Science.gov

Sample records for rectangular chamber study

  1. Turbulent particle deposition in a rectangular chamber: Study of the effect of particle size and ventilation regimes

    SciTech Connect

    Nomura, Yoshio

    1996-04-01

    The interaction of aerosol particles with wall surfaces is important in modeling their behavior. This interaction is usually represented in theoretical models as a loss term. The loss rate is the rate at which particles deposit or react with the surfaces. This loss term is important in many branches of aerosol science including human health and indoor air quality. Increased surface deposition usually means lower concentrations of airborne particles and hence, lower exposure to the inhabitants. If the efficiency of the particle deposition is influenced by factors other than the particle size, such as a natural convection of the air, this has to be taken into account to evaluate the results. In this research, test aerosol sized from 15 nm to 3 {micro}m are produced by several different aerosol generators; the gas burner, the Collison nebulizer, the condensation aerosol generator, the orifice atomizer and the Vibrating Orifice Aerosol Generator (VOAG). A rectangular chamber whose dimensions are 75 x 75 x 180 cm{sup 3} was used in this study. The particles were injected into the chamber, with a known ventilation and the concentration decay was monitored by the Ultrafine Condensation Particle Counter (UCPC) and Optical Particle Counter (OPC). During the measurement, the air inside the chamber is moved by natural convection and ventilation effect. The results shows that the particle loss rate under the higher air exchange rate is larger and this is not only due to air exchange itself but also the wall deposition. The theoretical model presented by Benes and Holub (1996) agree with the experimental data better than the Crump and Seinfield (1981) model with the hypothesis of Plandtl`s mixing length. 118 refs.

  2. Efficient computation of coherent synchrotron radiation in a rectangular chamber

    NASA Astrophysics Data System (ADS)

    Warnock, Robert L.; Bizzozero, David A.

    2016-09-01

    We study coherent synchrotron radiation (CSR) in a perfectly conducting vacuum chamber of rectangular cross section, in a formalism allowing an arbitrary sequence of bends and straight sections. We apply the paraxial method in the frequency domain, with a Fourier development in the vertical coordinate but with no other mode expansions. A line charge source is handled numerically by a new method that rids the equations of singularities through a change of dependent variable. The resulting algorithm is fast compared to earlier methods, works for short bunches with complicated structure, and yields all six field components at any space-time point. As an example we compute the tangential magnetic field at the walls. From that one can make a perturbative treatment of the Poynting flux to estimate the energy deposited in resistive walls. The calculation was motivated by a design issue for LCLS-II, the question of how much wall heating from CSR occurs in the last bend of a bunch compressor and the following straight section. Working with a realistic longitudinal bunch form of r.m.s. length 10.4 μ m and a charge of 100 pC we conclude that the radiated power is quite small (28 W at a 1 MHz repetition rate), and all radiated energy is absorbed in the walls within 7 m along the straight section.

  3. Rectangular subsonic jet flowfield study

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Tatterson, Gary B.; Swan, David H.

    1987-01-01

    The flowfield of a rectangular jet with 2:1 aspect ratio was studied at an axial Reynolds number of 127,000, using a three-dimensional laser anemometer. The flowfield surveys resulted in mean velocity vector field plots and contour plots of the Reynolds stress tensor components for the major and minor axes. These data contribute substantially to currently available data of jet flowfields.

  4. Theoretical prediction of stationary positions in the rectangular chamber during asymmetric electroosmotic flow

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Most microscopic cell electrophoretic work depends on the theortical prediction of stationary positions by Smoluchowski and Komagata. Their theoretical solutions are based on the assumption that the electroosmotic flow in a chamber is symmetric. Because experiences with the rectangular chamber indicate that symmetric flow occurs during less than 8% of the experiments, the existing theory for stationary position determination is expanded to include the more general case of asymmetric flow. Smoluchowski's equation for symmetric electroosmotic flow in a rectangular chamber having a width much smaller than its height or length is examined. Smoluchowski's approach is used to approximate stationary positions in rectangular chambers with height/width ratios greater than 40. Support for the theoretical prediction of stationary positions using is given by three types of experimental evidence.

  5. CSR IMPEDANCE DUE TO A BEND MAGNET OF FINITE LENGTH WITH A VACUUM CHAMBER OF RECTANGULAR CROSS SECTION

    SciTech Connect

    Stupakov, G.; Kotelnikov, I.A.; /Novosibirsk State U.

    2009-06-05

    We study the impedance due to coherent synchrotron radiation (CSR) generated by a short bunch of charged particles passing through a dipole magnet of finite length in a vacuum chamber of a given cross section. Our method represents a further development of the previous studies: we decompose the electromagnetic field of the beam over the eigenmodes of the toroidal chamber and derive a system of equations for the expansion coefficients in the series. We illustrate our general method by calculating the CSR impedance of a beam moving in a toroidal vacuum chamber of rectangular cross section.

  6. Effects of coating rectangular microscopic electrophoresis chamber with methylcellulose

    NASA Technical Reports Server (NTRS)

    Plank, L. D.

    1985-01-01

    One of the biggest problems in obtaining high accuracy in microscopic electrophoresis is the parabolic flow of liquid in the chamber due to electroosmotic backflow during application of the electric field. In chambers with glass walls the source of polarization leading to electroosmosis is the negative charge of the silicare and other ions that form the wall structure. It was found by Hjerten, who used a rotating 3.0 mm capillary tube for free zone electrophoresis, that precisely neutralizing this charge was extremely difficult, but if a neutral polymer matrix (formaldehyde fixed methylcellulose) was formed over the glass (quartz) wall the double layer was displaced and the viscosity at the shear plane increased so that electroosmotic flow could be eliminated. Experiments were designed to determine the reliability with which methylcellulose coating of the Zeiss Cytopherometer chamber reduced electroosmotic backflow and the effect of coating on the accuracy of cell electrophoretic mobility (EPN) determinations. Fixed rat erythrocytes (RBC) were used as test particles.

  7. Asymmetric electroosmotic flow and mobility measurements at nonstationary positions in the rectangular chamber

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The electrophoretic mobility of a cell in solution is defined by its velocity divided by the electric field strength it experiences. An obvious way to measure the mobility of cells is to apply a constant electric field to a suspension of cells in a glass chamber and clock the velocities of individual cells through a microscope. This microscope method is the classic technique in cell electrophoresis and it has been used for the bulk of research in this field. Two aspects of the microscope method can critically affect the accuracy and consistency of its cell mobility measurements: (1) the electroosmotic fluctuations in the chamber from measurement to measurement; and (2) the number of cells which can be practically measured for statistically meaningful results. A new method of analyzing microelectrophoretic data using a computer program has been developed which addresses both of these aspects. It makes possible the mobility measurements of individual cells as positions throughout the rectangular chamber depth during asymmetric electroosmotic flow.

  8. Equilibrium shape and location of a liquid drop acoustically positioned in a resonant rectangular chamber

    NASA Technical Reports Server (NTRS)

    Jackson, H. W.; Barmatz, M.; Shipley, C.

    1988-01-01

    The effect of a standing wave field in a rectangular chamber on the shape and location of an acoustically positioned drop or bubble is calculated. The sample deformation and equilibrium position are obtained from an analysis of the spherical harmonic projections of the total surface stress tensor. The method of calculation relies on the assumed condition that the sample is only slightly distorted from a spherical form. The equilibrium location of a levitated drop is combined with a formula introduced by Hasegawa (1979) to calcualte the ka dependence of the radiation force function. The present theory is valid for large as well as small ka values. Calculations in the small ka limit agree with previous theories and experimental results. Examples are presented for nonplane-wave modes as well as plane-wave rectangular modes.

  9. Equilibrium shape and location of a liquid drop acoustically positioned in a resonant rectangular chamber

    NASA Astrophysics Data System (ADS)

    Jackson, H. W.; Barmatz, M.; Shipley, C.

    1988-11-01

    The effect of a standing wave field in a rectangular chamber on the shape and location of an acoustically positioned drop or bubble is calculated. The sample deformation and equilibrium position are obtained from an analysis of the spherical harmonic projections of the total surface stress tensor. The method of calculation relies on the assumed condition that the sample is only slightly distorted from a spherical form. The equilibrium location of a levitated drop is combined with a formula introduced by Hasegawa (1979) to calcualte the ka dependence of the radiation force function. The present theory is valid for large as well as small ka values. Calculations in the small ka limit agree with previous theories and experimental results. Examples are presented for nonplane-wave modes as well as plane-wave rectangular modes.

  10. Use of Rectangular Capillary Chambers for Nondestructive Microscopic Observation of Biofilm on Sand

    NASA Astrophysics Data System (ADS)

    Ochiai, N.; Dragila, M.; Parke, J.

    2005-12-01

    Slow sand filter removal of bacterial and fungal pathogens from water has been shown to depend on development of biofilms on sand near the filter surface. Over time, hydraulic conductivity of slow sand filters is considerably reduced, presumably due to excessive biofilm development or plugging of surface pores by particulate matter. Microscopic observation of biofilms in porous media typically requires destructive sampling of media or use of micromodels to simulate pore systems. We are developing a flow-thru chamber consisting of a thin-walled rectangular capillary attached to a mount that can be manipulated with a conventional microscope stage. Capillaries are easily packed with granular media and allow continuous, non-destructive observation of pore systems over time. Initial trials using epi-fluorescence microscopy demonstrate the potential to monitor biofilm development on pore faces or adsorption of particulate matter at the water-solid or air-water interface.

  11. Approximate longitudinal space charge impedances of a round beam between parallel plates and inside a rectangular chamber

    NASA Astrophysics Data System (ADS)

    Li, Yingjie; Wang, Lanfa

    2015-01-01

    This paper presents the approximate analytical solutions to the longitudinal space charge (LSC) impedances of a round beam with uniform transverse distribution and sinusoidal line density modulations under two boundary conditions: (a) between parallel plates (b) inside a rectangular chamber, respectively. When the ratio of beam diameter to chamber height is small, the image charge fields of the round beam can be approximated by those of a line charge, the approximate analytical LSC impedances can be obtained by image method. The derived theoretical LSC impedances are valid at any perturbation wavelength and are consistent well with the numerical simulation results in a large range of ratios of beam diameters to chamber heights.

  12. Numerical study on rectangular microhollow cathode discharge

    SciTech Connect

    He Shoujie; Ouyang Jiting; He Feng; Li Shang

    2011-03-15

    Rectangular microhollow cathode discharge in argon is investigated by using two-dimensional time-dependent self-consistent fluid model. The electric potential, electric field, particle density, and mean electron energy are calculated. The results show that hollow cathode effect can be onset in the present configuration, with strong electric field and high mean electron energy in the cathode fall while high density and quasineutral plasma in the negative glow. The potential well and electric filed reversal are formed in the negative glow region. It is suggested that the presence of large electron diffusion flux necessitates the field reversal and potential well.

  13. Algorithm for Computation of Electromagnetic Fields of An Accelerated Short Bunch Inside a Rectangular Chamber

    SciTech Connect

    Novokhatski, Alexander; Sullivan, Michael; /SLAC

    2010-09-14

    We discuss the feasibility of an application of an implicit finite-difference approximation to calculate the fields of a relativistic bunch moving with no restriction inside a vacuum chamber. We assume that a bunch trajectory is not straight but is inside a vacuum chamber or its branch. The bunch can be deflected by the fields of bending magnets. The bunch can be short enough to produce coherent synchrotron radiation (CSR). Accelerator physicists believe that electromagnetic phenomena of charged beams are governed by Maxwell's equations together with Newton's equations for particle dynamics. To understand the behavior of the beams and radiated fields we just need to find a solution to these equations for the case, which can fully describe the real accelerator environment. So, at first we make a model, which contains all the necessary components, but at the same time can be easily 'inserts' into the equations. Sometimes, it is possible to find analytical solutions, but usually they are only work for one-dimensional cases and rarer for two-dimension cases. To find a solution in general we may transform the equations into a equivalent finite-difference form and solve them using computers. We can find a lot of finite-difference schemes, which approximate Maxwell's equations since the first one that was published in 1966. Most of them are so called explicit schemes. That means that the value of the field at the new time step is calculated only by the field values at the previous time step. Stability conditions for these schemes do not allow a time step to be greater than or equal to a space (mesh) step. This limitation brings an additional troublesome effect for short wavelengths compared a mesh step. We state that this effect works like a frequency dispersion media, which is 'hidden' in the finite-difference equation.

  14. Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.

    2016-09-01

    The mode-selective microwave reflector with periodic rectangular corrugations in the inner surface of a circular metallic waveguide is studied in this paper. The relations between the bandwidth and reflection coefficient for different numbers of corrugation sections were studied through a global optimization method. Two types of reflectors were investigated. One does not consider the phase response and the other does. Both types of broadband reflectors operating at W-band were machined and measured to verify the numerical simulations.

  15. A multiple-cathode, high-power, rectangular ion thruster discharge chamber of increasing thruster lifetime

    NASA Astrophysics Data System (ADS)

    Rovey, Joshua Lucas

    Ion thrusters are high-efficiency, high-specific impulse space propulsion systems proposed for deep space missions requiring thruster operational lifetimes of 7--14 years. One of the primary ion thruster components is the discharge cathode assembly (DCA). The DCA initiates and sustains ion thruster operation. Contemporary ion thrusters utilize one molybdenum keeper DCA that lasts only ˜30,000 hours (˜3 years), so single-DCA ion thrusters are incapable of satisfying the mission requirements. The aim of this work is to develop an ion thruster that sequentially operates multiple DCAs to increase thruster lifetime. If a single-DCA ion thruster can operate 3 years, then perhaps a triple-DCA thruster can operate 9 years. Initially, a multiple-cathode discharge chamber (MCDC) is designed and fabricated. Performance curves and grid-plane current uniformity indicate operation similar to other thrusters. Specifically, the configuration that balances both performance and uniformity provides a production cost of 194 W/A at 89% propellant efficiency with a flatness parameter of 0.55. One of the primary MCDC concerns is the effect an operating DCA has on the two dormant cathodes. Multiple experiments are conducted to determine plasma properties throughout the MCDC and near the dormant cathodes, including using "dummy" cathodes outfitted with plasma diagnostics and internal plasma property mapping. Results are utilized in an erosion analysis that suggests dormant cathodes suffer a maximum pre-operation erosion rate of 5--15 mum/khr (active DCA maximum erosion is 70 mum/khr). Lifetime predictions indicate that triple-DCA MCDC lifetime is approximately 2.5 times longer than a single-DCA thruster. Also, utilization of new keeper materials, such as carbon graphite, may significantly decrease both active and dormant cathode erosion, leading to a further increase in thruster lifetime. Finally, a theory based on the near-DCA plasma potential structure and propellant flow rate effects

  16. 3-D LDA study of a rectangular jet

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Tatterson, Gary B.; Swan, David H.

    1988-01-01

    The flow field of a rectangular jet with a 2:1 aspect ratio was studied at an axial Reynolds number of 100,000 (Mach number 0.09) using three-dimensional laser Doppler velocimetry. The flow field survey resulted in mean velocity vector field plots and contour plots of the Reynolds stress tensor components. This paper presents contour plots in the planes of the jet minor and major axes at different axial locations. These data contribute substantially to currently available data of jet flow fields and will provide a valuable database for three-dimensional modeling.

  17. Open-chamber combustion study

    NASA Astrophysics Data System (ADS)

    Meyers, D. P.; Meyer, R. C.

    1994-04-01

    The test program was undertaken to research trade-offs between engine design and operational parameters on open-chamber, premixed spark-ignited gas engines, with a primary focus on combustion effects. This included combustion chamber designs which are conceptually diametrically opposed -- a high squish design typical of diesel engines and a virtually quiescent design. The reader should note that these data are somewhat abstract compared to conventional engines, because the Labeco test engine has exceptionally high friction and the lean-burn data were run unboosted.

  18. D0 central tracking chamber performance studies

    SciTech Connect

    Pizzuto, D.

    1991-12-01

    The performance of the completed DO central tracking chamber was studied using cosmic rays at the State University of New York at Stony Brook. Also studied was a prototype tracking chamber identical in design to the completed DO tracking chamber. The prototype chamber was exposed to a collimated beam of 150 GeV pions at the Fermilab NWA test facility. Results indicate an R{Phi} tracking resolution compatible with the limitations imposed by physical considerations, excellent 2 track resolution, and a high track reconstruction efficiency along with a good rejection power against {gamma} {yields} e {sup +} e{sup {minus}} events.

  19. Studying Phototropism Using a Small Growth Chamber.

    ERIC Educational Resources Information Center

    Fisher, Maryanna, F.; Llewellyn, Gerald C.

    1978-01-01

    Describes a simple and inexpensive way to construct two small growth chambers for studying phototropism in the science classroom. One chamber is designed to illustrate how plants grow around obstacles to reach light and the other to illustrate directional light responses. (HM)

  20. Experimental study on mixing efficiency in water supply rectangular tanks

    NASA Astrophysics Data System (ADS)

    Bateman, A.; Medina, V.; Mujal, A.

    2009-04-01

    Phenomenon of mixing in drinking water storage tanks and reservoirs has a direct effect on the quality of water. Creation of poor mixing zones and volume stratification can have negative effects in public health. The design of a storage tank must consider the conditions of the inlet and outlets, and also their orientation (vertical or horizontal) to prevent the formation of these zones. Experiments done in a reduced scaled-model with a rectangular base and three different inlets (two waterfalls and a pipe inlet) had the objective to decide which of these inlets achieved the best mixing efficiency. Four situations were considered while three entrances, two unsteady: filling and drawing, and two steady with different outlets. Moreover the effects of columns that support the roof of the tank were studied by running the three entrances with and without columns in the four situations. Neglecting the viscous scale effects, the time taken to mix the volume stored depends on the distance between the inlet and the opposite wall as though as its orientation. Taking into account the whole tank columns have a negative effect on mixing efficiency although they divide the flux and create local zones of turbulence around them, increasing local mixing. Using a digital treating image technique the results are found in a quantitative way.

  1. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.

    2015-01-01

    This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  2. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Conyers, Howard J.; Mavris, Dimitri N.

    2015-01-01

    This paper introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this paper is on tool presentation, verification, and validation. These processes are carried out in stages throughout the paper. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  3. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Conyers, Howard J.; Mavris, Dimitri N.

    2014-01-01

    This paper introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio and number of control surfaces. A doublet lattice approach is taken to compute generalized forces. A rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. Although, all parameters can be easily modified if desired.The focus of this paper is on tool presentation, verification and validation. This process is carried out in stages throughout the paper. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool. Therefore the flutter speed and frequency for a clamped plate are computed using V-g and V-f analysis. The computational results are compared to a previously published computational analysis and wind tunnel results for the same structure. Finally a case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to V-g and V-f analysis. This also includes the analysis of the model in response to a 1-cos gust.

  4. Theoretical and experimental studies of rectangular duct heat exchangers to be used in a high-altitude subsonic aircraft

    NASA Astrophysics Data System (ADS)

    Mathias, James Allen

    A unique need exists for heat exchangers that operate efficiently at an altitude of 85,000 feet. The application involves transferring heat to the low pressure ambient air at a low velocity that is in the laminar flow regime. Because it is desired that low pressure ambient air experience a small decrease in pressure, heat exchangers were examined with relatively short flowlengths and the boundary layers of the ambient air may be developing for a significant portion of the flowlength. These unique requirements of heat exchangers prompted an experimental study of compact heat exchangers made with relatively short rectangular fins that formed rectangular ducts. Compact heat exchangers made with rectangular fins were experimentally tested to determine the pressure drop of the air across the heat exchanger and the heat transfer to the air; the experiments were performed with air at Reynolds numbers between 100 and 1000. By placing the experimental apparatus in a chamber that was partially evacuated, experiments were also performed with air at a Reynolds number of approximately 250 at simulated elevated altitudes up to 83,000 feet. The results of the experiments performed at sea level and elevated altitudes compared very well. The results of the experiments that measured the pressure drop of the air determined the additional pressure drop caused by the developing boundary layers. An equation obtained from the data of the pressure drop measurements predicted the entrance length of the developing boundary layers. The Nusselt number of the air was calculated from the data of the heat transfer experiments. The Nusselt number significantly increased of the experiments performed with the boundary layers of the air developing for a significant portion of the rectangular duct. An equation was obtained that predicted the Nusselt number for compact heat exchangers with short flowlengths and with air at low Reynolds numbers. The equation that predicted the Nusselt number and the

  5. Experimental study of subsonic microjet escaping from a rectangular nozzle

    NASA Astrophysics Data System (ADS)

    Aniskin, V. M.; Maslov, A. A.; Mukhin, K. A.

    2016-10-01

    The first experiments on the subsonic laminar microjets escaping from the nozzles of rectangular shape are carried out. The nozzle size is 83.3x3823 microns. Reynolds number calculated by the nozzle height and the average flow velocity at the nozzle exit ranged from 58 to 154. The working gas was air at room temperature. The velocity decay and velocity fluctuations along the center line of the jet are determined. The fundamental difference between the laminar microjets characteristics and subsonic turbulent jets of macro size is shown. Based on measurements of velocity fluctuations it is shown the presence of laminar-turbulent transition in microjets and its location is determined.

  6. Quantitative study of rectangular waveguide behavior in the THz.

    SciTech Connect

    Rowen, Adam M.; Nordquist, Christopher Daniel; Wanke, Michael Clement

    2009-10-01

    This report describes our efforts to quantify the behavior of micro-fabricated THz rectangular waveguides on a configurable, robust semiconductor-based platform. These waveguides are an enabling technology for coupling THz radiation directly from or to lasers, mixers, detectors, antennas, and other devices. Traditional waveguides fabricated on semiconductor platforms such as dielectric guides in the infrared or co-planar waveguides in the microwave regions, suffer high absorption and radiative losses in the THz. The former leads to very short propagation lengths, while the latter will lead to unwanted radiation modes and/or crosstalk in integrated devices. This project exploited the initial developments of THz micro-machined rectangular waveguides developed under the THz Grand Challenge Program, but instead of focusing on THz transceiver integration, this project focused on exploring the propagation loss and far-field radiation patterns of the waveguides. During the 9 month duration of this project we were able to reproduce the waveguide loss per unit of length in the waveguides and started to explore how the loss depended on wavelength. We also explored the far-field beam patterns emitted by H-plane horn antennas attached to the waveguides. In the process we learned that the method of measuring the beam patterns has a significant impact on what is actually measured, and this may have an effect on most of the beam patterns of THz that have been reported to date. The beam pattern measurements improved significantly throughout the project, but more refinements of the measurement are required before a definitive determination of the beam-pattern can be made.

  7. EPA GAS PHASE CHEMISTRY CHAMBER STUDIES

    EPA Science Inventory

    Gas-phase smog chamber experiments are being performed at EPA in order to evaluate a number of current chemical mechanisms for inclusion in EPA regulatory and research models. The smog chambers are 9000 L in volume and constructed of 2-mil teflon film. One of the chambers is co...

  8. Experimental study of hollow rectangular bridge column performance under vertical and cyclically bilateral loads

    NASA Astrophysics Data System (ADS)

    Han, Qiang; Du, Xiuli; Zhou, Yihui; Lee, George C.

    2013-09-01

    To investigate the seismic performance of hollow reinforced concrete (RC) bridge columns of rectangular cross section under constant axial load and cyclically biaxial bending, five specimens were tested. A parametric study is carried out for different axial load ratios, longitudinal reinforcement ratios and lateral reinforcement ratios. The experimental results showed that all tested specimens failed in the flexural failure mode and their ultimate performance was dominated by flexural capacity, which is represented by the rupture/buckling of tensile longitudinal rebars at the bottom of the bridge columns. Biaxial force and displacement hysteresis loops showed significant stiffness and strength degradations, and the pinching effect and coupling interaction effect of both directions severely decrease the structural seismic resistance. However, the measured ductility coefficient varying from 3.5 to 5.7 and the equivalent viscous damping ratio varying from 0.19 and 0.26 can meet the requirements of the seismic design. The hollow RC rectangular bridge columns with configurations of lateral reinforcement in this study have excellent performance under bidirectional earthquake excitations, and may be considered as a substitute for current hollow RC rectangular section configurations described in the Guideline for Seismic Design of Highway Bridges (JTG/T B02-01-2008). The length of the plastic hinge region was found to approach one sixth of the hollow RC rectangular bridge column height for all specimen columns, and it was much less than those specified in the current JTG/T. Thus, the length of the plastic hinge region is more concentrated for RC rectangular hollow bridge columns.

  9. A theoretical study of Prandtl nanofluid in a rectangular duct through peristaltic transport

    NASA Astrophysics Data System (ADS)

    Ellahi, Rahmat; Riaz, Arshad; Nadeem, S.

    2014-08-01

    In the current study, peristaltic transport of Prandtl nanofluid is investigated in a uniform rectangular duct. Interaction of peristaltic flow of non-Newtonian fluid model with nano particles is investigated under the long wave length and low Reynolds number approximations. The governing equations are solved by homotopy perturbation method to get the convergent series solution. Effects of all emerging physical parameters are demonstrated with the help of graphs for temperature distribution, nano particles concentration, pressure rise and pressure gradient. Trapping scheme is also described through streamlines.

  10. Numerical and experimental study of shock waves emanating from an open-ended rectangular tube

    NASA Astrophysics Data System (ADS)

    Koroteeva, E. Yu.; Znamenskaya, I. A.; Glazyrin, F. N.; Sysoev, N. N.

    2016-05-01

    We examine the dynamics of a high-speed shock-induced flow near the open end of a shock tube using the particle image velocimetry (PIV) and the background oriented schlieren (BOS) methods along with two- and three-dimensional numerical simulations. In experiments, planar shock waves (M=1.3-1.6) are discharged from a rectangular (24 mm × 48 mm) low-pressure section of a shock tube open to the atmosphere. Due to the rectangular exit geometry, the resulting flow is highly three-dimensional and, thus, more complicated, compared to well-studied circular/axisymmetric geometries. The study focuses on the spatio-temporal flow structure up to 1 ms after the shock wave diffraction. PIV and BOS visualization techniques share the same post-processing principle, and the iterative multi-step cross-correlation algorithm applied in the PIV software is adapted here for the calculation of background pattern displacement on the BOS images. Particular attention is given to the resolution of flow regions where sharp gradients are present, such as a diffracted shock front or embedded shocks. Computational fluid dynamic simulations of the problem are also conducted to validate the experimental results and methods and to gain more insight into the three-dimensional flow dynamics. PIV and BOS images are found to be consistent with the corresponding numerical flow visualizations.

  11. Verification of equations for incipient motion studies for a rigid rectangular channel.

    PubMed

    Bong, Charles Hin Joo; Lau, Tze Liang; Ghani, Aminuddin Ab

    2013-01-01

    The current study aims to verify the existing equations for incipient motion for a rigid rectangular channel. Data from experimental work on incipient motion from a rectangular flume with two different widths, namely 0.3 and 0.6 m, were compared with the critical velocity value predicted by the equations of Novak & Nalluri and El-Zaemey. The equation by El-Zaemey performed better with an average discrepancy ratio value of 1.06 compared with the equation by Novak & Nalluri with an average discrepancy ratio value of 0.87. However, as the sediment deposit thickness increased, the equation by El-Zaemey became less accurate. A plot on the Shields Diagram using the experimental data had shown the significant effect of the sediment deposit thickness where, as the deposit becomes thicker, the dimensionless shear stress θ value also increased. A new equation had been proposed by incorporating the sediment deposit thickness. The new equation gave improved prediction with an average discrepancy ratio value of 1.02.

  12. Collective Interaction in a Linear Array of Supersonic Rectangular Jets: A Linear Spatial Instability Study

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    1999-01-01

    A linear spatial instability model for multiple spatially periodic supersonic rectangular jets is solved using Floquet-Bloch theory. It is assumed that in the region of interest a coherent wave can propagate. For the case studied large spatial growth rates are found. This work is motivated by an increase in mixing found in experimental measurements of spatially periodic supersonic rectangular jets with phase-locked screech and edge tone feedback locked subsonic jets. The results obtained in this paper suggests that phase-locked screech or edge tones may produce correlated spatially periodic jet flow downstream of the nozzles which creates a large span wise multi-nozzle region where a coherent wave can propagate. The large spatial growth rates for eddies obtained by model calculation herein are related to the increased mixing since eddies are the primary mechanism that transfer energy from the mean flow to the large turbulent structures. Calculations of spacial growth rates will be presented for a set of relative Mach numbers and spacings for which experimental measurements have been made. Calculations of spatial growth rates are presented for relative Mach numbers from 1.25 to 1.75 with ratios of nozzle spacing to nozzle width ratios from s/w(sub N) = 4 to s/w(sub N) = 13.7. The model may be of significant scientific and engineering value in the quest to understand and construct supersonic mixer-ejector nozzles which provide increased mixing and reduced noise.

  13. Radiation Hydrodynamic Parameter Study of Inertial Fusion Energy Reactor Chambers

    NASA Astrophysics Data System (ADS)

    Sacks, Ryan; Moses, Gregory

    2014-10-01

    Inertial fusion energy reactors present great promise for the future as they are capable of providing baseline power with no carbon footprint. Simulation work regarding the chamber response and first wall insult is performed with the 1-D radiation hydrodynamics code BUCKY. Simulation with differing chamber parameters are implemented to study the effect of gas fill, gas mixtures and chamber radii. Xenon and argon gases are of particular interest as shielding for the first wall due to their high opacity values and ready availability. Mixing of the two gases is an attempt to engineer a gas cocktail to provide the maximum amount of shielding with the least amount of cost. A parameter study of different chamber radii shows a consistent relationship with that of first wall temperature (~1/r2) and overpressure (~1/r3). This work is performed under collaboration with Lawrence Livermore National Laboratory.

  14. Study of compressible flow through a rectangular-to-semiannular transition duct

    NASA Technical Reports Server (NTRS)

    Foster, Jeffry; Okiishi, Theodore H.; Wendt, Bruce J.; Reichert, Bruce A.

    1995-01-01

    Detailed flow field measurements are presented for compressible flow through a diffusing rectangular-to-semiannular transition duct. Comparisons are made with published computational results for flow through the duct. Three-dimensional velocity vectors and total pressures were measured at the exit plane of the diffuser model. The inlet flow was also measured. These measurements are made using calibrated five-hole probes. Surface oil flow visualization and surface static pressure data were also taken. The study was conducted with an inlet Mach number of 0.786. The diffuser Reynolds based on the inlet centerline velocity and the exit diameter of the diffuser was 3,200,000. Comparison of the measured data with previously published computational results are made. Data demonstrating the ability of vortex generators to reduce flow separation and circumferential distortion is also presented.

  15. Experimental study on the flame behaviors of premixed methane/air mixture in horizontal rectangular ducts

    NASA Astrophysics Data System (ADS)

    Chen, Dongliang; Sun, Jinhua; Chen, Sining; Liu, Yi; Chu, Guanquan

    2007-01-01

    In order to explore the flame propagation characteristics and tulip flame formation mechanism of premixed methane/air mixture in horizontal rectangular ducts, the techniques of Schlieren and high-speed video camera are used to study the flame behaviors of the premixed gases in a closed duct and opened one respectively, and the propagation characteristics in both cases and the formation mechanism of the tulip flame are analyzed. The results show that, the propagation flame in a closed duct is prior to form a tulip flame structure than that in an opened duct, and the tulip flame structure formation in a closed duct is related to the flame propagation velocity decrease. The sharp decrease of the flame propagation velocity is one of the reasons to the tulip flame formation, and the decrease of the flame propagation velocity is due to the decrease of the burned product flow velocity mainly.

  16. The study and development of the empirical correlations equation of natural convection heat transfer on vertical rectangular sub-channels

    NASA Astrophysics Data System (ADS)

    Kamajaya, Ketut; Umar, Efrizon; Sudjatmi, K. S.

    2012-06-01

    This study focused on natural convection heat transfer using a vertical rectangular sub-channel and water as the coolant fluid. To conduct this study has been made pipe heaters are equipped with thermocouples. Each heater is equipped with five thermocouples along the heating pipes. The diameter of each heater is 2.54 cm and 45 cm in length. The distance between the central heating and the pitch is 29.5 cm. Test equipment is equipped with a primary cooling system, a secondary cooling system and a heat exchanger. The purpose of this study is to obtain new empirical correlations equations of the vertical rectangular sub-channel, especially for the natural convection heat transfer within a bundle of vertical cylinders rectangular arrangement sub-channels. The empirical correlation equation can support the thermo-hydraulic analysis of research nuclear reactors that utilize cylindrical fuel rods, and also can be used in designing of baffle-free vertical shell and tube heat exchangers. The results of this study that the empirical correlation equations of natural convection heat transfer coefficients with rectangular arrangement is Nu = 6.3357 (Ra.Dh/x)0.0740.

  17. Inertial confinement fusion reaction chamber and power conversion system study

    SciTech Connect

    Maya, I.; Schultz, K.R.; Battaglia, J.M.; Buksa, J.J.; Creedson, R.L.; Erlandson, O.D.; Levine, H.E.; Roelant, D.F.; Sanchez, H.W.; Schrader, S.A.

    1984-09-01

    GA Technologies has developed a conceptual ICF reactor system based on the Cascade rotating-bed reaction chamber concept. Unique features of the system design include the use of low activation SiC in a reaction chamber constructed of box-shaped tiles held together in compression by prestressing tendons to the vacuum chamber. Circulating Li/sub 2/O granules serve as the tritium breeding and energy transport material, cascading down the sides of the reaction chamber to the power conversion system. The total tritium inventory of the system is 6 kg; tritium recovery is accomplished directly from the granules via the vacuum system. A system for centrifugal throw transport of the hot Li/sub 2/O granules from the reaction chamber to the power conversion system has been developed. A number of issues were evaluated during the course of this study. These include the response of first-layer granules to the intense microexplosion surface heat flux, cost effective fabrication of Li/sub 2/O granules, tritium inventory and recovery issues, the thermodynamics of solids-flow options, vacuum versus helium-medium heat transfer, and the tradeoffs of capital cost versus efficiency for alternate heat exchange and power conversion system option. The resultant design options appear to be economically competitive, safe, and environmentally attractive.

  18. Photochemistry of Glyoxal in Wet Aerosols: Smog Chamber Study

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Kim, H.; Turpin, B. J.

    2015-12-01

    Aqueous chemistry is an important pathway for the formation of secondary organic aerosol (SOA). Reaction vessel studies provide evidence that in the aqueous phase photooxidation of water soluble organic compounds (e.g., glyoxal, methylglyoxal) form multifunctional organic products and oligomers. In this work, we extend this bulk-phase chemistry to the condensed-phase chemistry that occurs in/on aerosols by conducting smog chamber experiments — photooxidation of ammonium sulfate and sulfuric acid aerosols containing glyoxal and hydrogen peroxide in the presence of NOx under dry/humid conditions. Particles were analyzed using ultra performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). In the irradiated chamber, photooxidation products of glyoxal as seen in reaction vessel experiments (e.g., oxalic acids and tartaric acids) were also formed in both ammonium sulfate aerosols and sulfuric acid aerosols at humid and even dry conditions. However, the major products were organosulfurs (CHOS), organonitrogens (CHON), and nitrooxy-organosulfates (CHONS), which were also dominantly formed in the dark chamber. These products were formed via non-radical reactions, which depend on acidity and humidity. However, the real-time profiles in the dark chamber and the irradiated chamber were very different, suggesting photochemistry substantially affects non-radical formation in the condensed phase.

  19. Parametric experimental studies on mixing characteristics within a low area ratio rectangular supersonic gaseous ejector

    NASA Astrophysics Data System (ADS)

    Karthick, S. K.; Rao, Srisha M. V.; Jagadeesh, G.; Reddy, K. P. J.

    2016-07-01

    We use the rectangular gaseous supersonic ejector as a platform to study the mixing characteristics of a confined supersonic jet. The entrainment ratio (ER) of the ejector, the non-mixed length (LNM), and potential core length (LPC) of the primary supersonic jet are measures to characterize mixing within the supersonic ejector. Experiments are carried out on a low area ratio rectangular supersonic ejector with air as the working fluid in both primary and secondary flows. The design Mach number of the nozzle (MPD = 1.5-3.0) and primary flow stagnation pressure (Pop = 4.89-9.89 bars) are the parameters that are varied during experimentation. Wall static pressure measurements are carried out to understand the performance of the ejector as well as to estimate the LNM (the spatial resolution is limited by the placement of pressure transducers). Well-resolved flow images (with a spatial resolution of 50 μm/pixel and temporal resolution of 1.25 ms) obtained through Planar Laser Mie Scattering (PLMS) show the flow dynamics within the ejector with clarity. The primary flow and secondary flow are seeded separately with acetone that makes the LNM and LPC clearly visible in the flow images. These parameters are extracted from the flow images using in-house image processing routines. A significant development in this work is the definition of new scaling parameters within the ejector. LNM, non-dimensionalized with respect to the fully expanded jet height hJ, is found to be a linear function of the Mach number ratio (Mach number ratio is defined as the ratio of design Mach number (MPD) and fully expanded Mach number (MPJ) of the primary jet). This definition also provides a clear demarcation of under-expanded and over-expanded regimes of operation according to [MPD/MPJ] > 1 and [MPD/MPJ] < 1, respectively. It is observed that the ER increased in over-expanded mode (to 120%) and decreased in under-expanded mode (to 68%). Similarly, LNM decreased (to 21.8%) in over-expanded mode

  20. Experimental study of an upward sub-cooled forced convection in a rectangular channel

    NASA Astrophysics Data System (ADS)

    Kouidri, A.; Madani, B.; Roubi, B.; Hamadouche, A.

    2016-07-01

    The upward sub-cooled forced convection in a rectangular channel is investigated experimentally. The aim of the present work is the studying of the local heat transfer phenomena. Concerning the experimentation: the n-pentane is used as a working fluid, the independent variables are: the velocity in the range from 0.04 to 0.086 m/s and heat flux density with values between 1.8 and 7.36 W/cm2. The results show that the local Nusselt number distribution is not uniform along the channel; however, uniformity is observed in the mean Nusselt number for Reynolds under 1600. On the other hand, a new correlation to predict the local fluid temperature is established as a function of local wall temperature. The wall's heat is dissipated under the common effect of the sub-cooled regime; therefore, the local heat transfer coefficient is increased. The study of the thermal equilibrium showed that for Reynolds less than 1500; almost all of the heat flux generated by the heater cartridges is absorbed by the fluid.

  1. 59. Interior view, study chamber, from the north. The cabinet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. Interior view, study chamber, from the north. The cabinet in the wall on the right was fitted into an original exterior window opening made obsolete with phase III construction. - John Bartram House & Garden, House, 54th Street & Lindbergh Boulevard, Philadelphia, Philadelphia County, PA

  2. Studying gas-sheared liquid film in horizontal rectangular duct with laser-induced fluorescence technique

    NASA Astrophysics Data System (ADS)

    Cherdantsev, Andrey; Hann, David; Azzopardi, Barry

    2013-11-01

    High-speed LIF-technique is applied to study gas-sheared liquid film in horizontal rectangular duct with 161 mm width. Instantaneous distributions of film thickness resolved in both longitudinal and transverse coordinates were obtained with a frequency of 10 kHz and spatial resolution from 0.125 mm to 0.04 mm. Processes of generation of fast and slow ripples by disturbance waves are the same as described in literature for downwards annular pipe flow. Disturbance waves are often localized by transverse coordinate and may have curved or slanted fronts. Fast ripples, covering disturbance waves, are typically horseshoe-shaped and placed in staggered order. Their characteristic transverse size is of order 1 cm and it decreases with gas velocity. Entrainment of liquid from film surface can also be visualized. Mechanisms of ripple disruption, known as ``bag break-up'' and ``ligament break-up,'' were observed. Both mechanisms may occur on the same disturbance waves. Various scenarios of droplet deposition on the liquid film are observed, including the impact, slow sinking and bouncing, characterized by different outcome of secondary droplets or entrapped bubbles. Number and size of bubbles increase greatly inside the disturbance waves. Both quantities increase with gas and liquid flow rates. EPSRC Programme Grant MEMPHIS (EP/K003976/1), and Roll-Royce UTC (Nottingham, for access to flow facility).

  3. Nanoindentation experiments for single-layer rectangular graphene films: a molecular dynamics study

    PubMed Central

    2014-01-01

    A molecular dynamics study on nanoindentation experiments is carried out for some single-layer rectangular graphene films with four edges clamped. Typical load–displacement curves are obtained, and the effects of various factors including indenter radii, loading speeds, and aspect ratios of the graphene film on the simulation results are discussed. A formula describing the relationship between the load and indentation depth is obtained according to the molecular dynamics simulation results. Young’s modulus and the strength of the single-layer graphene film are measured as about 1.0 TPa and 200 GPa, respectively. It is found that the graphene film ruptured in the central point at a critical indentation depth. The deformation mechanisms and dislocation activities are discussed in detail during the loading-unloading-reloading process. It is observed from the simulation results that once the loading speed is larger than the critical loading speed, the maximum force exerted on the graphene film increases and the critical indentation depth decreases with the increase of the loading speed. PMID:24447765

  4. Design and experiment study of compact circular-rectangular waveguide mode converter

    NASA Astrophysics Data System (ADS)

    Zhao, Xuhao; Yuan, Chengwei; Zhang, Qiang; Zhao, Lishan

    2016-07-01

    A compact mode converter that transforms TM01 circular waveguide mode to TE10 rectangular waveguide mode is investigated. It consists of a circular waveguide with a short circuit terminal and a rectangular waveguide which is perpendicular to the circular waveguide. Simulation results show that conversion efficiency of the mode converter is about 99.8% at central frequency of 1.75 GHz, and the total return loss is approximately -30 dB. The experimental results are well consistent with the computer simulation, which demonstrates the feasibility and high power handling capacity of the mode converter.

  5. Design and experiment study of compact circular-rectangular waveguide mode converter.

    PubMed

    Zhao, Xuhao; Yuan, Chengwei; Zhang, Qiang; Zhao, Lishan

    2016-07-01

    A compact mode converter that transforms TM01 circular waveguide mode to TE10 rectangular waveguide mode is investigated. It consists of a circular waveguide with a short circuit terminal and a rectangular waveguide which is perpendicular to the circular waveguide. Simulation results show that conversion efficiency of the mode converter is about 99.8% at central frequency of 1.75 GHz, and the total return loss is approximately -30 dB. The experimental results are well consistent with the computer simulation, which demonstrates the feasibility and high power handling capacity of the mode converter.

  6. Biomass production chamber air analysis of wheat study (BWT931)

    NASA Technical Reports Server (NTRS)

    Batten, J. H.; Peterson, B. V.; Berdis, E.; Wheeler, E. M.

    1993-01-01

    NASA's Controlled Ecological Life Support System (CELSS) biomass production chamber at John F. Kennedy Space Center provides a test bed for bioregenerative studies using plants to provide food, oxygen, carbon dioxide removal, and potable water to humans during long term space travel. Growing plants in enclosed environments has brought about concerns regarding the level of volatile organic compounds (VOC's) emitted from plants and the construction materials that make up the plant growth chambers. In such closed systems, the potential exists for some VOC's to reach toxic levels and lead to poor plant growth, plant death, or health problems for human inhabitants. This study characterized the air in an enclosed environment in which wheat cv. Yocora Rojo was grown. Ninty-four whole air samples were analyzed by gas chromatography/mass spectrometry throughout the eighty-four day planting. VOC emissions from plants and materials were characterized and quantified.

  7. Environmental chamber studies of atmospheric reactivities of volatile organic compounds: Effects of varying chamber and light source

    SciTech Connect

    Carter, W.; Luo, D.; Malkina, I.; Pierce, J.

    1995-05-01

    Photochemical oxidant models are essential tools for assessing effects of emissions changes on ground-level ozone formation. Such models are needed for predicting the ozone impacts of increased alternative fuel use. The gas-phase photochemical mechanism is an important component of these models because ozone is not emitted directly, but is formed from the gas-phase photochemical reactions of the emitted volatile organic compounds (VOCs) and oxides of nitrogen (NO{sub x}) in air. The chemistry of ground level ozone formation is complex; hundreds of types of VOCs being emitted into the atmosphere, and most of their atmospheric reactions are not completely understood. Because of this, no chemical model can be relied upon to give even approximately accurate predictions unless it has been evaluated by comparing its predictions with experimental data. Therefore an experimental and modeling study was conducted to assess how chemical mechanism evaluations using environmental chamber data are affected by the light source and other chamber characteristics. Xenon arc lights appear to give the best artificial representation of sunlight currently available, and experiments were conducted in a new Teflon chamber constructed using such a light source. Experiments were also conducted in an outdoor Teflon Chamber using new procedures to improve the light characterization, and in Teflon chambers using blacklights. These results, and results of previous runs other chambers, were compared with model predictions using an updated detailed chemical mechanism. The magnitude of the chamber radical source assumed when modeling the previous runs were found to be too high; this has implications in previous mechanism evaluations. Temperature dependencies of chamber effects can explain temperature dependencies in chamber experiments when Ta-300{degree}K, but not at temperatures below that.

  8. Study of Daedalus Interstellar Spacecraft Reaction Chamber and Thrust Structure

    NASA Astrophysics Data System (ADS)

    Reddy, S. K.; Benaroya, H.

    Project Daedalus was the 1978 trade study that proved the feasibility of space travel utilizing fusion-based propulsion (Inertial Confinement Fusion). This paper analyzes some of the key structural aspects of the Daedalus spacecraft, in particular, the reaction chamber and thrust structure that is integral to the Daedalus spacecraft, which supports the loads resulting from the fusion reactions. First, the reaction chamber is studied computationally in terms of static loading and vibrational characteristics utilizing the finite element method. Next, a proposed bracing system is integrated into the reaction chamber and the effects are studied. Lastly, the field coils with their supporting truss structure are added to the assembly. Concepts are introduced for actuators and course-correction mechanisms that ensure the spacecraft maintains the required trajectory to rendezvous with the target system. Present-day materials and manufacturing considerations are explored based on the assumptions made in the Daedalus study. Testing, qualification, and assembly of the spacecraft are also discussed. This paper is a summary of the first author's Master's Thesis at Rutgers University.

  9. Experimental and numerical study of the sloshing motion in a rectangular tank with a perforated screen

    NASA Astrophysics Data System (ADS)

    Molin, Bernard; Remy, Fabien

    2013-11-01

    Rectangular tanks partially filled with water and fitted with vertical perforated screens have been proposed as Tuned Liquid Dampers to mitigate the vibratory response of land buildings, under wind or earthquake excitation. Similar devices are used as anti-rolling tanks aboard ships. Experiments are performed on a rectangular tank with one screen at mid length. The tank is subjected to forced horizontal and rolling motions, harmonic and irregular. The open-area ratio of the screen is kept constant while the motion amplitudes and frequencies are varied. The frequency range covers the first three natural sloshing modes of the clean tank (without screen). Force measurements are converted into matrices of added mass/inertia and damping coefficients. A simple numerical model is proposed, based on linearized potential flow theory and quadratic discharge equation at the screen, following earlier works by the first author. Good agreement is reported between experimental and numerical hydrodynamic coefficients.

  10. Aeroelastic Studies of a Rectangular Wing with a Hole: Correlation of Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Conyers, Howard J.; Dowell, Earl H.; Hall, Kenneth C.

    2010-01-01

    Two rectangular wing models with a hole have been designed and tested in the Duke University wind tunnel to better understand the effects of damage. A rectangular hole is used to simulate damage. The wing with a hole is modeled structurally as a thin elastic plate using the finite element method. The unsteady aerodynamics of the plate-like wing with a hole is modeled using the doublet lattice method. The aeroelastic equations of motion are derived using Lagrange's equation. The flutter boundary is found using the V-g method. The hole's location effects the wing's mass, stiffness, aerodynamics and therefore the aeroelastic behavior. Linear theoretical models were shown to be capable of predicting the critical flutter velocity and frequency as verified by wind tunnel tests.

  11. Atomic force microscope chamber for in situ studies of ice

    NASA Astrophysics Data System (ADS)

    Zepeda, Salvador; Yeh, Yin; Orme, Christine A.

    2001-11-01

    To investigate the surface morphologies of biological systems in a controlled gaseous environment (e.g., the temperature, humidity and composition), most commercial atomic force microscopes require modification. We have designed a double-jacketed environmental chamber specifically for a Nanoscope IIIa (Digital Instruments, Santa Barbara, CA) force microscope. We use cold nitrogen and thermoelectric devices to control the temperature in the chamber; the nitrogen simultaneously serves to create an inert environment. We have also designed a temperature controlled sample stage utilizing thermoelectric devices for fine temperature regulation. A variation of this sample stage allows us to image samples in fluids at cold temperatures with an O-ringless configuration. The relative humidity within the chamber is also measured with commercially available relative humidity sensors. We investigate the surface morphology of ice Ih in its pure phase and shall extend the study to ice in the presence of biological molecules, such as antifreeze proteins. We present a detailed description of our design and our first images of polycrystalline ice and single crystals of ice grown in situ from the vapor.

  12. Experimental studies on interactions between a freely propagating flame and single obstacles in a rectangular confinement

    SciTech Connect

    Park, Dal Jae; Green, Anthony Ronald; Lee, Young Soon; Chen, Young-Cheng

    2007-07-15

    Experimental investigations were performed to assess the effects of different shaped obstructions on flame propagation in a rectangular confinement, 235 mm in height, with a 1000 x 950mm cross section and a large top-venting area of 1000 x 320mm. Four different single obstacles were used: rectangular, cylindrical, triangular, and square cross-sections with blockage ratios of 5 and 10%. Temporally resolved flame front images were recorded by a high-speed video camera to investigate the interaction between a propagating flame and the obstacle. The local flame displacement speeds and their probability density functions (pdfs) were obtained for the different obstacles. Before the freely propagating flame impinges on the obstacle, the flame propagation speed remains close to the laminar burning velocity, regardless of the obstacles used. As the propagating flame impinges on the obstacle, the local propagation speed increases due to the expansion of the burnt gas and the blockage of the obstacle. This local speed increase becomes larger in going from a circular to a triangular and to a square obstacle. The averaged flame displacement speeds were not significantly different with different blockage ratios for the same obstacle investigated in this work, nor were they significantly different for different shapes at the same blockage ratio investigated in this work. However, the fastest increase in the averaged flame speed with time was observed for the rectangular plate. In order to explain why the results obtained from this work were different from those published in the literature for large L/D, a discussion of both the flame speed and pressure was given. (author)

  13. Vapor chamber fin radiator study for the potassium Rankine cycle.

    NASA Technical Reports Server (NTRS)

    Gerrels, E. E.; Killen, R. E.; Couch, J. P.

    1972-01-01

    A structurally integrated vapor chamber fin (heat pipe) radiator is defined and evaluated as a potential candidate for rejecting waste heat from the potassium Rankine cycle powerplant. Several vapor chamber fin geometries, using stainless steel construction, are evaluated and an optimum is selected. A comparison is made with an operationally equivalent conduction fin radiator. Both radiators employ NaK-78 in the primary coolant loop. In addition, the Vapor Chamber Fin (VCF) radiator utilizes sodium in the vapor chambers. Preliminary designs are developed for the conduction fin and VCF concepts. Performance tests on a single vapor chamber were conducted to verify the VCF design.

  14. A Comparative Study of Strength of Two-Way Rectangular Slabs with and without Openings

    NASA Astrophysics Data System (ADS)

    Ravindra, M.; Rakesh, V.; Rambabu, K.

    2016-09-01

    The present work uses yield-line theory to find the strength of uniformly loaded rectangular reinforced concrete slabs with and without rectangular openings. Five positions of openings are considered, i.e. the slab centre, the slab corner, the centre of a short side, the centre of a long side and the opening eccentric to the slab centre. All possible admissible yield line patterns are considered for all given configurations of the slab subjected to uniformly distributed load keeping in view the basic principles of yield line theory. The ratios of the corresponding lengths of the sides of the opening and the slab are different and sizes of opening up to 0.4× the length of the slab sides are considered. Symmetric edge conditions like continuous slab, simply supported, two long sides continuous and two short sides continuous are considered for various sizes of openings in order to plot the design charts for isotropic reinforcement coefficients only. Affine transformation is also performed for slab with openings.

  15. Design and use of an exposure chamber for air pollution studies on microarthropods

    SciTech Connect

    Andre, H.M.

    1982-10-01

    An exposure chamber for studying the effects of air pollution on microarthropods is described. The chamber was tested on a corticolous mite, Humerobates rostrolamellatus Grandjean (Acari: Oribatida). In the absence of pollutants, the overall mortality was about 2.5%.

  16. Theoretical and experimental study of the input impedance of the cylindrical cavity-backed rectangular slot antennas

    NASA Technical Reports Server (NTRS)

    Li, Ming-Yi; Hummer, Kenneth A.; Chang, Kai

    1991-01-01

    The authors study the input impedance of a cylindrical cavity-backed slot antenna based on mode matching and the complex Poynting theorem. Two cavity-backed slot antennas were fabricated to verify the theory. The numerical results agree very well with measurements. Two resonant frequencies were found from the input impedance. One resonant frequency is attributed to the rectangular slot and the other is due to the cavity. The slot length controls the first resonant frequency and has a much stronger effect on the input impedance at the antenna operating frequency as compared with the cavity length.

  17. Preliminary studies of a new monitor ionization chamber.

    PubMed

    Yoshizumi, Maíra T; Vivolo, Vitor; Caldas, Linda V E

    2010-01-01

    A new monitor ionization chamber was developed at Instituto de Pesquisas Energéticas e Nucleares (IPEN) in order to monitor X-ray beams. The main difference of this monitor ionization chamber in relation to other monitor chambers is its geometry, which consists of a ring-shaped sensitive volume. Because of this geometry, the monitor chamber has a central hole through which the direct radiation beam passes. The operational characteristics of the monitor chamber were evaluated: saturation, ion collection efficiency and polarity effect. Besides these tests, the short- and medium-term stabilities of its response were also evaluated. During the tests the leakage current was always negligible. All results showed values within those recommended internationally (IEC, 1997. Medical electrical equipment-dosimeters with ionization chambers and/or semi-conductor detectors as used in X-ray diagnostic imaging. IEC 61674. International Electrotechnical Commission, Genève).

  18. Experimental study of the water jet induced by underwater electrical discharge in a narrow rectangular tube

    NASA Astrophysics Data System (ADS)

    Koita, T.; Zhu, Y.; Sun, M.

    2016-05-01

    This paper reports an experimental investigation on the effects of explosion depth and tube width on the water jet induced by an underwater electrical discharge in a narrow rectangular tube. The water jet formation and bubble structure were evaluated from the images recorded by a high-speed video camera. Two typical patterns of jet formation and four general patterns of bubble implosion were observed, depending on the explosion depth and tube width. The velocity of the water jet was calculated from the recorded images. The jet velocity was observed to depend on not only the explosion depth and energy, but also on the tube width. We proposed an empirical formula defining the water jet velocity in the tube as a function of the tube width and explosion depth and energy.

  19. Airflow studies in a forced ventilated chamber with low partitions

    SciTech Connect

    Chow, W.K.; Tsui, K.F.

    1995-12-31

    A climate chamber was used to study experimentally the airflow characteristics in a ventilated space with low partitions. Two types of commonly used air distribution devices were selected for the study--a ceiling diffuser and side grille systems. A total of 16 tests were performed using the two diffusers with partition heights varying up to 1.8 m (5.91 ft) above floor level. From the measured results, the thermal comfort indices were assessed. A stabilization effect of airflow was found when the partition height reached 1.8 m (5.91 ft). Local draft risk was located in the occupied zone. Also, the modified Archimedes number proposed by Jackman (1990) was used to describe the indoor airflow in the absence of a workable design guide for partitioned spaces.

  20. Potassium Rankine cycle vapor chamber (heat pipe) radiator study

    NASA Technical Reports Server (NTRS)

    Gerrels, E. E.; Killen, R. E.

    1971-01-01

    A structurally integrated vapor chamber fin (heat pipe) radiator is defined and evaluated as a potential candidate for rejecting waste heat from the potassium Rankine cycle powerplant. Several vapor chamber fin geometries, using stainless steel construction, are evaluated and an optimum is selected. A comparison is made with an operationally equivalent conduction fin radiator. Both radiators employ NaK-78 in the primary coolant loop. In addition, the Vapor Chamber Fin (VCF) radiator utilizes sodium in the vapor chambers. Preliminary designs are developed for the conduction fin and VCF concepts. Performance tests on a single vapor chamber were conducted to verify the VCF design. A comparison shows the conduction fin radiator easier to fabricate, but heavier in weight, particularly as meteoroid protection requirements become more stringent. While the analysis was performed assuming the potassium Rankine cycle powerplant, the results are equally applicable to any system radiating heat to space in the 900 to 1400 F temperature range.

  1. A microperfusion chamber for study of mammalian spermatozoa.

    PubMed

    Burkman, L J

    1988-01-01

    The design of a microperfusion chamber is presented for use with spermatozoa or other cell suspensions. This chamber allows perfusion of a small number of spermatozoa during simultaneous observation of cell behavior at the microscope. The chamber is made from a flat glass capillary tube that is fitted at both ends with a filter unit containing Millipore filter discs. The entire assembly is designed to fit the stage of an inverted microscope. A population containing as few as several hundred sperm cells may be observed in the chamber during successive changes of the suspending medium as controlled by a perfusion pump. Several experiments are presented demonstrating sperm survival in the sealed chamber and the response of rabbit and human sperm motility after the washing process. For these manipulations, the percentage of motile cells, linear swimming speed and incidence of hyperactivated motility are reported. Simple incubation in the chamber for 1 hour was not deleterious to the motility of rabbit spermatozoa. Human seminal spermatozoa showed no decline in vigorous motility after the washing procedure. Compared with in vitro capacitated spermatozoa, however, washing of rabbit seminal spermatozoa showed a variable response. Finally, partially capacitated human spermatozoa were examined for any alteration of motility during chamber incubation with a subsequent wash. When small numbers of spermatozoa or other cell types must be manipulated, the methodology can be effectively substituted for the standard washing procedure that uses repeated centrifugation and resuspension.

  2. Resonant Interaction of a Linear Array of Supersonic Rectangular Jets: an Experimental Study

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Taghavi, Ray

    1994-01-01

    This paper examines a supersonic multi jet interaction problem that we believe is likely to be important for mixing enhancement and noise reduction in supersonic mixer-ejector nozzles. We demonstrate that it is possible to synchronize the screech instability of four rectangular jets by precisely adjusting the inter jet spacing. Our experimental data agrees with a theory that assumes that the phase-locking of adjacent jets occurs through a coupling at the jet lip. Although the synchronization does not change the frequency of the screech tone, its amplitude is augmented by 10 dB. The synchronized multi jets exhibit higher spreading than the unsynchronized jets, with the single jet spreading the least. We compare the nearfield noise of the four jets with synchronized screech to the noise of the sum of four jets operated individually. Our noise measurements reveal that the more rapid mixing of the synchronized multi jets causes the peak jet noise source to move up stream and to radiate noise at larger angles to the flow direction. Based on our results, we believe that screech synchronization is advantageous for noise reduction internal to a mixer-ejector nozzle, since the noise can now be suppressed by a shorter acoustically lined ejector.

  3. Numerical Study Of The Heat Transfer Phenomenon Of A Rectangular Plate Including Void, Notch Using Finite Difference Technique

    NASA Astrophysics Data System (ADS)

    Deb Nath, S. K.; Peyada, N. K.

    2015-12-01

    In the present study, we have developed a code using Matlab software for solving a rectangular aluminum plate having void, notch, at different boundary conditions discretizing a two dimensional (2D) heat conduction equation by the finite difference technique. We have solved a 2D mixed boundary heat conduction problem analytically using Fourier integrals (Deb Nath et al., 2006; 2007; 2007; Deb Nath and Ahmed, 2008; Deb Nath, 2008; Deb Nath and Afsar, 2009; Deb Nath and Ahmed, 2009; 2009; Deb Nath et al., 2010; Deb Nath, 2013) and the same problem is also solved using the present code developed by the finite difference technique (Ahmed et al., 2005; Deb Nath, 2002; Deb Nath et al., 2008; Ahmed and Deb Nath, 2009; Deb Nath et al., 2011; Mohiuddin et al., 2012). To verify the soundness of the present heat conduction code results using the finite difference method, the distribution of temperature at some sections of a 2D heated plate obtained by the analytical method is compared with those of the plate obtained by the present finite difference method. Interpolation technique is used as an example when the boundary of the plate does not pass through the discretized grid points of the plate. Sometimes hot and cold fluids are passed through rectangular channels in industries and many types of technical equipment. The distribution of temperature of plates including notches, slots with different temperature boundary conditions are studied. Transient heat transfer in several pure metallic plates is also studied to find out the required time to reach equilibrium temperature. So, this study will help find design parameters of such structures.

  4. Study of the PTW microLion chamber temperature dependence.

    PubMed

    Gómez, F; González-Castaño, D; Díaz-Botana, P; Pardo-Montero, J

    2014-06-01

    The use of liquid ionization chambers in radiotherapy has grown during the past few years. While for air ionization chambers the k(TP) correction for air mass density due to pressure and temperature variations is well known, less work has been done on the case of liquid ionization chambers, where there is still the need to take into account the influence of temperature in the free ion yield. We have measured the PTW microLion isooctane-filled ionization chamber temperature dependence in a ~ ±10 °C interval around the standard 20 °C room temperature for three operation voltages, including the manufacturer recommended voltage, and two beam qualities, (60)Co and 50 kV x-rays. Within the measured temperature range, the microLion signal exhibits a positive linear dependence, which is around 0.24% K(-1) at 800 V with (60)Co irradiation. This effect is of the same order of magnitude as the T dependence found in air ionization chambers, but its nature is completely different and its sign opposite to that of an air chamber. Onsager theory has been used to model the results and is consistent with this linear behaviour. However, some inconsistencies in the modelling of the 50 kV x-ray results have been found that are attributed to the failure of Onsager's isolated pair assumption for such radiation quality.

  5. Discussion based on numerical and experimental studies on heating characteristics of an RF rectangular resonant cavity applicator for hyperthermia targeting deep-seated tumors.

    PubMed

    Tange, Yutaka; Kanai, Yasushi; Saitoh, Yoshiaki

    2007-01-01

    The heating characteristics of an RF rectangular cavity applicator for hyperthermic treatment that targets deep-seated tumors were investigated numerically and experimentally. In the numerical study, Maxwell's equations and heat transfer equations were solved for a dielectric phantom with and without blood flow. Conductive caps attached to the dielectric phantom to shield the non-tumor regions. The experimental study showed the validity and possibility of heating deep-seated tumors. Thus, the rectangular resonant cavity applicator with an L-type antenna can heat deep-seated tumors.

  6. A plant chamber system with downstream reaction chamber to study the effects of pollution on biogenic emissions.

    PubMed

    Timkovsky, J; Gankema, P; Pierik, R; Holzinger, R

    2014-01-01

    A system of two plant chambers and a downstream reaction chamber has been set up to investigate the emission of biogenic volatile organic compounds (BVOCs) and possible effects of pollutants such as ozone. The system can be used to compare BVOC emissions from two sets of differently treated plants, or to study the photochemistry of real plant emissions under polluted conditions without exposing the plants to pollutants. The main analytical tool is a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) which allows online monitoring of biogenic emissions and chemical degradation products. The identification of BVOCs and their oxidation products is aided by cryogenic trapping and subsequent in situ gas chromatographic analysis.

  7. Experimental study of columnar recombination in fission chambers

    NASA Astrophysics Data System (ADS)

    Filliatre, P.; Lamirand, V.; Geslot, B.; Jammes, C.

    2016-05-01

    In this paper, we present experimental saturation curves of a small gap miniature fission chamber obtained in the MINERVE reactor. The chamber is filled with argon at various pressures, and the fissile material can be coated on the anode, cathode, or both. For analyzing the recombination regime, we consider a model of columnar recombination and discuss its applicability to our chamber. By applying this model to the data, it is possible to estimate the ratio between the recombination coefficient k and an effective column radius b, appearing in the model, to be k / b =(2.5 ± 0.9) ×10-6m2 / s for argon. From these results, a routine measurement of the recombination regime is proposed in order to detect gas leakage. This online diagnosis would be beneficial in terms of lifetime and reliability of the neutron instrumentation of nuclear reactors.

  8. A Survey of Environmental Microbial Flora During Closed Chamber Studies

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark; Groves, Theron O.; Bell-Robinson, Denetia; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    1999-01-01

    Services, Inc. and NASA Johnson Space Center, Houston, TX As NASA prepares for long-term missions aboard the International Space Station and the eventual exploration of Mars, closed-environment chambers on Earth have become important test beds for systems evaluations. During 2 separate studies of a selfcontained ecosystem containing 4 crewmembers, microbial surveys of samples from 13 surface and 3 air sites were performed. Microbial concentration of samples from surface sites with frequent water contact (e.g., urinal, sink) did not indicate significantly higher levels of contamination than drier areas, though surface cleaning by the crew may have influenced this conclusion. Changes in bacterial diversity on surface sites implied that the number of transient species was high, suggesting movement by crew activities, aerosols, or both. A non-linear relationship between bacterial diversity and enumeration from surface samples indicated that a rapid increase occurred in the number of species as cell concentration increased to 5 CFU/sq cm. Above this concentration, the number of different bacterial species varied between 11 and 16. Airborne bacteria and fungi averaged only 160 and 1 CFU/m3, respectively. Microbial contamination of the potable water system primarily consisted of 3 species of Gram negative bacteria; however, after 60 days during one study, several species of Bacillus became the dominant flora. This study suggests that under these conditions, microbial contamination in the air and water was suppressed by the life-support systems, though contamination was possible. Conversely, the crew and their activities controlled microbial levels on surfaces. Understanding the factors that affect microbial control will improve the design of microbial testing both during space flight and in analogous Earth-based environments.

  9. Synchronizability of random rectangular graphs

    SciTech Connect

    Estrada, Ernesto Chen, Guanrong

    2015-08-15

    Random rectangular graphs (RRGs) represent a generalization of the random geometric graphs in which the nodes are embedded into hyperrectangles instead of on hypercubes. The synchronizability of RRG model is studied. Both upper and lower bounds of the eigenratio of the network Laplacian matrix are determined analytically. It is proven that as the rectangular network is more elongated, the network becomes harder to synchronize. The synchronization processing behavior of a RRG network of chaotic Lorenz system nodes is numerically investigated, showing complete consistence with the theoretical results.

  10. Hypobaric chamber for the study of oral health problems in a simulated spacecraft environment

    NASA Technical Reports Server (NTRS)

    Brown, L. R.

    1974-01-01

    A hypobaric chamber was constructed to house two marmo-sets simultaneously in a space-simulated environment for periods of 14, 28 and 56 days which coincided with the anticipated Skylab missions. This report details the fabrication, operation, and performance of the chamber and very briefly reviews the scientific data from nine chamber trials involving 18 animals. The possible application of this model system to studies unrelated to oral health or space missions is discussed.

  11. Chamber study of PCBemissions from caulking materials and light ballasts

    EPA Science Inventory

    The emissions of polychlorinated biphenyl (PCB) congeners from 13 caulk samples were tested in a micro-chamber system. Twelve samples were from PCB-contaminated buildings and one was prepared in the laboratory. Nineteen light ballasts collected from buildings that represent 13 di...

  12. Instability of rectangular jets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Thies, Andrew T.

    1992-01-01

    The instability of rectangular jets is investigated using a vortex sheet model. It is shown that such jets support four linearly independent families of instability waves. Within each family there are infinitely many modes. A way to classify these modes according to the characteristics of their mode shapes or eigenfunctions is proposed. A parametric study of the instability wave characteristics has been carried out. A sample of the numerical results is reported here. It is found that the first and third modes of each instability wave family are corner modes. The pressure fluctuations associated with these instability waves are localized near the corners of the jet. The second mode, however, is a center mode with maximum fluctuations concentrated in the central portion of the jet flow. The center mode has the largest spatial growth rate. It is anticipated that as the instability waves propagate downstream the center mode would emerge as the dominant instability of the jet.

  13. study on trace contaminants control assembly for sealed environment chamber

    NASA Astrophysics Data System (ADS)

    Pang, L. P.; Wang, J.; Liu, L. K.; Liu, H.

    The biological and Physicochemical P C life support technologies are all important parts to establish a human Closed Ecological Life Support System CELSS for long-duration mission The latter has the advantages of lower power consumption lower mass and higher efficiency therefore researchers often incorporate the use of biological systems with P C life support technologies to continuously recycle air water and part of the solid waste stream generated such as the Russian BLSS and the NASA-sponsored Lunar-Mars Life Support Test Project LMLSTP In short these tests were very successful in integrating biological and P C life support technologies for long-duration life support Therefore we should use a combination of integrated biological with P C life support technologies in a human CELSS Human construction materials plants animals and soils release much trace toxic gases in a CELSS and they will inhibit plant growth and badly affect human health when their concentrations rise over their threshold levels The effect of biological trace contaminant control technologies is slower especially for a human sealed chamber because human produce much more methane and other contaminants A regenerative Trace Contaminant Control Subsystem TCCS with P C technology is a more important part in this case to control quickly the airborne contaminants levels and assure human in good condition in a sealed chamber This paper describes a trace contaminant control test facility incorporated a 8 m3 sealed environment chamber a regenerative TCCS with P C

  14. Studies of particle interactions in bubble chamber, spark chambers and counter experiments. Annual progress report

    SciTech Connect

    Holloway, L.E.; O'Halloran, T.A. Jr.; Simmons, R.O.

    1983-07-01

    During the past six years we have carried out and planned experiments which predominantly studied the production and decay of particles containing charmed quarks. A series of photoproduction and neutron production experiments started with the very early observation of the production of J/psi by neutrons and by photons at Fermilab. From subsequent experiments using these neutral beams and the basic detecting system, we have reported results on the photoproduction of the ..lambda../sub c/ charmed baryon and the D and D* charmed mesons. More recent runs are studying the high energy photoproduction of vector mesons including the psi'. The present experiment in this sequence is using neutrons to produce a large number of D mesons. Another series of experiments at Fermilab set out to study the hadronic production of charmed mesons. The Chicago Cyclotron facility was modified with a detector sensitive to various possible production mechanisms. The experiments were a success; clean signals of D mesons were observed to be produced by pions, and also the production of chi/sub c/ with the subsequent decay via a ..gamma..-ray to psi was observed. The charmonium experiments run this year have better photon resolution for measuring the decays of chi/sub c/ to psi. We are part of a collaboration which is working on the Collider Detector Facility for Fermilab. The CDF at Fermilab is a possible source of (weak) intermediate vector bosons from the collisions of protons and anti-protons. Our responsibilities in the CDF include both the construction of the muon detector and the designing, planning, and testing of the FASTBUS electronics. The second part of our weak interaction program is the Neutrino Oscillation experiment which is now under construction at Brookhaven.

  15. A DUST-SETTLING CHAMBER FOR SAMPLING-INSTRUMENT COMPARISON STUDIES

    EPA Science Inventory

    Introduction: Few methods exist that can evenly and reproducibly deposit dusts onto surfaces for surface-sampling methodological studies. A dust-deposition chamber was designed for that purpose.

    Methods: A 1-m3 Rochester-type chamber was modified to produce high airborne d...

  16. Studying gas-sheared liquid film in horizontal rectangular duct with LIF technique: droplets deposition and bubbles entrapment

    NASA Astrophysics Data System (ADS)

    Cherdantsev, Andrey; Hann, David; Azzopardi, Barry

    2014-11-01

    High-speed laser-induced fluorescence technique is applied to study gas-sheared liquid film in horizontal rectangular duct (width 161 mm). Instantaneous distributions of film thickness over an area of 50*20 mm are obtained with frequency 10 kHz and spatial resolution 40 μm. The technique is also able to detect droplets entrained from film surface and gas bubbles entrapped by the liquid film. We focus on deposition of droplets onto film surface and dynamics of bubbles. Three scenarios of droplet impact are observed: 1) formation of a cavern, which is similar to well-known process of normal droplet impact onto still liquid surface; 2) ``ploughing,'' when droplet is sinking over long distance; 3) ``bouncing,'' when droplet survives the impact. The first scenario is often accompanied by entrainment of secondary droplets; the second by entrapment of air bubbles. Numerous impact events are quantitatively analyzed. Parameters of the impacting droplet, the film surface before the impact, the evolution of surface perturbation due to impact and the outcome of the impact (droplets or bubbles) are measured. Space-time trajectories of individual bubbles have also been obtained, including velocity, size and concentration inside the disturbance waves and in the base film region. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  17. An aging study of wire chambers with dimethyl ether

    SciTech Connect

    Jibaly, M.; Chrusch, P. Jr.; Hilgenberg, G.; Majewski, S.; Wojcik, R.; Sauli, F.; Gaudaen, J.

    1989-02-01

    The authors report results on the aging of different types of resistive and non-resistive wires in wire chambers filled with dimethyl ether (DME) of varying degrees of purity. Among the Freon impurities detected in our DME batches, only Freon-11 was found to contribute to the aging process. Of the resistive wires, Nicotin and Stablohm produced fast aging, whereas stainless steel withstood extended irradiation in purified DME (up to 1 C/cm) without any apparent damage. Gold-plated tungsten and molybdenum wires produced results comparable to those of the stainless steel.

  18. Wire chamber requirements and tracking simulation studies for tracking systems at the superconducting super collider

    SciTech Connect

    Hanson, G.G.; Niczyporuk, B.B.; Palounek, A.P.T.

    1989-02-01

    Limitations placed on wire chambers by radiation damage and rate requirements in the SSC environment are reviewed. Possible conceptual designs for wire chamber tracking systems which meet these requirements are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. Such computer simulation studies are necessary to determine the feasibility of wire chamber tracking systems for complex events in a high-rate environment such as the SSC. 11 refs., 9 figs., 1 tab.

  19. Experimental study of the cross-polarization characteristics of rectangular microstrip antennas

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.; Huynh, T.; Lee, K. F.

    1989-01-01

    The cross polarization characteristics of rectantular patch antennas are studied experimentally. Data are presented showing the dependence of the copolarization to cross-polarization ratio on the aspect ratio in both the E and H planes. Three substrate thicknesses are included and the variation with resonant frequency is examined.

  20. Sensitivity Study of the Wall Interference Correction System (WICS) for Rectangular Tunnels

    NASA Technical Reports Server (NTRS)

    Walker, Eric L.; Everhart, Joel L.; Iyer, Venkit

    2001-01-01

    An off-line wall version of the Wall Interference Correction System (WICS) has been implemented for the NASA Langley National Transonic Facility. The correction capability is currently restricted to corrections for solid wall interference in the model pitch plane for MAch numbers less than 0.45 due to limitation in tunnel calibration data. A study to assess output sensitivity to measurement uncertainty was conducted to determine standard operational procedures and guidelines to ensure data quality during the testing process.

  1. Study of a micro chamber quadrupole mass spectrometer

    SciTech Connect

    Wang Jinchan; Zhang Xiaobing; Mao Fuming; Xiao Mei; Cui Yunkang; Engelsen, Daniel den; Lei Wei

    2008-03-15

    The design of a micro chamber quadrupole mass spectrometer (MCQMS) having a small total volume of only 20 cm{sup 3}, including Faraday cup ion detector and ion source, is described. This MCQMS can resist a vacuum baking temperature of 400-500 deg. C. The quadrupole elements with a hyperbolic surface are made of a ceramic material and coated with a thin metal layer. The quadrupole mass filter has a field radius of 3 mm and a length of 100 mm. Prototypes of this new MCQMS can detect a minimum partial pressure of 10{sup -8} Pa, have a peak width of {delta}M=1 at 10% peak height from mass number 1 to 60, and show an excellent long-term stability. The new MCQMS is intended to be used in residual gas analyses of electron devices during a mutual pumping and baking process.

  2. Gas mixture studies for streamer operated Resistive Plate Chambers

    NASA Astrophysics Data System (ADS)

    Paoloni, A.; Longhin, A.; Mengucci, A.; Pupilli, F.; Ventura, M.

    2016-06-01

    Resistive Plate Chambers operated in streamer mode are interesting detectors in neutrino and astro-particle physics applications (like OPERA and ARGO experiments). Such experiments are typically characterized by large area apparatuses with no stringent requirements on detector aging and rate capabilities. In this paper, results of cosmic ray tests performed on a RPC prototype using different gas mixtures are presented, the principal aim being the optimization of the TetraFluoroPropene concentration in Argon-based mixtures. The introduction of TetraFluoroPropene, besides its low Global Warming Power, is helpful because it simplifies safety requirements allowing to remove also isobutane from the mixture. Results obtained with mixtures containing SF6, CF4, CO2, N2 and He are also shown, presented both in terms of detectors properties (efficiency, multiple-streamer probability and time resolution) and in terms of streamer characteristics.

  3. Sensitivity Study of the Wall Interference Correction System (WICS) for Rectangular Tunnels

    NASA Technical Reports Server (NTRS)

    Walker, Eric L.; Everhart, Joel L.; Iyer, Venkit

    2001-01-01

    An off-line version of the Wall Interference Correction System (WICS) has been implemented for the NASA Langley National Transonic Facility. The correction capability is currently restricted to corrections for solid wall interference in the model pitch plane for Mach numbers less than 0.45 due to a limitation in tunnel calibration data. A study to assess output sensitivity to measurement uncertainty was conducted to determine standard operational procedures and guidelines to ensure data quality during the testing process. Changes to the current facility setup and design recommendations for installing the WICS code into a new facility are reported.

  4. Study of the replacement correction factors for ionization chamber dosimetry by Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Wang, Lilie

    In ionization chamber radiation dosimetry, the introduction of the ion chamber into medium will unavoidably distort the radiation field near the chamber because the chamber cavity material (air) is different from the medium. A replacement correction factor, Prepl was introduced in order to correct the chamber readings to give an accurate radiation dose in the medium without the presence of the chamber. Generally it is very hard to measure the values of Prepl since they are intertwined with the chamber wall effect. In addition, the P repl values always come together with the stopping-power ratio of the two media involved. This makes the problem of determining the P repl values even more complicated. Monte Carlo simulation is an ideal method to investigate the replacement correction factors. In this study, four different methods of calculating the values of Prepl by Monte Carlo simulation are discussed. Two of the methods are designated as 'direct' methods in the sense that the evaluation of the stopping-power ratio is not necessary. The systematic uncertainties of the two direct methods are estimated to be about 0.1-0.2% which comes from the ambiguous definition of the energy cutoff Delta used in the Spencer-Attix cavity theory. The two direct methods are used to calculate the values of P repl for both plane-parallel chambers and cylindrical thimble chambers in either electron beams or photon beams. The calculation results are compared to measurements. For electron beams, good agreements are obtained. For thimble chambers in photon beams, significant discrepancies are observed between calculations and measurements. The experiments are thus investigated and the procedures are simulated by the Monte Carlo method. It is found that the interpretation of the measured data as the replacement correction factors in dosimetry protocols are not correct. In applying the calculation to the BIPM graphite chamber in a 60Co beam, the calculated values of P repl differ from those

  5. Vibration study of the APS storage ring vacuum-chamber/girder assembly

    SciTech Connect

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1991-02-01

    The overall objective of this study is to obtain insights into the dynamic coupling between the storage ring vacuum chamber and girder, and an assessment of the potential for unacceptable vibration amplitudes that would require redesign of the vacuum chamber supports. Specific objectives include determination of the vibrational characteristics (natural frequencies and modes) of the coupled vacuum-chamber/girder system, measurement of response amplitudes to forced excitation and ambient floor motion, and calculation of magnification factors associated with the various coupled vibration modes. 1 ref.

  6. Homogeneous nucleation rate measurements of 1-butanol in helium: a comparative study of a thermal diffusion cloud chamber and a laminar flow diffusion chamber.

    PubMed

    Brus, David; Hyvärinen, Antti-Pekka; Zdímal, Vladimír; Lihavainen, Heikki

    2005-06-01

    Isothermal homogeneous nucleation rates of 1-butanol were measured both in a thermal diffusion cloud chamber and in a laminar flow diffusion chamber built recently at the Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Prague, Czech Republic. The chosen system 1-butanol-helium can be studied reasonably well in both devices, in the overlapping range of temperatures. The results were compared with those found in the literature and those measured by Lihavainen in a laminar flow diffusion chamber of a similar design. The same isotherms measured with the thermal diffusion cloud chamber occur at highest saturation ratios of the three devices. Isotherms measured with the two laminar flow diffusion chambers are reasonably close together; the measurements by Lihavainen occur at lowest saturation ratios. The temperature dependences observed were similar in all three devices. The molecular content of critical clusters was calculated using the nucleation theorem and compared with the Kelvin equation. Both laminar flow diffusion chambers provided very similar sizes slightly above the Kelvin equation, whereas the thermal diffusion cloud chamber suggests critical cluster sizes significantly smaller. The results found elsewhere in the literature were in reasonable agreement with our results.

  7. Homogeneous nucleation rate measurements of 1-butanol in helium: a comparative study of a thermal diffusion cloud chamber and a laminar flow diffusion chamber.

    PubMed

    Brus, David; Hyvärinen, Antti-Pekka; Zdímal, Vladimír; Lihavainen, Heikki

    2005-06-01

    Isothermal homogeneous nucleation rates of 1-butanol were measured both in a thermal diffusion cloud chamber and in a laminar flow diffusion chamber built recently at the Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Prague, Czech Republic. The chosen system 1-butanol-helium can be studied reasonably well in both devices, in the overlapping range of temperatures. The results were compared with those found in the literature and those measured by Lihavainen in a laminar flow diffusion chamber of a similar design. The same isotherms measured with the thermal diffusion cloud chamber occur at highest saturation ratios of the three devices. Isotherms measured with the two laminar flow diffusion chambers are reasonably close together; the measurements by Lihavainen occur at lowest saturation ratios. The temperature dependences observed were similar in all three devices. The molecular content of critical clusters was calculated using the nucleation theorem and compared with the Kelvin equation. Both laminar flow diffusion chambers provided very similar sizes slightly above the Kelvin equation, whereas the thermal diffusion cloud chamber suggests critical cluster sizes significantly smaller. The results found elsewhere in the literature were in reasonable agreement with our results. PMID:15974753

  8. Smog Chamber Studies of Toluene Photooxidation By Ho Radicals

    NASA Astrophysics Data System (ADS)

    Barbu, A.; Bienenstock, Y.; Arias, M. C.; Collin, F.; Hastie, D. R.

    Two series of smog chamber experiments have been conducted to determine the par- ticulate yield from toluene photo oxidation and to investigate the dependence of the yield on experimental factors. Toluene was oxidized by HO radicals in the presence of NO by irradiating mixtures of toluene/isopropylnitrite/NO with UV light and experiments were done in the presence and absence of ammonium sulfate seed particles. Aerosol formation and growth was monitored using size distributions obtained from a Differential Mobility Analyzer and a Condensation Nucleus Counter. A Gas Chromatograph with an FID detector was used to monitor the toluene loss and a Chemiluminescence Analyzer measured the NO concentration. As expected the ozone concentration was found to be extremely low so the complicating ozone reactions are minimized. The experimental yields (the ratio between the organic aerosol mass formed and the mass of toluene reacted) were found to cluster around 10% but there were cases where the yields were as low as 1.7% and as high as 20%. The on-going work is focused on understanding the factors leading to the variability of experimental yields and on analyzing the data in the framework of the current gas/particle partitioning theory.

  9. Multipactor in rectangular waveguides

    SciTech Connect

    Semenov, V. E.; Rakova, E. I.; Anderson, D.; Lisak, M.; Puech, J.

    2007-03-15

    Multipactor inside a rectangular waveguide is studied using both an analytical approach and numerical simulations. Particular attention is given to an analysis of the role of such effects as the velocity spread of secondary emitted electrons and the action of the rf magnetic field on the electron motion. Conventional resonance theory is shown to give correct predictions for the multipactor threshold in cases where the height of the waveguide is very small and first order resonance multipactor dominates. In cases of higher order resonances, an accurate prediction of the multipactor threshold requires that the spread of the normal component of the electron emission velocity is taken into account. Furthermore, the spread of the tangential component of the electron emission velocity and the action of the rf magnetic field are shown to be very important when the waveguide height exceeds a certain critical value, which depends on the waveguide width. A new theory is developed for predicting the multipactor threshold at higher order resonances and this theory is confirmed by numerical simulations.

  10. A comparative study of three ionizing chambers for measurements of personal dose equivalent, Hp(10)

    NASA Astrophysics Data System (ADS)

    Oliveira, C.; Cardoso, J.; Silva, H.

    2015-11-01

    A comparative study of three ionization chambers which directly measure the quantity personal dose equivalent Hp(10), was performed. Results show that the ratio between the response (air kerma) determined by Monte Carlo and the experimental response (collected charge) normalized by the monitor unit is the same whatever is the chamber and that this ratio is proportional to the conversion coefficients for air kerma from photon fluence.

  11. Dorsal Skinfold Chamber Preparation in Mice: Studying Angiogenesis by Intravital Microscopy.

    PubMed

    Sckell, Axel; Leunig, Michael

    2016-01-01

    Intravital microscopy represents an internationally accepted and sophisticated experimental method to study angiogenesis, microcirculation, and many other parameters in a wide variety of neoplastic and nonneoplastic tissues. Since 1924, when the first transparent chamber model in animals was introduced, many other chamber models have been described in the literature for studying angiogenesis and microcirculation. Because angiogenesis is an active and dynamic process, one of the major strengths of chamber models is the possibility of monitoring angiogenesis in vivo continuously for up to several weeks with high spatial and temporal resolution. In addition, after the termination of experiments, tissue samples can be excised easily and further examined by various ex vivo methods such as histology, immunohistochemistry, and molecular biology. This chapter describes the protocol for the surgical preparation of a dorsal skinfold chamber in mice as well as the method to implant tumors in this chamber for further investigations of angiogenesis and other microcirculatory parameters. However, the application of the dorsal skinfold chamber model is not limited to the investigation of neoplastic tissues. To this end, the investigation of angiogenesis and other microcirculatory parameters of nonneoplastic tissues such as tendons, osteochondral grafts, or pancreatic islets has been an object of interest.

  12. Experimental and Computational Study of Intraglottal Pressures in a Three-Dimensional Model with a Non-Rectangular Glottal Shape

    NASA Astrophysics Data System (ADS)

    Torkaman, Saeed

    2011-12-01

    applied to study the flow patterns exiting the glottis. The false vocal folds were not included in this study. The glottis with half-sinusoidal arcs makes a difference relative to intraglottal pressures at the anterior (1/4), middle, and posterior (3/4) planes for all cases. The amount of the pressure difference across the three locations varied based on the glottal angle and diameter; however, the maximum pressure differences did not rise above approximately 8% of the transglottal pressure, even in the presence of the arytenoid cartilages. There were pressure and velocity gradients in both the axial (upstream-downstream) and longitudinal (anterior-posterior) directions, with primary gradients axially and secondary gradients longitudinally. The flow in the M6 model was more stable than in the M5 model downstream of the vocal folds and it did not skew except for the smallest glottal diameter; however, in the M5 model, even for large glottal diameters, the flow skews randomly and creates two different pressure distributions. Flow contraction toward the midcoronal plane within and downstream of the glottis was a primary finding of this study, which was not seen in the rectangular models of the glottis. The arytenoid cartilages structure produced additional secondary flow only for the cases with the largest glottal diameter, which changed the intraglottal pressures along the longitudinal direction. The results of this study present initial information about the relationship among intraglottal pressures, flow patterns, and the three-dimensionality of the glottis. This study suggests that the pressures and flows within the glottis are three-dimensional, and flow contraction in the sagittal plane is to be expected and considered in future phonatory modeling. Non-rectangular laryngeal geometries need to be accurately specified and are required in research programs of basic laryngeal function to establish benchmark empirical data.

  13. Design of an environmentally controlled rotating chamber for bioaerosol aging studies.

    PubMed

    Verreault, Daniel; Duchaine, Caroline; Marcoux-Voiselle, Melissa; Turgeon, Nathalie; Roy, Chad J

    2014-08-01

    A chamber was designed and built to study the long-term effects of environmental conditions on air-borne microorganisms. The system consists of a 55.5-L cylindrical chamber, which can rotate at variable speeds on its axis. The chamber is placed within an insulated temperature controlled enclosure which can be either cooled or heated with piezoelectric units. A germicidal light located at the chamber center irradiates at a 360° angle. Access ports are located on the stationary sections on both ends of the chamber. Relative humidity (RH) is controlled by passing the aerosol through meshed tubes surrounded by desiccant. Validation assay indicates that the interior temperature is stable with less than 0.5 °C in variation when set between 18 and 30 °C with the UV light having no effect of temperature during operation. RH levels set at 20%, 50% and 80% varied by 2.2%, 3.3% and 3.3%, respectively, over a 14-h period. The remaining fraction of particles after 18 h of suspension was 8.8% at 1 rotation per minute (rpm) and 2.6% at 0 rpm with the mass median aerodynamic diameter (MMAD) changing from 1.21 ± 0.04 µm to 1.30 ± 0.02 µm at 1 rpm and from 1.21 ± 0.04 µm to 0.91 ± 0.01 µm at 0 rpm within the same time period. This chamber can be used to increase the time of particle suspension in an aerosol cloud and control the temperature, RH and UV exposure; the design facilitates stationary sampling to be performed while the chamber is rotating.

  14. Design of an environmentally controlled rotating chamber for bioaerosol aging studies

    PubMed Central

    Verreault, Daniel; Duchaine, Caroline; Marcoux-Voiselle, Melissa; Turgeon, Nathalie; Roy, Chad J.

    2015-01-01

    A chamber was designed and built to study the long-term effects of environmental conditions on air-borne microorganisms. The system consists of a 55.5-L cylindrical chamber, which can rotate at variable speeds on its axis. The chamber is placed within an insulated temperature controlled enclosure which can be either cooled or heated with piezoelectric units. A germicidal light located at the chamber center irradiates at a 360° angle. Access ports are located on the stationary sections on both ends of the chamber. Relative humidity (RH) is controlled by passing the aerosol through meshed tubes surrounded by desiccant. Validation assay indicates that the interior temperature is stable with less than 0.5 °C in variation when set between 18 and 30 °C with the UV light having no effect of temperature during operation. RH levels set at 20%, 50% and 80% varied by 2.2%, 3.3% and 3.3%, respectively, over a 14-h period. The remaining fraction of particles after 18 h of suspension was 8.8% at 1 rotation per minute (rpm) and 2.6% at 0 rpm with the mass median aerodynamic diameter (MMAD) changing from 1.21 ± 0.04 μm to 1.30 ± 0.02 μm at 1 rpm and from 1.21 ± 0.04 μm to 0.91 ± 0.01 μm at 0 rpm within the same time period. This chamber can be used to increase the time of particle suspension in an aerosol cloud and control the temperature, RH and UV exposure; the design facilitates stationary sampling to be performed while the chamber is rotating. PMID:25055842

  15. Design of an environmentally controlled rotating chamber for bioaerosol aging studies.

    PubMed

    Verreault, Daniel; Duchaine, Caroline; Marcoux-Voiselle, Melissa; Turgeon, Nathalie; Roy, Chad J

    2014-08-01

    A chamber was designed and built to study the long-term effects of environmental conditions on air-borne microorganisms. The system consists of a 55.5-L cylindrical chamber, which can rotate at variable speeds on its axis. The chamber is placed within an insulated temperature controlled enclosure which can be either cooled or heated with piezoelectric units. A germicidal light located at the chamber center irradiates at a 360° angle. Access ports are located on the stationary sections on both ends of the chamber. Relative humidity (RH) is controlled by passing the aerosol through meshed tubes surrounded by desiccant. Validation assay indicates that the interior temperature is stable with less than 0.5 °C in variation when set between 18 and 30 °C with the UV light having no effect of temperature during operation. RH levels set at 20%, 50% and 80% varied by 2.2%, 3.3% and 3.3%, respectively, over a 14-h period. The remaining fraction of particles after 18 h of suspension was 8.8% at 1 rotation per minute (rpm) and 2.6% at 0 rpm with the mass median aerodynamic diameter (MMAD) changing from 1.21 ± 0.04 µm to 1.30 ± 0.02 µm at 1 rpm and from 1.21 ± 0.04 µm to 0.91 ± 0.01 µm at 0 rpm within the same time period. This chamber can be used to increase the time of particle suspension in an aerosol cloud and control the temperature, RH and UV exposure; the design facilitates stationary sampling to be performed while the chamber is rotating. PMID:25055842

  16. An optical pressure chamber designed for high numerical aperture studies on adherent living cells.

    PubMed

    Pagliaro, L; Reitz, F; Wang, J

    1995-06-01

    We have developed an optical pressure chamber designed for use with high numerical aperture oil immersion microscope objectives at working pressures up to 1,000 psi (67 atm abs). The chamber is optimized for studies of living, adherent, cultured mammalian cells using high resolution epifluorescence and phase contrast microscopy, and biophysical techniques such as fluorescence redistribution after photobleaching and optical trapping. The primary optical window assembly of the chamber can be removed and placed into a standard 35-mm tissue culture dish, allowing for culture, microinjection, and micromanipulation of adherent cells before they are loaded into the chamber. The chamber is designed to fit into a commercially available stage heater for temperature control, and we used a computer-controlled high pressure liquid chromatography pump for pressure control. A graphic software interface allows the user to program "dive" profiles and to link temperature and pressure data with digital image files of specimens under study. A minor modification of the present design will allow perfusion at high pressure. PMID:7633279

  17. Photochemical transformation of flue gas from a coal-fired power plant: a smog chamber study

    SciTech Connect

    Olszyna, K.J.; Luria, M.; Meagher, J.F.

    1982-06-01

    In this study, the relationship between the formation of sulfate aerosols and other secondary products and various environmental parameters is reported. Actual flue gas is used in these experiments which were conducted in smog chambers. Smog chamber techniques and instrumentation have progressed recently and are being utilized for the purposes of this study to simulate urban smog with emphasis on the photochemistry of sulfur dioxide. The purpose for examining the oxidation process of SO/sub 2/ to sulfate aerosols is because of the implication of sulfates in health effects, visibility degradation, and acidic precipitation.

  18. Computational Study of Primary Electrons in the Cusp Region of an Ion Engine's Discharge Chamber

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J. (Technical Monitor); Deshpande, Shirin S.; Mahalingam, Sudhakar; Menart, James A.

    2004-01-01

    In this work a computer code called PRIMA is used to study the motion of primary electrons in the magnetic cusp region of the discharge chamber of an ion engine. Even though the amount of wall area covered by the cusps is very small, the cusp regions are important because prior computational analyses have indicated that most primary electrons leave the discharge chamber through the cusps. The analysis presented here focuses on the cusp region only. The affects of the shape and size of the cusp region on primary electron travel are studied as well as the angle and location at which the electron enters the cusp region. These affects are quantified using the confinement length and the number density distributions of the primary electrons. In addition to these results comparisons of the results from PRIMA are made to experimental results for a cylindrical discharge chamber with two magnetic rings. These comparisons indicate the validity of the computer code called PRIMA.

  19. Study of Flow and Heat Transfer Characteristics of non-periodical attack angle in Narrow Rectangular Channel with Longitudinal Vortex generators

    NASA Astrophysics Data System (ADS)

    Wang, L.; Huang, J.

    2010-03-01

    The heat transfer enhancement of Longitudinal Vortex (LV) is a kind of technology with good efficiency and low resistance. LV is produced by Longitudinal Vortex Generators (LVGs) mounted on the heated surface. With relative long influence distance and simple structure, the LVGs can be used in narrow channels with flat surface. The dimension of narrow rectangular channel is 600 mm (length)×40 mm (width) ×3 mm (gap width), the single rectangular block LVGs is laid out in one heated plate. The dimension of LVGs is as follows: height is 1.8 mm, width is 2.2 mm, length is 14 mm, transverse distance is 4 mm, and longitudinal distance is 150 mm. The attack angle of LVGs is very important to extend this kind of technology in narrow rectangular channel with water medium. In previous study, the attack angle of LVGs of periodicity mounted was discussed and the optimal value was 440. In this paper, the attack angle of the first and the second LVG are changed and the others keep 440. Study of flow and heat transfer characteristic of non-periodicity attack angle is completed. The result shows that with the change of attack angle of the first and the second LVGs, the heat transfer enhancement of water medium is advantageous. This conclusion should be extended when the working medium is vapor-liquid two-phase. The results of this calculate method are compared with the experimental results of thermal infrared imager and phase doppler particle analyzer, and they are reasonable. FLUENT6.2 is used to simulate this question, and three velocity components of water flow have been used to define residual intensity ratio of LV.

  20. Final report for NIF chamber dynamics studies, final rept (May 1997), Subcontract No. B291847

    SciTech Connect

    Peterson, P.F.; Jin, H.; Scott, J.M.

    1997-07-01

    The National Ignition Facility (NIF), a 1.8 MJ, 192 laser beam facility, will have anticipated fusion yields of up to 20 MJ from D-T pellets encased in a gold hohlraum target. The energy emitted from the target in the form of x rays, neutrons, target debris kinetic energy, and target shrapnel will be contained in a 5 m. radius spherical target chamber. Various diagnostics will be stationed around the target at varying distances from the target. During each shot, the target will emit x rays that will vaporize nearby target facing surfaces including those of the diagnostics, the target positioner, and other chamber structures. This ablated vapor will be transported throughout the chamber, and will eventually condense and deposit on surfaces in the chamber, including the final optics debris shields. The research at the University of California at Berkeley relates primarily to the NIF chamber dynamics. The key design issues are the ablation of the chamber structures, transport of the vapor through the chamber and the condensation or deposition processes of those vaporized materials. An understanding of these processes is essential in developing a concept for protecting the final optics debris shields from an excessive coating (> 10 {Angstrom}) of target debris and ablated material, thereby prolonging their lifetime between change- outs. At Berkeley, we have studied the physical issues of the ablation process and the effects of varying materials, the condensation process of the vaporized material, and design schemes that can lower the threat posed to the debris shields by these processes. In addition to the work described briefly above, we performed extensive analysis of the target-chamber thermal response to in- chamber CO{sub 2} Cleaning and of work performed to model the behavior of silica vapor. The work completed this year has been published in several papers and a dissertation [1-6]. This report provides a summary of the work completed this year, as well as copies

  1. Tobacco smoke aging in the presence of ozone: A room-sized chamber study

    NASA Astrophysics Data System (ADS)

    Petrick, Lauren M.; Sleiman, Mohamad; Dubowski, Yael; Gundel, Lara A.; Destaillats, Hugo

    2011-09-01

    Exposure to tobacco pollutants that linger indoors after smoking has taken place ( thirdhand smoke, THS) can occur over extended periods and is modulated by chemical processes involving atmospheric reactive species. This study investigates the role of ozone and indoor surfaces in chemical transformations of tobacco smoke residues. Gas and particle constituents of secondhand smoke (SHS) as well as sorbed SHS on chamber internal walls and model materials (cotton, paper, and gypsum wallboard) were characterized during aging. After smoldering 10 cigarettes in a 24-m 3 room size chamber, gas-phase nicotine was rapidly removed by sorption to chamber surfaces, and subsequently re-emitted during ventilation with clean air to a level of ˜10% that during the smoking phase. During chamber ventilation in the presence of ozone (180 ppb), ozone decayed at a rate of 5.6 h -1 and coincided with a factor of 5 less nicotine sorbed to wallboard. In the presence of ozone, no gas phase nicotine was detected as a result of re-emission, and higher concentrations of nicotine oxidation products were observed than when ventilation was performed with ozone-free air. Analysis of the model surfaces showed that heterogeneous nicotine-ozone reaction was faster on paper than cotton, and both were faster than on wallboard. However, wallboard played a dominant role in ozone-initiated reaction in the chamber due to its large total geometric surface area and sink potential compared to the other substrates. This study is the first to show in a room-sized environmental chamber that the heterogeneous ozone chemistry of sorbed nicotine generates THS constituents of concern, as observed previously in bench-top studies. In addition to the main oxidation products (cotinine, myosmine and N-methyl formamide), nicotine-1-oxide was detected for the first time.

  2. Lean stability augmentation study. [on gas turbine combustion chambers

    NASA Technical Reports Server (NTRS)

    Mcvey, J. B.; Kennedy, J. B.

    1979-01-01

    An analytical conceptual design study and an experimental test program were conducted to investigate techniques and develop technology for improving the lean combustion limits of premixing, prevaporizing combustors applicable to gas turbine engine main burners. The use of hot gas pilots, catalyzed flameholder elements, and heat recirculation to augment lean stability limits was considered in the conceptual design study. Tests of flameholders embodying selected concepts were conducted at a pressure of 10 arm and over a range of entrance temperatures simulating conditions to be encountered during stratospheric cruise. The tests were performed using an axisymmetric flametube test rig having a nominal diameter of 10.2 cm. A total of sixteen test configurations were examined in which lean blowout limits, pollutant emission characteristics, and combustor performance were evaluated. The use of a piloted perforated plate flameholder employing a pilot fuel flow rate equivalent to 4 percent of the total fuel flow at a simulated cruise condition resulted in a lean blowout equivalence ratio of less than 0.25 with a design point (T sub zero = 600k, Phi = 0.6) NOx emission index of less than 1.0 g/kg.

  3. Control of electromagnetic edge effects in electrically-small rectangular plasma reactors

    SciTech Connect

    Trampel, Christopher P.; Stieler, Daniel S.

    2012-09-15

    Electromagnetic fields supported by rectangular reactors for plasma enhanced chemical vapor deposition are studied theoretically. Expressions for the fields in an electrically-small rectangular reactor with plasma in the chamber are derived. Modal field decompositions are employed under the homogeneous plasma slab approximation. The amplitude of each mode is determined analytically. It is shown that the field can be represented by the standing wave, evanescent waves tied to the edges, and an evanescent wave tied to the corners of the reactor. The impact of boundary conditions at the plasma edge on nonuniformity is quantified. Uniformity may be improved by placing a lossy magnetic layer on the reactor sidewalls. It is demonstrated that nonuniformity is a decreasing function of layer thickness.

  4. Outdoor chamber study to test multi-day effects. Volume 2. Environmental chamber data tabulations. Final report, August 1982-August 1984

    SciTech Connect

    Carter, W.P.L.; Dodd, M.C.; Long, W.D.; Atkinson, R.

    1984-12-01

    The smog chamber facilities of the University of California, Riverside were used to collect experimental data to assess the effects of multi-day irradiations on photochemical oxidant formation. This volume contains the printouts of all the data that were collected in the study. These data are suitable for use in developing and testing kinetic mechanisms of photochemical smog formation.

  5. DEVELOPMENT OF A SMALL CHAMBER METHOD FOR SVOC SINK EFFECT STUDY

    EPA Science Inventory

    This paper describes the details of the improved chamber system and reports the sink effect study for organophosphorus flame retardants (OP-FRs), including tris(2-chloroethyl) phosphate(TCEP), tris(1-chlor-2-propyl) phosphate (TCPP) and tris(1,3-dichloro-2-propyl) phosphate (TDC...

  6. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  7. Summary of Previous Chamber or Controlled Anthrax Studies and Recommendations for Possible Additional Studies

    SciTech Connect

    Piepel, Gregory F.; Amidan, Brett G.; Morrow, Jayne B.

    2010-12-29

    This report and an associated Excel file(a) summarizes the investigations and results of previous chamber and controlled studies(b) to characterize the performance of methods for collecting, storing and/or transporting, extracting, and analyzing samples from surfaces contaminated by Bacillus anthracis (BA) or related simulants. This report and the Excel are the joint work of the Pacific Northwest National Laboratory (PNNL) and the National Institute of Standards and Technology (NIST) for the Department of Homeland Security, Science and Technology Directorate. The report was originally released as PNNL-SA-69338, Rev. 0 in November 2009 with limited distribution, but was subsequently cleared for release with unlimited distribution in this Rev. 1. Only minor changes were made to Rev. 0 to yield Rev. 1. A more substantial update (including summarizing data from other studies and more condensed summary tables of data) is underway

  8. Thermal Studies of the Laser Inertial Fusion Energy (LIFE) Target during Injection into the Fusion Chamber

    SciTech Connect

    Miles, R. R.; Havstad, M.; LeBlanc, M.; Chang, A.; Golosker, I.; Rosso, P.

    2014-09-09

    The tests of the external heat transfer coefficient suggests that the values used in the numerical analysis for the temperature distribution within the fusion fuel target following flight into the target chamber are probably valid. The tests of the heat transfer phenomena occurring within the target due the rapid heating of the LEH window for the hot gasses within the fusion chamber show that the heat does indeed convect via the internal helium environment of the target towards the capsule and that the pressure in the front compartment of the target adjacent to the LEH window increases such that t bypass venting of the internal helium into the second chamber adjacent to the capsule is needed to prevent rupture of the membranes. The bypass flow is cooled by the hohlraum during this venting. However, the experiments suggest that our internal heat flow calculations may be low by about a factor of 2. Further studies need to be conducted to investigate the differences between the experiment and the numerical analysis. Future studies could also possibly bring the test conditions closer to those expected in the fusion chamber to better validate the results. A sacrificial layer will probably be required on the LEH window of the target and this can be used to mitigate any unexpected target heating.

  9. Turbulence Measurements of Rectangular Nozzles with Bevel

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2015-01-01

    This paper covers particle image velocimetry measurements of a family of rectangular nozzles with aspect ratios 2, 4, and 8, in the high subsonic flow regime. Far-field acoustic results, presented previously, showed that increasing aspect ratios increased the high frequency noise, especially directed in the polar plane containing the minor axis of the nozzle. The measurements presented here have important implications in the modeling of turbulent sources for acoustic analogy theories. While the nonaxisymmetric mean flow from the rectangular nozzles can be studied reliably using computational solutions, the nonaxisymmetry of the turbulent fluctuations, particularly at the level of velocity components, cannot; only measurements such as these can determine the impact of nozzle geometry on acoustic source anisotropy. Additional nozzles were constructed that extended the wide lip on one side of these nozzles to form beveled nozzles. The paper first documents the velocity fields, mean and variance, from the round, rectangular, and beveled rectangular nozzles at high subsonic speeds. A second section introduces measures of the isotropy of the turbulence, such as component ratios and lengthscales, first by showing them for a round jet and then for the rectangular nozzles. From these measures the source models of acoustic analogy codes can be judged or modified to account for these anisotropies.

  10. Ring cusp/hollow cathode discharge chamber performance studies. [ion propulsion

    NASA Technical Reports Server (NTRS)

    Vaughn, J. A.; Wilbur, Paul J.

    1988-01-01

    An experimental study was performed to determine the effects of hollow cathode position, anode position, and ring cusp magnetic field configuration and strength on discharge chamber performance. The results are presented in terms of comparative plasma ion energy cost, extracted ion fraction, and beam profile data. Such comparisons are used to demonstrate whether changes in performance are caused by changes in the loss rate of primary electrons to the anode or the loss rate of ions to discharge chamber walls or cathode and anode surfaces. Results show: (1) the rate of primary electron loss to the anode decreases as the anode is moved downstream of the ring cusp toward the screen grid; (2) the loss rate of ions to hollow cathode surfaces are excessive if the cathode is located upstream of a point of peak magnetic flux density at the discharge chamber centerline; and (3) the fraction of the ions produced that are lost to discharge chamber walls and ring magnet surfaces is reduced by positioning of the magnet rings so the plasma density is uniform over the grid surface, and adjusting their strength to a level where it is sufficient to prevent excessive ion losses by Bohm diffusion.

  11. Computational analysis of a human inhalation test chamber for dosimetry-and-health effect studies.

    PubMed

    Hyun, S; Kleinstreuer, C

    2002-08-01

    Proper air flow and tracer gas distribution or contaminant ventilation are of great importance in biomedical test chambers or industrial workrooms. The focus is on mass transfer in an inhalation test chamber with a breathing subject on a bike exposed to a tracer gas environment (e.g., carbon monoxide). This is an environmentally realistic setup for dosimetry-and-health effect studies, which require controlled, near-uniform pollutant concentrations. However, unmodified test chambers exhibit a strong single vortex in the larger breathing zone, which, depending upon the subject's location, implies possible trace gas depletion during inhalation, foreign particle entrainment, excessive air velocities, and so on. Employing a commercial finite-volume code with user-enhanced Fortran programs, the transient three-dimensional turbulent momentum, mass, and heat transfer equations have been solved and the configurations of a suitable flow redirection device, different man-machine locations, and thermal effects have been analyzed. As a result, the best air flow device configuration and man-machine orientation have been determined to achieve high and consistent trace gas concentrations inhaled by the subject, for example, 96 percent of the CO concentration at the chamber inlet is inhaled by the subject for the optimal scenario. PMID:12166891

  12. Numerical study of fully developed non-Newtonian fluid flow and heat transfer in a rectangular channel with a moving wall

    SciTech Connect

    Syrjaelae, S.

    1997-01-01

    Flow and heat transfer characteristics in a rectangular channel covered by an isothermally heated moving wall were studied for a non-Newtonian fluid obeying the power-law relationship under fully developed creeping flow conditions. The governing partial differential equations were solved using the finite element method together with a penalty formulation. A practical application behind the present study is the screw extrusion process. Several simplifications were, however, introduced into the analysis, and therefore the primary purpose of this study is not to characterize the flow and heat transfer in the actual screw extruder, but to present a first effort towards this goal. The most interesting result revealed by the analysis is that the recirculatory motion set up by the diagonally moving top wall has a pronounced influence on the heat transfer.

  13. Electrochemical apparatus comprising modified disposable rectangular cuvette

    DOEpatents

    Dattelbaum, Andrew M; Gupta, Gautam; Morris, David E

    2013-09-10

    Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.

  14. Outdoor chamber study to test multi-day effects. Volume 3. Documentation for computer-readable environmental chamber data. Final report, August 1982-August 1984

    SciTech Connect

    Carter, W.P.L.; Dodd, M.C.; Long, W.D.; Atkinson, R.

    1984-12-01

    The smog chamber facilities of the University of California, Riverside were used to collect experimental data to assess the effects of multi-day irradiations on photochemical oxidant formation. This volume includes documentation on the computer-readable magnetic tape that contains all the data collected in the study. The tape is suitable for use by modelers to develop and test kinetic mechanisms of photochemical smog formation.

  15. COMPASS - COMparative Particle formation in the Atmosphere using portable Simulation chamber Study techniques

    NASA Astrophysics Data System (ADS)

    Bonn, B.; Sun, S.; Haunold, W.; Sitals, R.; van Beesel, E.; dos Santos, L.; Nillius, B.; Jacobi, S.

    2013-12-01

    In this study we report the set-up of a novel twin chamber technique that uses the comparative method and establishes an appropriate connection of atmospheric and laboratory methods to broaden the tools for investigations. It is designed to study the impact of certain parameters and gases on ambient processes, such as particle formation online, and can be applied in a large variety of conditions. The characterisation of both chambers proved that both chambers operate identically, with a residence time xT (COMPASS1) = 26.5 ± 0.3 min and xT (COMPASS2) = 26.6 ± 0.4 min, at a typical flow rate of 15 L min-1 and a gas leak rate of (1.6 ± 0.8) × 10-5 s-1. Particle loss rates were found to be larger (due to the particles' stickiness to the chamber walls), with an extrapolated maximum of 1.8 × 10-3 s-1 at 1 nm, i.e. a hundredfold of the gas leak rate. This latter value is associated with sticky non-volatile gaseous compounds, too. Comparison measurement showed no significant differences. Therefore operation under atmospheric conditions is trustworthy. To indicate the applicability and the benefit of the system, a set of experiments was conducted under different conditions, i.e. urban and remote, enhanced ozone and terpenes as well as reduced sunlight. In order to do so, an ozone lamp was applied to enhance ozone in one of two chambers; the measurement chamber was protected from radiation by a first-aid cover and volatile organic compounds (VOCs) were added using a small additional flow and a temperature-controlled oven. During the elevated ozone period, ambient particle number and volume increased substantially at urban and remote conditions, but by a different intensity. Protection of solar radiation displayed a clear negative effect on particle number, while terpene addition did cause a distinct daily pattern. E.g. adding β pinene particle number concentration rose by 13% maximum at noontime, while no significant effect was observable during darkness. Therefore

  16. A rectangular capillary suction apparatus

    SciTech Connect

    Lee, D.J. . Dept. of Chemical Engineering); Hsu, Y.H. . Dept. of Chemical Engineering)

    1994-06-01

    Fluid flow and cake formation in a rectangular capillary suction apparatus (RCSA) are investigated experimentally and theoretically. Water, methanol, ethanol, and ethylene glycol are used to study the effects of liquid properties, and CaCO[sub 3], kaolin, and bentonite slurries are employed for studying the effects of cake formation on capillary suction-time (CST). A theory based on a diffusion-like approach is developed. The liquid saturation under the inner cell will approach a constant value when the wet front distance is large. A method based on this experimental finding for estimating the cake specific resistance is proposed. The agreement between experiments and calculations is close. The RCSA is superior to the cylindrical CSA when treating liquids with small diffusivities or slurries with high solid concentration and/or with high averaged specific resistance.

  17. Field calibration studies for ionisation chambers in mixed high-energy radiation fields.

    PubMed

    Theis, C; Forkel-Wirth, D; Fuerstner, M; Mayer, S; Otto, Th; Roesler, S; Vincke, H

    2007-01-01

    The monitoring of ambient doses at work places around high-energy accelerators is a challenging task due the complexity of the mixed stray radiation fields encountered. At CERN, mainly Centronics IG5 high-pressure ionisation chambers are used to monitor radiation exposure in mixed fields. The monitors are calibrated in the operational quantity ambient dose equivalent H*(10) using standard, source-generated photon- and neutron fields. However, the relationship between ionisation chamber reading and ambient dose equivalent in a mixed high-energy radiation field can only be assessed if the spectral response to every component and the field composition is known. Therefore, comprehensive studies were performed at the CERN-EU high-energy reference field facility where the spectral fluence for each particle type has been assessed with Monte Carlo simulations. Moreover, studies have been performed in an accessible controlled radiation area in the vicinity of a beam loss point of CERN's proton synchrotron. The comparison of measurements and calculations has shown reasonable agreement for most exposure conditions. The results indicate that conventionally calibrated ionisation chambers can give satisfactory response in terms of ambient dose equivalent in stray radiation fields at high-energy accelerators in many cases. These studies are one step towards establishing a method of 'field calibration' of radiation protection instruments in which Monte Carlo simulations will be used to establish a correct correlation between the response of specific detectors to a given high-energy radiation field.

  18. Anterior chamber depth and primary angle-closure glaucoma. II. A genetic study.

    PubMed

    Alsbirk, P H

    1975-06-01

    The genetics of primary angle-closure glaucome (a.c.g.) was studied: a) through the prevalence in sibs and children of a.c.g. probands, and b) through the family distribution of the closely correlated axial anterior chamber depth (ACD). The material emerged from an epidemiologic study in Greeland Eskimos. a) Compared with the general population, the observed prevalence of a.c.g. was increased in sibs of a.c.g. probands and the estimated, future prevalence was found to be the same in sibs and children. Age influence prevented a proper Mendelian analysis, but no simple monogenic inheritance seems probable. b) The biometric study showed a relatively shallow chamber in sibs, children, nephews, nieces and grandchildren of a.c.g. probands. Regression analyses revealed a corresponding pattern, also in control families of probands with shallow chambers and in general population families. A heritability of 70% was found, indicating that about two thirds of the age and sex independent variation in ACD seems to be genetic. PMID:1174403

  19. Acoustic studies for alpha background rejection in dark matter bubble chamber detectors

    SciTech Connect

    Bou-Cabo, M.; Felis, I.; Ardid, M.; Collaboration: COUPP Collaboration

    2013-08-08

    COUPP (Chicagoland Observatory for Underground Particle Physics) is an experiment with bubble chambers able to detect dark matter directly either with Spin-Dependent or with Spin-Independent interactions. The target material is a superheated liquid (usually CF3I) that can be bubble nucleated due to nuclear recoils produced by elastic collisions of dark matter particles. The bubble growth inside the chamber is accompanied with an acoustic signature. The acoustic technique has been successfully used to have a good alpha discrimination (about 99%). In this paper, we present different studies and results related with the characterization of the acoustic properties of the detector and the different phenomena involved in the acoustic measurements of the bubble growth, such as sound generation, sound transmission and optimization of piezoelectric transducers.

  20. Study on thermally induced vibration of flexible boom in various thermal environments of vacuum chamber

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Oh, Kyung-Won; Park, Hyun-Bum; Sugiyama, Y.

    2005-02-01

    In order to simulate the thermally-induced vibration phenomenon of the flexible thin boom structure of the spacecraft such as the thin solar panel and the flexible cantilever with the attached tip mass in space, the thermally-induced vibration including thermal flutter of the flexible thin boom with the concentrated tip mass was experimentally investigated at various thermal environments using a heat lamp and both vacuum and air condition using the vacuum chamber. In this experimental study, divergence speed, natural frequency and thermal strains of the thermally-induced vibration were comparatively evaluated at various thermal environment conditions. Finally the thermally-induced vibration of the flexible boom structure of the earth orbit satellite in solar radiation environment from the earth eclipse region including umbra and penumbra was simulated using the vacuum chamber and power control of the heating lamp.

  1. Mutual coupling between rectangular microstrip patch antennas

    NASA Technical Reports Server (NTRS)

    Huynh, Tan; Lee, Kai-Fong; Chebolu, Siva R.; Lee, R. Q.

    1992-01-01

    The paper presents a comprehensive study of the mutual coupling between two rectangular microstrip patch antennas. The cavity model is employed to give numerical results for both mutual impedance and mutual coupling parameters for the E-plane, H-plane, diagonal, and perpendicular orientations. The effects of substrate thickness, substrate permittivity, and feed positions are discussed.

  2. Optimization of PECVD Chamber Cleans Through Fundamental Studies of Electronegative Fluorinated Gas Discharges.

    NASA Astrophysics Data System (ADS)

    Langan, John

    1996-10-01

    The predominance of multi-level metalization schemes in advanced integrated circuit manufacturing has greatly increased the importance of plasma enhanced chemical vapor deposition (PECVD) and in turn in-situ plasma chamber cleaning. In order to maintain the highest throughput for these processes the clean step must be as short as possible. In addition, there is an increasing desire to minimize the fluorinated gas usage during the clean, while maximizing its efficiency, not only to achieve lower costs, but also because many of the gases used in this process are global warming compounds. We have studied the fundamental properties of discharges of NF_3, CF_4, and C_2F6 under conditions relevant to chamber cleaning in the GEC rf reference cell. Using electrical impedance analysis and optical emission spectroscopy we have determined that the electronegative nature of these discharges defines the optimal processing conditions by controlling the power coupling efficiency and mechanisms of power dissipation in the discharge. Examples will be presented where strategies identified by these studies have been used to optimize actual manufacturing chamber clean processes. (This work was performed in collaboration with Mark Sobolewski, National Institute of Standards and Technology, and Brian Felker, Air Products and Chemicals, Inc.)

  3. Chamber bioaerosol study: human emissions of size-resolved fluorescent biological aerosol particles.

    PubMed

    Bhangar, S; Adams, R I; Pasut, W; Huffman, J A; Arens, E A; Taylor, J W; Bruns, T D; Nazaroff, W W

    2016-04-01

    Humans are a prominent source of airborne biological particles in occupied indoor spaces, but few studies have quantified human bioaerosol emissions. The chamber investigation reported here employs a fluorescence-based technique to evaluate bioaerosols with high temporal and particle size resolution. In a 75-m(3) chamber, occupant emission rates of coarse (2.5-10 μm) fluorescent biological aerosol particles (FBAPs) under seated, simulated office-work conditions averaged 0.9 ± 0.3 million particles per person-h. Walking was associated with a 5-6× increase in the emission rate. During both walking and sitting, 60-70% or more of emissions originated from the floor. The increase in emissions during walking (vs. while sitting) was mainly attributable to release of particles from the floor; the associated increased vigor of upper body movements also contributed. Clothing, or its frictional interaction with human skin, was demonstrated to be a source of coarse particles, and especially of the highly fluorescent fraction. Emission rates of FBAPs previously reported for lecture classes were well bounded by the experimental results obtained in this chamber study. In both settings, the size distribution of occupant FBAP emissions had a dominant mode in the 3-5 μm diameter range. PMID:25704637

  4. The Chamber for Studying Rice Response to Elevated Nighttime Temperature in Field

    PubMed Central

    Chen, Song; Zheng, Xi; Wang, Dangying; Xu, Chunmei; Laza, Ma. Rebecca C.; Zhang, Xiufu

    2013-01-01

    An in situ temperature-controlled field chamber was developed for studying a large population of rice plant under different nighttime temperature treatments while maintaining conditions similar to those in the field during daytime. The system consists of a pipe hoop shed-type chamber with manually removable covers manipulated to provide a natural environment at daytime and a relatively stable and accurate temperature at night. Average air temperatures of 22.4 ± 0.3°C at setting of 22°C, 27.6 ± 0.4°C at 27°C, and 23.8 ± 0.7°C ambient conditions were maintained with the system. No significant horizontal and vertical differences in temperature were found and only slight changes in water temperatures were observed between the chambers and ambient conditions at 36 days after transplanting. A slight variation in CO2 concentration was observed at the end of the treatment during the day, but the 10-μmol CO2 mol−1 difference was too small to alter plant response. The present utilitarian system, which only utilizes an air conditioner/heater, is suitable for studying the effect of nighttime temperature on plant physiological responses with minimal perturbation of other environmental factors. At the same time, it will enable in situ screening of many rice genotypes. PMID:24089603

  5. The chamber for studying rice response to elevated nighttime temperature in field.

    PubMed

    Chen, Song; Zheng, Xi; Wang, Dangying; Xu, Chunmei; Laza, Ma Rebecca C; Zhang, Xiufu

    2013-01-01

    An in situ temperature-controlled field chamber was developed for studying a large population of rice plant under different nighttime temperature treatments while maintaining conditions similar to those in the field during daytime. The system consists of a pipe hoop shed-type chamber with manually removable covers manipulated to provide a natural environment at daytime and a relatively stable and accurate temperature at night. Average air temperatures of 22.4 ± 0.3°C at setting of 22°C, 27.6 ± 0.4°C at 27°C, and 23.8 ± 0.7°C ambient conditions were maintained with the system. No significant horizontal and vertical differences in temperature were found and only slight changes in water temperatures were observed between the chambers and ambient conditions at 36 days after transplanting. A slight variation in CO₂ concentration was observed at the end of the treatment during the day, but the 10-μmol CO₂ mol⁻¹ difference was too small to alter plant response. The present utilitarian system, which only utilizes an air conditioner/heater, is suitable for studying the effect of nighttime temperature on plant physiological responses with minimal perturbation of other environmental factors. At the same time, it will enable in situ screening of many rice genotypes. PMID:24089603

  6. State-of-the-art exposure chamber for highly controlled and reproducible THz biological effects studies

    NASA Astrophysics Data System (ADS)

    Cerna, Cesario Z.; Elam, David P.; Echchgadda, Ibtissam; Sloan, Mark A.; Wilmink, Gerald J.

    2014-03-01

    Terahertz (THz) imaging and sensing technologies are increasingly being used at international airports for security screening purposes and at major medical centers for cancer and burn diagnosis. The emergence of new THz applications has directly resulted in an increased interest regarding the biological effects associated with this frequency range. Knowledge of THz biological effects is also desired for the safe use of THz systems, identification of health hazards, and development of empirically-based safety standards. In this study, we developed a state-of-the-art exposure chamber that allowed for highly controlled and reproducible studies of THz biological effects. This innovative system incorporated an industry grade cell incubator system that permitted a highly controlled exposure environment, where temperatures could be maintained at 37 °C +/- 0.1 °C, carbon dioxide (CO2) levels at 5% +/- 0.1%, and relative humidity (RH) levels at 95% +/- 1%. To maximize the THz power transmitted to the cell culture region inside the humid incubator, a secondary custom micro-chamber was fabricated and incorporated into the system. This micro-chamber shields the THz beam from the incubator environment and could be nitrogen-purged to eliminate water absorption effects. Additionally, a microscope that allowed for real-time visualization of the live cells before, during, and after THz exposure was integrated into the exposure system.

  7. Experimental and numerical studies of a microfluidic device with compliant chambers for flow stabilization

    NASA Astrophysics Data System (ADS)

    Iyer, V.; Raj, A.; Annabattula, R. K.; Sen, A. K.

    2015-07-01

    This paper reports experimental and numerical studies of a passive microfluidic device that stabilizes a pulsating incoming flow and delivers a steady flow at the outlet. The device employs a series of chambers along the flow direction with a thin polymeric membrane (of thickness 75-250 µm) serving as the compliant boundary. The deformation of the membrane allows accumulation of fluid during an overflow and discharge of fluid during an underflow for flow stabilization. Coupled fluid-structure simulations are performed using Mooney-Rivlin formulations to account for a thin hyperelastic membrane material undergoing large deformations to accurately predict the device performance. The device was fabricated with PDMS as the substrate material and thin PDMS membrane as the compliant boundary. The performance of the device is defined in terms of a parameter called ‘Attenuation Factor (AF)’. The effect of various design parameters including membrane thickness, elastic modulus, chamber size and number of chambers in series as well as operating conditions including the outlet pressure, mean input flow rate, fluctuation amplitude and frequency on the device performance were studied using experiments and simulations. The simulation results successfully confront the experimental data (within 10%) which validates the numerical simulations. The device was used at the exit of a PZT actuated valveless micropump to take pulsating flow at the upstream and deliver steady flow downstream. The amplitude of the pulsating flow delivered by the micropump was significantly reduced (AF = 0.05 for a device with three 4 mm chambers) but at the expense of a reduction in the pressure capability (<20%). The proposed device could potentially be used for reducing flow pulsations in practical microfluidic circuits.

  8. NASA's Biomass Production Chamber: a testbed for bioregenerative life support studies.

    PubMed

    Wheeler, R M; Mackowiak, C L; Stutte, G W; Sager, J C; Yorio, N C; Ruffe, L M; Fortson, R E; Dreschel, T W; Knott, W M; Corey, K A

    1996-01-01

    The Biomass Production Chamber (BPC) located at Kennedy Space Center, FL, USA provides a large (20 m2 area, 113 m3 vol.), closed environment for crop growth tests for NASA's Controlled Ecological Life Support System (CELSS) program. Since the summer of 1988, the chamber has operated on a near-continuous basis (over 1200 days) without any major failures (excluding temporary power losses). During this time, five crops of wheat (64-86 days each), three crops of soybean (90 to 97 days), five crops of lettuce (28-30 days), and four crops of potato (90 to 105 days were grown, producing 481 kg of dry plant biomass, 196 kg edible biomass, 540 kg of oxygen, 94,700 kg of condensed water, and fixing 739 kg of carbon dioxide. Results indicate that total biomass yields were close to expected values for the given light input, but edible biomass yields and harvest indices were slightly lower than expected. Stand photosynthesis, respiration, transpiration, and nutrient uptake rates were monitored throughout growth and development of the different crops, along with the build-up of ethylene and other volatile organic compounds in the atmosphere. Data were also gathered on system hardware maintenance and repair, as well as person-hours required for chamber operation. Future tests will include long-term crop production studies, tests in which nutrients from waste treatment systems will be used to grow new crops, and multi-species tests.

  9. Prevention of cartilage dehydration in imaging studies with a customized humidity chamber.

    PubMed

    Choo, Ryan J; Firminger, Colin; Müller, Ralph; Stok, Kathryn S

    2013-09-01

    Quantitative three-dimensional imaging methods such as micro-computed tomography (μCT) allow for the rapid and comprehensive evaluation of cartilage and bone in animal models, which can be used for drug development and related research in arthritis. However, when imaging fresh cartilage tissue in air, a common problem is tissue dehydration which causes movement artifact in the resulting images. These artifacts distort scans and can render them unusable, leading to a considerable loss of time and effort with sample preparation and measurement. The sample itself is also irretrievably damaged by the dehydration, often unable to return to its full tissue thickness upon rehydration. Additionally, imaging with ionic contrast agents such as Hexabrix(TM) must be performed in air, otherwise the agent will be washed out if immersed in a liquid. The first goal of this study was to design a customized humidity chamber to maintain cartilage hydration without the need for immersion. Following this, the use of the humidity chamber during a synchrotron radiation-μCT scan was validated and its performance evaluated. Results showed that the loss of fluid film volume is associated with scanning at low humidity (87%), and can be avoided using the humidity chamber. Coupling this technology with advances in synchrotron imaging (e.g., phase contrast imaging) or contrast agents is promising.

  10. Ultrahigh-vacuum chamber equipped with a reaction cell for studying liquid-phase catalytic reactions

    NASA Astrophysics Data System (ADS)

    Gardin, Denis E.; Somorjai, Gabor A.

    1993-05-01

    We describe the construction and operation of a liquid-phase reaction cell designed in our laboratory that is attached to an ultrahigh-vacuum (UHV) chamber equipped with the traditional surface science techniques for structure and composition analysis. The sample surface can be prepared and characterized in the UHV chamber prior to transfer in the liquid-phase reaction cell. The transfer has been designed so that there is no loss of the UHV chamber vacuum integrity, as few parts as possible come into contact with the liquid, the surface stays clean during the transfer. The liquid-phase reaction cell itself is designed to study liquid-phase hydrogenation reactions at pressures up to 2 atm and temperatures up to 70 °C. A 1-mm-diam liquid jet with a velocity up to 6 m/s is produced by a gear pump that is incident on the sample surface to allow good mass transfer at the liquid-solid interface. The progress of the reaction is followed by gas chromatography. We report the reaction rate data for the hydrogenation of cyclohexene on a platinum foil.

  11. NASA's Biomass Production Chamber: a testbed for bioregenerative life support studies

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Stutte, G. W.; Sager, J. C.; Yorio, N. C.; Ruffe, L. M.; Fortson, R. E.; Dreschel, T. W.; Knott, W. M.; Corey, K. A.

    1996-01-01

    The Biomass Production Chamber (BPC) located at Kennedy Space Center, FL, USA provides a large (20 m2 area, 113 m3 vol.), closed environment for crop growth tests for NASA's Controlled Ecological Life Support System (CELSS) program. Since the summer of 1988, the chamber has operated on a near-continuous basis (over 1200 days) without any major failures (excluding temporary power losses). During this time, five crops of wheat (64-86 days each), three crops of soybean (90 to 97 days), five crops of lettuce (28-30 days), and four crops of potato (90 to 105 days were grown, producing 481 kg of dry plant biomass, 196 kg edible biomass, 540 kg of oxygen, 94,700 kg of condensed water, and fixing 739 kg of carbon dioxide. Results indicate that total biomass yields were close to expected values for the given light input, but edible biomass yields and harvest indices were slightly lower than expected. Stand photosynthesis, respiration, transpiration, and nutrient uptake rates were monitored throughout growth and development of the different crops, along with the build-up of ethylene and other volatile organic compounds in the atmosphere. Data were also gathered on system hardware maintenance and repair, as well as person-hours required for chamber operation. Future tests will include long-term crop production studies, tests in which nutrients from waste treatment systems will be used to grow new crops, and multi-species tests.

  12. Microbial volatile organic compounds in moldy interiors: a long-term climate chamber study.

    PubMed

    Schuchardt, Sven; Strube, Andrea

    2013-06-01

    The present study simulated large-scale indoor mold damage in order to test the efficiency of air sampling for the detection of microbial volatile organic compounds (MVOCs). To do this, a wallpaper damaged by condensation was stored in a climate chamber (representing a hypothetical test room of 40 m(3) volume) and was inoculated with 14 typical indoor fungal strains. The chamber ventilation conditions were adjusted to common values found in moldy homes, and the mold growth was allowed to continue to higher than average values. The MVOC content of the chamber air was analyzed daily for a period of 105 days using coupled gas chromatography/mass spectrometry (GC-MS). This procedure guarantees MVOC profiling without external factors such as outdoor air, building materials, furniture, and occupants. However, only nine MVOCs could be detected during the sampling period, which indicates that the very low concentrated MVOCs are hardly accessible, even under these favorable conditions. Furthermore, most of the MVOCs that were detected cannot be considered as reliable indicators of mold growth in indoor environments.

  13. Prevention of cartilage dehydration in imaging studies with a customized humidity chamber

    NASA Astrophysics Data System (ADS)

    Choo, Ryan J.; Firminger, Colin; Müller, Ralph; Stok, Kathryn S.

    2013-09-01

    Quantitative three-dimensional imaging methods such as micro-computed tomography (μCT) allow for the rapid and comprehensive evaluation of cartilage and bone in animal models, which can be used for drug development and related research in arthritis. However, when imaging fresh cartilage tissue in air, a common problem is tissue dehydration which causes movement artifact in the resulting images. These artifacts distort scans and can render them unusable, leading to a considerable loss of time and effort with sample preparation and measurement. The sample itself is also irretrievably damaged by the dehydration, often unable to return to its full tissue thickness upon rehydration. Additionally, imaging with ionic contrast agents such as HexabrixTM must be performed in air, otherwise the agent will be washed out if immersed in a liquid. The first goal of this study was to design a customized humidity chamber to maintain cartilage hydration without the need for immersion. Following this, the use of the humidity chamber during a synchrotron radiation-μCT scan was validated and its performance evaluated. Results showed that the loss of fluid film volume is associated with scanning at low humidity (87%), and can be avoided using the humidity chamber. Coupling this technology with advances in synchrotron imaging (e.g., phase contrast imaging) or contrast agents is promising.

  14. NASA's biomass production chamber: a testbed for bioregenerative life support studies

    NASA Astrophysics Data System (ADS)

    Wheeler, R. M.; Mackowiak, C. L.; Stutte, G. W.; Sager, J. C.; Yorio, N. C.; Ruffe, L. M.; Fortson, R. E.; Dreschel, T. W.; Knott, W. M.; Corey, K. A.

    1996-01-01

    The Biomass Production Chamber (BPC) located at Kennedy Space Center, FL, USA provides a large (20 m^2 area, 113 m^3 vol.), closed environment for crop growth tests for NASA's Controlled Ecological Life Support System (CELSS) program. Since the summer of 1988, the chamber has operated on a near-continuous basis (over 1200 days) without any major failures (excluding temporary power losses). During this time, five crops of wheat (64-86 days each), three crops of soybean (90 to 97 days), five crops of lettuce (28-30 days), and four crops of potato (90 to 105 days) were grown, producing 481 kg of dry plant biomass, 196 kg edible biomass, 540 kg of oxygen, 94,700 kg of condensed water, and fixing 739 kg of carbon dioxide. Results indicate that total biomass yields were close to expected values for the given light input, but edible biomass yields and harvest indices were slightly lower than expected. Stand photosynthesis, respiration, transpiration, and nutrient uptake rates were monitored throughout growth and development of the different crops, along with the build-up of ethylene and other volatile organic compounds in the atmosphere. Data were also gathered on system hardware maintenance and repair, as well as person-hours required for chamber operation. Future tests will include long-term crop production studies, tests in which nutrients from waste treatment systems will be used to grow new crops, and multi-species tests.

  15. Indoor pollution by organic emissions from textile floor coverings: Climate test chamber studies under static conditions

    NASA Astrophysics Data System (ADS)

    Sollinger, S.; Levsen, K.; Wünsch, G.

    The emission of organic compounds from textile floor coverings was studied in a climate test chamber under static conditions (zero air exchange) in order to test the parameters which influence such chamber experiments, i.e. the temperature, the humidity and the adsorption on the walls. While depending on the volatility and the polarity of the compound, the equilibrium concentrations increase in part substantially with increasing temperature, the humidity has little impact on the observed concentrations. The chamber walls represent an important sink for polar and less volatile compounds, although this sink does not influence the equilibrium concentrations. Ten textile floor coverings have been tested (7 of which had a polyamide pile and a styrene-butadiene rubber backing). Ninety-nine compounds have been identified. The equilibrium concentrations of 20 compounds have been determined. These equilibrium concentrations do not depend on the sample size, the sample loading nor on wall effects, in contrast to the dynamic method, where these parameters play an important role.

  16. Exposure chamber

    DOEpatents

    Moss, Owen R.; Briant, James K.

    1983-01-01

    An exposure chamber includes an imperforate casing having a fluid inlet at the top and an outlet at the bottom. A single vertical series of imperforate trays is provided. Each tray is spaced on all sides from the chamber walls. Baffles adjacent some of the trays restrict and direct the flow to give partial flow back and forth across the chambers and downward flow past the lowermost pan adjacent a central plane of the chamber.

  17. Rectangular Microstrip Antenna with Slot Embedded Geometry

    NASA Astrophysics Data System (ADS)

    Ambresh, P. A.; Hadalgi, P. M.; Hunagund, P. V.; Sujata, A. A.

    2014-09-01

    In this paper, a novel design that improves the performance of conventional rectangular microstrip antenna is discussed. Design adopts basic techniques such as probe feeding technique with rectangular inverted patch structure as superstrate, air filled dielectric medium as substrate and slot embedded patch. Prototype of the proposed antenna has been fabricated and various antenna performance parameters such as impedance bandwidth, return loss, radiation pattern and antenna gain are considered for Electromagnetic-study. The antennas are designed for the wireless application operating in the frequency range of 3.3 GHz to 3.6 GHz, and UK based fixed satellite service application (3 GHz to 4 GHz), and are named as single inverted patch conventional rectangular microstrip antenna (SIP-CRMSA) and slots embedded inverted patch rectangular microstrip antenna (SEIP-RMSA), respectively. Measurement outcomes for SEIP-RMSA1 and SEIP-RMSA2 showed the satisfactory performance with an achievable impedance bandwidth of 260 MHz (7 %) and 250 MHz (6.72 %), with return loss (RL) of -11.06 dB and -17.98 dB, achieved gain of 8.17 dB and 5.17 dB with 10% and 8% size reduction in comparison with the conventional patch antenna.

  18. Radial Eigenmodes for a Toroidal Waveguide with Rectangular Cross Section

    SciTech Connect

    Rui Li

    2012-07-01

    In applying mode expansion to solve the CSR impedance for a section of toroidal vacuum chamber with rectangular cross section, we identify the eigenvalue problem for the radial eigenmodes which is different from that for cylindrical structures. In this paper, we present the general expressions of the radial eigenmodes, and discuss the properties of the eigenvalues on the basis of the Sturm-Liouville theory.

  19. Conformal mapping of rectangular heptagons

    SciTech Connect

    Bogatyrev, Andrei B

    2012-12-31

    A new effective approach to calculating the direct and inverse conformal mapping of rectangular polygons onto a half-plane is put forward; it is based on the use of Riemann theta functions. Bibliography: 14 titles.

  20. Analysis of rectangular microstrip antennas

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Deshpande, M. D.

    1984-01-01

    The problem of microstrip antennas covered by a dielectric substrate is formulated in terms of coupled integro-differential equations with the current distribution on the conducting patch as an unknown quantity. The Galerkin method is used to solve for the unknown patch current. Using the present formulation, the radiation pattern, the resonant frequency, and the bandwidth of a rectangular microstrip antenna are computed. Design data for a rectangular microstrip antenna are also presented.

  1. DETECTORS AND EXPERIMENTAL METHODS Study of low momentum track reconstruction for the BESIII main drift chamber

    NASA Astrophysics Data System (ADS)

    Jia, Lu-Kui; Mao, Ze-Pu; Li, Wei-Dong; Cao, Guo-Fu; Cao, Xue-Xiang; Deng, Zi-Yan; He, Kang-Lin; Liu, Chun-Yan; Liu, Huai-Min; Liu, Qiu-Guang; Ma, Qiu-Mei; Ma, Xiang; Qiu, Jin-Fa; Tian, Hao-Lai; Wang, Ji-Ke; Wu, Ling-Hui; Yuan, Ye; Zang, Shi-Lei; Zhang, Chang-Chun; Zhang, Lei; Zhang, Yao; Zhu, Kai; Zou, Jia-Heng

    2010-12-01

    In order to overcome the difficulty brought by the circling charged tracks with transverse momentum less than 120 MeV in the BESIII Main Drift Chamber (MDC), a specialized method called TCurlFinder was developed. This tracking method focuses on the charged track reconstruction under 120 MeV and possesses a special mechanism to reject background noise hits. The performance of the package has been carefully checked and tuned by both Monte Carlo data and real data. The study shows that this tracking method could obviously enhance the reconstruction efficiency in the low transverse momentum region, providing physics analysis with more and reliable data.

  2. Use of Clinical UV Chamber to Disinfect Dental Impressions: A Comparative Study

    PubMed Central

    Sharma, Sakshi; Kumar, Varun; Gupta, Neelu

    2015-01-01

    Introduction Dental impressions are potential source of infection in a prosthodontic practice. Risk of transmission of infection through saliva, blood etc is considered as hazard for both dentist as well as dental auxiliary staff. A number of methods are currently employed for disinfecting the impressions which are technique sensitive and time consuming. This study focuses on disinfecting impression using dental UV chamber which is commonly employed for storing sterilized instruments. Aim The aim of this invitro study was to evaluate the use of clinical UV chamber to disinfect various impression materials at different time intervals and its comparison with 2% glutaraldehyde using standard immersion technique. Materials and Methods Total sample size of 180 specimens was taken from three different impression materials. The impressions were made from 30 dentulous subjects. A total of ten impressions were made for each impression material i.e. alginate, addition silicone and polyether impression material. Six punch samples were taken from each impression. Out of 6 punch sample, one was kept as control, second was disinfected by immersing in freshly prepared 2% glutaraldehyde solution for 10 minutes and remaining four were exposed to UV rays for 3 minutes, 6 minutes, 10 minutes and 15 minutes using dental UV chamber. Amount of disinfection achieved was evaluated by counting the colonies over the culture plates with the help of digital colony. Results The results showed that the mean CFUs for alginate were found to be i.e. 11797.40 ± 5989.73 (mean ± SD). The mean CFUs for addition silicone impression material was found 7095.40 with a standard deviation of 4268.83 and the mean CFUs for polyether impression material was found to be 2168.92 ± 1676 (mean ± SD). Conclusion For alginate and addition silicone impression material, disinfection was achieved on exposure to UV rays for a period of 10 minutes. However, for polyether impression material 3 minutes of exposure to

  3. COMPASS - COMparative Particle formation in the Atmosphere using Simulation chamber Study techniques

    NASA Astrophysics Data System (ADS)

    Bonn, B.; Sun, S.; Haunold, W.; Sitals, R.; van Beesel, E.; dos Santos, L.; Nillius, B.; Jacobi, S.

    2013-06-01

    The anthropogenic influence on climate and environment has increased strongly since industrialization about 150 yr ago. The consequences for the atmosphere became more and more apparent and nowadays affect our life quality on Earth progressively. Because of that it is very important to understand the atmospheric processes, on which these effects are based on, in detail. In this study we report the set-up of a novel twin chamber technique that uses the comparative method and establishes an appropriate connection of atmospheric and laboratory methods to broaden the tools for investigations. It is designed to study the impact of certain parameters and gases on ambient processes such as particle formation online and can be applied in a large variety of conditions. The characterisation of both chambers proved that both chambers operate identically with a residence time (xT (COMPASS 1) = 26.5 ± 0.3 min and xT (COMPASS 2) = 26.6 ± 0.4 min) at a typical flow rate of 15 L min-1 and a deposition rate (1.6 ± 0.8) × 10-5 s-1. Comparison measurement showed no significant differences. Therefore operation under atmospheric conditions is trustworthy. To indicate the applicability and the benefit of the system a set of experiments was conducted at different conditions, i.e. urban and remote, enhancing ozone and terpenes as well as reducing sunlight. In the ozone enhanced ambient particle number and volume increased substantially at urban and remote conditions in a different strength. Solar radiation displayed a clear positive effect on particle number as well as terpene addition did at remote conditions. Therefore the system is a useful tool to investigate local precursors, the details of ambient particle formation at surface locations as well as future feedback processes.

  4. Chamber Bioaerosol Study: Outdoor Air and Human Occupants as Sources of Indoor Airborne Microbes

    PubMed Central

    Adams, Rachel I.; Bhangar, Seema; Pasut, Wilmer; Arens, Edward A.; Taylor, John W.; Lindow, Steven E.; Nazaroff, William W.; Bruns, Thomas D.

    2015-01-01

    Human occupants are an important source of microbes in indoor environments. In this study, we used DNA sequencing of filter samples to assess the fungal and bacterial composition of air in an environmental chamber under different levels of occupancy, activity, and exposed or covered carpeting. In this office-like, mechanically ventilated environment, results showed a strong influence of outdoor-derived particles, with the indoor microbial composition tracking that of outdoor air for the 2-hour sampling periods. The number of occupants and their activity played a significant but smaller role influencing the composition of indoor bioaerosols. Human-associated taxa were observed but were not particularly abundant, except in the case of one fungus that appeared to be transported into the chamber on the clothing of a study participant. Overall, this study revealed a smaller signature of human body-associated taxa than had been expected based on recent studies of indoor microbiomes, suggesting that occupants may not exert a strong influence on bioaerosol microbial composition in a space that, like many offices, is well ventilated with air that is moderately filtered and moderately occupied. PMID:26024222

  5. Trade study comparing specimen chamber servicing methods for the Space Station Centrifuge Facility

    NASA Technical Reports Server (NTRS)

    Calvisi, Michael L.; Sun, Sidney C.

    1991-01-01

    The Specimen Chamber Service Unit, a component of the Space Station Centrifuge Facility, must provide a clean enclosure on a continuing basis for the facility's plant, rodent and primate specimens. The specimen chambers can become soiled and can require periodic servicing to maintain a clean environment for the specimens. Two methods of servicing the specimen chambers are discussed: washing the chambers with an on-board washer, or disposing of the soiled chambers and replacing them with clean ones. Many of these issues are addressed by developing several servicing options, using either cleaning or replacement as the method of providing clean specimen chambers, and then evaluating each option according to a set of established quantitative and qualitative criteria. Disposing and replacing the Specimen Chambers is preferable to washing them.

  6. Smog chamber study on the evolution of fume from residential coal combustion.

    PubMed

    Geng, Chunmei; Wang, Kun; Wang, Wei; Chen, Jianhua; Liu, Xiaoyu; Liu, Hongjie

    2012-01-01

    Domestic coal stoves are widely used in countryside and greenbelt residents in China for heating and cooking, and emit considerable pollutants to the atmosphere because of no treatment of their exhaust, which can result in deteriorating local air quality. In this study, a dynamic smog chamber was used to investigate the real-time emissions of gaseous and particulate pollutants during the combustion process and a static smog chamber was used to investigate the fume evolution under simulate light irradiation. The real-time emissions revealed that the total hydrocarbon (THC) and CO increased sharply after ignition, and then quickly decreased, indicating volatilization of hydrocarbons with low molecular weight and incomplete combustion at the beginning stage of combustion made great contribution to these pollutants. There was evident shoulder peak around 10 min combustion for both THC and CO, revealing the emissions from vitrinite combustion. Additionally, another broad emission peak of CO after 30 min was also observed, which was ascribed to the incomplete combustion of the inertinite. Compared with THC and CO, there was only one emission peak for NOx, SO2 and particular matters at the beginning stage of combustion. The fume evolution with static chamber simulation indicated that evident consumption of SO2 and NOx as well as new particle formation were observed. The consumption rates for SO2 and NOx were about 3.44% hr(-1) and 3.68% hr(-1), the new particle formation of nuclei particles grew at a rate of 16.03 nm/hr during the first reaction hour, and the increase of the diameter of accumulation mode particles was evident. The addition of isoprene to the diluted mixture of the fume could promote 03 and secondary particle formation.

  7. Studying Molecular Interactions at the Single Bond Level with a Laminar Flow Chamber

    PubMed Central

    Pierres, Anne; Benoliel, Anne-Marie; Bongrand, Pierre

    2008-01-01

    During the last decade, many investigators developed new methodologies allowing to study ligand-receptor interactions with unprecedented accuracy, up to the single bond level. Reported results include information on bond mechanical properties, association behaviour of surface-attached molecules, and dissection of energy landscapes and reaction pathways. The purpose of the present review is to discuss the potential and limitations of laminar flow chambers operated at low shear rates. This includes a brief review of basic principles, practical tips and problems associated with data interpretation. It is concluded that flow chambers are ideally suited to analyze weak interactions between a number of biomolecules, including the main families of adhesion receptors such as selectins, integrins, cadherins and members of the immunoglobulin superfamily. The sensitivity of the method is limited by the quality of surfaces and efficiency of the studied ligand-receptor couple rather than the hardware. Analyzing interactions with a resolution of a piconewton and a few milliseconds shows that ligand-receptor complexes may experience a number of intermediate binding states, making it necessary to examine the definition of association and dissociation rates. Finally, it is emphasized that association rates measured on surface-bound molecules are highly dependent on parameters unrelated to binding surfaces. PMID:21151952

  8. IN VITRO STUDY OF THE PULP CHAMBER TEMPERATURE RISE DURING LIGHT-ACTIVATED BLEACHING

    PubMed Central

    Carrasco, Thaise Graciele; Carrasco-Guerisoli, Laise Daniela; Fröner, Izabel Cristina

    2008-01-01

    This study evaluated in vitro the pulp chamber temperature rise induced by the light-activated dental bleaching technique using different light sources. The root portions of 78 extracted sound human mandibular incisors were sectioned approximately 2 mm below the cementoenamel junction. The root cavities of the crowns were enlarged to facilitate the correct placing of the sensor into the pulp chamber. Half of specimens (n=39) was assigned to receive a 35% hydrogen peroxide gel on the buccal surface and the other halt (n=39) not to receive the bleaching agent. Three groups (n=13) were formed for each condition (bleach or no bleach) according to the use of 3 light sources recommended for dental bleaching: a light-emitting diode (LED)-laser system, a LED unit and a conventional halogen light. The light sources were positioned perpendicular to the buccal surface at a distance of 5 mm and activated during 30 s. The differences between the initial and the highest temperature readings for each specimen were obtained, and, from the temperature changes, the means for each specimen and each group were calculated. The values of temperature rise were compared using Kruskal-Wallis test at 1% significance level. Temperature rise varied significantly depending on the light-curing unit, with statistically significant differences (p<0.01) among the groups. When the bleaching agent was not applied, the halogen light induced the highest temperature rise (2.38±0.66°C). The LED unit produced the lowest temperature increase (0.29±0.13°C); but there was no significant difference between LED unit and LED-laser system (0.35±0.15°C) (p>0.01). When the bleaching agent was applied, there were significant differences among groups (p<0.01): halogen light induced the highest temperature rise (1.41±0.64°C), and LED-laser system the lowest (0.33±0.12°C); however, there was no difference between LED-laser system and LED unit (0.44±0.11°C). LED and LED-laser system did not differ

  9. Exposure chamber

    DOEpatents

    Moss, Owen R.

    1980-01-01

    A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.

  10. Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Aminfar, H.; Mohammadpourfard, M.; Ahangar Zonouzi, S.

    2013-02-01

    This paper investigates numerically the hydro-thermal characteristics of a ferrofluid (water and 4 vol% Fe3O4) in a vertical rectangular duct which is exposed to a non-uniform transverse magnetic field generated by an electric current going through a wire located parallelly under the duct. The two phase mixture model and the control volume technique have been used to study the flow. The results show that applying the aforementioned magnetic field increases the Nusselt number and friction factor and also creates a pair of vortices that enhances heat transfer and prevents sedimentation of nano-particles. Furthermore, unlike the axial non-uniform magnetic field, the increase of the Nusselt number for the transverse magnetic field is considerable in all length along the duct and it is also concluded that with increasing the Reynolds number, the effect of the transverse non-uniform magnetic field on the Nusselt number is more than that of the axial non-uniform magnetic field.

  11. Experimental study on the 3D image reconstruction in a truncated Archimedean-like spiral geometry with a long-rectangular detector and its image characteristics

    NASA Astrophysics Data System (ADS)

    Hong, Daeki; Cho, Heemoon; Cho, Hyosung; Choi, Sungil; Je, Uikyu; Park, Yeonok; Park, Chulkyu; Lim, Hyunwoo; Park, Soyoung; Woo, Taeho

    2015-11-01

    In this work, we performed a feasibility study on the three-dimensional (3D) image reconstruction in a truncated Archimedean-like spiral geometry with a long-rectangular detector for application to high-accurate, cost-effective dental x-ray imaging. Here an x-ray tube and a detector rotate together around the rotational axis several times and, concurrently, the detector moves horizontally in the detector coordinate at a constant speed to cover the whole imaging volume during the projection data acquisition. We established a table-top setup which mainly consists of an x-ray tube (60 kVp, 5 mA), a narrow CMOS-type detector (198-μm pixel resolution, 184 (W)×1176 (H) pixel dimension), and a rotational stage for sample mounting and performed a systematic experiment to demonstrate the viability of the proposed approach to volumetric dental imaging. For the image reconstruction, we employed a compressed-sensing (CS)-based algorithm, rather than a common filtered-backprojection (FBP) one, for more accurate reconstruction. We successfully reconstructed 3D images of considerably high quality and investigated the image characteristics in terms of the image value profile, the contrast-to-noise ratio (CNR), and the spatial resolution.

  12. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1993-01-01

    Condensation heat transfer in a horizontal rectangular duct was experimentally and analytically investigated. To prevent the dripping of condensate on the film, the experiment was conducted inside a horizontal rectangular duct with vapor condensing only on the bottom cooled plate of the duct. R-113 and FC-72 (Fluorinert Electronic Fluid developed by the 3M Company) were used as the condensing fluids. The experimental program included measurements of film thickness, local and average heat transfer coefficients, wave length, wave speed, and a study of wave initiation. The measured film thickness was used to obtain the local heat transfer coefficient. The wave initiation was studied both with condensation and with an adiabatic air-liquid flow. The test sections used in both experiments were identical.

  13. ac electroosmosis in rectangular microchannels.

    PubMed

    Campisi, Michele; Accoto, Dino; Dario, Paolo

    2005-11-22

    Motivated by the growing interest in ac electroosmosis as a reliable no moving parts strategy to control fluid motion in microfluidic devices for biomedical applications, such as lab-on-a-chip, we study transient and steady-state electrokinetic phenomena (electroosmosis and streaming currents) in infinitely extended rectangular charged microchannels. With the aid of Fourier series and Laplace transforms we provide a general formal solution of the problem, which is used to study the time-dependent response to sudden ac applied voltage differences in case of finite electric double layer. The Debye-Huckel approximation has been adopted to allow for an algebraic solution of the Poisson-Boltzmann problem in Fourier space. We obtain the expressions of flow velocity profiles, flow rates, streaming currents, as well as expressions of the complex hydraulic and electrokinetic conductances. We analyze in detail the dependence of the electrokinetic conductance on the extension of linear dimensions relative to the Debye length, with an eye on finite electric double layer effects. PMID:16351310

  14. Numerical studies of shock focusing induced by reflection of detonation waves within a hemispherical implosion chamber

    NASA Astrophysics Data System (ADS)

    Hatanaka, K.; Saito, T.; Takayama, K.

    2012-11-01

    The initiation and the propagation of detonation waves in a hemispherical chamber and the imploding shock waves that are the reflected detonation waves at the chamber wall are numerically investigated. The effects of the boundary layer and the non-uniformity of the flow field induced by the detonation wave on the imploding shock stability are examined. It is found that the effect of the boundary layer separation on the chamber wall has the strongest effect on the implosion focus.

  15. Eddy viscosity measurements in a rectangular jet

    NASA Technical Reports Server (NTRS)

    Swan, David H.; Morrison, Gerald L.

    1988-01-01

    The flow field of a rectangular jet with a 2:1 aspect ratio was studied at a Reynolds number of 100,000 (Mach number 0.09) using three-dimensional laser Doppler velocimetry (LDV). Velocity gradients, Reynolds stress tensor components, and scalar eddy viscosities are presented for the major and minor axis planes of the jet. The eddy viscosity model was found to be applicable only in the direction of maximum mean velocity gradient.

  16. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  17. OH Radical Aging of Model Primary Organic Aerosols In Smog Chamber Studies

    NASA Astrophysics Data System (ADS)

    Lambe, A. T.; Zhang, J.; Sage, A. M.; Donahue, N. M.

    2006-12-01

    Most of the fine primary organic carbon (OC) in the atmosphere is saturated. Thus, by OC mass balance alone, OH radicals should be important in organic aerosol processing because saturated OC is unreactive to ozone and vulnerable to NO3 oxidation only at night. However, the importance of OH-induced heterogeneous oxidation remains uncertain because laboratory and ambient analysis is a challenge. Most laboratory aging studies have been conducted in flow tube reactors with extremely high radical concentrations and short exposure times. While these pioneering experiments have revealed efficient OH uptake, a confounding issue remains that both oxidant and reagent losses are rate-limited by diffusion of the oxidant to the phase interface. Examining these systems over much longer timescales in smog chamber experiments is therefore desirable, but established methods of OH radical production in smog chamber studies typically require some combination of UV illumination, high NOx, or radical cycling. Thus, employing these methods results in experimental conditions that either do not represent atmospheric conditions or cannot produce a sufficiently high flux of OH radicals - these shortcomings are acceptable for some applications, but are significant hindrances when heterogeneous aging is the experimental objective. Our approach has been to use alkene ozonolysis as a continuous, low-NOx, dark source of OH. Specifically, we use 2,3-dimethyl-2-butene (tetramethylethylene, TME) because ozonolysis results in an OH yield near unity. Furthermore, the organic TME ozonolysis products have high vapor pressures, so they do not participate directly in condensed-phase chemistry. To maintain a constant radical production rate, fresh reagents are delivered to the chamber to replenish TME and O3 as they react. TME is delivered continuously via capillary liquid flow with constant evaporation from a droplet at the capillary tip into a carrier stream. Ozone is held at a constant, high value by

  18. Simulation chamber studies of the atmospheric degradation of xylene oxidation products

    NASA Astrophysics Data System (ADS)

    Clifford, G.; Rea, G.; Thuener, L.; Wenger, J.

    2003-04-01

    Aromatic compounds are emitted to the atmosphere from their use in automobile fuels and solvents. In addition to being important primary pollutants, many aromatics, including the xylenes, possess high photochemical reactivity and make a major contribution to the formation of oxidants, such as ozone and nitrates, in the troposphere. The atmospheric oxidation of aromatics produces a wide variety of products and the atmospheric reactivity of many of these species is unknown. The aim of this work was to study the atmospheric degradation processes for dimethylphenols, tolualdehydes and dicarbonyl compounds which are produced from the hydroxyl radical initiated oxidation of the xylenes. Experiments on the hydroxyl (OH) and nitrate radical initiated oxidation of dimethylphenols and tolualdehydes have been performed in a large atmospheric simulation chamber in our laboratory. The chamber is made of FEP foil and has a volume of about 4750 litres. It is equipped with gas chromatography, GC-MS, and in situ FTIR spectroscopy for chemical analysis and a scanning mobility particle sizer for aerosol measurements. Rate coefficients have been determined for the reactions of hydroxyl and nitrate radicals with dimethylphenols and tolualdehydes. Gas-phase products and the yield of secondary organic aerosol have also been determined for the OH-initiated oxidation of these compounds. Mechanisms for the formation of the products are proposed. The photolysis of the unsaturated dicarbonyls, butenedial and 4-oxo-pent-2-enal, has been studied using real sunlight at the European Photoreactor (EUPHORE) in Valencia, Spain. Photolysis rates were measured and indicate that photolysis by sunlight is the major atmospheric degradation process for these compounds. Product studies show the formation of a ketene intermediate that decays to form five membered ring compounds such as furanones and maleic anhydride. Mechanisms for the formation of the products are proposed. Finally, the data obtained in

  19. Chamber study of polychlorinated biphenyl (PCB) emissions from caulking materials and light ballasts

    EPA Science Inventory

    The sorption of airborne polychlorinated biphenyls (PCBs) by twenty building materials and their subsequent re-emission (desorption) from concrete were investigated using two 53-L environmental chambers connected in series with a field-collected caulk in the source chamber servin...

  20. Chamber study of polychlorinated biphenyl {PCB} emissions from caulking materials and light ballasts

    EPA Science Inventory

    The sorption of airborne polychlorinated biphenyls (PCBs) by twenty building materials and their subsequent re-emission (desorption) from concrete were investigated using two 53-L environmental chambers connected in series with a field-collected caulk in the source chamber servin...

  1. Chamber study of PCB emissions from caulking materials and light ballasts

    EPA Science Inventory

    The sorption of airborne polychlorinated biphenyls (PCBs) by twenty building materials and their subsequent re-emission (desorption) from concrete were investigated using two 53-L environmental chambers connected in series with a field-collected caulk in the source chamber servin...

  2. [Effects of elevated ozone on Pinus armandii growth: a simulation study with open-top chamber].

    PubMed

    Liu, Chang-Fu; Liu, Chen; He, Xing-Yuan; Ruan, Ya-Nan; Xu, Sheng; Chen, Zhen-Ju; Peng, Jun-Jie; Li, Teng

    2013-10-01

    By using open-top chamber (OTC) and the techniques of dendrochronology, this paper studied the growth of Pinus armandii under elevated ozone, and explored the evolution dynamics and adaptation mechanisms of typical forest ecosystems to ozone enrichment. Elevated ozone inhibited the stem growth of P. armandii significantly, with the annual growth of the stem length and diameter reduced by 35.0% and 12.9%, respectively. The annual growth of tree-ring width and the annual ring cells number decreased by 11.5% and 54.1%, respectively, but no significant change was observed in the diameter of tracheid. At regional scale, the fluctuation of ozone concentration showed significant correlation with the variation of local vegetation growth (NDVI).

  3. [Effects of elevated ozone on Pinus armandii growth: a simulation study with open-top chamber].

    PubMed

    Liu, Chang-Fu; Liu, Chen; He, Xing-Yuan; Ruan, Ya-Nan; Xu, Sheng; Chen, Zhen-Ju; Peng, Jun-Jie; Li, Teng

    2013-10-01

    By using open-top chamber (OTC) and the techniques of dendrochronology, this paper studied the growth of Pinus armandii under elevated ozone, and explored the evolution dynamics and adaptation mechanisms of typical forest ecosystems to ozone enrichment. Elevated ozone inhibited the stem growth of P. armandii significantly, with the annual growth of the stem length and diameter reduced by 35.0% and 12.9%, respectively. The annual growth of tree-ring width and the annual ring cells number decreased by 11.5% and 54.1%, respectively, but no significant change was observed in the diameter of tracheid. At regional scale, the fluctuation of ozone concentration showed significant correlation with the variation of local vegetation growth (NDVI). PMID:24483064

  4. Numerical study of three-dimensional detonation structure transformations in a narrow square tube: from rectangular and diagonal modes into spinning modes

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Ji, H.; Lien, F.; Tang, H.

    2014-07-01

    Three-dimensional (3-D) detonation structure transformations from rectangular and diagonal modes into spinning modes in a narrow square tube are investigated by high-resolution simulation. Numerical simulations are performed with a Riemann solver of the HLLC-type, new cell-based structured adaptive mesh refinement data structure, high-order, parallel adaptive mesh refinement reactive flow code. A simplified one-step kinetic reaction model is used to reveal the 3-D detonation structure. The four different types of initial disturbances applied in the ZND profiles lead to the structures of rectangular in phase, rectangular out of phase, rectangular partial out of phase and diagonal, respectively, during the initial stages of detonation propagation. Eventually, all these detonation structures evolve into the self-sustained spinning detonations. The asymmetric disturbance leads to a stable spinning detonation much faster than the rest. The important features in the formation of spinning detonation are revealed using a 3-D visualization, and a remarkable qualitative agreement with experimental and numerical results is obtained with respect to the transverse wave dynamics and detonation front structures. The transverse wave collisions produce the unburnt gas pockets and the energy to sustain the detonation front propagation and distortion. The periodic pressure oscillation of front plays a complex role as it shifts the reaction zone structure with an accompanying change in the driving energy of transition and the detonation parameters which result in the more distorted front and the unstable detonation. Eventually, the unstable distorted detonation evolves into a spinning detonation.

  5. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  6. Structural and magnetic studies on cyano-bridged rectangular Fe2M2 (M = Cu, Ni) clusters.

    PubMed

    Liu, Wei; Wang, Cai-Feng; Li, Yi-Zhi; Zuo, Jing-Lin; You, Xiao-Zeng

    2006-12-11

    Using the tricyano precursor, (Bu4N)[(Tp)Fe(CN)3] (Tp = Tris(pyrazolyl) hydroborate) (1), four new tetranuclear clusters, [(Tp)Fe(CN)3Cu(Tp)]2.2H2O (2), [(Tp)Fe(CN)3Cu(bpca)]2.4H2O (3) (bpca = bis(2-pyridylcarbonyl)amidate anion), [(Tp)Fe(CN)3Ni(tren)]2(ClO4)2.2H2O (4) (tren = tris(2-amino)ethylamine), and [(Tp)Fe(CN)3Ni(bipy)2]2[(Tp)Fe(CN)3]2.6H2O (5) (bipy = 2,2'-bipyridine), have been synthesized and structurally characterized. The four clusters possess similar square structures, where FeIII and MII (M = CuII or NiII) ions alternate at the rectangle corners. There exist intermolecular - stacking interactions through pyrazolyl groups of Tp- ligands in complexes 2 and 4, which lead to 1D chain structures. Complex 5 shows a 3D network structure through the coexistence of - stacking effects and hydrogen-bonding interactions. Magnetic studies show intramolecular ferromagnetic interactions in all four clusters. The exchange parameters are +11.91 and +1.38 cm(-1) for clusters 2 and 3, respectively, while uniaxial molecular anisotropy can be detected in complex 3 due to the distorted core in its molecular structure. Complex 4 has a ground state of S = 3 and shows SMM behavior with an effective energy barrier of U = 18.9 cm(-1). Unusual spin-glass-like dynamic relaxations are observed for complex 5.

  7. Phantom dosimetric study of nondivergent aluminum tissue compensator using ion chamber, TLD, and gafchromic film.

    PubMed

    Kinhikar, Rajesh A; Tambe, Chandrashekhar M; Upreti, Ritu R; Patkar, Sachin; Patil, Kalpana; Deshpande, Deepak D

    2008-01-01

    Anatomic contour irregularity and tissue inhomogeneity in head-and-neck radiotherapy can lead to significant dose inhomogeneity due to the presence of hot and cold spots across the treatment volumes. Missing tissue compensators (TCs) can overcome this dose inhomogeneity. The current study examines the capacity of 2-dimensional (2D) custom aluminum TCs fabricated at our hospital to improve the dose homogeneity across the treatment volume. The dosimetry of the 2D custom TCs was carried out in a specially designed head-and-neck phantom for anterior-posterior (AP) and posterior-anterior (PA) fields with an ion chamber, thermoluminscence dosimeters (TLDs), and film. The results were compared for compensated and uncompensated plans generated from the Eclipse treatment planning system. On average, open-field plans contained peak doses of 117%, optimally wedged-plans contained peak doses of 113%, and custom-compensated plans contained peak doses of 105%. The dose variation between prescribed and measured dose at midplane of the phantom was observed as high as 17%, which was reduced to 3.2% for the customized TC during ionometric measurements. It was further confirmed with TLDs, in a sagittal plane, that the high-dose region of 13.3% was reduced to 2.3%. The measurements carried out with the ion chamber, TLDs, and film were found in good agreement with each other and with Eclipse. Thus, a custom-made 2D TC is capable of reducing hot spots to improve overall dose homogeneity across the treatment volume.

  8. Phantom Dosimetric Study of Nondivergent Aluminum Tissue Compensator Using Ion Chamber, TLD, and Gafchromic Film

    SciTech Connect

    Kinhikar, Rajesh A. Tambe, Chandrashekhar M.; Upreti, Ritu R.; Patkar, Sachin; Patil, Kalpana; Deshpande, Deepak D.

    2008-01-01

    Anatomic contour irregularity and tissue inhomogeneity in head-and-neck radiotherapy can lead to significant dose inhomogeneity due to the presence of hot and cold spots across the treatment volumes. Missing tissue compensators (TCs) can overcome this dose inhomogeneity. The current study examines the capacity of 2-dimensional (2D) custom aluminum TCs fabricated at our hospital to improve the dose homogeneity across the treatment volume. The dosimetry of the 2D custom TCs was carried out in a specially designed head-and-neck phantom for anterior-posterior (AP) and posterior-anterior (PA) fields with an ion chamber, thermoluminscence dosimeters (TLDs), and film. The results were compared for compensated and uncompensated plans generated from the Eclipse treatment planning system. On average, open-field plans contained peak doses of 117%, optimally wedged-plans contained peak doses of 113%, and custom-compensated plans contained peak doses of 105%. The dose variation between prescribed and measured dose at midplane of the phantom was observed as high as 17%, which was reduced to 3.2% for the customized TC during ionometric measurements. It was further confirmed with TLDs, in a sagittal plane, that the high-dose region of 13.3% was reduced to 2.3%. The measurements carried out with the ion chamber, TLDs, and film were found in good agreement with each other and with Eclipse. Thus, a custom-made 2D TC is capable of reducing hot spots to improve overall dose homogeneity across the treatment volume.

  9. Experimental study of the performance of a siphon sediment cleansing set in a CSO chamber.

    PubMed

    Zhou, Yongchao; Zhang, Yiping; Tang, Ping; Chen, Yongmin; Zhu, David Z

    2013-01-01

    Model experiments were conducted to investigate the performance of a siphon sediment cleansing set (SSCS) for preventing sediment deposition on the combined sewer overflow (CSO) chamber bottom. The results confirmed the effectiveness of siphon suction in sediment removal in the chamber. The sediment scour test revealed that the equilibrium scour depth correlated significantly with the siphon-lift capacity of the SSCS, which was a function of the initial siphon head and the cross-sectional area ratio between the CSO chamber and the siphon.

  10. Ageing and performance studies of drift chamber prototypes for the MEG II experiment

    NASA Astrophysics Data System (ADS)

    Venturini, Marco; MEG Collaboration

    2015-01-01

    We present the tests aimed at verifying the proper functioning of the tracking systems of MEG II on small prototypes, estimating the achievable resolutions and evaluating the gain loss experienced by the chamber during its operation.

  11. Predicting respiratory morbidity from pulmonary function tests: A reanalysis of ozone chamber studies

    SciTech Connect

    Ostro, B.D.; Lipsett, M.J.; Jewell, N.P.

    1989-10-01

    Some consequences of acute exposure to ozone are best measured in studies of human respiratory responses in controlled exposure chambers. These studies typically examine relationships between exposures to alternative pollutant concentrations and indicators of lung function as measured by spirometry, such as forced expiratory volume in one second, FEV1. However, the association of respiratory morbidity with these changes in lung function is not well established. To gain a better understanding of the relationship between ozone-related changes in pulmonary function and respiratory symptoms, data from several clinical studies have been reanalyzed. Logistic regression models were used to determine the quantitative relationship between changes in FEV1 and the probability of a mild or moderate lower respiratory symptom. Models were developed that corrected for repeated sampling of individuals and both population-averaged and subject-specific effects were determined. The results indicate the existence of a strong and consistent quantitative relationship between changes in lung function and the probability of a respiratory symptom. Specifically, a 10 percent reduction in FEV1 is associated with a 15 percentage point increase in the probability of a mild, moderate or severe lower respiratory symptom and a 6 percentage point increase in the probability of a moderate or severe lower respiratory symptom.

  12. [Study on safety of sodium hyaluronate (SL-1010) by injection in the anterior chamber].

    PubMed

    Sawa, M; Murao, M; Yanagi, M; Shiratori, K; Morita, H

    1993-04-01

    We investigated effects of a newly developed sodium hyaluronate (SL-1010) on the anterior segment of the eye. The tested sodium hyaluronate was biosynthesized using Streptococcus zoo-epidemicus. Under an operating microscope, we replaced the aqueous humor of Macaca fascicularis (n = 3) with 150 microliters of 1% sodium hyaluronate solution without loss of the anterior chamber. The opposite eye was treated as a control and its aqueous was replaced with the same volume of the vehicle, isotonic phosphate buffer solution. We performed follow-up clinical examination with slit-lamp microscopy, pachymetry, pneumotonometery, and specular microscopy. On the 7th day, we performed histological study by light microscopy, transmission and scanning electron microscopy. Although the sodium hyaluronate group showed a significant increase of intraocular pressure at 9 hours after the treatment over the control, there were no significant differences in clinical findings between the sodium hyaluronate and the control groups. Histological studies demonstrated nothing particular except for slight swelling of mitochondria of corneal endothelial cells in both groups. It was concluded that the newly developed sodium hyaluronate is a biologically inactive and safe biomaterial.

  13. Development of a material with reproducible emission of selected volatile organic compounds - μ-Chamber study.

    PubMed

    Nohr, Michael; Horn, Wolfgang; Wiegner, Katharina; Richter, Matthias; Lorenz, Wilhelm

    2014-07-01

    Volatile organic compounds (VOCs) found indoors have the potential to affect human health. Typical sources include building materials, furnishings, cleaning agents, etc. To address this risk, chemical emission testing is used to assess the potential of different materials to pollute indoor air. One objective of the European Joint Research Project "MACPoll" (Metrology for Chemical Pollutants in Air) aims at developing and testing a reference material for the quality control of the emission testing procedure. Furthermore, it would enable comparison of measurement results between test laboratories. The heterogeneity of the majority of materials makes it difficult to find a suitable reference sample. In the present study, styrene, 2-ethyl-1-hexanol, N-methyl-α-pyrrolidone, lindane, n-hexadecane, 1,2-dimethyl- and 1,2-di-n-butyl-phthalate were added to 12 commercially available lacquers (6 alkyd and 6 acrylic polymer based lacquers) serving as carrier substrate. After homogenization, the mixtures were loaded into a Markes Micro-Chamber/Thermal Extractor (μ-CTE™) for curing and investigation of the emission behavior for each compound. For almost all of the investigated chemicals, the preferred glossy acrylic lacquer showed emissions that were reproducible with a variation of less than 20% RSD. Such lacquer systems have therefore been shown to be good candidates for use as reference materials in inter-laboratory studies.

  14. Effect of nitrous acid on lung function in asthmatics: a chamber study.

    PubMed Central

    Beckett, W S; Russi, M B; Haber, A D; Rivkin, R M; Sullivan, J R; Tameroglu, Z; Mohsenin, V; Leaderer, B P

    1995-01-01

    Nitrous acid, a component of photochemical smog and a common indoor air pollutant, may reach levels of 100 ppb where gas stoves and unvented portable kerosene heaters are used. Nitrous acid is a primary product of combustion and may also be a secondary product by reaction of nitrogen dioxide with water. Because the usual assays for nitrogen dioxide measure several oxides of nitrogen (including nitrous acid) together, previous studies of indoor nitrogen dioxide may have included exposure to and health effects of nitrous acid. To assess the respiratory effects of nitrous acid exposure alone, we carried out a double-blinded crossover chamber exposure study with 11 mildly asthmatic adult subjects. Each underwent 3-hr exposures to 650 ppb nitrous acid and to filtered room air with three 20-min periods of moderate cycle exercise. Symptoms, respiratory parameters during exercise, and spirometry after exercise were measured. A statistically significant decrease in forced vital capacity was seen on days when subjects were exposed to nitrous acid. This effect was most marked at 25 min and 85 min after exposure began. Aggregate respiratory and mucous membrane symptoms were also significantly higher with nitrous acid. We conclude that this concentration and duration of exposure to nitrous acid alters lung mechanics slightly, does not induce significant airflow obstruction, and produces mild irritant symptoms in asthmatics. Images Figure 1. PMID:7607138

  15. Numerical study on three-dimensional flow field of continuously rotating detonation in a toroidal chamber

    NASA Astrophysics Data System (ADS)

    Zhang, Xu-Dong; Fan, Bao-Chun; Gui, Ming-Yue; Pan, Zhen-Hua; Dong, Gang

    2012-02-01

    Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonationshock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interesting properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems.

  16. Design and experimental study of an integrated vapor chamber-thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Kota, Krishna M.

    Future defense, aerospace and automotive technologies involve electronic systems that release high pulsed waste heat like during high power microwave and laser diode applications in tactical and combat aircraft, and electrical and electronic systems in hybrid electric vehicles, which will require the development of an efficient thermal management system. A key design issue is the need for fast charging so as not to overheat the key components. The goal of this work is to study the fabrication and technology implementation feasibility of a novel high energy storage, high heat flux passive heat sink. Key focus is to verify by theory and experiments, the practicability of using phase change materials as a temporary storage of waste heat for heat sink applications. The reason for storing the high heat fluxes temporarily is to be able to reject the heat at the average level when the heat source is off. Accordingly, a concept of a dual latent heat sink intended for moderate to low thermal duty cycle electronic heat sink applications is presented. This heat sink design combines the features of a vapor chamber with rapid thermal energy storage employing graphite foam inside the heat storage facility along with phase change materials and is attractive owing to its passive operation unlike some of the current thermal management techniques for cooling of electronics employing forced air circulation or external heat exchangers. In addition to the concept, end-application dependent criteria to select an optimized design for this dual latent heat sink are presented. A thermal resistance concept based design tool/model has been developed to analyze and optimize the design for experiments. The model showed that it is possible to have a dual latent heat sink design capable of handling 7 MJ of thermal load at a heat flux of 500 W/cm2 (over an area of 100 cm 2) with a volume of 0.072 m3 and weighing about 57.5 kg. It was also found that with such high heat flux absorption capability

  17. Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol chemistry

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, T.; Bernard, F.; Ding, X.; Wen, S.; Zhang, Y.; Zhang, Z.; He, Q.; Lü, S.; Chen, J.; Saunders, S.; Yu, J.

    2013-08-01

    We describe here characterization of a new state-of-the-art smog chamber facility for studying atmospheric gas phase and aerosol chemistry. The chamber consists of a 30 m3 fluorinated ethylene propylene (FEP) Teflon film reactor suspended in a temperature-controlled enclosure equipped with two banks of black lamps as the light source. Temperature can be set in the range from -10 °C to 40 °C at accuracy of ±1 °C as measured by eight temperature sensors inside the enclosure and one just inside the reactor. Matrix air can be purified with NMHCs < 0.5 ppb, NOx/O3/carbonyls < 1 ppb and particles < 1 cmchamber are determined and included in the Master Chemical Mechanism to evaluate and model propene-NOx-air irradiation experiments. The results indicate that this new smog chamber can provide high quality data for mechanism evaluation. Results of α-pinene dark ozonolysis experiments revealed SOA yields comparable to those from other chamber studies, and the two-product model gives a good fit for the yield data obtained in this work. Characterization experiments demonstrate that our GIG-CAS smog chamber facility can be used to provide valuable data for gas-phase mechanisms and aerosol chemistry.

  18. Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, T.; Bernard, F.; Ding, X.; Wen, S.; Zhang, Y.; Zhang, Z.; He, Q.; Lü, S.; Chen, J.; Saunders, S.; Yu, J.

    2014-01-01

    We describe here characterization of a new state-of-the-art smog chamber facility for studying atmospheric gas-phase and aerosol chemistry. The chamber consists of a 30 m3 fluorinated ethylene propylene (FEP) Teflon film reactor housed in a temperature-controlled enclosure equipped with black lamps as the light source. Temperature can be set in the range from -10 to 40 °C at accuracy of ±1 °C as measured by eight temperature sensors inside the enclosure and one just inside the reactor. Matrix air can be purified with non-methane hydrocarbons (NMHCs) < 0.5 ppb, NOx/O3/carbonyls < 1 ppb and particles < 1 cm-3. The photolysis rate of NO2 is adjustable between 0 and 0.49 min-1. At 298 K under dry conditions, the average wall loss rates of NO, NO2 and O3 were measured to be 1.41 × 10-4 min-1, 1.39 × 10-4 min-1 and 1.31 × 10-4 min-1, respectively, and the particle number wall loss rate was measured to be 0.17 h-1. Auxiliary mechanisms of this chamber are determined and included in the Master Chemical Mechanism to evaluate and model propene-NOx-air irradiation experiments. The results indicate that this new smog chamber can provide high-quality data for mechanism evaluation. Results of α-pinene dark ozonolysis experiments revealed secondary organic aerosol (SOA) yields comparable to those from other chamber studies, and the two-product model gives a good fit for the yield data obtained in this work. Characterization experiments demonstrate that our Guangzhou Institute of Geochemistry, Chinese Academy Sciences (GIG-CAS), smog chamber facility can be used to provide valuable data for gas-phase chemistry and secondary aerosol formation.

  19. Rectangular beam (5 X 40 cm multipole ion source). M.S. Thesis - Nov. 1979; [applications to electron bombardment in materials processing

    NASA Technical Reports Server (NTRS)

    Haynes, C. M.

    1980-01-01

    A 5 x 40 cm rectangular-beam ion source was designed and fabricated. A multipole field configuration was used to facilitate design of the modular rectangular chamber, while a three-grid ion optics system was used for increased ion current densities. For the multipole chamber, a magnetic integral of 0.000056 Tesla-m was used to contain the primary electrons. This integral value was reduced from the initial design value, with the reduction found necessary for discharge stability. The final value of magnetic integral resulted in discharge losses at typical operating conditions which ranged from 600 to 1000 eV/ion, in good agreement with the design value of 800 eV/ion. The beam current density at the ion optics was limited to about 3.2 mA/sq cm at 500 eV and to about 3.5 mA/sq cm at 1000 ev. The effects of nonuniform ion current, dimension tolerance, and grid thermal warping were considered. The use of multiple rectangular-beam ion sources to process wider areas than would be possible with a single source (approx. 40 cm) was also studied. Beam profiles were surveyed at a variety of operating conditions and the results of various amounts of beam overlap calculated.

  20. Study of structural integrity of interstellar spacecraft reaction chamber and thrust structure in support of Project Icarus

    NASA Astrophysics Data System (ADS)

    Reddy, Srikanth K.

    This thesis supports studies of the international effort of Project Icarus, dedicated to the unmanned, interstellar exploration of nearby stellar systems within the next century. The target system is 5.9 light years away, with a required velocity of 12% the speed of light. This study primarily focuses on the structural analysis of the reaction chamber and supporting structure of the Icarus interstellar spacecraft, which will be powered by nuclear fusion reactions to achieve the required velocity and time-frame for the mission. First, a computational finite element analysis is conducted on the reaction chamber in terms of loading, vibration, and fatigue. Different configurations and assumptions are studied for the reaction chamber as well. Present-day manufacturing considerations are also taken into account, with a modest extrapolation for future manufacturing technologies that are currently not in existence. Next, the thrust supporting structure for the reaction chamber is incorporated into the analysis. This study serves as a precursor for the multi-level analysis into the eventual detailed design and production of an interstellar spacecraft, and is the first such study.

  1. Rectangular groupoids and related structures

    PubMed Central

    Boykett, Tim

    2013-01-01

    The quasivariety of groupoids (N,∗) satisfying the implication a∗b=c∗d⇒a∗d=c∗b=a∗b generalises rectangular semigroups and central groupoids. We call them rectangular groupoids and find three combinatorial structures based upon arrays, matrices and graphs that are closely related. These generalise several groupoids of independent interest. The quasivariety generates the variety of all groupoids; they satisfy no nontrivial equations. We see some strong connections with isotopy, this being one of the classes of algebras (along with quasigroups) closed under isotopy. We investigate some constructions and show that a regular automorphism exists iff the groupoid is derived from a group via a Cayley graph construction. PMID:23836949

  2. A microfluidic chamber to study the dynamics of muscle-contraction-specific molecular interactions.

    PubMed

    Roman, Horia Nicolae; Juncker, David; Lauzon, Anne-Marie

    2015-03-01

    In vitro motility and laser trap assays are commonly used for molecular mechanics measurements. However, chemicals cannot be added during these measurements, because they create flows that alter the molecular mechanics. Thus, we designed a microfluidic device that allows the addition of chemicals without creating bulk flows. Biocompatibility of the components of this device was tested. A microchannel chamber was created by photolithography with the patterns transferred to polydimethylsiloxane (PDMS). The PDMS chamber was bound to a polycarbonate membrane, which itself was bound to a molecular mechanics chamber. The microchannels ensured rapid distribution of the chemicals over the membrane, whereas the membrane ensured efficient delivery to the mechanics chamber while preventing bulk flow. The biocompatibility of the materials was tested by comparing the velocity (ν(max)) of propulsion by myosin of fluorescently labeled actin filaments to that of the conventional assay; no difference in ν(max) was observed. To estimate total chemical delivery time, labeled bovine serum albumin was injected in the channel chamber and TIRF was used to determine the time to reach the assay surface (2.7 ± 0.1 s). Furthermore, the standard distance of a trapped microsphere calculated during buffer diffusion using the microfluidic device (14.9 ± 3.2 nm) was not different from that calculated using the conventional assay (15.6 ± 5.3 nm, p = 0.922). Finally, ν(max) obtained by injecting adenosine triphosphate (ATP) in the microchannel chamber (2.37 ± 0.48 μm/s) was not different from that obtained when ATP was delivered directly to the mechanics chamber (2.52 ± 0.42 μm/s, p = 0.822). This microfluidic prototype validates the design for molecular mechanics measurements. PMID:25629255

  3. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  4. Ionization chamber

    DOEpatents

    Walenta, A.H.

    An ionization chamber is described which has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionizes the gas.

  5. A patient-specific quality assurance study on absolute dose verification using ionization chambers of different volumes in RapidArc treatments

    SciTech Connect

    Syam Kumar, S.A.; Sukumar, Prabakar; Sriram, Padmanaban; Rajasekaran, Dhanabalan; Aketi, Srinu; Vivekanandan, Nagarajan

    2012-01-01

    The recalculation of 1 fraction from a patient treatment plan on a phantom and subsequent measurements have become the norms for measurement-based verification, which combines the quality assurance recommendations that deal with the treatment planning system and the beam delivery system. This type of evaluation has prompted attention to measurement equipment and techniques. Ionization chambers are considered the gold standard because of their precision, availability, and relative ease of use. This study evaluates and compares 5 different ionization chambers: phantom combinations for verification in routine patient-specific quality assurance of RapidArc treatments. Fifteen different RapidArc plans conforming to the clinical standards were selected for the study. Verification plans were then created for each treatment plan with different chamber-phantom combinations scanned by computed tomography. This includes Medtec intensity modulated radiation therapy (IMRT) phantom with micro-ionization chamber (0.007 cm{sup 3}) and pinpoint chamber (0.015 cm{sup 3}), PTW-Octavius phantom with semiflex chamber (0.125 cm{sup 3}) and 2D array (0.125 cm{sup 3}), and indigenously made Circular wax phantom with 0.6 cm{sup 3} chamber. The measured isocenter absolute dose was compared with the treatment planning system (TPS) plan. The micro-ionization chamber shows more deviations when compared with semiflex and 0.6 cm{sup 3} with a maximum variation of -4.76%, -1.49%, and 2.23% for micro-ionization, semiflex, and farmer chambers, respectively. The positive variations indicate that the chamber with larger volume overestimates. Farmer chamber shows higher deviation when compared with 0.125 cm{sup 3}. In general the deviation was found to be <1% with the semiflex and farmer chambers. A maximum variation of 2% was observed for the 0.007 cm{sup 3} ionization chamber, except in a few cases. Pinpoint chamber underestimates the calculated isocenter dose by a maximum of 4.8%. Absolute dose

  6. Particle tracks in a cloud chamber: historical photographs as a context for studying magnetic force

    NASA Astrophysics Data System (ADS)

    Onorato, Pasquale; De Ambrosis, Anna

    2012-11-01

    We present a sequence of experiments aimed at exploring magnetic force. The activity sequence was organized into three main phases, each starting from an experiment. The first phase aimed to help students understand the direction and magnitude of the magnetic force experienced by current-carrying wires located in a homogeneous magnetic field; the second referred to the study of magnetic force acting on electrons emitted by a cathode and moving through a homogeneous magnetic field; finally, students were asked to analyse the sub-nuclear particle tracks in cloud and streamer chambers in real experiments, based on the experience they acquired during previous work with digital photographs. The activity sequence was designed for students on introductory physics courses or in advanced high-school classes and was implemented in five high-school classes (approximately 100 students). Our results compared with those reported in the literature indicate that students' understanding of the direction and magnitude of magnetic force improved markedly and that some typical difficulties were overcome.

  7. Multigap Resistive Plate Chambers for EAS study in the EEE Project

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; An, S.; Antolini, R.; Badala, A.; Baldini Ferroli, R.; Bencivenni, G.; Blanco, F.; Bressan, E.; Chiavassa, A.; Chiri, C.; Cifarelli, L.; Cindolo, F.; Coccia, E.; de Pasquale, S.; di Giovanni, A.; Hatzifotiadou, D.; Imponente, G.; Kim, J.; La Rocca, P.; Librizzi, F.; Maggiora, A.; Menghetti, H.; Miozzi, S.; Moro, R.; Panareo, M.; Pappalardo, G.S.; Piragino, G.; Riggi, F.; Romano, F.; Sartorelli, G.; Sbarra, C.; Selvi, M.; Serci, S.; Williams, C.; Zichichi, A.; Zuyenski, R.

    The EEE (Extreme Energy Event) Project is an extensive air shower experiment devoted to the study of very high energy events through the detection at ground of the muon component of the shower. The detectors are installed inside many Italian High Schools, involving students in the experiment. The detector used is a tracking telescope made of 3 planes of Multi-gap Resistive Plate Chambers (MRPCs), a simplified, large and cheap version of the detector designed for the time of flight measurements (TOF) of the ALICE experiment at LHC. Exploiting the concept of the multiple small gas gaps combined with the use of high gain and fast gas mixture (Freon and SF6 based), the MRPCs show an overall time resolution of 100 ps. The particle tracking is performed equipping MRPCs with 24 copper strips read at both ends by front end electronics based on NINO ASIC and using commercial multi-hit TDCs. The MRPCs for the EEE experiment are built at CERN by Italian High School students and teachers under the supervision of INFN and Centro “E. Fermi” experts. After construction they are shipped to Italy and after preliminary tests they are installed inside the schools. Here we present the status and first results of the already operating stations.

  8. Studies of material and process compatibility in developing compact silicon vapor chambers

    NASA Astrophysics Data System (ADS)

    Cai, Qingjun; Bhunia, Avijit; Tsai, Chialun; Kendig, Martin W.; DeNatale, Jeffrey F.

    2013-06-01

    The performance and long-term reliability of a silicon vapor chamber (SVC) developed for thermal management of high-power electronics critically depend on compatibility of the component materials. A hermetically sealed SVC presented in this paper is composed of bulk silicon, glass-frit as a bonding agent, lead/tin solder as an interface sealant and a copper charging tube. These materials, in the presence of a water/vapor environment, may chemically react and release noncondensable gas (NCG), which can weaken structural strength and degrade the heat transfer performance with time. The present work reports detailed studies on chemical compatibility of the components and potential solutions to avoid the resulting thermal performance degradation. Silicon surface oxidation and purification of operating liquid are necessary steps to reduce performance degradation in the transient period. A lead-based solder with its low reflow temperature is found to be electrochemically stable in water/vapor environment. High glazing temperature solidifies molecular bonding in glass-frit and mitigates PbO precipitation. Numerous liquid flushes guarantee removal of chemical residual after the charging tube is soldered to SVC. With these improvements on the SVC material and process compatibility, high effective thermal conductivity and steady heat transfer performance are obtained.

  9. Boltzmann equation and Monte Carlo studies of electron transport in resistive plate chambers

    NASA Astrophysics Data System (ADS)

    Bošnjaković, D.; Petrović, Z. Lj; White, R. D.; Dujko, S.

    2014-10-01

    A multi term theory for solving the Boltzmann equation and Monte Carlo simulation technique are used to investigate electron transport in Resistive Plate Chambers (RPCs) that are used for timing and triggering purposes in many high energy physics experiments at CERN and elsewhere. Using cross sections for electron scattering in C2H2F4, iso-C4H10 and SF6 as an input in our Boltzmann and Monte Carlo codes, we have calculated data for electron transport as a function of reduced electric field E/N in various C2H2F4/iso-C4H10/SF6 gas mixtures used in RPCs in the ALICE, CMS and ATLAS experiments. Emphasis is placed upon the explicit and implicit effects of non-conservative collisions (e.g. electron attachment and/or ionization) on the drift and diffusion. Among many interesting and atypical phenomena induced by the explicit effects of non-conservative collisions, we note the existence of negative differential conductivity (NDC) in the bulk drift velocity component with no indication of any NDC for the flux component in the ALICE timing RPC system. We systematically study the origin and mechanisms for such phenomena as well as the possible physical implications which arise from their explicit inclusion into models of RPCs. Spatially-resolved electron transport properties are calculated using a Monte Carlo simulation technique in order to understand these phenomena.

  10. A comprehensive study on different modelling approaches to predict platelet deposition rates in a perfusion chamber

    PubMed Central

    Pallarès, Jordi; Senan, Oriol; Guimerà, Roger; Vernet, Anton; Aguilar-Mogas, Antoni; Vilahur, Gemma; Badimon, Lina; Sales-Pardo, Marta; Cito, Salvatore

    2015-01-01

    Thrombus formation is a multiscale phenomenon triggered by platelet deposition over a protrombotic surface (eg. a ruptured atherosclerotic plaque). Despite the medical urgency for computational tools that aid in the early diagnosis of thrombotic events, the integration of computational models of thrombus formation at different scales requires a comprehensive understanding of the role and limitation of each modelling approach. We propose three different modelling approaches to predict platelet deposition. Specifically, we consider measurements of platelet deposition under blood flow conditions in a perfusion chamber for different time periods (3, 5, 10, 20 and 30 minutes) at shear rates of 212 s−1, 1390 s−1 and 1690 s−1. Our modelling approaches are: i) a model based on the mass-transfer boundary layer theory; ii) a machine-learning approach; and iii) a phenomenological model. The results indicate that the three approaches on average have median errors of 21%, 20.7% and 14.2%, respectively. Our study demonstrates the feasibility of using an empirical data set as a proxy for a real-patient scenario in which practitioners have accumulated data on a given number of patients and want to obtain a diagnosis for a new patient about whom they only have the current observation of a certain number of variables. PMID:26391513

  11. Total OH reactivity study from VOC photochemical oxidation in the SAPHIR chamber

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Tillmann, R.; Hohaus, T.; Fuchs, H.; Novelli, A.; Wegener, R.; Kaminski, M.; Schmitt, S. H.; Wahner, A.; Kiendler-Scharr, A.

    2015-12-01

    It is well known that hydroxyl radicals (OH) act as a dominant reactive species in the degradation of VOCs in the atmosphere. In recent field studies, directly measured total OH reactivity often showed poor agreement with OH reactivity calculated from VOC measurements (e.g. Nölscher et al., 2013; Lu et al., 2012a). This "missing OH reactivity" is attributed to unaccounted biogenic VOC emissions and/or oxidation products. The comparison of total OH reactivity being directly measured and calculated from single component measurements of VOCs and their oxidation products gives us a further understanding on the source of unmeasured reactive species in the atmosphere. This allows also the determination of the magnitude of the contribution of primary VOC emissions and their oxidation products to the missing OH reactivity. A series of experiments was carried out in the atmosphere simulation chamber SAPHIR in Jülich, Germany, to explore in detail the photochemical degradation of VOCs (isoprene, ß-pinene, limonene, and D6-benzene) by OH. The total OH reactivity was determined from the measurement of VOCs and their oxidation products by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS) with a GC/MS/FID system, and directly measured by a laser-induced fluorescence (LIF) at the same time. The comparison between these two total OH reactivity measurements showed an increase of missing OH reactivity in the presence of oxidation products of VOCs, indicating a strong contribution to missing OH reactivity from uncharacterized oxidation products.

  12. An experimental study of recombination and polarity effect in a set of customized plane parallel ionization chambers.

    PubMed

    Kron, T; McNiven, A; Witruk, B; Kenny, M; Battista, J

    2006-12-01

    magnitude of the absolute difference between charge collected at positive and negative polarity was found to correlate with the area of the collecting electrode which is consistent with the explanation that differences in thickness of the collecting electrodes and the number of electrons stopped in them contribute significantly to the polarity effect. Overall, the polarity effects found in the present study would have a negligible effect on electron beam calibration at a measurement depth recommended by most calibration protocols. However, the present work tested the corrections under extreme conditions thereby aiming at greater understanding of the mechanism underlying the correction factors for these chambers. This may lead to better chamber design for absolute dosimetry and electron beam characterization with less reliance on empirical corrections.

  13. An Experimental Study of the Flowfield on a Semispan Rectangular Wing with a Simulated Glaze Ice Accretion. Ph.D. Thesis, 1993 Final Report

    NASA Technical Reports Server (NTRS)

    Khodadoust, Abdollah

    1994-01-01

    Wind tunnel experiments were conducted in order to study the effect of a simulated glaze ice accretion on the flowfield of a semispan, reflection-plane, rectangular wing at Re = 1.5 million and M = 0.12. A laser Doppler velocimeter was used to map the flowfield on the upper surface of the model in both the clean and iced configurations at alpha = 0, 4, and 8 degrees angle of attack. At low angles of attack, the massive separation bubble aft of the leading edge ice horn was found to behave in a manner similar to laminar separation bubbles. At alpha = 0 and 4 degrees, the locations of transition and reattachment, as deduced from momentum thickness distributions, were found to be in good agreement with transition and reattachment locations in laminar separation bubbles. These values at y/b = 0.470, the centerline measurement location, matched well with data obtained on a similar but two dimensional model. The measured velocity profiles on the iced wing compared reasonably with the predicted profiles from Navier-Stokes computations. The iced-induced separation bubble was also found to have features similar to the recirculating region aft of rearward-facing steps. At alpha = 0 degrees and 4 degrees, reverse flow magnitudes and turbulence intensity levels were typical of those found in the recirculating region aft of rearward-facing steps. The calculated separation streamline aft of the ice horn at alpha = 4 degrees, y/b = 0.470 coincided with the locus of the maximum Reynolds normal stress. The maximum Reynolds normal stress peaked at two locations along the separation streamline. The location of the first peak-value coincided with the transition location, as deduced from the momentum thickness distributions. The location of the second peak was just upstream of reattachment, in good agreement with measurements of flows over similar obstacles. The intermittency factor in the vicinity of reattachment at alpha = 4 degrees, y/b = 0.470, revealed the time-dependent nature of

  14. Note: Sample chamber for in situ x-ray absorption spectroscopy studies of battery materials

    SciTech Connect

    Pelliccione, CJ; Timofeeva, EV; Katsoudas, JP; Segre, CU

    2014-12-01

    In situ x-ray absorption spectroscopy (XAS) provides element-specific characterization of both crystalline and amorphous phases and enables direct correlations between electrochemical performance and structural characteristics of cathode and anode materials. In situ XAS measurements are very demanding to the design of the experimental setup. We have developed a sample chamber that provides electrical connectivity and inert atmosphere for operating electrochemical cells and also accounts for x-ray interactions with the chamber and cell materials. The design of the sample chamber for in situ measurements is presented along with example XAS spectra from anode materials in operating pouch cells at the Zn and Sn K-edges measured in fluorescence and transmission modes, respectively. (C) 2014 AIP Publishing LLC.

  15. The mouse dorsal skinfold chamber as a model for the study of thrombolysis by intravital microscopy.

    PubMed

    Boulaftali, Yacine; Lamrani, Lamia; Rouzaud, Marie-Catherine; Loyau, Stéphane; Jandrot-Perrus, Martine; Bouton, Marie-Christine; Ho-Tin-Noé, Benoît

    2012-05-01

    Although intravital microscopy models of thrombosis in mice have contributed to dissect the mechanisms of thrombus formation and stability, they have not been well adapted to study long-term evolution of occlusive thrombi. Here, we assessed the suitability of the dorsal skinfold chamber (DSC) for the study of thrombolysis and testing of thrombolytic agents by intravital microscopy. We show that induction of FeCl3-induced occlusive thrombosis is achievable in microvessels of DSCs, and that thrombi formed in DSCs can be visualised by intravital microscopy using brightfield transmitted light, or fluorescent staining of thrombus components such as fibrinogen, platelets, leukocytes, and von Willebrand factor. Direct application of control saline or recombinant tissue-plasminogen activator (rtPA) to FeCl3-produced thrombi in DSCs did not affect thrombus size or induce recanalisation. However, in the presence of hirudin, rtPA treatment caused a rapid dose-dependent lysis of occlusive thrombi, resulting in recanalisation within 1 hour after treatment. Skin haemorrhage originating from vessels located inside and outside the FeCl3-injured area was also observed in DSCs of rtPA-treated mice. We further show that rtPA-induced thrombolysis was enhanced in plasminogen activator inhibitor-1-deficient (PAI-1-/-) mice, and dropped considerably as the time between occlusion and treatment application increased. Together, our results show that by allowing visualization and measurement of thrombus lysis and potential bleeding complications of thrombolytic treatments, the DSC provides a model for studying endogenous fibrinolysis and for first-line screening of thrombolytic agents. Furthermore, using this system, we found that thrombin and clot aging impair the thrombolytic action of rtPA towards FeCl3-produced thrombi.

  16. Modeling and sensitivity study of the dual-chamber SMART (SMA ReseTtable) lift device

    NASA Astrophysics Data System (ADS)

    Luntz, Jonathan E.; Young, Jonathan R.; Brei, Diann; Radice, Joshua; Strom, Kenneth A.

    2007-04-01

    Morphing structures for applications such as impact mitigation is a challenging problem due to the speed and repeatability requirements that limit the viable actuation approaches. This paper examines a promising stored-energy, active-release approach that can be deployed quickly (~40 ms), is reusable/resetable and can be tuned in the field for changing conditions such as additional mass, temperature compensation or platform changes. The Dual-Chamber SMART (SMA ReseTtable) Lift is a pneumatic air spring controlled via an ultra-fast SMA actuated valve. This paper presents the modeling, sensitivity analysis and experimental validation of this new technology. A control-volume based analytical model was derived that employs compressible, sonic flow and thermodynamic relations to provide a set of differential equations that relate the design parameters (cylinder and valve geometry), application parameters (deployed mass), and operational parameters (pressure, temperature and SMA valve actuation profile), to the deployment performance (deploy time, profile, position, etc.). The model was exercised to explore the sensitivity of the performance with regards to these parameters and explore the off-line and on-line adjustability of the device's performance to compensate for cross platform applications and uncontrolled environmental effects such as temperature and added mass. As proof-of-concept, a full-scale prototype was designed via the model, built and experimentally characterized across several of the parameters for the real case-study of automotive pedestrian protection. The prototype performance agreed closely with model predictions and met the rigorous specifications of the case study with in-situ tailoring which is applicable to a wide range of morphing applications beyond this case study.

  17. Experimental and simulation study of a Gaseous oxygen/Gaseous hydrogen vortex cooling thrust chamber

    NASA Astrophysics Data System (ADS)

    Yu, Nanjia; Zhao, Bo; Li, Gongnan; Wang, Jue

    2016-01-01

    In this paper, RNG k-ε turbulence model and PDF non-premixed combustion model are used to simulate the influence of the diameter of the ring of hydrogen injectors and oxidizer-to-fuel ratio on the specific impulse of the vortex cooling thrust chamber. The simulation results and the experimental tests of a 2000 N Gaseous oxygen/Gaseous hydrogen vortex cooling thrust chamber reveal that the efficiency of the specific impulse improves significantly with increasing of the diameter of the ring of hydrogen injectors. Moreover, the optimum efficiency of the specific impulse is obtained when the oxidizer-to-fuel ratio is near the stoichiometric ratio.

  18. Test Outline for Flutter Analysis of Rectangular Panels in Rarefied Flow Conditions

    NASA Technical Reports Server (NTRS)

    Akl, Fred A.

    1996-01-01

    Jet plume impingement forces acting on large flexible space structures may precipitate dynamically unstable behavior during space flights. Typical operating conditions in space involve rarefied gas flow regimes which are intrinsically distinct from continuum gas flow and are normally modeled using the kinetic theory of gas flow. Docking and undocking operations of the Space Shuttle with the Russian Mir space laboratory represent a scenario in which the stability boundaries of solar panels may be of interest. Extensive literature review of research work on the dynamic stability of rectangular panels in rarefied gas flow conditions indicated the lack of published reports dealing with this phenomenon. A recently completed preliminary study for NASA JSC dealing with the mathematical analysis of the stability of two-degree-of-freedom elastically supported rigid panels under the effect of rarefied gas flow was reviewed. A test plan outline is prepared for the purpose of conducting a series of experiments on four rectangular rigid test articles in a vacuum chamber under the effect of continuous and pulsating Nitrogen jet plumes. The purpose of the test plan is to gather enough data related to a number of key parameters to allow the validation of the two-degree-of-freedom mathematical model. The hardware required careful design to select a very lightweight material while satisfying rigidity and frequency requirements within the constraints of the test environment. The data to be obtained from the vacuum chamber tests can be compared with the predicted behavior of the theoretical two-degree-of-freedom model. Using the data obtained in this study, further research can identify the limitations of the mathematical model. In addition modifications to the mathematical model can be made, if warranted, to accurately predict the behavior of rigid panels under rarefied gas flow regimes.

  19. Inconsistency of mesophyll conductance estimate causes the inconsistency for the estimates of maximum rate of Rubisco carboxylation among the linear, rectangular and non-rectangular hyperbola biochemical models of leaf photosynthesis--a case study of CO₂ enrichment and leaf aging effects in soybean.

    PubMed

    Sun, Jindong; Feng, Zhaozhong; Leakey, Andrew D B; Zhu, Xinguang; Bernacchi, Carl J; Ort, Donald R

    2014-09-01

    The responses of CO2 assimilation to [CO2] (A/Ci) were investigated at two developmental stages (R5 and R6) and in several soybean cultivars grown under two levels of CO2, the ambient level of 370 μbar versus the elevated level of 550 μbar. The A/Ci data were analyzed and compared by either the combined iterations or the separated iterations of the Rubisco-limited photosynthesis (Ac) and/or the RuBP-limited photosynthesis (Aj) using various curve-fitting methods: the linear 2-segment model; the non-rectangular hyperbola model; the rectangular hyperbola model; the constant rate of electron transport (J) method and the variable J method. Inconsistency was found among the various methods for the estimation of the maximum rate of carboxylation (Vcmax), the mitochondrial respiration rate in the light (Rd) and mesophyll conductance (gm). The analysis showed that the inconsistency was due to inconsistent estimates of gm values that decreased with an instantaneous increase in [CO2], and varied with the transition Ci cut-off between Rubisco-limited photosynthesis and RuBP-regeneration-limited photosynthesis, and due to over-parameters for non-linear curve-fitting with gm included. We proposed an alternate solution to A/Ci curve-fitting for estimates of Vcmax, Rd, Jmax and gm with the various A/Ci curve-fitting methods. The study indicated that down-regulation of photosynthetic capacity by elevated [CO2] and leaf aging was due to partially the decrease in the maximum rates of carboxylation and partially the decrease in gm. Mesophyll conductance lowered photosynthetic capacity by 18% on average for the case of soybean plants.

  20. Computation of leaky guided waves dispersion spectrum using vibroacoustic analyses and the Matrix Pencil Method: a validation study for immersed rectangular waveguides.

    PubMed

    Mazzotti, M; Bartoli, I; Castellazzi, G; Marzani, A

    2014-09-01

    The paper aims at validating a recently proposed Semi Analytical Finite Element (SAFE) formulation coupled with a 2.5D Boundary Element Method (2.5D BEM) for the extraction of dispersion data in immersed waveguides of generic cross-section. To this end, three-dimensional vibroacoustic analyses are carried out on two waveguides of square and rectangular cross-section immersed in water using the commercial Finite Element software Abaqus/Explicit. Real wavenumber and attenuation dispersive data are extracted by means of a modified Matrix Pencil Method. It is demonstrated that the results obtained using the two techniques are in very good agreement. PMID:24890709

  1. A Diffusion Cloud Chamber Study of Very Slow Mesons. II. Beta Decay of the Muon

    DOE R&D Accomplishments Database

    Lederman, L. M.; Sargent, C. P.; Rinehart, M.; Rogers, K.

    1955-03-01

    The spectrum of electrons arising from the decay of the negative mu meson has been determined. The muons are arrested in the gas of a high pressure hydrogen filled diffusion cloud chamber. The momenta of the decay electrons are determined from their curvature in a magnetic field of 7750 gauss. The spectrum of 415 electrons has been analyzed according to the theory of Michel.

  2. Heavy ion beam studies and imaging with a multiplane multiwire proportional chamber

    NASA Astrophysics Data System (ADS)

    Chu, W. T.; Alonso, J. R.; Tobias, C.

    1981-03-01

    A 16-plane multiwire proportional chamber was used to accurately measure intensity profiles of heavy ion beams at the Bevalac. An imaging capability was developed for the system, allowing for reconstruction of three dimensional representation of radiological objects using heavy ion beams.

  3. Chamber study of polychlorinated biphenyl (PCB)emissions from caulking materials and light ballasts

    EPA Science Inventory

    The emissions of polychlorinated biphenyl (PCB) congeners from 13 caulk samples were tested in a micro-chamber system. Twelve samples were from PCB-contaminated buildings and one was prepared in the laboratory. Nineteen light ballasts collected from buildings that represent 13 di...

  4. Long term performance studies of large oil-free bakelite resistive plate chamber

    NASA Astrophysics Data System (ADS)

    Ganai, R.; Roy, A.; Shiroya, M. K.; Agarwal, K.; Ahammed, Z.; Choudhury, S.; Chattopadhyay, S.

    2016-09-01

    Several high energy physics and neutrino physics experiments worldwide require large-size RPCs to cover wide acceptances. The muon tracking systems in the Iron calorimeter (ICAL) experiment in the India based Neutrino Observatory (INO), India and the near detector in Deep Underground Neutrino Experiment (DUNE) at Fermilab are two such examples. A single gap bakelite RPC of dimension 240 cm × 120 cm, with gas gap of 0.2 cm, has been built and tested at Variable Energy Cyclotron Centre, Kolkata, using indigenous materials procured from the local market. No additional lubricant, like oil has been used on the electrode surfaces for smoothening. The chamber is in operation for > 365 days. We have tested the chamber for its long term operation. The leakage current, bulk resistivity, efficiency, noise rate and time resolution of the chamber have been found to be quite stable during the testing peroid. It has shown an efficiency > 95% with an average time resolution of ~ 0.83 ns at the point of measurement at ~ 8700 V throughout the testing period. Details of the long term performance of the chamber have been discussed.

  5. [Studies of ozone formation potentials for benzene and ethylbenzene using a smog chamber and model simulation].

    PubMed

    Jia, Long; Xu, Yong-Fu

    2014-02-01

    Ozone formation potentials from irradiations of benzene-NO(x) and ethylbenzene-NO(x) systems under the conditions of different VOC/NO(x) ratios and RH were investigated using a characterized chamber and model simulation. The repeatability of the smog chamber experiment shows that for two sets of ethylbenzene-NO(x) irradiations with similar initial concentrations and reaction conditions, such as temperature, relative humidity and relative light intensity, the largest difference in O3 between two experiments is only 4% during the whole experimental run. On the basis of smog chamber experiments, ozone formation of photo-oxidation of benzene and ethylbenzene was simulated in terms of the master chemical mechanism (MCM). The peak ozone values for benzene and ethylbenzene simulated by MCM are higher than the chamber data, and the difference between the MCM-simulated results and chamber data increases with increasing RH. Under the conditions of sunlight irradiations, with benzene and ethylbenzene concentrations being in the range of (10-50) x 10(-9) and NO(x) concentrations in the range of (10-100) x 10(-9), the 6 h ozone contributions of benzene and ethylbenzene were obtained to be (3.1-33) x 10(-9) and (2.6-122) x 10(-9), whereas the peak O3 contributions of benzene and ethylbenzene were (3.5-54) x 10(-9) and (3.8-164) x 10(-9), respectively. The MCM-simulated maximum incremental reactivity (MIR) values for benzene and ethylbenzene were 0.25/C and 0.97/C (per carbon), respectively. The maximum ozone reactivity (MOR) values for these two species were obtained to be 0.73/C and 1.03/C, respectively. The MOR value of benzene from MCM is much higher than that obtained by carter from SAPRC, indicating that SAPRC may underestimate the ozone formation potential of benzene.

  6. Designing Rectangular RHCP Microstrip Antennas

    NASA Technical Reports Server (NTRS)

    Davidson, Shayla E.

    1987-01-01

    RHCP, Right-Handed, Circularly Polarized Microstrip Antenna program, aids in design of rectangular microstrip-antenna element, given desired frequency of operation and characteristics of substrate. Begins design calculations on basis of square element with linear polarization. Effective dielectric constant and changes in electrical length due to fringing at edges of radiating element taken into account. Coaxial feed inset with 50 ohms input impedance. Placement of feed such that two orthonormal modes produced in antenna cavity, right- or left-handed circular polarization obtained. Written in FORTRAN 77.

  7. Spectroscopic study of perchlorates and other oxygen chlorides in a Martian environmental chamber

    NASA Astrophysics Data System (ADS)

    Wu, Zhongchen; Wang, Alian; Ling, Zongcheng

    2016-10-01

    We report a study where the molecular spectral features of nine anhydrous and hydrous oxygen chlorides were analyzed both under Mars atmospheric pressure and temperature conditions in a Planetary Environment and Analysis Chamber (PEACh) and, for comparison, under ambient laboratory conditions. The goal is to understand the effect of Mars environmental conditions (mainly temperature T and CO2 pressure P) on their spectral features as determined by both Raman and NIR spectroscopy. These results will be used for in situ simultaneous identification of the Cl O4- and other intermediate oxygen chloride products generated during a dynamic electrostatic discharge (ESD) experiment. We have three major findings from the first phase of this study: (1) the ν1 Raman peak position is the most sensitive parameter for identifying the cation speciation in perchlorates (e.g., Na, Mg, Ca), the hydration state of magnesium perchlorate (e.g., Mg(ClO4)2 ṡ xH2O, x = 0 , 2 , 4 , 6), and the degree of oxidation of sodium oxygen chlorides (e.g., NaClOy, y = 1 , 2 , 3 , 4); (2) ν1 Raman peak positions of most tested hydrous and anhydrous oxygen chlorides show no detectable changes within the tested T and P ranges relevant to the environmental conditions at Mars surface and shallow subsurface, but water Raman peaks of the hydrated salts change following T decreases; (3) under the P &T conditions relevant to current surface and shallow subsurface at Mars mid-latitude regions, both Mg(ClO4)2 ṡ 6H2O and Ca(ClO4)2 ṡ 2H2O are stable against dehydration, while NaClO4 ṡ H2O dehydrates, with a dehydration rate that is a function of T which was quantified by in situ NIR spectroscopy. These results are useful for the interpretations of the data from current orbital remote sensing (Vis-NIR spectra) and from future landed missions (Raman spectra). Furthermore, we have designed a set of systematic ESD experiments to be conducted in PEACh for studying the pathways and the rates of oxygen chloride

  8. Experimental study of heat transfer enhancement in a rectangular duct distributed by multi V-perforated baffle of different relative baffle width

    NASA Astrophysics Data System (ADS)

    Kumar, Raj; Kumar, Anil; Sharma, Ashutosh; Chauhan, Ranchan; Sethi, Muneesh

    2016-08-01

    The current research deals with the experimental investigation of the heat transfer behavior and optimum relative width parameter of the multi V-down pattern perforated baffle rectangular duct. The 60° angled multi V-down perforated pattern baffle are attached on the lower duct wall having an aspect ratio (W D /H D ) of 10.0 and a Reynolds number (Re) ranging from 4000 to 9000. The experiment was conducted by varying the relative baffle width (W D /W B ) ranging from 1.0 to 6.0, relative baffle height (H B /H D ) was 0.5, relative baffle pitch (P B /H B ) was 10.0, relative hole position (O B /H B ) was 0.44, open area ratio (β O ) was 12 %. The experimental investigation shows that at a relative baffle width of 5.0 the thermal performance was maximized. Thermo-hydraulic performance (η p ) comparison shows that multi V-down pattern perforated baffle has better outcomes as compared to other baffles shaped rectangular duct.

  9. Experimental study on burning rates of square/rectangular gasoline and methanol pool fires under longitudinal air flow in a wind tunnel.

    PubMed

    Hu, L H; Liu, S; Peng, W; Huo, R

    2009-09-30

    Square pool fires with length of 5, 7.5, 10, 15, 20, 25 and 30 cm and rectangular pool fires with dimensions of 10 cm x 20 cm and 10 cm x 40 cm were burned in a wind tunnel, under a longitudinal air flow ranged from 0 to 3m/s with incremental change of about 0.5m/s. Methanol and gasoline were burned and compared, with results indicated that their burning rates showed different response to the longitudinal air flow. With the increase of the longitudinal air flow speed, the burning rates of methanol pool fires, except the 5 cm square one, first decreased and then increased, but those of the 5 cm methanol square one and the gasoline pool fires increased monotonously. The burning rate of smaller square pool fires increased more significantly than that of the larger ones, as well as the enlargement of their flame attachment length along the ground. The burning rate of a rectangular pool fire with longer rim parallel to the longitudinal flow increased faster, but the flame attachment length seemed to increase more gradually, with the increase of the longitudinal air flow speed than that perpendicular to.

  10. Wall pressure fluctuations in rectangular partial enclosures

    NASA Astrophysics Data System (ADS)

    Pagliaroli, T.; Camussi, R.

    2015-04-01

    Wall pressure fluctuations generated within rectangular partial enclosures (RPEs) have been studied experimentally for a broad range of geometrical parameters. The geometry represents a simplified version of a new generation trapped vortex combustor and consisted of a rectangular cavity connected to a neck of smaller size. Wall pressure fluctuations have been measured through wall mounted microphones providing single and multi-variate pressure statistics both in the physical space and in the Fourier domain. In order to interpret the pressure signals, aerodynamic and acoustic investigations have been carried out as well for several cavity-neck ratios. The analysis of the acoustic response of the cavity has been conducted both numerically and experimentally and a simple theoretical model has been proposed to predict the frequency of the acoustic resonances. The aerodynamic study has been carried out through PIV measurements that provided characterization in terms of the geometrical parameters of both the large-scale vortex generated within the cavity and the recirculation zone formed upstream of the neck. The use of the POD decomposition permitted us to correlate the dynamics of the recirculation with the observed pressure statistics. The aerodynamic and acoustic investigations allowed us to interpret exhaustively the wall pressure cross-statistics and to separate contributions induced by hydrodynamic and purely acoustic pressure fluctuations.

  11. The flexural vibration of welded rectangular plates

    NASA Astrophysics Data System (ADS)

    Kaldas, M. M.; Dickinson, S. M.

    1981-03-01

    A theoretical and experimental study of the effect of weld runs on the flexural vibrational characteristics of the common structural element, the rectangular plate, is described. A finite difference technique is utilized for the determination of the in-plane residual stress pattern due to the weld(s) and the Rayleigh-Ritz method, with beam characteristic functions, is used for the out-of-plane vibration analysis. The theoretical approach presented is applicable to rectangular plates of any practical aspect ratio, having any combination of out-of-plane boundary conditions for which beam functions may reasonably be used and subject to one or more weld runs parallel to any edge. Theoretical and experimental results for a number of specific plates are presented, demonstrating the effects of welding on the plate vibration and the capability and accuracy of the analytical approach in predicting these effects. Included is a study of the effect of using the full residual stress pattern as derived from the finite difference analysis, the effect of neglecting certain stress components and the effect of using simplified stress patterns developed primarily for the stress and buckling analysis of long plates.

  12. Isotopic Studies of processes in mafic magma chambers: III. The Muskox intrusion, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Stewart, Brian W.; DePaolo, Donald J.

    We report the results of a neodymium and strontium isotopic investigation of magma sources and magma chamber processes in the Proterozoic Muskox layered mafic intrusion. Our internal Sm-Nd isochron age of 1258±40 Ma from a two-pyroxene gabbro agrees well with previous U-Pb age determinations for the Muskox intrusion and Mackenzie igneous events. The preservation of a pre-Muskox Sm-Nd isochron age in a sample of stoped wall rock has allowed us to place constraints on the duration of the Muskox magma system; models for diffusive equilibration suggest a time scale of 103-104 years for crystallization of the upper 10% of the magma chamber. The liquids injected into the magma chamber had ɛNd(1258 Ma) values in the range of -3 to +1, indicating that they were derived from an undepleted mantle source. Large differences in 87Sr/86Sr and 143Nd/144Nd between the Muskox parent magma and a zone of wall rock-derived silicic magma that existed at the roof of the chamber make these isotopes sensitive indicators of interaction between the components of the system. Modeling of isotopic variations within individual cyclic units (where each cyclic unit represents crystallization of a single influx of magma into the chamber) suggests that the rate of assimilation of silicic wall rock by mafic magma was <5% of the crystallization rate, in spite of the proximity of the basaltic liquid to the overlying molten wall rock. We attribute this lack of significant assimilation to large differences in buoyancy and viscosity between mafic and silicic magmas. Variations in 87Sr/86Sr and 143Nd/144Nd among cyclic units within the layered series most likely resulted from mixing between mafic magma and molten silicic wall rock during injection of new magma pulses, or from variations in the magma source feeding the Muskox intrusion. We suggest that the successive cyclic units moved toward more evolved compositions as the vigor of the magmatic system decreased, allowing increased mixing between new

  13. Formation of secondary aerosols from biomass burning plumes: chamber simulation study

    NASA Astrophysics Data System (ADS)

    Wang, X.; Hu, Q.; Fang, Z.; Deng, W.

    2015-12-01

    Biomass burning contributed substantially to carbonaceous aerosols in China's ambient air, even in its highly industrialized megacities, based on recent source attributions by receptor modeling or by molecular and isotopic tracers. Although chemical evolution of biomass burning plumes in the ambient is a vital issue for the study of climatic and health effects, the understanding of secondary pollutants formation during the aging of biomass burning plumes is far from complete. Here we collected typical agriculture residues and forest plant branches in the Pearl River Delta in south China, and got them burned in laboratory-controlled conditions and introduced the plumes from burning these biomass directly into the GIGCAS indoor smog chamber with a reactor of 30 m3 to investigate the photochemical aging of the plumes. The inorganic trace gases, including SO2, NOx, NH3 and O3, were monitored online with chemiluminescence gas analyzers, precursor volatile organic compounds (VOCs) were monitor online with a PTR-ToF-MS and offline by a preconcentrator coupled with a gas chromatography-mass selective detector/flame ionization detector/electron capture detector (GC-MSD/FID/ECD), particle number concentrations and size distributions were obtained using a scanning mobility particle sizer (SMPS), and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) was used to measure the chemical compositions and evolutions of submicron aerosols and to trace the change in the average element ratios of organics, like H/C, O/C, and N/C. The results from the study were summarized in the following aspects: 1) primary emission factors of gaseous and particulate pollutants from burning of typical biomass including agricultural remains and forest wood plants; 2) yields of secondary pollutants, including secondary inorganic and organic aerosols and gaseous products (like O3) during photochemical aging of biomass burning plumes; 3) relationship between the formed secondary

  14. Studies of Ambient and Chamber Aerosol Composition using the Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Craven, Jill Suzanne

    This thesis presents composition measurements for atmospherically relevant inorganic and organic aerosol from laboratory and ambient measurements using the Aerodyne aerosol mass spectrometer. Studies include the oxidation of dodecane in the Caltech environmental chambers, and several aircraft- and ground-based field studies, which include the quantification of wildfire emissions off the coast of California, and Los Angeles urban emissions. The oxidation of dodecane by OH under low NO conditions and the formation of secondary organic aerosol (SOA) was explored using a gas-phase chemical model, gas-phase CIMS measurements, and high molecular weight ion traces from particlephase HR-TOF-AMS mass spectra. The combination of these measurements support the hypothesis that particle-phase chemistry leading to peroxyhemiacetal formation is important. Positive matrix factorization (PMF) was applied to the AMS mass spectra which revealed three factors representing a combination of gas-particle partitioning, chemical conversion in the aerosol, and wall deposition. Airborne measurements of biomass burning emissions from a chaparral fire on the central Californian coast were carried out in November 2009. Physical and chemical changes were reported for smoke ages 0--4 h old. CO 2 normalized ammonium, nitrate, and sulfate increased, whereas the normalized OA decreased sharply in the first 1.5--2 h, and then slowly increased for the remaining 2 h (net decrease in normalized OA). Comparison to wildfire samples from the Yucatan revealed that factors such as relative humidity, incident UV radiation, age of smoke, and concentration of emissions are important for wildfire evolution. Ground-based aerosol composition is reported for Pasadena, CA during the sumix mer of 2009. The OA component, which dominated the submicron aerosol mass, was deconvolved into hydrocarbon-like organic aerosol (HOA), semi-volatile oxidized organic aerosol (SVOOA), and low-volatility oxidized organic aerosol

  15. SOYCHMBR.I - A model designed for the study of plant growth in a closed chamber

    NASA Technical Reports Server (NTRS)

    Reinhold, C.

    1982-01-01

    The analytical model SOYCHMBER.I, an update and alteration of the SOYMOD/OARDC model, for describing the total processes experienced by a plant in a controlled mass environment is outlined. The model is intended for use with growth chambers for examining plant growth in a completely controlled environment, leading toward a data base for the design of spacecraft food supply systems. SOYCHMBER.I accounts for the assimilation, respiration, and partitioning of photosynthate and nitrogen compounds among leaves, stems, roots, and potentially, flowers of the soybean plant. The derivation of the governing equations is traced, and the results of the prediction of CO2 dynamics for a seven day experiment with rice in a closed chamber are reported, together with data from three model runs for soybean. It is concluded that the model needs expansion to account for factors such as relative humidity.

  16. The Drift Chamber for the Experiment to Study the Nature of the Confinement

    SciTech Connect

    Berdnikov, Vladimir V.; Somov, S. V.; Pentchev, Lubomir; Zihlmann, Benedikt

    2015-01-01

    The GlueX experiment was designed to search for hybrid mesons with exotic quantum numbers using a beam of linearly polarized photons incident on a liquid hydrogen target. The spectrum of these states and their mass splitting from normal mesons may yield information on confinement. The description of the GlueX spectrometer and Forward Drift Chambers (FDC) as a part of track reconstruction system is presented in the text. FDC‘s are multiwire chambers with cathode and anode read-out. The system allows reconstructing tracks of charged particles with ~200mkm accuracy with angles from 20° up to 1°. One of the detector features is 1.64% X0 material amount in the active area. The cathode gain calibration procedure is presented. The results of such calibration using cosmic data and beam data are presented as well.

  17. The Drift Chamber for the Experiment to Study the Nature of the Confinement

    DOE PAGES

    Berdnikov, Vladimir V.; Somov, S. V.; Pentchev, Lubomir; Zihlmann, Benedikt

    2015-01-01

    The GlueX experiment was designed to search for hybrid mesons with exotic quantum numbers using a beam of linearly polarized photons incident on a liquid hydrogen target. The spectrum of these states and their mass splitting from normal mesons may yield information on confinement. The description of the GlueX spectrometer and Forward Drift Chambers (FDC) as a part of track reconstruction system is presented in the text. FDC‘s are multiwire chambers with cathode and anode read-out. The system allows reconstructing tracks of charged particles with ~200mkm accuracy with angles from 20° up to 1°. One of the detector features ismore » 1.64% X0 material amount in the active area. The cathode gain calibration procedure is presented. The results of such calibration using cosmic data and beam data are presented as well.« less

  18. An environmental chamber system for prolonged metabolic studies on small animals

    NASA Technical Reports Server (NTRS)

    Jordan, J. P.; Huston, L. J.; Simmons, J. B., II; Clarkson, D. P.; Martz, W. W.; Schatte, C. L.

    1973-01-01

    Measurement of metabolic adaptation to marginally stressful environments requires both precise regulation of a variety of atmospheric factors for extended periods of time and the capacity to employ sensitive parameters in an undisturbed subject. This paper describes a metabolic chamber system which can simultaneously maintain groups of small animals in two completely separate closed environments having different pressures, temperatures and gas compositions for an indefinite period. Oxygen consumption, carbon dioxide production, food and water consumption and animal activity cycles can be continuously monitored and quantified 24 h per day while the animals are in an unrestrained state. Each chamber can be serviced and the animals handled, injected and sacrificed without subjecting them to barometric stress. Several unique electrical and mechanical components allow semi-automated data collection on a continuous basis for indefinite periods of time.

  19. Finite Element Vibration Analysis of Rectangular Membrane

    NASA Astrophysics Data System (ADS)

    Chen, S. H.; Lin, W. J.; Leung, A. Y. T.

    2010-05-01

    Some pre-tensioned 4-node rectangular elements and 8-node triangular elements are constructed for the free vibration analysis of membranes by finite element. The shape functions are given to derive the element stiffness and mass matrices in accordance with the minimum potential energy principle. Two typical examples show that the calculation by the 4-node rectangular element is very close to the theoretical solution, and 8-node rectangular element has higher accuracy than the 4-node rectangular element. For dense grid, the result is almost consistent with the theoretical solution.

  20. Chamber studies on nonvented decorative fireplaces using liquid or gelled ethanol fuel.

    PubMed

    Schripp, Tobias; Salthammer, Tunga; Wientzek, Sebastian; Wensing, Michael

    2014-03-18

    Decorative ethanol fireplaces are becoming more and more commonly used in many different countries. These fireplaces are constructed such that they have no fume extraction system, and so all of the gases from combustion, volatile organic compounds, and particulate emissions are released into the room. In order to determine the release behavior and the chemical composition of the emissions, a variety of combinations of ethanol fireplaces and fuels were examined in a 48 m(3) emission test chamber under typical living room environmental conditions. Four ethanol fireplaces with 8 different fuels (3 liquid samples, 5 gel-type samples) were tested. The ventilation conditions were set up corresponding to the manufacturers' recommendations and DIN 4734-1. The air concentrations in the chamber were evaluated based on guideline values for indoor air. Of the combustion gases examined, the quantity of carbon dioxide and nitrogen dioxide in particular were close to or even above the guideline values in many cases. A release of components of the fuel (e.g., the denaturing substances) was also detected in the chamber air. In two experiments, a benzene concentration of over 12 ppb and an increased formaldehyde concentration (>0.1 ppm) were identified in the chamber air. The ethanol fireplaces were--irrespective of the type of fuel used--strong sources of fine and ultrafine particles. Overall, ethanol fireplaces have a considerable influence on the quality of the indoor air due to the lack of ventilation. This aspect should--in addition to fire protection--be properly considered when using such devices. PMID:24517295

  1. Chamber studies on nonvented decorative fireplaces using liquid or gelled ethanol fuel.

    PubMed

    Schripp, Tobias; Salthammer, Tunga; Wientzek, Sebastian; Wensing, Michael

    2014-03-18

    Decorative ethanol fireplaces are becoming more and more commonly used in many different countries. These fireplaces are constructed such that they have no fume extraction system, and so all of the gases from combustion, volatile organic compounds, and particulate emissions are released into the room. In order to determine the release behavior and the chemical composition of the emissions, a variety of combinations of ethanol fireplaces and fuels were examined in a 48 m(3) emission test chamber under typical living room environmental conditions. Four ethanol fireplaces with 8 different fuels (3 liquid samples, 5 gel-type samples) were tested. The ventilation conditions were set up corresponding to the manufacturers' recommendations and DIN 4734-1. The air concentrations in the chamber were evaluated based on guideline values for indoor air. Of the combustion gases examined, the quantity of carbon dioxide and nitrogen dioxide in particular were close to or even above the guideline values in many cases. A release of components of the fuel (e.g., the denaturing substances) was also detected in the chamber air. In two experiments, a benzene concentration of over 12 ppb and an increased formaldehyde concentration (>0.1 ppm) were identified in the chamber air. The ethanol fireplaces were--irrespective of the type of fuel used--strong sources of fine and ultrafine particles. Overall, ethanol fireplaces have a considerable influence on the quality of the indoor air due to the lack of ventilation. This aspect should--in addition to fire protection--be properly considered when using such devices.

  2. Theoretical study of piezoelectrochemical reactions in molecular compression chambers: In-situ generation of molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Pichierri, Fabio

    2016-09-01

    Nitrogen-containing molecular compression chambers (MCCs) undergo stepwise protonation followed by a 2-electron reduction step which affords molecular hydrogen in situ. This piezoelectrochemical reaction is favored by the high compression that characterizes the molecular skeleton of MCC and its fluorinated analogue. Besides H2, the MCCs are also capable of trapping molecular fluorine and the small monoatomic gases helium and neon. A topological analysis of the electronic charge density reveals the presence of closed-shell interactions between hosts and guests.

  3. Performance study of the CMS barrel resistive plate chambers with cosmic rays

    NASA Astrophysics Data System (ADS)

    CMS Collaboration

    2010-03-01

    In October and November 2008, the CMS collaboration conducted a programme of cosmic ray data taking, which has recorded about 270 million events. The Resistive Plate Chamber system, which is part of the CMS muon detection system, was successfully operated in the full barrel. More than 98% of the channels were operational during the exercise with typical detection efficiency of 90%. In this paper, the performance of the detector during these dedicated runs is reported.

  4. Resonance in cylindrical-rectangular and wraparound microstrip structures

    NASA Technical Reports Server (NTRS)

    Ali, Sami M.; Kong, Jin AU; Habashy, Tarek M.; Kiang, Jean-Fu

    1989-01-01

    A rigorous analysis of the resonance frequency problem of both the cylindrical-rectangular and the wraparound microstrip structure is presented. The problem is formulated in terms of a set of vector integral equations. Using Galerkin's method to solve the integral equations, the complex resonance frequencies are studied with sinusoidal basis functions which incorporate the edge singularity. The complex resonance frequencies are computed using a perturbation approach. Modes suitable for resonator or antenna applications are investigated. The edge singularity of the patch current is shown to have no significant effect on the accuracy of the results. It is shown that the HE10 modes of the cylindrical-rectangular and wraparound patches are more appropriate for resonator applications. The HE01 and TE01 modes of the cylindrical-rectangular and wraparound patches, respectively, are efficient radiating modes.

  5. An Analytic Study on the Effect of Alginate on the Velocity Profiles of Blood in Rectangular Microchannels Using Microparticle Image Velocimetry

    PubMed Central

    Pitts, Katie L.; Fenech, Marianne

    2013-01-01

    It is desired to understand the effect of alginic acid sodium salt from brown algae (alginate) as a viscosity modifier on the behavior of blood in vitro using a micro-particle image velocimetry (µPIV) system. The effect of alginate on the shape of the velocity profile, the flow rate and the maximum velocity achieved in rectangular microchannels channels are measured. The channels were constructed of polydimethylsiloxane (PDMS), a biocompatible silicone. Porcine blood cells suspended in saline was used as the working fluid at twenty percent hematocrit (H = 20). While alginate was only found to have minimal effect on the maximum velocity and the flow rate achieved, it was found to significantly affect the shear rate at the wall by between eight to a hundred percent. PMID:24023655

  6. An analytic study on the effect of alginate on the velocity profiles of blood in rectangular microchannels using microparticle image velocimetry.

    PubMed

    Pitts, Katie L; Fenech, Marianne

    2013-01-01

    It is desired to understand the effect of alginic acid sodium salt from brown algae (alginate) as a viscosity modifier on the behavior of blood in vitro using a micro-particle image velocimetry (µPIV) system. The effect of alginate on the shape of the velocity profile, the flow rate and the maximum velocity achieved in rectangular microchannels channels are measured. The channels were constructed of polydimethylsiloxane (PDMS), a biocompatible silicone. Porcine blood cells suspended in saline was used as the working fluid at twenty percent hematocrit (H = 20). While alginate was only found to have minimal effect on the maximum velocity and the flow rate achieved, it was found to significantly affect the shear rate at the wall by between eight to a hundred percent.

  7. An analytic study on the effect of alginate on the velocity profiles of blood in rectangular microchannels using microparticle image velocimetry.

    PubMed

    Pitts, Katie L; Fenech, Marianne

    2013-01-01

    It is desired to understand the effect of alginic acid sodium salt from brown algae (alginate) as a viscosity modifier on the behavior of blood in vitro using a micro-particle image velocimetry (µPIV) system. The effect of alginate on the shape of the velocity profile, the flow rate and the maximum velocity achieved in rectangular microchannels channels are measured. The channels were constructed of polydimethylsiloxane (PDMS), a biocompatible silicone. Porcine blood cells suspended in saline was used as the working fluid at twenty percent hematocrit (H = 20). While alginate was only found to have minimal effect on the maximum velocity and the flow rate achieved, it was found to significantly affect the shear rate at the wall by between eight to a hundred percent. PMID:24023655

  8. Design Study Conducted of a Stirred and Perfused Specimen Chamber for Culturing Suspended Cells on the International Space Station

    NASA Technical Reports Server (NTRS)

    Nelson, Emily S.; Kizito, John P.

    2003-01-01

    A tightly knit numerical/experimental collaboration among the NASA Ames Research Center, NASA Glenn Research Center, and Payload Systems, Inc., was formed to analyze cell culturing systems for the International Space Station. The Cell Culture Unit is a facility scheduled for deployment on the space station by the Cell Culture Unit team at Ames. The facility houses multiple cell specimen chambers (CSCs), all of which have inlets and outlets to allow for replenishment of nutrients and for waste removal. For improved uniformity of nutrient and waste concentrations, each chamber has a pair of counterrotating stir bars as well. Although the CSC can be used to grow a wide variety of organic cells, the current study uses yeast as a model cell. Previous work identified groundbased protocols for perfusion and stirring to achieve yeast growth within the CSC that is comparable to that for yeast cultures grown in a shaken Ehrlenmeyer flask.

  9. Indoor Secondary Pollutants from Household Product Emissions inthe Presence of Ozone: A Bench-Scale Chamber Study

    SciTech Connect

    Destaillats, Hugo; Lunden, Melissa M.; Singer, Brett C.; Coleman,Beverly K.; Hodgson, Alfred T.; Weschler, Charles J.; Nazaroff, William W.

    2005-10-01

    Ozone-driven chemistry is a major source of indoor secondary pollutants of health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields under most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of ultrafine particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 x 10{sup 5} molecules cm{sup -3} were measured. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1-25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate test, we exposed the dry residue of two products to ozone in the chamber and observed the formation of gas-phase and particle-phase secondary oxidation products.

  10. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams

    SciTech Connect

    Zink, K.; Czarnecki, D.; Voigts-Rhetz, P. von; Looe, H. K.; Harder, D.

    2014-11-01

    Purpose: The electron fluence inside a parallel-plate ionization chamber positioned in a water phantom and exposed to a clinical electron beam deviates from the unperturbed fluence in water in absence of the chamber. One reason for the fluence perturbation is the well-known “inscattering effect,” whose physical cause is the lack of electron scattering in the gas-filled cavity. Correction factors determined to correct for this effect have long been recommended. However, more recent Monte Carlo calculations have led to some doubt about the range of validity of these corrections. Therefore, the aim of the present study is to reanalyze the development of the fluence perturbation with depth and to review the function of the guard rings. Methods: Spatially resolved Monte Carlo simulations of the dose profiles within gas-filled cavities with various radii in clinical electron beams have been performed in order to determine the radial variation of the fluence perturbation in a coin-shaped cavity, to study the influences of the radius of the collecting electrode and of the width of the guard ring upon the indicated value of the ionization chamber formed by the cavity, and to investigate the development of the perturbation as a function of the depth in an electron-irradiated phantom. The simulations were performed for a primary electron energy of 6 MeV. Results: The Monte Carlo simulations clearly demonstrated a surprisingly large in- and outward electron transport across the lateral cavity boundary. This results in a strong influence of the depth-dependent development of the electron field in the surrounding medium upon the chamber reading. In the buildup region of the depth-dose curve, the in–out balance of the electron fluence is positive and shows the well-known dose oscillation near the cavity/water boundary. At the depth of the dose maximum the in–out balance is equilibrated, and in the falling part of the depth-dose curve it is negative, as shown here the

  11. Feasibility study of the dual-chamber SMART (SMA ReseTtable) lift device

    NASA Astrophysics Data System (ADS)

    Luntz, Jonathan E.; Brei, Diann; Ypma, Joe; Young, Jonathan R.; Radice, Joshua; Johnson, Nancy L.; Browne, Alan L.; Strom, Kenneth A.

    2007-04-01

    Pedestrian protection is a major focus of automotive crashworthiness with new regulations taking effect worldwide. While there are many approaches to reducing the head-injury-criteria (HIC), a leading approach is to actively lift the hood to increase the crush distance to rigid underhood components. Most current lift devices are single-use, requiring the hood to be manually returned to a drivable position, and may damage the hood during lift due to inappropriate lift rates. This paper addresses these issues with an alternative approach using stored energy marrying conventional (pneumatic) and smart materials (Shape Memory Alloy) actuation. The SMART (SMA ReseTtable) hood lift device comprises a dual chamber cylinder which releases stored pneumatic energy via an ultra-fast SMA exhaust valve, raising a piston attached to the hood. The device can be automatically reset and rearmed through pressurization of the chambers and the energy dissipated for service by evacuating both chambers. This approach is unique in that several design parameters such as pressure and valve opening/timing profile can be altered in the field to compensate for temperature, added mass (such as snow) or platform changes. This paper presents the concept of this device and the parametric design of the pneumatic cylinder and valve orifice based on an analytical performance model. Two valve concepts are presented: direct and indirect, where the direct valve is simpler and more controllable, but the indirect valve can provide larger orifices (and therefore faster lift times) with reduced actuation requirements. Using a combination of analytical model-based and experimental methods, the SMART lift device with each valve approach was designed, and a full-scale prototype built and experimentally characterized validating the model and successfully demonstrating feasibility of each system to meet and exceed the pedestrian protection specifications. This new set of technologies enables the hood lift

  12. Track studies in water vapor using a low-pressure cloud chamber. II. Microdosimetric measurements.

    PubMed

    Stonell, G P; Marshall, M; Simmons, J A

    1993-12-01

    A low-pressure cloud chamber has been adapted to operate with pure water vapor. Photographs were obtained of tracks arising from the passage of ionizing radiation. The sources used were low-energy X rays, 242Cm alpha particles, and low-energy protons. Distributions of lineal energy, radial distances around an ion track, and interdroplet distances were measured and compared with the predictions of Monte Carlo calculations. After allowing for diffusion and the limitations of the geometry of the system, the measured and calculated distributions were found to be in good agreement.

  13. Mapping from rectangular to harmonic representation

    SciTech Connect

    Schneider, W.; Bateman, G.

    1986-08-01

    An algorithm is developed to determine the Fourier harmonics representing the level contours of a scalar function given on a rectangular grid. This method is applied to the problem of computing the flux coordinates and flux surface average needed for 1-1/2-D transport codes and MHD stability codes from an equilibrium flux function given on a rectangular grid.

  14. The Lateral Instability of Deep Rectangular Beams

    NASA Technical Reports Server (NTRS)

    Dumont, C; Hill, H N

    1937-01-01

    Experimental and analytical studies were made of solid and hollow deep rectangular beams to study their lateral instability under various conditions of loading and restraint. The tests were made on bars and tubes of 17ST aluminum alloy. Failure by lateral buckling occurred only in tests on the solid beams. It was found that, within the elastic range, the test results were in agreement with the classical theory for the lateral buckling of deep beams as given by Prandtl, Mitchell, and Timoshenko. The tests were extended to the inelastic range, where it was found that the substitution for Young's modulus of an average modulus of elasticity derived from the stress-strain curve made it possible to predict instability at high stresses.

  15. Space shuttle orbit maneuvering engine reusable thrust chamber: Adverse operating conditions test report

    NASA Technical Reports Server (NTRS)

    Tobin, R. D.

    1974-01-01

    Test hardware, facilities, and procedures are described along with results of electrically heated tube and channel tests conducted to determine adverse operating condition limits for convectively cooled chambers typical of Space Shuttle Orbit Manuevering Engine designs. Hot-start tests were conducted with corrosion resistant steel and nickel tubes with both monomethylhydrazine and 50-50 coolants. Helium ingestion, in both bubble and froth form, was studied in tubular test sections. Helium bubble ingestion and burn-out limits in rectangular channels were also investigated.

  16. Oxidation of a new Biogenic VOC: Chamber Studies of the Atmospheric Chemistry of Methyl Chavicol

    NASA Astrophysics Data System (ADS)

    Bloss, William; Alam, Mohammed; Adbul Raheem, Modinah; Rickard, Andrew; Hamilton, Jacqui; Pereira, Kelly; Camredon, Marie; Munoz, Amalia; Vazquez, Monica; Vera, Teresa; Rodenas, Mila

    2013-04-01

    The oxidation of volatile organic compounds (VOCs) leads to formation of ozone and SOA, with consequences for air quality, health, crop yields, atmospheric chemistry and radiative transfer. Recent observations have identified Methyl Chavicol ("MC": Estragole; 1-allyl-4-methoxybenzene, C10H12O) as a major BVOC above pine forests in the USA, and oil palm plantations in Malaysian Borneo. Palm oil cultivation, and hence MC emissions, may be expected to increase with societal food and bio fuel demand. We present the results of a series of simulation chamber experiments to assess the atmospheric fate of MC. Experiments were performed in the EUPHORE facility, monitoring stable product species, radical intermediates, and aerosol production and composition. We determine rate constants for reaction of MC with OH and O3, and ozonolysis radical yields. Stable product measurements (FTIR, PTRMS, GC-SPME) are used to determine the yields of stable products formed from OH- and O3- initiated oxidation, and to develop an understanding of the initial stages of the MC degradation chemistry. A surrogate mechanism approach is used to simulate MC degradation within the MCM, evaluated in terms of ozone production measured in the chamber experiments, and applied to quantify the role of MC in the real atmosphere.

  17. Geophysical study of a magma chamber near Mussau Island, Papua New Guinea

    USGS Publications Warehouse

    Dadisman, Shawn V.; Marlow, M. S.

    1988-01-01

    Analysis of a 24-channel seismic-reflection data collected near Mussau Island, Papua New Guinea, shows a high-amplitude, negative-polarity reflection that we believe is from the top of a magma chamber.  The reflecting horizon lies at a depth of about 4.4 s subbottom and can be traced laterally for 2.6 km.  On shot gathers, the reflection demonstrates normal moveout appropriate for an in-place event.  The frequency spectrum of the reflection shows a decrease in high-frequency content when compared to the sea floor reflection, as would be expected for a deep subsurface event.  The polarity of the reflection event is negative, suggesting that the reflection horizon is the top of a low-velocity zone.  Magnetic data indicate that the ridge containing the reflecting horizon is magnetic, and the geology of Massau Island suggests that the ridge is volcanic in its origin.  We speculate that the high-amplitude reflection is from the top of a magma chamber some 7-11 km deep.

  18. Track studies in water vapor using a low-pressure cloud chamber. I. Macroscopic measurements.

    PubMed

    Stonell, G P; Marshall, M; Simmons, J A

    1993-12-01

    Techniques have been developed to operate a low-pressure cloud chamber with pure water vapor. Photographs have been obtained of the tracks arising in this medium from the passage of ionizing radiation. The sources used were low-energy X rays, 242Cm alpha particles, and low-energy protons. Track lengths of the electrons were similar to those found previously in tissue-equivalent gas. W values of 35.6 +/- 0.4 and 32.6 +/- 0.6 eV per ion pair for carbon and aluminum X rays also compare closely with those in tissue-equivalent gas, but are somewhat higher than the predictions of Monte Carlo calculations. Differential w values were obtained: for alpha particles of energy 5.3 MeV the value was 33.0 +/- 3.0 eV per ion pair; for protons of energy 390, 230, and 85 keV the values were 30.6 +/- 1.9, 31.9 +/- 2.0, and 33.6 +/- 3.4 eV per ion pair. The energy losses of protons in water vapor were measured in a second (dummy) chamber used for energy calibration. Results support Janni's values of stopping power for protons in the energy range 40-480 keV.

  19. Restoring contaminated wires, removing gas contaminants, and aging studies of drift tube chambers

    NASA Astrophysics Data System (ADS)

    Marshall, Thomas

    2003-12-01

    The original muon detection system of the Fermilab D0 colliding beam experiment contained 12,000 drift cells 10 cm×5 cm in cross-section and up to 580 cm in length. The gas mixture used was Ar/CF 4/CO 2 (90:6:4). There was one recycling gas system for all the chambers. During the first year of operation, it was discovered that inefficient cells, all in regions of high radiation, had a contaminating shell of crud coating their wires. The source of the contaminant was outgassing of the cathode pads, which were made from a laminate of fiberglass and epoxy/polyester resin, with a copper cladding on one surface. The vapor formed a brittle sheath on the wires, but only in regions of high current discharge due to radiation from the accelerator and colliding beams. A method for cleaning wires in place was devised. By heating the wire quickly to a temperature close to the melting temperature of gold, the sheath was ripped to shreds and blown away. The procedure for "zapping" wires and for removing the contaminating vapor is presented. The upgraded D0 experiment now uses Iarocci-type mini-drift tubes for the forward muon system. The results of aging tests for these chambers are also presented.

  20. Studies of beam plasma interactions in a space simulation chamber using prototype Space Shuttle instruments

    NASA Technical Reports Server (NTRS)

    Banks, P. M.; Raitt, W. J.; Denig, W. F.

    1982-01-01

    In March, 1981, electron beam experiments were conducted in a large space simulation chamber using equipment destined to be flown aboard NASA's Office of Space Science-1 pallet (OSS-1). Two major flight experiments were involved. They include the Vehicle Charging and Potential (VCAP) experiment and the Plasma Diagnostics Package (PDP). Apparatus connected with VCAP included a Fast Pulse Electron Gun (FPEG), and a Charge and Current Probe (CCP). A preliminary view is provided of the results obtained when the electron emissions were held steady over relatively long periods of time such that steady state conditions could be obtained with respect to the electron beam interaction with the neutral gases and plasma of the vacuum chamber. Of particular interest was the plasma instability feature known as the Beam Plasma Discharge. For the present experiments the FPEG was used in a dc mode with a range of currents of 2 to 80 mA at a beam energy of 970 eV. Attention is given to the emissions of VLF and HF noise associated with the dc beam.

  1. Chamber study of PCB emissions from caulking materials and light ballasts.

    PubMed

    Liu, Xiaoyu; Guo, Zhishi; Krebs, Kenneth A; Stinson, Rayford A; Nardin, Joshua A; Pope, Robert H; Roache, Nancy F

    2015-10-01

    The emissions of polychlorinated biphenyl (PCB) congeners from thirteen caulk samples were tested in a micro-chamber system. Twelve samples were from PCB-contaminated buildings and one was prepared in the laboratory. Nineteen light ballasts collected from buildings that represent 13 different models from five manufacturers were tested in 53-L environmental chambers. The rates of PCB congener emissions from caulking materials and light ballasts were determined. Several factors that may have affected the emission rates were evaluated. The experimentally determined emission factors showed that, for a given PCB congener, there is a linear correlation between the emission factor and the concentration of the PCB congener in the source. Furthermore, the test results showed that an excellent log-linear correlation exists between the normalized emission factor and the vapor pressure (coefficient of determination, r(2)⩾0.8846). The PCB congener emissions from ballasts at or near room temperature were relatively low with or without electrical load. However, the PCB congener emission rates increased significantly as the temperature increased. The results of this research provide new data and models for ranking the primary sources of PCBs and supports the development and refinement of exposure assessment models for PCBs.

  2. Chamber propagation

    SciTech Connect

    Langdon, B.

    1991-01-16

    Propagation of a heavy ion beam to the target appears possible under conditions thought to be realizable by several reactor designs. Beam quality at the lens is believed to provide adequate intensity at the target -- but the beam must pass through chamber debris and its self fields along the way. This paper reviews present consensus on propagation modes and presents recent results on the effects of photoionization of the beam ions by thermal x-rays from the heated target. Ballistic propagation through very low densities is a conservative mode. The more-speculative self-pinched mode, at 1 to 10 Torr, offers reactor advantages and is being re-examined by others. 13 refs.

  3. Chamber transport

    SciTech Connect

    OLSON,CRAIG L.

    2000-05-17

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

  4. Flow-Field Surveys for Rectangular Nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2012-01-01

    Flow field survey results for three rectangular nozzles are presented for a low subsonic condition obtained primarily by hot-wire anemometry. The three nozzles have aspect ratios of 2:1, 4:1 and 8:1. A fourth case included has 2:1 aspect ratio with chevrons added to the long edges. Data on mean velocity, turbulent normal and shear stresses as well as streamwise vorticity are presented covering a streamwise distance up to sixteen equivalent diameters from the nozzle exit. These detailed flow properties, including initial boundary layer characteristics, are usually difficult to measure in high speed flows and the primary objective of the study is to aid ongoing and future computational and noise modeling efforts.

  5. Nonlinear vibrations of viscoelastic rectangular plates

    NASA Astrophysics Data System (ADS)

    Amabili, Marco

    2016-02-01

    Nonlinear vibrations of viscoelastic thin rectangular plates subjected to normal harmonic excitation in the spectral neighborhood of the lowest resonances are investigated. The von Kármán nonlinear strain-displacement relationships are used and geometric imperfections are taken into account. The material is modeled as a Kelvin-Voigt viscoelastic solid by retaining all the nonlinear terms. The discretized nonlinear equations of motion are studied by using the arclength continuation and collocation method. Numerical results are obtained for the fundamental mode of a simply supported square plate with immovable edges by using models with 16 and 22 degrees of freedom and investigating solution convergence. Comparison to viscous damping and the effect of neglecting nonlinear viscoelastic damping terms are shown. The change of the frequency-response with the retardation time parameter is also investigated as well as the effect of geometric imperfections.

  6. Theoretical study of Jesse effect in tritium measurements using ionization chambers

    NASA Astrophysics Data System (ADS)

    Chen, Zhilin; Peng, Shuming; Lu, Hanghang; Tan, Zhaoyi; Wang, Heyi; Long, Xingui; Masao, Matsuyama

    2016-01-01

    Jesse effect caused by impurities in helium might enhance the output signal significantly in tritium measurements with ionization chamber, which will lead to overestimation of tritium concentration in experiments. A theoretical method was proposed to evaluate Jesse effect quantitatively. Results indicate that besides Penning ionization, sub-excitation electrons also place very important influence on ionization enhancement by Jesse effect. An experiential expression about the relationship between enhancement factor and impurity concentration was established, in which second order of it fits experimental results very well. Theoretical calculation method in this paper is also applicable to evaluate Jesse effect in other kinds of mixtures besides hydrogen as impurities in helium. In addition, Jesse effects about tritium molecules as impurities have also been investigated.

  7. Numerical study of the DLC film flow field in the ECR-PECVD reaction chamber

    NASA Astrophysics Data System (ADS)

    Lih, F.-L.; Tai, C.-H.; Leong, J.-C.

    2014-07-01

    This paper mainly investigates the optimum parameters for the fabrication of uniform diamond-like carbon (DLC) films on the electron cyclotron resonance plasma enhanced chemical vapor deposition (ECR-PECVD) reaction chamber by analyzing the effect of the reacting gas velocity on the film properties. This work makes use of computational fluid dynamics (CFD) approach to model surface chemical reactions, flow and temperature fields, as well as heat and mass transfer phenomena. The simulation has shown that natural convection and mass transfer affect the recirculating flow within the reactor and, therefore, the distribution of material deposition. In other words, as a result of attaching an endplate (baffle) at the top of the substrate, the deposition rate of the substrate is appreciably enhanced. However, the surface uniformity of the substrate is obviously deteriorated.

  8. SπRIT: A time-projection chamber for symmetry-energy studies

    NASA Astrophysics Data System (ADS)

    Shane, R.; McIntosh, A. B.; Isobe, T.; Lynch, W. G.; Baba, H.; Barney, J.; Chajecki, Z.; Chartier, M.; Estee, J.; Famiano, M.; Hong, B.; Ieki, K.; Jhang, G.; Lemmon, R.; Lu, F.; Murakami, T.; Nakatsuka, N.; Nishimura, M.; Olsen, R.; Powell, W.; Sakurai, H.; Taketani, A.; Tangwancharoen, S.; Tsang, M. B.; Usukura, T.; Wang, R.; Yennello, S. J.; Yurkon, J.

    2015-06-01

    A time-projection chamber (TPC) called the SAMURAI Pion-Reconstruction and Ion-Tracker (SπRIT) has recently been constructed at Michigan State University as part of an international effort to constrain the symmetry-energy term in the nuclear Equation of State (EoS). The SπRIT TPC will be used in conjunction with the SAMURAI spectrometer at the Radioactive Isotope Beam Factory (RIBF) at RIKEN to measure yield ratios for pions and other light isospin multiplets produced in central collisions of neutron-rich heavy ions, such as 132Sn+124Sn. The SπRIT TPC can function both as a TPC detector and as an active target. It has a vertical drift length of 50 cm, parallel to the magnetic field. Gas multiplication is achieved through the use of a multi-wire anode plane. Image charges, produced in the 12096 pads, are read out with the recently developed Generic Electronics for TPCs.

  9. Location and composition of haptics of posterior chamber intraocular lenses. Histopathologic study of postmortem eyes.

    PubMed

    McDonnell, P J; Champion, R; Green, W R

    1987-02-01

    Of 110 eyes with posterior chamber intraocular lenses (IOLs) examined postmortem, 37% had both haptics outside of the capsular bag; 57% had one haptic in the capsular bag and the other haptic outside of the bag. Typically, these optics were decentered by 1 to 2 mm. Only six eyes (5%) had both haptics within the capsular bag. Erosion into the ciliary sulcus produced obliteration of the major arterial circle of the iris in 12 eyes (11%). The local tissue response to eroding haptics was similar for haptics composed of polypropylene and haptics composed of polymethylmethacrylate (PMMA). The authors found considerable discrepancy between the actual location of haptics and the surgeon's desired location (i.e., capsular bag or ciliary sulcus). Most of these cases were clinically successful.

  10. A minimum 2-year comparative study of autologous cancellous bone grafting versus beta-tricalcium phosphate in anterior cervical discectomy and fusion using a rectangular titanium stand-alone cage.

    PubMed

    Yamagata, Toru; Naito, Kentaro; Arima, Hironori; Yoshimura, Masaki; Ohata, Kenji; Takami, Toshihiro

    2016-07-01

    Although titanium stand-alone cages are commonly used in anterior cervical discectomy and fusion (ACDF), there are several concerns such as cage subsidence after surgery. The efficacy of β-tricalcium phosphate (β-TCP) granules as a packing material in 1- or 2-level ACDF using a rectangular titanium stand-alone cage is not fully understood. The purpose of this study is to investigate the validity of rectangular titanium stand-alone cages in 1- and 2-level ACDF with β-TCP. This retrospective study included 55 consecutive patients who underwent ACDF with autologous iliac cancellous bone grafting and 45 consecutive patients with β-TCP grafting. All patients completed at least 2-year postoperative follow-up. Univariate and multivariate analyses were performed to examine the associations between study variables and nonunion after surgery. Significant neurological recovery after surgery was obtained in both groups. Cage subsidence was noted in 14 of 72 cages (19.4 %) in the autograft group and 12 of 64 cages (18.8 %) in the β-TCP group. A total of 66 cages (91.7 %) in the autograft group showed osseous or partial union, and 58 cages (90.6 %) in the β-TCP group showed osseous or partial union by 2 years after surgery. There were no significant differences in cage subsidence and the bony fusion rate between the two groups. Multivariate analysis using a logistic regression model showed that fusion level at C6/7, 2-level fusion, and cage subsidence of grades 2-3 were significantly associated with nonunion at 2 years after surgery. Although an acceptable surgical outcome with negligible complication appears to justify the use of rectangular titanium stand-alone cages in 1- and 2-level ACDF with β-TCP, cage subsidence after surgery needs to be avoided to achieve acceptable bony fusion at the fused segments. Fusion level at C6/7 or 2-level fusion may be another risk factor of nonunion. PMID:27098659

  11. A minimum 2-year comparative study of autologous cancellous bone grafting versus beta-tricalcium phosphate in anterior cervical discectomy and fusion using a rectangular titanium stand-alone cage.

    PubMed

    Yamagata, Toru; Naito, Kentaro; Arima, Hironori; Yoshimura, Masaki; Ohata, Kenji; Takami, Toshihiro

    2016-07-01

    Although titanium stand-alone cages are commonly used in anterior cervical discectomy and fusion (ACDF), there are several concerns such as cage subsidence after surgery. The efficacy of β-tricalcium phosphate (β-TCP) granules as a packing material in 1- or 2-level ACDF using a rectangular titanium stand-alone cage is not fully understood. The purpose of this study is to investigate the validity of rectangular titanium stand-alone cages in 1- and 2-level ACDF with β-TCP. This retrospective study included 55 consecutive patients who underwent ACDF with autologous iliac cancellous bone grafting and 45 consecutive patients with β-TCP grafting. All patients completed at least 2-year postoperative follow-up. Univariate and multivariate analyses were performed to examine the associations between study variables and nonunion after surgery. Significant neurological recovery after surgery was obtained in both groups. Cage subsidence was noted in 14 of 72 cages (19.4 %) in the autograft group and 12 of 64 cages (18.8 %) in the β-TCP group. A total of 66 cages (91.7 %) in the autograft group showed osseous or partial union, and 58 cages (90.6 %) in the β-TCP group showed osseous or partial union by 2 years after surgery. There were no significant differences in cage subsidence and the bony fusion rate between the two groups. Multivariate analysis using a logistic regression model showed that fusion level at C6/7, 2-level fusion, and cage subsidence of grades 2-3 were significantly associated with nonunion at 2 years after surgery. Although an acceptable surgical outcome with negligible complication appears to justify the use of rectangular titanium stand-alone cages in 1- and 2-level ACDF with β-TCP, cage subsidence after surgery needs to be avoided to achieve acceptable bony fusion at the fused segments. Fusion level at C6/7 or 2-level fusion may be another risk factor of nonunion.

  12. The design, construction, and operation of a whole-body inhalation chamber for use in avian toxicity studies.

    PubMed

    Olsgard, Mandy L; Smits, Judit E G

    2008-01-01

    Environmental risk assessments are broadening to include evaluations of avian species exposed to gaseous and particulate materials (Mineau, 2002b; Irvine, 2004; Carmalt, 2005). Since the avian respiratory tract is fundamentally different from the respiratory tract of rodents, the effects of gaseous materials on birds cannot validly be extrapolated from data derived from rodent exposure studies (Briant & Driver, 1992; Brown et al., 1997). To address the lack of avian-specific lowest observable effect levels used to calculate reference concentrations for airborne pollutants, a system was designed to facilitate research on inhalation toxicology in small birds. Birds have long been used as early indicators of poor air quality (Brown et al., 1997), and various chambers have been designed for head only exposures of larger birds (Briant & Driver, 1992). Smaller birds with short tracheal lengths and hooked beaks however require less restrictive exposure apparatus, thus warranting the proposed design. The chamber described in this article was designed to accommodate a small falcon, the American kestrel, a species frequently used in toxicological risk assessments (Wiemeyer & Lincer, 1987a; Smits & Bortolotti, 2001; Bortolotti et al., 2003; Fisher et al., 2006). To accomplish this, a 41-L closed inhalation system capable of exposing 12 adult American kestrels was constructed primarily of galvanized steel, polyvinyl chloride, and copper tubing. Humidified air was passed over the birds and subsequently decontaminated by an activated carbon filter and released to a HEPA filtration system. The proposed inhalation chamber was successfully used in 2005 and 2006 to expose a total of 55 male American kestrels to benzene and toluene. Measurements of various biochemical endpoints associated with benzene and toluene toxicity allowed us to study the effects of airborne pollutants on small nondomesticated birds in a controlled laboratory setting.

  13. The design, construction, and operation of a whole-body inhalation chamber for use in avian toxicity studies.

    PubMed

    Olsgard, Mandy L; Smits, Judit E G

    2008-01-01

    Environmental risk assessments are broadening to include evaluations of avian species exposed to gaseous and particulate materials (Mineau, 2002b; Irvine, 2004; Carmalt, 2005). Since the avian respiratory tract is fundamentally different from the respiratory tract of rodents, the effects of gaseous materials on birds cannot validly be extrapolated from data derived from rodent exposure studies (Briant & Driver, 1992; Brown et al., 1997). To address the lack of avian-specific lowest observable effect levels used to calculate reference concentrations for airborne pollutants, a system was designed to facilitate research on inhalation toxicology in small birds. Birds have long been used as early indicators of poor air quality (Brown et al., 1997), and various chambers have been designed for head only exposures of larger birds (Briant & Driver, 1992). Smaller birds with short tracheal lengths and hooked beaks however require less restrictive exposure apparatus, thus warranting the proposed design. The chamber described in this article was designed to accommodate a small falcon, the American kestrel, a species frequently used in toxicological risk assessments (Wiemeyer & Lincer, 1987a; Smits & Bortolotti, 2001; Bortolotti et al., 2003; Fisher et al., 2006). To accomplish this, a 41-L closed inhalation system capable of exposing 12 adult American kestrels was constructed primarily of galvanized steel, polyvinyl chloride, and copper tubing. Humidified air was passed over the birds and subsequently decontaminated by an activated carbon filter and released to a HEPA filtration system. The proposed inhalation chamber was successfully used in 2005 and 2006 to expose a total of 55 male American kestrels to benzene and toluene. Measurements of various biochemical endpoints associated with benzene and toluene toxicity allowed us to study the effects of airborne pollutants on small nondomesticated birds in a controlled laboratory setting. PMID:18236233

  14. The reactive oxidant potential of different types of aged atmospheric particles: An outdoor chamber study

    NASA Astrophysics Data System (ADS)

    Rattanavaraha, Weruka; Rosen, Eli; Zhang, Haofei; Li, Qianfeng; Pantong, Karun; Kamens, Richard M.

    2011-07-01

    The reactive oxygen species (ROS) potential of aged diesel exhaust particulate matter (PM) and other aged aerosol systems in the presence and absence of an urban hydrocarbon environment was assessed. Experiments were performed in a 274 m 3 dual outdoor Teflon film chamber. Filter samples were taken to assess the oxidant generation associated with PM by an optimized dithiothreitol (DTT) method. Diesel exhaust PM had a higher ROS response when it was in the presence of an urban hydrocarbon mixture and was associated with significant O 3 production. For all the aged dilute diesel systems, ROS expression increased by a factor of 2-4 over fresh diesel particles. Other particle systems were also investigated. A low ROS was observed in most of the nighttime experiments, including the nighttime aerosols from SO 2 with O 3 and SO 2 aged by itself. However, when all the systems were compared, aged diesel exhaust tended to express very high ROS potentials, with secondary organic aerosols from an α-pinene + toluene + an urban HC mixture giving the highest ROS response.

  15. Numerical studies of transient gain reduction process in a multi-wire proportional chamber.

    PubMed

    Katagiri, Ken; Furukawa, Takuji; Noda, Koji

    2011-05-01

    A gain reduction process caused by successive beam irradiation in a multi-wire proportional chamber was numerically investigated to clarify the relations between the gas gain variation and the ion density distribution. A numerical code was developed based on a two-dimensional drift-diffusion model in order to evaluate the ion and electron density distributions and the electric field variation caused by the space charge effect. In order to consider the gain reduction process which occurs under the high rate and successive irradiation, the simulations were performed for the time period of ∼10-100 μs, which is much longer than the time required for ions to travel from an anode to a cathode. The numerical simulation results showed that for the low gas gain regime of ∼10, quasi-stationary density distribution of the ions was formed by the high-rate beams of ∼10(8)-10(10) particles per second, and that the transient variation of the gas gain became constant after establishment of the quasi-stationary ion density distributions.

  16. Study of deposit associated with discharge in micro-pixel gas chamber

    NASA Astrophysics Data System (ADS)

    Homma, Y.; Ochi, A.; Moriya, K.; Matsuda, S.; Yoshida, K.; Kobayashi, S.

    2009-02-01

    We found some deposits associated with discharge on dielectric (polyimide) substrates in "Micro-Pixel Gas Chambers" ( μ-PIC) operating with Ar/C2H6 90/10. Secondary electron images taken with a scanning electron microscope (SEM) revealed that they were a conductive material. Auger electron spectroscopy clearly showed that their main component was carbon (98%). Their origin was clarified using spark tests in which a single pixel was sparked a specific number of times. Secondary electron images clearly showed that discharge occurred in the narrow gaps between the electrodes. With a Ar/C2H6 50/50 gas mixture, the amount of carbon deposited depended on the number of sparks. The drop in the applied voltage after the test depended on the number of sparks. With pure N2 gas, no deposits were clearly found, however, a decrease in the applied voltage after the tests was observed. This can be attributed to carbonization of the polyimide surface. Although the SEM images did not show clear proof of this, this carbonization could contribute much less than the ethane dissociation.

  17. A chamber study of secondary organic aerosol formation by linalool ozonolysis

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Hopke, Philip K.

    The formation of secondary organic aerosol (SOA) produced from linalool ozonolysis was examined using a dynamic chamber system that allowed the simulation of ventilated indoor environments. Experiments were conducted under room temperature (22-23 °C) and air exchange rate of 0.67 h -1. An effort was made to maintain the product of the concentrations of the two reagents constant. The results suggest that under the conditions when the product of the two reagent concentrations was constant, the relative concentrations play an important role in determining the total SOA formed. A combination of concentrations somewhere in ozone limiting region will produce the maximum SOA concentration. The measured reactive oxygen species (ROS) concentrations at linalool and ozone concentrations relevant to prevailing indoor concentrations ranged from 0.71 to 2.53 nmol m -3 equivalents of H 2O 2. It was found that particle samples aged for 24 h lost a significant fraction of the ROS compared to fresh samples. The residual ROS concentrations were around 15-69%. Compared with other terpene species like α-pinene that has one endocyclic unsaturated carbon bond, linalool was less efficient in potential SOA formation yields.

  18. Numerical studies of transient gain reduction process in a multi-wire proportional chamber

    SciTech Connect

    Katagiri, Ken; Furukawa, Takuji; Noda, Koji

    2011-05-15

    A gain reduction process caused by successive beam irradiation in a multi-wire proportional chamber was numerically investigated to clarify the relations between the gas gain variation and the ion density distribution. A numerical code was developed based on a two-dimensional drift-diffusion model in order to evaluate the ion and electron density distributions and the electric field variation caused by the space charge effect. In order to consider the gain reduction process which occurs under the high rate and successive irradiation, the simulations were performed for the time period of {approx}10-100 {mu}s, which is much longer than the time required for ions to travel from an anode to a cathode. The numerical simulation results showed that for the low gas gain regime of {approx}10, quasi-stationary density distribution of the ions was formed by the high-rate beams of {approx}10{sup 8}- 10{sup 10} particles per second, and that the transient variation of the gas gain became constant after establishment of the quasi-stationary ion density distributions.

  19. The Resistive Plate Chambers of the ATLAS experiment:. performance studies on Calibration Stream

    NASA Astrophysics Data System (ADS)

    Mazzaferro, Luca

    2012-08-01

    ATLAS (A Toroidal LHC ApparatuS) is one of the four experiments installed on the hadron-hadron collider LHC at CERN. It is a general purpose experiment, with a physics program which spans from the search for the Higgs Boson to the search of physics Beyond the Standard Model (BSM). An integrated luminosity of about 5 fb-1 is expected to be reached by the end of 2011. The Resistive Plate Chambers, installed in the barrel region, are used to provide the first muon level trigger, and cover an area of 16000 m2, readout by about 350000 electronic channels. To ensure optimal trigger performance, the RPC operational parameters like cluster size, efficiency and spatial resolution are constantly monitored. In order to achieve the desired precision, the data used for the analysis are extracted directly from the second level of the trigger, hence assuring very high statistics. This dedicated event stream, called Calibration Stream, is sent automatically to the RPC Calibration Center in Naples. Here the analysis is performed using an automatic tool tightly integrated in the ATLAS GRID environment, the Local Calibration Data Splitter (LCDS), which configures and manages all the operations required by the analysis (e.g. software environment initialization, grid jobs configuration and submission, data saving and retrieval, etc). The monitored RPC operational parameters, the performance analysis and the LCDS will be presented.

  20. Full System Model of Magnetron Sputter Chamber - Proof-of-Principle Study

    SciTech Connect

    Walton, C; Gilmer, G; Zepeda-Ruiz, L; Wemhoff, A; Barbee, T

    2007-05-04

    The lack of detailed knowledge of internal process conditions remains a key challenge in magnetron sputtering, both for chamber design and for process development. Fundamental information such as the pressure and temperature distribution of the sputter gas, and the energies and arrival angles of the sputtered atoms and other energetic species is often missing, or is only estimated from general formulas. However, open-source or low-cost tools are available for modeling most steps of the sputter process, which can give more accurate and complete data than textbook estimates, using only desktop computations. To get a better understanding of magnetron sputtering, we have collected existing models for the 5 major process steps: the input and distribution of the neutral background gas using Direct Simulation Monte Carlo (DSMC), dynamics of the plasma using Particle In Cell-Monte Carlo Collision (PIC-MCC), impact of ions on the target using molecular dynamics (MD), transport of sputtered atoms to the substrate using DSMC, and growth of the film using hybrid Kinetic Monte Carlo (KMC) and MD methods. Models have been tested against experimental measurements. For example, gas rarefaction as observed by Rossnagel and others has been reproduced, and it is associated with a local pressure increase of {approx}50% which may strongly influence film properties such as stress. Results on energies and arrival angles of sputtered atoms and reflected gas neutrals are applied to the Kinetic Monte Carlo simulation of film growth. Model results and applications to growth of dense Cu and Be films are presented.

  1. Structurally compliant rocket engine combustion chamber: Experimental and analytical validation

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Arya, Vinod K.; Kazaroff, John M.; Halford, Gary R.

    1994-01-01

    A new, structurally compliant rocket engine combustion chamber design has been validated through analysis and experiment. Subscale, tubular channel chambers have been cyclically tested and analytically evaluated. Cyclic lives were determined to have a potential for 1000 percent increase over those of rectangular channel designs, the current state of the art. Greater structural compliance in the circumferential direction gave rise to lower thermal strains during hot firing, resulting in lower thermal strain ratcheting and longer predicted fatigue lives. Thermal, structural, and durability analyses of the combustion chamber design, involving cyclic temperatures, strains, and low-cycle fatigue lives, have corroborated the experimental observations.

  2. Increases of Chamber Height and Base Diameter Have Contrasting Effects on Grazing Rate of Two Cladoceran Species: Implications for Microcosm Studies

    PubMed Central

    Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun

    2015-01-01

    Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as “scale” effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments. PMID:26273836

  3. Increases of Chamber Height and Base Diameter Have Contrasting Effects on Grazing Rate of Two Cladoceran Species: Implications for Microcosm Studies.

    PubMed

    Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun

    2015-01-01

    Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as "scale" effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments. PMID:26273836

  4. Fabrication of submicron-scale rectangular bar of transparent In-Ga-Zn-O: A study of the possible application of transparent In-Ga-Zn-O optical waveguide

    NASA Astrophysics Data System (ADS)

    Shimizu, Takashi; Kuwahara, Masashi

    2014-05-01

    We studied the optical properties of In-Ga-Zn-O (IGZO) films and found a very low extinction coefficient of the films. For the potential application of the films, we propose an optical waveguide device made of IGZO. We have succeeded in producing a submicron-scale rectangular-bar structure of IGZO using our newly developed dry etching process. Simulation results showed an ˜5 dB/cm propagation loss of a 400 × 400 nm2 square optical waveguide device of amorphous IGZO at a wavelength of 1.55 µm, when a standard deviation of ˜4 nm and a correlation length of ˜100 nm of sidewall roughness were achieved.

  5. Effect of shell drilling stiffness on response calculations of rectangular plates and tubes of rectangular cross-section under compression.

    SciTech Connect

    Gorman, Jhana; Hales, Jason Dean; Corona, Edmundo

    2010-05-01

    This report considers the calculation of the quasi-static nonlinear response of rectangular flat plates and tubes of rectangular cross-section subjected to compressive loads using quadrilateralshell finite element models. The principal objective is to assess the effect that the shell drilling stiffness parameter has on the calculated results. The calculated collapse load of elastic-plastic tubes of rectangular cross-section is of particular interest here. The drilling stiffness factor specifies the amount of artificial stiffness that is given to the shell element drilling Degree of freedom (rotation normal to the plane of the element). The element formulation has no stiffness for this degree of freedom, and this can lead to numerical difficulties. The results indicate that in the problems considered it is necessary to add a small amount of drilling tiffness to obtain converged results when using both implicit quasi-statics or explicit dynamics methods. The report concludes with a parametric study of the imperfection sensitivity of the calculated responses of the elastic-plastic tubes with rectangular cross-section.

  6. Comparison of Aerosol Mass Spectrometer and Aerosol Chemical Speciation Monitor Measurements of Secondary Organic Aerosol Formation in Smog Chamber Studies

    NASA Astrophysics Data System (ADS)

    Croteau, P. L.; Hunter, J. F.; Daumit, K. E.; Carrasquillo, A. J.; Cross, E. S.; Canagaratna, M.; Jayne, J.; Worsnop, D. R.; Kroll, J. H.

    2012-12-01

    Thermal vaporization-electron impact ionization (TV-EI) mass spectrometry is a powerful tool for understanding the chemistry of secondary organic aerosol (SOA) formation and atmospheric aging. The Aerodyne Aerosol Mass Spectrometer (AMS) and recently developed Aerosol Chemical Speciation Monitor (ACSM) are two instruments that utilize the same TV-EI technique. The ACSM trades the particle sizing capability, sensitivity, speed, and resolution of the AMS for simplicity, affordability, and ease of operation - enabling stand-alone continuous sampling for extended periods of time. Here we present results of an intercomparison between a high-resolution AMS and an ACSM. Three well-studied SOA formation chamber experiments were conducted: isoprene photooxidation under high NOx conditions, m-xylene photooxidation under high NOx conditions, and α-pinene ozonolysis under low NOx conditions. Comparisons between time-series and mass spectra from these experiments, along with positive matrix factorization analysis results demonstrate that the ACSM, while it does not provide the same level of detail as an AMS, is a suitable tool for exploring the chemistry of SOA formation in chamber studies.

  7. Chamber for Growing and Observing Fungi

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Molina, Thomas C.

    2005-01-01

    A chamber has been designed to enable growth and observation of microcolonies of fungi in isolation from the external environment. Unlike prior fungus-growing apparatuses, this chamber makes it possible to examine a fungus culture without disrupting it. Partly resembling a small picture frame, the chamber includes a metal plate having a rectangular through-thethickness opening with recesses for a top and a bottom cover glass, an inlet for air, and an inlet for water. The bottom cover glass is put in place and held there by clips, then a block of nutrient medium and a moisture pad are placed in the opening. The block is inoculated, then the top cover glass is put in place and held there by clips. Once growth is evident, the chamber can be sealed with tape. Little (if any) water evaporates past the edges of the cover glasses, and, hence there is little (if any) need to add water. A microscope can be used to observe the culture through either cover glass. Because the culture is sealed in the chamber, it is safe to examine the culture without risking contamination. The chamber can be sterilized and reused.

  8. Ultrasonic Drying Processing Chamber

    NASA Astrophysics Data System (ADS)

    Acosta, V.; Bon, J.; Riera, E.; Pinto, A.

    The design of a high intensity ultrasonic chamber for drying process was investigated. The acoustic pressure distribution in the ultrasonic drying chamber was simulated solving linear elastic models with attenuation for the acoustic-structure interaction. Together with the government equations, the selection of appropriate boundary conditions, mesh refinement, and configuration parameters of the calculation methods, which is of great importance to simulate adequately the process, were considered. Numerical solution, applying the finite element method (FEM), of acoustic-structure interactions involves to couple structural and fluid elements (with different degrees of freedom), whose solution implies several problems of hardware requirements and software configuration, which were solved. To design the drying chamber, the influence of the directivity of the drying open camera and the staggered reflectors over the acoustic pressure distribution was analyzed. Furthermore, to optimize the influence of the acoustic energy on the drying process, the average value of the acoustic energy distribution in the drying chamber was studied. This would determine the adequate position of the food samples to be dried. For this purpose, the acoustic power absorbed by the samples will be analyzed in later studies.

  9. An Evaluation of Effects of Different Mydriatics on Choroidal Thickness by Examining Anterior Chamber Parameters: The Scheimpflug Imaging and Enhanced Depth Imaging-OCT Study

    PubMed Central

    Yuvacı, İsa; Pangal, Emine; Yuvacı, Sümeyra; Bayram, Nurettin; Ataş, Mustafa; Başkan, Burhan; Demircan, Süleyman; Akal, Ali

    2015-01-01

    Aim. To assess the effects of mydriatics commonly used in clinical practice on choroidal thickness and anterior chamber change. Methods. This was a prospective, randomized, controlled, double-blinded study including a single eye of the participants. The subjects were assigned into 4 groups to receive tropicamide 1%, phenylephrine 2.5%, cyclopentolate 1%, and artificial tears. At the baseline, anterior chamber parameters were assessed using a Pentacam Scheimpflug camera system, and choroidal thickness (CT) was measured using a spectral-domain OCT with Enhanced Depth Imaging (EDI) modality. All measurements were repeated again after drug administration. Results. Increases in pupil diameter, volume, and depth of anterior chamber were found to be significant (p = 0.000, p = 0.000, and p = 0.000, resp.), while decreases in the choroidal thickness were found to be significant in subjects receiving mydriatics (p < 0.05). Conclusions. The study has shown that while cyclopentolate, tropicamide, and phenylephrine cause a decrease in choroidal thickness, they also lead to an increase in the volume and depth of anterior chamber. However, no correlation was detected between anterior chamber parameters and choroidal changes after drug administration. These findings suggest that the mydriatics may affect the choroidal thickness regardless of anterior chamber parameters. This study was registered with trial registration number 2014/357. PMID:26509080

  10. Knudsen cell and smog chamber study of the heterogeneous uptake of sulfur dioxide on Chinese mineral dust.

    PubMed

    Zhou, Li; Wang, Weigang; Gai, Yanbo; Ge, Maofa

    2014-12-01

    The heterogeneous uptake processes of sulfur dioxide on two types of Chinese mineral dust (Inner Mongolia desert dust and Xinjiang sierozem) were investigated using both Knudsen cell and smog chamber system. The temperature dependence of the uptake coefficients was studied over a range from 253 to 313 K using the Knudsen cell reactor, the initial uptake coefficients decreased with the increasing of temperature for these two mineral dust samples, whereas the steady state uptake coefficients of the Xinjiang sierozem increased with the temperature increasing, and these temperature dependence functions were obtained for the first time. In the smog chamber experiments at room temperature, the steady state uptake coefficients of SO2 decreased evidently with the increasing of sulfur dioxide initial concentration from 1.72 × 10¹² to 6.15 × 10¹² mol/cm³. Humid air had effect on the steady state uptake coefficients of SO₂onto Inner Mongolia desert dust. Consequences about the understanding of the uptake processes onto mineral dust samples and the environmental implication were also discussed.

  11. Knudsen cell and smog chamber study of the heterogeneous uptake of sulfur dioxide on Chinese mineral dust.

    PubMed

    Zhou, Li; Wang, Weigang; Gai, Yanbo; Ge, Maofa

    2014-12-01

    The heterogeneous uptake processes of sulfur dioxide on two types of Chinese mineral dust (Inner Mongolia desert dust and Xinjiang sierozem) were investigated using both Knudsen cell and smog chamber system. The temperature dependence of the uptake coefficients was studied over a range from 253 to 313 K using the Knudsen cell reactor, the initial uptake coefficients decreased with the increasing of temperature for these two mineral dust samples, whereas the steady state uptake coefficients of the Xinjiang sierozem increased with the temperature increasing, and these temperature dependence functions were obtained for the first time. In the smog chamber experiments at room temperature, the steady state uptake coefficients of SO2 decreased evidently with the increasing of sulfur dioxide initial concentration from 1.72 × 10¹² to 6.15 × 10¹² mol/cm³. Humid air had effect on the steady state uptake coefficients of SO₂onto Inner Mongolia desert dust. Consequences about the understanding of the uptake processes onto mineral dust samples and the environmental implication were also discussed. PMID:25499490

  12. Dose verifications by use of liquid ionization chamber of an electronic portal imaging device (EPID).

    PubMed

    Tateoka, Kunihiko; Oouchi, Atsushi; Nakata, Kensei; Hareyama, Masato

    2008-07-01

    In this study, we examined the ability of an L-EPID to verify rectangular and irregular fields and to measure the transmitted exit doses. With respect to the beam profile of rectangular and irregular fields and the doses transmitted through an inhomogeneous phantom, the L-EPID dose obtained from the L-EPID measurement was compared with the conventional dose measured by use of a 0.12-cc ionization chamber and a 3D water phantom. In the comparison of the rectangular and irregular fields, the difference in the off-center ratio (OCR) between the L-EPID dose and the conventional dose was approximately 3% in the steep-dose-gradient region (penumbra regions, >30%/cm) and approximately +/-0.5% in the gentle-dose-gradient region (5%/cm). On the other hand, the dose differences between the L-EPID and the measured doses were less than approximately 2% in the gentle-dose-gradient region. In addition, in the steep-dose-gradient region, the maximum difference was 30%. However, the differences in the distance-to-agreement (DTA) were less than approximately +/-1 mm and were unrelated to the dose gradient. These results suggest that dose verification by L-EPID is very useful in clinical applications.

  13. Hubbell rectangular source integral calculation using a fast Chebyshev wavelets method.

    PubMed

    Manai, K; Belkadhi, K

    2016-07-01

    An integration method based on Chebyshev wavelets is presented and used to calculate the Hubbell rectangular source integral. A study of the convergence and the accuracy of the method was carried out by comparing it to previous studies. PMID:27152913

  14. Liquid Wall Chambers

    SciTech Connect

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  15. Space shuttle orbit maneuvering engine reusable thrust chamber. Task 13: Subscale helium ingestion and two dimensional heating test report

    NASA Technical Reports Server (NTRS)

    Tobin, R. D.

    1974-01-01

    Descriptions are given of the test hardware, facility, procedures, and results of electrically heated tube, channel and panel tests conducted to determine effects of helium ingestion, two dimensional conduction, and plugged coolant channels on operating limits of convectively cooled chambers typical of space shuttle orbit maneuvering engine designs. Helium ingestion in froth form, was studied in tubular and rectangular single channel test sections. Plugged channel simulation was investigated in a three channel panel. Burn-out limits (transition of film boiling) were studied in both single channel and panel test sections to determine 2-D conduction effects as compared to tubular test results.

  16. Flow through rotating rectangular ducts

    NASA Astrophysics Data System (ADS)

    Nandakumar, K.; Raszillier, H.; Durst, F.

    1991-05-01

    The bifurcation structure of two-dimensional, pressure-driven flows through a rectangular duct that is rotating about an axis perpendicular to its own is examined at a fixed Ekman number (Ek=ν/b2Ω) of 0.01. The solution structure for flow through a square duct (aspect ratio γ=1) is determined for Rossby numbers (Ro=U/bΩ) in the range of 0-5 using a computational scheme based on the arclength continuation method. The structure is much more complicated than reported earlier by Kheshgi and Scriven [Phys. Fluids 28, 2968 (1985)]. The primary branch with two limit points in Rossby number and a hysteresis behavior between the two- and four-cell flow structure that was computed by Kheshgi and Scriven is confirmed. An additional symmetric solution branch, which is disconnected from the primary branch (or rather connected via an asymmetric solution branch), is found. This has a two-cell flow structure at one end, a four-cell flow structure at the other and three limit points are located on the path. Two asymmetric solution branches emanating from symmetry breaking bifurcation points are also found for a square duct. Thus even within a Rossby number range of 0-5 a much richer solutions structure is found with up to five solutions at Ro=5. An eigenvalue calculation indicates that all two-dimensional solutions develop some form of unstable mode by the time Ro is increased to 5.0. In particular, the four-cell solution becomes unstable to asymmetric perturbations as found in a related problem of flow through a curved duct. The paths of the singular points are tracked with respect to variation in the aspect ratio using the fold following algorithm. A transcritical point is found at an aspect ratio of 0.815 and below which the four-cell solution is no longer on the primary branch. When the channel cross section is tilted even slightly (1°) with respect to the axis of rotation, the bifurcation points unfold and the two-cell solution evolves smoothly as Rossby number is

  17. Shock-Dispersed-Fuel Charges: Combustion in Chambers and Tunnels

    SciTech Connect

    Neuwald, P; Reichenbach, H; Kuhl, A L

    2003-04-22

    In previous studies we have investigated after-burning effects of a fuel-rich explosive (TNT). In that case the detonation only releases about 30% of the available energy, but generates a hot cloud of fuel that can burn in the ambient air, thus evoking an additional energy release that is distributed in space and time. The current series of small-scale experiments can be looked upon as a natural generalization of this mechanism: a booster charge disperses a (non-explosive) fuel, provides mixing with air and, by means of the hot detonation products, the energy to ignite the fuel. The current version of our miniature Shock-Dispersed-Fuel (SDF) charges consists of a spherical booster charge of 0.5 g PETN, embedded in a paper cylinder of approximately 2.2 cm, which is filled with powdered fuel compositions. The main compositions studied up to now contain aluminum flakes, hydrocarbon powders like polyethylene or hexosen (sucrose) and/or carbon particles. These charges were studied in four different chambers: two cylindrical vessels of 6.6-1 and 40.5-1 volume with a height-to-diameter ratio of approximately 1, a rectangular chamber of 41 (10.5 x 10.5 x 38.6 cm) and a 299.6 cm long tunnel model with a cross section of 8 x 8 cm (volume 19.21) closed at both ends.

  18. Free vibration of rectangular nanoplates using Rayleigh-Ritz method

    NASA Astrophysics Data System (ADS)

    Chakraverty, S.; Behera, Laxmi

    2014-02-01

    Vibration analysis of isotropic rectangular nanoplates based on the classical plate theory in conjunction with Eringen's nonlocal elasticity theory is considered. Nanoplates are one of the structural units that are used in nanoscale applications. In this study, Rayleigh-Ritz method with algebraic polynomial displacement function is used to solve the vibration problem of isotropic rectangular nanoplates subjected to different boundary conditions. The advantage of the method is that one can easily handle the specified boundary conditions at the edges. A comparison of the results with those available in the literature has been made. The proposed method is also validated by convergence studies. Frequency parameters are given for different nonlocality parameters, length of nanoplates and boundary conditions. The study highlights that nonlocality effects increase with the increase in mode number and the influence of nonlocal effects becomes increasingly pronounced for higher order vibration modes. Three-dimensional mode shapes for the specified nanoplates have also been presented.

  19. Portable Hyperbaric Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); Locke, James P. (Inventor); DeLaFuente, Horacio (Inventor)

    2001-01-01

    A portable, collapsible hyperbaric chamber was developed. A toroidal inflatable skeleton provides initial structural support for the chamber, allowing the attendant and/or patient to enter the chamber. Oval hatches mate against bulkhead rings, and the hyperbaric chamber is pressurized. The hatches seal against an o-ring, and the internal pressure of the chamber provides the required pressure against the hatch to maintain an airtight seal. In the preferred embodiment, the hyperbaric chamber has an airlock to allow the attendant to enter and exit the patient chamber during treatment. Visual communication is provided through portholes in the patient and/or airlock chamber. Life monitoring and support systems are in communication with the interior of the hyperbaric chamber and/or airlock chamber through conduits and/or sealed feed-through connectors into the hyperbaric chamber.

  20. AEROSOL GROWTH IN A STEADY-STATE, CONTINUOUS FLOW CHAMBER: APPLICATION TO STUDIES OF SECONDARY AEROSOL FORMATION

    EPA Science Inventory

    An analytical solution for the steady-state aerosol size distribution achieved in a steady-state, continuous flow chamber is derived, where particle growth is occurring by gas-to-particle conversion and particle loss is occurring by deposition to the walls of the chamber. The s...

  1. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1992-01-01

    Condensation heat transfer in an annular flow regime with and without interfacial waves was experimentally investigated. The study included measurements of heat transfer rate with condensation of vapor flowing inside a horizontal rectangular duct and experiments on the initiation of interfacial waves in condensation, and adiabatic air-liquid flow. An analytical model for the condensation was developed to predict condensate film thickness and heat transfer coefficients. Some conclusions drawn from the study are that the condensate film thickness was very thin (less than 0.6 mm). The average heat transfer coefficient increased with increasing the inlet vapor velocity. The local heat transfer coefficient decreased with the axial distance of the condensing surface, with the largest change at the leading edge of the test section. The interfacial shear stress, which consisted of the momentum shear stress and the adiabatic shear stress, appeared to have a significant effect on the heat transfer coefficients. In the experiment, the condensate flow along the condensing surface experienced a smooth flow, a two-dimensional wavy flow, and a three-dimensional wavy flow. In the condensation experiment, the local wave length decreased with the axial distance of the condensing surface and the average wave length decreased with increasing inlet vapor velocity, while the wave speed increased with increasing vapor velocity. The heat transfer measurements are reliable. And, the ultrasonic technique was effective for measuring the condensate film thickness when the surface was smooth or had waves of small amplitude.

  2. Augmented Beta rectangular regression models: A Bayesian perspective.

    PubMed

    Wang, Jue; Luo, Sheng

    2016-01-01

    Mixed effects Beta regression models based on Beta distributions have been widely used to analyze longitudinal percentage or proportional data ranging between zero and one. However, Beta distributions are not flexible to extreme outliers or excessive events around tail areas, and they do not account for the presence of the boundary values zeros and ones because these values are not in the support of the Beta distributions. To address these issues, we propose a mixed effects model using Beta rectangular distribution and augment it with the probabilities of zero and one. We conduct extensive simulation studies to assess the performance of mixed effects models based on both the Beta and Beta rectangular distributions under various scenarios. The simulation studies suggest that the regression models based on Beta rectangular distributions improve the accuracy of parameter estimates in the presence of outliers and heavy tails. The proposed models are applied to the motivating Neuroprotection Exploratory Trials in Parkinson's Disease (PD) Long-term Study-1 (LS-1 study, n = 1741), developed by The National Institute of Neurological Disorders and Stroke Exploratory Trials in Parkinson's Disease (NINDS NET-PD) network. PMID:26289406

  3. Shock Train/Boundary-Layer Interaction in Rectangular Scramjet Isolators

    NASA Astrophysics Data System (ADS)

    Geerts, Jonathan Simon

    Numerous studies of the dual-mode scramjet isolator, a critical component in preventing inlet unstart and/or vehicle loss by containing a collection of flow disturbances called a shock train, have been performed since the dual-mode propulsion cycle was introduced in the 1960s. Low momentum corner flow and other three-dimensional effects inherent to rectangular isolators have, however, been largely ignored in experimental studies of the boundary layer separation driven isolator shock train dynamics. Furthermore, the use of two dimensional diagnostic techniques in past works, be it single-perspective line-of-sight schlieren/shadowgraphy or single axis wall pressure measurements, have been unable to resolve the three-dimensional flow features inside the rectangular isolator. These flow characteristics need to be thoroughly understood if robust dual-mode scramjet designs are to be fielded. The work presented in this thesis is focused on experimentally analyzing shock train/boundary layer interactions from multiple perspectives in aspect ratio 1.0, 3.0, and 6.0 rectangular isolators with inflow Mach numbers ranging from 2.4 to 2.7. Secondary steady-state Computational Fluid Dynamics studies are performed to compare to the experimental results and to provide additional perspectives of the flow field. Specific issues that remain unresolved after decades of isolator shock train studies that are addressed in this work include the three-dimensional formation of the isolator shock train front, the spatial and temporal low momentum corner flow separation scales, the transient behavior of shock train/boundary layer interaction at specific coordinates along the isolator's lateral axis, and effects of the rectangular geometry on semi-empirical relations for shock train length prediction. (Abstract shortened by ProQuest.).

  4. The hydrodynamic focusing effect inside rectangular microchannels

    NASA Astrophysics Data System (ADS)

    Lee, Gwo-Bin; Chang, Chih-Chang; Huang, Sung-Bin; Yang, Ruey-Jen

    2006-05-01

    This paper presents a theoretical and experimental investigation into the hydrodynamic focusing effect in rectangular microchannels. Two theoretical models for two-dimensional hydrodynamic focusing are proposed. The first model predicts the width of the focused stream in symmetric hydrodynamic focusing in microchannels of various aspect ratios. The second model predicts the location and the width of the focused stream in asymmetric hydrodynamic focusing in microchannels with a low or high aspect ratio. In both models, the theoretical results are shown to be in good agreement with the experimental data. Hence, the models provide a useful means of performing a theoretical analysis of flow control in microfluidic devices using hydrodynamic focusing effects. The ability of the proposed models to control the focused stream within a micro flow cytometer is verified in a series of experimental trials performed using polystyrene microparticles with a diameter of 20 µm. The experimental data show that the width of the focused stream can be reduced to the same order of magnitude as that of the particle size. Furthermore, it is shown that the microparticles can be successfully hydrodynamically focused and switched to the desired outlet port of the cytometer. Hence, the models presented in this study provide sufficient control to support cell/particle counting and sorting applications.

  5. Lattice Boltzmann Equation On a 2D Rectangular Grid

    NASA Technical Reports Server (NTRS)

    Bouzidi, MHamed; DHumieres, Dominique; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    We construct a multi-relaxation lattice Boltzmann model on a two-dimensional rectangular grid. The model is partly inspired by a previous work of Koelman to construct a lattice BGK model on a two-dimensional rectangular grid. The linearized dispersion equation is analyzed to obtain the constraints on the isotropy of the transport coefficients and Galilean invariance for various wave propagations in the model. The linear stability of the model is also studied. The model is numerically tested for three cases: (a) a vortex moving with a constant velocity on a mesh periodic boundary conditions; (b) Poiseuille flow with an arbitrasy inclined angle with respect to the lattice orientation: and (c) a cylinder &symmetrically placed in a channel. The numerical results of these tests are compared with either analytic solutions or the results obtained by other methods. Satisfactory results are obtained for the numerical simulations.

  6. Intrinsic polarization control in rectangular GaN nanowire lasers

    DOE PAGES

    Li, Changyi; Liu, Sheng; Luk, Ting S.; Figiel, Jeffrey J.; Brener, Igal; Brueck, S. R. J.; Wang, George T.

    2016-02-01

    In this study, we demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444kW/cm2 and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent control overmore » the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates.« less

  7. Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Scanning

    NASA Technical Reports Server (NTRS)

    Cole, H. J.; Chambers, D. M.; Dixit, S. N.; Britten, J. A.; Shore, B. W.; Kavaya, M. J.

    1999-01-01

    The application of specialized rectangular relief transmission gratings to coherent lidar beam scanning is presented. Two types of surface relief transmission grating approaches are studied with an eye toward potential insertion of a constant thickness, diffractive scanner where refractive wedges now exist. The first diffractive approach uses vertically oriented relief structure in the surface of an optical flat; illumination of the diffractive scanner is off-normal in nature. The second grating design case describes rectangular relief structure slanted at a prescribed angle with respect to the surface. In this case, illumination is normal to the diffractive scanner. In both cases, performance predictions for 2.0 micron, circularly polarized light at beam deflection angles of 30 or 45 degrees are presented.

  8. Comparative study of ionization chamber detectors vis-a-vis a CCD detector for dispersive XAS measurement in transmission geometry

    SciTech Connect

    Poswal, A. K.; Agrawal, A.; Bhattachryya, D.; Jha, S. N.; Sahoo, N. K.

    2013-02-05

    We have designed and fabricated parallel plate ionization chamber detectors and voltage vs. current characteristics (V-I curve) of the detectors were recorded with synchrotron radiation to qualify for use in X-ray Absorption Spectroscopy (XAS) measurements. After qualifying the ionization chambers, the detectors were used in the dispersive EXAFS beamline (BL-08) at INDUS-2 SRS in Turbo-XAS geometry. Using the same setup and under the same setting, XAS spectra were also recorded with a CCD detector and the observation on relative performance of the ionization chamber vis-a-vis the CCD detector is presented in this paper.

  9. Small-scale passive emission chamber for screening studies on monoterpene emission flux from the surface of wood-based indoor elements.

    PubMed

    Marć, Mariusz; Namieśnik, Jacek; Zabiegała, Bożena

    2014-05-15

    Analysis of literature data published in the last few years leads to the conclusion that in the process of assessment of emission flux of organic compounds emitted from different types of equipment and finishing materials, new types of devices, among which small-scale passive emission chambers for the performance of in-situ research are designed and applied on a larger scale. These devices can be successfully used for the assessment of emission flux of organic compounds in any location of an apartment, with no interference with its normal exploitation. In the following article the possibility of application of a designed and constructed small-scale passive emission chamber for the evaluation of emission flux of organic compounds (mainly monoterpenes) emitted from the surface of wood-based material made of laminated chipboard has been presented. The emission chamber made from polished stainless steel of the inner volume of 3.65 dm(3) allows for the examination/assessment of emission flux from the surface of 452 cm(2). A diffusive passive sampler was installed inside of the small-scale chamber, which enables collecting samples of the analytes emitted from the examined surface of indoor material. The working time of the passive emission chamber equaled 300 min. The results of preliminary studies show that, the constructed device can be successfully used for screening studies, related with the determination of emission flux of monoterpenes from any type of wood-based flat surface located indoors.

  10. A sample chamber for in situ high-energy X-ray studies of crystal growth at deeply buried interfaces in harsh environments

    NASA Astrophysics Data System (ADS)

    de Jong, A. E. F.; Vonk, V.; Honkimäki, V.; Gorges, B.; Vitoux, H.; Vlieg, E.

    2015-06-01

    We introduce a high pressure high temperature chamber for in situ synchrotron X-ray studies. The chamber design allows for in situ studies of thin film growth from solution at deeply buried interfaces in harsh environments. The temperature can be controlled between room temperature and 1073 K while the pressure can be set as high as 50 bar using a variety of gases including N2 and NH3. The formation of GaN on the surface of a Ga13Na7 melt at 1073 K and 50 bar of N2 is presented as a performance test.

  11. Experimental and analytical study of one- and two-component flows in spherical chambers

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.

    1973-01-01

    A study was conducted to evaluate techniques for obtaining high inner-gas concentrations in a spherical cavity for application to the open-cycle gaseous-core nuclear rocket. The study included flow visualization tests with water and gases as the working fluids, calculations of the streamline distribution, and calculation and measurement of the inner-gas concentration with air and Freon-11 as the inner-stream gases. The cavity shape, the outer-stream injection conditions, the turbulent transport coefficients, and the buoyancy effects were found to affect the inner-stream flow patterns.

  12. Melting Process of Clathrate in a Rectangular Cell

    NASA Astrophysics Data System (ADS)

    Chiba, Takashi; Okada, Masashi; Matsumoto, Koji

    In order to clarify the mechanism of heat transfer during melting of a clathrate in rectangular cells, two melting processes, namely, two-dimensional melting process with natural convection from a vertical wall and one-dimensional melting process by heat conduction from an upper horizontal wall, are studied experimentally. The R-141b was used for generating clathrate. One experiment was carried out by melting the clathrate filled into a 150mm high and 100mm wide rectangular cell from a vertical wall. And in the other experiment, the clathrate was melted from the upper horizontal wall of a rectangular cell with 88mm height and 180mm width. The temperature distributions in cells were measured. The melting front was measured by pictures taken on fixed times. The concentration of freon in the melt was measured by gas-chromatography. The following results are obtained. (1) In the melting process, the clathrate decomposes into an emulsion region which is a water-freon mixture and a liquid freon region under the emulsion. (2) Concentration gradient of freon in the emulsion plyas an important role in the natural convection in the melt. The Nusselt number on the heated vertical wall is depressed by the concentration gradients.

  13. Simulation of wavefront reconstruction in beam reshaping system for rectangular laser beam

    NASA Astrophysics Data System (ADS)

    Zhou, Qiong; Liu, Wenguang; Jiang, Zongfu

    2014-05-01

    A new method to calculating the wavefront of slap laser is studied in this paper. The method is based on the ray trace theory of geometrical optics. By using the Zemax simulation software and Matlab calculation software, the wavefront of rectangular beam in beam reshaping system is reconstructed. Firstly, with the x- and y-slope measurement of reshaping beam the direction cosine of wavefront can be calculated. Then, the inverse beam path of beam reshaping system is built by using Zemax simulation software and the direction cosine of rectangular beam can be given, too. Finally, Southwell zonal model is used to reconstruct the wavefront of rectangular beam in computer simulation. Once the wavefront is received, the aberration of laser can be eliminated by using the proper configuration of beam reshaping system. It is shown that this method to reconstruct the wavefront of rectangular beam can evidently reduce the negative influence of additional aberration induced by beam reshaping system.

  14. Experimental and theoretical study of artificial plasma layers produced by two intersecting beams in a chamber

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Zhang, Y. S.

    1989-01-01

    The work done on the Bragg scattering of electromagnetic waves by microwave produced plasma layers is reported. Also summarized is the work accomplished on the propagation of high power microwave pulses in an air breakdown environment. Ongoing work on the theoretical model and numerical results of pulse propagation in air is also presented as are the results of studying the decay of plasma density and temperature.

  15. A two-dimensional numerical study of the flow inside the combustion chambers of a motored rotary engine

    NASA Technical Reports Server (NTRS)

    Shih, T. I. P.; Yang, S. L.; Schock, H. J.

    1986-01-01

    A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.

  16. A two-dimensional numerical study of the flow inside the combustion chamber of a motored rotary engine

    NASA Technical Reports Server (NTRS)

    Shih, T. I-P.; Yang, S. L.; Schock, H. J.

    1986-01-01

    A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.

  17. Comparing the Volumes of Rectangular Prisms

    ERIC Educational Resources Information Center

    Assuah, Charles K.; Wiest, Lynda R.

    2010-01-01

    Can middle-grades students determine which of two rectangular prisms has a larger volume? Can they do so without using a formula? Geometry, and particularly the concept of volume, is important in many subjects, such as physics and chemistry. Students greatly enhance their mathematics knowledge when they make generalizations and construct arguments…

  18. Stable Isotope Biogeochemistry of Seabird Guano Fertilization: Results from Growth Chamber Studies with Maize (Zea Mays)

    PubMed Central

    Szpak, Paul; Longstaffe, Fred J.; Millaire, Jean-François; White, Christine D.

    2012-01-01

    Background Stable isotope analysis is being utilized with increasing regularity to examine a wide range of issues (diet, habitat use, migration) in ecology, geology, archaeology, and related disciplines. A crucial component to these studies is a thorough understanding of the range and causes of baseline isotopic variation, which is relatively poorly understood for nitrogen (δ15N). Animal excrement is known to impact plant δ15N values, but the effects of seabird guano have not been systematically studied from an agricultural or horticultural standpoint. Methodology/Principal Findings This paper presents isotopic (δ13C and δ15N) and vital data for maize (Zea mays) fertilized with Peruvian seabird guano under controlled conditions. The level of 15N enrichment in fertilized plants is very large, with δ15N values ranging between 25.5 and 44.7‰ depending on the tissue and amount of fertilizer applied; comparatively, control plant δ15N values ranged between −0.3 and 5.7‰. Intraplant and temporal variability in δ15N values were large, particularly for the guano-fertilized plants, which can be attributed to changes in the availability of guano-derived N over time, and the reliance of stored vs. absorbed N. Plant δ13C values were not significantly impacted by guano fertilization. High concentrations of seabird guano inhibited maize germination and maize growth. Moreover, high levels of seabird guano greatly impacted the N metabolism of the plants, resulting in significantly higher tissue N content, particularly in the stalk. Conclusions/Significance The results presented in this study demonstrate the very large impact of seabird guano on maize δ15N values. The use of seabird guano as a fertilizer can thus be traced using stable isotope analysis in food chemistry applications (certification of organic inputs). Furthermore, the fertilization of maize with seabird guano creates an isotopic signature very similar to a high-trophic level marine resource, which must

  19. Study on the influence of the B4C layer thickness on the neutron flux and energy distribution shape in multi-electrode ionisation chamber.

    PubMed

    Tymińska, K; Maciak, M; Ośko, J; Tulik, P; Zielczyński, M; Gryziński, M A

    2014-10-01

    A model of a multi-electrode ionisation chamber, with polypropylene electrodes coated with a thin layer of B4C was created within Monte Carlo N-Particle Transport Code (MCNPX) and Fluktuierende Kaskade (FLUKA) codes. The influence of the layer thickness on neutron absorption in B4C and on the neutron spectra in the consecutive intra-electrode gas volumes has been studied using the MCNPX and FLUKA codes. The results will be used for designing the new type of the ionisation chamber.

  20. Study on the influence of the B4C layer thickness on the neutron flux and energy distribution shape in multi-electrode ionisation chamber.

    PubMed

    Tymińska, K; Maciak, M; Ośko, J; Tulik, P; Zielczyński, M; Gryziński, M A

    2014-10-01

    A model of a multi-electrode ionisation chamber, with polypropylene electrodes coated with a thin layer of B4C was created within Monte Carlo N-Particle Transport Code (MCNPX) and Fluktuierende Kaskade (FLUKA) codes. The influence of the layer thickness on neutron absorption in B4C and on the neutron spectra in the consecutive intra-electrode gas volumes has been studied using the MCNPX and FLUKA codes. The results will be used for designing the new type of the ionisation chamber. PMID:24729596

  1. Atmospheric degradation of lindane and 1,3-dichloroacetone in the gas phase. Studies at the EUPHORE simulation chamber.

    PubMed

    Vera, Teresa; Borrás, Esther; Chen, Jianmin; Coscollá, Clara; Daële, Véronique; Mellouki, Abdelwahid; Ródenas, Milagros; Sidebottom, Howard; Sun, Xiaomin; Yusá, Vicent; Zhang, Xue; Muñoz, Amalia

    2015-11-01

    The gas-phase degradation of lindane (γ-isomer of hexachlorocyclohexane) towards OH radical was investigated under atmospheric conditions at the large outdoor European simulation chamber (EUPHORE) in Valencia, Spain. The rate coefficient for the reaction of hydroxyl radicals with lindane was measured using a conventional relative rate technique leading to a value of kOH(lindane)=(6.4±1.6)×10(-13) cm(3) molecule(-1) s(-1) at 300±5 K and atmospheric pressure. The results suggest that the tropospheric lifetime of lindane with respect to OH radicals is approximately 20 days. The product distribution studies on the OH-initiated oxidation of lindane provided evidence that the major initial carbon-containing oxidation product is pentachlorocyclohexanone. 1,3-Dichloroacetone was employed as a model compound for pentachlorocyclohexanone, and an investigation of its photolysis and reaction with OH radicals under atmospheric conditions was carried out. The data indicate that the atmospheric degradation of pentachlorocyclohexanone would be relatively rapid, and would not form persistent organic compounds. Theoretical study was also employed to calculate possible degradation pathways. Mechanism for reaction of lindane with OH radicals is proposed, and C-Cl bond cleavage is discussed. OH abstraction is considered to be a reasonable way for Cl to escape during degradation. The atmospheric implications of the use of lindane as an insecticide are discussed.

  2. Design and Fabrication of Low-Cost 1536-Chamber Microfluidic Microarrays for Mood-Disorders-Related Serological Studies

    PubMed Central

    Zhao, Xinyan; Dong, Tao

    2013-01-01

    Mood disorders are common mental diseases, but physiological diagnostic methods are still lacking. Since much evidence has implied a relationship between mood disorders and the protein composition of blood sera, it is conceivable to develop a serological criterion for assisting diagnosis of mood disorders, based on a correlative database with enough capacity and high quality. In this pilot study, a low-cost microfluidic microarray device for quantifying at most 384 serological biomarkers at the same time was designed for the data acquisition of the serological study. The 1,536-chamber microfluidic device was modeled on a 1,536-well microtiter plate in order to employ a common microplate reader as the detection module for measuring the chemiluminescent immunoassay tests on the chips. The microfluidic microarrays were rapidly fabricated on polymethylmethacrylate slides using carbon dioxide laser ablation, followed by effective surface treatment processing. Sixteen types of different capture antibodies were immobilized on the chips to test the corresponding hormones and cytokines. The preliminary tests indicated that the signal-to-noise ratio and the limit of detection of microfluidic microarrays have reached the level of standard ELISA tests, whereas the operation time of microfluidic microarrays was sharply reduced. PMID:24169541

  3. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber.

    PubMed

    Xiao, Huahua; Sun, Jinhua; Chen, Peng

    2014-03-15

    An experimental and numerical study of dynamics of premixed hydrogen/air flame in a closed explosion vessel is described. High-speed shlieren cinematography and pressure recording are used to elucidate the dynamics of the combustion process in the experiment. A dynamically thickened flame model associated with a detailed reaction mechanism is employed in the numerical simulation to examine the flame-flow interaction and effect of wall friction on the flame dynamics. The shlieren photographs show that the flame develops into a distorted tulip shape after a well-pronounced classical tulip front has been formed. The experimental results reveal that the distorted tulip flame disappears with the primary tulip cusp and the distortions merging into each other, and then a classical tulip is repeated. The combustion dynamics is reasonably reproduced in the numerical simulations, including the variations in flame shape and position, pressure build-up and periodically oscillating behavior. It is found that both the tulip and distorted tulip flames can be created in the simulation with free-slip boundary condition at the walls of the vessel and behave in a manner quite close to that in the experiments. This means that the wall friction could be unimportant for the tulip and distorted tulip formation although the boundary layer formed along the sidewalls has an influence to a certain extent on the flame behavior near the sidewalls. The distorted tulip flame is also observed to be produced in the absence of vortex flow in the numerical simulations. The TF model with a detailed chemical scheme is reliable for investigating the dynamics of distorted tulip flame propagation and its underlying mechanism. PMID:24486615

  4. Thermal vibration of a rectangular single-layered graphene sheet with quantum effects

    SciTech Connect

    Wang, Lifeng Hu, Haiyan

    2014-06-21

    The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.

  5. Ducted combustion chamber for direct injection engines and method

    SciTech Connect

    Mueller, Charles

    2015-03-03

    An internal combustion engine includes an engine block having a cylinder bore and a cylinder head having a flame deck surface disposed at one end of the cylinder bore. A piston connected to a rotatable crankshaft and configured to reciprocate within the cylinder bore has a piston crown portion facing the flame deck surface such that a combustion chamber is defined within the cylinder bore and between the piston crown and the flame deck surface. A fuel injector having a nozzle tip disposed in fluid communication with the combustion chamber has at least one nozzle opening configured to inject a fuel jet into the combustion chamber along a fuel jet centerline. At least one duct defined in the combustion chamber between the piston crown and the flame deck surface has a generally rectangular cross section and extends in a radial direction relative to the cylinder bore substantially along the fuel jet centerline.

  6. Method for the preparation of mucosal flaps from the jejunum of laying hens for transporter studies in Ussing chambers.

    PubMed

    Ruhnke, Isabelle; Röhe, Ilen; Meyer, Wilfried; Kröger, Susan; Neumann, Konrad; Zentek, Jürgen

    2013-04-01

    Ussing chambers are frequently used for in vitro evaluation of intestinal transport physiology. The current study describes investigating the jejunal tissue from laying hens using a specific preparation method and evaluates the effect of glutamine in the maintenance buffer. Tunica mucosa was stripped from 104 jejunal samples from 10 hens and stabilised by a net device. Fifty samples were maintained with modified Krebs-Henseleit buffer (Control), 54 samples with additional 5 mM glutamine (Group Gln). The percentage of responding samples varied between 87 and 100%. Mean short circuit current (ΔI sc,) [µA/cm(2)] of samples exposed to 10 mM glucose in the Control group and Group Gln was 17.0 and 14.6 (p = 0.836), respectively, of samples exposed to 100 µM phloridzin -13.3 and -11.8 (p = 0.712), respectively, and of samples exposed to 100 µM carbachol 4.7 and 3.7 (p = 0.450), respectively. In conclusion, the net-supported method enabled a reliable investigation of jejunum from laying hens. Glutamine in the maintenance buffer was of no significant benefit.

  7. [Scintigraphic study of the lymphatic drainage of the anterior chamber of the mouse eye and its pathophysiological implications].

    PubMed

    Guignier, B; Bourahla, K; Bekaert, V; Brasse, D; Gaucher, D; Speeg-Schatz, C; Bourcier, T

    2013-12-01

    For many years, the intraocular lymphatic system and particularly the drainage of the aqueous humor by this system have been considered non-existant. Our study is the first to demonstrate, in a dynamic in vivo fashion, the existence of lymphatic drainage in the mouse eye. This has become possible with lymphoscintigraphy with nano-molecules of rhenium sulphide, marked by technetium-99m and injected into the anterior chamber of the mouse eye. Readings were taken using an experimental gamma camera specially built for the small animal. The hypothesis of a "uveolymphatic" drainage pathway within the ciliary body, contributing to aqueous outflow, has recently been highlighted by new improvements in microbiology (discovery of lymphatic endothelial-specific markers) and imaging. This new pathway may lead to many prospects: the development of techniques for visualization and quantification of this in vivo lymphatic flow may help to increase our understanding of the physiopathology and perhaps treatment of chronic glaucoma as well as neoplastic conditions. PMID:24099697

  8. Exposure chambers for studying the partitioning of atmospheric PAHs in environmental compartments: validation and calibration using experimental and computational approaches.

    PubMed

    Desalme, Dorine; Roy, Jean-Claude; Binet, Philippe; Chiapusio, Geneviève; Gilbert, Daniel; Toussaint, Marie-Laure; Girardot, Laurent; Bernard, Nadine

    2013-08-01

    The environmental partitioning of atmospheric polycyclic aromatic hydrocarbons (PAHs) conditions their entry into food chains and subsequent risks for human health. The need for new experimental exposure devices for elucidating the mechanisms governing ecosystemic PAH transfer motivated the elaboration of an original small-scale exposure chamber (EC). A dual approach pairing experimentation and computational fluid dynamics (CFD) was selected to provide comprehensive validation of this EC as a tool to study the transfer and biological effects of atmospheric PAH pollution in microsystems. Soil samples and passive air samplers (PASs) were exposed to atmospheric pollution by phenanthrene (PHE), a gaseous PAH, for 2 weeks in examples of the EC being tested, set up under different conditions. Dynamic concentrations of atmospheric PHE and its uptake by PASs were simulated with CFD, results showing homogeneous distribution and constant atmospheric PHE concentrations inside the ECs. This work provides insight into the setting of given concentrations and pollution levels when using such ECs. The combination of experimentation and CFD is a successful ECs calibration method that should be developed with other semivolatile organic pollutants, including those that tend to partition in the aerosol phase.

  9. CONTINUOUS ROTATION SCATTERING CHAMBER

    DOEpatents

    Verba, J.W.; Hawrylak, R.A.

    1963-08-01

    An evacuated scattering chamber for use in observing nuclear reaction products produced therein over a wide range of scattering angles from an incoming horizontal beam that bombards a target in the chamber is described. A helically moving member that couples the chamber to a detector permits a rapid and broad change of observation angles without breaching the vacuum in the chamber. Also, small inlet and outlet openings are provided whose size remains substantially constant. (auth)

  10. Feasibility study of monitoring of plasma etching chamber conditions using superimposed high-frequency signals on rf power transmission line

    NASA Astrophysics Data System (ADS)

    Kasashima, Y.; Uesugi, F.

    2015-10-01

    An in situ monitoring system that can detect changes in the conditions of a plasma etching chamber has been developed. In the system, low-intensity high-frequency signals are superimposed on the rf power transmission line used for generating plasma. The system measures reflected high-frequency signals and detects the change in their frequency characteristics. The results indicate that the system detects the changes in the conditions in etching chambers caused by the changes in the electrode gap and the inner wall condition and demonstrate the effectiveness of the system. The system can easily be retrofitted to mass-production equipment and it can be used with or without plasma discharge. Therefore, our system is suitable for in situ monitoring of mass-production plasma etching chambers. The system is expected to contribute to development of predictive maintenance, which monitors films deposited on the inner wall of the chamber and prevents equipment faults caused by misalignment of chamber parts in mass-production equipment.

  11. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  12. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  13. Chamber propagation physics for heavy ion fusion

    SciTech Connect

    Callahan, D.A.

    1995-09-01

    Chamber transport is an important area of study for heavy ion fusion. Final focus and chamber-transport are high leverage areas providing opportunities to significantly decrease the cost of electricity from a heavy ion fusion power plant. Chamber transport in two basic regimes is under consideration. In the low chamber density regime ({approx_lt}0.003 torr), ballistic or nearly-ballistic transport is used. Partial beam neutralization has been studied to offset the effects of beam stripping. In the high chamber density regime ({approx_gt}.1 torr), two transport modes (pinched transport and channel transport) are under investigation. Both involve focusing the beam outside the chamber then transporting it at small radius ({approx} 2 mm). Both high chamber density modes relax the constraints on the beam quality needed from the accelerator which will reduce the driver cost and the cost of electricity.

  14. A study of the control problem of the shoot side environment delivery system of a closed crop growth research chamber

    NASA Technical Reports Server (NTRS)

    Blackwell, C. C.; Blackwell, A. L.

    1992-01-01

    The details of our initial study of the control problem of the crop shoot environment of a hypothetical closed crop growth research chamber (CGRC) are presented in this report. The configuration of the CGRC is hypothetical because neither a physical subject nor a design existed at the time the study began, a circumstance which is typical of large scale systems control studies. The basis of the control study is a mathematical model which was judged to adequately mimic the relevant dynamics of the system components considered necessary to provide acceptable realism in the representation. Control of pressure, temperature, and flow rate of the crop shoot environment, along with its oxygen, carbon dioxide, and water concentration is addressed. To account for mass exchange, the group of plants is represented in the model by a source of oxygen, a source of water vapor, and a sink for carbon dioxide. In terms of the thermal energy exchange, the group of plants is represented by a surface with an appropriate temperature. Most of the primitive equations about an experimental operating condition and a state variable representation which was extracted from the linearized equations are presented. Next, we present the results of a real Jordan decomposition and the repositioning of an undesirable eigenvalue via full state feedback. The state variable representation of the modeling system is of the nineteenth order and reflects the eleven control variables and eight system disturbances. Five real eigenvalues are very near zero, with one at zero, three having small magnitude positive values, and one having a small magnitude negative value. A Singular Value Decomposition analysis indicates that these non-zero eigenvalues are not results of numerical error.

  15. Study of the single cluster response of a helium-isobutane drift chamber prototype using 8 keV X-rays

    NASA Astrophysics Data System (ADS)

    Cavoto, G.; Dabagov, S.; Hampai, D.; Piredda, G.; Renga, F.; Ripiccini, E.; Voena, C.; Zullo, A.

    2015-03-01

    The identification of single clusters in the electronic signals produced by ionizing particles within a drift chamber is expected to significantly improve the performances of this kind of detectors in terms of particle identification capabilities and space resolution. In order to develop refined cluster recognition algorithms, it is essential to measure the response of the chamber and its electronics to single ionization clusters. This can be done by irradiating the chamber with X-rays. We report here on the studies performed on a drift chamber prototype for the MEG-II experiment at the X-ray facility of the INFN Frascati's National Laboratories ``XLab Frascati''. The prototype is operated with a helium-isobutane mixture and instrumented with high bandwidth custom pre-amplifiers. The results of this study have been used to develop an innovative method for cluster recognition, based on the Wiener filter technique, which has been tested on data collected at the Frascati's Beam Test Facility. As a side measurement, we also performed a study of the gas gain in a configuration which is similar to that of the MEG-II experiment.

  16. Comparison of batch, stirred flow chamber, and column experiments to study adsorption, desorption and transport of carbofuran within two acidic soils.

    PubMed

    Bermúdez-Couso, Alipio; Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2012-06-01

    Different methods (batch, column and stirred flow chamber experiments) used for adsorption and desorption of carbofuran studies were compared. All tested methods showed that the carbofuran adsorption was higher in the soil with the higher organic matter content, whereas the opposite behaviour was observed for the percentage of carbofuran desorbed. However, different methods have revealed some discrepancies in carbofuran adsorption/desorption kinetics. Although batch method showed interesting data on equilibrium experiments, such as a low heterogeneity for the carbofuran adsorption sites independent of soil organic matter content, it had some disadvantages for carbofuran adsorption/desorption kinetic studies. The disadvantages were related with the excessive limitations of this method on kinetics, i.e., no difference could be detected between different soils. However, with column and stirred flow chamber methods the carbofuran adsorption/desorption kinetics of different soils could be compared. Moreover, the absolute values of carbofuran adsorption/desorption and its rate were higher in the stirred flow chamber than in the batch and column experiments. Using stirred flow chamber experiments the carbofuran desorption was significantly faster than its adsorption, whereas carbofuran using column experiments they were similar. These discrepancies should be considered when the results obtained only with one method is discussed.

  17. Clinical Variability in Arch Wires: A Preliminary Study Evaluating Mechanical and Surface Characteristics of Two Different Sized Rectangular Stainless Steel Wires

    PubMed Central

    Vena, Alessandro; Carey, Jason; Badawi, Hisham

    2007-01-01

    Experimental characterization of arch wires has been performed in many previous studies; however with the advent of new arch wire materials being introduced, some new experimental methods and characterization are required. Since literature is available for comparison, this paper examines mechanical and physical characteristics of steel arch wires to quantify their variability in engineering terms. Furthermore, the effect of wire size on properties was evaluated using two of the most common wire sizes. Finally, manufacturing consistency was verified by testing samples from different lots. PMID:19662123

  18. Stove with multiple chambers

    SciTech Connect

    Black, A.

    1987-04-21

    A stove is described for burning a solid fuel such as wood. The wall means defines a main air inlet, a combustion gas outlet, and four chambers through which gas passes sequentially from the main air inlet to the combustion gas outlet. The chambers comprises a pre-heat plenum chamber into which the main air inlet opens. A main combustion chamber contains solid fuel to be burned into which gas passes from the pre-heat plenum chamber, a second combustion chamber which is downstream of the main combustion chamber with respect to the flow of gas from the main air inlet to the combustion gas outlet, and a third combustion chamber from which the combustion gas outlet opens. The stove also comprises a plate having a restricted opening for providing communication between the second and third combustion chambers. And a catalytic converter comprises a body of solid material formed with passageways, the body of solid material being fitted in the restricted opening so that gas passes from the second combustion chamber to the third combustion chamber by way of the passageways in the body.

  19. A clamped rectangular plate containing a crack

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1985-01-01

    The general problem of a rectangular plate clamped along two parallel sides and containing a crack parallel to the clamps is considered. The problem is formulated in terms of a system of singular integral equations and the asymptotic behavior of the stress state near the corners is investigated. Numerical examples are considered for a clamped plate without a crack and with a centrally located crack, and the stress intensity factors and the stresses along the clamps are calculated.

  20. Rectangular Pulsed Laser-Electromagnetic Hybrid Accelerator

    SciTech Connect

    Kishida, Yoshiaki; Katayama, Masahiro; Horisawa, Hideyuki

    2010-10-13

    Experimental investigation of impulse-bit and propellant consumption rate, or mass shot, per single pulse discharge was conducted to characterize the thrust performance of the rectangular laser-electromagnetic hybrid acceleration thruster with various propellant materials. From the result, alumina propellant showed significantly superior performance. The largest values of the measured impulse-bit, specific impulse and thrust efficiency were 49 {mu}Nsec, 6,200 sec and 22%, respectively.

  1. A Study of Dean Vortex Development and Structure in a Curved Rectangular Channel with Aspect Ratio of 40 at Dean Numbers up to 430

    NASA Technical Reports Server (NTRS)

    Ligrani, Phillip M.

    1994-01-01

    Flow in a curved channel with mild curvature, an aspect ratio of 40 to 1, and an inner to outer radius ratio of 0.979 is studied at Dean numbers De ranging from 35 to 430. For positions from the start of curvature ranging from 85 to 145 degrees, the sequence of transition events begins with curved channel Poiseuille flow at De less than 40-64. As the Dean number increases, observations show initial development of Dean vortex pairs, followed by symmetric vortex pairs which, when viewed in spanwise/radial planes, cover the entire channel height (De=90-100). At De from 40 to 125-130, the vortex pairs often develop intermittent waviness in the form of vortex undulations. Splitting and merging of vortex pairs is also observed over the same experimental conditions as well as at higher De. When Dean numbers range from 130 to 185-200, the undulating wavy mode is replaced by a twisting mode with higher amplitudes of oscillation and shorter wavelengths. The twisting wavy mode results in the development of regions where turbulence intensity is locally augmented at Dean numbers from 150 to 185-200, principally in the upwash regions between the two individual vortices which make up each vortex pair. These turbulent regions eventually increase in intensity and spatial extent as the Dean number increases further, until individual regions merge together so that the entire cross section of the channel contains chaotic turbulent motions. When Dean numbers then reach 400-435, spectra of velocity fluctuations then evidence fully turbulent flow.

  2. Acoustic Measurements of Rectangular Nozzles With Bevel

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2012-01-01

    A series of convergent rectangular nozzles of aspect ratios 2:1, 4:1, and 8:1 were constructed with uniform exit velocity profiles. Additional nozzles were constructed that extended the wide lip on one side of these nozzles to form beveled nozzles. Far-field acoustic measurements were made and analyzed, and the results presented. The impact of aspect ratio on jet noise was similar to that of enhanced mixing devices: reduction in aft, peak frequency noise with an increase in broadside, high frequency noise. Azimuthally, it was found that rectangular jets produced more noise directed away from their wide sides than from their narrow sides. The azimuthal dependence decreased at aft angles where noise decreased. The effect of temperature, keeping acoustic Mach number constant, was minimal. Since most installations would have the observer on the wide size of the nozzle, the increased high frequency noise has a deleterious impact on the observer. Extending one wide side of the rectangular nozzle, evocative of an aft deck in an installed propulsion system, increased the noise of the jet with increasing length. The impact of both aspect ratio and bevel length were relatively well behaved, allowing a simple bilinear model to be constructed relative to a simple round jet.

  3. A multipurpose ultra-high vacuum-compatible chamber for in situ X-ray surface scattering studies over a wide range of temperature and pressure environment conditions

    NASA Astrophysics Data System (ADS)

    Ferrer, P.; Rubio-Zuazo, J.; Heyman, C.; Esteban-Betegón, F.; Castro, G. R.

    2013-03-01

    A low/high temperature (60-1000K) and pressure (10-10-3x103 mbar) "baby chamber", specially adapted to the grazing-incidence X-ray scattering station, has been designed, developed and installed at the Spanish CRG BM25 SpLine beamline at European Synchrotron Radiation Facility. The chamber has a cylindrical form with 100 mm of diameter, built on a 360° beryllium nipple of 150 mm height. The UHV equipment and a turbo pump are located on the upper part of the chamber to leave a wide solid angle for exploring reciprocal space. The chamber features 4 CF16 and 5 CF40 ports for electrical feed through and leak valves, ion gun, etc. The heat exchanger is a customized compact LN2 (or LHe) continuous flow cryostat. The sample is mounted on a Mo support on the heat exchanger, which has in the back side a BORALECTRIC® Heater Elements. Experiments of surfaces/interfaces/ multilayer materials, thin films or single crystals in a huge variety of environments can be performed, also in situ studies of growth or evolution of the samples. Data measurement can be collected with a punctual and a bi-dimensional detector, being possible to simultaneously use them.

  4. Transplanted sympathetic neurons from old rats survive in the anterior eye chamber: a histochemical and electron microscopic study.

    PubMed

    Suhonen, J; Hervonen, A

    1993-01-01

    The purpose of this study was to investigate the viability and ultrastructural characteristics of intraocular superior cervical ganglion (SCG) grafts from young (3 months), aged (24 months) and very old (36 months) rats after short-term (1 month) grafting. The formaldehyde-induced fluorescence (FIF) technique for histochemical demonstration of catecholamines was used to indicate the functionality of transplanted neurons. Ultrastructural changes in grafts were demonstrated by electron microscopy. Four weeks after transplantation, catecholamine histofluorescence in young transplants was almost as strong as in the intact ganglia, while aged and very old grafts showed decreased fluorescence and contained a marked accumulation of autofluorescent lipopigment bodies. Catecholamine histofluorescence showed a decrease in neuronal density of 47%, 59% and 68% in young, aged and very old grafted ganglia, respectively. The shape of most of the transplanted neurons did not differ from that in the intact ganglia, but the average diameter of neurons was decreased after grafting. In electron microscopy, both neurons with normal in vivo fine structure and neurons showing some abnormal cytological alterations were seen in each age group of the transplants. The most prominent feature after grafting was the accumulation of different types of lipopigment bodies in the perikarya of neurons. the organization of the rough endoplasmic reticulum was more irregular in transplanted neurons than in intact neurons. In addition, the amount of neurofilament aggregates increased and some mitochondria were swollen in neurons after transplantation. These results suggest that young sympathetic ganglion tissue survives rather well after transplantation into the anterior eye chamber, while in the aged sympathetic ganglion implants the survival rate is poorer. However, aged and very old SCG grafts were shown to contain and continue to produce noradrenaline, indicating that sympathetic neurons maintain

  5. Diversity of acoustic streaming in a rectangular acoustofluidic field.

    PubMed

    Tang, Qiang; Hu, Junhui

    2015-04-01

    Diversity of acoustic streaming field in a 2D rectangular chamber with a traveling wave and using water as the acoustic medium is numerically investigated by the finite element method. It is found that the working frequency, the vibration excitation source length, and the distance and phase difference between two separated symmetric vibration excitation sources can cause the diversity in the acoustic streaming pattern. It is also found that a small object in the acoustic field results in an additional eddy, and affects the eddy size in the acoustic streaming field. In addition, the computation results show that with an increase of the acoustic medium's temperature, the speed of the main acoustic streaming decreases first and then increases, and the angular velocity of the corner eddies increases monotonously, which can be clearly explained by the change of the acoustic dissipation factor and shearing viscosity of the acoustic medium with temperature. Commercialized FEM software COMSOL Multiphysics is used to implement the computation tasks, which makes our method very easy to use. And the computation method is partially verified by an established analytical solution.

  6. Width effects in transonic flow over a rectangular cavity

    DOE PAGES

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; Spillers, Russell Wayne; Pruett, Brian Owen Matthew

    2015-07-24

    A previous experiment by the present authors studied the flow over a finite-width rectangular cavity at freestream Mach numbers 1.5–2.5. In addition, this investigation considered the influence of three-dimensional geometry that is not replicated by simplified cavities that extend across the entire wind-tunnel test section. The latter configurations have the attraction of easy optical access into the depths of the cavity, but they do not reproduce effects upon the turbulent structures and acoustic modes due to the length-to-width ratio, which is becoming recognized as an important parameter describing the nature of the flow within narrower cavities.

  7. Evaluation of Material Nonlinearities Using Rectangular Pulse Trains for Excitation

    NASA Astrophysics Data System (ADS)

    Chaziachmetovas, Andrius; Svilainis, Linas; Kybartas, Darius; Aleksandrovas, Arturas; Liaukonis, Dobilas

    Aim of the presented investigation was to evaluate the suitability of the rectangular pulse trains for nonlinear material parameters study. It was assumed that if duty cycle of the excitation is 50% then second harmonic is significantly reduced. Excitation signal frequency was fixed to the A/D sampling frequency and signal carefully gated to reduce the signal leak into neighbouring frequency bins. Sine wave correlation was used to extract the harmonics content. Results of nonlinear parameters measurement for several materials are given as performance comparison.

  8. Heat transfer behavior of a rectangular thermosyphon loop

    SciTech Connect

    Huang, B.J.; Zelaya, R. )

    1988-05-01

    The thermal performance of a rectangular thermosyphon loop was studied. The analysis, using a one-dimensional approximation, the convectional friction factor, and an empirical correlation for the overall heat transfer in the cooler, was shown to be able to predict accurately the loop performance at steady state or approaching steady state, if the effective length was used to replace the geometeric length in the calculation of loop friction. The steady-state natural circulation flow solution obtained was shown to be a function of a dimensionless group PY or (NuGr/Pr) Y and agrees very well with the experimental results.

  9. The Gross-Pitaevskii Hierarchy on General Rectangular Tori

    NASA Astrophysics Data System (ADS)

    Herr, Sebastian; Sohinger, Vedran

    2016-06-01

    In this work, we study the Gross-Pitaevskii hierarchy on general—rational and irrational—rectangular tori of dimensions two and three. This is a system of infinitely many linear partial differential equations which arises in the rigorous derivation of the nonlinear Schrödinger equation. We prove a conditional uniqueness result for the hierarchy. In two dimensions, this result allows us to obtain a rigorous derivation of the defocusing cubic nonlinear Schrödinger equation from the dynamics of many-body quantum systems. On irrational tori, this question was posed as an open problem in the previous work of Kirkpatrick, Schlein, and Staffilani.

  10. Steady flow OF non-Newtonian fluids through rectangular ducts

    SciTech Connect

    Gao, S.X.; Hartnett, J.P. )

    1993-03-01

    The present paper contains a numerical study for the secondary flow of a Reiner-Rivlin non-Newtonian fluid in laminar flow through ducts of square and rectangular cross section. Finite difference methods are developed to obtain the primary flow, the secondary flow, and friction factor. The influence of the second normal stress coefficient, the Reynolds number, and the aspect ratio on the magnitude of the secondary flow are considered. In general, the effect of the secondary flow on the primary flow rate and friction factor is found to be negligible.

  11. Plasma chemistry in wire chambers

    SciTech Connect

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an {sup 55}Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed.

  12. Investigation of imaging properties for submillimeter rectangular pinholes

    SciTech Connect

    Xia, Dan; Moore, Stephen C. E-mail: miaepark@bwh.harvard.edu Park, Mi-Ae E-mail: miaepark@bwh.harvard.edu Cervo, Morgan E-mail: miaepark@bwh.harvard.edu; Metzler, Scott D.

    2015-12-15

    Purpose: Recently, a multipinhole collimator with inserts that have both rectangular apertures and rectangular fields of view (FOVs) has been proposed for SPECT imaging since it can tile the projection onto the detector efficiently and the FOVs in transverse and axial directions become separable. The purpose of this study is to investigate the image properties of rectangular-aperture pinholes with submillimeter apertures sizes. Methods: In this work, the authors have conducted sensitivity and FOV experiments for 18 replicates of a prototype insert fabricated in platinum/iridium (Pt/Ir) alloy with submillimeter square-apertures. A sin{sup q}θ fit to the experimental sensitivity has been performed for these inserts. For the FOV measurement, the authors have proposed a new formula to calculate the projection intensity of a flood image on the detector, taking into account the penumbra effect. By fitting this formula to the measured projection data, the authors obtained the acceptance angles. Results: The mean (standard deviation) of fitted sensitivity exponents q and effective edge lengths w{sub e} were, respectively, 10.8 (1.8) and 0.38 mm (0.02 mm), which were close to the values, 7.84 and 0.396 mm, obtained from Monte Carlo calculations using the parameters of the designed inserts. For the FOV measurement, the mean (standard deviation) of the transverse and axial acceptances were 35.0° (1.2°) and 30.5° (1.6°), which are in good agreement with the designed values (34.3° and 29.9°). Conclusions: These results showed that the physical properties of the fabricated inserts with submillimeter aperture size matched our design well.

  13. Sloshing roof impact tests of a rectangular tank

    SciTech Connect

    Minowa, C.; Ogawa, N.; Harada, I.; Ma, D.C.

    1994-06-01

    Some tanks have been damaged at the roofs due to sloshing impact caused by strong earthquakes. It is, therefore, necessary to consider the impact force in the aseismic design code for tank roofs. However, there are few studies on the earthquake responses of storage and process tank roofs. As a first step to investigate the effects of sloshing impact a series of the shaking table tests of a rectangular tank have been conducted at the National Research Institute for Earth Science and Disaster Prevention (NIED). The results of these shaking table tests are presented in the paper. The test tank is rectangular in shape having dimensions of 5 m {times} 3 m {times} 2 m length {times} width {times} height). The tank was constructed of glass-fiber reinforced plastic panels. Every panel had a flange on four edges, and each panel was connected by bolts along the flange. The test tank was set on the NIED shaking table (15 m by 15 m). Two types of liquid were used, water and a viscous liquid (water mixed with polymeric powders). The roof impact pressures and other quantities were measured. During the tests using the 400 pi El-Centro excitation, the roof deformation sensor steel beam was damaged. The response of side walls with different rigidity were measured in the wall bulging tests. The measured vibrations within the panel plates were larger than those in the panel flanges. The viscous liquid of 100 cp had little influence on wall bulging responses. However, the viscous effects on sloshing responses were observed in the sloshing tests. Approximate analyses of rectangular tanks, considering the influence of static water pressure, are also presented in this paper.

  14. "Subclinical" pacemaker syndrome: a randomised study of symptom free patients with ventricular demand (VVI) pacemakers upgraded to dual chamber devices.

    PubMed Central

    Sulke, N; Dritsas, A; Bostock, J; Wells, A; Morris, R; Sowton, E

    1992-01-01

    OBJECTIVE--To determine whether symptom free patients with single chamber pacemakers benefit from dual chamber pacing. DESIGN--A randomised double blind crossover comparison of ventricular demand (VVI), dual chamber demand (DDI), and dual chamber universal (DDD) modes after upgrading from a VVI device. SETTING--Cardiology outpatient department. PATIENTS--Sixteen patients aged 41-84 years who were symptom free during VVI mode pacing for three or more years. INTERVENTION--Pacemaker upgrade during routine generator change. MAIN OUTCOME MEASURES--Change in subjective (general health perception, symptoms) and objective (clinical assessment, treadmill exercise, and radiological and echocardiographic indices) results between pacing modes before and after upgrading. RESULTS--75% preferred DDD, 68% found VVI least acceptable with 12% expressing no preference. Perceived general well-being and exercise capacity (p less than 0.01) and treadmill times (p less than 0.05) were improved in DDD mode but VVI and DDI modes were similar. Clinical, echocardiographic, radiological, and electrophysiological indices confirmed the absence of overt pacemaker syndrome, although mitral and tricuspid regurgitation was greatest in VVI mode (p less than 0.01). CONCLUSIONS--Most patients who were satisfied with long term pacing in VVI mode benefited from upgrading to DDD mode pacing suggesting the existence of "subclinical" pacemaker syndrome in up to 75% of such patients. The DDI mode offered little subjective or objective benefit over VVI mode in this population and should be reserved for patients with paroxysmal atrial arrhythmias. VVI mode pacing should be used only for patients with very intermittent symptomatic bradycardia or atrial fibrillation with a good chronotropic response during exercise. PMID:1739528

  15. Development and application of noninvasive technology for study of combustion in a combustion chamber of gas turbine engine

    NASA Astrophysics Data System (ADS)

    Inozemtsev, A. A.; Sazhenkov, A. N.; Tsatiashvili, V. V.; Abramchuk, T. V.; Shipigusev, V. A.; Andreeva, T. P.; Gumerov, A. R.; Ilyin, A. N.; Gubaidullin, I. T.

    2015-05-01

    The paper formulates the issue of development of experimental base with noninvasive optical-electronic tools for control of combustion in a combustion chamber of gas turbine engine. The design and specifications of a pilot sample of optronic system are explained; this noninvasive system was created in the framework of project of development of main critical technologies for designing of aviation gas turbine engine PD-14. The testbench run data are presented.

  16. The Mark III vertex chamber

    SciTech Connect

    Adler, J.; Bolton, T.; Bunnell, K.; Cassell, R.; Cheu, E.; Freese, T.; Grab, C.; Mazaheri, G.; Mir, R.; Odian, A.

    1987-07-01

    The design and construction of the new Mark III vertex chamber is described. Initial tests with cosmic rays prove the ability of track reconstruction and yield triplet resolutions below 50 ..mu..m at 3 atm using argon/ethane (50:50). Also performed are studies using a prototype of a pressurized wire vertex chamber with 8 mm diameter straw geometry. Spatial resolution of 35mm was obtained using dimethyl ether (DME) at 1 atm and 30 ..mu..m using argon/ethane (50/50 mixture) at 4 atm. Preliminary studies indicate the DME to adversely affect such materials as aluminized Mylar and Delrin.

  17. Laser-filament-induced snow formation in a subsaturated zone in a cloud chamber: experimental and theoretical study.

    PubMed

    Ju, Jingjing; Sun, Haiyi; Sridharan, Aravindan; Wang, Tie-Jun; Wang, Cheng; Liu, Jiansheng; Li, Ruxin; Xu, Zhizhan; Chin, See Leang

    2013-12-01

    1 kHz, 2 mJ, 45 fs, 800 nm laser pulses were fired into a laboratory diffusion cloud chamber through a subsaturated zone (relative humidity ∼73%, T ∼ 4.3 °C). After 60 min of laser irradiation, an oval-shaped snow pile was observed right below the filament center and weighed ∼12.0 mg. The air current velocity at the edge of the vortices was estimated to be ∼16.5 cm/s. Scattering scenes recorded from the side show that filament-induced turbulence were formed inside the cloud chamber with two vortices below the filament. Two-dimensional simulations of the air flow motion in two cross sections of the cloud chamber confirm that the turbulent vortices exist below the filament. Based upon this simulation, we deduce that the vortices indeed have a three-dimensional elliptical shape. Hence, we propose that inside vortices where the humidity was supersaturated or saturated the condensation nuclei, namely, HNO(3), N(2)(+), O(2)(+) and other aerosols and impurities, were activated and grew in size. Large-sized particles would eventually be spun out along the fast moving direction towards the cold plate and formed an oval-shaped snow pile at the end.

  18. A large-eddy simulation study of transition and flow instability in a porous-walled chamber with mass injection

    NASA Astrophysics Data System (ADS)

    Apte, S. V.; Yang, V.

    2003-02-01

    The unsteady flow evolution in a porous chamber with surface mass injection simulating propellant burning in a nozzleless solid rocket motor has been investigated by means of a large-eddy simulation (LES) technique. Of particular importance is the turbulence-transition mechanism in injection-driven compressible flows with high injection rates in a chamber closed at one end and connected to a divergent nozzle at the exit. The spatially filtered and Favre-averaged conservation equations of mass, momentum and energy are solved for resolved scales. The effect of unresolved subgrid scales is treated by using a dynamic Smagorinsky model extended to compressible flows. Three successive regimes of flow development are observed: laminar, transitional, and fully developed turbulent flow. Surface transpiration facilitates the formation of roller-like vortical structures close to the injection surface. The flow is essentially two-dimensional up to the mid-section of the chamber, with the dominant frequencies of vortex shedding governed by two-dimensional hydrodynamic instability waves. These two-dimensional structures are convected downstream and break into complex three-dimensional eddies. Transition to turbulence occurs further away from the wall than in standard channel flows without mass injection. The peak in turbulence intensity moves closer to the wall in the downstream direction until the surface injection prohibits further penetration of turbulence. The temporal and spatial evolution of the vorticity field obtained herein is significantly different from that of channel flow without transpiration.

  19. Laser-filament-induced snow formation in a subsaturated zone in a cloud chamber: experimental and theoretical study.

    PubMed

    Ju, Jingjing; Sun, Haiyi; Sridharan, Aravindan; Wang, Tie-Jun; Wang, Cheng; Liu, Jiansheng; Li, Ruxin; Xu, Zhizhan; Chin, See Leang

    2013-12-01

    1 kHz, 2 mJ, 45 fs, 800 nm laser pulses were fired into a laboratory diffusion cloud chamber through a subsaturated zone (relative humidity ∼73%, T ∼ 4.3 °C). After 60 min of laser irradiation, an oval-shaped snow pile was observed right below the filament center and weighed ∼12.0 mg. The air current velocity at the edge of the vortices was estimated to be ∼16.5 cm/s. Scattering scenes recorded from the side show that filament-induced turbulence were formed inside the cloud chamber with two vortices below the filament. Two-dimensional simulations of the air flow motion in two cross sections of the cloud chamber confirm that the turbulent vortices exist below the filament. Based upon this simulation, we deduce that the vortices indeed have a three-dimensional elliptical shape. Hence, we propose that inside vortices where the humidity was supersaturated or saturated the condensation nuclei, namely, HNO(3), N(2)(+), O(2)(+) and other aerosols and impurities, were activated and grew in size. Large-sized particles would eventually be spun out along the fast moving direction towards the cold plate and formed an oval-shaped snow pile at the end. PMID:24483507

  20. Engineering verification of the biomass production chamber

    NASA Technical Reports Server (NTRS)

    Prince, R. P.; Knott, W. M., III; Sager, J. C.; Jones, J. D.

    1992-01-01

    The requirements for life support systems, both biological and physical-chemical, for long-term human attended space missions are under serious study throughout NASA. The KSC 'breadboard' project has focused on biomass production using higher plants for atmospheric regeneration and food production in a special biomass production chamber. This chamber is designed to provide information on food crop growth rate, contaminants in the chamber that alter plant growth requirements for atmospheric regeneration, carbon dioxide consumption, oxygen production, and water utilization. The shape and size, mass, and energy requirements in relation to the overall integrity of the biomass production chamber are under constant study.

  1. Plant growth chamber M design

    NASA Technical Reports Server (NTRS)

    Prince, R. P.; Knott, W. M.

    1986-01-01

    Crop production is just one of the many processes involved in establishing long term survival of man in space. The benefits of integrating higher plants into the overall plan was recognized early by NASA through the Closed Ecological Life Support System (CELSS) program. The first step is to design, construct, and operate a sealed (gas, liquid, and solid) plant growth chamber. A 3.6 m diameter by 6.7 m high closed cylinder (previously used as a hypobaric vessel during the Mercury program) is being modified for this purpose. The chamber is mounted on legs with the central axis vertical. Entrance to the chamber is through an airlock. This chamber will be devoted entirely to higher plant experimentation. Any waste treatment, food processing or product storage studies will be carried on outside of this chamber. Its primary purpose is to provide input and output data on solids, liquids, and gases for single crop species and multiple species production using different nutrient delivery systems.

  2. Emulsion Chamber Technology Experiment (ECT)

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Takahashi, Yoshiyuki

    1996-01-01

    The experimental objective of Emulsion Chamber Technology (ECT) was to develop space-borne emulsion chamber technology so that cosmic rays and nuclear interactions may subsequently be studied at extremely high energies with long exposures in space. A small emulsion chamber was built and flown on flight STS-62 of the Columbia in March 1994. Analysis of the several hundred layers of radiation-sensitive material has shown excellent post-flight condition and suitability for cosmic ray physics analysis at much longer exposures. Temperature control of the stack was 20 +/-1 C throughout the active control period and no significant deviations of temperature or pressure in the chamber were observed over the entire mission operations period. The unfortunate flight attitude of the orbiter (almost 90% Earth viewing) prevented any significant number of heavy particles (Z greater than or equal to 10) reaching the stack and the inverted flow of shower particles in the calorimeter has not allowed evaluation of absolute primary cosmic ray-detection efficiency nor of the practical time limits of useful exposure of these calorimeters in space to the level of detail originally planned. Nevertheless, analysis of the observed backgrounds and quality of the processed photographic and plastic materials after the flight show that productive exposures of emulsion chambers are feasible in low orbit for periods of up to one year or longer. The engineering approaches taken in the ECT program were proven effective and no major environmental obstacles to prolonged flight are evident.

  3. Drift chamber tracking with neural networks

    SciTech Connect

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.

  4. Square wave analysis of dielectric rectangular waveguide

    NASA Astrophysics Data System (ADS)

    Dabas, Deepender; Sharma, Jigyasa; Raghava, N. S.; De, Asok

    2013-01-01

    In this paper, rectangular wave guides have been analyzed using a square wave incidence which can be used for digital communicat ion techniques . The E 1/mnmode of propagation is solved using Eigen functions taking transverse propagation constant in different regions of dielectric waveguide and then the characteristic equations have been derived. The characteristic equations are solved graphically by mode matching inside and outside fields of waveguide. The normalized propagation constant so obtained, for square wave incidence is compared with the sinusoidal wave obtained by Marcatili method and other methods. The results match fairly well at frequencies near the cut-off of dielectric waveguide.

  5. Morphological transitions of droplets wetting rectangular domains.

    PubMed

    Ferraro, Davide; Semprebon, Ciro; Tóth, Tamara; Locatelli, Emanuele; Pierno, Matteo; Mistura, Giampaolo; Brinkmann, Martin

    2012-10-01

    We report the results of comprehensive experiments and numerical calculations of interfacial morphologies of water confined to the hydrophilic top face of rectangular posts of width W = 500 μm and lengths between L = 5W and 30W. A continuous evolution of the interfacial shape from a homogeneous liquid filament to a bulged filament and back is observed during changes in the liquid volume. Above a certain threshold length of L* = 16.0W, the transition between the two morphologies is discontinuous and a bistability of interfacial shapes is observed in a certain interval of the reduced liquid volume V/W(3).

  6. Rectangular subsonic jet flow field measurements

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1990-01-01

    Flow field measurements of three subsonic rectangular cold air jets are presented. The three cases had aspect ratios of 1x2, 1x4 at a Mach number of 0.09 and an aspect ratio of 1x2 at a Mach number of 0.9. All measurements were made using a 3-D laser Doppler anemometer system. The data includes the mean velocity vector, all Reynolds stress tensor components, turbulent kinetic energy and velocity correlation coefficients. The data are presented in tabular and graphical form. No analysis of the measured data or comparison to other published data is made.

  7. Modeling and solving the two-dimensional non-stationary problem in an elastic body with a rectangular hole

    NASA Astrophysics Data System (ADS)

    Ashirbayev, Nurgali; Ashirbayeva, Zhansaya; Sultanbek, Turlybek; Bekmoldayeva, Raina

    2016-08-01

    In this work we consider the problem of the propagation of non stationary stress waves in an elastic body with a rectangular hole in the linear formulation. The wave process is caused by applying an external dynamic load on the front boundary of the rectangular region and the lateral boundaries are free of the stress. The lower boundary of the rectangular region is rigidly fixed, and the contour of the rectangular hole is free from the stress. The problem is solved by using the difference method of the spatial characteristics. On the basis of the developed numerical methods it is obtained the computational finite - difference relations of the dynamic problems at the corner points of the rectangular hole, where the first and second derivatives of the unknown functions have a discontinuity of the first kind. We analyze the dynamic stress fields in an elastic body with a rectangular hole and we studied the concentration of dynamic stresses in the vicinity of the corner points of the rectangular opening.

  8. Effects of rectangular microchannel aspect ratio on laminar friction constant

    NASA Astrophysics Data System (ADS)

    Papautsky, Ian; Gale, Bruce K.; Mohanty, Swomitra K.; Ameel, Timothy A.; Frazier, A. Bruno

    1999-08-01

    In this paper, the effects of rectangular microchannel aspect ratio on laminar friction constant are described. The behavior of fluids was studied using surface micromachined rectangular metallic pipette arrays. Each array consisted of 5 or 7 pipettes with widths varying from 150 micrometers to 600 micrometers and heights ranging from 22.71 micrometers to 26.35 micrometers . A downstream port for static pressure measurement was used to eliminate entrance effects. A controllable syringe pump was used to provide flow while a differential pressure transducer was used to record the pressure drop. The experimental data obtained for water for flows at Reynolds numbers below 10 showed an approximate 20% increase in the friction constant for a specified driving potential when compared to macroscale predictions from the classical Navier-Stokes theory. When the experimental data are studied as a function of aspect ratio, a 20% increase in the friction constant is evident at low aspect ratios. A similar increase is shown by the currently available experimental data for low Reynolds number (< 100) flows of water.

  9. Target chambers for gammashpere

    SciTech Connect

    Carpenter, M.P.; Falout, J.W.; Nardi, B.G.

    1995-08-01

    One of our responsibilities for Gammasphere, was designing and constructing two target chambers and associated beamlines to be used with the spectrometer. The first chamber was used with the early implementation phase of Gammasphere, and consisted of two spun-Al hemispheres welded together giving a wall thickness of 0.063 inches and a diameter of 12 inches.

  10. Static diffusion cloud chambers

    NASA Technical Reports Server (NTRS)

    Ayers, G.

    1981-01-01

    The chamber geometry and optical arrangement are described. The supersaturation range is given and consists of readings taken at five fixed points: 0.25%, 0.5%, 0.75%, 1.0%, and 1.25%. The detection system is described including light source, cameras, and photocell detectors. The temperature control and the calibration of the chamber are discussed.

  11. A soundproof pressure chamber.

    PubMed

    Kitahara, M; Kodama, A; Ozawa, H; Inoue, S

    1994-01-01

    For neurotological research we designed a soundproof pressure chamber in which pressure can be adjusted +/- 1000 mmH2O at the rate of less than 100 mmH2O per second. Noise in the chamber can be maintained under 30-35 dB while pressure is kept at a given level.

  12. The Mobile Chamber

    NASA Technical Reports Server (NTRS)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  13. High resolution drift chambers

    SciTech Connect

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 ..mu..m resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs.

  14. Distal oviduct and genital chamber of eriophyoids (Acariformes, Eriophyoidea): refined terminology and remarks on CLSM technique for studying musculature of mites.

    PubMed

    Chetverikov, Philipp E

    2014-12-01

    The general morphology of cuticle-lined internal genitalia and oviduct is analyzed in intact females of the phytophagous mites, Loboquintus subsquamatus and Trisetacus cf bagdasariani (Acari: Eriophyoidea) using tetramethylrhodamine B isothiocyanate-phalloidin, three anaesthetics (magnesium sulphate, lidocaine and CO2-enriched water) and confocal laser scanning microscopy (CLSM). This is the first protocol adopted for CLSM studying musculature of mites. Revision of the previous terminology of eriophyoid internal genitalia from Nuzzaci and Alberti (Eriophyoid mites: their biology, natural enemies and control. World crop pests 6. Elsevier, Amsterdam, pp 101-150, 1996) resulted in the refinement of the terms "distal oviduct", "genital chamber" and "spermatheca". Relative position of the elements of cuticle-lined internal genitalia is discussed and a generalized 3D model and animation (available on-line as supplementary material) of eriophyoid genital apparatus are provided. The wall of eriophyoid oviduct contains strong longitudinal muscles attached to the cuticle genital chamber with folded walls. When the egg is being extruded by contraction of the oviduct muscles, it forms lobes corresponding to the internal topography of the oviduct and genital chamber; these lobes invaginate inward from the gonopore, resulting in the "flower-shaped" figures rarely observed in slide-mounted mites. Gnathosomal muscles (cheliceral muscles and extrinsic muscles of palps) and opisthosomal muscles D1 of Loboquintus mites are attached to the three posterior depressions near the rear prodorsal shield margin. Prospects of CLSM approach for studying different aspects of mite morphology are briefly discussed.

  15. Diogene pictorial drift chamber

    SciTech Connect

    Gosset, J.

    1984-01-01

    A pictorial drift chamber, called DIOGENE, has been installed at Saturne in order to study central collisions of high energy heavy ions. It has been adapted from the JADE internal detector, with two major differences to be taken into account. First, the center-of-mass of these collisions is not identical to the laboratory reference frame. Second, the energy loss and the momentum ranges of the particles to be detected are different from the ones in JADE. It was also tried to keep the cost as small as possible, hence the choice of minimum size and minimum number of sensitive wires. Moreover the wire planes are shifted from the beam axis: this trick helps very much to quickly reject the bad tracks caused by the ambiguity of measuring drift distances (positive or negative) through times (always positive).

  16. Diogene pictorial drift chamber

    NASA Astrophysics Data System (ADS)

    Gosset, J.

    1984-02-01

    A pictorial drift chamber, called DIOGENE, has been installed at Saturne in order to study central collisions of high energy heavy ions. It has been adapted from the JADE internal detector, with two major differences to be taken into account. First, the center-of-mass of these collisions is not identical to the laboratory reference frame. Second, the energy loss and the momentum ranges of the particles to be detected are different from the ones in JADE. It was also tried to keep the cost as small as possible, hence the choice of minimum size and minimum number of sensitive wires. Moreover the wire planes are shifted from the beam axis: this trick helps very much to quickly reject the bad tracks caused by the ambiguity of measuring drift distances (positive or negative) through times (always positive).

  17. The impact of rapid recharge events on the evolution of magma chambers: Case studies of Santorini Volcano (Greece) and Volcan Quizapu (Chile)

    NASA Astrophysics Data System (ADS)

    Degruyter, Wim; Huber, Christian; Bachmann, Olivier; Cooper, Kari; Kent, Adam

    2016-04-01

    Magma reservoirs in the crust are thought to be dominantly formed by episodic recharge events at rates that are much larger than the long-term average magma inflow rates. Hence, a better understanding of the evolution of a magma reservoir requires elucidating the mass change, pressurization, heating, deformation and the potential for an eruption associated with different recharge scenarios. Most importantly, the bifurcation in behavior between a recharge event that leads to eruption and one that will grow the chamber requires quantification for better volcanic hazard assessment. We use a numerical model to determine the change in pressure, temperature and volume of a magma chamber as it is exposed to a recharge event. The model is applied to the well-studied volcanic systems of Santorini Volcano (Greece) and Volcan Quizapu (Chile). We establish the rates and the duration of magma recharge events that will lead to an eruption. In doing so, we demonstrate the importance of the state of the magma chamber prior to the recharge event, i.e. its size and exsolved volatile content, on the subsequent evolution of the reservoir. In the case of Santorini, the model successfully reproduces the main features of the Minoan eruption and Nea Kameni activity, providing volume estimates for the active part of the current subvolcanic reservoir as well as information regarding the presence of exsolved volatiles. For Quizapu, we suggest that the change in eruptive style, from an effusive outpouring of lava in 1846-1847 to an explosive Plinian eruption in 1932, was controlled by a shift in the state of the magma chamber induced by the first eruption. These case studies show that thermo-mechanical models offer a new framework to integrate the historic eruption record with geodetic measurements and provide a context to understand the past, present and future of active volcanic centers.

  18. Electromagnetic Compatibility Testing Studies

    NASA Technical Reports Server (NTRS)

    Trost, Thomas F.; Mitra, Atindra K.

    1996-01-01

    This report discusses the results on analytical models and measurement and simulation of statistical properties from a study of microwave reverberation (mode-stirred) chambers performed at Texas Tech University. Two analytical models of power transfer vs. frequency in a chamber, one for antenna-to-antenna transfer and the other for antenna to D-dot sensor, were experimentally validated in our chamber. Two examples are presented of the measurement and calculation of chamber Q, one for each of the models. Measurements of EM power density validate a theoretical probability distribution on and away from the chamber walls and also yield a distribution with larger standard deviation at frequencies below the range of validity of the theory. Measurements of EM power density at pairs of points which validate a theoretical spatial correlation function on the chamber walls and also yield a correlation function with larger correlation length, R(sub corr), at frequencies below the range of validity of the theory. A numerical simulation, employing a rectangular cavity with a moving wall shows agreement with the measurements. The determination that the lowest frequency at which the theoretical spatial correlation function is valid in our chamber is considerably higher than the lowest frequency recommended by current guidelines for utilizing reverberation chambers in EMC testing. Two suggestions have been made for future studies related to EMC testing.

  19. Chambers versus Relaxed Eddy Accumulation: an intercomparison study of two methods for short-term measurements of biogenic CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Jasek, Alina; Zimnoch, Miroslaw; Gorczyca, Zbigniew; Chmura, Lukasz; Necki, Jaroslaw

    2014-05-01

    The presented work is a part of comprehensive study aimed at thorough characterization of carbon cycle in the urban environment of Krakow, southern Poland. In the framework of this study two independent methods were employed to quantify biogenic CO2 flux in the city: (i) closed chambers, and (ii) Relaxed Eddy Accumulation (REA). The results of a three-day intensive intercomparison campaign performed in July 2013 and utilizing both measurement methods are reported here. The chamber method is a widely used approach for measurements of gas exchange between the soil and the atmosphere. The system implemented in this study consisted of a single chamber operating in a closed-dynamic mode, combined with Vaisala CarboCAP infrared CO2 sensor in a mobile setup. An alternative flux measurement method, covering larger area is represented by REA, which is a modification of the eddy covariance method. It consists of a 3D anemometer (Gill Windmaster Pro) and the system collecting updraft and downdraft samples to 5-litre Tedlar bags. The CO2 mixing ratios in the collected samples are measured by Picarro G2101i analyzer. The setup consists of two sets of bags so that the sampling can be performed continuously with 15-min temporal resolution. A 48-hectares open meadow located close the city center was chosen as a test site for comparison of the two methods of CO2 flux measurements outlined above. In the middle of the meadow a 3-metre high tripod was installed with the anemometer and REA inlet system. For a period of 46 hours the system was measuring net CO2 flux from the surrounding area. A meteorological conditions and intensity of photosynthetically active radiation (PAR) were also recorded. In the same time, CO2 flux from several points around the REA inlet was measured with the chamber system, resulting in 93 values for both respiration and net CO2 flux. Chamber results show rather homogenous distribution of the soil CO2 flux (the mean value equal to 40.9 ± 2.2 mmol/m2h), with

  20. Environmental aging in polycrystalline-Si photovoltaic modules: comparison of chamber-based accelerated degradation studies with field-test data

    NASA Astrophysics Data System (ADS)

    Lai, T.; Biggie, R.; Brooks, A.; Potter, B. G.; Simmons-Potter, K.

    2015-09-01

    Lifecycle degradation testing of photovoltaic (PV) modules in accelerated-degradation chambers can enable the prediction both of PV performance lifetimes and of return-on-investment for installations of PV systems. With degradation results strongly dependent on chamber test parameters, the validity of such studies relative to fielded, installed PV systems must be determined. In the present work, accelerated aging of a 250 W polycrystalline silicon module is compared to real-time performance degradation in a similar polycrystalline-silicon, fielded, PV technology that has been operating since October 2013. Investigation of environmental aging effects are performed in a full-scale, industrial-standard environmental chamber equipped with single-sun irradiance capability providing illumination uniformity of 98% over a 2 x 1.6 m area. Time-dependent, photovoltaic performance (J-V) is evaluated over a recurring, compressed night-day cycle providing representative local daily solar insolation for the southwestern United States, followed by dark (night) cycling. This cycle is synchronized with thermal and humidity environmental variations that are designed to mimic, as closely as possible, test-yard conditions specific to a 12 month weather profile for a fielded system in Tucson, AZ. Results confirm the impact of environmental conditions on the module long-term performance. While the effects of temperature de-rating can be clearly seen in the data, removal of these effects enables the clear interpretation of module efficiency degradation with time and environmental exposure. With the temperature-dependent effect removed, the normalized efficiency is computed and compared to performance results from another panel of similar technology that has previously experienced identical climate changes in the test yard. Analysis of relative PV module efficiency degradation for the chamber-tested system shows good comparison to the field-tested system with ~2.5% degradation following

  1. A practical approach to estimate emission rates of indoor air pollutants due to the use of personal combustible products based on small-chamber studies.

    PubMed

    Szulejko, Jan E; Kim, Ki-Hyun

    2016-02-01

    As emission rates of airborne pollutants are commonly measured from combusting substances placed inside small chambers, those values need to be re-evaluated for the possible significance under practical conditions. Here, a simple numerical procedure is investigated to extrapolate the chamber-based emission rates of formaldehyde that can be released from various combustible sources including e-cigarettes, conventional cigarettes, or scented candles to their concentration levels in a small room with relatively poor ventilation. This simple procedure relies on a mass balance approach by considering the masses of pollutants emitted from source and lost through ventilation under the assumption that mixing occurs instantaneously in the room without chemical reactions or surface sorption. The results of our study provide valuable insights into re-evaluation procedure of chamber data to allow comparison between extrapolated and recommended values to judge the safe use of various combustible products in confined spaces. If two scented candles with a formaldehyde emission rate of 310 µg h(-1) each were lit for 4 h in a small 20 m(3) room with an air change rate of 0.5 h(-1), then the 4-h (candle lit) and 8-h (up to 8 h after candle lighting) TWA [FA] were determined to be 28.5 and 23.5 ppb, respectively. This is clearly above the 8-h NIOSH recommended exposure limit (REL) time weighted average of 16 ppb.

  2. A practical approach to estimate emission rates of indoor air pollutants due to the use of personal combustible products based on small-chamber studies.

    PubMed

    Szulejko, Jan E; Kim, Ki-Hyun

    2016-02-01

    As emission rates of airborne pollutants are commonly measured from combusting substances placed inside small chambers, those values need to be re-evaluated for the possible significance under practical conditions. Here, a simple numerical procedure is investigated to extrapolate the chamber-based emission rates of formaldehyde that can be released from various combustible sources including e-cigarettes, conventional cigarettes, or scented candles to their concentration levels in a small room with relatively poor ventilation. This simple procedure relies on a mass balance approach by considering the masses of pollutants emitted from source and lost through ventilation under the assumption that mixing occurs instantaneously in the room without chemical reactions or surface sorption. The results of our study provide valuable insights into re-evaluation procedure of chamber data to allow comparison between extrapolated and recommended values to judge the safe use of various combustible products in confined spaces. If two scented candles with a formaldehyde emission rate of 310 µg h(-1) each were lit for 4 h in a small 20 m(3) room with an air change rate of 0.5 h(-1), then the 4-h (candle lit) and 8-h (up to 8 h after candle lighting) TWA [FA] were determined to be 28.5 and 23.5 ppb, respectively. This is clearly above the 8-h NIOSH recommended exposure limit (REL) time weighted average of 16 ppb. PMID:26495830

  3. Shear flow control of cold and heated rectangular jets by mechanical tabs. Volume 2: Tabulated data

    NASA Technical Reports Server (NTRS)

    Brown, W. H.; Ahuja, K. K.

    1989-01-01

    The effects of mechanical protrusions on the jet mixing characteristics of rectangular nozzles for heated and unheated subsonic and supersonic jet plumes were studied. The characteristics of a rectangular nozzle of aspect ratio 4 without the mechanical protrusions were first investigated. Intrusive probes were used to make the flow measurements. Possible errors introduced by intrusive probes in making shear flow measurements were also examined. Several scaled sizes of mechanical tabs were then tested, configured around the perimeter of the rectangular jet. Both the number and the location of the tabs were varied. From this, the best configuration was selected. This volume contains tabulated data for each of the data runs cited in Volume 1. Baseline characteristics, mixing modifications (subsonic and supersonic, heated and unheated) and miscellaneous charts are included.

  4. Magnetophoresis Effects on the Flow Characteristics of Oil-Based Ferrofluids in Rectangular Enclosures.

    PubMed

    Seo, Hyeon-Seok; Boo, Jin-Hyo; Kim, Youn-Jea

    2015-10-01

    This study numerically investigated the flow characteristics in a rectangular enclosure filled with oil-based ferrofluid (EFH-1, Ferrotec.) under the influence of external magnetic fields. The rectangular enclosure contained obstacles with different shapes, such as a rectangle and a triangle mounted on the top and bottom wall surfaces. In order to generate external magnetic fields, a permanent magnet was located in the lower part of the rectangular enclosure, and its direction was selected to be either horizontal or vertical. Our results showed that the ferrofluid flow fields were affected by the applied external magnetic field direction and eddy flow phenomena in the working fluid were generated in the vicinity of high magnetic flux density distributions, such as at the edge of the permanent magnet. It was also confirmed that the magnetophoretic force distributions in the analysis model played a significant role in the development of the ferrofluid flow fields. PMID:26726349

  5. Vibration analysis of sandwich rectangular plates with magnetorheological elastomer damping treatment

    NASA Astrophysics Data System (ADS)

    Yeh, Jia-Yi

    2013-03-01

    In this study, the vibration analysis of sandwich rectangular plates with magnetorheological (MR) elastomer damping treatment is presented. The rectangular plate is combined with a magnetorheological elastomer core layer and a constraining layer to improve the vibration behaviors of the sandwich system. The MR material shows variations in the rheological properties when subjected to varying magnetic fields. Additionally, the MR material exhibits a rapid time response and is applicable to structures or devices when a tunable system is required. The magnetorheological elastomer is found to have a significant effect on the vibration characteristics of the sandwich rectangular plate. The modal damper and the natural frequencies for the sandwich plate system are calculated for various magnetic fields and some designed parameters by utilizing the finite element method. The damping effects of the sandwich plate system can be controlled and changed when different magnetic field strengths are applied.

  6. Left-Handed Effect of Composite Rectangular SRRs and Its Application in Patch Antennae

    NASA Astrophysics Data System (ADS)

    Huang, Ming; Zhou, Yue-Qun; Shen, Ting-Gen

    2010-01-01

    We concentrate on describing the important influence and physical law of the split resonant ring (SRR) based left-handed materials on patch antennae. The finite-difference time-domain method, together with the finite element method is used to study the characteristics of patch antennae based on composite rectangular SRRs. A novel composite rectangular SRR system is formed by assembling the conventional patch antennae and SRRs, it is found that electromagnetic wave resonance occurs near f = 3.15 GHz, the equivalent permittivity and permeability are both negative, and the electromagnetic wave's tunnel effect and evanescent waves' enhancing effect are formed, which can improve the localization extent of electromagnetic wave's energy apparently. Such effects can improve the antenna's radiation gain and its matching condition. The phenomenon indicates that such composite rectangular patch antennae are promising in wireless communications such as mobile phones, satellite communication and aviation.

  7. Mush Column Magma Chambers

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  8. An X-ray chamber for in situ structural studies of solvent-mediated nanoparticle self-assembly

    PubMed Central

    Calzolari, Davide C. E.; Pontoni, Diego; Daillant, Jean; Reichert, Harald

    2013-01-01

    Spontaneous ordering of nanoparticles (NPs) occurring as a consequence of solvent evaporation can yield highly ordered and extended NP superlattices bearing both fundamental scientific interest and potential for technological application. A versatile experimental chamber has been developed allowing (i) controlled in situ deposition of NP solutions on solid substrates, (ii) rate-controlled evaporation of the bulk solvent, and (iii) adsorption/desorption of nano-thick solvent films onto preformed NP assemblies. Within this hermetically sealed chamber all the stages of self-assembly, including macroscopic solution evaporation, NP thin-film formation and its subsequent structural transformation induced by nano-thick solvent films, can be characterized in situ by X-ray scattering techniques. Here, technical design and calibration details are provided, as well as three experimental examples highlighting the chamber’s performances and potential. Examples include the controlled adsorption of thin toluene films on flat silicon wafers, the observation of transient accumulation of gold NPs near the toluene–vapour interface, and preliminary data on the structural effects of fast macroscopic solvent evaporation followed by nanoscale solvent adsorption/desorption from a vapour phase. By combining bulk evaporation rate control, fine tuning of the thickness of adsorbed solvent films and in situ X-ray characterization capabilities, this cell enables explorations of both near-to-equilibrium and far-from-equilibrium routes to NP self-assembly. PMID:23412488

  9. A chamber study of the influence of boreal BVOC emissions and sulfuric acid on nanoparticle formation rates at ambient concentrations

    NASA Astrophysics Data System (ADS)

    Dal Maso, M.; Liao, L.; Wildt, J.; Kiendler-Scharr, A.; Kleist, E.; Tillmann, R.; Sipilä, M.; Hakala, J.; Lehtipalo, K.; Ehn, M.; Kerminen, V.-M.; Kulmala, M.; Worsnop, D.; Mentel, T.

    2016-02-01

    Aerosol formation from biogenic and anthropogenic precursor trace gases in continental background areas affects climate via altering the amount of available cloud condensation nuclei. Significant uncertainty still exists regarding the agents controlling the formation of aerosol nanoparticles. We have performed experiments in the Jülich plant-atmosphere simulation chamber with instrumentation for the detection of sulfuric acid and nanoparticles, and present the first simultaneous chamber observations of nanoparticles, sulfuric acid, and realistic levels and mixtures of biogenic volatile compounds (BVOCs). We present direct laboratory observations of nanoparticle formation from sulfuric acid and realistic BVOC precursor vapour mixtures performed at atmospherically relevant concentration levels. We directly measured particle formation rates separately from particle growth rates. From this, we established that in our experiments, the formation rate was proportional to the product of sulfuric acid and biogenic VOC emission strength. The formation rates were consistent with a mechanism in which nucleating BVOC oxidation products are rapidly formed and activate with sulfuric acid. The growth rate of nanoparticles immediately after birth was best correlated with estimated products resulting from BVOC ozonolysis.

  10. Magma chamber evolution: implication for the generation of continental crust: A case study in Kekeli batholith, North Qilian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Huang, H.; Niu, Y.

    2013-12-01

    Traditionally, zircon in situ Hf (Zir-Hf) isotope composition is considered to record faithfully the Hf isotope composition of the magma at the time of crystallization and because zircon is the major host of Hf in granitoids, zircon Hf isotope composition is regarded as representing the whole rock Hf (WR-Hf) isotope composition (Schmitz et al., 2004). However, in Kekeli Batholith in the North Qilian Orogenic Belt, the zircon ɛHf(t) is dominantly < 0, whereas the whole-rock ɛHf(t) is mostly > 0. Such significant WR-Hf and Zir-Hf isotope decoupling demonstrates that (1) Zir-Hf isotope composition does not necessarily represent WR Hf composition, and (2) zircon is not the sole major host of Hf. Besides, WR-Hf isotope is largely decoupled from WR-Nd isotope but Zir-Hf is not. The significant positive correlation between WR-Hf isotope and TiO2 indicates that the TiO2-rich minerals may be important Hf host apart from zircons. This correlation combined with the broad negative correlations between both ɛNd and ɛHf and silica further constrain that Kekeli batholith suites are the hybrids of magma mixing. The discrepancy between WR-Hf and Zir-Hf isotope composition cannot be explained by the 'analytical bias' (i.e., the inherited zircons are analysed in the whole rock but not analysed in the in situ zircons). The possibility is that during homogenising process in the course of magma mixing, Ti-rich minerals such as amphibole (Amp), Fe-Ti oxides, biotite (Bi) etc. crystallize earlier in the more mafic composition and preserve the isotope signature closer to the mafic endmember. Zircons do not crystallize until the later stage when the hybrid magma is saturated in Zr. Therefore, zircons generally record isotope compositions closer to the felsic endmember. The decoupling between WR-Hf and Nd isotopes should be inherited from the mafic endmember. The Kekeli Batholith dated at 500 Ma in this study contains abundant cumulate assemblages dominated by amphibole and plagioclase

  11. 45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), VIEW LOOKING EAST. LEAD ENCLOSED PIPING IS DRAIN FROM BOILER CHAMBER No. 1 - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  12. Structures of cholesteric liquid crystals confined in rectangular micro-channels

    NASA Astrophysics Data System (ADS)

    Wei, Qi-Huo; Guo, Yubing; Xiang, Jie; Lavrentovich, Oleg

    When cholesteric liquid crystals are confined in various geometries, the interplays between the boundary conditions, the bulk structures and different length scales (pitch, penetration depth, and confinement size) may cause frustration and formation of intriguing topological defects and disclination lines. This paper presents our recent studies on the structures of cholesteric liquid crystals confined in rectangular microchannels with homeotropic alignments. The rectangular microchannels with various sizes and aspect ratios are made in glass substrates by using modern nanofabrication techniques. Detailed liquid crystal structures and their optical characterizations will be presented as a function of the channel depth and width. Work was supported by ACS PRF 53018-ND7.

  13. Propagation properties of electromagnetic rectangular multi-Gaussian Schell-model beams in oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Chen, Xudong; Zhao, Daomu

    2016-08-01

    A model of electromagnetic rectangular multi-Gaussian Schell-model (ERMGSM) beams is introduced. Its analytic expression for the elements of the cross-spectral density matrix of such beams passing through oceanic turbulence is derived. It is shown that the rectangular shape of the ERMGSM beams holds a small distance on propagation in oceanic turbulence. The spectral density, the degree of coherence and the degree of polarization of ERMGSM beams are also studied in detail. The results will be helpful for underwater communication by using ERMGSM beams.

  14. Vibration of visco-elastic rectangular plate with linearly thickness variations in both directions

    NASA Astrophysics Data System (ADS)

    Gupta, A. K.; Khanna, A.

    2007-04-01

    The analysis presented here is to study the effect of linear thickness variations in both directions on vibration of visco-elastic rectangular plate having clamped boundary conditions on all the four edges. Using the separation of variables method, the governing differential equation has been solved for vibration of visco-elastic rectangular plate. An approximate but quite convenient frequency equation is derived by using Rayleigh-Ritz technique with a two-term deflection function. Logarithmic decrement, time period and deflection at different points for the first two modes of vibration are calculated for various values of taper constants and aspect ratio.

  15. Acoustic-Levitation Chamber

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Granett, D.; Lee, M. C.

    1984-01-01

    Uncontaminated environments for highly-pure material processing provided within completely sealed levitation chamber that suspends particles by acoustic excitation. Technique ideally suited for material processing in low gravity environment of space.

  16. The Mars Chamber

    NASA Video Gallery

    The Mars chamber is a box about the size of a refrigerator that re-creates the temperatures, pressures, and atmosphere of the Martian surface, essentially creating a Mars environment on Earth! Scie...

  17. Plasticity and rectangularity in survival curves

    PubMed Central

    Weon, Byung Mook; Je, Jung Ho

    2011-01-01

    Living systems inevitably undergo a progressive deterioration of physiological function with age and an increase of vulnerability to disease and death. To maintain health and survival, living systems should optimize survival strategies with adaptive interactions among molecules, cells, organs, individuals, and environments, which arises plasticity in survival curves of living systems. In general, survival dynamics in a population is mathematically depicted by a survival rate, which monotonically changes from 1 to 0 with age. It would be then useful to find an adequate function to describe complicated survival dynamics. Here we describe a flexible survival function, derived from the stretched exponential function by adopting an age-dependent shaping exponent. We note that the exponent is associated with the fractal-like scaling in cumulative mortality rate. The survival function well depicts general features in survival curves; healthy populations exhibit plasticity and evolve towards rectangular-like survival curves, as examples in humans or laboratory animals. PMID:22355622

  18. A transonic rectangular grid embedded panel method

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Bussoletti, J. E.; James, R. M.; Young, D. P.; Woo, A. C.

    1982-01-01

    A method is presented that has the potential for solving transonic flow problems about the same complex aircraft configurations currently being analyzed by subsonic panel methods. This method does not require the generation of surface fitted grids. Instead it uses rectangular grids and subgrids together with embedded surface panels on which boundary conditions are imposed. Both the Euler and full potential equations are considered. The method of least squares is used to reduce the solution of these equations to the solution of a sequence of Poisson problems. The Poisson problems are solved using fast Fourier transforms and panel influence coefficient techniques. The overall method is still in its infancy but some two dimensional results are shown illustrating various key features.

  19. Electro-osmotic flows in rectangular cavities

    NASA Astrophysics Data System (ADS)

    Meleshko, Viatcheslav; Trofimchuk, Alexandre; Gourjii, Alexandre; Bezym'yana, Elina

    2010-11-01

    The talk presents the results of investigation of the microfluidics mixing processes in a rectangular cavity flows induced by elctro-osmotic excitation. Enhanced mixing plays an important role in biological and chemical pharmaceutics analysis in microfluidics systems. Analytical solution is presented for the velocity field in the cavity under various electric potential distributions. The location of the periodic points in the flow are accurately established and the structure of stable and unstable manifolds is discussed. The optimal form of excitation is suggested in order to obtain most effective mixing regime in the cavity. The regular and chaotic regions are identified under various condition of excitation. Finally, we compare numerical and analytical solutions with the results of laboratory experiments for real microfluidic flows.

  20. Rectangular subsonic jet flow field measurements

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1989-01-01

    Flow field measurements are presented of 3 subsonic rectangular cold air jets. The 3 cases presented had aspect ratios of 1 x 2, 1 x 4 at a Mach number of 0.09 and an aspect ratio of 1 x 2 at a Mach number of 0.9. All measurements were made using a 3-D laser Doppler anemoneter system. The presented data includes the mean velocity vector, all Reynolds stress tensor components, turbulent kinetic energy and velocity correlation coefficients. The data is presented in tabular and graphical form. No analysis of the measured data or comparison to other published data is made. All tabular data are available in ASCII format on MS-DOS compatible disks.

  1. Contribution of Round vs. Rectangular Expandable Cage Endcaps to Spinal Stability in a Cadaveric Corpectomy Model

    PubMed Central

    Mundis, Gregory M.; Moazzaz, Payam; Turner, Alexander W. L.; Cornwall, G. Bryan

    2015-01-01

    Background Expandable cages are gaining popularity in anterior reconstruction of the thoracolumbar spine following corpectomy as they can provide adjustable distraction and deformity correction. Rectangular, rather than circular, endcaps provide increased resistance to subsidence by spanning the apophyseal ring; however their impact on construct stability is not known. The objective of this study was to investigate the contribution of expandable corpectomy cage endcap shape (round vs. rectangular) and fixation method (anterior plate vs. posterior pedicle screws) to the stability of an L1 sub-total corpectomy construct. Methods Eight fresh-frozen cadaveric specimens (T11-L3) were subjected to multi-directional flexibility testing to 6 N·m with a custom spine simulator. Test conditions were: intact, L1 sub-total corpectomy defect, expandable cage (round endcap) alone, expandable cage (round endcap) with anterior plate, expandable cage (round endcap) with bilateral pedicle screws, expandable cage (rectangular endcap) alone, expandable cage (rectangular endcap) with anterior plate, expandable cage (rectangular endcap) with bilateral pedicle screws. Range-of-motion across T12-L2 was measured with an optoelectronic system. Results The expandable cage alone with either endcap provided significant stability to the corpectomy defect, reducing motion to intact levels in flexion-extension with both endcap types, and in lateral bending with rectangular endcaps. Round endcaps allowed greater motion than intact in lateral bending, and axial rotation ROM was greater than intact for both endcaps. Supplemental fixation provided the most rigid constructs, although there were no significant differences between instrumentation or endcap types. Conclusions These results suggest anterior-only fixation may be adequate when using an expandable cage in a sub-total corpectomy application and choice of endcap type may be driven by other factors such as subsidence resistance. PMID:26609508

  2. Chamber Clearing First Principles Modeling

    SciTech Connect

    Loosmore, G

    2009-06-09

    LIFE fusion is designed to generate 37.5 MJ of energy per shot, at 13.3 Hz, for a total average fusion power of 500 MW. The energy from each shot is partitioned among neutrons ({approx}78%), x-rays ({approx}12%), and ions ({approx}10%). First wall heating is dominated by x-rays and debris because the neutron mean free path is much longer than the wall thickness. Ion implantation in the first wall also causes damage such as blistering if not prevented. To moderate the peak-pulse heating, the LIFE fusion chamber is filled with a gas (such as xenon) to reduce the peak-pulse heat load. The debris ions and majority of the x-rays stop in the gas, which re-radiates this energy over a longer timescale (allowing time for heat conduction to cool the first wall sufficiently to avoid damage). After a shot, because of the x-ray and ion deposition, the chamber fill gas is hot and turbulent and contains debris ions. The debris needs to be removed. The ions increase the gas density, may cluster or form aerosols, and can interfere with the propagation of the laser beams to the target for the next shot. Moreover, the tritium and high-Z hohlraum debris needs to be recovered for reuse. Additionally, the cryogenic target needs to survive transport through the gas mixture to the chamber center. Hence, it will be necessary to clear the chamber of the hot contaminated gas mixture and refill it with a cool, clean gas between shots. The refilling process may create density gradients that could interfere with beam propagation, so the fluid dynamics must be studied carefully. This paper describes an analytic modeling effort to study the clearing and refilling process for the LIFE fusion chamber. The models used here are derived from first principles and balances of mass and energy, with the intent of providing a first estimate of clearing rates, clearing times, fractional removal of ions, equilibrated chamber temperatures, and equilibrated ion concentrations for the chamber. These can be used

  3. Monte Carlo study of conversion factors for ionization chamber dosimetry in solid slab phantoms for MV photon beams

    NASA Astrophysics Data System (ADS)

    Park, Dong-wook; Lee, Jai-ki

    2016-08-01

    For high energy photon beams, solid phantom to water dose conversion factors were calculated by using a Monte Carlo method, and the result were compared with measurements and published data. Based on the absorbed dose to water dosimetry protocol, the conversion factor was theoretically divided into stopping powers ratios, perturbation factors and ratios of absorbed dose to water and that to solid phantom. Data for a Farmer-type chamber and a solid phantom based on polystyrene which is one of the most common material were applied to calculate the conversion factors for 6 MV and 15 MV photon beams. All measurements were conducted after 10 Gy pre-irradiation and thermal equilibrium had been established with solid slabs in a treatment room. The calculated and the measured conversion factors were in good agreement and could be used to confirm the feasibility of the solid phantom as a substitute for water for high energy photon beam.

  4. Observations of dust trapping phenomena in the TRISTAN accumulation ring and a study of dust removal in a beam chamber

    NASA Astrophysics Data System (ADS)

    Saeki, Hiroshi; Momose, Takashi; Ishimaru, Hajime

    1991-04-01

    Using a gamma-ray detector and a television camera system for synchrotron light, high-energy bremsstrahlung and horizontal growth of the synchrotron light source were observed when sudden decrease in the electron-beam lifetime occurred due to dust trapping in the electron beam. Two types of beam current losses were found; one was a continuous beam current loss, and the other was a short-term beam current loss. High-energy bremsstrahlung at a location was observed in a short time and after that, the bremsstrahlung was not detected in spite of the occurrence of dust trapping phenomena. The fact suggests motions of the trapped dust particles in the longitudinal directions. Materials collected in the beam chamber are dust particles from ion pumps and dust particles made during the beam chamber processing for welding. Most of the collected dust particles were less than 2 mm in size and surfaces of some dust particles were melted with the electron beam. Simple analysis was carried out for the conditions necessary for a dust particle to be trapped, for motions of the trapped dust particle, and for interactions between the trapped dust particle and the electron beam. The analysis showed that a dust particle less than 3 mm in size, made of Al, can be trapped and that the trapped dust particle can move in the vertical and longitudinal directions. The analysis also suggested that a dust particle in size of about 2 mm can be continuously trapped around the electron beam without being destroyed by the electron beam. Furthermore, the analysis explained the difference between the two types of beam current losses observed in the ring. Experiments which simulate the electron beam using a Cu wire in an evacuated beam chamber show that a dust particle (less than 70 μm) is trapped sufficiently. The experiments also coincide with theory for an attractive force acting to a conducting small particle. The calculated electric field of the electron beam and the calculated electric charge

  5. Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers

    NASA Astrophysics Data System (ADS)

    Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.

    2014-05-01

    To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.

  6. Dose Distribution in the Heart and Cardiac Chambers Following 4-field Radiation Therapy of Breast Cancer: a Retrospective Study

    PubMed Central

    Johansen, Safora; Tjessem, Kristin H.; Fosså, Kristian; Bosse, Gerhard; Danielsen, Turi; Malinen, Eirik; Fosså, Sophie D.

    2013-01-01

    Purpose: To evaluate cardiac doses in breast cancer patients with stage II/III treated with 4-field radiotherapy based on computed tomography (CT) dose planning. Methods and Materials: Based on archived CT images, whole heart and cardiac chamber radiation doses were analyzed in 216 (111 left-sided and 105 right-sided) mastectomized or lumpectomized breast cancer patients treated at a single institution, the Norwegian Radium Hospital, between 2000–2002. Individual dose volume histograms for the whole heart and for the four cardiac chambers were obtained, and mean, median and maximum doses to these structures were calculated. The dose (Gy) delivered to the 5% of the volume of each cardiac structure (D5%), and the volume percentage of each structure receiving ≥ 25 Gy (V25Gy) were reported. Normal tissue complication probability (NTCP) calculations were used to estimate the risk for ischemic heart disease (IHD). Results: Cohort-based medians of the whole heart mean dose (Dmean) for left- and right-sided tumors were 3.2 Gy and 1.3 Gy, respectively, with similar ventricular but lower atrial values. The atrial doses did not differ according to laterality of the breast tumor. In 13 patients with left-sided cancer, 5% of the heart volume was exposed to >25 Gy. The NTCP estimates were generelly low, with a maximum of 2.8%. Conclusions: During adjuvant CT-based locoregional radiotherapy of women with breast cancer, the cardiac radiation doses are, at the group level, below recommended threshold values (D5% < 25 Gy), though individual patients with left-sided disease may exceed these limits. PMID:23589693

  7. Experimental Modal Analysis of Rectangular and Circular Beams

    ERIC Educational Resources Information Center

    Emory, Benjamin H.; Zhu, Wei Dong

    2006-01-01

    Analytical and experimental methods are used to determine the natural frequencies and mode shapes of Aluminum 6061-T651 beams with rectangular and circular cross-sections. A unique test stand is developed to provide the rectangular beam with different boundary conditions including clamped-free, clamped-clamped, clamped-pinned, and pinned-pinned.…

  8. Helping Students Acquainted with Multiplication in Rectangular Model

    ERIC Educational Resources Information Center

    Tasman, Fridgo; den Hertog, Jaap; Zulkardi; Hartono, Yusuf

    2011-01-01

    Usually, multiplication is introduced to students to represent quantities that come in groups. However there is also rectangular array model which is also related to multiplication. Barmby et al. (2009) has shown that the rectangular model such as array representations encourage students to develop their thinking about multiplication as a binary…

  9. Development of the mean velocity distribution in rectangular jets

    NASA Technical Reports Server (NTRS)

    Morrison, G. L.; Swan, D. H.; Deotte, R. E., Jr.

    1992-01-01

    The mean flowfield of 1 x 2 and 1 x 4 aspect ratio rectangular jets has been measured using a laser Doppler anemometer system. The development of the downstream velocity distribution is analyzed with respect to centerline velocity decay, shear layer growth, axis switching, and velocity profile development. Comparisons are made with axisymmetric, planar, and other rectangular jets.

  10. Method and structure for cache aware transposition via rectangular subsections

    DOEpatents

    Gustavson, Fred Gehrung; Gunnels, John A

    2014-02-04

    A method and structure for transposing a rectangular matrix A in a computer includes subdividing the rectangular matrix A into one or more square submatrices and executing an in-place transposition for each of the square submatrices A.sub.ij.

  11. Large Deflections of Elastic Rectangular Plates

    NASA Astrophysics Data System (ADS)

    Razdolsky, A. G.

    2015-11-01

    It is known that elastic large deflections of thin plates are governed by von Karman nonlinear equations. The analytical solution of these equations in the general case is unfeasible. Samuel Levy, in 1942, showed that large deflections of the rectangular plate can be expressed as a double series of sine-shaped harmonics (deflection harmonics). However, this method gave no way of creating the computer algorithm of solving the problem. The stress function expression taken in the Levy's method must be revised to find the approach that takes into account of all possible products of deflection coefficients. The algorithm of solving the problem for the rectangular plate with an arbitrary aspect ratio under the action of the lateral distributed load is reported in this paper. The approximation of the plate deflection is taken in the form of double series proposed by Samuel Levy. However, the expression for the stress function is presented in the form that incorporates products of deflection coefficients in the explicit form in distinction to the Levy's expression. The number of harmonics in the deflection expression may be arbitrary. The algorithm provides composing the system of governing cubic equations, which includes the deflection coefficients in the explicit form. Solving the equation system is based on using the principle of minimum potential energy. A method of the gradient descent is applied to find the equilibrium state of the plate as the minimum point of the potential energy. A computer program is developed on the basis of the present algorithm. Numerical examples carried out for the plate model with 16 deflection harmonics illustrate the potentialities of the program. The results of solving the examples are presented in the graphical form for the plates with a different aspect ratio and may be used under designing thin-walled elements of airplane and ship structures.

  12. Shear flow control of cold and heated rectangular jets by mechanical tabs. Volume 1: Results and discussion

    NASA Technical Reports Server (NTRS)

    Brown, W. H.; Ahuja, K. K.

    1989-01-01

    The effects of mechanical protrusions on the jet mixing characteristics of rectangular nozzles for heated and unheated subsonic and supersonic jet plumes were studied. The characteristics of a rectangular nozzle of aspect ratio 4 without the mechanical protrusions were first investigated. Intrusive probes were used to make the flow measurements. Possible errors introduced by intrusive probes in making shear flow measurements were also examined. Several scaled sizes of mechanical tabs were then tested, configured around the perimeter of the rectangular jet. Both the number and the location of the tabs were varied. From this, the best configuration was selected. The conclusions derived were: (1) intrusive probes can produce significant errors in the measurements of the velocity of jets if they are large in diameter and penetrate beyond the jet center; (2) rectangular jets without tabs, compared to circular jets of the same exit area, provide faster jet mixing; and (3) further mixing enhancement is possible by using mechanical tabs.

  13. Sleeve reaction chamber system

    DOEpatents

    Northrup, M. Allen; Beeman, Barton V.; Benett, William J.; Hadley, Dean R.; Landre, Phoebe; Lehew, Stacy L.; Krulevitch, Peter A.

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  14. Oscillating laminar electrokinetic flow in infinitely extended rectangular microchannels.

    PubMed

    Yang, J; Bhattacharyya, A; Masliyah, J H; Kwok, D Y

    2003-05-01

    This paper has addressed analytically the problem of laminar flow in microchannels with rectangular cross-section subjected to a time-dependent sinusoidal pressure gradient and a sinusoidal electric field. The analytical solution has been determined based on the Debye-Hückel approximation of a low surface potential at the channel wall. We have demonstrated that Onsager's principle of reciprocity is valid for this problem. Parametric studies of streaming potential have shown the dependence of the electroviscous effect not only on the Debye length, but also on the oscillation frequency and the microchannel width. Parametric studies of electroosmosis demonstrate that the flow rate decreases due to an increase in frequency. The obtained solutions for both the streaming potential and electroosmotic flows become those for flow between two parallel plates in the limit of a large aspect ratio. PMID:12725820

  15. Rankine combined vortex interaction with a rectangular prism

    NASA Astrophysics Data System (ADS)

    Gorecki, Piotr; Panneer Selvam, Rathinam

    2015-01-01

    Large eddy simulation is utilised to study the three-dimensional interaction between a travelling Rankine combined vortex and a rectangular prism. The study examines the strength and the topology of a vortex during the interaction with a prism that is much wider than the vortex core diameter. The physics of the interaction is revealed for the straight (β = 0°) and the oblique (β = 45°) impacts. For both cases, the low-level portion of the vortex undergoes displacements in the streamwise and the lateral directions. Also the vortex shape and the core vorticity are substantially disrupted. Behind the prism the full vortex circulation is recovered after a considerable distance. This created a low-velocity region. The sheltering effect of the prism is noticed for both straight and oblique impacts. The flow velocities in the sheltering region, right behind the prism, are reduced by more than 42% compared to the maximum flow speeds before the interaction.

  16. Detailed diesel exhaust characteristics including particle surface area and lung deposited dose for better understanding of health effects in human chamber exposure studies

    NASA Astrophysics Data System (ADS)

    Wierzbicka, Aneta; Nilsson, Patrik T.; Rissler, Jenny; Sallsten, Gerd; Xu, Yiyi; Pagels, Joakim H.; Albin, Maria; Österberg, Kai; Strandberg, Bo; Eriksson, Axel; Bohgard, Mats; Bergemalm-Rynell, Kerstin; Gudmundsson, Anders

    2014-04-01

    Several diesel exhaust (DE) characteristics, comprising both particle and gas phase, recognized as important when linking with health effects, are not reported in human chamber exposure studies. In order to understand effects of DE on humans there is a need for better characterization of DE when performing exposure studies. The aim of this study was to determine and quantify detailed DE characteristics during human chamber exposure. Additionally to compare to reported DE properties in conducted human exposures. A wide battery of particle and gas phase measurement techniques have been used to provide detailed DE characteristics including the DE particles (DEP) surface area, fraction and dose deposited in the lungs, chemical composition of both particle and gas phase such as NO, NO2, CO, CO2, volatile organic compounds (including aldehydes, benzene, toluene) and polycyclic aromatic hydrocarbons (PAHs). Eyes, nose and throat irritation effects were determined. Exposure conditions with PM1 (<1 μm) mass concentration 280 μg m-3, number concentration 4 × 105 cm-3 and elemental to total carbon fraction of 82% were generated from a diesel vehicle at idling. When estimating the lung deposited dose it was found that using the size dependent effective density (in contrast to assuming unity density) reduced the estimated respiratory dose by 132% by mass. Accounting for agglomerated structure of DEP prevented underestimation of lung deposited dose by surface area by 37% in comparison to assuming spherical particles. Comparison of DE characteristics reported in conducted chamber exposures showed that DE properties vary to a great extent under the same DEP mass concentration and engine load. This highlights the need for detailed and standardized approach for measuring and reporting of DE properties. Eyes irritation effects, most probably caused by aldehydes in the gas phase, as well as nose irritation were observed at exposure levels below current occupational exposure limit

  17. New insights into the degradation of terpenoids with OH: a study of the OH budget in the atmosphere simulation chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Kaminski, Martin; Fuchs, Hendrik; Acir, Ismail-Hakki; Bohn, Birger; Brauers, Theo; Dorn, Hans-Peter; Häseler, Rolf; Hofzumahaus, Andreas; Li, Xin; Lutz, Anna; Nehr, Sascha; Rohrer, Franz; Tillmann, Ralf; Wegener, Robert; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    The hydroxyl radical (OH) is the main oxidation agent in the atmosphere during daytime. Recent field campaigns studying the radical chemistry in forested areas showed large discrepancies between measured and modeled OH concentration at low NOx conditions and when OH reactivity was dominated by VOC. These observations were only partially explained by the evidence for new efficient hydroxyl radical regeneration pathways in the isoprene oxidation mechanism. The question arises if other reactive VOCs with high global emission rates are also capable of additional OH recycling. Beside isoprene, monoterpenes and 2-methyl-3-buten-2-ol (MBO) are the volatile organic compounds (VOC) with the highest global emission rates. Due to their high reactivity towards OH monoterpenes and MBO can dominate the radical chemistry of the atmosphere in forested areas under certain conditions. In the present study the photochemical degradation mechanism of α-pinene, β-pinene, limonene, myrcene and MBO was investigated in the Jülich atmosphere simulation chamber SAPHIR. The focus of this study was in particular on the investigation of the OH budget in the degradation process. The photochemical degradation of these terpenoids was studied in a dedicated series of experiments in the years 2012 and 2013. The SAPHIR chamber was equipped with instrumentation to measure radicals (OH, HO2, RO2), the total OH reactivity, all important OH precursors (O3, HONO, HCHO), the parent VOC, its main oxidation products and photolysis frequencies to investigate the radical budget in the SAPHIR chamber. All experiments were carried out under low NOx conditions (≤ 2ppb) and atmospheric terpenoid concentrations (≤ 5ppb) with and without addition of ozone into the SAPHIR chamber. For the investigation of the OH budget all measured OH production terms were compared to the measured OH destruction. Within the limits of accuracy of the instruments the OH budget was balanced in all cases. Consequently unaccounted

  18. The Effects of a Rectangular Rapid-Flashing Beacon on Vehicle Speed

    ERIC Educational Resources Information Center

    VanWagner, Michelle; Van Houten, Ron; Betts, Brian

    2011-01-01

    In 2008, nearly 31% of vehicle fatalities were related to failure to adhere to safe vehicle speeds (National Highway Traffic Safety Administration [NHTSA], 2009). The current study evaluated the effect of a rectangular rapid-flashing beacon (RRFB) triggered by excessive speed on vehicle speed using a combined alternating treatments and reversal…

  19. Developing Multiplicative Thinking with Rectangular Array Tasks in a Computer Environment

    ERIC Educational Resources Information Center

    Huang, Amy I-Yu

    2013-01-01

    This study reports findings from a teaching experiment in which 4th grade children engaged in solving multiplication tasks with rectangular arrays in a computer environment. The environment provided flexible task-solving through dynamic virtual manipulatives (VMs) so children could use their existing knowledge of multiplication to complete array…

  20. On the flow topology inside droplets moving in rectangular microchannels.

    PubMed

    Ma, Shaohua; Sherwood, Joseph M; Huck, Wilhelm T S; Balabani, Stavroula

    2014-09-21

    The flow topology in moving microdroplets has a significant impact on the behaviour of encapsulated objects and hence on applications of the technology. This study reports on a systematic investigation of the flow field inside droplets moving in a rectangular microchannel, by means of micro-particle image velocimetry (μPIV). Various water/oil (w/o) fluid mixtures were studied in order to elucidate the effects of a number of parameters such as capillary number (Ca), droplet geometry, viscosity ratio and interfacial tension. A distinct change in flow topology was observed at intermediate Ca ranging from 10(-3) to 10(-1), in surfactant-laden droplets, which was attributed primarily to the viscosity ratio of the two phases rather than the Marangoni effect expected in such systems. W/o droplet systems of lower inner-to-outer viscosity ratios tend to exhibit the well-known flow pattern characterised by a parabola-like profile in the droplet bulk-volume, surrounded by two counter rotating recirculation zones on either side of the droplet axis. As the viscosity ratio between the two phases is increased, the flow pattern becomes more uniform, exhibiting low velocities in the droplet bulk-volume and higher-reversed velocities along the w/o interface. The Ca and droplet geometry had no effect on the observed flow topology change. The study highlights the complex, three-dimensional (3D) nature of the flow inside droplets in rectangular microchannels and demonstrates the ability to control the droplet flow environment by adjusting the viscosity ratio between the two phases.

  1. Round versus rectangular: Does the plot shape matter?

    NASA Astrophysics Data System (ADS)

    Iserloh, Thomas; Bäthke, Lars; Ries, Johannes B.

    2016-04-01

    Field rainfall simulators are designed to study soil erosion processes and provide urgently needed data for various geomorphological, hydrological and pedological issues. Due to the different conditions and technologies applied, there are several methodological aspects under review of the scientific community, particularly concerning design, procedures and conditions of measurement for infiltration, runoff and soil erosion. Extensive discussions at the Rainfall Simulator Workshop 2011 in Trier and the Splinter Meeting at EGU 2013 "Rainfall simulation: Big steps forward!" lead to the opinion that the rectangular shape is the more suitable plot shape compared to the round plot. A horizontally edging Gerlach trough is installed for sample collection without forming unnatural necks as is found at round or triangle plots. Since most research groups did and currently do work with round plots at the point scale (<1m²), a precise analysis of the differences between the output of round and square plots are necessary. Our hypotheses are: - Round plot shapes disturb surface runoff, unnatural fluvial dynamics for the given plot size such as pool development especially directly at the plot's outlet occur. - A square plot shape prevent these problems. A first comparison between round and rectangular plots (Iserloh et al., 2015) indicates that the rectangular plot could indeed be the more suitable, but the rather ambiguous results make a more elaborate test setup necessary. The laboratory test setup includes the two plot shapes (round, square), a standardised silty substrate and three inclinations (2°, 6°, 12°). The analysis of the laboratory test provide results on the best performance concerning undisturbed surface runoff and soil/water sampling at the plot's outlet. The analysis of the plot shape concerning its influence on runoff and erosion shows that clear methodological standards are necessary in order to make rainfall simulation experiments comparable. Reference

  2. An atmospheric exposure chamber for small animals

    NASA Technical Reports Server (NTRS)

    Glaser, R. M.; Weiss, H. S.; Pitt, J. F.; Grimard, M.

    1982-01-01

    The purpose of this project was to design a long-term environmental exposure chamber for small animals. This chamber is capable of producing hypoxic, normoxic and hyperoxic atmospheres which are closely regulated. The chamber, which is of the recycling type, is fashioned after clear plastic germ-free isolators. Oxygen concentration is set and controlled by a paramagnetic O2 analyzer and a 3-way solenoid valve. In this way either O2 or N2 may be provided to the system by way of negative O2 feedback. Relative humidity is maintained at 40-50 percent by a refrigeration type dryer. Carbon dioxide is absorbed by indicating soda lime. A diaphragm pump continuously circulates chamber gas at a high enough flow rate to prevent buildup of CO2 and humidity. This chamber has been used for numerous studies which involve prolonged exposure of small animals to various O2 concentrations.

  3. Note: Small anaerobic chamber for optical spectroscopy

    SciTech Connect

    Chauvet, Adrien A. P. Chergui, Majed; Agarwal, Rachna; Cramer, William A.

    2015-10-15

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, to the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment.

  4. 58. Interior view, porch chamber, south elevation. The room door ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. Interior view, porch chamber, south elevation. The room door is open allowing a view into the study chamber. - John Bartram House & Garden, House, 54th Street & Lindbergh Boulevard, Philadelphia, Philadelphia County, PA

  5. Unilateral buckling of elastically restrained rectangular mild steel plates

    NASA Astrophysics Data System (ADS)

    Smith, S. T.; Bradford, M. A.; Oehlers, D. J.

    This paper considers the elastic unilateral buckling of rectangular mild steel plates that are restrained elastically and subjected to bending and axial actions. A variational formulation of the Ritz method using linear combinations of harmonic functions for the buckling deformations is used to establish an eigenproblem to determine the plate local buckling coefficients. The motivation for the study is the retrofit of reinforced concrete beams by gluing and then bolting steel plates to the sides of the beam. Such plates, when acting compositely with the concrete beam, are subjected to predominantly bending and axial actions which may cause unilateral local buckling. Whereas the bolts provide complete restraint against buckling at discrete points, the glue may also inhibit local buckling between these nodal points since it acts as a continuous elastic restraint. The influence of the glue stiffness, support conditions and plate proportions on the unilateral buckling of such plates are assessed.

  6. Elastostatic stress analysis of orthotropic rectangular center-cracked plates

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, G. S.; Mendelson, A.

    1972-01-01

    A mapping-collocation method was developed for the elastostatic stress analysis of finite, anisotropic plates with centrally located traction-free cracks. The method essentially consists of mapping the crack into the unit circle and satisfying the crack boundary conditions exactly with the help of Muskhelishvili's function extension concept. The conditions on the outer boundary are satisfied approximately by applying the method of least-squares boundary collocation. A parametric study of finite-plate stress intensity factors, employing this mapping-collocation method, is presented. It shows the effects of varying material properties, orientation angle, and crack-length-to-plate-width and plate-height-to-plate-width ratios for rectangular orthotropic plates under constant tensile and shear loads.

  7. Flow-Field Surveys for Rectangular Nozzles. Supplement

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2012-01-01

    Flow field survey results for three rectangular nozzles are presented for a low subsonic condition obtained primarily by hot-wire anemometry. The three nozzles have aspect ratios of 2:1, 4:1 and 8:1. A fourth case included has 2:1 aspect ratio with chevrons added to the long edges. Data on mean velocity, turbulent normal and shear stresses as well as streamwise vorticity are presented covering a streamwise distance up to sixteen equivalent diameters from the nozzle exit. These detailed flow properties, including initial boundary layer characteristics, are usually difficult to measure in high speed flows and the primary objective of the study is to aid ongoing and future computational and noise modeling efforts. This supplement contains data files, charts and source code.

  8. Experimental characterization of water flow through smooth rectangular microchannels

    NASA Astrophysics Data System (ADS)

    Baviere, R.; Ayela, F.; Le Person, S.; Favre-Marinet, M.

    2005-09-01

    This article presents experimental results obtained in water flows through smooth rectangular microchannels. The experimental setup used in the present study enabled the investigation of both very small length scales (21-4.5μm) and a wide range of Reynolds numbers (0.1-300). The evolution of the friction coefficient was inferred from pressure drop versus flow-rate measurements for two types of water with different electrical conductivities. The channels were made of a silicon engraved substrate anodically bonded to a Pyrex cover. In these structures, pressure losses were measured internally with micromachined Cu-Ni strain gauges. When compared to macroscale correlations, the results demonstrate that in smooth silicon-Pyrex microchannels larger than 4μm in height, the friction law is correctly predicted by the Navier-Stokes equations with the classical no-slip boundary conditions, regardless of the water electrical conductivity (>0.1μScm-1).

  9. Vibration analysis of rectangular plates with general elastic boundary supports

    NASA Astrophysics Data System (ADS)

    Li, W. L.

    2004-06-01

    In this investigation, the Rayleigh-Ritz method is used to determine the modal characteristics of a rectangular plate with general elastic supports alone its edges. Each of the admissible functions here is composed of a trigonometric function and an arbitrary continuous function that is introduced to ensure the sufficient smoothness of the so-called residual displacement function at the edges. As a result, a drastic improvement of the convergence can be expected of the solution expressed as a series expansion in terms of the admissible functions. Perhaps more importantly, this study has developed a general approach for deriving a complete set of admissible functions that can be universally applied to various boundary conditions. Several numerical examples are given to demonstrate the accuracy and convergence of the current solution.

  10. Oscillating flow and separation of species in rectangular channels

    NASA Astrophysics Data System (ADS)

    Hacioglu, A.; Narayanan, R.

    2016-07-01

    The mass transfer and separation of species in a tube using oscillatory flows are strongly affected by the fluid flow profiles in the tube. It has been well established that oscillatory motion in a one-dimensional flow configuration leads to a single tuning dimensionless frequency, where optimum separation may be effected. In this work, the effect on species separation by two-dimensional laminar flow arising in a rectangular cross section is studied and a surprising result is that a second tuning frequency may occur at lower dimensionless oscillation frequencies. The physics reveals that this new optimum disappears when the aspect ratio is either very large or close to unity. These observations are related to the flow profiles at different aspect ratios.

  11. Optimization of pocket milling operation of rectangular shapes

    SciTech Connect

    Andijani, A.

    1994-12-31

    An optimization model to setup machine parameters (feed, speed, width, and depth of cut) for pocket milling on a vertical mill is developed. We propose an approach to determine the optimal set of operating conditions that minimize the total milling cost. The part to be milled has a square or a rectangular shape. The pocket milling mathematical model in this paper is an explicit, multi-variable, nonlinear objective function, and nonlinear equality and inequality constraints. We provide a study of some optimization algorithms that are suitable for the optimization of the pocket milling operation. We describe the general and the relative features for each algorithm. However, the final choice of the best algorithm depends upon individual preference, experience, and the case being investigated. An illustrative example is presented.

  12. Rapid orthograde transport of 32P-labelled material in amphibian sensory axons: a multiwire proportional chamber study.

    PubMed

    Snyder, R E; Nichols, T R; Smith, R S

    1980-05-01

    A multiwire proportional chamber was used to follow the axonal transport of material labelled with [32P]orthophosphate in dorsal root ganglion (DRG)--sciatic nerve preparations of Xenopus laevis and Rana catesbiana. The DRG were exposed to label for a period of 4 h following which there was a period of continued delivery of labelled material to the nerve for up to 18 h. The front of the labelled material in the nerve moved at a velocity of 160--170 mm/24 h at room temperature (22.5--23.5 degrees C). Sectioning the nerve at a proximal position showed that labelled material behind the front moved at a similar rapid velocity. Experiments in which the nerve was sectioned showed that some of the rapidly transported label appeared to be deposited into a relatively stationary phase. Extrapolation of the results indicated that the delay between the presentation of the label to the DRG and the onset of the transport of labelled material in the nerve was 4--6 h. The rapid transport of the label was inhibited by vinblastine sulphate at concentrations of 130--950 microM. Most of the rapidly transported material was found to be in a chloroform-methanol extractable form. In conclusion, 32P labels materials whose transport dynamics are very similar to those observed when [35S]methionine is used as the precursor. PMID:6158368

  13. Ice crystal habits from cloud chamber studies obtained by in-line holographic microscopy related to depolarization measurements.

    PubMed

    Amsler, Peter; Stetzer, Olaf; Schnaiter, Martin; Hesse, Evelyn; Benz, Stefan; Moehler, Ottmar; Lohmann, Ulrike

    2009-10-20

    We investigate hydrometeor habits at the AIDA chamber with a newly developed in-line holographic microscope HOLographic Imager for Microscopic Objects (HOLIMO). Sizes and habits of ice crystals and droplets in a mixed-phase cloud experiment are related to relative humidity with respect to ice (RH(ice)), temperature (T), and experiment time. This experiment is initiated with supercooled water drops. As a result, ice crystals within a maximum particle diameter size range of 2 to 118 microm (average size of 19 microm) are detected and 63% of them reveal regular habits. The observed particle habits match those predicted for a given RH(ice) and T. Two different growth modes emerge from this cloud. The first one appears during water injection and reveals mainly optical particle sizes in the range of 5 to 250 microm. The second mode grows to sizes of 5 to 63 microm, just after the particles of the first one fall out. It is found that an increasing aspect ratio chi of maximum length over thickness from 2 to 20 as obtained by HOLIMO corresponds to a decreasing linear depolarization ratio from 0.1 to 0.04, as independently obtained by depolarization measurements.

  14. Fusion studies with low-intensity radioactive ion beams using an active-target time projection chamber

    NASA Astrophysics Data System (ADS)

    Kolata, J. J.; Howard, A. M.; Mittig, W.; Ahn, T.; Bazin, D.; Becchetti, F. D.; Beceiro-Novo, S.; Chajecki, Z.; Febbrarro, M.; Fritsch, A.; Lynch, W. G.; Roberts, A.; Shore, A.; Torres-Isea, R. O.

    2016-09-01

    The total fusion excitation function for 10Be+40Ar has been measured over the center-of-momentum (c.m.) energy range from 12 to 24 MeV using a time-projection chamber (TPC). The main purpose of this experiment, which was carried out in a single run of duration 90 h using a ≈100 particle per second (pps) 10Be beam, was to demonstrate the capability of an active-target TPC to determine fusion excitation functions for extremely weak radioactive ion beams. Cross sections as low as 12 mb were measured with acceptable (50%) statistical accuracy. It also proved to be possible to separate events in which charged particles were emitted from the fusion residue from those in which only neutrons were evaporated. The method permits simultaneous measurement of incomplete fusion, break-up, scattering, and transfer reactions, and therefore fully exploits the opportunities presented by the very exotic beams that will be available from the new generation of radioactive beam facilities.

  15. Ice crystal habits from cloud chamber studies obtained by in-line holographic microscopy related to depolarization measurements.

    PubMed

    Amsler, Peter; Stetzer, Olaf; Schnaiter, Martin; Hesse, Evelyn; Benz, Stefan; Moehler, Ottmar; Lohmann, Ulrike

    2009-10-20

    We investigate hydrometeor habits at the AIDA chamber with a newly developed in-line holographic microscope HOLographic Imager for Microscopic Objects (HOLIMO). Sizes and habits of ice crystals and droplets in a mixed-phase cloud experiment are related to relative humidity with respect to ice (RH(ice)), temperature (T), and experiment time. This experiment is initiated with supercooled water drops. As a result, ice crystals within a maximum particle diameter size range of 2 to 118 microm (average size of 19 microm) are detected and 63% of them reveal regular habits. The observed particle habits match those predicted for a given RH(ice) and T. Two different growth modes emerge from this cloud. The first one appears during water injection and reveals mainly optical particle sizes in the range of 5 to 250 microm. The second mode grows to sizes of 5 to 63 microm, just after the particles of the first one fall out. It is found that an increasing aspect ratio chi of maximum length over thickness from 2 to 20 as obtained by HOLIMO corresponds to a decreasing linear depolarization ratio from 0.1 to 0.04, as independently obtained by depolarization measurements. PMID:19844319

  16. Solar thermal plasma chamber

    NASA Astrophysics Data System (ADS)

    Bonometti, Joseph; Buchele, Donald R.; Castle, Charles H.; Gregory, Don A.

    2001-11-01

    A unique solar thermal chamber has been designed and fabricated to produce the maximum concentration of solar energy and highest temperature possible. Its primary purpose was for solar plasma propulsion experiments and related material specimen testing above 3000 Kelvin. The design not only maximized solar concentration, but also, minimized infrared heat loss. This paper provides the underlining theory and operation of the chamber and initial optical correlation to the actual fabricated hardware. The chamber is placed at the focal point of an existing primary concentrator with a 2.74-meter (9 foot) focal length. A quartz lens focuses a smaller sun image at the inlet hole of the mirrored cavity. The lens focuses two image planes at prescribed positions; the sun at the cavity's entrance hole, and the primary concentrator at the junction plane of two surfaces that form the cavity chamber. The back half is an ellipsoid reflector that produces a 1.27 cm diameter final sun image. The image is 'suspended in space' 7.1cm away from the nearest cavity surface, to minimize thermal and contaminate damage to the mirror surfaces. A hemisphere mirror makes up the front chamber and has its center of curvature at the target image, where rays leaving the target are reflected back upon themselves, minimizing radiation losses.

  17. Improved Rhenium Thrust Chambers

    NASA Technical Reports Server (NTRS)

    O'Dell, John Scott

    2015-01-01

    Radiation-cooled bipropellant thrust chambers are being considered for ascent/ descent engines and reaction control systems on various NASA missions and spacecraft, such as the Mars Sample Return and Orion Multi-Purpose Crew Vehicle (MPCV). Currently, iridium (Ir)-lined rhenium (Re) combustion chambers are the state of the art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf Ir-Re chamber produced by Plasma Processes and Aerojet Rocketdyne, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, Re chambers with improved mechanical properties are needed. Recent electrochemical forming (EL-Form"TM") results have shown considerable promise for improving Re's mechanical properties by producing a multilayered deposit composed of a tailored microstructure (i.e., Engineered Re). The Engineered Re processing techniques were optimized, and detailed characterization and mechanical properties tests were performed. The most promising techniques were selected and used to produce an Engineered Re AMBR-sized combustion chamber for testing at Aerojet Rocketdyne.

  18. Gleason's Theorem for Rectangular JBW-Triples

    NASA Astrophysics Data System (ADS)

    Edwards, C. Martin; Rüttimann, Gottfried T.

    A JBW*-triple B is said to be rectangular if there exists a W*-algebra A and a pair (p,q) of centrally equivalent elements of the complete orthomodular lattice of projections in A such that B is isomorphic to the JBW*-triple pAq. Any weak*-closed injective operator space provides an example of a rectangular JBW*-triple. The principal order ideal of the complete *-lattice of centrally equivalent pairs of projections in a W*-algebra A, generated by (p,q), forms a complete lattice that is order isomorphic to the complete lattice of weak*-closed inner ideals in B and to the complete lattice of structural projections on B. Although not itself, in general, orthomodular, possesses a complementation that allows for definitions of orthogonality, centre, and central orthogonality to be given. A less familiar notion in lattice theory, that is well-known in the theory of Jordan algebras and Jordan triple systems, is that of rigid collinearity of a pair (e2,f2) and (e2,f2) of elements of . This is defined and characterized in terms of properties of . A W*-algebra A is sometimes thought of as providing a model for a statistical physical system. In this case B, or, equivalently, pAq, may be thought of as providing a model for a fixed sub-system of that represented by A. Therefore, may be considered to represent the set consisting of a particular kind of sub-system of that represented by pAq. Central orthogonality and rigid collinearity of pairs of elements of may be regarded as representing two different types of disjointness, the former, classical disjointness, and the latter, decoherence, of the two sub-systems. It is therefore natural to consider bounded measures m on that are additive on centrally orthogonal and rigidly collinear pairs of elements. Using results of J.D.M. Wright, it is shown that, provided that neither of the two hereditary sub-W*-algebras pAp and qAq of A has a weak*-closed ideal of Type I2, such measures are precisely those that are the restrictions of

  19. Estimating the magnetization distribution within rectangular rock samples

    NASA Astrophysics Data System (ADS)

    Reis, A. L. A.; Oliveira, V. C.; Yokoyama, E.; Bruno, A. C.; Pereira, J. M. B.

    2016-08-01

    Over the last decades, scanning magnetic microscopy techniques have been increasingly used in paleomagnetism and rock magnetism. Different from standard paleomagnetic magnetometers, scanning magnetic microscopes produce high-resolution maps of the vertical component of the magnetic induction field (flux density) on a plane located over the sample. These high-resolution magnetic maps can be used for estimating the magnetization distribution within a rock sample by inversion. Previous studies have estimated the magnetization distribution within rock samples by inverting the magnetic data measured on a single plane above the sample. Here we present a new spatial domain method for inverting the magnetic induction measured on four planes around the sample in order to retrieve its internal magnetization distribution. We have presumed that the internal magnetization distribution of the sample varies along one of its axes. Our method approximates the sample geometry by an interpretation model composed of a one-dimensional array of juxtaposed rectangular prisms with uniform magnetization. The Cartesian components of the magnetization vector within each rectangular prism are the parameters to be estimated by solving a linear inverse problem. Our method automatically deals with the averaging of the measured magnetic data due to the finite size of the magnetic sensor, preventing the application of a deconvolution before the inversion. Tests with synthetic data show the performance of our method in retrieving complex magnetization distributions even in the presence of magnetization heterogeneities. Moreover, they show the advantage of inverting the magnetic data on four planes around the sample and how this new acquisition scheme improves the estimated magnetization distribution within the rock sample. We have also applied our method to invert experimentally measured magnetic data produced by a highly magnetized synthetic sample that was manufactured in the laboratory. The

  20. Drift Chamber Experiment

    NASA Astrophysics Data System (ADS)

    Walenta, A. H.; ćonka Nurdan, T.

    2003-07-01

    This paper describes a laboratory course held at ICFA 2002 Regional Instrumentation School in Morelia, Mexico. This course intends to introduce drift chambers, which play an important role in particle physics experiments as tracking detectors. The experimental setup consists of a single-sided, single-cell drift chamber, a plastic scintillator detector and a collimated 90Sr source. The measurements on the drift velocity of electrons, its change as a function of a drift field, gas gain and diffusion are performed at this laboratory course.

  1. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical ports ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (beam passes through the window at left), positioning lasers (one port is at center), and lamps to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  2. Internal combustion chamber

    SciTech Connect

    Schmitz, D.L.

    1988-03-08

    In combination with a high-powered reciprocating piston internal combustion engine, an internal combustion cylinder assembly is described comprising: a cylinder head made of weldable material; a cylinder liner for containing and guiding a reciprocating piston of the engine, a coolant jacket adapted to receive a cooling fluid, mounted on and surrounding the cylinder liner, the jacket being attached to the cylinder head and detachably supported by the cylinder liner, and forming a cooling chamber around the cylinder liner; means to supply the cooling fluid to the cooling chamber and to discharge the cooling fluid therefrom.

  3. Improving the characteristics of rectangular waveguide branchings by cylindrical obstacles

    NASA Astrophysics Data System (ADS)

    Gesche, Roland; Russenschuck, Stephan

    1989-10-01

    The scattering matrix of a transition between one or two parallel rectangular waveguides and a larger rectangular waveguide which contains two metallic or dielectric cylinders is investigated by means of the orthogonal expansion method. Mathematical programming is applied in order to improve the characteristics of the branchings. Reflection at a rectangular step discontinuity can be reduced by 30 dB using metallic or dielectric obstacles. Using Teflon cylinders, coupling of a transition can be reduced by 40 dB without debasing reflection. Physical interpretations are given with the help of field patterns.

  4. A comparative study between clinical grading of anterior chamber flare and flare reading using the Kowa laser flare meter.

    PubMed

    Konstantopoulou, Kallirroi; Del'Omo, Roberto; Morley, Anne M; Karagiannis, Dimitris; Bunce, Catey; Pavesio, Carlos

    2015-10-01

    To assess the accuracy of standard clinical grading of aqueous flare in uveitis according to the Standardization of Uveitis Nomenclature consensus, and compare the results with the readings of the laser flare meter, Kowa 500. Two examiners clinically graded the flare in 110 eyes. The flare was then measured using the Kowa laser flare meter. Twenty-nine eyes were graded as anterior chamber flare +2; for 18 of these, the clinicians were in agreement, the rest differed by the order of one grade. The range of the laser flare meter for these eyes was 5.2-899.1 photons/ms. The median value was 41.4. Seventy-four eyes were graded with flare +1. Agreement was established in 51 of these eyes. Disagreement for the rest was again by the order of 1, and the flare meter range was 1.1-169.9 photons/ms, median value 18.4. For the clinical measure of flare 0, the clinicians disagreed on three out of five eyes. The flare meter readings ranged from 2.5 to 14.1 photons/ms, median value 9.9. Only two eyes were graded with flare +3 and there was one step disagreement on both of them. We found little evidence of association between the flare readings and intraocular pressure or age. Our findings suggest that clinical evaluation of aqueous flare is subjective. Compared with the Kowa laser flare meter's numeric readings, the discrepancies observed indicate that clinical grading is an approximate science. The laser flare meter provides an accurate, reproducible, non-invasive assessment of aqueous flare that can prove valuable in research and clinical decisions.

  5. NOVEL CHAMBER DESIGN FOR AN IN-VACUUM CRYO-COOLED MINI-GAP UNDULATOR.

    SciTech Connect

    HU, J.-P.; FOERSTER, C.L.; SKARITKA, J.R.; WATERMAN, D.

    2006-05-24

    A stainless steel, Ultra-High Vacuum (UHV) chamber, featuring a large vertical rectangular port (53''W by 16''H), has been fabricated to house the one-meter magnet assembly of a newly installed undulator insertion device for beamline X-25 at the National Synchrotron Light Source. To achieve UHV, the new chamber is equipped with a differential ion pump, NEG pump, nude ion gauge, residual gas analyzer, and an all metal roughing valve. Temperature of the magnet assembly is maintained below 90 C during vacuum bake. The large rectangular port cover is sealed to the main flange of the chamber using a one-piece flat aluminum gasket and special sealing surfaces developed exclusively by Nor-Cal Products, Inc. The large flange provides easy access to the gap of the installed magnet girders for in situ magnetic measurements and shimming. Special window ports were designed into the cover and chamber for manipulation of optical micrometers external to the chamber to provide precise measurements of the in-vacuum magnet gap. The vacuum chamber assembly features independently vacuum-isolated feedthroughs that can be used for either water-or-cryogenic refrigeration-cooling of the monolithic magnet girders. This would allow for cryogenic-cooled permanent magnet operation and has been successfully tested within temperature range of +100 C to -150 C. Details of the undulator assembly for beamline X-25 is described in the paper.

  6. Filament wound rocket motor chambers

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, analysis, fabrication and testing of a Kevlar-49/HBRF-55A filament wound chamber is reported. The chamber was fabricated and successfully tested to 80% of the design burst pressure. Results of the data reduction and analysis from the hydrotest indicate that the chamber design and fabrication techniques used for the chamber were adequate and the chamber should perform adequately in a static test.

  7. Automated soil gas monitoring chamber

    DOEpatents

    Edwards, Nelson T.; Riggs, Jeffery S.

    2003-07-29

    A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

  8. Effects of Aerodynamic Tabs onExhaust Noise from a Rectangular Plug Nozzle

    NASA Astrophysics Data System (ADS)

    Araki, Mikiya; Sano, Takayuki; Kojima, Takayuki; Taguchi, Hideyuki; Shiga, Seiichi; Obokata, Tomio

    Effects of aerodynamic tabs on exhaust noise from a rectangular plug nozzle were investigated experimentally. In JAXA (Japan Aerospace Explanation Agency), a pre-cooled turbojet engine for the 1st stage propulsion of a TSTO (Two stage to orbit) is planned. In the present study, a 1/100-scaled model of the rectangular plug nozzle for the pre-cooled turbojet engine is manufactured and the exhaust noise characteristics were investigated. Compressed air is injected through the rectangular plug nozzle into the atmosphere. The nozzle pressure ratio was set at 2.7, which corresponds to the take-off condition of the vehicle. Aerodynamic tabs were installed at the ramp end (Upper AT), the cowl end (Lower AT) and the sidewall end (Side AT). The SPL (Sound pressure level) was measured with a high-frequency microphone. Without AT, the sound spectrum has a broadband peak at which the SPL is around 105dB. For Lower and Side ATs, the OASPL (Overall SPL) of the exhaust noise decreases, especially around ramp end. At the maximum, the OASPL was reduced by 2.4dB with about 2% loss of the main jet total pressure at the cowl exit. It is shown that the aerodynamic tabs are effective in noise reduction in a rectangular plug nozzle.

  9. Investigating 14CO2 chamber methodologies

    NASA Astrophysics Data System (ADS)

    Egan, J. E.; Phillips, C. L.; Nickerson, N. R.; Risk, D. A.

    2012-12-01

    The radiogenic isotope of carbon (14C) is an exceptionally useful tool in studying soil respired CO2, providing information about soil turnover rates, depths of production and the biological sources of production through partitioning. Unfortunately, little work has been done to thoroughly investigate the possibility of inherent biases in the current measurement techniques for 14CO2, caused by disturbances to the soil's natural diffusive regime, because of high costs and sampling logistics. Our aim in this study is to investigate the degree of bias present in the current sampling methodologies using a numerical model and laboratory calibration device. Four chamber techniques were tested numerically with varying fraction modern of production, δ13C of production, collar lengths, flux rates and diffusivities. Two of the chambers were then tested on the lab calibration device. One of these chambers, Iso-FD, has recently been tested for its use as a 13CO2 chamber and it does not induce gas transport fractionation biases present in other 13CO2 sampling methodologies. We then implemented it in the field to test its application as a 14CO2 chamber because of its excellent performance as a 13CO2chamber. Presented here are the results from the numerical modeling experiment, the laboratory calibration experiment and preliminary field results from the Iso-FD chamber.

  10. The crop growth research chamber

    NASA Technical Reports Server (NTRS)

    Wagenbach, Kimberly

    1993-01-01

    The Crop Growth Research Chamber (CGRC) has been defined by CELSS principle investigators and science advisory panels as a necessary ground-based tool in the development of a regenerative life support system. The focus of CGRC research will be on the biomass production component of the CELSS system. The ground-based Crop Growth Research Chamber is for the study of plant growth and development under stringently controlled environments isolated from the external environment. The chamber has importance in three areas of CELSS activities: (1) crop research; (2) system control and integration, and (3) flight hardware design and experimentation. The laboratory size of the CGRC will be small enough to allow duplication of the unit, the conducting of controlled experiments, and replication of experiments, but large enough to provide information representative of larger plant communities. Experiments will focus on plant growth in a wide variety of environments and the effects of those environments on plant production of food, water, oxygen, toxins, and microbes. To study these effects in a closed system, tight control of the environment is necessary.

  11. Characterization of a homemade ionization chamber for radiotherapy beams.

    PubMed

    Neves, Lucio P; Perini, Ana P; dos Santos, Gelson P; Xavier, Marcos; Khoury, Helen J; Caldas, Linda V E

    2012-07-01

    A homemade cylindrical ionization chamber was studied for routine use in therapy beams of (60)Co and X-rays. Several characterization tests were performed: leakage current, saturation, ion collection efficiency, polarity effect, stability, stabilization time, chamber orientation and energy dependence. All results obtained were within international recommendations. Therefore the homemade ionization chamber presents usefulness for routine dosimetric procedures in radiotherapy beams.

  12. Flame-Test Chamber

    NASA Technical Reports Server (NTRS)

    Bjorklund, R. A.

    1984-01-01

    Experimental chamber provides controlled environment for observation and measurement of flames propagating in expanding plume of flammable air/fuel mixture under atmospheric conditions. Designed to evaluate quenching capability of screen-type flame arresters in atmospheric vents of fuel cargo tanks aboard marine cargo vessels.

  13. Improved wire chamber

    DOEpatents

    Atac, M.

    1987-05-12

    An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.

  14. Review of straw chambers

    SciTech Connect

    Toki, W.H.

    1990-03-01

    This is a review of straw chambers used in the HRS, MAC, Mark III, CLEO, AMY, and TPC e{sup +}e{sup {minus}} experiments. The straws are 6--8 mm in diameter, operate at 1--4 atmospheres and obtain resolutions of 45--100 microns. The designs and constructions are summarized and possible improvements discussed.

  15. Quantifying Contaminant Mass for the Feasibility Study of the DuPont Chambers Works FUSRAP Site - 13510

    SciTech Connect

    Young, Carl; Rahman, Mahmudur; Johnson, Ann; Owe, Stephan

    2013-07-01

    The U.S. Army Corps of Engineers (USACE) - Philadelphia District is conducting an environmental restoration at the DuPont Chambers Works in Deepwater, New Jersey under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Discrete locations are contaminated with natural uranium, thorium-230 and radium-226. The USACE is proposing a preferred remedial alternative consisting of excavation and offsite disposal to address soil contamination followed by monitored natural attenuation to address residual groundwater contamination. Methods were developed to quantify the error associated with contaminant volume estimates and use mass balance calculations of the uranium plume to estimate the removal efficiency of the proposed alternative. During the remedial investigation, the USACE collected approximately 500 soil samples at various depths. As the first step of contaminant mass estimation, soil analytical data was segmented into several depth intervals. Second, using contouring software, analytical data for each depth interval was contoured to determine lateral extent of contamination. Six different contouring algorithms were used to generate alternative interpretations of the lateral extent of the soil contamination. Finally, geographical information system software was used to produce a three dimensional model in order to present both lateral and vertical extent of the soil contamination and to estimate the volume of impacted soil for each depth interval. The average soil volume from all six contouring methods was used to determine the estimated volume of impacted soil. This method also allowed an estimate of a standard deviation of the waste volume estimate. It was determined that the margin of error for the method was plus or minus 17% of the waste volume, which is within the acceptable construction contingency for cost estimation. USACE collected approximately 190 groundwater samples from 40 monitor wells. It is expected that excavation and disposal of

  16. Choice chamber experiments to test the attraction of postflexion Rhabdosargus holubi larvae to water of estuarine and riverine origin

    NASA Astrophysics Data System (ADS)

    James, Nicola C.; Cowley, Paul D.; Whitfield, Alan K.; Kaiser, Horst

    2008-03-01

    Although the recruitment of larvae and juveniles of marine fishes into estuaries has been well documented, little is known about the factors governing the immigration of estuary-associated marine fishes into estuaries. Fishes have a well-developed sense of smell and it has been suggested by several workers that olfactory cues of freshwater or estuarine origin serve as stimuli, attracting larvae and juveniles of estuary-associated species into estuaries. Attraction of postflexion Rhabdosargus holubi larvae to estuary and river water from the Kowie estuarine system, South Africa, was measured using a rectangular choice chamber. In experiments, conducted during peak recruitment periods, larvae selected estuary and river water with a significantly higher frequency than sea water. This study, the first to assess the possible role of olfaction in the recruitment process of an estuary-associated marine fish species, demonstrates that larvae are able to recognise water from different origins, probably based on odour.

  17. Kinetic smog-chamber studies on halogen activation from a simulated salt pan, using dry and wet NaCl/NaBr surfaces

    NASA Astrophysics Data System (ADS)

    Bleicher, Sergej; Balzer, Natalja; Zetzsch, Cornelius; Buxmann, Joelle; Platt, Ulrich

    2010-05-01

    Field experiments and laboratory studies have shown that atomic Br and Cl are released from sea-salt aerosol and saline soils. This halogen release is based on the uptake of gaseous HOX by aqueous, acidified salt surfaces. Br and Cl play an important role in atmospheric ozone depletion and the destruction of hydrocarbons. Furthermore, Secondary Organic Aerosol (SOA) and HUmic LIke Substances (HULIS) may take part in these reaction cycles by halogenation and production of volatile organic halogen compounds. Aerosol smog-chamber facilities (coolable to -25°C) enable us to simulate the halogen release mechanism under arctic tropospheric conditions. Mechanistic and kinetic studies are carried out to investigate the influence of SOA and HULIS on halogen cycles and to determine halogenated gaseous and solid organic products. The present laboratory measurements study halogen activation from salt surfaces, which are similar to typical salt pan environments. In these experiments we placed different artificial salt mixtures with NaCl/NaBr ratios up to 300:1 on a Teflon pan located in a Teflon chamber with a volume of 3.5 m3. Under clean air conditions we inject ozone and a mixture of non-methane hydrocarbons with well-known reactivities against OH and Cl and irradiated the chamber with a solar simulator. Beside the usual observing instruments like an ozone monitor and a gas chromatograph we used Differential Optical Absorption Spectroscopy (DOAS) in a White cell with a light path up to 320 m to observe various gas-phase species including BrO radicals. A dry air / dry salt pan environment showed no ozone depletion and no halogen activation. At relative humidity above 50%, a rapid ozone depletion (4.7 h half-life) was observed, which is much faster than for pure NaCl under the same conditions (77 h). Furthermore, the mixed salt was acidified with H2SO4 to a pH value of 4.3, no difference in ozone depletion and halogen activation was observed at this point. The DOAS

  18. Tracking with wire chambers at the SSC

    SciTech Connect

    Hanson, G.G.; Gundy, M.C.; Palounek, A.P.T.

    1989-07-01

    Limitations placed on wire chambers by radiation damage and rate requirements in the SSC environment are reviewed. Possible conceptual designs for wire chamber tacking systems that meet these requirements are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. 13 refs., 11 fig., 1 tab.

  19. Tracking with wire chambers at high luminosities

    SciTech Connect

    Hanson, G.G. Stanford Linear Accelerator Center, Menlo Park, CA )

    1989-12-01

    Radiation damage and rate limitations impose severe constraints on wire chambers at the SSC. Possible conceptual designs for wire chamber tracking systems that satisfy these constraints are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. 11 refs., 10 figs.

  20. Performance of NIRS Thoron Chamber System

    NASA Astrophysics Data System (ADS)

    Sorimachi, Atsuyuki; Tokonami, Shinji; Takahashi, Hiroyuki; Kobayashi, Yosuke

    2008-08-01

    In order to carry out thoron sensitivity test for passive radon detectors, a thoron chamber system has been set up at NIRS, Japan. The thoron chamber system consists of four components: the exposure, monitoring, calibration, and humidity control systems, which was mounted in this study due to humidity dependence on the thoron concentration emanated from lantern mantles as the thoron source. The thoron concentration in the thoron chamber is controlled by humidity passed through the thoron source and the weight of the lantern mantle.

  1. Detail of ump that is attached to rectangular rearing tanks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of ump that is attached to rectangular rearing tanks (pair). Pump located on the north end of rearing tank. View to the northwest. - Prairie Creek Fish Hatchery, Hwy. 101, Orick, Humboldt County, CA

  2. VIEW LOOKING NORTHEAST AT EARTH MOUND. NOTE THE RECTANGULAR OPENINGS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING NORTHEAST AT EARTH MOUND. NOTE THE RECTANGULAR OPENINGS USED FOR OBSERVATION EQUIPMENT AND PERISCOPE TOPS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  3. INTERIOR VIEW OF THE SOUTH STREET DOORS; SHOWING THE RECTANGULAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF THE SOUTH STREET DOORS; SHOWING THE RECTANGULAR DOORS INSIDE THE ARCHED OPENING, VIEW FACING SOUTH SOUTHEAST - Kakaako Fire Station, Hook & Ladder Building, 620 South Street, Honolulu, Honolulu County, HI

  4. 28. CROSS SECTION OF A RECTANGULAR COKE OVEN SHOWING THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. CROSS SECTION OF A RECTANGULAR COKE OVEN SHOWING THE INTERNAL STRUCTURE OF THE OVEN. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  5. VIEW OF INTERIOR SPACE WITH RECTANGULAR SHAPE STRETCH PRESS CONTAINMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF INTERIOR SPACE WITH RECTANGULAR SHAPE STRETCH PRESS CONTAINMENT PIT IN BACKGROUND, FACING NORTH. - Douglas Aircraft Company Long Beach Plant, Aircraft Parts Shipping & Receiving Building, 3855 Lakewood Boulevard, Long Beach, Los Angeles County, CA

  6. A smog chamber study coupling a photoionization aerosol electron/ion spectrometer to VUV synchrotron radiation: organic and inorganic-organic mixed aerosol analysis

    NASA Astrophysics Data System (ADS)

    Baeza-Romero, María Teresa; Gaie-Levrel, Francois; Mahjoub, Ahmed; López-Arza, Vicente; Garcia, Gustavo A.; Nahon, Laurent

    2016-07-01

    A reaction chamber was coupled to a photoionization aerosol time-of-flight mass spectrometer based on an electron/ion coincidence scheme and applied for on-line analysis of organic and inorganic-organic mixed aerosols using synchrotron tunable vacuum ultraviolet (VUV) photons as the ionization source. In this proof of principle study, both aerosol and gas phase were detected simultaneously but could be differentiated. Present results and perspectives for improvement for this set-up are shown in the study of ozonolysis ([O3] = 0.13-3 ppm) of α-pinene (2-3 ppm), and the uptake of glyoxal upon ammonium sulphate. In this work the ozone concentration was monitored in real time, together with the particle size distributions and chemical composition, the latter taking advantage of the coincidence spectrometer and the tuneability of the synchrotron radiation as a soft VUV ionization source.

  7. Vapor wall deposition in Teflon chambers

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Schwantes, R. H.; McVay, R. C.; Lignell, H.; Coggon, M. M.; Flagan, R. C.; Seinfeld, J. H.

    2014-10-01

    Teflon chambers are ubiquitous in studies of atmospheric chemistry. Secondary organic aerosol (SOA) formation can be substantially underestimated owing to deposition of SOA-forming compounds to chamber walls. We present here an experimental protocol to constrain the nature of wall deposition of organic vapors in Teflon chambers. We measured the wall deposition rates of 25 oxidized organic compounds generated from the photooxidation of isoprene, toluene, α-pinene, and dodecane in two chambers that had been extensively used and in two new unused chambers. We found that the extent of prior use of the chamber did not significantly affect the sorption behavior of the Teflon films. The dominant parameter governing the extent of wall deposition of a compound is its wall accommodation coefficient (αw,i), which can be correlated through its volatility (Ci*) with the number of carbons (nC) and oxygens (nO) in the molecule. Among the 25 compounds studied, the maximum wall deposition rate is approached by the most highly oxygenated and least volatile compounds. The extent to which vapor wall deposition impacts measured SOA yields depends on the competition between uptake of organic vapors by suspended particles and chamber walls. Gas-particle equilibrium partitioning is established relatively rapidly in the presence of perfect accommodation of organic vapors onto particles or when a sufficiently large concentration of suspended particles is present. The timescale associated with vapor wall deposition can vary from minutes to hours depending on the value of αw,i. For volatile and intermediate volatility organic compounds (small αw,i), gas-particle partitioning will be dominant for typical particle number concentrations in chamber experiments. For large αw,i, vapor transport to particles is suppressed by competition with the chamber walls even with perfect particle accommodation.

  8. Vapor wall deposition in Teflon chambers

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Schwantes, R. H.; McVay, R. C.; Lignell, H.; Coggon, M. M.; Flagan, R. C.; Seinfeld, J. H.

    2015-04-01

    Teflon chambers are ubiquitous in studies of atmospheric chemistry. Secondary organic aerosol (SOA) formation can be underestimated, owing to deposition of SOA-forming vapors to the chamber wall. We present here an experimental protocol and a model framework to constrain the vapor-wall interactions in Teflon chambers. We measured the wall deposition rates of 25 oxidized organic compounds generated from the photooxidation of isoprene, toluene, α-pinene, and dodecane in two chambers that had been extensively used and in two new unused chambers. We found that the extent of prior use of the chamber did not significantly affect the sorption behavior of the Teflon films. Among the 25 compounds studied, the maximum wall deposition rate is exhibited by the most highly oxygenated and least volatile compounds. By optimizing the model output to the observed vapor decay profiles, we identified that the dominant parameter governing the extent of wall deposition of a compound is its wall accommodation coefficient (αwi), which can be correlated through its volatility with the number of carbons and oxygens in the molecule. By doing so, the wall-induced deposition rate of intermediate/semi-volatile organic vapors can be reasonably predicted based on their molecular constituency. The extent to which vapor wall deposition impacts measured SOA yields depends on the competition between uptake of organic vapors by suspended particles and the chamber wall. The timescale associated with vapor wall deposition can vary from minutes to hours depending on the value of αw,i. For volatile and intermediate volatility organic compounds (small αw,i), gas-particle partitioning will dominate wall deposition for typical particle number concentrations in chamber experiments. For compounds characterized by relatively large αw,i, vapor transport to particles is suppressed by competition with the chamber wall even with perfect particle accommodation.

  9. Natural frequencies of rectangular plates with free edges

    NASA Astrophysics Data System (ADS)

    Mizusawa, T.

    1986-03-01

    This note presents vibration analysis of isotropic rectangular plates with free edges by the Rayleigh-Ritz method with B-spline functions. To show the accuracy of the present method, the results are compared with existing results based on other numerical methods and found to be in good agreement. Accurate frequencies of rectangular plates are analyzed for different aspect ratios and boundary conditions. The effects of Poisson's ratio on natural frequencies of square plates with free edges are also investigated.

  10. Consensus dynamics on random rectangular graphs

    NASA Astrophysics Data System (ADS)

    Estrada, Ernesto; Sheerin, Matthew

    2016-06-01

    A random rectangular graph (RRG) is a generalization of the random geometric graph (RGG) in which the nodes are embedded into a rectangle with side lengths a and b = 1 / a, instead of on a unit square [ 0 , 1 ] 2. Two nodes are then connected if and only if they are separated at a Euclidean distance smaller than or equal to a certain threshold radius r. When a = 1 the RRG is identical to the RGG. Here we apply the consensus dynamics model to the RRG. Our main result is a lower bound for the time of consensus, i.e., the time at which the network reaches a global consensus state. To prove this result we need first to find an upper bound for the algebraic connectivity of the RRG, i.e., the second smallest eigenvalue of the combinatorial Laplacian of the graph. This bound is based on a tight lower bound found for the graph diameter. Our results prove that as the rectangle in which the nodes are embedded becomes more elongated, the RRG becomes a 'large-world', i.e., the diameter grows to infinity, and a poorly-connected graph, i.e., the algebraic connectivity decays to zero. The main consequence of these findings is the proof that the time of consensus in RRGs grows to infinity as the rectangle becomes more elongated. In closing, consensus dynamics in RRGs strongly depend on the geometric characteristics of the embedding space, and reaching the consensus state becomes more difficult as the rectangle is more elongated.

  11. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-10-17

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  12. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-06-27

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  13. A chamber study on the reactions of O3, NO, NO2 and selected VOCs with a photocatalytically active cementitious coating material.

    PubMed

    Mothes, F; Böge, O; Herrmann, H

    2016-08-01

    Chamber studies were performed to investigate the efficiency of a photocatalytically active cementitious coating material to depollute contaminated air. The results showed a photocatalytic effect on ozone (O3), proven by an increase of the geometric uptake coefficient from 5.2 × 10(-6) for the inactive to 7.7 × 10(-6) for the active material under irradiation. Measured first-order rate constants for nitrogen oxides (NOx) under irradiation are in the range of 2.6-5.9 × 10(-4) s(-1), which is significantly higher compared to the inactive material (7.3-9.7 × 10(-5) s(-1)) demonstrating the photocatalytic effect. However, no significant photocatalytic degradation was observed for the studied volatile organic compounds (VOCs) toluene and isoprene resulting in only an upper limit uptake coefficient of 5.0 × 10(-7) for both VOCs. In all experiments using the photocatalytically active material, a clear formation of small carbonyl (C1-C5) gas phase compounds was identified which is suggested to result from the photocatalytic degradation of organic additives. In contrast to the uptake observed for pure O3, during the experiments with NOx (≥50 % relative humidity), a clear photocatalytic formation of O3 was observed. For the material investigated, an empirically derived overall zero-order rate constant of k 0 (O3) ≈ 5 × 10(7) molecules cm(-3) s(-1) was determined. The results demonstrate the necessity of detailed studies of heterogeneous reactions on such surfaces under more complex simulated atmospheric conditions as enabled by simulation chambers.

  14. A chamber study on the reactions of O3, NO, NO2 and selected VOCs with a photocatalytically active cementitious coating material.

    PubMed

    Mothes, F; Böge, O; Herrmann, H

    2016-08-01

    Chamber studies were performed to investigate the efficiency of a photocatalytically active cementitious coating material to depollute contaminated air. The results showed a photocatalytic effect on ozone (O3), proven by an increase of the geometric uptake coefficient from 5.2 × 10(-6) for the inactive to 7.7 × 10(-6) for the active material under irradiation. Measured first-order rate constants for nitrogen oxides (NOx) under irradiation are in the range of 2.6-5.9 × 10(-4) s(-1), which is significantly higher compared to the inactive material (7.3-9.7 × 10(-5) s(-1)) demonstrating the photocatalytic effect. However, no significant photocatalytic degradation was observed for the studied volatile organic compounds (VOCs) toluene and isoprene resulting in only an upper limit uptake coefficient of 5.0 × 10(-7) for both VOCs. In all experiments using the photocatalytically active material, a clear formation of small carbonyl (C1-C5) gas phase compounds was identified which is suggested to result from the photocatalytic degradation of organic additives. In contrast to the uptake observed for pure O3, during the experiments with NOx (≥50 % relative humidity), a clear photocatalytic formation of O3 was observed. For the material investigated, an empirically derived overall zero-order rate constant of k 0 (O3) ≈ 5 × 10(7) molecules cm(-3) s(-1) was determined. The results demonstrate the necessity of detailed studies of heterogeneous reactions on such surfaces under more complex simulated atmospheric conditions as enabled by simulation chambers. PMID:27102618

  15. Gas Electron Multiplier (GEM) Chamber Characteristics Test

    SciTech Connect

    Yu, Jaehoon; White, Andy; Park, Seongtae; Hahn, Changhie; Baldeloma, Edwin; Tran, Nam; McIntire, Austin; Soha, Aria; /Fermilab

    2011-01-11

    Gas Electron Multipliers (GEMs) have been used in many HEP experiments as tracking detectors. They are sensitive to X-rays which allows use beyond that of HEP. The UTA High Energy group has been working on using GEMs as the sensitive gap detector in a DHCAL for the ILC. The physics goals at the ILC put a stringent requirement on detector performance. Especially the precision required for jet mass and positions demands an unprecedented jet energy resolution to hadronic calorimeters. A solution to meet this requirement is using the Particle Flow Algorithm (PFA). In order for PFA to work well, high calorimeter granularity is necessary. Previous studies based on GEANT simulations using GEM DHCAL gave confidence on the performance of GEM in the sensitive gap in a sampling calorimeter and its use as a DHCAL in PFA. The UTA HEP team has built several GEM prototype chambers, including the current 30cm x 30cm chamber integrated with the SLAC-developed 64 channel kPiX analog readout chip. This chamber has been tested on the bench using radioactive sources and cosmic ray muons. In order to have fuller understanding of various chamber characteristics, the experiments plan to expose 1-3 GEM chambers of dimension 35cm x 35cm x 5cm with 1cm x 1cm pad granularity with 64 channel 2-D simultaneous readout using the kPiX chip. In this experiment the experiments pan to measure MiP signal height, chamber absolute efficiencies, chamber gain versus high voltage across the GEM gap, the uniformity of the chamber across the 8cm x 8cm area, cross talk and its distance dependence to the triggered pad, chamber rate capabilities, and the maximum pad occupancy rate.

  16. Making MUSIC: A multiple sampling ionization chamber

    NASA Astrophysics Data System (ADS)

    Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.

    2007-08-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.

  17. 44. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION CCC), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION CCC), LOOKING NORTHEAST SHOWING DRAIN PIPE FROM SUMP - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  18. 61. BOILER CHAMBER No. 2, LOOKING SOUTHWEST BETWEEN CHAMBER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. BOILER CHAMBER No. 2, LOOKING SOUTHWEST BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION PPP) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  19. 41. AUXILIARY CHAMBER, CONCRETE ENCLOSURE CHAMBER AIR LOCK (EXTERIOR), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. AUXILIARY CHAMBER, CONCRETE ENCLOSURE CHAMBER AIR LOCK (EXTERIOR), LOOKING NORTHEAST FROM SOUTHWEST CORNER (LOCATION AAA) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  20. 50. BOILER CHAMBER No. 1, LOOKING SOUTHEAST BETWEEN CHAMBER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. BOILER CHAMBER No. 1, LOOKING SOUTHEAST BETWEEN CHAMBER AND ENCLOSURE (LOCATION III) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  1. 72. VISITOR'S CENTER, MODEL OF BOILER CHAMBER, AUXILIARY CHAMBER, REACTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. VISITOR'S CENTER, MODEL OF BOILER CHAMBER, AUXILIARY CHAMBER, REACTOR AND CANAL (LOCATION T) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  2. Three dimensional thrust chamber life prediction

    NASA Technical Reports Server (NTRS)

    Armstrong, W. H.; Brogren, E. W.

    1976-01-01

    A study was performed to analytically determine the cyclic thermomechanical behavior and fatigue life of three configurations of a Plug Nozzle Thrust Chamber. This thrust chamber is a test model which represents the current trend in nozzle design calling for high performance coupled with weight and volume limitations as well as extended life for reusability. The study involved the use of different materials and material combinations to evaluate their application to the problem of low-cycle fatigue in the thrust chamber. The thermal and structural analyses were carried out on a three-dimensional basis. Results are presented which show plots of continuous temperature histories and temperature distributions at selected times during the operating cycle of the thrust chamber. Computed structural data show critical regions for low-cycle fatigue and the histories of strain within the regions for each operation cycle.

  3. Improving Transportation Services for the University of the Thai Chamber of Commerce: A Case Study on Solving the Mixed-Fleet Vehicle Routing Problem with Split Deliveries

    NASA Astrophysics Data System (ADS)

    Suthikarnnarunai, N.; Olinick, E.

    2009-01-01

    We present a case study on the application of techniques for solving the Vehicle Routing Problem (VRP) to improve the transportation service provided by the University of The Thai Chamber of Commerce to its staff. The problem is modeled as VRP with time windows, split deliveries, and a mixed fleet. An exact algorithm and a heuristic solution procedure are developed to solve the problem and implemented in the AMPL modeling language and CPLEX Integer Programming solver. Empirical results indicate that the heuristic can find relatively good solutions in a small fraction of the time required by the exact method. We also perform sensitivity analysis and find that a savings in outsourcing cost can be achieved with a small increase in vehicle capacity.

  4. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  5. Cloud chamber visualization of primary cosmic rays

    SciTech Connect

    Earl, James A.

    2013-02-07

    From 1948 until 1963, cloud chambers were carried to the top of the atmosphere by balloons. From these flights, which were begun by Edward P. Ney at the University of Minnesota, came the following results: discovery of heavy cosmic ray nuclei, development of scintillation and cherenkov detectors, discovery of cosmic ray electrons, and studies of solar proton events. The history of that era is illustrated here by cloud chamber photographs of primary cosmic rays.

  6. Multiwire proportional chamber development

    NASA Technical Reports Server (NTRS)

    Doolittle, R. F.; Pollvogt, U.; Eskovitz, A. J.

    1973-01-01

    The development of large area multiwire proportional chambers, to be used as high resolution spatial detectors in cosmic ray experiments is described. A readout system was developed which uses a directly coupled, lumped element delay-line whose characteristics are independent of the MWPC design. A complete analysis of the delay-line and the readout electronic system shows that a spatial resolution of about 0.1 mm can be reached with the MWPC operating in the strictly proportional region. This was confirmed by measurements with a small MWPC and Fe-55 X-rays. A simplified analysis was carried out to estimate the theoretical limit of spatial resolution due to delta-rays, spread of the discharge along the anode wire, and inclined trajectories. To calculate the gas gain of MWPC's of different geometrical configurations a method was developed which is based on the knowledge of the first Townsend coefficient of the chamber gas.

  7. CONTINUOUSLY SENSITIVE BUBBLE CHAMBER

    DOEpatents

    Good, R.H.

    1959-08-18

    A radiation detector of the bubble chamber class is described which is continuously sensitive and which does not require the complex pressure cycling equipment characteristic of prior forms of the chamber. The radiation sensitive element is a gas-saturated liquid and means are provided for establishing a thermal gradient across a region of the liquid. The gradient has a temperature range including both the saturation temperature of the liquid and more elevated temperatures. Thus a supersaturated zone is created in which ionizing radiations may give rise to visible gas bubbles indicative of the passage of the radiation through the liquid. Additional means are provided for replenishing the supply of gas-saturated liquid to maintaincontinuous sensitivity.

  8. Electrostatic Levitator Vacuum Chambers

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (such as the deuterium arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  9. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  10. Electrostatic Levitator Vaccum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical ports ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), positioning lasers (one port is at center), and lamps (such as the deuterium arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  11. Longitudinal impedance of a smooth toroidal chamber at low and intermediate frequencies

    SciTech Connect

    Ng, King-Yuen; Warnock, R.

    1989-03-01

    We evaluate the longitudinal coupling impedance of a toroidal chamber with rectangular cross section in the frequency domain below the synchronous resonant modes. With infinite wall conductivity the impedance is purely reactive and consists of a ''space charge'' term, proportional to ..gamma../sup /minus/2/, and a ''curvature'' term which survives at large ..gamma... The curvature term is well represented as a quadratic function of frequency. 3 refs., 3 figs.

  12. Two-dimensional position sensitive ionization chamber with GEM

    NASA Astrophysics Data System (ADS)

    Kitamura, Noritaka; Noro, Tetsuo; Sakaguchi, Satoshi; Takao, Hideaki; Nishio, Yasutaka

    2014-09-01

    We have been developing a multi-anode ionization chamber for Accelerator Mass Spectrometry (AMS) at Kyushu University. Furthermore, we are planning to construct a neutron detector with high position resolution by combining the chamber with Gas Electron Multiplier (GEM) and a neutron converter. One of purposes is the measurement of p-> , pn knockout reaction from unstable nuclei. The multi-anode ionization chamber is composed of subdivided multiple anodes, a cathode to produce an uniform electric field, and a Frisch grid. The chamber must have position sensitivity because obtaining a beam profile is required for AMS measurements, where counting loss should be avoided. Also in the case of the neutron detector, it is necessary to measure the position to deduce the scattering angles. We have recently established a two-dimensional position readout system by the following methods: the measurement of horizontal position is enabled by trimming some anodes into wedge-like shape, and vertical position can be determined by the ratio of induced charge on the grid to the total charge on anodes. In addition, improvement of S/N ratio is important for isotope separation and position resolution. We installed a rectangular-shaped GEM and tried improving S/N ratio by electron amplification.

  13. Control Effect of a Large Geological Discontinuity on the Seismic Response and Stability of Underground Rock Caverns: A Case Study of the Baihetan #1 Surge Chamber

    NASA Astrophysics Data System (ADS)

    Cui, Zhen; Sheng, Qian; Leng, Xianlun

    2016-06-01

    In this paper, the seismic stability of the #1 surge chamber of the Baihetan hydropower plant, which is influenced by a large dominating geological discontinuity [the interlayer shear weakness zone (ISWZ) C2)], is studied. An advanced, nonlinear, continuously yielding (CY) model was adopted to describe the complex mechanical properties of ISWZ C2. This model considers a power function type, normal stress dependent behavior and the progressive damage that occurred during shear tests. The applicability of the CY model is proved via a comparison with field test results and the theoretical solution. Verification work was conducted in 3DEC code to show that the 3DEC software is suitable for implementing this model. Three ground motion waveforms were utilized to conduct a seismic analysis of the #1 surge chamber after a special response spectrum matching process. The seismic analysis confirmed the control effect of ISWZ C2 on the seismic stability of the cavern. The majority of the cavern's seismic displacement consists of elastic body movement, while the plastic deformation is relatively limited. Further, most of the deformations were caused by the contact deformation of C2. For the contact deformation of C2, the magnitude of permanent shear deformation is larger than that of the normal deformation. The magnitude of permanent shear deformation is more notable along the strike direction of C2, and the permanent normal displacement n of C2 mainly occurs along the dip direction of C2. Finally, the seismic stability of the cavern is assessed via the overload method. The seismic safety factor of the cavern is approximately 2-3.

  14. Running a marathon from −45°C to +55°C in a climate chamber: a case study

    PubMed Central

    Kälin, Kaspar; Knechtle, Beat; Rüst, Christoph Alexander; Mydlak, Karsten; Rosemann, Thomas

    2012-01-01

    Background We describe a runner who completed a self-paced marathon (42.195 km) in a climate chamber with a temperature difference of 100°C, starting at an ambient temperature (Tambient) of −45°C and finishing at an Tambient of +55°C. Methods Tambient was set at −45°C at the start, and was steadily increased at a rate of 1°C at 4.5-minute intervals to +55°C. Before the start, after every 10.5 km, and at the end of the marathon, body mass, urine, and sweat production were measured and samples of venous blood and urine were collected. The runner’s temperature was recorded every 10 seconds at four sites, ie, the rectum for body core temperature (Tcore), and at the forehead, right wrist, and right ankle for surface temperatures (Tskin). Results The subject took 6.5 hours to complete the marathon, during which Tcore varied by 0.9°C (start 37.5°C, peak 38.4°C). The largest difference (∆) of Tskin was recorded at the ankle (∆16°C). The calculated amount of sweat produced increased by 888% from baseline. In the blood samples, myoglobin (+250%) showed the highest change. Of the pituitary hormones, somatotropic hormone (+391%) and prolactin (+221%) increased the most. Regarding fluid regulation hormones, renin (+1145%) and aldosterone (+313%) showed the greatest increase. Conclusion These results show that running a marathon in a climate chamber with a total ∆Tambient of 100°C is possible, and that the Tambient to Tcore relationship is maintained. These results may offer insight into regulatory mechanisms to avoid hypothermia and hyperthermia. The same study is to be performed using more subjects with the same characteristics to validate the present findings. PMID:24198596

  15. Secondary Electron Yield and Groove Chamber Tests in PEP-II

    SciTech Connect

    Le Pimpec, F.; Kirby, R.E.; Markiewicz, Thomas W.; Pivi, MTF; Raubenheimer, Tor O.; Seeman, J.; Wang, L.; /SLAC

    2007-11-06

    Possible remedies for the electron cloud in positron damping ring (DR) of the International Linear Collider (ILC) includes thin-film coatings, surface conditioning, photon antechamber, clearing electrodes and chamber with grooves or slots [1]. We installed chambers in the PEP-II Low Energy Ring (LER) to monitor the secondary electron yield (SEY) of TiN, TiZrV (NEG) and technical accelerator materials under the effect of electron and photon conditioning in situ. We have also installed chambers with rectangular grooves in straight sections to test this possible mitigation technique. In this paper, we describe the ILC R&D ongoing effort at SLAC to reduce the electron cloud effect in the damping ring, the chambers installation in the PEP-II and latest results.

  16. Corpectomy cage subsidence with rectangular versus round endcaps.

    PubMed

    Deukmedjian, Armen R; Manwaring, Jotham; Le, Tien V; Turner, Alexander W L; Uribe, Juan S

    2014-09-01

    Corpectomy cages with rectangular endcaps utilize the stronger peripheral part of the endplate, potentially decreasing subsidence risk. The authors evaluated cage subsidence during cyclic biomechanical testing, comparing rectangular versus round endcaps. Fourteen cadaveric spinal segments (T12-L2) were dissected and potted at T12 and L2, then assigned to a rectangular (n=7) or round (n=7) endcap group. An L1 corpectomy was performed and under uniform conditions a cage/plate construct was cyclically tested in a servo-hydraulic frame with increasing load magnitude. Testing was terminated if the test machine actuator displacement exceeded 6mm, or the specimen completed cyclic loading at 2400 N. Number of cycles, compressive force and force-cycles product at test completion were all greater in the rectangular endcap group compared with the round endcap group (cycles: 3027 versus 2092 cycles; force: 1943 N versus 1533 N; force-cycles product: 6162kN·cycles versus 3973 kN·cycles), however these differences were not statistically significant (p ⩾ 0.076). After normalizing for individual specimen bone mineral density, the same measures increased to a greater extent with the rectangular endcaps (cycles: 3014 versus 1855 cycles; force: 1944 N versus 1444 N; force-cycles product: 6040 kN·cycles versus 2980 kN·cycles), and all differences were significant (p⩽0.030). The rectangular endcap expandable corpectomy cage displayed increased resistance to subsidence over the round endcap cage under cyclic loading as demonstrated by the larger number of cycles, maximum load and force-cycles product at test completion. This suggests rectangular endcaps will be less susceptible to subsidence than the round endcap design.

  17. Corpectomy cage subsidence with rectangular versus round endcaps.

    PubMed

    Deukmedjian, Armen R; Manwaring, Jotham; Le, Tien V; Turner, Alexander W L; Uribe, Juan S

    2014-09-01

    Corpectomy cages with rectangular endcaps utilize the stronger peripheral part of the endplate, potentially decreasing subsidence risk. The authors evaluated cage subsidence during cyclic biomechanical testing, comparing rectangular versus round endcaps. Fourteen cadaveric spinal segments (T12-L2) were dissected and potted at T12 and L2, then assigned to a rectangular (n=7) or round (n=7) endcap group. An L1 corpectomy was performed and under uniform conditions a cage/plate construct was cyclically tested in a servo-hydraulic frame with increasing load magnitude. Testing was terminated if the test machine actuator displacement exceeded 6mm, or the specimen completed cyclic loading at 2400 N. Number of cycles, compressive force and force-cycles product at test completion were all greater in the rectangular endcap group compared with the round endcap group (cycles: 3027 versus 2092 cycles; force: 1943 N versus 1533 N; force-cycles product: 6162kN·cycles versus 3973 kN·cycles), however these differences were not statistically significant (p ⩾ 0.076). After normalizing for individual specimen bone mineral density, the same measures increased to a greater extent with the rectangular endcaps (cycles: 3014 versus 1855 cycles; force: 1944 N versus 1444 N; force-cycles product: 6040 kN·cycles versus 2980 kN·cycles), and all differences were significant (p⩽0.030). The rectangular endcap expandable corpectomy cage displayed increased resistance to subsidence over the round endcap cage under cyclic loading as demonstrated by the larger number of cycles, maximum load and force-cycles product at test completion. This suggests rectangular endcaps will be less susceptible to subsidence than the round endcap design. PMID:24831343

  18. Vibrating-chamber levitation systems

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Granett, D.; Lee, M. C. (Inventor)

    1985-01-01

    Systems are described for the acoustic levitation of objects, which enable the use of a sealed rigid chamber to avoid contamination of the levitated object. The apparatus includes a housing forming a substantially closed chamber, and means for vibrating the entire housing at a frequency that produces an acoustic standing wave pattern within the chamber.

  19. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  20. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  1. Vibrating-chamber levitation systems

    NASA Astrophysics Data System (ADS)

    Barmatz, M. B.; Granett, D.; Lee, M. C.

    1985-10-01

    Systems are described for the acoustic levitation of objects, which enable the use of a sealed rigid chamber to avoid contamination of the levitated object. The apparatus includes a housing forming a substantially closed chamber, and means for vibrating the entire housing at a frequency that produces an acoustic standing wave pattern within the chamber.

  2. The GODDESS ionization chamber: developing robust windows

    NASA Astrophysics Data System (ADS)

    Blanchard, Rose; Baugher, Travis; Cizewski, Jolie; Pain, Steven; Ratkiewicz, Andrew; Goddess Collaboration

    2015-10-01

    Reaction studies of nuclei far from stability require high-efficiency arrays of detectors and the ability to identify beam-like particles, especially when the beam is a cocktail beam. The Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies (GODDESS) is made up of the Oak Ridge-Rutgers University Barrel Array (ORRUBA) of silicon detectors for charged particles inside of the gamma-ray detector array Gammasphere. A high-rate ionization chamber is being developed to identify beam-like particles. Consisting of twenty-one alternating anode and cathode grids, the ionization chamber sits downstream of the target chamber and is used to measure the energy loss of recoiling ions. A critical component of the system is a thin and robust mylar window which serves to separate the gas-filled ionization chamber from the vacuum of the target chamber with minimal energy loss. After construction, windows were tested to assure that they would not break below the required pressure, causing harm to the wire grids. This presentation will summarize the status of the ionization chamber and the results of the first tests with beams. This work is supported in part by the U.S. Department of Energy and National Science Foundation.

  3. Upright Imaging of Drosophila Egg Chambers

    PubMed Central

    Manning, Lathiena; Starz-Gaiano, Michelle

    2015-01-01

    Drosophila melanogaster oogenesis provides an ideal context for studying varied developmental processes since the ovary is relatively simple in architecture, is well-characterized, and is amenable to genetic analysis. Each egg chamber consists of germ-line cells surrounded by a single epithelial layer of somatic follicle cells. Subsets of follicle cells undergo differentiation during specific stages to become several different cell types. Standard techniques primarily allow for a lateral view of egg chambers, and therefore a limited view of follicle cell organization and identity. The upright imaging protocol describes a mounting technique that enables a novel, vertical view of egg chambers with a standard confocal microscope. Samples are first mounted between two layers of glycerin jelly in a lateral (horizontal) position on a glass microscope slide. The jelly with encased egg chambers is then cut into blocks, transferred to a coverslip, and flipped to position egg chambers upright. Mounted egg chambers can be imaged on either an upright or an inverted confocal microscope. This technique enables the study of follicle cell specification, organization, molecular markers, and egg development with new detail and from a new perspective. PMID:25867882

  4. Upright imaging of Drosophila egg chambers.

    PubMed

    Manning, Lathiena; Starz-Gaiano, Michelle

    2015-03-13

    Drosophila melanogaster oogenesis provides an ideal context for studying varied developmental processes since the ovary is relatively simple in architecture, is well-characterized, and is amenable to genetic analysis. Each egg chamber consists of germ-line cells surrounded by a single epithelial layer of somatic follicle cells. Subsets of follicle cells undergo differentiation during specific stages to become several different cell types. Standard techniques primarily allow for a lateral view of egg chambers, and therefore a limited view of follicle cell organization and identity. The upright imaging protocol describes a mounting technique that enables a novel, vertical view of egg chambers with a standard confocal microscope. Samples are first mounted between two layers of glycerin jelly in a lateral (horizontal) position on a glass microscope slide. The jelly with encased egg chambers is then cut into blocks, transferred to a coverslip, and flipped to position egg chambers upright. Mounted egg chambers can be imaged on either an upright or an inverted confocal microscope. This technique enables the study of follicle cell specification, organization, molecular markers, and egg development with new detail and from a new perspective.

  5. The effect of riblets in rectangular duct flow

    NASA Astrophysics Data System (ADS)

    Dean, Brian; Bhushan, Bharat

    2012-02-01

    Much is known about the benefits of surface structures which mimic the riblets found on the skin of fast swimming sharks. Structures have been fabricated for study and application which replicate and improve upon the natural shape of the shark skin riblets, providing a maximum drag reduction of nearly 10% in external turbulent fluid flow. Mechanisms of fluid drag in turbulent flow and riblet-drag reduction theories from experiment and simulation are discussed. A brief review of riblet performance studies is given, and optimal riblet geometries are defined for external flow. A discussion of the structure of internal turbulent fluid flow is provided, and existing data for riblet drag reduction benefit is presented. A flow cell for studying riblet effects in internal rectangular duct flow is discussed, and data collected using several riblet surfaces fabricated for the flow cell is presented and analyzed. A discussion of the effects of the riblets on fluid flow is given, and conclusions are drawn about the possible benefits of riblets in internal fluid flow.

  6. Design of Rectangular Coils for Control of Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Daniels, Ryan; Zhou, Changgong

    2014-03-01

    Over the last decade, cylindrical cross-section (CCS) coils have encompassed the majority of studies (i.e., ``Double-Helix'' coils): predominantly for use in particle accelerators (Goodzeit et al., Rochford et al., and Tominaka et al.). In this study, we investigate single and double-layered rectangular cross-section (RCS) coils of different inclination angles. RCS coils are a novel design, which does not require special machining of grooves on supporting structure for precise assembly of coils, and may lead to cost reduction. Numerical calculation of the field based on Biot-Savart's Law is conducted using Mathematica. Our goal is to generate a static and controllable time-varying magnetic field using a special configuration of four RCS coils, and impose the field on magnetic nanoparticles levitated by optical forces to study their behavior. The calculation provides guidance for optimizing the magnetic field in this application. Our current results indicate that the configuration produces highly uniform and controllable magnetic fields in the region where the nanoparticles are levitated. Natural Sciences Department at Lawrence Technological University.

  7. Liquid argon Time Projection Chamber

    SciTech Connect

    Doe, P.J.; Mahler, H.J.; Chen, H.H.

    1984-01-01

    The principal features of the liquid argon TPC are outlined and the status of development efforts, particularly at UCI, are discussed. Technical problems associated with liquid TPC's are: the liquid must be maintained at a high level of purity to enable long distance drifting of ionization electrons, and the signal size is small due to the absence of practical charge multiplication as found in gas chambers. These problems have been largely resolved in studies using small (1 to 100 l) detectors, thus allowing a realistic consideration of the physics potential of such devices.

  8. The Evolution and Development of Cephalopod Chambers and Their Shape.

    PubMed

    Lemanis, Robert; Korn, Dieter; Zachow, Stefan; Rybacki, Erik; Hoffmann, René

    2016-01-01

    The Ammonoidea is a group of extinct cephalopods ideal to study evolution through deep time. The evolution of the planispiral shell and complexly folded septa in ammonoids has been thought to have increased the functional surface area of the chambers permitting enhanced metabolic functions such as: chamber emptying, rate of mineralization and increased growth rates throughout ontogeny. Using nano-computed tomography and synchrotron radiation based micro-computed tomography, we present the first study of ontogenetic changes in surface area to volume ratios in the phragmocone chambers of several phylogenetically distant ammonoids and extant cephalopods. Contrary to the initial hypothesis, ammonoids do not possess a persistently high relative chamber surface area. Instead, the functional surface area of the chambers is higher in earliest ontogeny when compared to Spirula spirula. The higher the functional surface area the quicker the potential emptying rate of the chamber; quicker chamber emptying rates would theoretically permit faster growth. This is supported by the persistently higher siphuncular surface area to chamber volume ratio we collected for the ammonite Amauroceras sp. compared to either S. spirula or nautilids. We demonstrate that the curvature of the surface of the chamber increases with greater septal complexity increasing the potential refilling rates. We further show a unique relationship between ammonoid chamber shape and size that does not exist in S. spirula or nautilids. This view of chamber function also has implications for the evolution of the internal shell of coleoids, relating this event to the decoupling of soft-body growth and shell growth.

  9. A Study of Nuclear Recoils in Liquid Argon Time Projection Chamber for the Direct Detection of WIMP Dark Matter

    SciTech Connect

    Cao, Huajie

    2014-11-01

    Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.

  10. Supersonic jet noise reduction by coaxial rectangular nozzles

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Manes, J. P.; Massey, K. C.

    1992-01-01

    A physical understanding of noise reduction mechanisms in supersonic, single, and coaxial rectangular jets is quantified and obtained, with emphasis on shock noise reduction. For all conditions, corresponding acoustic measurements for an equivalent round jet are also obtained so that the noise characteristics of the two types of jets can be compared directly to quantify the noise reductions. Comparisons are thus provided for a single rectangular nozzle vs a single equivalent round nozzle, and a coaxial rectangular nozzle vs an equivalent round nozzle. It is shown that different operating conditions and nozzle arrangements for the same thrust, total exit area, and mass flow rate can produce different noise levels. With at least one stream operated supersonically, the coaxial rectangular nozzle operated in the inverted-velocity profile is always quieter than in the normal velocity profile mode for the same thrust, exit area, and mass flow rate. In general, the coaxial rectangular nozzle is shown to be quieter than an equivalent circular nozzle only for those conditions for which both nozzles are operated supersonically.

  11. Multi-channel quantum dragons from rectangular nanotubes with even-odd structure

    NASA Astrophysics Data System (ADS)

    Inkoom, Godfred; Novotny, Mark

    Recently, a large class of nanostructures called quantum dragons have been discovered theoretically. Quantum dragons are nanostuctures with correlated disorder but have an electron transmission probability  (E) =1 for all energies E when connected to idealized leads. Hence for a single channel, the electrical conductance for a two-probe measurement should give the quantum of conductance Go =2e2/h . The time independent Schrödinger equation for the single band tight binding model is solved exactly to obtain  (E) . We have generalized the matrix method and the mapping methods of in order to study multi-channel quantum dragons for rectangular nanotubes with even-odd structure. The studies may be relevant for experimental rectangular nanotubes, such as MgO, copper phthalocyanine or some types of graphyne.. Supported in part by NSF Grant DMR-1206233.

  12. Inelastic Stability Analysis Of Uniaxially Compressed Flat Rectangular Isotropic CCSS Plate

    NASA Astrophysics Data System (ADS)

    Ibearugbulem, O. M.; Eziefula, U. G.; Onwuka, D. O.

    2015-08-01

    This study investigates the inelastic stability of a thin flat rectangular isotropic plate subjected to uniform uniaxial compressive loads using Taylor-Maclaurin series formulated deflection function. The plate has clamped and simply supported edges in both characteristic directions (CCSS boundary conditions). The governing equation is derived using a deformation plasticity theory and a work principle. Values of the plate buckling coefficient are calculated for aspect ratios from 0.1 to 2.0 at intervals of 0.1. The results compared favourably with the elastic stability values and the percentage differences ranged from -0.353% to -7.427%. Therefore, the theoretical approach proposed in this study is recommended for the inelastic stability analysis of thin flat rectangular isotropic plates under uniform in-plane compression.

  13. Multi-anode ionization chamber

    DOEpatents

    Bolotnikov, Aleksey E.; Smith, Graham; Mahler, George J.; Vanier, Peter E.

    2010-12-28

    The present invention includes a high-energy detector having a cathode chamber, a support member, and anode segments. The cathode chamber extends along a longitudinal axis. The support member is fixed within the cathode chamber and extends from the first end of the cathode chamber to the second end of the cathode chamber. The anode segments are supported by the support member and are spaced along the longitudinal surface of the support member. The anode segments are configured to generate at least a first electrical signal in response to electrons impinging thereon.

  14. On the electromagnetic scattering from infinite rectangular conducting grids

    NASA Technical Reports Server (NTRS)

    Christodoulou, C.

    1985-01-01

    The study and development of two numerical techniques for the analysis of electromagnetic scattering from a rectangular wire mesh are described. Both techniques follow from one basic formulation and they are both solved in the spectral domain. These techniques were developed as a result of an investigation towards more efficient numerical computation for mesh scattering. These techniques are efficient for the following reasons: (a1) make use of the Fast Fourier Transform; (b2) they avoid any convolution problems by converting integrodifferential equations into algebraic equations; and (c3) they do not require inversions of any matrices. The first method, the SIT or Spectral Iteration Technique, is applied for regions where the spacing between wires is not less than two wavelengths. The second method, the SDCG or Spectral Domain Conjugate Gradient approach, can be used for any spacing between adjacent wires. A study of electromagnetic wave properties, such as reflection coefficient, induced currents and aperture fields, as functions of frequency, angle of incidence, polarization and thickness of wires is presented. Examples and comparisons or results with other methods are also included to support the validity of the new algorithms.

  15. Use of high-volume outdoor smog chamber photo-reactors for studying physical and chemical atmospheric aerosol formation and composition

    NASA Astrophysics Data System (ADS)

    Borrás, E.; Ródenas, M.; Vera, T.; Muñoz, A.

    2015-12-01

    The atmospheric particulate matter has a large impact on climate, biosphere behaviour and human health. Its study is complex because of large number of species are present at low concentrations and the continuous time evolution, being not easily separable from meteorology, and transport processes. Closed systems have been proposed by isolating specific reactions, pollutants or products and controlling the oxidizing environment. High volume simulation chambers, such as EUropean PHOtoREactor (EUPHORE), are an essential tool used to simulate atmospheric photochemical reactions. This communication describes the last results about the reactivity of prominent atmospheric pollutants and the subsequent particulate matter formation. Specific experiments focused on organic aerosols have been developed at the EUPHORE photo-reactor. The use of on-line instrumentation, supported by off-line techniques, has provided well-defined reaction profiles, physical properties, and up to 300 different species are determined in particulate matter. The application fields include the degradation of anthropogenic and biogenic pollutants, and pesticides under several atmospheric conditions, studying their contribution on the formation of secondary organic aerosols (SOA). The studies performed at the EUPHORE have improved the mechanistic studies of atmospheric degradation processes and the knowledge about the chemical and physical properties of atmospheric particulate matter formed during these processes.

  16. Investigation on temperature separation and flow behaviour in vortex chamber

    NASA Astrophysics Data System (ADS)

    Matsuno, Yuhi; Fukushima, Yusuke; Matsuo, Shigeru; Hashimoto, Tokitada; Setoguchi, Toshiaki; Kim, Heuy Dong

    2015-04-01

    In the previous researches, it is known that the swirl flow in circular pipe causes the temperature separation. Recently, it is shown that the temperature separation occurs in a vortex chamber when compressed air are pumped into this device from the periphery. Especially, in a cavity installed in the periphery of the chamber, the highest temperature was observed. Therefore, it is expected that this device can be used as a heat source in the engineering field. In recent researches, the mechanism of temperature separation in vortex chamber has been investigated by some researchers. However, there are few researches for the effect of diameter and volume of vortex chamber, height of central rod and position of cavity on the temperature separation. Further, no detailed physical explanation has been made for the temperature separation phenomena in the vortex chamber. In the present study, the effects of chamber configuration and position of the cavity on temperature separation in the vortex chamber were investigated experimentally.

  17. Evaluation of Treadmill Exercise in a Lower Body Negative Pressure Chamber as a Countermeasure for Weightlessness-Induced Bone Loss: a Bed Rest Study with Identical Twins

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Davis-Street, Janis E.; Fesperman, J. Vernell; Calkins, D. S.; Bawa, Maneesh; Macias, Brandon R.; Meyer, R. Scott; Hargens, Alan R.

    2003-01-01

    Counteracting bone loss is required for future space exploration. We evaluated the ability of treadmill exercise in a LBNP chamber to counteract bone loss in a 30-day bed rest study. Eight pairs of identical twins were randomly assigned to sedentary control or exercise groups. Exercise within LBNP decreased the bone resorption caused by bed rest and may provide a countermeasure for spaceflight. INTRODUCTION: Bone loss is one of the greatest physiological challenges for extended-duration space missions. The ability of exercise to counteract weightlessness-induced bone loss has been studied extensively, but to date, it has proven ineffective. We evaluated the effectiveness of a combination of two countermeasures-treadmill exercise while inside a lower body negative pressure (LBNP) chamber-on bone loss during a 30-day bed rest study. MATERIALS AND METHODS: Eight pairs of identical twins were randomized into sedentary (SED) or exercise/LBNP (EX/LBNP) groups. Blood and urine samples were collected before, several times during, and after the 30-day bed rest period. These samples were analyzed for markers of bone and calcium metabolism. Repeated measures ANOVA was used to determine statistical significance. Because identical twins were used, both time and group were treated as repeated variables. RESULTS: Markers of bone resorption were increased during bed rest in samples from sedentary subjects, including the collagen cross-links and serum and urinary calcium concentrations. For N-telopeptide and deoxypyridinoline, there were significant (p < 0.05) interactions between group (SED versus EX/LBNP) and phase of the study (sample collection point). Pyridinium cross-links were increased above pre-bed rest levels in both groups, but the EX/LBNP group had a smaller increase than the SED group. Markers of bone formation were unchanged by bed rest in both groups. CONCLUSIONS: These data show that this weight-bearing exercise combined with LBNP ameliorates some of the negative

  18. Investigation of the Rocket Induced Flow Field in a Rectangular Duct

    NASA Technical Reports Server (NTRS)

    Landrum, D. Brian; Thames, Mignon; Parkinson, Doug; Gautney, Serena; Hawk, Clark

    1999-01-01

    Several tests were performed on a one-sixth scale Rocket Based Combined Cycle (RBCC) engine model at the University of Alabama in Huntsville. The UAH RBCC facility consists of a rectangular duct with a vertical strut mounted in the center. The scaled strut consists of two supersonic rocket nozzles with an embedded vertical turbine between the rocket nozzles. The tests included mass flow, flow visualization and horizontal pressure traverses. The mass flow test indicated a c:hoked condition when the rocket chamber pressure is between 200 psi and 300 psi. The flow visualization tests narrowed the rocket chamber pressure range from, 250 psi to 300 psi. Also, from this t.est, an assumption of a minimum

  19. Ionization chamber dosimeter

    DOEpatents

    Renner, Tim R.; Nyman, Mark A.; Stradtner, Ronald

    1991-01-01

    A method for fabricating an ion chamber dosimeter collecting array of the type utilizing plural discrete elements formed on a uniform collecting surface which includes forming a thin insulating layer over an aperture in a frame having surfaces, forming a predetermined pattern of through holes in the layer, plating both surfaces of the layer and simultaneously tilting and rotating the frame for uniform plate-through of the holes between surfaces. Aligned masking and patterned etching of the surfaces provides interconnects between the through holes and copper leads provided to external circuitry.

  20. Review of wire chamber aging

    SciTech Connect

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs.