analysis, i.e., exponential distributions for related random variables were developed. The interval between two successive recovery lines for asynchronous RB's mean loss in computation power for the synchronized method, and additional overhead and rollback distance in case PRP's are used were estimated.
Metallurgical recovery of metals from electronic waste: a review.
Cui, Jirang; Zhang, Lifeng
2008-10-30
Waste electric and electronic equipment, or electronic waste, has been taken into consideration not only by the government but also by the public due to their hazardous material contents. In the detailed literature survey, value distributions for different electronic waste samples were calculated. It is showed that the major economic driver for recycling of electronic waste is from the recovery of precious metals. The state of the art in recovery of precious metals from electronic waste by pyrometallurgical processing, hydrometallurgical processing, and biometallurgical processing are highlighted in the paper. Pyrometallurgical processing has been a traditional technology for recovery of precious metals from waste electronic equipment. However, state-of-the-art smelters are highly depended on investments. Recent research on recovery of energy from PC waste gives an example for using plastics in this waste stream. It indicates that thermal processing provides a feasible approach for recovery of energy from electronic waste if a comprehensive emission control system is installed. In the last decade, attentions have been removed from pyrometallurgical process to hydrometallurgical process for recovery of metals from electronic waste. In the paper, hydrometallurgical processing techniques including cyanide leaching, halide leaching, thiourea leaching, and thiosulfate leaching of precious metals are detailed. In order to develop an environmentally friendly technique for recovery of precious metals from electronic scrap, a critical comparison of main leaching methods is analyzed for both economic feasibility and environmental impact. It is believed that biotechnology has been one of the most promising technologies in metallurgical processing. Bioleaching has been used for recovery of precious metals and copper from ores for many years. However, limited research was carried out on the bioleaching of metals from electronic waste. In the review, initial researches on the topic are presented. In addition, mechanisms and models of biosorption of precious metal ions from solutions are discussed.
Development and evaluation of the INSPIRE measure of staff support for personal recovery.
Williams, Julie; Leamy, Mary; Bird, Victoria; Le Boutillier, Clair; Norton, Sam; Pesola, Francesca; Slade, Mike
2015-05-01
No individualised standardised measure of staff support for mental health recovery exists. To develop and evaluate a measure of staff support for recovery. initial draft of measure based on systematic review of recovery processes; consultation (n = 61); and piloting (n = 20). Psychometric evaluation: three rounds of data collection from mental health service users (n = 92). INSPIRE has two sub-scales. The 20-item Support sub-scale has convergent validity (0.60) and adequate sensitivity to change. Exploratory factor analysis (variance 71.4-85.1 %, Kaiser-Meyer-Olkin 0.65-0.78) and internal consistency (range 0.82-0.85) indicate each recovery domain is adequately assessed. The 7-item Relationship sub-scale has convergent validity 0.69, test-retest reliability 0.75, internal consistency 0.89, a one-factor solution (variance 70.5 %, KMO 0.84) and adequate sensitivity to change. A 5-item Brief INSPIRE was also evaluated. INSPIRE and Brief INSPIRE demonstrate adequate psychometric properties, and can be recommended for research and clinical use.
On the recovery of missing low and high frequency information from bandlimited reflectivity data
NASA Astrophysics Data System (ADS)
Sacchi, M. D.; Ulrych, T. J.
2007-12-01
During the last two decades, an important effort in the seismic exploration community has been made to retrieve broad-band seismic data by means of deconvolution and inversion. In general, the problem can be stated as a spectral reconstruction problem. In other words, given limited spectral information about the earth's reflectivity sequence, one attempts to create a broadband estimate of the Fourier spectra of the unknown reflectivity. Techniques based on the principle of parsimony can be effectively used to retrieve a sparse spike sequence and, consequently, a broad band signal. Alternatively, continuation methods, e.g., autoregressive modeling, can be used to extrapolate the recorded bandwidth of the seismic signal. The goal of this paper is to examine under what conditions the recovery of low and high frequencies from band-limited and noisy signals is possible. At the heart of the methods we discuss, is the celebrated non-Gaussian assumption so important in many modern signal processing methods, such as ICA, for example. Spectral recovery from limited information tends to work when the reflectivity consist of a few well isolated events. Results degrade with the number of reflectors, decreasing SNR and decreasing bandwidth of the source wavelet. Constrains and information-based priors can be used to stabilize the recovery but, as in all inverse problems, the solution is nonunique and effort is required to understand the level of recovery that is achievable, always keeping the physics of the problem in mind. We provide in this paper, a survey of methods to recover broad-band reflectivity sequences and examine the role that these techniques can play in the processing and inversion as applied to exploration and global seismology.
Highlights of the Salt Extraction Process
NASA Astrophysics Data System (ADS)
Abbasalizadeh, Aida; Seetharaman, Seshadri; Teng, Lidong; Sridhar, Seetharaman; Grinder, Olle; Izumi, Yukari; Barati, Mansoor
2013-11-01
This article presents the salient features of a new process for the recovery of metal values from secondary sources and waste materials such as slag and flue dusts. It is also feasible in extracting metals such as nickel and cobalt from ores that normally are difficult to enrich and process metallurgically. The salt extraction process is based on extraction of the metals from the raw materials by a molten salt bath consisting of NaCl, LiCl, and KCl corresponding to the eutectic composition with AlCl3 as the chlorinating agent. The process is operated in the temperature range 973 K (700°C) to 1173 K (900°C). The process was shown to be successful in extracting Cr and Fe from electric arc furnace (EAF) slag. Electrolytic copper could be produced from copper concentrate based on chalcopyrite in a single step. Conducting the process in oxygen-free atmosphere, sulfur could be captured in the elemental form. The method proved to be successful in extracting lead from spent cathode ray tubes. In order to prevent the loss of AlCl3 in the vapor form and also chlorine gas emission at the cathode during the electrolysis, liquid aluminum was used. The process was shown to be successful in extracting Nd and Dy from magnetic scrap. The method is a highly promising process route for the recovery of strategic metals. It also has the added advantage of being environmentally friendly.
Tofthagen, Randi; Talseth, Anne Grethe; Fagerstrøm, Lisbeth Maria
2017-10-01
To explore, describe and understand former patients' experiences of recovery from self-harm. Previous research shows that a person's development towards a more secure self-image, mastery of their emotions, an understanding of what triggers self-harm and mastery of new ways to cope with problems are central to recovery. Recovery from self-harm is still a relatively new field of research. A phenomenological hermeneutical approach. Eight participants were interviewed in 2013. Inclusion criteria were as follows: to have committed no self-harm during the past 2 years, to have experienced recovery and to be 18 or older. We analysed data using a phenomenological hermeneutical method. The findings resulted in three themes with subthemes. The first theme, the turning point, occurred at the start of the recovery process. Participants learned to choose life, verbally express their inner pain and reconcile with their life histories. In the second theme, coping with everyday life, participants learned how to choose alternative actions instead of self-harm and attend to their basic, physical needs. In the third theme, valuing close relationships and relationships with mental health nurses, participants learned to receive support from close relationships with others and mental health nurses. A tentative model illustrates the comprehensive understanding of the recovery process, described as an individual, prolonged learning process. To achieve recovery, persons who self-harm need guidance and knowledge of how to realize a personal learning process. More research is needed on how mental health nurses can support individual transition processes and thereby facilitate recovery. © 2017 John Wiley & Sons Ltd.
Wieslander, Inger; Mårtensson, Jan; Fridlund, Bengt; Svedberg, Petra
2016-01-01
Background A rapid improvement in the care of myocardial infarction (MI) in the emergency services has been witnessed in recent years. There is, however, a lack of understanding of the factors involved in a successful recovery process, after the initial stages of emergency care among patients, and in particular those who are women. Both preventive and promotive perspectives should be taken into consideration for facilitating the recovery process of women after a MI. Aim To explore how women's recovery processes are promoted after a first MI. Methods A qualitative content analysis was used. Findings The women's recovery process is a multidirectional process with a desire to develop and approach a new perspective on life. The women's possibility to approach new perspectives on life incorporates how they handle the three dimensions: behaviour, that is, women's acting and engaging in various activities; social, that is, how women receive and give support in their social environment; and psychological, that is, their way of thinking, reflecting, and appreciating life. Conclusions The personal recovery of women is a multidirectional process with a desire to develop and approach a new perspective on life. It is important for cardiac rehabilitation nurses to not only focus on lifestyle changes and social support but also on working actively with the women's inner strength in order to promote the recovery of the women. PMID:27172514
Iterative-Transform Phase Retrieval Using Adaptive Diversity
NASA Technical Reports Server (NTRS)
Dean, Bruce H.
2007-01-01
A phase-diverse iterative-transform phase-retrieval algorithm enables high spatial-frequency, high-dynamic-range, image-based wavefront sensing. [The terms phase-diverse, phase retrieval, image-based, and wavefront sensing are defined in the first of the two immediately preceding articles, Broadband Phase Retrieval for Image-Based Wavefront Sensing (GSC-14899-1).] As described below, no prior phase-retrieval algorithm has offered both high dynamic range and the capability to recover high spatial-frequency components. Each of the previously developed image-based phase-retrieval techniques can be classified into one of two categories: iterative transform or parametric. Among the modifications of the original iterative-transform approach has been the introduction of a defocus diversity function (also defined in the cited companion article). Modifications of the original parametric approach have included minimizing alternative objective functions as well as implementing a variety of nonlinear optimization methods. The iterative-transform approach offers the advantage of ability to recover low, middle, and high spatial frequencies, but has disadvantage of having a limited dynamic range to one wavelength or less. In contrast, parametric phase retrieval offers the advantage of high dynamic range, but is poorly suited for recovering higher spatial frequency aberrations. The present phase-diverse iterative transform phase-retrieval algorithm offers both the high-spatial-frequency capability of the iterative-transform approach and the high dynamic range of parametric phase-recovery techniques. In implementation, this is a focus-diverse iterative-transform phaseretrieval algorithm that incorporates an adaptive diversity function, which makes it possible to avoid phase unwrapping while preserving high-spatial-frequency recovery. The algorithm includes an inner and an outer loop (see figure). An initial estimate of phase is used to start the algorithm on the inner loop, wherein multiple intensity images are processed, each using a different defocus value. The processing is done by an iterative-transform method, yielding individual phase estimates corresponding to each image of the defocus-diversity data set. These individual phase estimates are combined in a weighted average to form a new phase estimate, which serves as the initial phase estimate for either the next iteration of the iterative-transform method or, if the maximum number of iterations has been reached, for the next several steps, which constitute the outerloop portion of the algorithm. The details of the next several steps must be omitted here for the sake of brevity. The overall effect of these steps is to adaptively update the diversity defocus values according to recovery of global defocus in the phase estimate. Aberration recovery varies with differing amounts as the amount of diversity defocus is updated in each image; thus, feedback is incorporated into the recovery process. This process is iterated until the global defocus error is driven to zero during the recovery process. The amplitude of aberration may far exceed one wavelength after completion of the inner-loop portion of the algorithm, and the classical iterative transform method does not, by itself, enable recovery of multi-wavelength aberrations. Hence, in the absence of a means of off-loading the multi-wavelength portion of the aberration, the algorithm would produce a wrapped phase map. However, a special aberration-fitting procedure can be applied to the wrapped phase data to transfer at least some portion of the multi-wavelength aberration to the diversity function, wherein the data are treated as known phase values. In this way, a multiwavelength aberration can be recovered incrementally by successively applying the aberration-fitting procedure to intermediate wrapped phase maps. During recovery, as more of the aberration is transferred to the diversity function following successive iterations around the ter loop, the estimated phase ceases to wrap in places where the aberration values become incorporated as part of the diversity function. As a result, as the aberration content is transferred to the diversity function, the phase estimate resembles that of a reference flat.
Li, Qiang; Mannall, Gareth J; Ali, Shaukat; Hoare, Mike
2013-08-01
Escherichia coli is frequently used as a microbial host to express recombinant proteins but it lacks the ability to secrete proteins into medium. One option for protein release is to use high-pressure homogenization followed by a centrifugation step to remove cell debris. While this does not give selective release of proteins in the periplasmic space, it does provide a robust process. An ultra scale-down (USD) approach based on focused acoustics is described to study rec E. coli cell disruption by high-pressure homogenization for recovery of an antibody fragment (Fab') and the impact of fermentation harvest time. This approach is followed by microwell-based USD centrifugation to study the removal of the resultant cell debris. Successful verification of this USD approach is achieved using pilot scale high-pressure homogenization and pilot scale, continuous flow, disc stack centrifugation comparing performance parameters such as the fraction of Fab' release, cell debris size distribution and the carryover of cell debris fine particles in the supernatant. The integration of fermentation and primary recovery stages is examined using USD monitoring of different phases of cell growth. Increasing susceptibility of the cells to disruption is observed with time following induction. For a given recovery process this results in a higher fraction of product release and a greater proportion of fine cell debris particles that are difficult to remove by centrifugation. Such observations are confirmed at pilot scale. Copyright © 2013 Wiley Periodicals, Inc.
Martínez-Flores, Francisco; Sandoval-Zamora, Hugo; Machuca-Rodriguez, Catalina; Barrera-López, Araceli; García-Cavazos, Ricardo; Madinaveitia-Villanueva, Juan Antonio
2016-01-01
Tissue storage is a medical process that is in the regulation and homogenisation phase in the scientific world. The international standards require the need to ensure safety and efficacy of human allografts such as skin and other tissues. The activities of skin and tissues banks currently involve their recovery, processing, storage and distribution, which are positively correlated with technological and scientific advances present in current biomedical sciences. A description is presented of the operational model of Skin and Tissue Bank at INR as successful case for procurement, recovery and preservation of skin and tissues for therapeutic uses, with high safety and biological quality. The essential and standard guidelines are presented as keystones for a tissue recovery program based on scientific evidence, and within an ethical and legal framework, as well as to propose a model for complete overview of the donation of tissues and organ programs in Mexico. Finally, it concludes with essential proposals for improving the efficacy of transplantation of organs and tissue programs. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.
Scaling of counter-current imbibition recovery curves using artificial neural networks
NASA Astrophysics Data System (ADS)
Jafari, Iman; Masihi, Mohsen; Nasiri Zarandi, Masoud
2018-06-01
Scaling imbibition curves are of great importance in the characterization and simulation of oil production from naturally fractured reservoirs. Different parameters such as matrix porosity and permeability, oil and water viscosities, matrix dimensions, and oil/water interfacial tensions have an effective on the imbibition process. Studies on the scaling imbibition curves along with the consideration of different assumptions have resulted in various scaling equations. In this work, using an artificial neural network (ANN) method, a novel technique is presented for scaling imbibition recovery curves, which can be used for scaling the experimental and field-scale imbibition cases. The imbibition recovery curves for training and testing the neural network were gathered through the simulation of different scenarios using a commercial reservoir simulator. In this ANN-based method, six parameters were assumed to have an effect on the imbibition process and were considered as the inputs for training the network. Using the ‘Bayesian regularization’ training algorithm, the network was trained and tested. Training and testing phases showed superior results in comparison with the other scaling methods. It is concluded that using the new technique is useful for scaling imbibition recovery curves, especially for complex cases, for which the common scaling methods are not designed.
RECOVERY OF VOCS FROM SURFACTANT SOLUTION BY PERVAPORATION
Surfactant-based processes are emerging as promising technologies to enhance conventional pump-and-treat methods for remediating soils contaminated with nonaqueous phase liquids (NAPLs), primarily due to the potential to significantly reduce the remediation time. In order to reus...
Collie, Alex; Gabbe, Belinda; Fitzharris, Michael
2015-01-01
Introduction Injuries resulting from road traffic crashes are a substantial cause of disability and death worldwide. Injured persons receiving compensation have poorer recovery and return to work than those with non-compensable injury. Case or claims management is a critical component of injury compensation systems, and there is now evidence that claims management can have powerful positive impacts on recovery, but can also impede recovery or exacerbate mental health concerns in some injured people. This study seeks to evaluate the impact of a population-based injury claims management intervention in the State of Victoria, Australia, on the health of those injured in motor vehicle crashes, their experience of the compensation process, and the financial viability of the compensation system. Methods and analysis Evaluation of this complex intervention involves a series of linked but stand-alone research projects to assess the anticipated process changes, impacts and outcomes of the intervention over a 5-year time frame. Linkage and analysis of routine administrative and health system data is supplemented with a series of primary studies collecting new information. Additionally, a series of ‘action’ research projects will be undertaken to inform the implementation of the intervention. A program logic model designed by the state government Transport Accident Commission in conjunction with the research team provides the evaluation framework. Ethics and dissemination Relatively few studies have comprehensively examined the impact of compensation system processes on the health of injured persons, their satisfaction with systems processes, and impacts on the financial performance of the compensation scheme itself. The wholesale, population-based transformation of an injury claims management model is a rare opportunity to document impacts of system-level policy change on outcomes of injured persons. Findings will contribute to the evidence base of information on the public health effects of injury claims management policy and practice. PMID:25967991
Collie, Alex; Gabbe, Belinda; Fitzharris, Michael
2015-05-12
Injuries resulting from road traffic crashes are a substantial cause of disability and death worldwide. Injured persons receiving compensation have poorer recovery and return to work than those with non-compensable injury. Case or claims management is a critical component of injury compensation systems, and there is now evidence that claims management can have powerful positive impacts on recovery, but can also impede recovery or exacerbate mental health concerns in some injured people. This study seeks to evaluate the impact of a population-based injury claims management intervention in the State of Victoria, Australia, on the health of those injured in motor vehicle crashes, their experience of the compensation process, and the financial viability of the compensation system. Evaluation of this complex intervention involves a series of linked but stand-alone research projects to assess the anticipated process changes, impacts and outcomes of the intervention over a 5-year time frame. Linkage and analysis of routine administrative and health system data is supplemented with a series of primary studies collecting new information. Additionally, a series of 'action' research projects will be undertaken to inform the implementation of the intervention. A program logic model designed by the state government Transport Accident Commission in conjunction with the research team provides the evaluation framework. Relatively few studies have comprehensively examined the impact of compensation system processes on the health of injured persons, their satisfaction with systems processes, and impacts on the financial performance of the compensation scheme itself. The wholesale, population-based transformation of an injury claims management model is a rare opportunity to document impacts of system-level policy change on outcomes of injured persons. Findings will contribute to the evidence base of information on the public health effects of injury claims management policy and practice. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-04-01
The American Recovery and Reinvestment Act of 2009 (Recovery Act) was established to jumpstart the U.S. economy, create or save millions of jobs, and invest in the Nation's energy future. The Department of Energy received approximately $37 billion through the Recovery Act to support a variety of science, energy and environmental initiatives. The Office of Management and Budget (OMB) issued guidance for carrying out stimulus-related activities which requires, among other things, that recipients ensure funds provided by the Recovery Act are clearly distinguishable from non-Recovery Act funds in all reporting systems and that recipients' actions are transparent to the public.more » To meet these requirements, the Department's recipients must clearly and accurately track and report on 18 separate data elements. In addition, the Department was to develop and implement a process to ensure that recipient information reported to the public was free from material omissions and significant reporting errors. Our recent report (OAS-RA-10-01, October 2009) noted that the Department had developed a quality assurance process to facilitate the quarterly reviews of recipient data and planned to test it during the first quarterly reporting cycle. To determine whether the Department's quality assurance process was effective, we examined information reported by recipients of Departmental funding as of September 30, 2009. We also sought to determine whether the Department's prime contractors were prepared to track and report on Recovery Act activities. The Department had taken a number of actions designed to ensure the accuracy and transparency of reported Recovery Act results. This process identified potential anomalies with information reported by 1,113 of 2,038, or 55 percent of recipients. We view the Department's data quality assurance efforts as both timely and significant. As noted by our audit testing, however, opportunities exist to strengthen the process. In particular: (1) Site officials did not always ensure that anomalies, once identified during the quality assurance process, were actually resolved. For example, the Department's process identified that about 740 of the approximately 10,000 jobs reported in the first quarter of Fiscal Year 2010 as created/retained were for projects reported as having no funds spent. Although these problems were referred to site officials for follow-up and/or correction, the information was never actually changed; (2) The Department did not always utilize the correct basis when evaluating the accuracy of 'funds provided' data submitted by grant recipients. For example, in its analysis process, the Department used data reflecting 'funds obligated' rather than the correct amount of 'total grant awards'. This generated a number of potential false positives; and, (3) Duplicate reports by certain recipients, resulting in overstatements of as much as $137 million of the more than $18 billion obligated, were not corrected. We observed that the Department had taken prompt action to ensure that its prime facility management contractors could properly report Recovery Act information. Notably, the seven contractors in this category included in our review had modified their accounting systems, as necessary, to ensure that they could accurately track and report on Recovery Act activities. The systems at each of these entities had been restructured so that they: (i) could separate Recovery Act and non-Recovery Act funds; and, (ii) had adequate processing capacity to handle the projected increase in transactions. We found the Department's decision to limit its reviews to the four elements that it considered to be critical (award amount, invoiced amount, jobs created/retained, and project status) to be reasonable. We concluded, however, other elements or dependent relationships should not be completely excluded from review. Beyond its initial development and implementation of its quality assurance process, the Department had taken steps to improve its ability to ensure that Recovery Act information was both accurate and transparent to the public. Specifically, officials changed the quality assurance plan based on initial data reviews. Department officials also informed us that they are in the process of updating their quality assurance process to meet new OMB requirements. For example, recent guidance directed agencies to focus on certain data elements, such as award number and recipient name, during their quality assurance reviews. In addition, subsequent to our review, the Department added two more data elements and comparisons to its quarterly assurance process, including an analysis of costs/expenditures and a comparison of the recipient reported project status to the Department's data contained in its financial system.« less
Mack, C L; Wilhelmi, B; Duncan, J R; Burgess, J E
2011-01-01
The process of platinum group metal (PGM) refining can be up to 99.99% efficient at best, and although it may seem small, the amount of valuable metal lost to waste streams is appreciable enough to warrant recovery. The method currently used to remove entrained metal ions from refinery wastewaters, chemical precipitation, is not effective for selective recovery of PGMs. The yeast Saccharomyces cerevisiae has been found capable of sorbing numerous precious and base metals, and is a cheap and abundant source of biomass. In this investigation, S. cerevisiae was immobilised using polyethyleneimine and glutaraldehyde to produce a suitable sorbent, capable of high platinum uptake (150-170 mg/g) at low pH (<2). The sorption mechanism was found to be a chemical reaction, which made effective desorption impossible. When applied to PGM refinery wastewater, two key wastewater characteristics limited the success of the sorption process; high inorganic ion content and complex speciation of the platinum ions. The results proved the concept principle of platinum recovery by immobilised yeast biosorption and indicated that a more detailed understanding of the platinum speciation within the wastewater is required before biosorption can be applied. Overall, the sorption of platinum by the S. cerevisiae sorbent was demonstrated to be highly effective in principle, but the complexity of the wastewater requires that pretreatment steps be taken before the successful application of this process to industrial wastewater.
Martínez-Pernía, David; González-Castán, Óscar; Huepe, David
2017-02-01
The development of rehabilitation has traditionally focused on measurements of motor disorders and measurements of the improvements produced during the therapeutic process; however, physical rehabilitation sciences have not focused on understanding the philosophical and scientific principles in clinical intervention and how they are interrelated. The main aim of this paper is to explain the foundation stones of the disciplines of physical therapy, occupational therapy, and speech/language therapy in recovery from motor disorder. To reach our goals, the mechanistic view and how it is integrated into physical rehabilitation will first be explained. Next, a classification into mechanistic therapy based on an old version (automaton model) and a technological version (cyborg model) will be shown. Then, it will be shown how physical rehabilitation sciences found a new perspective in motor recovery, which is based on functionalism, during the cognitive revolution in the 1960s. Through this cognitive theory, physical rehabilitation incorporated into motor recovery of those therapeutic strategies that solicit the activation of the brain and/or symbolic processing; aspects that were not taken into account in mechanistic therapy. In addition, a classification into functionalist rehabilitation based on a computational therapy and a brain therapy will be shown. At the end of the article, the methodological principles in physical rehabilitation sciences will be explained. It will allow us to go deeper into the differences and similarities between therapeutic mechanism and therapeutic functionalism.
Intermediate water recovery system
NASA Technical Reports Server (NTRS)
Deckman, G.; Anderson, A. R. (Editor)
1973-01-01
A water recovery system for collecting, storing, and processing urine, wash water, and humidity condensates from a crew of three aboard a spacecraft is described. The results of a 30-day test performed on a breadboard system are presented. The intermediate water recovery system produced clear, sterile, water with a 96.4 percent recovery rate from the processed urine. Recommendations for improving the system are included.
The influence of cold on the recovery of three neuromuscular blocking agents in man.
England, A J; Wu, X; Richards, K M; Redai, I; Feldman, S A
1996-03-01
The Arrhenius hypothesis suggests that change in temperature has a less marked effect on the rate of physical processes than on biological reactions. We have investigated the process underlying recovery from neuromuscular block in man by studying the effect of cooling on the rate of recovery from depolarising and non-depolarising block. Vecuronium, rocuronium and decamethonium (C10) neuromuscular block were investigated using the isolated forearm technique on awake human volunteers. In these experiments, one arm was cooled whilst the other was used as control. Moderate hypothermia decreased the rate of recovery from all three agents, but this was significantly less marked with the depolarising drug. The mean Q10 (the anticipated change in rate of a reaction across of 10 degrees C temperature gradient) of the rate of recovery for vecuronium was 3.21, rocuronium 2.86 and decamethonium 1.29. This suggests a different process in the recovery of these two types of drug. According to the Arrhenius hypothesis this would suggest that the recovery from non-depolarising drugs is likely to involve a biochemical mechanism and that recovery from decamethonium is controlled by a physical process.
Sim, Victor S T; She, Qianhong; Chong, Tzyy Haur; Tang, Chuyang Y; Fane, Anthony G; Krantz, William B
2013-07-04
This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO) to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%-20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination.
Montero-Serra, Ignasi; Linares, Cristina; García, Marina; Pancaldi, Francesca; Frleta-Valić, Maša; Ledoux, Jean-Baptiste; Zuberer, Frederic; Merad, Djamel; Drap, Pierre; Garrabou, Joaquim
2015-01-01
Overexploitation is a major threat for the integrity of marine ecosystems. Understanding the ecological consequences of different extractive practices and the mechanisms underlying the recovery of populations is essential to ensure sustainable management plans. Precious corals are long-lived structural invertebrates, historically overfished, and their conservation is currently a worldwide concern. However, the processes underlying their recovery are poorly known. Here, we examined harvesting effects and recovery mechanisms of red coral Corallium rubrum by analyzing long-term photographic series taken on two populations that were harvested. We compared the relative importance of reproduction and re-growth as drivers of resilience. Harvesting heavily impacted coral populations causing large decreases in biomass and strong size-class distribution shifts towards populations dominated by small colonies. At the end of the study (after 4 and 7 years) only partial recovery was observed. The observed general pattern of low recruitment and high mortality of new recruits demonstrated limited effects of reproduction on population recovery. Adversely, low mortality of partially harvested adults and a large proportion of colonies showing new branches highlighted the importance of re-growth in the recovery process. The demographic projections obtained through stochastic models confirmed that the recovery rates of C. rubrum can be strongly modulated depending on harvesting procedures. Thus, leaving the basal section of the colonies when harvesting to avoid total mortality largely enhances the resilience of C. rubrum populations and quickens their recovery. On the other hand, the high survival of harvested colonies and the significant biomass reduction indicated that abundance may not be an adequate metric to assess the conservation status of clonal organisms because it can underestimate harvesting effects. This study highlights the unsustainability of current harvesting practices of C. rubrum and provides urgently needed data to improve management practices that are still largely based on untested assumptions. PMID:25706556
An Efficient Pipeline Wavefront Phase Recovery for the CAFADIS Camera for Extremely Large Telescopes
Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel
2010-01-01
In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations. PMID:22315523
Magdaleno, Eduardo; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel
2010-01-01
In this paper we show a fast, specialized hardware implementation of the wavefront phase recovery algorithm using the CAFADIS camera. The CAFADIS camera is a new plenoptic sensor patented by the Universidad de La Laguna (Canary Islands, Spain): international patent PCT/ES2007/000046 (WIPO publication number WO/2007/082975). It can simultaneously measure the wavefront phase and the distance to the light source in a real-time process. The pipeline algorithm is implemented using Field Programmable Gate Arrays (FPGA). These devices present architecture capable of handling the sensor output stream using a massively parallel approach and they are efficient enough to resolve several Adaptive Optics (AO) problems in Extremely Large Telescopes (ELTs) in terms of processing time requirements. The FPGA implementation of the wavefront phase recovery algorithm using the CAFADIS camera is based on the very fast computation of two dimensional fast Fourier Transforms (FFTs). Thus we have carried out a comparison between our very novel FPGA 2D-FFTa and other implementations.
Methane Post-Processing and Hydrogen Separation for Spacecraft Oxygen Loop Closure
NASA Technical Reports Server (NTRS)
Greenwood, Zachary W.; Abeny, Morgan B.; Wall, Terry; Miller, Lee A.; Wheeler, Richard R., Jr.
2017-01-01
State-of-the-art life support oxygen recovery technology on the International Space Station is based on the Sabatier reaction where only about half of the oxygen required for the crew is recovered from metabolic carbon dioxide (CO2). The Sabatier reaction produces water as the primary product and methane as a byproduct. Oxygen recovery is constrained by both the limited availability of reactant hydrogen from water electrolysis and Sabatier methane (CH4) being vented as a waste product resulting in a continuous loss of reactant hydrogen. Post-processing methane with the Plasma Pyrolysis Assembly (PPA) to recover this hydrogen has the potential to substantially increase oxygen recovery and thus dramatically reduce the logistical challenges associated with oxygen resupply. The PPA decomposes methane into predominantly hydrogen and acetylene. A purification system is necessary to purify hydrogen before it is recycled back to the Sabatier reactor. Testing and evaluation of acetylene removal systems and PPA system architectures are presented and discussed.
Chan, Kevin Ka Shing; Lam, Chun Bun
2018-05-24
The present study examined the associations of familial expressed emotion (EE) with clinical and personal recovery among patients with psychiatric disorders, as well as the potential mechanisms underlying these associations. Guided by the content-process theory of self-stigma, we hypothesized that EE would be negatively associated with clinical and personal recovery and that these associations would be mediated by self-stigma content and process. A total of 311 patients with psychiatric disorders completed questionnaires on their perceptions of EE, self-stigma, and recovery. Structural equation modeling demonstrated that EE was positively associated with self-stigma content and process, which were in turn negatively associated with clinical and personal recovery. The indirect effects of EE on clinical and personal recovery, via self-stigma content and process, were also significant. Multigroup analyses further demonstrated that the impact of EE on self-stigma and recovery was generalizable across patients with psychotic and nonpsychotic disorders. Theoretically, our findings revealed the potential pathways through which EE may adversely affect psychiatric recovery. Practically, our findings highlighted the importance of designing multipronged intervention programs to reduce familial EE and its potential harmful impact on psychiatric patients. In addition to helping family members improve their knowledge about psychiatric disorders and adjust their communication styles, practitioners should help psychiatric patients develop resilience against EE, mitigate self-stigma, and achieve recovery. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Beyond the extreme: Recovery dynamics following heat and drought stress in trees
NASA Astrophysics Data System (ADS)
Ruehr, N.; Duarte, A. G.; Arneth, A.
2016-12-01
Plant recovery processes following extreme events can have profound impacts on forest carbon and water cycling. However, large knowledge gaps persist on recovery dynamics of tree physiological processes following heat and drought stress. To date, few experimental studies exist that include recovery responses in stress research. We synthesized recent research on tree recovery processes related to carbon and water exchange following heat and drought stress, and show that the intensity of stress can affect the pace of recovery with large variations among tree species and processes. Following stress release, leaf water potential recovers instantaneously upon rewatering as found in most studies. Transpiration (T), stomatal conductance (gs) and photosynthesis (A) often lag behind, with lowest recovery following severe stress. Interestingly, the patterns in heat and drought stress recovery apparently differ. While A recovers generally more quickly than gs following drought, which increases water-use-efficiency, both gs and A tend to remain reduced following heat events. The pace of recovery following heat events likely depends on water availability during stress and temperature maxima reached (photosynthetic impairment at temperatures > 40°C). Slow recovery during the initial post-stress days might result from hydraulic limitation and elevated levels of abscisic acid. The mechanisms resulting in a continued impairment of T and gs during a later stage of the recovery period (from weeks up to months) are still elusive. Feedback loops from the photosynthetic machinery, reduced mesophyll conductance or leaf morphological changes may play an important role. In summary, post-stress recovery can substantially affect tree carbon and water cycling. Thus, in order to estimate the impacts of extreme climate events on forest ecosystems in the long-term, we need a better understanding of recovery dynamics and their limitations in terms of stress timing, intensity and duration.
Sparsity-based multi-height phase recovery in holographic microscopy
NASA Astrophysics Data System (ADS)
Rivenson, Yair; Wu, Yichen; Wang, Hongda; Zhang, Yibo; Feizi, Alborz; Ozcan, Aydogan
2016-11-01
High-resolution imaging of densely connected samples such as pathology slides using digital in-line holographic microscopy requires the acquisition of several holograms, e.g., at >6-8 different sample-to-sensor distances, to achieve robust phase recovery and coherent imaging of specimen. Reducing the number of these holographic measurements would normally result in reconstruction artifacts and loss of image quality, which would be detrimental especially for biomedical and diagnostics-related applications. Inspired by the fact that most natural images are sparse in some domain, here we introduce a sparsity-based phase reconstruction technique implemented in wavelet domain to achieve at least 2-fold reduction in the number of holographic measurements for coherent imaging of densely connected samples with minimal impact on the reconstructed image quality, quantified using a structural similarity index. We demonstrated the success of this approach by imaging Papanicolaou smears and breast cancer tissue slides over a large field-of-view of ~20 mm2 using 2 in-line holograms that are acquired at different sample-to-sensor distances and processed using sparsity-based multi-height phase recovery. This new phase recovery approach that makes use of sparsity can also be extended to other coherent imaging schemes, involving e.g., multiple illumination angles or wavelengths to increase the throughput and speed of coherent imaging.
Solubility of Plutonium (IV) Oxalate During Americium/Curium Pretreatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, T.S.
1999-08-11
Approximately 15,000 L of solution containing isotopes of americium and curium (Am/Cm) will undergo stabilization by vitrification at the Savannah River Site (SRS). Prior to vitrification, an in-tank pretreatment will be used to remove metal impurities from the solution using an oxalate precipitation process. Material balance calculations for this process, based on solubility data in pure nitric acid, predict approximately 80 percent of the plutonium in the solution will be lost to waste. Due to the uncertainty associated with the plutonium losses during processing, solubility experiments were performed to measure the recovery of plutonium during pretreatment and a subsequent precipitationmore » process to prepare a slurry feed for a batch melter. A good estimate of the plutonium content of the glass is required for planning the shipment of the vitrified Am/Cm product to Oak Ridge National Laboratory (ORNL).The plutonium solubility in the oxalate precipitation supernate during pretreatment was 10 mg/mL at 35 degrees C. In two subsequent washes with a 0.25M oxalic acid/0.5M nitric acid solution, the solubility dropped to less than 5 mg/mL. During the precipitation and washing steps, lanthanide fission products in the solution were mostly insoluble. Uranium, and alkali, alkaline earth, and transition metal impurities were soluble as expected. An elemental material balance for plutonium showed that greater than 94 percent of the plutonium was recovered in the dissolved precipitate. The recovery of the lanthanide elements was generally 94 percent or higher except for the more soluble lanthanum. The recovery of soluble metal impurities from the precipitate slurry ranged from 15 to 22 percent. Theoretically, 16 percent of the soluble oxalates should have been present in the dissolved slurry based on the dilution effects and volumes of supernate and wash solutions removed. A trace level material balance showed greater than 97 percent recovery of americium-241 (from the beta dec ay of plutonium-241) in the dissolved precipitate, a value consistent with the recovery of europium, the americium surrogate.In a subsequent experiment, the plutonium solubility following an oxalate precipitation to simulate the preparation of a slurry feed for a batch melter was 21 mg/mL at 35 degrees C. The increase in solubility compared to the value measured during the pretreatment experiment was attributed to the increased nitrate concentration and ensuing increase in plutonium complexation. The solubility of the plutonium following a precipitant wash with 0.1M oxalic acid was unchanged. The recovery of plutonium from the precipitate slurry was greater than 97 percent allowing an estimation that approximately 92 percent of the plutonium in Tank 17.1 will report to the glass. The behavior of the lanthanides and soluble metal impurities was consistent with the behavior seen during the pretreatment experiment. A trace level material balance showed that 99.9 percent of the americium w as recovered from the precipitate slurry. The overall recovery of americium from the pretreatment and feed preparation processes was greater than 97 percent, which was consistent with the measured recovery of the europium surrogate.« less
NASA Technical Reports Server (NTRS)
Abney, Morgan; Miller, Lee; Greenwood, Zach; Iannantuono, Michelle; Jones, Kenny
2013-01-01
State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported.
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Greenwood, Zachary; Miller, Lee A.; Alvarez, Giraldo; Iannantuono, Michelle; Jones, Kenny
2013-01-01
State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-20
A service member and his family check out a test version of the Orion crew module on display at Naval Base San Diego in California, before Underway Recovery Test 5 (URT-5). NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test vehicle aboard the USS San Diego to demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5)
2016-11-01
The USS San Diego approaches Naval Base San Diego in California after completion of Underway Recovery Test 5 in the Pacific Ocean. NASA's Ground Systems Development and Operations Program and the U.S. Navy conducted a series of tests using the ship's well deck and a test version of the Orion crew module to prepare for recovery of Orion on its return from deep space missions. The testing allowed the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
Lacour, Michel; Bernard-Demanze, Laurence
2015-01-01
This review questions the relationships between the plastic events responsible for the recovery of vestibular function after a unilateral vestibular loss (vestibular compensation), which has been well described in animal models in the last decades, and the vestibular rehabilitation (VR) therapy elaborated on a more empirical basis for vestibular loss patients. The main objective is not to propose a catalog of results but to provide clinicians with an understandable view on when and how to perform VR therapy, and why VR may benefit from basic knowledge and may influence the recovery process. With this perspective, 10 major recommendations are proposed as ways to identify an optimal functional recovery. Among them are the crucial role of active and early VR therapy, coincidental with a post-lesion sensitive period for neuronal network remodeling, the instructive role that VR therapy may play in this functional reorganization, the need for progression in the VR therapy protocol, which is based mainly on adaptation processes, the necessity to take into account the sensorimotor, cognitive, and emotional profile of the patient to propose individual or “à la carte” VR therapies, and the importance of motivational and ecologic contexts. More than 10 general principles are very likely, but these principles seem crucial for the fast recovery of vestibular loss patients to ensure good quality of life. PMID:25610424
Practical support aids addiction recovery: the positive identity model of change.
Johansen, Ayna B; Brendryen, Håvar; Darnell, Farnad J; Wennesland, Dag K
2013-07-31
There is a need for studies that can highlight principles of addiction recovery. Because social relationships are involved in all change processes, understanding how social motivations affect the recovery process is vital to guide support programs. The objective was to develop a model of recovery by examining addicted individuals' social motivations through longitudinal assessment of non-professional support dyads. A qualitative, longitudinal study design was used, combining focus groups and in-depth interviews with addicted individuals and their sponsors. Data were analyzed using the principles of grounded theory: open coding and memos for conceptual labelling, axial coding for category building, and selective coding for theory building. The setting was an addiction recovery social support program in Oslo, Norway. The informants included nine adults affected by addiction, six sponsors, and the program coordinator. The participants were addicted to either alcohol (2), benzodiazepines (1), pain killers (1) or polydrug-use (5). The sponsors were unpaid, and had no history of addiction problems. Support perceived to be ineffective emerged in dyads with no operationalized goal, and high emotional availability with low degree of practical support. Support perceived to be effective was signified by the sponsor attending to power imbalance and the addict coming into position to help others and feel useful. The findings appear best understood as a positive identity-model of recovery, indicated by the pursuit of skill building relevant to a non-drug using identity, and enabled by the on-going availability of instrumental support. This produced situations where role reversals were made possible, leading to increased self-esteem. Social support programs should be based on a positive identity-model of recovery that enable the building of a life-sustainable identity.
Practical support aids addiction recovery: the positive identity model of change
2013-01-01
Background There is a need for studies that can highlight principles of addiction recovery. Because social relationships are involved in all change processes, understanding how social motivations affect the recovery process is vital to guide support programs. Methods The objective was to develop a model of recovery by examining addicted individuals’ social motivations through longitudinal assessment of non-professional support dyads. A qualitative, longitudinal study design was used, combining focus groups and in-depth interviews with addicted individuals and their sponsors. Data were analyzed using the principles of grounded theory: open coding and memos for conceptual labelling, axial coding for category building, and selective coding for theory building. The setting was an addiction recovery social support program in Oslo, Norway. The informants included nine adults affected by addiction, six sponsors, and the program coordinator. The participants were addicted to either alcohol (2), benzodiazepines (1), pain killers (1) or polydrug-use (5). The sponsors were unpaid, and had no history of addiction problems. Results Support perceived to be ineffective emerged in dyads with no operationalized goal, and high emotional availability with low degree of practical support. Support perceived to be effective was signified by the sponsor attending to power imbalance and the addict coming into position to help others and feel useful. Conclusions The findings appear best understood as a positive identity-model of recovery, indicated by the pursuit of skill building relevant to a non-drug using identity, and enabled by the on-going availability of instrumental support. This produced situations where role reversals were made possible, leading to increased self-esteem. Social support programs should be based on a positive identity-model of recovery that enable the building of a life-sustainable identity. PMID:23898827
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Haeyeon; G. Eggert, Roderick; W. Carlsen, Brett
Phosphate rock contains significant amounts of uranium, although in low concentrations. Recovery of uranium as a by-product from phosphoric acid, an intermediate product produced during the recovery of phosphorus from phosphate rock, is not unprecedented. Phosphoric acid plants ceased to produce uranium as a by-product in the early 1990s with the fall of uranium prices. In the last decade, this topic has regained attention due to higher uranium prices and expected increase in demand for uranium. Our study revisits the topic and estimates how much uranium might be recoverable from current phosphoric acid production in the United States and whatmore » the associated costs might be considering two different recovery processes: solvent extraction and ion exchange. Based on U.S. phosphoric acid production in 2014, 5.5 million pounds of U 3O 8 could have been recovered, more than domestic U.S. mine production of uranium in the same year. Annualized costs for a hypothetical uranium recovery plant are US$48-66 per pound U 3O 8 for solvent extraction, the process used historically in the United States to recover uranium from phosphoric acid. For ion exchange, not yet proven at a commercial scale for uranium recovery, the estimated costs are US$33-54 per pound U 3O 8. Our results suggest that it is technically possible for the United States to recover significant quantities of uranium from current phosphoric acid production. And for this type of uranium production to be economically attractive on a large scale, either recovery costs must fall or uranium prices rise.« less
Kim, Haeyeon; G. Eggert, Roderick; W. Carlsen, Brett; ...
2016-06-16
Phosphate rock contains significant amounts of uranium, although in low concentrations. Recovery of uranium as a by-product from phosphoric acid, an intermediate product produced during the recovery of phosphorus from phosphate rock, is not unprecedented. Phosphoric acid plants ceased to produce uranium as a by-product in the early 1990s with the fall of uranium prices. In the last decade, this topic has regained attention due to higher uranium prices and expected increase in demand for uranium. Our study revisits the topic and estimates how much uranium might be recoverable from current phosphoric acid production in the United States and whatmore » the associated costs might be considering two different recovery processes: solvent extraction and ion exchange. Based on U.S. phosphoric acid production in 2014, 5.5 million pounds of U 3O 8 could have been recovered, more than domestic U.S. mine production of uranium in the same year. Annualized costs for a hypothetical uranium recovery plant are US$48-66 per pound U 3O 8 for solvent extraction, the process used historically in the United States to recover uranium from phosphoric acid. For ion exchange, not yet proven at a commercial scale for uranium recovery, the estimated costs are US$33-54 per pound U 3O 8. Our results suggest that it is technically possible for the United States to recover significant quantities of uranium from current phosphoric acid production. And for this type of uranium production to be economically attractive on a large scale, either recovery costs must fall or uranium prices rise.« less
Modeling the glass transition of amorphous networks for shape-memory behavior
NASA Astrophysics Data System (ADS)
Xiao, Rui; Choi, Jinwoo; Lakhera, Nishant; Yakacki, Christopher M.; Frick, Carl P.; Nguyen, Thao D.
2013-07-01
In this paper, a thermomechanical constitutive model was developed for the time-dependent behaviors of the glass transition of amorphous networks. The model used multiple discrete relaxation processes to describe the distribution of relaxation times for stress relaxation, structural relaxation, and stress-activated viscous flow. A non-equilibrium thermodynamic framework based on the fictive temperature was introduced to demonstrate the thermodynamic consistency of the constitutive theory. Experimental and theoretical methods were developed to determine the parameters describing the distribution of stress and structural relaxation times and the dependence of the relaxation times on temperature, structure, and driving stress. The model was applied to study the effects of deformation temperatures and physical aging on the shape-memory behavior of amorphous networks. The model was able to reproduce important features of the partially constrained recovery response observed in experiments. Specifically, the model demonstrated a strain-recovery overshoot for cases programmed below Tg and subjected to a constant mechanical load. This phenomenon was not observed for materials programmed above Tg. Physical aging, in which the material was annealed for an extended period of time below Tg, shifted the activation of strain recovery to higher temperatures and increased significantly the initial recovery rate. For fixed-strain recovery, the model showed a larger overshoot in the stress response for cases programmed below Tg, which was consistent with previous experimental observations. Altogether, this work demonstrates how an understanding of the time-dependent behaviors of the glass transition can be used to tailor the temperature and deformation history of the shape-memory programming process to achieve more complex shape recovery pathways, faster recovery responses, and larger activation stresses.
Katsakou, Christina; Pistrang, Nancy; Barnicot, Kirsten; White, Hayley; Priebe, Stefan
2017-07-04
Recovery processes in borderline personality disorder (BPD) are poorly understood. This study explored how recovery in BPD occurs through routine or specialist treatment, as perceived by service users (SUs) and therapists. SUs were recruited from two specialist BPD services, three community mental health teams, and one psychological therapies service. Semi-structured interviews were conducted with 48 SUs and 15 therapists. The "framework" approach was used to analyse the data. The findings were organized into two domains of themes. The first domain described three parallel processes that constituted SUs' recovery journey: fighting ambivalence and committing to taking action; moving from shame to self-acceptance and compassion; and moving from distrust and defensiveness to opening up to others. The second domain described four therapeutic challenges that needed to be addressed to support this journey: balancing self-exploration and finding solutions; balancing structure and flexibility; confronting interpersonal difficulties and practicing new ways of relating; and balancing support and independence. Therapies facilitating the identified processes may promote recovery. The recovery processes and therapeutic challenges identified in this study could provide a framework to guide future research.
Elucidating the role of recovery experiences in the job demands-resources model.
Moreno-Jiménez, Bernardo; Rodríguez-Muñoz, Alfredo; Sanz-Vergel, Ana Isabel; Garrosa, Eva
2012-07-01
Based on the Job Demands-Resources (JD-R) model, the current study examined the moderating role of recovery experiences (i.e., psychological detachment from work, relaxation, mastery experiences, and control over leisure time) on the relationship between one job demand (i.e., role conflict) and work- and health-related outcomes. Results from our sample of 990 employees from Spain showed that psychological detachment from work and relaxation buffered the negative impact of role conflict on some of the proposed outcomes. Contrary to our expectations, we did not find significant results for mastery and control regarding moderating effects. Overall, findings suggest a differential pattern of the recovery experiences in the health impairment process proposed by the JD-R model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Howard, S.; Lu, Yingzhong
The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries thatmore » utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.« less
Capture of Tritium Released from Cladding in the Zirconium Recycle Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Barry B.; Walker, T. B.; Bruffey, S. H.
2016-08-31
Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when themore » solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using nonradioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.« less
Study on the waste liquid crystal display treatment: focus on the resource recovery.
Wang, Xinying; Lu, Xuebin; Zhang, Shuting
2013-01-15
A process combined pyrolysis and acid immersion was proposed in this study to dispose the hazardous liquid crystal display (LCD) waste for recovering valuable resources. The thermogravimetric (TG) analysis and fixed bed pyrolysis were investigated for the polarizing film that was separated from LCD. The results suggested the liquid product mainly contained acids, esters and aromatics should be upgraded such as hydrotreating process before used as industrial feedstock or fuel source. The gaseous product mainly consisted of H(2), CO, CO(2) and CH(4) can be used as a valuable fuel. The sulfuric acid immersion experiments were studied for recovering indium from the LCD glass after stripping the polarizing film. Central composite design (CCD) under response surface methodology (RSM) was used to optimize the acid immersion process and the results indicated the indium recovery can be fitted based on the actual value to a polynomial quadratic equation and the temperature was more essential factor than time and acid concentration in the studied ranges. The optimum processing condition was obtained with time 42.2 min, temperature 65.6 °C and acid concentration 0.6 mol/L. Under the optimal conditions, the indium recovery was close to 100%. Copyright © 2012 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Teichmann, Marc; Dupoux, Emmanuel; Cesaro, Pierre; Bachoud-Levi, Anne-Catherine
2008-01-01
The role of sub-cortical structures such as the striatum in language remains a controversial issue. Based on linguistic claims that language processing implies both recovery of lexical information and application of combinatorial rules it has been shown that striatal damaged patients have difficulties applying conjugation rules while lexical…
Evolutionary Based Techniques for Fault Tolerant Field Programmable Gate Arrays
NASA Technical Reports Server (NTRS)
Larchev, Gregory V.; Lohn, Jason D.
2006-01-01
The use of SRAM-based Field Programmable Gate Arrays (FPGAs) is becoming more and more prevalent in space applications. Commercial-grade FPGAs are potentially susceptible to permanently debilitating Single-Event Latchups (SELs). Repair methods based on Evolutionary Algorithms may be applied to FPGA circuits to enable successful fault recovery. This paper presents the experimental results of applying such methods to repair four commonly used circuits (quadrature decoder, 3-by-3-bit multiplier, 3-by-3-bit adder, 440-7 decoder) into which a number of simulated faults have been introduced. The results suggest that evolutionary repair techniques can improve the process of fault recovery when used instead of or as a supplement to Triple Modular Redundancy (TMR), which is currently the predominant method for mitigating FPGA faults.
Nogueira, C A; Paiva, A P; Oliveira, P C; Costa, M C; da Costa, A M Rosa
2014-08-15
The recycling of platinum-group metals from wastes such as autocatalytic converters is getting growing attention due to the scarcity of these precious metals and the market pressure originated by increase of demand in current and emerging applications. Hydrometallurgical treatment of such wastes is an alternative way to the most usual pyrometallurgical processes based on smelter operations. This paper focuses on the development of a leaching process using cupric chloride as oxidising agent, in HCl media, for recovery of palladium and rhodium from a spent catalyst. The chloride media allows the adequate conditions for oxidising and solubilising the metals, as demonstrated by equilibrium calculations based on thermodynamic data. The experimental study of the leaching process revealed that Pd solubilisation is clearly easier than that of Rh. The factors temperature, time, and HCl and Cu(2+) concentrations were significant regarding Pd and Rh leaching, the latter requiring higher factor values to achieve the same results. Leaching yields of 95% Pd and 86% Rh were achieved under optimised conditions (T = 80 °C, t = 4h, [HCl] = 6M, [Cu(2+)] = 0.3M). Copyright © 2014 Elsevier B.V. All rights reserved.
Liebrich, Marietta; Kleyböcker, Anne; Kasina, Monika; Miethling-Graff, Rona; Kassahun, Andrea; Würdemann, Hilke
2016-01-01
The composition, structure and function of granules formed during process recovery with calcium oxide in a laboratory-scale fermenter fed with sewage sludge and rapeseed oil were studied. In the course of over-acidification and successful process recovery, only minor changes were observed in the bacterial community of the digestate, while granules appeared during recovery. Fluorescence microscopic analysis of the granules showed a close spatial relationship between calcium and oil and/or long chain fatty acids. This finding further substantiated the hypothesis that calcium precipitated with carbon of organic origin and reduced the negative effects of overloading with oil. Furthermore, the enrichment of phosphate minerals in the granules was shown, and molecular biological analyses detected polyphosphate-accumulating organisms as well as methanogenic archaea in the core. Organisms related to Methanoculleus receptaculi were detected in the inner zones of a granule, whereas they were present in the digestate only after process recovery. This finding indicated more favorable microhabitats inside the granules that supported process recovery. Thus, the granule formation triggered by calcium oxide addition served as a tool to influence the composition of the microbial community and to stabilize the process after overloading with oil. PMID:27681911
Liebrich, Marietta; Kleyböcker, Anne; Kasina, Monika; Miethling-Graff, Rona; Kassahun, Andrea; Würdemann, Hilke
2016-03-17
The composition, structure and function of granules formed during process recovery with calcium oxide in a laboratory-scale fermenter fed with sewage sludge and rapeseed oil were studied. In the course of over-acidification and successful process recovery, only minor changes were observed in the bacterial community of the digestate, while granules appeared during recovery. Fluorescence microscopic analysis of the granules showed a close spatial relationship between calcium and oil and/or long chain fatty acids. This finding further substantiated the hypothesis that calcium precipitated with carbon of organic origin and reduced the negative effects of overloading with oil. Furthermore, the enrichment of phosphate minerals in the granules was shown, and molecular biological analyses detected polyphosphate-accumulating organisms as well as methanogenic archaea in the core. Organisms related to Methanoculleus receptaculi were detected in the inner zones of a granule, whereas they were present in the digestate only after process recovery. This finding indicated more favorable microhabitats inside the granules that supported process recovery. Thus, the granule formation triggered by calcium oxide addition served as a tool to influence the composition of the microbial community and to stabilize the process after overloading with oil.
Vukovic, Mile; Vuksanovic, Jasmina; Vukovic, Irena
2008-01-01
In this study we investigated the recovery patterns of language and cognitive functions in patients with post-traumatic language processing deficits and in patients with aphasia following a stroke. The correlation of specific language functions and cognitive functions was analyzed in the acute phase and 6 months later. Significant recovery of the tested functions was observed in both groups. However, in patients with post-traumatic language processing deficits the degree of recovery of most language functions and some cognitive functions was higher. A significantly greater correlation was revealed within language and cognitive functions, as well as between language functions and other aspects of cognition in patients with post-traumatic language processing deficits than in patients with aphasia following a stroke. Our results show that patients with post-traumatic language processing deficits have a different recovery pattern and a different pattern of correlation between language and cognitive functions compared to patients with aphasia following a stroke. (1) Better understanding of the differences in recovery of language and cognitive functions in patients who have suffered strokes and those who have experienced traumatic brain injury. (2) Better understanding of the relationship between language and cognitive functions in patients with post-traumatic language processing deficits and in patients with aphasia following a stroke. (3) Better understanding of the factors influencing recovery.
RECOVERY OF URANIUM FROM CARBONATE LEACH LIQUORS
Wilson, H.F.
1958-07-01
An improved process is described for the recovery of uranium from vanadifrous ores. In the prior art such ores have been digested with alkali carbonate solutions at a pH of less than 10 and then contacted with a strong base anion exchange resin to separate uranium from vanadium. It has been found that if the exchamge resin feed solution has its pH adjusted to the range 10.8 to 11.8, that vanadium adsorption on the resin is markedly decreased and the separation of uranium from the vanadium is thereby improved.
Self-regulation and recovery: approaching an understanding of the process of recovery from stress.
Beckmann, Jürgen; Kellmann, Michael
2004-12-01
Stress has been studied extensively in psychology. Only recently, however, has research started to address the question of how individuals manage to recover from stress. Recovery from stress is analyzed as a process of self-regulation. Several individual difference variables which affect the efficiency of self-regulation have been integrated into a structured model of the recovery process. Such variables are action versus state orientation (a tendency to ruminate, e.g., about a past experience) and volitional components, such as self-determination, self-motivation, emotion control, rumination, and self-discipline. Some of these components are assumed to promote recovery from stress, whereas others are assumed to further the perseverance of stress. The model was supported by the empirical findings of three independent studies (Study 1, N=58; Study 2, N=221; Study 3, N= 105). Kuhl's Action Control Scale measured action versus state orientation. Volitional components were assessed with Kuhl and Fuhrmann's Volitional Components Questionnaire. The amounts of experienced stress and recovery from stress was assessed with Kellmann and Kallus's Recovery-Stress Questionnaire. As hypothesized in the model, the disposition towards action versus state orientation was a more distant determinant of the recovery from stress and perseverance of stress. The volitional components are more proximal determinants in the recovery process. Action orientation promotes recovery from stress via adequate volitional skills, e.g., self-determination, self-motivation, emotion control, whereas state orientation furthers a perseverance of stress through rumination and self-discipline.
John, Mary; Jeffries, Fiona W; Acuna-Rivera, Marcela; Warren, Fiona; Simonds, Laura M
2015-01-01
Recovery has become a central concept in mental health service delivery, and several recovery-focused measures exist for adults. The concept's applicability to young people's mental health experience has been neglected, and no measures yet exist. Aim The aim of this work is to develop measures of recovery for use in specialist child and adolescent mental health services. On the basis of 21 semi-structured interviews, three recovery measures were devised, one for completion by the young person and two for completion by the parent/carer. Two parent/carer measures were devised in order to assess both their perspective on their child's recovery and their own recovery process. The questionnaires were administered to a UK sample of 47 young people (10-18 years old) with anxiety and depression and their parents, along with a measure used to routinely assess treatment progress and outcome and a measure of self-esteem. All three measures had high internal consistency (alpha ≥ 0.89). Young people's recovery scores were correlated negatively with scores on a measure used to routinely assess treatment progress and outcome (r = -0.75) and positively with self-esteem (r = 0.84). Parent and young persons' reports of the young person's recovery were positively correlated (r = 0.61). Parent report of the young person's recovery and of their own recovery process were positively correlated (r = 0.75). The three measures have the potential to be used in mental health services to assess recovery processes in young people with mental health difficulties and correspondence with symptomatic improvement. The measures provide a novel way of capturing the parental/caregiver perspective on recovery and caregivers' own wellbeing. No tools exist to evaluate recovery-relevant processes in young people treated in specialist mental health services. This study reports on the development and psychometric evaluation of three self-report recovery-relevant assessments for young people and their caregivers. Findings indicate a high degree of correspondence between young person and caregiver reports of recovery in the former. The recovery assessments correlate inversely with a standardized symptom-focused measure and positively with self-esteem. Copyright © 2014 John Wiley & Sons, Ltd.
40 CFR 60.2025 - What if my chemical recovery unit is not listed in § 60.2020(n)?
Code of Federal Regulations, 2011 CFR
2011-07-01
... materials that are recovered. (3) A description (including a process flow diagram) of the process in which... process. (4) A description (including a process flow diagram) of the chemical constituent recovery process...
40 CFR 60.2025 - What if my chemical recovery unit is not listed in § 60.2020(n)?
Code of Federal Regulations, 2012 CFR
2012-07-01
... materials that are recovered. (3) A description (including a process flow diagram) of the process in which... process. (4) A description (including a process flow diagram) of the chemical constituent recovery process...
40 CFR 60.2025 - What if my chemical recovery unit is not listed in § 60.2020(n)?
Code of Federal Regulations, 2010 CFR
2010-07-01
... materials that are recovered. (3) A description (including a process flow diagram) of the process in which... process. (4) A description (including a process flow diagram) of the chemical constituent recovery process...
40 CFR 60.2558 - What if a chemical recovery unit is not listed in § 60.2555(n)?
Code of Federal Regulations, 2012 CFR
2012-07-01
... materials that are recovered. (3) A description (including a process flow diagram) of the process in which... process. (4) A description (including a process flow diagram) of the chemical constituent recovery process...
Recovery of speed of information processing in closed-head-injury patients.
Zwaagstra, R; Schmidt, I; Vanier, M
1996-06-01
After severe traumatic brain injury, patients almost invariably demonstrate a slowing of reaction time, reflecting a slowing of central information processing. Methodological problems associated with the traditional method for the analysis of longitudinal data (MANOVA) severely complicate studies on cognitive recovery. It is argued that multilevel models are often better suited for the analysis of improvement over time in clinical settings. Multilevel models take into account individual differences in both overall performance level and recovery. These models enable individual predictions for the recovery of speed of information processing. Recovery is modelled in a group of closed-head-injury patients (N = 24). Recovery was predicted by age and severity of injury, as indicated by coma duration. Over a period up to 44 months post trauma, reaction times were found to decrease faster for patients with longer coma duration.
Spider Silk Processing for Spidroin Recovery from Crossopriza Lyoni Web
NASA Astrophysics Data System (ADS)
Mohtar, J. A.; Ooi, W. L.; Yusuf, F.
2018-03-01
Spider silk is a potential biomaterial that can be used in various applications for its outstanding physicomechanical properties attributed by the spidroin composition. Efforts for commercializing spider silks have been mainly focused on the characterization of spidroins from the Entelegyne spiders for exceptional fibre construction. Hence, studies on silk proteins from the Haplogyne species remain neglected. The aim of this study is to isolate spidroin from Crossopriza lyoni web. Silk processing involved the pretreatment of fibres for the shell layer removal from the surface. A screening study was conducted to analyze the effect of temperature, incubation time and agitation speed on spidroin extraction using Ajisawa’s reagent by OFAT analysis followed by statistical optimization of the extraction process via RSM for maximal protein recovery. All parameters exerted significant effect on spidroin recovery (p<0.05) in which the maximum protein concentration (451.78 ± 0.110 µg/ml) was obtained at optimal condition of 70°C, 350 rpm and 1.25 hours. The discovery of spidroin from this study provides a basic platform for engineering spider silk to meet the demand for a variety of silk-based products in the near future.
Removal of batteries from solid waste using trommel separation.
Lau, S T; Cheung, W H; Kwong, C K; Wan, C P; Choy, K K H; Leung, C C; Porter, J F; Hui, C W; Mc Kay, G
2005-01-01
This paper describes the design and testing of a trommel for separation of batteries from solid waste. A trommel is a cylindrical separation device that rotates and performs size separation. It has also been used in areas such as municipal solid waste (MSW) processing, classifying construction and demolition debris, screening mass-burn incinerator ash and compost processing. A trommel has been designed based on size separation to separate household batteries from solid waste, which can then be used as feedstock for alternative applications of solid waste combustion, particularly where the metal content of the product is also a critical parameter, such as the Co-Co process for integrated cement and power production. This trommel has been tested with batches of university office and restaurant wastes against various factors. The recovery efficiency of batteries increases with decreasing inclination angle of the trommel and decreasing rotational speed. A physical characterization of the university solid waste has been performed with a 20-kg sample of the tested waste. It was found that there is a trend of decreasing recovery of batteries with increasing paper composition, and a trend of increasing recovery of batteries with increasing organic materials composition.
Building addiction recovery capital through online participation in a recovery community.
Bliuc, Ana-Maria; Best, David; Iqbal, Muhammad; Upton, Katie
2017-11-01
This study examines how online participation in a community of recovery contributes to personal journeys of recovery. It investigates whether recovery capital building - as indicated by increased levels and quality of online social interactions - and markers of positive identity development predict retention in a recovery program designed around fostering community involvement for early stage recovery addicts. It was predicted that online participation on the group's Facebook page and positive identity development are associated to retention in the program. To map how participants interact online, social network analysis (SNA) based on naturally occurring online data (N = 609) on the Facebook page of a recovery community was conducted. Computerised linguistic analyses evaluated sentiment of the textual data (capturing social identity markers). Linear regression analyses evaluated whether indicators of recovery capital predict program retention. To illustrate the findings in the context of the specific recovery community, presented are two case studies of key participants who moved from the periphery to the centre of the social network. By conducting in-depth interviews with these participants, personal experiences of engagement in the online community of group members who have undergone the most significant changes since joining the community are explored. Retention in the program was determined by a) the number of comment 'likes' and all 'likes' received on the Facebook page; b) position in the social network (degree of centrality); and c) linguistic content around group identity and achievement. Positive online interactions between members of recovery communities support the recovery process through helping participants to develop recovery capital that binds them to groups supportive of positive change. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reshaping an enduring sense of self: the process of recovery from a first episode of schizophrenia.
Romano, Donna M; McCay, Elizabeth; Goering, Paula; Boydell, Katherine; Zipursky, Robert
2010-08-01
Although advances in the treatment of schizophrenia have been made, little is known about the process of recovery from first episode of schizophrenia (FES). To date, the study of recovery in the field of mental health has focused on long-term mental illness. This qualitative study addresses ways in which individuals with FES describe their process of recovery and how identified individuals (e.g. family members) describe their perceptions of and roles in the participant's process of recovery. Charmaz's constructivist grounded theory methodology was used to interview 10 young adults twice who self-identified as recovering from FES. In addition, 10 individuals were identified who had influenced their recovery and were interviewed once, for a total of 30 interviews. Data collection sources included in-depth semi-structured interviews. Data analysis methods were consistent with Charmaz's methodology and included coding, and constant comparison of data. The results provide a substantive theory of the process of recovery from FES that is comprised of the following phases: 'Who they were prior to the illness', 'Lives interrupted: Encountering the illness', 'Engaging in services and supports', 'Re-engaging in life', 'Envisioning the future'; and the core category, 'Re-shaping an enduring sense of self', that occurred throughout all phases. A prominent feature of this model is that participants' enduring sense of self were reshaped rather than reconstructed throughout their recovery. This model of recovery from FES is unique, and as such, provides implications for clinical care, research and policy development for these young adults and their families.
Valdés-Alemán, Javier; Téllez-Sosa, Juan; Ovilla-Muñoz, Marbella; Godoy-Lozano, Elizabeth; Velázquez-Ramírez, Daniel; Valdovinos-Torres, Humberto; Gómez-Barreto, Rosa E; Martinez-Barnetche, Jesús
2014-01-01
High-throughput sequencing of the antibody repertoire is enabling a thorough analysis of B cell diversity and clonal selection, which may improve the novel antibody discovery process. Theoretically, an adequate bioinformatic analysis could allow identification of candidate antigen-specific antibodies, requiring their recombinant production for experimental validation of their specificity. Gene synthesis is commonly used for the generation of recombinant antibodies identified in silico. Novel strategies that bypass gene synthesis could offer more accessible antibody identification and validation alternatives. We developed a hybridization-based recovery strategy that targets the complementarity-determining region 3 (CDRH3) for the enrichment of cDNA of candidate antigen-specific antibody sequences. Ten clonal groups of interest were identified through bioinformatic analysis of the heavy chain antibody repertoire of mice immunized with hen egg white lysozyme (HEL). cDNA from eight of the targeted clonal groups was recovered efficiently, leading to the generation of recombinant antibodies. One representative heavy chain sequence from each clonal group recovered was paired with previously reported anti-HEL light chains to generate full antibodies, later tested for HEL-binding capacity. The recovery process proposed represents a simple and scalable molecular strategy that could enhance antibody identification and specificity assessment, enabling a more cost-efficient generation of recombinant antibodies.
Weiss, Patrice L.; Keshner, Emily A.
2015-01-01
The primary focus of rehabilitation for individuals with loss of upper limb movement as a result of acquired brain injury is the relearning of specific motor skills and daily tasks. This relearning is essential because the loss of upper limb movement often results in a reduced quality of life. Although rehabilitation strives to take advantage of neuroplastic processes during recovery, results of traditional approaches to upper limb rehabilitation have not entirely met this goal. In contrast, enriched training tasks, simulated with a wide range of low- to high-end virtual reality–based simulations, can be used to provide meaningful, repetitive practice together with salient feedback, thereby maximizing neuroplastic processes via motor learning and motor recovery. Such enriched virtual environments have the potential to optimize motor learning by manipulating practice conditions that explicitly engage motivational, cognitive, motor control, and sensory feedback–based learning mechanisms. The objectives of this article are to review motor control and motor learning principles, to discuss how they can be exploited by virtual reality training environments, and to provide evidence concerning current applications for upper limb motor recovery. The limitations of the current technologies with respect to their effectiveness and transfer of learning to daily life tasks also are discussed. PMID:25212522
Bates, Marsha E.; Buckman, Jennifer F.; Nguyen, Tam T.
2013-01-01
Neurocognitive impairments are prevalent in persons seeking treatment for alcohol use disorders (AUDs). These impairments and their physical, social, psychological and occupational consequences vary in severity across persons, much like those resulting from traumatic brain injury; however, due to their slower course of onset, alcohol-related cognitive impairments are often overlooked both within and outside of the treatment setting. Evidence suggests that cognitive impairments can impede treatment goals through their effects on treatment processes. Although some recovery of alcohol-related cognitive impairments often occurs after cessation of drinking (time-dependent recovery), the rate and extent of recovery is variable across cognitive domains and individuals. Following a long hiatus in scientific interest, a new generation of research aims to facilitate treatment process and improve AUD treatment outcomes by directly promoting cognitive recovery (experience-dependent recovery). This review updates knowledge about the nature and course of cognitive and brain impairments associated with AUD, including cognitive effects of adolescent AUD. We summarize current evidence for indirect and moderating relationships of cognitive impairment to treatment outcome, and discuss how advances in conceptual frameworks of brain-behavior relationships are fueling the development of novel AUD interventions that include techniques for cognitive remediation. Emerging evidence suggests that such interventions can be effective in promoting cognitive recovery in persons with AUD and other substance use disorders, and potentially increasing the efficacy of AUD treatments. Finally, translational approaches based on cognitive science, neurophysiology, and neuroscience research are considered as promising future directions for effective treatment development that includes cognitive rehabilitation. PMID:23412885
Siqueira, Vinicius R; Oades, Lindsay G
2015-01-01
Objective. This study examined the use of psychological acceptance and experiential avoidance, two key concepts of Acceptance and Commitment Therapy (ACT), in the psychological recovery process of people with enduring mental illness. Method. Sixty-seven participants were recruited from the metropolitan, regional, and rural areas of New South Wales, Australia. They all presented some form of chronic mental illness (at least 12 months) as reflected in DSM-IV Axis I diagnostic criteria. The Acceptance and Action Questionnaire (AAQ-19) was used to measure the presence of psychological acceptance and experiential avoidance; the Recovery Assessment Scale (RAS) was used to examine the levels of psychological recovery; and the Scales of Psychological Well-Being was used to observe if there are benefits in utilizing psychological acceptance and experiential avoidance in the recovery process. Results. An analysis of objectively quantifiable measures found no clear correlation between the use of psychological acceptance and recovery in mental illness as measured by the RAS. The data, however, showed a relationship between psychological acceptance and some components of recovery, thereby demonstrating its possible value in the recovery process. Conclusion. The major contribution of this research was the emerging correlation that was observed between psychological acceptance and positive levels of psychological well-being among individuals with mental illness.
NASA Astrophysics Data System (ADS)
Maragos, Petros
The topics discussed at the conference include hierarchical image coding, motion analysis, feature extraction and image restoration, video coding, and morphological and related nonlinear filtering. Attention is also given to vector quantization, morphological image processing, fractals and wavelets, architectures for image and video processing, image segmentation, biomedical image processing, and model-based analysis. Papers are presented on affine models for motion and shape recovery, filters for directly detecting surface orientation in an image, tracking of unresolved targets in infrared imagery using a projection-based method, adaptive-neighborhood image processing, and regularized multichannel restoration of color images using cross-validation. (For individual items see A93-20945 to A93-20951)
Learning through Conversation.
ERIC Educational Resources Information Center
Kelly, Patricia R.; Klein, Adria F.; Pinnell, Gay Su
1996-01-01
Through teacher-child conversation, experts use oral language to help novices take on more complex tasks; and Reading Recovery children, who are obviously having difficulty with school-based learning, are especially in need of significant conversations with adults. Reading and writing processes are supported through conversation with Reading…
Benefits and challenges of using LCA to advance sustainable wasteand materials management
MSW management can be complex and involve many unit processes that can vary based on needs of urban, rural, and suburbia to safely manage waste and to optimize energy and resource recovery while considering local infrastructure and priorities.
Femdal, Ingrid
2018-01-01
Current mental health policy emphasizes the importance of community-based service delivery for people with mental health problems to encompass personal recovery. The aim of this study is to explore how users and professionals construct the place's influence on personal recovery in community mental health services. This is a qualitative, interpretive study based on ten individual, semi-structured interviews with users and professionals, respectively. A discourse analysis inspired by the work of Foucault was used to analyze the interviews. The findings show how place can be constructed as a potential for and as a barrier against recovery. Constructions of the aim of the services matter when choosing a place for the services. Further, constructions of user-professional relationships and flexibility are important in the constructions of an appropriate place for the services. The aim of the service, the user-professional relationship, and flexibility in choosing place were essential in the participants' constructions. To find "the right place" for mental health services was constructed as context-sensitive and complex processes of assessment and co-determination. Trial registration The study is approved by the Regional Committee for Medical Research Ethics, Norway (REK-Midt 2011/2057).
Kasai, Kiyoto
2015-01-01
The discipline of psychiatry promotes well-being and recovery based on a comprehensive understanding of the patient from the perspectives of the brain, real-world, and life-course. Pursuant to efforts toward addressing social issues at a regional and national level, it is assumed that the psychiatrist can assist individuals based on an understanding of these three perspectives. This tripartite relationship goes beyond the history of extreme reductionism in neuroscience and the aftermath resulting from the anti-psychiatry movement to provide a foundation for the development of psychiatry and a theoretical groundwork for such basic psychiatric issues as what role pharmacotherapy plays in psychiatric treatment, just why the lives of people living in the community are thought to be important to an individual's well-being, and just what constitutes recovery. Humans have come to possess highly developed brain and mental functions as a result of the adaptation to the social environment that takes place as part of the evolutionary process. While mental functions are thus dictated in large part by evolution of the brain, they also consist of important features that are not attributable to reductionist models of the brain. That is, human mental functioning forms a foundation for metacognition and sophisticated language functions, and through interactions with others and society, one's mental functioning allows for further brain transformation and development (self-regulation of mental functions). Humans develop their own brain and mental functions through mutual exchanges with others, and their dealings with other people and society form their individual modes of living in the real-world. The human brain and mental functions have evolved in such a way as to provide for a better mode of living. Accordingly, for the individual, the makeup of his or her mode of living in the real-world is the source of the well-being that serves to support that individual's values. The scientific background that the human recovery process for those suffering from mental disease involves the combined support of work, school, marriage, and childrearing stems from this fact. Humans develop their own mental capital over their life-courses and utilize it in an effort to realize their well-beings. Humans utilize mental function self-regulation based on the emotional and interpersonal functions developed during childhood in order to formulate an image of themselves (the ego) as well as the type of person they want to become (values/needs). This is indeed the true essence of adolescence. The values that drive an individual's behavior by their very nature exist in the outside world and are shared by others as well as society. These are internalized as individual characteristics through the self-regulation process of adolescence. Regardless of life stage or type of mental illness, individual reflection, verbalization, and reorganization of adolescent ego and values formation are essential to the recovery process. Humans are born with both bodies and brains, and throughout the courses of their lives, they formulate and develop values. Based on an understanding of the tripartite relationship between the brain, real-world, and life courses, it can be argued that the supporting of individual values is the scientific basis for the so-called "patient-centered care" and "needs-based support" that serve as a psychiatrist's essential capabilities. Along with the patient's recovery, which is based on this values-based psychiatry, professional growth is the privilege enjoyed by those in the psychiatric field. Beginning with a foundation based on assisted recovery at the individual level, the psychiatrist can produce mental health changes at the regional level. The psychiatrist consequently possesses the national-level vision necessary to implement a community design model that combines mental health and preventive medicine.
McNamara, Niamh; Parsons, Harriet
2016-12-01
Retention of a positively valued illness identity contributes to poor outcomes for individuals with eating disorders (EDs). Consequently, dis-identification from the illness identity and the adoption of a recovery identity are vital for successful recovery. While social identity processes have been shown to influence ED maintenance, their role in recovery is rarely considered. This study explores how a sense of shared identity helps individuals with EDs manage their condition and promotes recovery. Transcripts from 18 online support sessions involving 75 participants were thematically analysed. Our findings suggest that the illness identity initially operates as a social identity that forms the basis for connections with similar others. For those wishing to recover, identity-based support is then perceived to be more effective than that found outside the group. Online interactions also facilitate construction of a new shared recovery identity which promotes a shift from the illness identity as a primary source of definition and endorses group norms of illness disclosure and treatment engagement. While in the clinical literature, ED identity is seen as problematic and interventions are targeted at challenging an individual's self-concept, we suggest that interventions could instead harness identity resources to support a transition to a recovery identity. © 2016 The British Psychological Society.
The Evolving Understanding of Recovery: What the Sociology of Mental Health has to Offer*
Watson, Dennis P.
2012-01-01
The meaning of recovery from serious mental illness (SMI) has evolved over time. Whereas it was not even considered to be a primary goal of treatment thirty years ago, it is the main focus of mental health policy today. These changes are partially the result of the work of sociologists who were studying mental health during the time of institutional treatment and the early stages of community-based care. Despite these early influences, the sociology of mental health has largely overlooked the explicit study of recovery. This is because sociologists began shifting their focus from the study of SMI to the study of less severe mental health problems beginning in 1970s. In this paper I (a) discuss the evolving history of mental health recovery; (b) how recovery is defined today in policy, practice, and research; and (c) present an argument for why sociological perspectives and methods can help shed light on the tensions between the definitions while assisting to develop better understandings of the recovery process. In this argument I place particular attention on qualitative social psychological perspectives and methods because they hold the most potential for addressing some of the central concerns in the area of recovery research. PMID:23483849
Roume, Hugo; Arends, Jan B A; Ameril, Camar P; Patil, Sunil A; Rabaey, Korneel
2016-01-01
Given the large amount of crude glycerol formed as a by-product in the biodiesel industries and the concomitant decrease in its overall market price, there is a need to add extra value to this biorefinery side stream. Upgrading can be achieved by new biotechnologies dealing with recovery and conversion of glycerol present in wastewaters into value-added products, aiming at a zero-waste policy and developing an economically viable process. In microbial bioelectrochemical systems (BESs), the mixed microbial community growing on the cathode can convert glycerol reductively to 1,3-propanediol (1,3-PDO). However, the product yield is rather limited in BESs compared with classic fermentation processes, and the synthesis of side-products, resulting from oxidation of glycerol, such as organic acids, represents a major burden for recovery of 1,3-PDO. Here, we show that the use of an enriched mixed-microbial community of glycerol degraders and in situ extraction of organic acids positively impacts 1,3-PDO yield and allows additional recovery of propionate from glycerol. We report the highest production yield achieved (0.72 mol 1,3-PDO mol -1 glycerol ) in electricity-driven 1,3-PDO biosynthesis from raw glycerol, which is very close to the 1,3-PDO yield reported thus far for a mixed-microbial culture-based glycerol fermentation process. We also present a combined approach for 1,3-PDO production and propionate extraction in a single three chamber reactor system, which leads to recovery of additional 3-carbon compounds in BESs. This opens up further opportunities for an economical upgrading of biodiesel refinery side or waste streams.
Roume, Hugo; Arends, Jan B. A.; Ameril, Camar P.; Patil, Sunil A.; Rabaey, Korneel
2016-01-01
Given the large amount of crude glycerol formed as a by-product in the biodiesel industries and the concomitant decrease in its overall market price, there is a need to add extra value to this biorefinery side stream. Upgrading can be achieved by new biotechnologies dealing with recovery and conversion of glycerol present in wastewaters into value-added products, aiming at a zero-waste policy and developing an economically viable process. In microbial bioelectrochemical systems (BESs), the mixed microbial community growing on the cathode can convert glycerol reductively to 1,3-propanediol (1,3-PDO). However, the product yield is rather limited in BESs compared with classic fermentation processes, and the synthesis of side-products, resulting from oxidation of glycerol, such as organic acids, represents a major burden for recovery of 1,3-PDO. Here, we show that the use of an enriched mixed-microbial community of glycerol degraders and in situ extraction of organic acids positively impacts 1,3-PDO yield and allows additional recovery of propionate from glycerol. We report the highest production yield achieved (0.72 mol1,3-PDO mol−1glycerol) in electricity-driven 1,3-PDO biosynthesis from raw glycerol, which is very close to the 1,3-PDO yield reported thus far for a mixed-microbial culture-based glycerol fermentation process. We also present a combined approach for 1,3-PDO production and propionate extraction in a single three chamber reactor system, which leads to recovery of additional 3-carbon compounds in BESs. This opens up further opportunities for an economical upgrading of biodiesel refinery side or waste streams. PMID:27725929
NASA Astrophysics Data System (ADS)
Mann, Thomas; Westphal, Hildegard
2016-03-01
Hurricanes, tropical cyclones and other high-magnitude events are important steering mechanisms in the geomorphic development of coral reef islands. Sandy reef islands located outside the storm belts are strongly sensitive to the impact of occasional high-magnitude events and show abrupt, commonly erosive geomorphic change in response to such events. Based on the interpretation of remote sensing data, it is well known that the process of landform recovery might take several decades or even longer. However, despite the increasing amount of scientific attention towards short- and long-term island dynamics, the lack of data and models often prevent a robust analysis of the timing and nature of recovery initiation. Here we show how natural island recovery starts immediately after the impact of a high-magnitude event. We analyze multi-temporal shoreline changes on Takú Atoll, Papua New Guinea and combine our findings with a unique set of published field observations (Smithers and Hoeke, 2014). Trends of shoreline change since 1943 and changes in planform island area indicate a long-term accretionary mode for most islands. Apparent shoreline instability is detected for the last decade of analysis, however this can be explained by the impact of storm waves in December 2008 that (temporarily?) masked the long-term trend. The transition from negative to positive rates of change in the aftermath of this storm event is indicative of inherent negative feedback processes that counteract short-term changes in energy input and represent the initiation of island recovery. Collectively, our results support the concept of dynamic rather than static reef islands and clearly demonstrate how short-term processes can influence interpretations of medium-term change.
Sulphate removal from sodium sulphate-rich brine and recovery of barium as a barium salt mixture.
Vadapalli, Viswanath R K; Zvimba, John N; Mulopo, Jean; Motaung, Solly
2013-01-01
Sulphate removal from sodium sulphate-rich brine using barium hydroxide and recovery of the barium salts has been investigated. The sodium sulphate-rich brine treated with different dosages of barium hydroxide to precipitate barium sulphate showed sulphate removal from 13.5 g/L to less than 400 mg/L over 60 min using a barium to sulphate molar ratio of 1.1. The thermal conversion of precipitated barium sulphate to barium sulphide achieved a conversion yield of 85% using coal as both a reducing agent and an energy source. The recovery of a pure mixture of barium salts from barium sulphide, which involved dissolution of barium sulphide and reaction with ammonium hydroxide resulted in recovery of a mixture of barium carbonate (62%) and barium hydroxide (38%), which is a critical input raw material for barium salts based acid mine drainage (AMD) desalination technologies. Under alkaline conditions of this barium salt mixture recovery process, ammonia gas is given off, while hydrogen sulfide is retained in solution as bisulfide species, and this provides basis for ammonium hydroxide separation and recovery for reuse, with hydrogen sulfide also recoverable for further industrial applications such as sulfur production by subsequent stripping.
2014-09-12
SAN DIEGO, Calif. – The USS Salvor, a safeguard-class rescue and salvage ship, departs from Naval Base San Diego on the first day of Orion Underway Recovery Test 4A. The Orion boilerplate test vehicle is in view on the ship. NASA, Lockheed Martin and the U.S. Navy will conduct alternate recovery methods using a stationary crane in the Pacific Ocean off the coast of San Diego to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test allows the teams to demonstrate and evaluate recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2014-09-12
SAN DIEGO, Calif. – The USS Salvor, a safeguard-class rescue and salvage ship, departs from Naval Base San Diego on the first day of Orion Underway Recovery Test 4A. The Orion boilerplate test vehicle is in view on the ship. NASA, Lockheed Martin and the U.S. Navy will conduct alternate recovery methods using a stationary crane in the Pacific Ocean off the coast of San Diego to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test allows the teams to demonstrate and evaluate recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
Development of a Water Recovery System Resource Tracking Model
NASA Technical Reports Server (NTRS)
Chambliss, Joe; Stambaugh, Imelda; Sargusingh, Miriam; Shull, Sarah; Moore, Michael
2015-01-01
A simulation model has been developed to track water resources in an exploration vehicle using Regenerative Life Support (RLS) systems. The Resource Tracking Model (RTM) integrates the functions of all the vehicle components that affect the processing and recovery of water during simulated missions. The approach used in developing the RTM enables its use as part of a complete vehicle simulation for real time mission studies. Performance data for the components in the RTM is focused on water processing. The data provided to the model has been based on the most recent information available regarding the technology of the component. This paper will describe the process of defining the RLS system to be modeled, the way the modeling environment was selected, and how the model has been implemented. Results showing how the RLS components exchange water are provided in a set of test cases.
Development of a Water Recovery System Resource Tracking Model
NASA Technical Reports Server (NTRS)
Chambliss, Joe; Stambaugh, Imelda; Sarguishm, Miriam; Shull, Sarah; Moore, Michael
2014-01-01
A simulation model has been developed to track water resources in an exploration vehicle using regenerative life support (RLS) systems. The model integrates the functions of all the vehicle components that affect the processing and recovery of water during simulated missions. The approach used in developing the model results in the RTM being a part of of a complete vehicle simulation that can be used in real time mission studies. Performance data for the variety of components in the RTM is focused on water processing and has been defined based on the most recent information available for the technology of the component. This paper will describe the process of defining the RLS system to be modeled and then the way the modeling environment was selected and how the model has been implemented. Results showing how the variety of RLS components exchange water are provided in a set of test cases.
Thomas, Neil; Farhall, John; Foley, Fiona; Rossell, Susan L; Castle, David; Ladd, Emma; Meyer, Denny; Mihalopoulos, Cathrine; Leitan, Nuwan; Nunan, Cassy; Frankish, Rosalie; Smark, Tara; Farnan, Sue; McLeod, Bronte; Sterling, Leon; Murray, Greg; Fossey, Ellie; Brophy, Lisa; Kyrios, Michael
2016-09-07
Psychosocial interventions have an important role in promoting recovery in people with persisting psychotic disorders such as schizophrenia. Readily available, digital technology provides a means of developing therapeutic resources for use together by practitioners and mental health service users. As part of the Self-Management and Recovery Technology (SMART) research program, we have developed an online resource providing materials on illness self-management and personal recovery based on the Connectedness-Hope-Identity-Meaning-Empowerment (CHIME) framework. Content is communicated using videos featuring persons with lived experience of psychosis discussing how they have navigated issues in their own recovery. This was developed to be suitable for use on a tablet computer during sessions with a mental health worker to promote discussion about recovery. This is a rater-blinded randomised controlled trial comparing a low intensity recovery intervention of eight one-to-one face-to-face sessions with a mental health worker using the SMART website alongside routine care, versus an eight-session comparison condition, befriending. The recruitment target is 148 participants with a schizophrenia-related disorder or mood disorder with a history of psychosis, recruited from mental health services in Victoria, Australia. Following baseline assessment, participants are randomised to intervention, and complete follow up assessments at 3, 6 and 9 months post-baseline. The primary outcome is personal recovery measured using the Process of Recovery Questionnaire (QPR). Secondary outcomes include positive and negative symptoms assessed with the Positive and Negative Syndrome Scale, subjective experiences of psychosis, emotional symptoms, quality of life and resource use. Mechanisms of change via effects on self-stigma and self-efficacy will be examined. This protocol describes a novel intervention which tests new therapeutic methods including in-session tablet computer use and video-based peer modelling. It also informs a possible low intensity intervention model potentially viable for delivery across the mental health workforce. NCT02474524 , 24 May 2015, retrospectively registered during the recruitment phase.
Evaluating post-wildfire hydrologic recovery using ParFlow in southern California
NASA Astrophysics Data System (ADS)
Lopez, S. R.; Kinoshita, A. M.; Atchley, A. L.
2016-12-01
Wildfires are naturally occurring hazards that can have catastrophic impacts. They can alter the natural processes within a watershed, such as surface runoff and subsurface water storage. Generally, post-fire hydrologic models are either one-dimensional, empirically-based models, or two-dimensional, conceptually-based models with lumped parameter distributions. These models are useful in providing runoff measurements at the watershed outlet; however, do not provide distributed hydrologic simulation at each point within the watershed. This research demonstrates how ParFlow, a three-dimensional, distributed hydrologic model can simulate post-fire hydrologic processes by representing soil burn severity (via hydrophobicity) and vegetation recovery as they vary both spatially and temporally. Using this approach, we are able to evaluate the change in post-fire water components (surface flow, lateral flow, baseflow, and evapotranspiration). This model is initially developed for a hillslope in Devil Canyon, burned in 2003 by the Old Fire in southern California (USA). The domain uses a 2m-cell size resolution over a 25 m by 25 m lateral extent. The subsurface reaches 2 m and is assigned a variable cell thickness, allowing an explicit consideration of the soil burn severity throughout the stages of recovery and vegetation regrowth. Vegetation regrowth is incorporated represented by satellite-based Enhanced Vegetation Index (EVI) products. The pre- and post-fire surface runoff, subsurface storage, and surface storage interactions are evaluated and will be used as a basis for developing a watershed-scale model. Long-term continuous simulations will advance our understanding of post-fire hydrological partitioning between water balance components and the spatial variability of watershed processes, providing improved guidance for post-fire watershed management.
Comprehensive recovery of gold and base-metal sulfide minerals from a low-grade refractory ore
NASA Astrophysics Data System (ADS)
Li, Wen-juan; Liu, Shuang; Song, Yong-sheng; Wen, Jian-kang; Zhou, Gui-ying; Chen, Yong
2016-12-01
The comprehensive recovery of small amounts of valuable minerals such as gold and base-metal sulfide minerals from a low-grade refractory ore was investigated. The following treatment strategy was applied to a sample of this ore: gold flotation-gold concentrate leaching-lead and zinc flotation from the gold concentrate leaching residue. Closed-circuit trials of gold flotation yielded a gold concentrate that assayed at 40.23 g·t-1 Au with a recovery of 86.25%. The gold concentrate leaching rate was 98.76%. Two variants of lead-zinc flotation from the residue—preferential flotation of lead and zinc and bulk flotation of lead and zinc—were tested using the middling processing method. Foam from the reflotation was returned to the lead rougher flotation or lead-zinc bulk flotation, whereas middlings from reflotation were discarded. Sulfur concentrate was a byproduct. The combined strategy of flotation, leaching, and flotation is recommended for the treatment of this kind of ore.
MAGSAT data processing: A report for investigators
NASA Technical Reports Server (NTRS)
Langel, R. A.; Berbert, J.; Jennings, T.; Horner, R. (Principal Investigator)
1981-01-01
The in-flight attitude and vector magnetometer data bias recovery techniques and results are described. The attitude bias recoveries are based on comparisons with a magnetic field model and are thought to be accurate to 20 arcsec. The vector magnetometer bias recoveries are based on comparisons with the scalar magnetometer data and are thought to be accurate to 3 nT or better. The MAGSAT position accuracy goals of 60 m radially and 300 m horizontally were achieved for all but the last 3 weeks of Magsat lifetime. This claim is supported by ephemeris overlap statistics and by comparisons with ephemerides computed with an independent orbit program using data from an independent tracking network. MAGSAT time determination accuracy is estimated at 1 ms. Several errors in prelaunch assumptions regarding data time tags, which escaped detection in prelaunch data tests, and were discovered and corrected postlaunch are described. Data formats and products, especially the Investigator-B tapes, which contain auxiliary parameters in addition to the basic magnetometer and ephemeris data, are described.
Risk evaluation for staphylococcal food poisoning in processed milk produced with skim milk powder.
Soejima, T; Nagao, E; Yano, Y; Yamagata, H; Kagi, H; Shinagawa, K
2007-04-01
The growth of S. aureus and the production of staphylococcal enterotoxin A (SEA) in skim milk concentrates stored at inappropriate temperatures in a recovery milk tank (tank for excess concentrated skim milk) used in the manufacture of skimmed milk powder were investigated. Also, it was estimated if a possible outbreak of food poisoning would occur if the contaminated skimmed milk powder was used in the manufacture of processed milk. Skim milk concentrates with milk solid content of 15, 25, and 35% were inoculated with S. aureus at 1-2 log CFU/ml and incubated at 15, 25, or 35 degrees C for 0 to 24 h with or without shaking. Bacterial growth and the level of SEA production were measured. At 35 degrees C with shaking, there was a significant difference (p<0.05) in one way layout analysis of variance, and it was demonstrated that the growth of S. aureus and SEA production could be milk solid content-dependent. Shaking accelerated the growth of S. aureus and SEA production at 35 degrees C. Generally, skim milk powder is produced by mixing a set percentage of skim milk concentrates (recovery milk) from the recovery milk tank into raw milk. If recovery milk contaminated with S. aureus at levels of 1-2 log CFU/ml is kept at 15 to 35 degrees C due to a power failure, it was estimated that processed milk consumption of 670-1200 ml, 420-1500 ml and 18-83 ml would trigger the onset of food poisoning symptoms when skim milk concentrates (recovery milk) are stored at 25 degrees C for 24 h, 35 degrees C for 10 h, and 35 degrees C for 24 h, respectively, during the production of the skim milk powder. Based on these consumption levels, it was concluded that, if recovery milk cannot be refrigerated and is stored at room temperature (25 to 35 degrees C), it must be used within 8 h and preferably within 6 h.
Rotavirus-like particles primary recovery from insect cells in aqueous two-phase systems.
Benavides, Jorge; Mena, Jimmy A; Cisneros-Ruiz, Mayra; Ramírez, Octavio T; Palomares, Laura A; Rito-Palomares, Marco
2006-09-14
Virus-like particles have a wide range of applications, including vaccination, gene therapy, and even as nanomaterials. Their successful utilization depends on the availability of selective and scalable methods of product recovery and purification that integrate effectively with upstream operations. In this work, a strategy based on aqueous two phase system (ATPS) was developed for the recovery of double-layered rotavirus-like particles (dlRLP) produced by the insect cell-baculovirus expression system. Polyethylene glycol (PEG) molecular mass, PEG and salt concentrations, and volume ratio (Vr, volume of top phase/volume of bottom phase) were evaluated in order to determine the conditions where dlRLP and contaminants concentrated to opposite phases. Two-stage ATPS consisting of PEG 400-phosphate with a Vr of 13.0 and a tie-line length (TLL) of 35% (w/w) at pH 7.0 provided the best conditions for processing highly concentrated crude extract from disrupted cells (dlRLP concentration of 5 microg/mL). In such conditions intracellular dlRLP accumulated in the top phase (recovery of 90%), whereas cell debris remained in the interface. Furthermore, dlRLP from culture supernatants accumulated preferentially in the interface (recovery of 82%) using ATPS with a Vr of 1.0, pH of 7.0, PEG 3350 (10.1%, w/w) and phosphate (10.9%, w/w). The purity of dlRLP from culture supernatant increased up to 55 times after ATPS. The use of ATPS resulted in a recovery process that produced dlRLP with a purity between 6 and 11% and an overall product yield of 85% (w/w), considering purification from intracellular and extracellular dlRLP. Overall, the strategy proposed in this study is simpler than traditional methods for recovering dlRLP, and represents a scalable and economically viable alternative for production processes of vaccines against rotavirus infection with significant scope for generic commercial application.
Wäger, P A; Hischier, R; Eugster, M
2011-04-15
While Waste Electrical and Electronic Equipment (WEEE) collection and recovery have significantly gained in importance all over Europe in the last 15years, comprehensive studies assessing the environmental loads and benefits of these systems still are not common. In this paper we present the results of a combined material flow analysis and life cycle assessment study, which aimed to calculate the overall environmental impacts of collection, pre-processing and end-processing for the existing Swiss WEEE collection and recovery systems, as well as of incineration and landfilling scenarios, in which the same amount of WEEE is either incinerated in a an MSWI plant or landfilled. According to the calculations based on the material flow data for the year 2009 and a new version of the ecoinvent life cycle inventory database (ecoinvent v2.01), collection, recovery and disposal result in significantly lower environmental impacts per t of WEEE for midpoint indicators such as global warming or ozone depletion and the endpoint indicator Eco-Indicator '99 points. A comparison between the environmental impacts of the WEEE recovery scenarios 2009 and 2004, both calculated with ecoinvent v2.01 data, shows that the impacts per t of WEEE in 2009 were slightly lower. This appears to be mainly due to the changes in the treatment of plastics (more recycling, less incineration). Compared to the overall environmental impacts of the recovery scenario 2004 obtained with an old version of ecoinvent (ecoinvent v1.1), the calculation with ecoinvent v2.01 results in an increase of the impacts by about 20%, which is primarily the consequence of a more adequate modeling of several WEEE fractions (e.g. metals, cables or CRT devices). In view of a further increase of the environmental benefits associated with the Swiss WEEE collection and recovery systems, the recovery of geochemically scarce metals should be further investigated, in particular. Copyright © 2011 Elsevier B.V. All rights reserved.
Microfluidic diffusivity meter: a tool to optimize CO2 driven enhanced oil recovery
NASA Astrophysics Data System (ADS)
Puneeth, S. B.; Kim, Young Ho; Goel, Sanket
2017-02-01
As the energy demands continue to swell with growing population and there persists a lack of unexploited oilfields, the prime focus of any nation would be to maximize the oil recovery factor from existing oil fields. CO2-Enhanced oil recovery is a process to improve the recovery of crude oil from an oil field and works at high pressure and in very deep conditions. CO2 and oil are miscible at high pressure, resulting in low viscosity and oil swells. This swelling can be measured based on mathematical calculations in real time and correlated with the CO2 concentration. This process has myriad advantages over its counterparts which include being able to harness oil trapped in reservoirs besides being cheaper and more efficient. A Diffusivity meter is inevitable in the measurement of the diffusion co-efficient of two samples. Diffusivity meters currently available in the market are weighed down by disadvantages like the requirement of large samples for testing, high cost and complexity. This elicits the need for a Microfluidic based diffusivity meter capable of analyzing Nano-liter sample volumes besides being more precise and affordable. The scope of this work involves the design and development of a Microfluidic robust and inexpensive prototype diffusivity meter using a capillary tube and endorsing its performance by comparison of results with known diffusivity range and supervision of the results with an electronic microscope coupled to PC and Data Acquisition System. The prototype produced at the end of the work is expected to outweigh disadvantages in existing products in terms of sample size, efficiency and time saving.
From recovery to regulation: an attempt to reconceptualize 'recovery from work'.
Zijlstra, F R H; Cropley, M; Rydstedt, L W
2014-08-01
The concept of 'recovery' (from work) has quickly gained in importance in the occupational health literature. However, we think that the conceptualization of 'recovery' needs some more attention. Although many authors acknowledge that 'recovery' refers to a 'process', the concept is often treated as a static construct. In this paper, we argue that recovery should be conceptualized as a dynamic construct related to changes in psychophysiological state of the person. We refer to two main theories that have provided a theoretical framework for research in this area: Meijman & Mulder's Effort-Recovery (E-R) model and Hobfoll's Conservation of Resources theory. In particular, the E-R model has been seminal in this area and stresses the element of changing psychophysiological states that has been used for reconceptualising 'recovery'. Various biological rhythms influence these changing psychophysiological states, and thus the level of energy (or effort) a person can mobilize or wants to mobilize. A distinction is made between 'physical fatigue' and 'mental fatigue' and its consequences for recovery. The discrepancy between 'actual state' and 'required state' has been suggested as the basis for 'recovery'. This emphasises that recovery is a dynamic and ongoing process, which also included motivational aspects, in particular as far as mental work is concerned. The capacity to maintain self-regulation of one's psychophysiological state is important in this respect. Thus, we propose that 'recovery' is the continuous process of harmonizing the 'actual state' with the state that is 'required' at that moment. Copyright © 2014 John Wiley & Sons, Ltd.
2014-07-28
SAN DIEGO, Calif. – At the U.S. Naval Base San Diego in California, visitors take photographs in front of the Orion boilerplate test vehicle during an outreach event at the naval base. The USS Anchorage is being prepared for the Orion Underway Recovery Test 2. The test vehicle and other hardware will be loaded into the well deck of the ship and head out to sea in the Pacific Ocean off the coast of San Diego. NASA, Lockheed Martin and the U.S. Navy will conduct the test to prepare for recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new support hardware and personnel in open waters. The Ground Systems Development and Operations Program will conduct the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-07-28
SAN DIEGO, Calif. – At the U.S. Naval Base San Diego in California, NASA Public Affairs Officer Amber Philman describes the Space Launch System and Orion spacecraft to visitors during an outreach event at the naval base. The USS Anchorage is being prepared for the Orion Underway Recovery Test 2. The Orion boilerplate test vehicle and other hardware will be loaded into the well deck of the ship and head out to sea in the Pacific Ocean off the coast of San Diego. NASA, Lockheed Martin and the U.S. Navy will conduct the test to prepare for recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new support hardware and personnel in open waters. The Ground Systems Development and Operations Program will conduct the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-07-28
SAN DIEGO, Calif. – At the U.S. Naval Base San Diego in California, former NASA astronaut Heidi Piper talks with visitors about Exploration Flight Test-1 during an outreach event at the naval base. The USS Anchorage is being prepared for the Orion Underway Recovery Test 2. The Orion boilerplate test vehicle and other hardware will be loaded into the well deck of the ship and head out to sea in the Pacific Ocean off the coast of San Diego. NASA, Lockheed Martin and the U.S. Navy will conduct the test to prepare for recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new support hardware and personnel in open waters. The Ground Systems Development and Operations Program will conduct the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-07-28
SAN DIEGO, Calif. – At the U.S. Naval Base San Diego in California, visitors talk with U.S. Navy personnel and view the Orion boilerplate test vehicle during an outreach event at the naval base. The USS Anchorage is being prepared for the Orion Underway Recovery Test 2. The test vehicle and other hardware will be loaded into the well deck of the ship and head out to sea in the Pacific Ocean off the coast of San Diego. NASA, Lockheed Martin and the U.S. Navy will conduct the test to prepare for recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new support hardware and personnel in open waters. The Ground Systems Development and Operations Program will conduct the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-07-28
SAN DIEGO, Calif. – At the U.S. Naval Base San Diego in California, NASA's Orion boilerplate test vehicle is on display during an outreach event at the naval base. The USS Anchorage is being prepared for the Orion Underway Recovery Test 2. The Orion boilerplate test vehicle and other hardware will be loaded into the well deck of the ship and head out to sea in the Pacific Ocean off the coast of San Diego. NASA, Lockheed Martin and the U.S. Navy will conduct the test to prepare for recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new support hardware and personnel in open waters. The Ground Systems Development and Operations Program will conduct the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-07-28
SAN DIEGO, Calif. – At the U.S. Naval Base San Diego in California, children sign a banner and view the Orion boilerplate test vehicle during an outreach event at the naval base. The USS Anchorage is being prepared for the Orion Underway Recovery Test 2. The test vehicle and other hardware will be loaded into the well deck of the ship and head out to sea in the Pacific Ocean off the coast of San Diego. NASA, Lockheed Martin and the U.S. Navy will conduct the test to prepare for recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new support hardware and personnel in open waters. The Ground Systems Development and Operations Program will conduct the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-07-28
SAN DIEGO, Calif. – At the U.S. Naval Base San Diego in California, children sign a banner near the Orion boilerplate test vehicle during an outreach event at the naval base. The USS Anchorage is being prepared for the Orion Underway Recovery Test 2. The test vehicle and other hardware will be loaded into the well deck of the ship and head out to sea in the Pacific Ocean off the coast of San Diego. NASA, Lockheed Martin and the U.S. Navy will conduct the test to prepare for recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new support hardware and personnel in open waters. The Ground Systems Development and Operations Program will conduct the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-07-28
SAN DIEGO, Calif. – At the U.S. Naval Base San Diego in California, children pick up Orion posters from U.S. Navy personnel during an outreach event at the naval base. The Orion boilerplate test vehicle is on display. The USS Anchorage is being prepared for the Orion Underway Recovery Test 2. The test vehicle and other hardware will be loaded into the well deck of the ship and head out to sea in the Pacific Ocean off the coast of San Diego. NASA, Lockheed Martin and the U.S. Navy will conduct the test to prepare for recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new support hardware and personnel in open waters. The Ground Systems Development and Operations Program will conduct the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-07-28
SAN DIEGO, Calif. – At the U.S. Naval Base San Diego in California, former NASA astronaut Heidi Piper signs the banner near the Orion boilerplate test vehicle during an outreach event at the naval base. The USS Anchorage is being prepared for the Orion Underway Recovery Test 2. The test vehicle and other hardware will be loaded into the well deck of the ship and head out to sea in the Pacific Ocean off the coast of San Diego. NASA, Lockheed Martin and the U.S. Navy will conduct the test to prepare for recovery of the Orion crew module, forward bay cover and parachutes on its return from a deep space mission. The underway recovery test will allow the teams to demonstrate and evaluate the recovery processes, procedures, new support hardware and personnel in open waters. The Ground Systems Development and Operations Program will conduct the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
Pascaris, Alysia; Shields, Leslie Reed; Wolf, Jessica
2008-01-01
Complex and multiple barriers confront out-patient programs in promoting recovery and addressing mental health recipients' work-related goals. This article describes a focused organizational change project utilizing intensive consultation and technical assistance within five New York City outpatient psychiatric services. The project aimed to increase staff exposure to, understanding and use of work-related and recovery-based concepts to promote consumers' recovery and attainment of employment goals. Tailored assessment, curriculum delivery, and identification and implementation of change objectives were useful strategies in promoting change. This change model can serve to assist programs in their efforts to integrate new approaches and to better understand changes among leadership, staff and consumers, and changes in organizational culture and practice required to support a work and recovery-oriented service paradigm. The project experience suggests that adopting and embracing new practices takes time. Varied and incremental steps toward programmatic and operational changes can be significant and can reap authentic sustainable change occurring in the process of learning, experiencing, internalizing and adjusting to new methods of practice.
2014-08-13
SAN DIEGO, Calif. – The USS Anchorage returns to Naval Base San Diego after completion of the Orion Underway Recovery Test 2 in the Pacific Ocean. The ship is framed by the skyline of the city of San Diego. NASA, Lockheed Martin and the U.S. Navy conducted the test on the Orion boilerplate test vehicle to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test allowed the team to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program conducted the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
2014-08-13
SAN DIEGO, Calif. – The USS Anchorage returns to Naval Base San Diego after completion of the Orion Underway Recovery Test 2 in the Pacific Ocean. The ship is framed by the skyline of the city of San Diego. NASA, Lockheed Martin and the U.S. Navy conducted the test on the Orion boilerplate test vehicle to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test allowed the team to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program conducted the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL
DOE Office of Scientific and Technical Information (OSTI.GOV)
George J. Hirasaki; Clarence A. Miller; Gary A. Pope
2004-07-01
Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured,more » oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.« less
A qualitative study of young women's experiences of recovery from bulimia nervosa.
Lindgren, Britt-Marie; Enmark, Annika; Bohman, Anna; Lundström, Mats
2015-04-01
To describe experiences of recovery from bulimia nervosa among young adult women. Most studies into recovery from eating disorders focus on anorexia nervosa, although some include both anorexia and bulimia nervosa. Recovery has been described as beginning with renewed self-esteem. Qualitative interview study. Fourteen women were invited to participate; five women, between 23-26 years of age, who assessed themselves as healthy for at least 2 years agreed to take part in narrative interviews. Tape-recorded interviews lasting 45-60 minutes (median 49 minutes) were conducted from February-April 2010 and transcribed verbatim. Data were analysed using qualitative content analysis. The interviews revealed four themes in recovery from bulimia nervosa: feeling stuck in bulimia nervosa, getting ready to change, breaking free of bulimia nervosa and grasping a new reality, each comprising two or more subthemes. The process of recovery was not linear, but rather went back and forth between progress and relapse. The women expressed strong ambivalence about leaving the illness behind. An important part of their recovery was their ability to accept themselves. It was essential for their recovery to be supported in developing a unique explanation of the cause of their illness. Women's ability to recover from bulimia nervosa and take control over their lives is based on their self-efficacy. Effective care should therefore strive to strengthen women's beliefs in their own abilities, to instil hope for recovery and thus to bolster their self-efficacy. © 2014 John Wiley & Sons Ltd.
Posttraumatic Growth in Youth Survivors of a Disaster: An Arts-Based Research Project
ERIC Educational Resources Information Center
Mohr, Elizabeth
2014-01-01
Evidence that posttraumatic growth is a potential outcome in the process of recovery from trauma and natural disaster highlights the importance of social environmental factors that encourage a growth response in survivors. This art-based research project followed up on a group of youth survivors (N = 11) of the 2007 earthquake in the Ica region of…
Recovery of Tungsten and Molybdenum from Low-Grade Scheelite
NASA Astrophysics Data System (ADS)
Li, Yongli; Yang, Jinhong; Zhao, Zhongwei
2017-10-01
With most high-quality tungsten ores being exhausted, the enhancement of low-grade scheelite concentrates processing has attracted a great deal of attention. The objective of this study is to develop a method to maximize the recovery tungsten and molybdenum from a low-grade scheelite via a new acid leaching process followed by solvent extraction. Under optimal conditions (350 g/L H2SO4, 95°C, and 2 h), approximately 99.8% of tungsten and 98% of molybdenum were leached out. In the subsequent solvent extraction process, more than 99% of the tungsten and molybdenum were extracted with a co-extraction system (50% TBP, 30% HDEHP, and 10% 2-octanol in kerosene) using a three-stage cross-flow extraction. The raffinate can be recycled for the next leaching process after replenishing the H2SO4 to the initial value (approximately 350 g/L). Based on these results, a conceptual flowsheet is presented to recover tungsten and molybdenum from the low-grade scheelite.
High-Temperature Shape Memory Behavior of Semicrystalline Polyamide Thermosets.
Li, Ming; Guan, Qingbao; Dingemans, Theo J
2018-05-21
We have explored semicrystalline poly(decamethylene terephthalamide) (PA 10T) based thermosets as single-component high-temperature (>200 °C) shape memory polymers (SMPs). The PA 10T thermosets were prepared from reactive thermoplastic precursors. Reactive phenylethynyl (PE) functionalities were either attached at the chain termini or placed as side groups along the polymer main chain. The shape fixation and recovery performance of the thermoset films were investigated using a rheometer in torsion mode. By controlling the M n of the reactive oligomers, or the PE concentration of the PE side-group functionalized copolyamides, we were able to design dual-shape memory PA 10T thermosets with a broad recovery temperature range of 227-285 °C. The thermosets based on the 1000 g mol -1 reactive PE precursor and the copolyamide with 15 mol % PE side groups show the highest fixation rate (99%) and recovery rate (≥90%). High temperature triple-shape memory behavior can be achieved as well when we use the melt transition ( T m ≥ 200 °C) and the glass transition ( T g = ∼125 °C) as the two switches. The recovery rate of the two recovery steps are highly dependent on the crystallinity of the thermosets and vary within a wide range of 74%-139% and 40-82% for the two steps, respectively. Reversible shape memory events could also be demonstrated when we perform a forward and backward deformation in a triple shape memory cycle. We also studied the angular recovery velocity as a function of temperature, which provides a thermokinematic picture of the shape recovery process and helps to program for desired shape memory behavior.
High-Temperature Shape Memory Behavior of Semicrystalline Polyamide Thermosets
2018-01-01
We have explored semicrystalline poly(decamethylene terephthalamide) (PA 10T) based thermosets as single-component high-temperature (>200 °C) shape memory polymers (SMPs). The PA 10T thermosets were prepared from reactive thermoplastic precursors. Reactive phenylethynyl (PE) functionalities were either attached at the chain termini or placed as side groups along the polymer main chain. The shape fixation and recovery performance of the thermoset films were investigated using a rheometer in torsion mode. By controlling the Mn of the reactive oligomers, or the PE concentration of the PE side-group functionalized copolyamides, we were able to design dual-shape memory PA 10T thermosets with a broad recovery temperature range of 227–285 °C. The thermosets based on the 1000 g mol–1 reactive PE precursor and the copolyamide with 15 mol % PE side groups show the highest fixation rate (99%) and recovery rate (≥90%). High temperature triple-shape memory behavior can be achieved as well when we use the melt transition (Tm ≥ 200 °C) and the glass transition (Tg = ∼125 °C) as the two switches. The recovery rate of the two recovery steps are highly dependent on the crystallinity of the thermosets and vary within a wide range of 74%–139% and 40–82% for the two steps, respectively. Reversible shape memory events could also be demonstrated when we perform a forward and backward deformation in a triple shape memory cycle. We also studied the angular recovery velocity as a function of temperature, which provides a thermokinematic picture of the shape recovery process and helps to program for desired shape memory behavior. PMID:29742899
LIFE CYCLE DESIGN GUIDANCE MANUAL: ENVIRONMENTAL REQUIREMENTS AND THE PRODUCT SYSTEM
This document seeks to promote the reduction of environmental impacts and health risks through a systems approach to design. he approach is based on the product life cycle, which includes raw materials acquisition and processing, manufacturing, use/service, resource recovery, and...
LIFE CYCLE DESIGN GUIDANCE MANUAL - ENVIRONMENTAL REQUIREMENTS AND THE PRODUCT SYSTEM
This document seeks to promote the reduction of environmental impacts and health risks through a systems approach to design. The approach is based on die product life cycle, which includes raw materials acquisition and processing, manufacturing, use/service, resource recovery, an...
Kilbourne, Amy M.; Neumann, Mary Spink; Waxmonsky, Jeanette; Bauer, Mark S.; Kim, Hyungin Myra; Pincus, Harold Alan; Thomas, Marshall
2017-01-01
This column describes a process for adapting an evidence-based practice in community clinics in which researchers and community providers participated and the resulting framework for implementation of the practice—Replicating Effective Programs–Facilitation. A two-day meeting for the Recovery-Oriented Collaborative Care study was conducted to elicit input from more than 50 stakeholders, including community providers, health care administrators, and implementation researchers. The process illustrates an effective researcher-community partnership in which stakeholders worked together not only to adapt the evidence-based practice to the needs of the clinical settings but also to develop the implementation strategy. PMID:22388527
Wu, Wenzheng; Ye, Wenli; Wu, Zichao; Geng, Peng; Wang, Yulei; Zhao, Ji
2017-01-01
The success of the 3D-printing process depends upon the proper selection of process parameters. However, the majority of current related studies focus on the influence of process parameters on the mechanical properties of the parts. The influence of process parameters on the shape-memory effect has been little studied. This study used the orthogonal experimental design method to evaluate the influence of the layer thickness H, raster angle θ, deformation temperature Td and recovery temperature Tr on the shape-recovery ratio Rr and maximum shape-recovery rate Vm of 3D-printed polylactic acid (PLA). The order and contribution of every experimental factor on the target index were determined by range analysis and ANOVA, respectively. The experimental results indicated that the recovery temperature exerted the greatest effect with a variance ratio of 416.10, whereas the layer thickness exerted the smallest effect on the shape-recovery ratio with a variance ratio of 4.902. The recovery temperature exerted the most significant effect on the maximum shape-recovery rate with the highest variance ratio of 1049.50, whereas the raster angle exerted the minimum effect with a variance ratio of 27.163. The results showed that the shape-memory effect of 3D-printed PLA parts depended strongly on recovery temperature, and depended more weakly on the deformation temperature and 3D-printing parameters. PMID:28825617
Technical Report Cellulosic Based Black Liquor Gasification and Fuels Plant Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fornetti, Micheal; Freeman, Douglas
2012-10-31
The Cellulosic Based Black Liquor Gasification and Fuels Plant Project was developed to construct a black liquor to Methanol biorefinery in Escanaba, Michigan. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage’s Escanaba Paper Mill and when in full operation would: • Generate renewable energy for Escanaba Paper Mill • Produce Methanol for transportation fuel of further refinement to Dimethyl Ether • Convert black liquor to white liquor for pulping. Black liquor is a byproduct of the pulping process and as such is generated from abundant and renewable lignocellulosic biomass. The biorefinery would serve tomore » validate the thermochemical pathway and economic models for black liquor gasification. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with black liquor being generated in a traditional Kraft pulping process. The black liquor would then be gasified to produce synthesis gas, sodium carbonate and hydrogen sulfide. The synthesis gas is then cleaned with hydrogen sulfide and carbon dioxide removed, and fed into a Methanol reactor where the liquid product is made. The hydrogen sulfide is converted into polysulfide for use in the Kraft pulping process. Polysulfide is a known additive to the Kraft process that increases pulp yield. The sodium carbonate salts are converted to caustic soda in a traditional recausticizing process. The caustic soda is then part of the white liquor that is used in the Kraft pulping process. Cellulosic Based Black Liquor Gasification and Fuels Plant project set out to prove that black liquor gasification could produce transportation fuels and produce pulp at the same time. This has the added advantage of reducing or eliminating the need for a recovery boiler. The recovery boiler is an extremely expensive unit operation in the Kraft process and is key to the chemical recovery system that makes the Kraft process successful. Going to a gasification process with potentially higher energy efficiency, improve the pulping process and be more efficient with the use of wood. At the same time a renewable fuel product can be made. Cellulosic Based Black Liquor Gasification and Fuels Plant progressed with the design of the mill as Chemrec continued to work on their pilot plant data gathering. The design information helped to guide the pilot plant and vice versa. In the end, the design details showed that the process was technically feasible. However, at the relatively small size of this plant the specific capital cost was very high and could only be considered if the pulp operation needed to replace the recovery boiler. Some of the reasons for the costs being high are attributed to the many constraints that needed to be addressed in the pulping process. Additionally, the Methanol product did not have a vehicle fuel supply chain to enter into. A different product selection could have eliminated this issue. However, with the selected design, the installation at Escanaba Paper Mill was not economically feasible and the project was not pursued further.« less
Maximizing NGL recovery by refrigeration optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldonedo H., A.H.
1999-07-01
PDVSA--Petroleo y Gas, S.A. has within its facilities in Lake Maracaibo two plants that extract liquids from natural gas (NGL), They use a combined mechanic refrigeration absorption with natural gasoline. Each of these plants processes 420 MMsccfd with a pressure of 535 psig and 95 F that comes from the compression plants PCTJ-2 and PCTJ-3 respectively. About 40 MMscfd of additional rich gas comes from the high pressure system. Under the present conditions these plants produce in the order of 16,800 and 23,800 b/d of NGL respectively, with a propane recovery percentage of approximately 75%, limited by the capacity ofmore » the refrigeration system. To optimize the operation and the design of the refrigeration system and to maximize the NGL recovery, a conceptual study was developed in which the following aspects about the process were evaluated: capacity of the refrigeration system, refrigeration requirements, identification of limitations and evaluation of the system improvements. Based on the results obtained it was concluded that by relocating some condensers, refurbishing the main refrigeration system turbines and using HIGH FLUX piping in the auxiliary refrigeration system of the evaporators, there will be an increase of 85% on the propane recovery, with an additional production of 25,000 b/d of NGL and 15 MMscfd of ethane rich gas.« less
Linking consistency with object/thread semantics - An approach to robust computation
NASA Technical Reports Server (NTRS)
Chen, Raymond C.; Dasgupta, Partha
1989-01-01
This paper presents an object/thread based paradigm that links data consistency with object/thread semantics. The paradigm can be used to achieve a wide range of consistency semantics from strict atomic transactions to standard process semantics. The paradigm supports three types of data consistency. Object programmers indicate the type of consistency desired on a per-operation basis and the system performs automatic concurrency control and recovery management to ensure that those consistency requirements are met. This allows programmers to customize consistency and recovery on a per-application basis without having to supply complicated, custom recovery management schemes. The paradigm allows robust and nonrobust computation to operate concurrently on the same data in a well defined manner. The operating system needs to support only one vehicle of computation - the thread.
Modern process designs for very high NGL recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finn, A.J.; Tomlinson, T.R.; Johnson, G.L.
1999-07-01
Typical margins between NGL and sales gas can justify consideration of very high NGL recovery from natural gas but traditionally, very high percentage recovery of propane or ethane has led to disproportionally high incremental power consumption and hence expensive compressors. Recent technical advances in the process design of cryogenic gas processing plants and in the equipment they se have led to a new breed of flowsheets that can cost-effectively give propane recoveries of as high as 99%. The high NGL recovery achievable with modern plants is economically possible due to their high thermodynamic efficiency. This is mainly because they usemore » the refrigeration available from the process more effectively and so recover more NGL. A high pressure rectification step can further improve NGL recovery economically, especially on larger plants. This residual NGL content would normally remain in the sales gas on a conventional turboexpander plant. Improved recovery of NGL can be obtained with little or no increase in sales gas compression power compared to conventional plants by judicious use of heat exchanger area. With high feed gas pressure and particularly with dense phase operation, the use of two expanders in series for feed gas let-down gives good process efficiency and relatively low specific power per ton of NGL recovered. Use of two expanders also avoids excessive liquid flows in the expander exhaust, thus improving the performance and reliability of the turboexpander system. The techniques discussed in the paper can be employed on revamps to improve NGL recovery. Improved process performance relies heavily on the use of efficient, multistream plant-fin exchangers and these can be easily added to an existing facility to increase NGL production.« less
40 CFR 61.132 - Standard: Process vessels, storage tanks, and tar-intercepting sumps.
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.132... furnace or a foundry coke byproduct recovery plant shall enclose and seal all openings on each process... or operator of a furnace coke by-product recovery plant also shall comply with the requirements of...
40 CFR 61.132 - Standard: Process vessels, storage tanks, and tar-intercepting sumps.
Code of Federal Regulations, 2012 CFR
2012-07-01
... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.132... furnace or a foundry coke byproduct recovery plant shall enclose and seal all openings on each process... or operator of a furnace coke by-product recovery plant also shall comply with the requirements of...
40 CFR 61.132 - Standard: Process vessels, storage tanks, and tar-intercepting sumps.
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.132... furnace or a foundry coke byproduct recovery plant shall enclose and seal all openings on each process... or operator of a furnace coke by-product recovery plant also shall comply with the requirements of...
40 CFR 61.132 - Standard: Process vessels, storage tanks, and tar-intercepting sumps.
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.132... furnace or a foundry coke byproduct recovery plant shall enclose and seal all openings on each process... or operator of a furnace coke by-product recovery plant also shall comply with the requirements of...
Thermal energy storage for industrial waste heat recovery
NASA Technical Reports Server (NTRS)
Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.
1978-01-01
Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.
A Comparative Analysis of Phase-Change Wastewater Processing Approaches for Microgravity
NASA Technical Reports Server (NTRS)
Lange, Kevin
2016-01-01
Two phase-change wastewater processing candidates, the ISS Vapor Compression Distillation (VCD) System and the Cascade Distiller System (CDS), are compared based on dynamic modeling of both technologies. Differences in fluid handling and energy recovery for the technologies are described and contrasted. Model predictions are presented showing how temperatures, pressures, and compositions vary locally within each distiller. These dynamic variations are difficult to observe experimentally and have implications regarding non-condensable buildup and salt precipitation potential. Alternative architectures involving VCD and CDS components are analyzed in terms of predicted performance and equivalent system mass (ESM). The addition of a downstream brine processor to increase water recovery is also evaluated. Options for reducing overall ESM are discussed, including the possibility of developing a single precipitation-tolerant primary wastewater processor.
Ong, Su Yean; Zainab-L, Idris; Pyary, Somarajan; Sudesh, Kumar
2018-03-01
Polyhydroxyalkanoate (PHA) is a family of microbial polyesters that is completely biodegradable and possesses the mechanical and thermal properties of some commonly used petrochemical-based plastics. Therefore, PHA is attractive as a biodegradable thermoplastic. It has always been a challenge to commercialize PHA due to the high cost involved in the biosynthesis of PHA via bacterial fermentation and the subsequent purification of the synthesized PHA from bacterial cells. Innovative enterprise by researchers from various disciplines over several decades successfully reduced the cost of PHA production through the efficient use of cheap and renewable feedstock, precisely controlled fermentation process, and customized bacterial strains. Despite the fact that PHA yields have been improved tremendously, the recovery and purification processes of PHA from bacterial cells remain exhaustive and require large amounts of water and high energy input besides some chemicals. In addition, the residual cell biomass ends up as waste that needs to be treated. We have found that some animals can readily feed on the dried bacterial cells that contain PHA granules. The digestive system of the animals is able to assimilate the bacterial cells but not the PHA granules which are excreted in the form of fecal pellets, thus resulting in partial recovery and purification of PHA. In this mini-review, we will discuss this new concept of biological recovery, the selection of the animal model for biological recovery, and the properties and possible applications of the biologically recovered PHA.
Rinaldi, Caterina; Masoni, Paolo; Salvati, Fabio; Tolve, Pietro
2015-07-01
Automotive Shredder Residue (ASR) is a problematic waste material remaining after shredding and recovery processes of end-of-life vehicles (ELVs). Its heterogeneous grain size and composition make difficult its recovery or disposal. Although ASR accounts for approximately 20% to 25% of the weight of an ELV, the European Union (EU)'s ELV Directive (2000/53/EC) requires that by 2015 a minimum 95% of the weight of an ELV must be reused or recovered, including a 10% weight energy recovery. The quantity of ASR is relevant: Approximately 2.4 million tons are generated in the EU each year and most of it is sent to landfills. This article describes a life cycle model of the "TEKNE-Fluff" process designed to make beneficial use of ASR that is based on the results of an experimental pilot plant for pyro-gasification, combustion, cogeneration, and emissions treatment of ASR. The goal of the research was the application of life cycle assessment (LCA) methodology to identify the environmental hot spots of the "TEKNE system" and use scenario analysis to check solutions to improve its environmental profile, supporting the design and industrialization process. The LCA was conducted based on data modeled from the experimental campaign. Moreover, different scenarios on shares of electricity and thermal energy produced by the cogeneration system and alternative treatment processes for the waste produced by the technology were compared. Despite the limitation of the research (results based on scaling up experimental data by modeling), impact assessment results are promising and sufficiently robust, as shown by Monte Carlo analysis. The TEKNE technology may become an interesting solution for the problem of ASR management: Besides representing an alternative to landfill disposal, the energy produced could avoid significant impacts on fossil resources depletion (a plant of 40,000 tons/y capacity could produce ∼ 147,000 GJ/yr, covering the annual need of ∼ 13,500 households). © 2015 SETAC.
The role of complaint management in the service recovery process.
Bendall-Lyon, D; Powers, T L
2001-05-01
Patient satisfaction and retention can be influenced by the development of an effective service recovery program that can identify complaints and remedy failure points in the service system. Patient complaints provide organizations with an opportunity to resolve unsatisfactory situations and to track complaint data for quality improvement purposes. Service recovery is an important and effective customer retention tool. One way an organization can ensure repeat business is by developing a strong customer service program that includes service recovery as an essential component. The concept of service recovery involves the service provider taking responsive action to "recover" lost or dissatisfied customers and convert them into satisfied customers. Service recovery has proven to be cost-effective in other service industries. The complaint management process involves six steps that organizations can use to influence effective service recovery: (1) encourage complaints as a quality improvement tool; (2) establish a team of representatives to handle complaints; (3) resolve customer problems quickly and effectively; (4) develop a complaint database; (5) commit to identifying failure points in the service system; and (6) track trends and use information to improve service processes. Customer retention is enhanced when an organization can reclaim disgruntled patients through the development of effective service recovery programs. Health care organizations can become more customer oriented by taking advantage of the information provided by patient complaints, increasing patient satisfaction and retention in the process.
Pyrometallurgical Recovery of Platinum Group Metals from Spent Catalysts
NASA Astrophysics Data System (ADS)
Peng, Zhiwei; Li, Zhizhong; Lin, Xiaolong; Tang, Huimin; Ye, Lei; Ma, Yutian; Rao, Mingjun; Zhang, Yuanbo; Li, Guanghui; Jiang, Tao
2017-09-01
As an important secondary resource with abundant platinum group metals (PGMs), spent catalysts demand recycling for both economic and environmental benefits. This article reviews the main pyrometallurgical processes for PGM recovery from spent catalysts. Existing processes, including smelting, vaporization, and sintering processes, are discussed based in part on a review of the physiochemical characteristics of PGMs in spent catalysts. The smelting technology, which produces a PGM-containing alloy, is significantly influenced by the addition of various collectors, such as lead, copper, iron, matte, or printed circuit board (PCB), considering their chemical affinities for PGMs. The vaporization process can recover PGMs in vapor form at low temperatures (250-700°C), but it suffers high corrosion and potential environmental and health risks as a result of involvement of the hazardous gases, mainly Cl2 and CO. The sintering process serves as a reforming means for recycling of the spent catalysts by in situ reduction of their oxidized PGMs components. Among these processes, the smelting process seems more promising although its overall performance can be further improved by seeking a suitable target-oriented collector and flux, together with proper pretreatment and process intensification using an external field.
Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO)
Sim, Victor S.T.; She, Qianhong; Chong, Tzyy Haur; Tang, Chuyang Y.; Fane, Anthony G.; Krantz, William B.
2013-01-01
This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO) to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%–20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination. PMID:24956940
Thermo-mechanical behavior and structure of melt blown shape-memory polyurethane nonwovens.
Safranski, David L; Boothby, Jennifer M; Kelly, Cambre N; Beatty, Kyle; Lakhera, Nishant; Frick, Carl P; Lin, Angela; Guldberg, Robert E; Griffis, Jack C
2016-09-01
New processing methods for shape-memory polymers allow for tailoring material properties for numerous applications. Shape-memory nonwovens have been previously electrospun, but melt blow processing has yet to be evaluated. In order to determine the process parameters affecting shape-memory behavior, this study examined the effect of air pressure and collector speed on the mechanical behavior and shape-recovery of shape-memory polyurethane nonwovens. Mechanical behavior was measured by dynamic mechanical analysis and tensile testing, and shape-recovery was measured by unconstrained and constrained recovery. Microstructure changes throughout the shape-memory cycle were also investigated by micro-computed tomography. It was found that increasing collector speed increases elastic modulus, ultimate strength and recovery stress of the nonwoven, but collector speed does not affect the failure strain or unconstrained recovery. Increasing air pressure decreases the failure strain and increases rubbery modulus and unconstrained recovery, but air pressure does not influence recovery stress. It was also found that during the shape-memory cycle, the connectivity density of the fibers upon recovery does not fully return to the initial values, accounting for the incomplete shape-recovery seen in shape-memory nonwovens. With these parameter to property relationships identified, shape-memory nonwovens can be more easily manufactured and tailored for specific applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Green, Carla A.; Yarborough, Micah T.; Polen, Michael R.; Janoff, Shannon L.; Yarborough, Bobbi Jo H.
2014-01-01
Objective Individuals with serious mental illnesses are more likely to have substance-related problems than those without mental health problems. They also face more difficult recovery trajectories as they cope with dual disorders. Nevertheless, little is known about individuals’ perspectives regarding their dual recovery experiences. Methods This qualitative analysis was conducted as part of an exploratory mixed-methods study of mental health recovery. Members of Kaiser Permanente Northwest (a group-model, not-for-profit, integrated health plan) who had serious mental illness diagnoses were interviewed four times over two years about factors affecting their mental health recovery. Interviews were recorded, transcribed, and coded with inductively-derived codes. Themes were identified by reviewing text coded “alcohol or other drugs.” Results Participants (N = 177) were diagnosed with schizophrenia/schizoaffective disorder (n = 75, 42%), bipolar I/II disorder (n = 84, 48%), or affective psychosis (n = 18, 10%). At baseline, 63% (n = 112) spontaneously described addressing substance use as part of their mental health recovery. When asked at follow-up, 97% (n = 171) provided codeable answers about substances and mental health. We identified differing pathways to recovery, including through formal treatment, self-help groups or peer support, “natural” recovery (without the help of others), and continued but controlled use of alcohol. We found three overarching themes in participants’ experiences of recovering from serious mental illnesses and substance-related problems: Learning about the effects of alcohol and drugs provided motivation and a foundation for sobriety; achieving sobriety helped people to initiate their mental health recovery processes; and achieving and maintaining sobriety built self-efficacy, self-confidence, improved functioning and a sense of personal growth. Non-judgmental support from clinicians adopting chronic disease approaches also facilitated recovery. Conclusions Irrespective of how people achieved sobriety, quitting or severely limiting use of substances was important to initiating and continuing mental health recovery processes. Substance abuse treatment approaches that are flexible, reduce barriers to engagement, support learning about effects of substances on mental health and quality of life, and adopt a chronic disease model of addiction may increase engagement and success. Peer-based support like Alcoholics or Narcotics Anonymous can be helpful for people with serious mental illnesses, particularly when programs accept use of mental health medications. PMID:25491440
Spoor, Ellen; de Jonge, Jan; Hamers, Jan P H
2010-05-28
Because of high demands at work, nurses are at high risk for occupational burnout and physical complaints. The presence of job resources (such as job autonomy or social support) and recovery opportunities could counteract the adverse effect of high job demands. However, it is still unclear how job resources and recovery opportunities can be translated into effective workplace interventions aiming to improve employee health, well-being, and performance-related outcomes. The aim of the current research project is developing and implementing interventions to optimize job resources and recovery opportunities, which may lead to improved health, well-being and performance of nurses. The DIRECT-project (DIsc Risk Evaluating Controlled Trial) is a longitudinal, quasi-experimental field study. Nursing home staff of 4 intervention wards and 4 comparison wards will be involved. Based on the results of a base-line survey, interventions will be implemented to optimize job resources and recovery opportunities. After 12 and 24 month the effect of the interventions will be investigated with follow-up surveys. Additionally, a process evaluation will be conducted to map factors that either stimulated or hindered successful implementation as well as the effectiveness of the interventions. The DIRECT-project fulfils a strong need for intervention research in the field of work, stress, performance, and health. The results could reveal (1) how interventions can be tailored to optimize job resources and recovery opportunities, in order to counteract job demands, and (2) what the effects of these interventions will be on health, well-being, and performance of nursing staff.
NASA Astrophysics Data System (ADS)
Jia, Shenli; Mo, Yongpeng; Shi, Zongqian; Li, Junliang; Wang, Lijun
2017-10-01
The post-arc dielectric recovery process has a decisive effect on the current interruption performance in a vacuum circuit breaker. The dissipation of residual plasma at the moment of current zero under the transient recovery voltage, which is the first stage of the post-arc dielectric recovery process and forms the post-arc current, has attracted many concerns. A one-dimensional particle-in-cell model is developed to simulate the measured post-arc current in the vacuum circuit breaker in this paper. At first, the parameters of the residual plasma are estimated roughly by the waveform of the post-arc current which is taken from measurements. After that, different components of the post-arc current, which are formed by the movement of charged particles in the residual plasma, are discussed. Then, the residual plasma density is adjusted according to the proportion of electrons and ions absorbed by the post-arc anode derived from the particle-in-cell simulation. After this adjustment, the post-arc current waveform obtained from the simulation is closer to that obtained from measurements.
Operations management system advanced automation: Fault detection isolation and recovery prototyping
NASA Technical Reports Server (NTRS)
Hanson, Matt
1990-01-01
The purpose of this project is to address the global fault detection, isolation and recovery (FDIR) requirements for Operation's Management System (OMS) automation within the Space Station Freedom program. This shall be accomplished by developing a selected FDIR prototype for the Space Station Freedom distributed processing systems. The prototype shall be based on advanced automation methodologies in addition to traditional software methods to meet the requirements for automation. A secondary objective is to expand the scope of the prototyping to encompass multiple aspects of station-wide fault management (SWFM) as discussed in OMS requirements documentation.
Towards a model of loss navigation in adolescence.
Lytje, Martin
2017-01-01
Researchers today consider childhood bereavement one of the most traumatic experiences that can befall a child. Nevertheless, most models of bereavement currently limit themselves to dealing with adult grief and primarily explores the internal processes associated with recovery. Based on a study which conducted focus groups with 39 Danish adolescents (aged 9-17), this article presents The Model of Loss Navigation in Adolescence. Centered on the three factors-Being Different, Being in Control, and Being in Grief-the model highlight the social conventions children have to navigate and how these influences both their day-to-day lives and their road to recovery.
Mei, R; Narihiro, T; Nobu, M K; Liu, W-T
2016-11-01
In anaerobic digesters, temperature fluctuation could lead to process instability and failure. It is still not well understood how digester microbiota as a whole respond to heat shock, and what specific organisms are vulnerable to perturbation or responsible for process recovery after perturbation. To address these questions, a mesophilic benzoate-degrading methanogenic culture enriched from digester was subjected to different levels of heat shock. Three types of methane production profiles after perturbation were observed in comparison to the control: uninhibited, inhibited with later recovery, and inhibited without recovery. These responses were correlated with the microbial community compositions based on the analyses of 16S rRNA and 16S rRNA gene. Specifically, the primary benzoate-degrading syntroph was highly affected by heat shock, and its abundance and activity were both crucial to the restoration of benzoate degradation after heat shock. In contrast, methanogens were stable regardless whether methane production was inhibited. Populations related to 'Candidatus Cloacimonetes' and Firmicutes showed stimulated growth. These observations indicated distinct physiological traits and ecological niches associated with individual microbial groups. The results obtained after exposure to heat shock can be critical to more comprehensive characterization of digester ecology under perturbations. Anaerobic digestion is an essential step in municipal wastewater treatment owing to its striking capacity of reducing wasted sludge and recovering energy. However, as an elaborate microbial process, it requires constant temperature control and is sensitive to heat shock. In this study, we explored the microbial response to heat shock of a methanogenic culture enriched from anaerobic digester sludge. Microorganisms that were vulnerable to perturbation or responsible for process recovery after perturbation were identified. © 2016 The Society for Applied Microbiology.
Aboagye, G; Rowe, M T
2018-07-01
The recovery of Mycobacterium avium subspecies paratuberculosis (Map) from the environment can be a laborious process - owing to Map being fastidious, its low number, and also high numbers of other microbial populations in such settings. Protocols i.e. filtration, decontamination and modified elution were devised to recover Map from spiked water sediments. Three culture media: Herrold's Egg Yolk Media (HEYM), Middlebrook 7H10 (M-7H10) and Bactec 12B were then employed to grow the organism following its elution. In the sterile sediment samples the recovery of Map was significant between the time of exposure for each of HEYM and M-7H10, and insignificant between both media (P < 0.05). However, in the non-sterile sediment samples, the HEYM grew other background microflora including moulds at all the times of exposure whilst 4 h followed by M-7H10 culture yielded Map colonies without any background microflora. Using sterile samples only for the Bactec 12B, the recovery of Map decreased as time of exposure increased. Based on these findings, M-7H10 should be considered for the recovery of Map from the natural environment including water sediments where the recovery of diverse microbial species remains a challenge. Map is a robust pathogen that abides in the environment. In water treatment operations, Map associates with floccules and other particulate matter including sediments. It is also a fastidious organism, and its detection and recovery from the water environment is a laborious process and can be misleading within the abundance of other mycobacterial species owing to their close resemblance in phylogenetic traits. In the absence of a reliable recovery method, Map continues to pose public health risks through biofilm in household water tanks, hence the need for the development of a reliable recovery protocol to monitor the presence of Map in water systems in order to curtail its public health risks. Copyright © 2018 Elsevier B.V. All rights reserved.
Alkali metal recovery from carbonaceous material conversion process
Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.
1980-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.
Maeda, Shunta; Sato, Tomoya; Shimada, Hironori; Tsumura, Hideki
2017-01-01
There is growing evidence that individuals with social anxiety show impaired cortisol recovery after experiencing social evaluative stressors. Yet, little is known regarding the cognitive processes underlying such impaired cortisol recovery. The present study examined the effect of post-event processing (PEP), referred to as repetitive thinking about social situations, on cortisol recovery following a social stressor. Forty-two non-clinical university students (23 women, 19 men, mean age = 22.0 ± 2.0 years) completed the Trier Social Stress Test (TSST), followed by a thought sampling procedure which assessed the frequency of PEP reflecting the TSST. A growth curve model showed PEP and social anxiety interactively predicted cortisol recovery. In particular, PEP predicted impaired cortisol recovery in those with low levels of social anxiety but not in those with high levels of social anxiety, which contradicted the initial hypothesis. These findings suggest that PEP is differentially associated with cortisol recovery depending on levels of social anxiety. The possible mechanisms underlying these findings were discussed in terms of protective inhibition framework.
Recovery in Psychosis: A Delphi Study With Experts by Experience
Law, Heather; Morrison, Anthony P.
2014-01-01
This study aimed to establish consensus about the meaning of recovery among individuals with experience of psychosis. A Delphi approach was utilized to allow a large sample of service users to be anonymously consulted about their views on recovery. Service users were invited to take part in a 3-stage consultation process. A total of 381 participants gave their views on recovery in the main stage of this study, with 100 of these taking part in the final review stage. The final list of statements about recovery included 94 items, which were rated as essential or important by >80% of respondents. These statements covered items which define recovery, factors which help recovery, factors which hinder recovery, and factors which show that someone is recovering. As far as we are aware, it is the first study to identify areas of consensus in relation to definitions of recovery from a service user perspective, which are typically reported to be an idiosyncratic process. Implications and recommendations for clinical practice and future research are discussed. PMID:24727194
Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain H. R.; Jung, Hun Bok; Carroll, Kenneth
2016-09-20
An electrophilic acid gas-reactive fracturing and recovery fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. Proppants stabilize openings in fractures and fissures following fracturing.
Liam Heneghan; Alissa Salmore
2014-01-01
The recovery of ecosystems after disturbance remains a productive theme for ecological research. Numerous studies have focused either on the reestablishment of biological communities or on the recovery of ecosystem processes after perturbations. In the case of decomposer organisms an the processes of organic matter decay and the mineralization of nutrients, the...
40 CFR 61.132 - Standard: Process vessels, storage tanks, and tar-intercepting sumps.
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.132... system, or other enclosed point in the by-product recovery process where the benzene in the gas will be... or operator of a furnace coke by-product recovery plant also shall comply with the requirements of...
NASA Astrophysics Data System (ADS)
Kolasiński, Piotr; Kolasińska, Ewa
2016-02-01
The effective waste heat recovery is one of the present-day challenges in the industry and power engineering. The energy systems dedicated for waste heat conversion into electricity are usually characterized by low efficiency and are complicated in the design. The possibility of waste heat recovery via thermoelectric materials may be an interesting alternative to the currently used technologies. In particular, due to their material characteristics, conducting polymers may be competitive when compared with the power machinery and equipment. These materials can be used in a wide range of the geometries e.g. the bulk products, thin films, pristine form or composites and the others. In this article, the authors present selected issues related to the mathematical and thermodynamic description of the heat transfer processes in the thermoelectric materials dedicated for the waste heat recovery. The link of these models with electrical properties of the material and a material solution based on a conducting polymer have also been presented in this paper.
NASA Astrophysics Data System (ADS)
Dutta, Sourav; Daripa, Prabir; Fluids Team
2015-11-01
One of the most important methods of chemical enhanced oil recovery (EOR) involves the use of complex flooding schemes comprising of various layers of fluids mixed with suitable amounts of polymer or surfactant or both. The fluid flow is characterized by the spontaneous formation of complex viscous fingering patterns which is considered detrimental to oil recovery. Here we numerically study the physics of such EOR processes using a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics. We investigate the effect of different types of heterogeneity on the fingering mechanism of these complex multiphase flows and determine the impact on oil recovery. We also study the effect of surfactants on the dynamics of the flow via reduction of capillary forces and increase in relative permeabilities. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-21
The test version of the Orion crew module has been transported into the well deck of the USS San Diego at Naval Base San Diego in California. NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test spacecraft aboard for Underway Recovery Test 5 (URT-5) in the Pacific Ocean off the coast of California. During URT-5, the team will demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-21
The test version of the Orion crew module is transported to the USS San Diego at Naval Base San Diego in California. NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test spacecraft aboard for Underway Recovery Test 5 (URT-5) in the Pacific Ocean off the coast of California. During URT-5, the team will demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-21
The test version of the Orion crew module is transported into the well deck of the USS San Diego at Naval Base San Diego in California. NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test spacecraft aboard for Underway Recovery Test 5 (URT-5) in the Pacific Ocean off the coast of California. During URT-5, the team will demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-21
NASA and contractor team members monitor the progress as the test version of the Orion crew module arrives in the well deck of the USS San Diego at Naval Base San Diego in California. NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test spacecraft aboard for Underway Recovery Test 5 (URT-5) in the Pacific Ocean off the coast of California. During URT-5, the team will demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-21
The test version of the Orion crew module is secured on its fixture inside the well deck of the USS San Diego at Naval Base San Diego in California. NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test spacecraft aboard for Underway Recovery Test 5 (URT-5) in the Pacific Ocean off the coast of California. During URT-5, the team will demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-21
Preparations are underway to transport the test version of the Orion crew module onto the USS San Diego at Naval Base San Diego in California. NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test spacecraft aboard for Underway Recovery Test 5 (URT-5) in the Pacific Ocean off the coast of California. During URT-5, the team will demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5) - Orion Boiler Plate Test
2016-10-21
Team members monitor the progress as the test version of the Orion crew module is transported into the well deck of the USS San Diego at Naval Base San Diego in California. NASA, Orion manufacturer Lockheed Martin and the U.S. Navy will head out to sea with the Orion test spacecraft aboard for Underway Recovery Test 5 (URT-5) in the Pacific Ocean off the coast of California. During URT-5, the team will demonstrate and evaluate the recovery processes, procedures, hardware and personnel necessary for recovery of Orion on its return from a deep space mission. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2018. For more information, visit http://www.nasa.gov/orion.
Slade, Mike; Bird, Victoria; Le Boutillier, Clair; Williams, Julie; McCrone, Paul; Leamy, Mary
2011-11-23
There is a consensus about the importance of 'recovery' in mental health services, but the evidence base is limited. A two centre, cluster randomised controlled trial. Participants are community-based mental health teams, and service users aged 18-65 years with a primary clinical diagnosis of psychosis. In relation to the REFOCUS Manual researchintorecovery.com/refocus, which describes a 12-month, pro-recovery intervention based on the REFOCUS Model, the objectives are: (1) To establish the effectiveness of the intervention described in the REFOCUS Manual; (2) To validate the REFOCUS Model; (3) To establish and optimise trial parameters for the REFOCUS Manual; and (4) To understand the relationship between clinical outcomes and recovery outcomes. The hypothesis for the main study is that service users in the intervention arm will experience significantly greater increases in measures of personal recovery (as measured by the QPR) compared to service users receiving care from control teams. The hypothesis for the secondary study is that black service users in the intervention arm will experience significantly greater increases in measures of personal recovery (as measured by the QPR) and client satisfaction (as measured by the CSQ) compared to Black service users receiving care from control teams. The intervention comprises treatment as usual plus two components: recovery-promoting relationships and working practices. The control condition is treatment as usual. The primary outcme is the Process of Recovery Questionnaire (QPR). Secondary outcomes are satisfaction, Goal setting - Personal Primary Outcome, hope, well-being, empowerment, and quality of life. Primary outcomes for the secondary study will be QPR and satisfaction. Cost data will be estimated, and clinical outcomes will also be reported (symptomatology, need, social disability, functioning). 29 teams (15 intervention and 14 control) will be randomised. Within each team, 15 services users will be randomly chosen, giving a total sample of 435 service users (225 in intervention and 210 in control). Power for the main study: 336 service users will give power to detect a medium effect size of 0.4 (alpha 0.05, power = 0.8) on both QPR sub-scales. Power for the secondary study: 89 participants will give power to detect an effect size of 0.67 on both QPR sub-scales and on CSQ. A range of approaches are used to minimise bias, although service users and clinicians cannot be blinded. This cluster-RCT will evaluate a pro-recovery intervention in community mental health teams. ISRCTN: ISRCTN02507940.
2011-01-01
Background There is a consensus about the importance of 'recovery' in mental health services, but the evidence base is limited. Methods/Design A two centre, cluster randomised controlled trial. Participants are community-based mental health teams, and service users aged 18-65 years with a primary clinical diagnosis of psychosis. In relation to the REFOCUS Manual researchintorecovery.com/refocus, which describes a 12-month, pro-recovery intervention based on the REFOCUS Model, the objectives are: (1) To establish the effectiveness of the intervention described in the REFOCUS Manual; (2) To validate the REFOCUS Model; (3) To establish and optimise trial parameters for the REFOCUS Manual; and (4) To understand the relationship between clinical outcomes and recovery outcomes. The hypothesis for the main study is that service users in the intervention arm will experience significantly greater increases in measures of personal recovery (as measured by the QPR) compared to service users receiving care from control teams. The hypothesis for the secondary study is that black service users in the intervention arm will experience significantly greater increases in measures of personal recovery (as measured by the QPR) and client satisfaction (as measured by the CSQ) compared to Black service users receiving care from control teams. The intervention comprises treatment as usual plus two components: recovery-promoting relationships and working practices. The control condition is treatment as usual. The primary outcme is the Process of Recovery Questionnaire (QPR). Secondary outcomes are satisfaction, Goal setting - Personal Primary Outcome, hope, well-being, empowerment, and quality of life. Primary outcomes for the secondary study will be QPR and satisfaction. Cost data will be estimated, and clinical outcomes will also be reported (symptomatology, need, social disability, functioning). 29 teams (15 intervention and 14 control) will be randomised. Within each team, 15 services users will be randomly chosen, giving a total sample of 435 service users (225 in intervention and 210 in control). Power for the main study: 336 service users will give power to detect a medium effect size of 0.4 (alpha 0.05, power = 0.8) on both QPR sub-scales. Power for the secondary study: 89 participants will give power to detect an effect size of 0.67 on both QPR sub-scales and on CSQ. A range of approaches are used to minimise bias, although service users and clinicians cannot be blinded. Discussion This cluster-RCT will evaluate a pro-recovery intervention in community mental health teams. Trial registration ISRCTN: ISRCTN02507940 PMID:22112008
Diploma Recovery: High School Graduates' Perceptions of Online Credit Recovery Programming
ERIC Educational Resources Information Center
Currier, Clay W.
2017-01-01
This phenomenological case study explored student experiences in a technology-based credit recovery program at several central Texas high schools. Students shared their perceptions about utilizing technology-based credit recovery environments. Participants in this study were ten high school graduates who had completed credit recovery courses at…
NASA Astrophysics Data System (ADS)
Cavanaugh, C.; Gille, J.; Francis, G.; Nardi, B.; Hannigan, J.; McInerney, J.; Krinsky, C.; Barnett, J.; Dean, V.; Craig, C.
2005-12-01
The High Resolution Dynamics Limb Sounder (HIRDLS) instrument onboard the NASA Aura spacecraft experienced a rupture of the thermal blanketing material (Kapton) during the rapid depressurization of launch. The Kapton draped over the HIRDLS scan mirror, severely limiting the aperture through which HIRDLS views space and Earth's atmospheric limb. In order for HIRDLS to achieve its intended measurement goals, rapid characterization of the anomaly, and rapid recovery from it were required. The recovery centered around a new processing module inserted into the standard HIRDLS processing scheme, with a goal of minimizing the effect of the anomaly on the already existing processing modules. We describe the software infrastructure on which the new processing module was built, and how that infrastructure allows for rapid application development and processing response. The scope of the infrastructure spans three distinct anomaly recovery steps and the means for their intercommunication. Each of the three recovery steps (removing the Kapton-induced oscillation in the radiometric signal, removing the Kapton signal contamination upon the radiometric signal, and correcting for the partially-obscured atmospheric view) is completely modularized and insulated from the other steps, allowing focused and rapid application development towards a specific step, and neutralizing unintended inter-step influences, thus greatly shortening the design-development-test lifecycle. The intercommunication is also completely modularized and has a simple interface to which the three recovery steps adhere, allowing easy modification and replacement of specific recovery scenarios, thereby heightening the processing response.
Improving Air Force Imagery Reconnaissance Support to Ground Commanders.
1983-06-03
reconnaissance support in Southeast Asia due to the long response times of film recovery and 26 processing capabilities and inadequate command and control...reconnaissance is an integral part of the C31 information explosion. Traditional silver halide film products, chemically processed and manually distributed are...being replaced with electronic near-real-time (NRT) imaging sensors. The term "imagery" now includes not only conventional film based products (black
Slade, Mike; Bird, Victoria; Clarke, Eleanor; Le Boutillier, Clair; McCrone, Paul; Macpherson, Rob; Pesola, Francesca; Wallace, Genevieve; Williams, Julie; Leamy, Mary
2015-06-01
Mental health policy in many countries is oriented around recovery, but the evidence base for service-level recovery-promotion interventions is lacking. We did a cluster, randomised, controlled trial in two National Health Service Trusts in England. REFOCUS is a 1-year team-level intervention targeting staff behaviour to increase focus on values, preferences, strengths, and goals of patients with psychosis, and staff-patient relationships, through coaching and partnership. Between April, 2011, and May, 2012, community-based adult mental health teams were randomly allocated to provide usual treatment plus REFOCUS or usual treatment alone (control). Baseline and 1-year follow-up outcomes were assessed in randomly selected patients. The primary outcome was recovery and was assessed with the Questionnaire about Processes of Recovery (QPR). We also calculated overall service costs. We used multiple imputation to estimate missing data, and the imputation model captured clustering at the team level. Analysis was by intention to treat. This trial is registered, number ISRCTN02507940. 14 teams were included in the REFOCUS group and 13 in the control group. Outcomes were assessed in 403 patients (88% of the target sample) at baseline and in 297 at 1 year. Mean QPR total scores did not differ between the two groups (REFOCUS group 40·6 [SD 10·1] vs control 40·0 [10·2], adjusted difference 0·68, 95% CI -1·7 to 3·1, p=0·58). High team participation was associated with higher staff-rated scores for recovery-promotion behaviour change (adjusted difference -0·4, 95% CI -0·7 to -0·2, p=0·001) and patient-rated QPR interpersonal scores (-1·6, -2·7 to -0·5, p=0·005) at follow-up than low participation. Patients treated in the REFOCUS group incurred £1062 (95% CI -1103 to 3017) lower adjusted costs than those in the control group. Although the primary endpoint was negative, supporting recovery might, from the staff perspective, improve functioning and reduce needs. Implementation of REFOCUS could increase staff recovery-promotion behaviours and improve patient-rated recovery. National Institute for Health Research. Copyright © 2015 Elsevier Ltd. All rights reserved.
Flasch, Paulina; Murray, Christine E; Crowe, Allison
2015-08-10
To date, minimal research has focused on the recovery process for survivors of intimate partner violence (IPV). This study utilized a phenomenological methodology to understand the lived experiences of survivors of IPV (N = 123) who had overcome abusive relationships and created violence-free and meaningful lives. The researchers aimed to understand key factors involved in their recovery processes. Results indicated two main processes in the IPV recovery process: intrapersonal processes and interpersonal processes. Intrapersonal processes included (a) regaining and recreating one's identity, (b) embracing the freedom and power to direct one's own life, (c) healing from the mental and physical health symptoms of the abuse, (d) fostering acceptance and forgiveness with self and abuser, (e) education and examination of abusive relationships, (f) determining whether and how to enter new intimate relationships, and (g) acknowledging the long-term process of overcoming abuse. Interpersonal processes included themes of (a) building positive social support and relationships and (b) using ones' experiences with abuse to help others. Results of the present study are presented, and implications for practitioners are discussed. © The Author(s) 2015.
Development of a two-stage membrane-based wash-water reclamation subsystem
NASA Technical Reports Server (NTRS)
Mccray, S. B.
1988-01-01
A two-stage membrane-based subsystem was designed and constructed to enable the recycle of wash waters generated in space. The first stage is a fouling-resistant tube-side-feed hollow-fiber ultrafiltration module, and the second stage is a spiral-wound reverse-osmosis module. Throughout long-term tests, the subsystem consistently produced high-quality permeate, processing actual wash water to 95 percent recovery.
ERIC Educational Resources Information Center
Robbins, William Shane
2011-01-01
"We know that education can be an arduous process. Countries use different approaches based on societal acceptances, but effective education always requires enormous efforts. Whether success is achieved, depends on the development of a rigorous and progressive curriculum, while at the same time providing all students the opportunity to…
Advances in primary recovery: centrifugation and membrane technology.
Roush, David J; Lu, Yuefeng
2008-01-01
Significant and continual improvements in upstream processing for biologics have resulted in challenges for downstream processing, both primary recovery and purification. Given the high cell densities achievable in both microbial and mammalian cell culture processes, primary recovery can be a significant bottleneck in both clinical and commercial manufacturing. The combination of increased product titer and low viability leads to significant relative increases in the levels of process impurities such as lipids, intracellular proteins and nucleic acid versus the product. In addition, cell culture media components such as soy and yeast hydrolysates have been widely applied to achieve the cell culture densities needed for higher titers. Many of the process impurities can be negatively charged at harvest pH and can form colloids during the cell culture and harvest processes. The wide size distribution of these particles and the potential for additional particles to be generated by shear forces within a centrifuge may result in insufficient clarification to prevent fouling of subsequent filters. The other residual process impurities can lead to precipitation and increased turbidity during processing and even interference with the performance of the capturing chromatographic step. Primary recovery also poses significant challenges owing to the necessity to execute in an expedient manner to minimize both product degradation and bioburden concerns. Both microfiltration and centrifugation coupled with depth filtration have been employed successfully as primary recovery processing steps. Advances in the design and application of membrane technology for microfiltration and dead-end filtration have contributed to significant improvements in process performance and integration, in some cases allowing for a combination of multiple unit operations in a given step. Although these advances have increased productivity and reliability, the net result is that optimization of primary recovery processes has become substantially more complicated. Ironically, the application of classical chemical engineering approaches to overcome issues in primary recovery and purification (e.g., turbidity and trace impurity removal) are just recently gaining attention. Some of these techniques (e.g., membrane cascades, pretreatment, precipitation, and the use of affinity tags) are now seen almost as disruptive technologies. This paper will review the current and potential future state of research on primary recovery, including relevant papers presented at the 234th American Chemical Society (ACS) National Meeting in Boston.
Energy recovery from solid waste. Volume 1: Summary report
NASA Technical Reports Server (NTRS)
1975-01-01
A systems analysis of energy recovery from solid waste which demonstrates the feasibility of several processes for converting solid waste to an energy form is presented. The social, legal, environmental, and political factors are considered and recommendations made in regard to legislation and policy. A technical and economic evaluation of available and developing energy-recovery processes is given with emphasis on thermal decomposition and biodegradation. A pyrolysis process is suggested. The use of prepared solid waste as a fuel supplemental to coal is considered to be the most economic process for recovery of energy from solid waste. Markets are discussed with suggestions for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste.
Model-based Extracted Water Desalination System for Carbon Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gettings, Rachel; Dees, Elizabeth
The focus of this research effort centered around water recovery from high Total Dissolved Solids (TDS) extracted waters (180,000 mg/L) using a combination of water recovery (partial desalination) technologies. The research goals of this project were as follows: 1. Define the scope and test location for pilot-scale implementation of the desalination system, 2.Define a scalable, multi-stage extracted water desalination system that yields clean water, concentrated brine, and, salt from saline brines, and 3. Validate overall system performance with field-sourced water using GE pre-pilot lab facilities. Conventional falling film-mechanical vapor recompression (FF-MVR) technology was established as a baseline desalination process. Amore » quality function deployment (QFD) method was used to compare alternate high TDS desalination technologies to the base case FF-MVR technology, including but not limited to: membrane distillation (MD), forward osmosis (FO), and high pressure reverse osmosis (HPRO). Technoeconomic analysis of high pressure reverse osmosis (HPRO) was performed comparing the following two cases: 1. a hybrid seawater RO (SWRO) plus HPRO system and 2. 2x standard seawater RO system, to achieve the same total pure water recovery rate. Pre-pilot-scale tests were conducted using field production water to validate key process steps for extracted water pretreatment. Approximately 5,000 gallons of field produced water was processed through, microfiltration, ultrafiltration, and steam regenerable sorbent operations. Improvements in membrane materials of construction were considered as necessary next steps to achieving further improvement in element performance at high pressure. Several modifications showed promising results in their ability to withstand close to 5,000 PSI without gross failure.« less
Myths and realities about the recovery of L׳Aquila after the earthquake
Contreras, Diana; Blaschke, Thomas; Kienberger, Stefan; Zeil, Peter
2014-01-01
There is a set of myths which are linked to the recovery of L׳Aquila, such as: the L׳Aquila recovery has come to a halt, it is still in an early recovery phase, and there is economic stagnation. The objective of this paper is threefold: (a) to identify and develop a set of spatial indicators for the case of L׳Aquila, (b) to test the feasibility of a numerical assessment of these spatial indicators as a method to monitor the progress of a recovery process after an earthquake and (c) to answer the question whether the recovery process in L׳Aquila stagnates or not. We hypothesize that after an earthquake the spatial distribution of expert defined variables can constitute an index to assess the recovery process more objectively. In these articles, we aggregated several indicators of building conditions to characterize the physical dimension, and we developed building use indicators to serve as proxies for the socio-economic dimension while aiming for transferability of this approach. The methodology of this research entailed six steps: (1) fieldwork, (2) selection of a sampling area, (3) selection of the variables and indicators for the physical and socio-economic dimensions, (4) analyses of the recovery progress using spatial indicators by comparing the changes in the restricted core area as well as building use over time; (5) selection and integration of the results through expert weighting; and (6) determining hotspots of recovery in L׳Aquila. Eight categories of building conditions and twelve categories of building use were identified. Both indicators: building condition and building use are aggregated into a recovery index. The reconstruction process in the city center of L׳Aquila seems to stagnate, which is reflected by the five following variables: percentage of buildings with on-going reconstruction, partial reconstruction, reconstruction projected residential building use and transport facilities. These five factors were still at low levels within the core area in 2012. Nevertheless, we can conclude that the recovery process in L׳Aquila did not come to a halt but is still ongoing, albeit being slow. PMID:26779431
NASA Astrophysics Data System (ADS)
Yasar, Özüm; Uslu, Tuncay
2017-12-01
Among the fine coal cleaning methods, the oil agglomeration process has important advantages such as high process recovery, more clean product, simple dewatering stage. Several coal agglomeration studies have been undertaken recently and effects of different variables on the process performance have been investigated. However, unlike flotation studies, most of the previous agglomeration studies have not used dispersing agents to minimize slime coating effects of clays. In this study, agglomeration process was applied for recovery of fine coals from coal washery tailings containing remarkable amount of fine coal. Negative effect of fine clays during recovery was tried to be eliminated by using dispersing agent instead of de-sliming. Although ash reductions over 90 % were achieved, performance remained below expectations in terms of combustible matter recovery. However, this study is a preliminary one. It is considered that more satisfied results will be obtained in the next studies by changing the variables such as solid ratio, oil dosage, dispersant type and dosage.
Disaster recovery plan for HANDI 2000 business management system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, D.E.
The BMS production implementation will be complete by October 1, 1998 and the server environment will be comprised of two types of platforms. The PassPort Supply and the PeopleSoft Financials will reside on LNIX servers and the PeopleSoft Human Resources and Payroll will reside on Microsoft NT servers. Because of the wide scope and the requirements of the COTS products to run in various environments backup and recovery responsibilities are divided between two groups in Technical Operations. The Central Computer Systems Management group provides support for the LTNIX/NT Backup Data Center, and the Network Infrastructure Systems group provides support formore » the NT Application Server Backup outside the Data Center. The disaster recovery process is dependent on a good backup and recovery process. Information and integrated system data for determining the disaster recovery process is identified from the Fluor Daniel Hanford (FDH) Risk Assessment Plan, Contingency Plan, and Backup and Recovery Plan, and Backup Form for HANDI 2000 BMS.« less
Stochastic resetting in backtrack recovery by RNA polymerases
NASA Astrophysics Data System (ADS)
Roldán, Édgar; Lisica, Ana; Sánchez-Taltavull, Daniel; Grill, Stephan W.
2016-06-01
Transcription is a key process in gene expression, in which RNA polymerases produce a complementary RNA copy from a DNA template. RNA polymerization is frequently interrupted by backtracking, a process in which polymerases perform a random walk along the DNA template. Recovery of polymerases from the transcriptionally inactive backtracked state is determined by a kinetic competition between one-dimensional diffusion and RNA cleavage. Here we describe backtrack recovery as a continuous-time random walk, where the time for a polymerase to recover from a backtrack of a given depth is described as a first-passage time of a random walker to reach an absorbing state. We represent RNA cleavage as a stochastic resetting process and derive exact expressions for the recovery time distributions and mean recovery times from a given initial backtrack depth for both continuous and discrete-lattice descriptions of the random walk. We show that recovery time statistics do not depend on the discreteness of the DNA lattice when the rate of one-dimensional diffusion is large compared to the rate of cleavage.
2018-01-01
This work focuses on the process development of membrane-assisted solvent extraction of hydrophobic compounds such as monoterpenes. Beginning with the choice of suitable solvents, quantum chemical calculations with the simulation tool COSMO-RS were carried out to predict the partition coefficient (logP) of (S)-(+)-carvone and terpinen-4-ol in various solvent–water systems and validated afterwards with experimental data. COSMO-RS results show good prediction accuracy for non-polar solvents such as n-hexane, ethyl acetate and n-heptane even in the presence of salts and glycerol in an aqueous medium. Based on the high logP value, n-heptane was chosen for the extraction of (S)-(+)-carvone in a lab-scale hollow-fibre membrane contactor. Two operation modes are investigated where experimental and theoretical mass transfer values, based on their related partition coefficients, were compared. In addition, the process is evaluated in terms of extraction efficiency and overall product recovery, and its biotechnological application potential is discussed. Our work demonstrates that the combination of in silico prediction by COSMO-RS with membrane-assisted extraction is a promising approach for the recovery of hydrophobic compounds from aqueous solutions. PMID:29765654
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bala, Greg Alan; Bruhn, Debby Fox; Fox, Sandra Lynn
Utilization of surfactants for improved oil recovery (IOR) is an accepted technique with high potential. However, technology application is frequently limited by cost. Biosurfactants (surface-active molecules produced by microorganisms) are not widely utilized in the petroleum industry due to high production costs associated with use of expensive substrates and inefficient product recovery methods. The economics of biosurfactant production could be significantly impacted through use of media optimization and application of inexpensive carbon substrates such as agricultural process residuals. Utilization of biosurfactants produced from agricultural residuals may 1) result in an economic advantage for surfactant production and technology application, and 2)more » convert a substantial agricultural waste stream to a value-added product for IOR. A biosurfactant with high potential for use is surfactin, a lipopeptide biosurfactant, produced by Bacillus subtilis. Reported here is the production and potential IOR utilization of surfactin produced by Bacillus subtilis (American Type Culture Collection (ATCC) 21332) from starch-based media. Production of surfactants from microbiological growth media based on simple sugars, chemically pure starch medium, simulated liquid and solid potato-process effluent media, a commercially prepared potato starch in mineral salts, and process effluent from a potato processor is discussed. Additionally, the effect of chemical and physical pretreatments on starchy feedstocks is discussed.« less
NASA Astrophysics Data System (ADS)
Guoxing, Ren; Songwen, Xiao; Meiqiu, Xie; Bing, Pan; Youqi, Fan; Fenggang, Wang; Xing, Xia
Plenty of valuable metals, such as cobalt, nickel, copper, manganese and lithium, are present in spent lithium-ion batteries. A novel smelting reduction process based on MnO-SiO2-Al2O3 slag system for spent lithium ion batteries is developed, using pyrolusite ore as the major flux. And Co-Ni-Cu-Fe alloy and manganese-rich slag contained lithium are obtained. The results show that it is reasonable to control MnO/SiO2 ratio in the range of 2.05-3.23 (w/w) and Al2O3 content in 19.23-26.32wt.%, while the MnO and Li2O contents in the manganese-rich slag can reach 47.03 wt.% and 2.63 wt.%, respectively. In the following leaching experiments of the manganese-rich slag by sulphuric acid solution, the recovery efficiency of manganese and lithium can reach up to 79.86% and 94.85%, respectively. Compared with the conventional hydro-pyrometallurgical process of spent lithium-ion batteries, the present can preferably recover Mn and Li besides Co, Ni and Cu.
Increased binding of 5-HT1A receptors in a dissociative amnesic patient after the recovery process.
Kitamura, Soichiro; Yasuno, Fumihiko; Inoue, Makoto; Kosaka, Jun; Kiuchi, Kuniaki; Matsuoka, Kiwamu; Kishimoto, Toshifumi; Suhara, Tetsuya
2014-10-30
Dissociative amnesia is characterized by an inability to retrieve information already saved in memories. 5-HT has some role in neural regulatory control and may be related to the recovery from dissociative amnesia. To examine the role of 5-HT1A receptors in the recovery from dissociative amnesia, we performed two positron emission tomography (PET) scans on a 30-year-old patient of dissociative amnesia using [(11)C]WAY-100635, the first at amnesic state, and the second at the time he had recovered. Exploratory voxel-based analysis (VBA) was performed using SPM software. 5-HT1A BPND images were compared between the patient at amnesic and recovery states and healthy subjects (14 males, mean age 29.8 ± 6.45) with Jack-knife analysis. 5-HT1A receptor bindings of the patient at the recovery state were significantly higher than those of healthy subjects in the right superior and middle frontal cortex, left inferior frontal and orbitofrontal cortex and bilateral inferior temporal cortex. The increase in BPND values of recovery state was beyond 10% of those of amnesia state in these regions except in the right superior frontal cortex. We considered that neural regulatory control by the increase of 5-HT1A receptors in cortical regions played a role in the recovery from dissociative amnesia. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Grape, Hedda Eik; Solbrække, Kari Nyheim; Kirkevold, Marit; Mengshoel, Anne Marit
2017-01-01
Fibromyalgia syndrome (FMS), a chronic musculoskeletal pain condition, is often accompanied by fatigue. In this study, inspired by narrative approaches to health and illness, we explore how women who have regained their health after FMS describe tiredness along a storyline from before they fell ill, through their illness, recovery process, and present-day health. The data derive from qualitative interviews with eight Norwegian women who previously suffered from FMS but who no longer had the condition at the time of interview. We undertook a narrative analysis to understand the complexity of the stories about tiredness and fatigue and on this basis identified a storyline based on four sub-narratives: 1) Alarming but ignored tiredness (before illness); 2) paralyzing fatigue (during illness); 3) making sense of fatigue (recovery process); and 4) integrating tiredness into life (today). The findings highlight participants' different understandings and meanings of tiredness and fatigue and the ways in which these link past, present, and future. Significantly, a clear distinction between tiredness and fatigue was not always found. Overall, the storyline that emerges from the narratives is about balancing tiredness/fatigue with everyday life, and how this unfolds in different ways across the span of FMS, from falling ill to recovering and regaining health.
Hukari, Sirja; Hermann, Ludwig; Nättorp, Anders
2016-01-15
The present paper is based on an analysis of the EU legislation regulating phosphorus recovery and recycling from wastewater stream, in particular as fertiliser. To recover phosphorus, operators need to deal with market regulations, health and environment protection laws. Often, several permits and lengthy authorisation processes for both installation (e.g. environmental impact assessment) and the recovered phosphorus (e.g. End-of-Waste, REACH) are required. Exemptions to certain registration processes for recoverers are in place but rarely applied. National solutions are often needed. Emerging recovery and recycling sectors are affected by legislation in different ways: Wastewater treatment plants are obliged to remove phosphorus but may also recover it in low quantities for operational reasons. Permit processes allowing recovery and recycling operations next to water purification should thus be rationalised. In contrast, the fertiliser industry relies on legal quality requirements, ensuring their market reputation. For start-ups, raw-material sourcing and related legislation will be the key. Phosphorus recycling is governed by fragmented decision-making in regional administrations. Active regulatory support, such as recycling obligation or subsidies, is lacking. Legislation harmonisation, inclusion of recycled phosphorus in existing fertiliser regulations and support of new operators would speed up market penetration of novel technologies, reduce phosphorus losses and safeguard European quality standards.
Donat, D C
2001-01-01
The relatively enduring and persistent nature of personality traits means that they will likely continue to impact the course of psychiatric recovery after Axis I symptoms are stabilized. These traits can significantly impact the choices that recovering persons make and the quality of interpersonal relationships with care providers who are trying to facilitate the recovery process. Despite this, they are often inadequately assessed and considered in providing psychiatric care. This manuscript reviews the common combinations of personality traits that have emerged across a variety of clinical samples. The implications of these personality features for the provision of care in an inpatient setting to facilitate recovery are discussed.
Dietary Supplements for Health, Adaptation, and Recovery in Athletes.
Rawson, Eric S; Miles, Mary P; Larson-Meyer, D Enette
2018-03-01
Some dietary supplements are recommended to athletes based on data that supports improved exercise performance. Other dietary supplements are not ergogenic per se, but may improve health, adaptation to exercise, or recovery from injury, and so could help athletes to train and/or compete more effectively. In this review, we describe several dietary supplements that may improve health, exercise adaptation, or recovery. Creatine monohydrate may improve recovery from and adaptation to intense training, recovery from periods of injury with extreme inactivity, cognitive processing, and reduce severity of or enhance recovery from mild traumatic brain injury (mTBI). Omega 3-fatty acid supplementation may also reduce severity of or enhance recovery from mTBI. Replenishment of vitamin D insufficiency or deficiency will likely improve some aspects of immune, bone, and muscle health. Probiotic supplementation can reduce the incidence, duration, and severity of upper respiratory tract infection, which may indirectly improve training or competitive performance. Preliminary data show that gelatin and/or collagen may improve connective tissue health. Some anti-inflammatory supplements, such as curcumin or tart cherry juice, may reduce inflammation and possibly delayed onset muscle soreness (DOMS). Beta-hydroxy beta-methylbutyrate (HMB) does not consistently increase strength and/or lean mass or reduce markers of muscle damage, but more research on recovery from injury that includes periods of extreme inactivity is needed. Several dietary supplements, including creatine monohydrate, omega 3-fatty acids, vitamin D, probiotics, gelatin, and curcumin/tart cherry juice could help athletes train and/or compete more effectively.
Boyd, Lara A; Hayward, Kathryn S; Ward, Nick S; Stinear, Cathy M; Rosso, Charlotte; Fisher, Rebecca J; Carter, Alexandre R; Leff, Alex P; Copland, David A; Carey, Leeanne M; Cohen, Leonardo G; Basso, D Michele; Maguire, Jane M; Cramer, Steven C
2017-07-01
The most difficult clinical questions in stroke rehabilitation are "What is this patient's potential for recovery?" and "What is the best rehabilitation strategy for this person, given her/his clinical profile?" Without answers to these questions, clinicians struggle to make decisions regarding the content and focus of therapy, and researchers design studies that inadvertently mix participants who have a high likelihood of responding with those who do not. Developing and implementing biomarkers that distinguish patient subgroups will help address these issues and unravel the factors important to the recovery process. The goal of the present paper is to provide a consensus statement regarding the current state of the evidence for stroke recovery biomarkers. Biomarkers of motor, somatosensory, cognitive and language domains across the recovery timeline post-stroke are considered; with focus on brain structure and function, and exclusion of blood markers and genetics. We provide evidence for biomarkers that are considered ready to be included in clinical trials, as well as others that are promising but not ready and so represent a developmental priority. We conclude with an example that illustrates the utility of biomarkers in recovery and rehabilitation research, demonstrating how the inclusion of a biomarker may enhance future clinical trials. In this way, we propose a way forward for when and where we can include biomarkers to advance the efficacy of the practice of, and research into, rehabilitation and recovery after stroke.
Analysis of energy recovery potential using innovative technologies of waste gasification.
Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea
2012-04-01
In this paper, two alternative thermo-chemical processes for waste treatment were analysed: high temperature gasification and gasification associated to plasma process. The two processes were analysed from the thermodynamic point of view, trying to reconstruct two simplified models, using appropriate simulation tools and some support data from existing/planned plants, able to predict the energy recovery performances by process application. In order to carry out a comparative analysis, the same waste stream input was considered as input to the two models and the generated results were compared. The performances were compared with those that can be obtained from conventional combustion with energy recovery process by means of steam turbine cycle. Results are reported in terms of energy recovery performance indicators as overall energy efficiency, specific energy production per unit of mass of entering waste, primary energy source savings, specific carbon dioxide production. Copyright © 2011 Elsevier Ltd. All rights reserved.
[Recovery of consciousness: process-oriented approach].
Gusarova, S B
2014-01-01
Traditionally psychological neurorehabilitation of neurosurgical patients is provided subject to availability of clear consciousness and minimal potential to communicate verbally. Cognitive and emotional disorders, problems in social adaptation, neurotic syndromes are normally targets in such cases. We work with patients having survived severe brain damage being in different states of consciousness: vegetative state, minimal state of consciousness, mutism, confusion, posttraumatic Korsaroff syndrom. Psychologist considers recovery of consciousness as the target besides traditional tasks. Construction of communication with patient is central part of such job, where the patient remains unable to contact verbally, yet it is impossible to consider potential aphasia. This is a non-verbal "dialogue" with patient created by psychologist with gradual development and involving other people and objects of environment. Inline with modern neuroscientific achievements demonstrating ability to recognize by patients with severe brain injury (A. Owen, S. Laureys, M. Monti, M. Coleman, A. Soddu, M. Boly and others) we base upon psychological science, on psychotherapeutic approaches containing instruments inevitable to work with patients in altered states of consciousness and creation of non-verbal communication with patient (Jung, Reich, Alexander, Lowen, Keleman, Arnold and Amy Mindell, S. Tomandl, D. Boadella, A. Längle, P. Levin etc). This article will include 15 years of experience to apply Process-oriented approach by A. Mindell to recovery of consciousness of neurosurgical patients based on work with "minimal signals" (micro moves, breath, mimic reactions etc.), principle of feedback, psychosomatic resonance, empathy.
Udugama, Isuru A; Wolfenstetter, Florian; Kirkpatrick, Robert; Yu, Wei; Young, Brent R
2017-07-01
In this work we have developed a novel, robust practical control structure to regulate an industrial methanol distillation column. This proposed control scheme is based on a override control framework and can manage a non-key trace ethanol product impurity specification while maintaining high product recovery. For comparison purposes, a MPC with a discrete process model (based on step tests) was also developed and tested. The results from process disturbance testing shows that, both the MPC and the proposed controller were capable of maintaining both the trace level ethanol specification in the distillate (X D ) and high product recovery (β). Closer analysis revealed that the MPC controller has a tighter X D control, while the proposed controller was tighter in β control. The tight X D control allowed the MPC to operate at a higher X D set point (closer to the 10ppm AA grade methanol standard), allowing for savings in energy usage. Despite the energy savings of the MPC, the proposed control scheme has lower installation and running costs. An economic analysis revealed a multitude of other external economic and plant design factors, that should be considered when making a decision between the two controllers. In general, we found relatively high energy costs favour MPC. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Comprehensive Utilization of Iron and Phosphorus from High-Phosphorus Refractory Iron Ore
NASA Astrophysics Data System (ADS)
Sun, Yongsheng; Zhang, Qi; Han, Yuexin; Gao, Peng; Li, Guofeng
2018-02-01
An innovative process of coal-based reduction followed by magnetic separation and dephosphorization was developed to simultaneously recover iron and phosphorus from one typical high-phosphorus refractory iron ore. The experimental results showed that the iron minerals in iron ore were reduced to metallic iron during the coal-based reduction and the phosphorus was enriched in the metallic iron phase. The CaO-SiO2-FeO-Al2O3 slag system was used in the dephosphorization of metallic iron. A hot metal of 99.17% Fe and 0.10% P was produced with Fe recovery of 84.41%. Meanwhile, a dephosphorization slag of 5.72% P was obtained with P recovery of 67.23%. The contents of impurities in hot metal were very low, and it could be used as feedstock for steelmaking after a secondary refining. Phosphorus in the dephosphorization slag mainly existed in the form of a 5CaO·P2O5·SiO2 solid solution where the P2O5 content is 13.10%. At a slag particle size of 20.7 μm (90% passing), 94.54% of the P2O5 could be solubilized in citric acid, indicating the slag met the feedstock requirements in phosphate fertilizer production. Consequently, the proposed process achieved simultaneous Fe and P recovery, paving the way to comprehensive utilization of high-phosphorus refractory iron ore.
Series-Bosch Technology for Oxygen Recovery During Lunar or Martian Surface Missions
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, J. Matthew; Rabenberg, Ellen; Stanley, Christine M.; Edmunson, Jennifer; Alleman, James E.; Chen, Kevin; Dumez, Sam
2014-01-01
Long-duration surface missions to the Moon or Mars will require life support systems that maximize resource recovery to minimize resupply from Earth. To address this need, NASA previously proposed a Series-Bosch (S-Bosch) oxygen recovery system, based on the Bosch process, which can theoretically recover 100% of the oxygen from metabolic carbon dioxide. Bosch processes have the added benefits of the potential to recover oxygen from atmospheric carbon dioxide and the use of regolith materials as catalysts, thereby eliminating the need for catalyst resupply from Earth. In 2012, NASA completed an initial design for an S-Bosch development test stand that incorporates two catalytic reactors in series including a Reverse Water-Gas Shift (RWGS) Reactor and a Carbon Formation Reactor (CFR). In 2013, fabrication of system components, with the exception of a CFR, and assembly of the test stand was initiated. Stand-alone testing of the RWGS reactor was completed to compare performance with design models. Continued testing of Lunar and Martian regolith simulants provided sufficient data to design a CFR intended to utilize these materials as catalysts. Finally, a study was conducted to explore the possibility of producing bricks from spent regolith catalysts. The results of initial demonstration testing of the RWGS reactor, results of continued catalyst performance testing of regolith simulants, and results of brick material properties testing are reported. Additionally, design considerations for a regolith-based CFR are discussed.
Series-Bosch Technology for Oxygen Recovery During Lunar or Martian Surface Missions
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, James M.; Stanley, Christine; Edmunson, Jennifer; Dumez, Samuel; Chen, Kevin; Alleman, James E.
2014-01-01
Long-duration surface missions to the Moon or Mars will require life support systems that maximize resource recovery to minimize resupply from Earth. To address this need, NASA previously proposed a Series-Bosch (S-Bosch) oxygen recovery system, based on the Bosch process, which can theoretically recover 100% of the oxygen from metabolic carbon dioxide. Bosch processes have the added benefits of the potential to recover oxygen from atmospheric carbon dioxide and the use of regolith materials as catalysts, thereby eliminating the need for catalyst resupply from Earth. In 2012, NASA completed an initial design for an S-Bosch development test stand that incorporates two catalytic reactors in series including a Reverse Water-Gas Shift (RWGS) Reactor and a Carbon Formation Reactor (CFR). In 2013, fabrication of system components, with the exception of a CFR, and assembly of the test stand was initiated. Stand-alone testing of the RWGS reactor was completed to compare performance with design models. Continued testing of Lunar and Martian regolith simulants provided sufficient data to design a CFR intended to utilize these materials as catalysts. Finally, a study was conducted to explore the possibility of producing bricks from spend regolith catalysts. The results of initial demonstration testing of the RWGS reactor, results of continued catalyst performance testing of regolith simulants, and results of brick material properties testing are reported. Additionally, design considerations for a regolith-based CFR are discussed.
Use of steel and tantalum apparatus for molten Cd-Mg-Zn alloys
NASA Technical Reports Server (NTRS)
Bennett, G. A.; Burris, L., Jr.; Kyle, M. L.; Nelson, P. A.
1966-01-01
Steel and tantalum apparatus contains various ternary alloys of cadmium, zinc, and magnesium used in pyrochemical processes for the recovery of uranium-base reactor fuels. These materials exhibit good corrosion resistance at the high temperatures necessary for fuel separation in liquid metal-molten salt solvents.
Chapter 10: Management recommendations
Deborah M. Finch; Janie Agyagos; Tracy McCarthey; Robert M. Marshall; Scott H. Stoleson; Mary J. Whitfield
2000-01-01
This chapter was developed over a series of meetings using a group-consensus process. Our recommendations are based on published results, on information compiled in the previous chapters, on expert opinion, and on unpublished data of conservation team members. This chapter is available as temporary guidance until the Recovery Plan for the southwestern willow flycatcher...
PROCESS FOR RECOVERY OF CONSTITUENTS OF ORES
McCullough, R.F.
1959-05-01
A process for U recovery from leached zone material is described. Calcination with alkali metal carbonate at 600 to 2000 deg F followed by digestion with H/sub 2/SO/sub 4/ and filtration forms the basis of the process. (T.R.H.)
Recycle technology for recovering resources and products from waste printed circuit boards.
Li, Jia; Lu, Hongzhou; Guo, Jie; Xu, Zhenming; Zhou, Yaohe
2007-03-15
The printed circuit board (PCB) contains nearly 28% metals that are abundant non-ferrous metals such as Cu, Al, Sn, etc. The purity of precious metals in PCBs is more than 10 times higher than that of rich-content minerals. Therefore, recycling of PCBs is an important subject not only from the treatment of waste but also from the recovery of valuable materials. Chemical and mechanical methods are two traditional recycling processes for waste PCBs. However, the prospect of chemical methods will be limited since the emission of toxic liquid or gas brings secondary pollution to the environment during the process. Mechanical processes, such as shape separation, jigging, density-based separation, and electrostatic separation have been widely utilized in the recycling industry. But, recycling of waste PCBs is only beginning. In this study, a total of 400 kg of waste PCBs was processed by a recycle technology without negative impact to the environment. The technology contained mechanical two-step crushing, corona electrostatic separating, and recovery. The results indicated that (i) two-step crushing was an effect process to strip metals from base plates completely; (ii) the size of particles between 0.6 and 1.2 mm was suitable for corona electrostatic separating during industrial application; and (iii) the nonmetal of waste PCBs attained 80% weight of a kind of nonmetallic plate that expanded the applying prospect of waste nonmetallic materials.
2005-06-17
conventional military superiority of the U.S. presents significant operational challenges. Recovery forces are vulnerable conducting personnel recovery... forced to evade. In this strategic context, the military’s decision-making process with regard to personnel recovery is completely rational. 15...superiority of the U.S. presents significant operational challenges. Recovery forces are vulnerable conducting personnel recovery because the situation
He, Li-Po; Sun, Shu-Ying; Song, Xing-Fu; Yu, Jian-Guo
2017-06-01
In view of the importance of environmental protection and resource recovery, recycling of spent lithium-ion batteries (LIBs) and electrode scraps generated during manufacturing processes is quite necessary. An environmentally sound leaching process for the recovery of Li, Ni, Co, and Mn from spent LiNi 1/3 Co 1/3 Mn 1/3 O 2 -based LIBs and cathode scraps was investigated in this study. Eh-pH diagrams were used to determine suitable leaching conditions. Operating variables affecting the leaching efficiencies for Li, Ni, Co, and Mn from LiNi 1/3 Co 1/3 Mn 1/3 O 2 , such as the H 2 SO 4 concentration, temperature, H 2 O 2 concentration, stirring speed, and pulp density, were investigated to determine the most efficient conditions for leaching. The leaching efficiencies for Li, Ni, Co, and Mn reached 99.7% under the optimized conditions of 1M H 2 SO 4 , 1vol% H 2 O 2 , 400rpm stirring speed, 40g/L pulp density, and 60min leaching time at 40°C. The leaching kinetics of LiNi 1/3 Co 1/3 Mn 1/3 O 2 were found to be significantly faster than those of LiCoO 2 . Based on the variation in the weight fraction of the metal in the residue, the "cubic rate law" was revised as follows: θ(1-f) 1/3 =(1-kt/r 0 ρ), which could characterize the leaching kinetics optimally. The activation energies were determined to be 64.98, 65.16, 66.12, and 66.04kJ/mol for Li, Ni, Co, and Mn, respectively, indicating that the leaching process was controlled by the rate of surface chemical reactions. Finally, a simple process was proposed for the recovery of valuable metals from spent LiNi 1/3 Co 1/3 Mn 1/3 O 2 -based LIBs and cathode scraps. Copyright © 2017 Elsevier Ltd. All rights reserved.
Craddock, Hillary A; Walsh, Lauren; Strauss-Riggs, Kandra; Schor, Kenneth
2016-08-01
Hurricanes Sandy and Irene damaged and destroyed homes, businesses, and infrastructure, and recovery after these storms took years. The goal of this article was to learn from the lived experience of local-level decision-makers actively involved in the long-term disaster recovery process after Hurricanes Irene and Sandy. Respondents provided professional recommendations, based on their experience, to assist other organizations in preparing for, responding to, and recovering from disasters. Semi-structured interviews were conducted with professionals actively involved in recovery from Hurricane Irene or Hurricane Sandy in 5 different communities. Transcripts were qualitatively analyzed. Respondents' advice fell into 5 main categories: planning and evaluation, education and training, fundraising and donations management, building relationships, and disaster behavioral health. The lived experience of those in disaster recovery can provide guidance for planning, education, and training both within and outside their communities in order to better respond to and recover from future disasters. These data help to facilitate a community of practice by compiling and sharing the lived experience of leaders who experienced large-scale disasters, and the outcomes of this analysis help to show what areas of planning require special attention in the phases of preparedness, response, and recovery. (Disaster Med Public Health Preparedness. 2016;10:623-630).
A strategy for prioritizing threats and recovery actions for at-risk species.
Darst, Catherine R; Murphy, Philip J; Strout, Nathan W; Campbell, Steven P; Field, Kimberleigh J; Allison, Linda; Averill-Murray, Roy C
2013-03-01
Ensuring the persistence of at-risk species depends on implementing conservation actions that ameliorate threats. We developed and implemented a method to quantify the relative importance of threats and to prioritize recovery actions based on their potential to affect risk to Mojave desert tortoises (Gopherus agassizii). We used assessments of threat importance and elasticities of demographic rates from population matrix models to estimate the relative contributions of threats to overall increase in risk to the population. We found that urbanization, human access, military operations, disease, and illegal use of off highway vehicles are the most serious threats to the desert tortoise range-wide. These results suggest that, overall, recovery actions that decrease habitat loss, predation, and crushing will be most effective for recovery; specifically, we found that habitat restoration, topic-specific environmental education, and land acquisition are most likely to result in the greatest decrease in risk to the desert tortoise across its range. In addition, we have developed an application that manages the conceptual model and all supporting information and calculates threat severity and potential effectiveness of recovery actions. Our analytical approach provides an objective process for quantifying threats, prioritizing recovery actions, and developing monitoring metrics for those actions for adaptive management of any at-risk species.
NASA Astrophysics Data System (ADS)
Ji, Yunguang; Xu, Yangyang; Li, Hongtao; Oklejas, Michael; Xue, Shuqi
2018-01-01
A new type of hydraulic turbocharger energy recovery system was designed and applied in the decarbonisation process by propylene carbonate of a 100k tons ammonia synthesis system firstly in China. Compared with existing energy recovery devices, hydraulic turbocharger energy recovery system runs more smoothly, has lower failure rate, longer service life and greater comprehensive benefits due to its unique structure, simpler adjustment process and better adaptability to fluid fluctuation.
Specification of Fenix MPI Fault Tolerance library version 1.0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Marc; Van Der Wijngaart, Rob; Teranishi, Keita
This document provides a specification of Fenix, a software library compatible with the Message Passing Interface (MPI) to support fault recovery without application shutdown. The library consists of two modules. The first, termed process recovery , restores an application to a consistent state after it has suffered a loss of one or more MPI processes (ranks). The second specifies functions the user can invoke to store application data in Fenix managed redundant storage, and to retrieve it from that storage after process recovery.
Natural history of idiopathic abducens nerve paresis in a young adult.
Hussaindeen, Jameel Rizwana; Mani, Revathy; Rakshit, Archayeeta; Ramasubramanian, Srikanth; Vittal Praveen, Smitha
2016-01-01
The natural history of idiopathic abducens nerve paresis and the role of conservative management such as vision training during the recovery process is not well documented in the literature to the best of our knowledge. This case report presents the natural recovery process of idiopathic abducens nerve paresis in a young adult and the role of vision therapy in the recovery process. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain
An electrophilic acid gas-reactive fracturing fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. The proppant stabilizes fracture openings in the bedrock to enhance recovery of energy-producing materials.
Golmohammadzadeh, Rabeeh; Rashchi, Fereshteh; Vahidi, Ehsan
2017-06-01
An environmentally-friendly route based on hydrometallurgy was investigated for the recovery of cobalt and lithium from spent lithium ion batteries (LIBs) using different organic acids (citric acid, Dl-malic acid, oxalic acid and acetic acid). In this investigation, response surface methodology (RSM) was utilized to optimize leaching parameters including solid to liquid ratio (S/L), temperature, acid concentration, type of organic acid and hydrogen peroxide concentration. Based on the results obtained from optimizing procedure, temperature was recognized as the most influential parameter. In addition, while 81% of cobalt was recovered, the maximum lithium recovery of 92% was achieved at the optimum leaching condition of 60°C, S/L: 30gL -1 , citric acid concentration: 2M, hydrogen peroxide concentration: 1.25Vol.% and leaching time: 2h. Furthermore, results displayed that ultrasonic agitation will enhance the recovery of lithium and cobalt. It was found that the kinetics of cobalt leaching is controlled by surface chemical reaction at temperatures lower than 45°C. However, diffusion through the product layer at temperatures higher than 45°C controls the rate of cobalt leaching. Rate of lithium reaction is controlled by diffusion through the product layer at all the temperatures studied. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cell-wall recovery after irreversible deformation of wood
NASA Astrophysics Data System (ADS)
Keckes, Jozef; Burgert, Ingo; Frühmann, Klaus; Müller, Martin; Kölln, Klaas; Hamilton, Myles; Burghammer, Manfred; Roth, Stephan V.; Stanzl-Tschegg, Stefanie; Fratzl, Peter
2003-12-01
The remarkable mechanical properties of biological materials reside in their complex hierarchical architecture and in specific molecular mechanistic phenomena. The fundamental importance of molecular interactions and bond recovery has been suggested by studies on deformation and fracture of bone and nacre. Like these mineral-based materials, wood also represents a complex nanocomposite with excellent mechanical performance, despite the fact that it is mainly based on polymers. In wood, however, the mechanistic contribution of processes in the cell wall is not fully understood. Here we have combined tensile tests on individual wood cells and on wood foils with simultaneous synchrotron X-ray diffraction analysis in order to separate deformation mechanisms inside the cell wall from those mediated by cell-cell interactions. We show that tensile deformation beyond the yield point does not deteriorate the stiffness of either individual cells or foils. This indicates that there is a dominant recovery mechanism that re-forms the amorphous matrix between the cellulose microfibrils within the cell wall, maintaining its mechanical properties. This stick-slip mechanism, rather like Velcro operating at the nanometre level, provides a 'plastic response' similar to that effected by moving dislocations in metals. We suggest that the molecular recovery mechanism in the cell matrix is a universal phenomenon dominating the tensile deformation of different wood tissue types.
Kumagai, Shogo; Grause, Guido; Kameda, Tomohito; Yoshioka, Toshiaki
2014-03-18
The possibility of simultaneous recovery of benzene and metals from the hydrolysis of poly(ethylene terephthalate) (PET)-based materials such as X-ray films, magnetic tape, and prepaid cards under a steam atmosphere at a temperature of 450 °C was evaluated. The hydrolysis resulted in metal-containing carbonaceous residue and volatile terephthalic acid (TPA). The effects of metals and additives on the recovery process were also investigated. All metals were quantitatively recovered, and silver, maghemite (γ-Fe2O3), and anatase (TiO2) were recovered without any changes in their crystal structures or compositions. In a second step, TPA was decarboxylized in the presence of calcium oxide (CaO) at 700 °C, producing benzene with an average yield of 34% and purity of 76%. Maghemite (γ-Fe2O3) incorporated in magnetic tape and prepaid cards could decarboxylate TPA. Aluminum present in the prepaid cards produced hydrogen by the reaction with steam. However, the presence of metals had no adverse influence on the recovery of benzene-rich oil in the presence of CaO. Therefore, this method can be applied to PET-based materials containing inorganic substances, which cannot be recycled effectively otherwise.
Sun, Min; Song, Wei; Zhai, Lin-Feng; Cui, Yu-Zhi
2013-12-15
The chelated-iron process is among the most promising techniques for the hydrogen sulfide (H2S) removal due to its double advantage of waste minimization and resource recovery. However, this technology has encountered the problem of chelate degradation which made it difficult to ensure reliable and economical operation. This work aims to develop a novel fuel-cell-assisted chelated-iron process which employs an air-cathode fuel cell for the catalyst regeneration. By using such a process, sulfur and electricity were effectively recovered from H2S and the problem of chelate degradation was well controlled. Experiment on a synthetic sulfide solution showed the fuel-cell-assisted chelated-iron process could maintain high sulfur recovery efficiencies generally above 90.0%. The EDTA was preferable to NTA as the chelating agent for electricity generation, given the Coulombic efficiencies (CEs) of 17.8 ± 0.5% to 75.1 ± 0.5% for the EDTA-chelated process versus 9.6 ± 0.8% to 51.1 ± 2.7% for the NTA-chelated process in the pH range of 4.0-10.0. The Fe (III)/S(2-) ratio exhibited notable influence on the electricity generation, with the CEs improved by more than 25% as the Fe (III)/S(2-) molar ratio increased from 2.5:1 to 3.5:1. Application of this novel process in treating a H2S-containing biogas stream achieved 99% of H2S removal efficiency, 78% of sulfur recovery efficiency, and 78.6% of energy recovery efficiency, suggesting the fuel-cell-assisted chelated-iron process was effective to remove the H2S from gas streams with favorable sulfur and energy recovery efficiencies. Copyright © 2013 Elsevier B.V. All rights reserved.
Translational MR Neuroimaging of Stroke and Recovery
Mandeville, Emiri T.; Ayata, Cenk; Zheng, Yi; Mandeville, Joseph B.
2016-01-01
Multiparametric magnetic resonance imaging (MRI) has become a critical clinical tool for diagnosing focal ischemic stroke severity, staging treatment, and predicting outcome. Imaging during the acute phase focuses on tissue viability in the stroke vicinity, while imaging during recovery requires the evaluation of distributed structural and functional connectivity. Preclinical MRI of experimental stroke models provides validation of non-invasive biomarkers in terms of cellular and molecular mechanisms, while also providing a translational platform for evaluation of prospective therapies. This brief review of translational stroke imaging discusses the acute to chronic imaging transition, the principles underlying common MRI methods employed in stroke research, and experimental results obtained by clinical and preclinical imaging to determine tissue viability, vascular remodeling, structural connectivity of major white matter tracts, and functional connectivity using task-based and resting-state fMRI during the stroke recovery process. PMID:27578048
Recovery from schizophrenia and the recovery model.
Warner, Richard
2009-07-01
The recovery model refers to subjective experiences of optimism, empowerment and interpersonal support, and to a focus on collaborative treatment approaches, finding productive roles for user/consumers, peer support and reducing stigma. The model is influencing service development around the world. This review will assess whether optimism about outcome from serious mental illness and other tenets of the recovery model are borne out by recent research. Remission of symptoms has been precisely defined, but the definition of 'recovery' is a more diffuse concept that includes such factors as being productive and functioning independently. Recent research and a large, earlier body of data suggest that optimism about outcome from schizophrenia is justified. A substantial proportion of people with the illness will recover completely and many more will regain good social functioning. Outcome is better for people in the developing world. Mortality for people with schizophrenia is increasing but is lower in the developing world. Working appears to help people recover from schizophrenia, and recent advances in vocational rehabilitation have been shown to be effective in countries with differing economies and labor markets. A growing body of research supports the concept that empowerment is an important component of the recovery process. Key tenets of the recovery model - optimism about recovery from schizophrenia, the importance of access to employment and the value of empowerment of user/consumers in the recovery process - are supported by the scientific research. Attempts to reduce the internalized stigma of mental illness should enhance the recovery process.
Grealish, Annmarie; Tai, Sara; Hunter, Andrew; Emsley, Richard; Murrells, Trevor; Morrison, Anthony P
2017-09-01
There is consensus that empowerment is key to recovery from mental health problems, enabling a person to take charge of their life and make informed choices and decisions about their life. However, little is known about the mechanisms through which empowerment affects mental health in young people. The current study involved young people aged 16-29 years and examined empowerment as a potential mediator of the relationship between psychological factors (psychosocial, cognition, coping, and control) and mental health, well-being, and recovery from personal problems. A cross-sectional, Internet-based questionnaire study recruited 423 young people aged between 16 and 29 attending universities in England (n = 336) and Ireland (n = 87). Psychological factors, mental well-being, empowerment, and recovery from personal problems were measured using self-report measures. Mediation analysis in both the single and one over-arching mediator models revealed that empowerment mediates the relationship between psychological factors (psychosocial, self-efficacy, thinking style, coping, and control) and mental health, well-being, and recovery from general life problems. This study demonstrates the importance of empowerment, showing that it mediates the relationship between psychological processes and mental health, well-being, and recovery in young people. Clinical implications for working with young people within mental health services, and facilitating their empowerment are discussed. Empowerment is currently a poorly defined concept. This study demonstrates how empowerment mediates the relationship between psychological processes and mental health, well-being, and recovery in young people. Clinicians working with young people might benefit from a structured means of understanding and assessing the different ways in which individuals manage their thinking styles. Empowerment in young people is influenced by the manner in which clinicians facilitate them in establishing social networks in support of employment, education, family/social relations and to encourage young people to take an assertive role in their own care. © 2016 The British Psychological Society.
Bruggeman, Douglas J; Wiegand, Thorsten; Fernández, Néstor
2010-09-01
The relative influence of habitat loss, fragmentation and matrix heterogeneity on the viability of populations is a critical area of conservation research that remains unresolved. Using simulation modelling, we provide an analysis of the influence both patch size and patch isolation have on abundance, effective population size (N(e)) and F(ST). An individual-based, spatially explicit population model based on 15 years of field work on the red-cockaded woodpecker (Picoides borealis) was applied to different landscape configurations. The variation in landscape patterns was summarized using spatial statistics based on O-ring statistics. By regressing demographic and genetics attributes that emerged across the landscape treatments against proportion of total habitat and O-ring statistics, we show that O-ring statistics provide an explicit link between population processes, habitat area, and critical thresholds of fragmentation that affect those processes. Spatial distances among land cover classes that affect biological processes translated into critical scales at which the measures of landscape structure correlated best with genetic indices. Therefore our study infers pattern from process, which contrasts with past studies of landscape genetics. We found that population genetic structure was more strongly affected by fragmentation than population size, which suggests that examining only population size may limit recognition of fragmentation effects that erode genetic variation. If effective population size is used to set recovery goals for endangered species, then habitat fragmentation effects may be sufficiently strong to prevent evaluation of recovery based on the ratio of census:effective population size alone.
Optimal utilization of waste-to-energy in an LCA perspective.
Fruergaard, T; Astrup, T
2011-03-01
Energy production from two types of municipal solid waste was evaluated using life cycle assessment (LCA): (1) mixed high calorific waste suitable for production of solid recovered fuels (SRF) and (2) source separated organic waste. For SRF, co-combustion was compared with mass burn incineration. For organic waste, anaerobic digestion (AD) was compared with mass burn incineration. In the case of mass burn incineration, incineration with and without energy recovery was modelled. Biogas produced from anaerobic digestion was evaluated for use both as transportation fuel and for heat and power production. All relevant consequences for energy and resource consumptions, emissions to air, water and soil, upstream processes and downstream processes were included in the LCA. Energy substitutions were considered with respect to two different energy systems: a present-day Danish system based on fossil fuels and a potential future system based on 100% renewable energy. It was found that mass burn incineration of SRF with energy recovery provided savings in all impact categories, but co-combustion was better with respect to Global Warming (GW). If all heat from incineration could be utilized, however, the two alternatives were comparable for SRF. For organic waste, mass burn incineration with energy recovery was preferable over anaerobic digestion in most impact categories. Waste composition and flue gas cleaning at co-combustion plants were critical for the environmental performance of SRF treatment, while the impacts related to utilization of the digestate were significant for the outcome of organic waste treatment. The conclusions were robust in a present-day as well as in a future energy system. This indicated that mass burn incineration with efficient energy recovery is a very environmentally competitive solution overall. Copyright © 2010 Elsevier Ltd. All rights reserved.
Brifault, Coralie; Gras, Marjorie; Liot, Donovan; May, Victor; Vaudry, David; Wurtz, Olivier
2015-02-01
Until now, except thrombolysis, the therapeutical strategies targeting the acute phase of cerebral ischemia have been proven ineffective, and no approach is available to attenuate the delayed cell death mechanisms and the resulting functional deficits in the late phase. Then, we investigated whether a targeted and delayed delivery of pituitary adenylate cyclase-activating polypeptide (PACAP), a peptide known to exert neuroprotective activities, may dampen delayed pathophysiological processes improving functional recovery. Three days after permanent focal ischemia, PACAP-producing stem cells were transplanted intracerebro ventricularly in nonimmunosuppressed mice. At 7 and 14 days post ischemia, the effects of this stem cell-based targeted delivery of PACAP on functional recovery, volume lesions, and inflammatory processes were analyzed. The delivery of PACAP in the vicinity of the infarct zone 3 days post stroke promotes fast, stable, and efficient functional recovery. This was correlated with a modulation of the postischemic inflammatory response. Transcriptomic and Ingenuity Pathway Analysis-based bioinformatic analyses identified several gene networks, functions, and key transcriptional factors, such as nuclear factor-κB, C/EBP-β, and Notch/RBP-J as PACAP's potential targets. Such PACAP-dependent immunomodulation was further confirmed by morphometric and phenotypic analyses of microglial cells showing increased number of Arginase-1(+) cells in mice treated with PACAP-expressing cells specifically, demonstrating the redirection of the microglial response toward a neuroprotective M2 phenotype. Our results demonstrated that immunomodulatory strategies capable of redirecting the microglial response toward a neuroprotective M2 phenotype in the late phase of brain ischemia could represent attractive options for stroke treatment in a new and unexploited therapeutical window. © 2014 American Heart Association, Inc.
Closed circuit recovery of copper, lead and iron from electronic waste with citrate solutions.
Torres, Robinson; Lapidus, Gretchen T
2017-02-01
An integral closed circuit hydrometallurgical process is presented for base metal recovery from electronic waste. The leaching medium consists of a sodium citrate solution, from which base metals are retrieved by direct electrowinning, and the barren solution is recycled back to the leaching stage. This leaching-electrowinning cycle was repeated four times. The redox properties of the fresh citrate solution, as well as the leach liquors, were characterized by cyclic voltammetry to determine adequate conditions for metal reduction, as well as to limit citrate degradation. The leaching efficiency of electronic waste, employing the same solution after four complete cycles was 71, 83 and 94% for copper, iron and lead, respectively, compared to the original leach with fresh citrate solution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Identifying Model-Based Reconfiguration Goals through Functional Deficiencies
NASA Technical Reports Server (NTRS)
Benazera, Emmanuel; Trave-Massuyes, Louise
2004-01-01
Model-based diagnosis is now advanced to the point autonomous systems face some uncertain and faulty situations with success. The next step toward more autonomy is to have the system recovering itself after faults occur, a process known as model-based reconfiguration. After faults occur, given a prediction of the nominal behavior of the system and the result of the diagnosis operation, this paper details how to automatically determine the functional deficiencies of the system. These deficiencies are characterized in the case of uncertain state estimates. A methodology is then presented to determine the reconfiguration goals based on the deficiencies. Finally, a recovery process interleaves planning and model predictive control to restore the functionalities in prioritized order.
NASA Astrophysics Data System (ADS)
Saito, K.; Brown, D.; Spence, R.; Chenvidyakarn, T.; Adams, B.; Bevington, J.; Platt, S.; Chuenpagdee, R.; Juntarashote, K.; Khan, A.
2009-04-01
The use of high-resolution optical satellite images is being investigated for evaluating and monitoring recovery after natural disasters. Funded by EPSRC, UK, the aim of the RECOVERY project is to develop indicators of recovery that can exploit the wealth of data now available, including those from satellite imagery, internet-based statistics and advanced field survey techniques. The final output will be a set of guidelines that suggests how remote sensing can be used to help monitor and evaluate the recovery process after natural disasters. The final guideline that will be produced at the end of the two year project, which started in February 2008, will be freely available to aid agencies and anyone that is interested. Currently there is no agreed standard approach for evaluating the effectiveness of recovery aid, although international frameworks such as PDNA (Post-Disaster Needs Assessment, United Nations Development Program, European Commission and World Bank) is currently being developed, and TRIAMS (Tsunami Recovery and Impact Assessment and Monitoring System, by UNDP and WHO) is being implemented to monitor the recovery from the Indian Ocean Tsunami. The RECOVERY project consists of three phases. Phase 1 was completed by September 2008 and focused on user needs survey, developing the recovery indicators and satellite image data identification/acquisition. The user needs survey was conducted to identify whether there were any indicators that the aid community would like to see prioritised. The survey result suggested that most indicators are equally important. Based on this result and also referring to the TRIAMS framework, a comprehensive list of indicators were developed which belong to six large categories, i.e. housing, infrastructure, services, livelihood, environment, social/security, risk reduction. For the RECOVERY project, two case study sites have been identified, i.e. the village of Baan Nam Khem on the west coast of Thailand, which was heavily damaged by the 2004 Indian Ocean Tsunami, and the city of Muzaffarabad, Pakistan, which was hit by the October 2005 Kashmir earthquake. For both sites, high-resolution optical satellite images from the following time periods have been acquired: for Baan Nam Khem, pre-event (-30 months), 1 week after, 4 months after, 7 months after, 13 months after, 23 months after and 38 months after; for Muzaffarabad, pre-event (-14 months), 14 days after, 8 months after and . The potential indicators cover all aspects of recovery. However not all of them can be monitored and evaluated using remote sensing. A set of indicators that can be monitored using remote sensing has been identified, and the images are currently being analysed for these indicators. In early February 2009, a field trip to Baan Nam Khem will take place to verify the findings of the image analysis. A narrative of the change that is observed in the images will be presented to the local community, and feedback will be sought to see how accurate the narrative produced by the image analysis is, and also to identify the issues that cannot be monitored using images. Interviews will be carried out with aid agencies that have been working in Baan Nam Khem, as well as household surveys to capture the recovery process. Preliminary results from the field trip to Thailand will be presented.
2012-01-01
Background Many methods for the genetic analysis of mastitis use a cross-sectional approach, which omits information on, e.g., repeated mastitis cases during lactation, somatic cell count fluctuations, and recovery process. Acknowledging the dynamic behavior of mastitis during lactation and taking into account that there is more than one binary response variable to consider, can enhance the genetic evaluation of mastitis. Methods Genetic evaluation of mastitis was carried out by modeling the dynamic nature of somatic cell count (SCC) within the lactation. The SCC patterns were captured by modeling transition probabilities between assumed states of mastitis and non-mastitis. A widely dispersed SCC pattern generates high transition probabilities between states and vice versa. This method can model transitions to and from states of infection simultaneously, i.e. both the mastitis liability and the recovery process are considered. A multilevel discrete time survival model was applied to estimate breeding values on simulated data with different dataset sizes, mastitis frequencies, and genetic correlations. Results Correlations between estimated and simulated breeding values showed that the estimated accuracies for mastitis liability were similar to those from previously tested methods that used data of confirmed mastitis cases, while our results were based on SCC as an indicator of mastitis. In addition, unlike the other methods, our method also generates breeding values for the recovery process. Conclusions The developed method provides an effective tool for the genetic evaluation of mastitis when considering the whole disease course and will contribute to improving the genetic evaluation of udder health. PMID:22475575
Shashvatt, Utsav; Benoit, Josh; Aris, Hannah; Blaney, Lee
2018-06-18
Phosphorus recovery from industrialized poultry operations is necessary to ensure sustainable waste management and resource consumption. To realize these goals, an innovative, two-stage process chemistry has been developed to extract nutrients from poultry litter and recover value-added products. Over 75% phosphorus extraction was achieved by bubbling carbon dioxide into poultry litter slurries and adding strong acid to reach pH 4.5-5.5. After separating the nutrient-deficient poultry litter solids and the nutrient-rich liquid, the extract pH was increased through aeration and strong base addition. Over 95% of the extracted phosphorus was recovered as solid precipitate at pH 8.5-9.0. High-purity struvite and potassium struvite products were selectively recovered through pH control, introduction of a calcium-complexing agent, and addition of magnesium chloride. The nitrogen-to-phosphorus-to-potassium (NPK) ratio of the recovered solids was controlled through aeration and pH adjustment. Precipitation at pH 8.5-9.0 and 10.5-11.0 resulted in NPK ratios of 2.0:1.0:0.1 and 0.9:1.0:0.2, respectively. The process effluent was effectively recycled as makeup water for the subsequent batch of poultry litter, thereby decreasing water consumption and increasing overall nutrient recovery. Sequencing batch operation yielded greater than 70% phosphorus recovery within a 45-min process, demonstrating the potential for this technology to alleviate nutrient pollution in agricultural settings and generate an alternative supply of phosphorus fertilizers. Copyright © 2018. Published by Elsevier Ltd.
Head, Brian P.; Olaitan, Abiola O.; Aballay, Alejandro
2017-01-01
ABSTRACT Infectious diseases caused by bacterial pathogens reduce the fitness of their associated host but are generally limited in duration. In order for the diseased host to regain any lost fitness upon recovery, a variety of molecular, cellular, and physiological processes must be employed. To better understand mechanisms underlying the recovery process, we have modeled an acute Pseudomonas aeruginosa infection in C. elegans using brief exposures to this pathogen and subsequent antibiotic treatment. To identify host genes altered during recovery from P. aeruginosa infection, we performed whole genome expression profiling. The analysis of this dataset indicated that the activity of the host immune system is down-regulated upon recovery and revealed shared and pathogen-specific host responses during recovery. We determined that the GATA transcription factor ELT-2 and the p38 MAP kinase PMK-1 are necessary for animals to successfully recover from an acute P. aeruginosa infection. In addition, we found that ELT-2 plays a more prominent and earlier role than PMK-1 during recovery. Our data sheds further light on the molecular mechanisms and transcriptional programs involved in recovery from an acute bacterial infection, which provides a better understanding of the entire infectious disease process. PMID:27600703
Flow behavior of N2 huff and puff process for enhanced oil recovery in tight oil reservoirs.
Lu, Teng; Li, Zhaomin; Li, Jian; Hou, Dawei; Zhang, Dingyong
2017-11-16
In the present work, the potential of N 2 huff and puff process to enhance the recovery of tight oil reservoir was evaluated. N 2 huff and puff experiments were performed in micromodels and cores to investigate the flow behaviors of different cycles. The results showed that, in the first cycle, N 2 was dispersed in the oil, forming the foamy oil flow. In the second cycle, the dispersed gas bubbles gradually coalesced into the continuous gas phase. In the third cycle, N 2 was produced in the form of continuous gas phase. The results from the coreflood tests showed that, the primary recovery was only 5.32%, while the recoveries for the three N 2 huff and puff cycles were 15.1%, 8.53% and 3.22%, respectively.The recovery and the pressure gradient in the first cycle were high. With the increase of huff and puff cycles, and the oil recovery and the pressure gradient rapidly decreased. The oil recovery of N 2 huff and puff has been found to increase as the N 2 injection pressure and the soaking time increased. These results showed that, the properly designed and controlled N 2 huff and puff process can lead to enhanced recovery of tight oil reservoirs.
NASA Technical Reports Server (NTRS)
Harper, Richard
1989-01-01
In a fault-tolerant parallel computer, a functional programming model can facilitate distributed checkpointing, error recovery, load balancing, and graceful degradation. Such a model has been implemented on the Draper Fault-Tolerant Parallel Processor (FTPP). When used in conjunction with the FTPP's fault detection and masking capabilities, this implementation results in a graceful degradation of system performance after faults. Three graceful degradation algorithms have been implemented and are presented. A user interface has been implemented which requires minimal cognitive overhead by the application programmer, masking such complexities as the system's redundancy, distributed nature, variable complement of processing resources, load balancing, fault occurrence and recovery. This user interface is described and its use demonstrated. The applicability of the functional programming style to the Activation Framework, a paradigm for intelligent systems, is then briefly described.
40 CFR 430.35 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
...-chemical (cross recovery) process and/or a combined unbleached kraft and semi-chemical process, wherein the spent semi-chemical cooking liquor is burned within the unbleached kraft chemical recovery system...
Engineering development of selective agglomeration: Task 5, Bench- scale process testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-09-01
Under the overall objectives of DOE Contract ``Engineering Development of Selective Agglomeration,`` there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.
Engineering development of selective agglomeration: Task 5, Bench- scale process testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-09-01
Under the overall objectives of DOE Contract Engineering Development of Selective Agglomeration,'' there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.
Post-fire vegetation recovery in Portugal based on spot/vegetation data
NASA Astrophysics Data System (ADS)
Gouveia, C.; Dacamara, C. C.; Trigo, R. M.
2010-04-01
A procedure is presented that allows identifying large burned scars and the monitoring of vegetation recovery in the years following major fire episodes. The procedure relies on 10-day fields of Maximum Value Composites of Normalized Difference Vegetation Index (MVC-NDVI), with a 1 km×1 km spatial resolution obtained from the VEGETATION instrument. The identification of fire scars during the extremely severe 2003 fire season is performed based on cluster analysis of NDVI anomalies that persist during the vegetative cycle of the year following the fire event. Two regions containing very large burned scars were selected, located in Central and Southwestern Portugal, respectively, and time series of MVC-NDVI analysed before the fire events took place and throughout the post-fire period. It is shown that post-fire vegetation dynamics in the two selected regions may be characterised based on maps of recovery rates as estimated by fitting a monoparametric model of vegetation recovery to MVC-NDVI data over each burned scar. Results indicated that the recovery process in the region located in Central Portugal is mostly related to fire damage rather than to vegetation density before 2003, whereas the latter seems to have a more prominent role than vegetation conditions after the fire episode, e.g. in the case of the region in Southwestern Portugal. These differences are consistent with the respective predominant types of vegetation. The burned area located in Central Portugal is dominated by Pinus Pinaster whose natural regeneration crucially depends on the destruction of seeds present on the soil surface during the fire, whereas the burned scar in Southwestern Portugal was populated by Eucalyptus that may quickly re-sprout from buds after fire. Besides its simplicity, the monoparametric model of vegetation recovery has the advantage of being easily adapted to other low-resolution satellite data, as well as to other types of vegetation indices.
Pulsed corona generation using a diode-based pulsed power generator
NASA Astrophysics Data System (ADS)
Pemen, A. J. M.; Grekhov, I. V.; van Heesch, E. J. M.; Yan, K.; Nair, S. A.; Korotkov, S. V.
2003-10-01
Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and repetitive high-voltage pulsed power technology. Heavy-duty opening switches are the most critical components in high-voltage pulsed power systems with inductive energy storage. At the Ioffe Institute, an unconventional switching mechanism has been found, based on the fast recovery process in a diode. This article discusses the application of such a "drift-step-recovery-diode" for pulsed corona plasma generation. The principle of the diode-based nanosecond high-voltage generator will be discussed. The generator will be coupled to a corona reactor via a transmission-line transformer. The advantages of this concept, such as easy voltage transformation, load matching, switch protection and easy coupling with a dc bias voltage, will be discussed. The developed circuit is tested at both a resistive load and various corona reactors. Methods to optimize the energy transfer to a corona reactor have been evaluated. The impedance matching between the pulse generator and corona reactor can be significantly improved by using a dc bias voltage. At good matching, the corona energy increases and less energy reflects back to the generator. Matching can also be slightly improved by increasing the temperature in the corona reactor. More effective is to reduce the reactor pressure.