Sample records for rectangular configuration

  1. Shear flow control of cold and heated rectangular jets by mechanical tabs. Volume 1: Results and discussion

    NASA Technical Reports Server (NTRS)

    Brown, W. H.; Ahuja, K. K.

    1989-01-01

    The effects of mechanical protrusions on the jet mixing characteristics of rectangular nozzles for heated and unheated subsonic and supersonic jet plumes were studied. The characteristics of a rectangular nozzle of aspect ratio 4 without the mechanical protrusions were first investigated. Intrusive probes were used to make the flow measurements. Possible errors introduced by intrusive probes in making shear flow measurements were also examined. Several scaled sizes of mechanical tabs were then tested, configured around the perimeter of the rectangular jet. Both the number and the location of the tabs were varied. From this, the best configuration was selected. The conclusions derived were: (1) intrusive probes can produce significant errors in the measurements of the velocity of jets if they are large in diameter and penetrate beyond the jet center; (2) rectangular jets without tabs, compared to circular jets of the same exit area, provide faster jet mixing; and (3) further mixing enhancement is possible by using mechanical tabs.

  2. Shear flow control of cold and heated rectangular jets by mechanical tabs. Volume 2: Tabulated data

    NASA Technical Reports Server (NTRS)

    Brown, W. H.; Ahuja, K. K.

    1989-01-01

    The effects of mechanical protrusions on the jet mixing characteristics of rectangular nozzles for heated and unheated subsonic and supersonic jet plumes were studied. The characteristics of a rectangular nozzle of aspect ratio 4 without the mechanical protrusions were first investigated. Intrusive probes were used to make the flow measurements. Possible errors introduced by intrusive probes in making shear flow measurements were also examined. Several scaled sizes of mechanical tabs were then tested, configured around the perimeter of the rectangular jet. Both the number and the location of the tabs were varied. From this, the best configuration was selected. This volume contains tabulated data for each of the data runs cited in Volume 1. Baseline characteristics, mixing modifications (subsonic and supersonic, heated and unheated) and miscellaneous charts are included.

  3. Design and analysis of a conformal patch antenna for a wearable breast hyperthermia treatment system

    NASA Astrophysics Data System (ADS)

    Curto, Sergio; Ramasamy, Manoshika; Suh, Minyoung; Prakash, Punit

    2015-03-01

    To overcome the limitations of currently available clinical hyperthermia systems which are based on rigid waveguide antennas, a wearable microwave hyperthermia system is presented. A light wearable system can improve patient comfort and be located in close proximity to the breast, thereby enhancing energy deposition and reducing power requirements. The objective of this work was to design and assess the feasibility of a conformal patch antenna element of an array system to be integrated into a wearable hyperthermia bra. The feasibility of implementing antennas with silver printed ink technology on flexible substrates was evaluated. A coupled electromagnetic-bioheat transfer solver and a hemispheric heterogeneous numerical breast phantom were used to design and optimize a 915 MHz patch antenna. The optimization goals were device miniaturization, operating bandwidth, enhanced energy deposition pattern in targets, and reduced Efield back radiation. The antenna performance was evaluated for devices incorporating a hemispheric conformal groundplane and a rectangular groundplane configuration. Simulated results indicated a stable -10 dB return loss bandwidth of 88 MHz for both the conformal and rectangular groundplane configurations. Considering applied power levels restricted to 15 W, treatment volumes (T>410C) and depth from the skin surface were 11.32 cm3 and 27.94 mm, respectively, for the conformal groundplane configuration, and 2.79 cm3 and 19.72 mm, respectively, for the rectangular groundplane configuration. E-field back-radiation reduced by 85.06% for the conformal groundplane compared to the rectangular groundplane configuration. A prototype antenna with rectangular groundplane was fabricatd and experimentally evaluated. The groundplane was created by printing silver ink (Metalon JS-B25P) on polyethylene terephthalate (PET) film surface. Experiments revealed stable antenna performance for power levels up to 15.3 W. In conclusion, the proposed patch antenna with conformal groundplane and prined ink technology shows promising performance to be integrated in a clinical array system.

  4. CFD Mixing Analysis of Jets Injected from Straight and Slanted Slots into Confined Crossflow in Rectangular Ducts

    NASA Technical Reports Server (NTRS)

    Bain, D. B.; Smith, C. E.; Holdeman, J. D.

    1992-01-01

    A CFD study was performed to analyze the mixing potential of opposed rows of staggered jets injected into confined crossflow in a rectangular duct. Three jet configurations were numerically tested: (1) straight (0 deg) slots; (2) perpendicular slanted (45 deg) slots angled in opposite directions on top and bottom walls; and (3) parallel slanted (45 deg) slots angled in the same direction on top and bottom walls. All three configurations were tested at slot spacing-to-duct height ratios (S/H) of 0.5, 0.75, and 1.0; a jet-to-mainstream momentum flux ratio (J) of 100; and a jet-to-mainstream mass flow ratio of 0.383. Each configuration had its best mixing performance at S/H of 0.75. Asymmetric flow patterns were expected and predicted for all slanted slot configurations. The parallel slanted slot configuration was the best overall configuration at x/H of 1.0 for S/H of 0.75.

  5. Effect of baffle size and orientation on lateral sloshing of partially filled containers: a numerical study

    NASA Astrophysics Data System (ADS)

    Ali, Sajid; Kamran, Muhammad Ali; Khan, Sikandar

    2017-11-01

    The fluid sloshing in partially filled road tankers has significantly increased the number of road accidents for the last few decades. Significant research is needed to investigate and to come up with optimum baffles designs that can help to increase the rollover stability of the partially filled tankers. In this investigation, a detailed analysis of the anti-slosh effectiveness of different baffle configurations is presented. This investigation extends the already available studies in the literature by introducing new modified rectangular tank's shapes that correspond to maximum rollover stability as compared to the already available standard tank designs. The various baffles configurations that are analysed in this study are horizontal, vertical, vertical-horizontal and diagonal. In the current study, numerical investigations are performed for rectangular, elliptical and circular tank shapes. Lateral sloshing, caused by constant radius turn manoeuvre, was simulated numerically using the volume-of-fluid method, and effect of the different baffle configurations was analysed. The effect of tank fill levels on sloshing measured in terms of horizontal force and pressure moments is also reported for with and without baffles configurations. Vertical baffles were the most effective at reducing sloshing in modified rectangular tanks, whereas a combination of horizontal and vertical baffles gave better results for the circular and elliptical tanks geometries.

  6. Correlation of Puma airloads: Lifting-line and wake calculation

    NASA Technical Reports Server (NTRS)

    Bousman, William G.; Young, Colin; Gilbert, Neil; Toulmay, Francois; Johnson, Wayne; Riley, M. J.

    1989-01-01

    A cooperative program undertaken by organizations in the United States, England, France, and Australia has assessed the strengths and weaknesses of four lifting-line/wake methods and three CFD methods by comparing their predictions with the data obtained in flight trials of a research Puma. The Puma was tested in two configurations: a mixed bladed rotor with instrumented rectangular tip blades, and a configuration with four identical swept tip blades. The results are examined of the lifting-line predictions. The better lifting-line methods show good agreement with lift at the blade tip for the configuration with four swept tips; the moment is well predicted at 0.92 R, but deteriorates outboard. The predictions for the mixed bladed rotor configuration range from fair to good. The lift prediction is better for the swept tip blade than for the rectangular tip blade, but the reasons for this cannot be determined because of the unmodeled effects of the mixed bladed rotor.

  7. ETF magnet design alternatives for the national MHD program

    NASA Astrophysics Data System (ADS)

    Marston, P. G.; Thome, R. J.; Dawson, A. M.; Bobrov, E. S.; Hatch, A. M.

    1981-01-01

    Five superconducting magnet designs are evaluated for a 200 MWe test facility requiring a magnet with an on-axis field of 6 T, an inlet bore area of 4 sq m, storing 6 x 10 to the 9th J. The designs include a straightforward rectangular saddle coil set, a 'Cask' configuration based on staves and corner blocks as the main support structure, and an internally cooled, cabled superconductor to minimize the substructure and eliminate the helium vessel. Also, a modular design using six coils with individual helium vessels and an integrated structure produces a simplest configuration which utilizes a natural rectangular interface for packaging the MHD channel and its connections, and results in a lower capital cost.

  8. Cam-controlled boring bar

    DOEpatents

    Glatthorn, Raymond H.

    1986-01-01

    A cam-controlled boring bar system (100) includes a first housing (152) which is rotatable about its longitudinal axis (154), and a second housing in the form of a cam-controlled slide (158) which is also rotatable about the axis (154) as well as being translatable therealong. A tool-holder (180) is mounted within the slide (158) for holding a single point cutting tool. Slide (158) has a rectangular configuration and is disposed within a rectangularly configured portion of the first housing (152). Arcuate cam slots (192) are defined within a side plate (172) of the housing (152), while cam followers (194) are mounted upon the cam slide (158) for cooperative engagement with the cam slots (192). In this manner, as the housing (152) and slide (158) rotate, and as the slide (158) also translates, a through-bore (14) having an hourglass configuration will be formed within a workpiece (16) which may be, for example, a nuclear reactor steam generator tube support plate.

  9. Wind tunnel investigation of aerodynamic characteristics of scale models of three rectangular shaped cargo containers

    NASA Technical Reports Server (NTRS)

    Laub, G. H.; Kodani, H. M.

    1972-01-01

    Wind tunnel tests were conducted on scale models of three rectangular shaped cargo containers to determine the aerodynamic characteristics of these typical externally-suspended helicopter cargo configurations. Tests were made over a large range of pitch and yaw attitudes at a nominal Reynolds number per unit length of 1.8 x one million. The aerodynamic data obtained from the tests are presented.

  10. Flow in out-of-plane double S-bonds

    NASA Technical Reports Server (NTRS)

    Schmidt, M. C.; Whitelaw, J. H.; Yianneskis, M.

    1986-01-01

    Developing flows in two out-of-plane double S-bend configurations have been measured by laser-Doppler anemometry. The first duct had a rectangular cross-section 40mmx40mm at the inlet and consisted of a uniform area 22.5 deg. - 22.5 deg. S-duct upstream with a 22.5 deg.- 22.5 deg. S- diffuser downstream. The second duct had a circular cross-section and consisted of a 45 deg. - 45 deg. uniform area S-duct upstream with a 22.5 deg. -22.5 deg. S-diffuser downstream. In both configurations the ratio of the mean radius of curvature to the inlet hydraulic diameter was 7.0, the exit-to-inlet area ratio of the diffusers was 1.5 and the ducts were connected so that the centerline of the S-duct lay in a plane normal to that of the S-diffuser. Streamwise and cross-stream velocity components were measured in laminar flow for the rectangular duct and in turbulent flow for both configurations; measurements of the turbulence levels, cross-correlations and wall static pressures were also made in the turbulent flow cases. Secondary flows of the first kind are present in the first S-duct and they are complemented or counteracted by the secondary flows generated by the area expansion and by the curvature of the S-diffusers downstream. Cross-stream velocities with magnitudes up to 0.19 and 0.11 of the bulk velocity were measured in the laminar and turbulent flows respectively in the rectangular duct and six cross-flow vortices were evident at the exit of the duct in both flow cases. The turbulent flow in the circular duct was qualitatively similar to that in the rectangular configuration, but the cross-stream velocities measured at the exit plane were smaller in the circular geometry. The results are presented in sufficient detail and accuracy for the assessment of numerical calculation methods and are listed in tabular form for this purpose.

  11. An experimental study of multiple jet mixing

    NASA Technical Reports Server (NTRS)

    Krothapalli, D.; Baganoff, D.; Karamcheti, K.

    1979-01-01

    Measurements of an incompressible jet issuing from an array of rectangular lobes, equally spaced with their small dimensions in a line, both as a free jet, and as a confined jet, are carried out in three parts: (1) on a single rectangular free jet, (2) on the same jet in a multiple free jet configuration, and (3) on the same jet in a multiple jet configuration with confining surfaces (two parallel plates are symmetrically placed perpendicular to the long dimension of each lobe covering the entire flow field under consideration). In the case of a single rectangular free jet, the flow field of the jet is characterized by the presence of three distinct regions in the axial mean velocity decay and are referred to as: potential core region, two dimensional type region, and axisymmetric type region. In the case of a multiple free jet, the flow field for downstream distance X greater than 60D (D = width of a lobe) resembles that of a jet exiting from a two dimensional nozzle with its short dimension being the long dimension of the lobe.

  12. Design of Three-Dimensional Hypersonic Inlets with Rectangular to Elliptical Shape Transition

    NASA Technical Reports Server (NTRS)

    Smart, M. K.

    1998-01-01

    A methodology has been devised for the design of three-dimensional hypersonic inlets which include a rectangular to elliptical shape transition. This methodology makes extensive use of inviscid streamtracing techniques to generate a smooth shape transition from a rectangular-like capture to an elliptical throat. Highly swept leading edges and a significantly notched cowl enable use of these inlets in fixed geometry configurations. The design procedure includes a three dimensional displacement thickness calculation and uses established correlations to check for boundary layer separation due to shock wave interactions. Complete details of the design procedure are presented and the characteristics of a modular inlet with rectangular to elliptical shape transition and a design point of Mach 7.1 are examined. Comparison with a classical two-dimensional inlet optimized for maximum total pressure recovery indicates that this three-dimensional inlet demonstrates good performance even well below its design point.

  13. Status of an inlet configuration trade study for the Douglas HSCT

    NASA Technical Reports Server (NTRS)

    Jones, Jay R.; Welge, H. Robert

    1992-01-01

    An inlet concept integration trade study for an HSCT is being conducted under contract to NASA LeRC. The HSCT mission has a supersonic cruise Mach number of 2.4 and a subsonic cruise Mach number of 0.95. The engine selected for this study is the GE VCE (variable cycle engine) with FLADE (fan on blade). Six inlet configurations will be defined. Inlet configurations will be axisymmetric and rectangular mixed-compression inlets in single-engine nacelles. Airplane performance for each inlet configuration will be estimated and then compared. The most appropriate inlet configuration for this airplane/engine combination will be determined by Sep. 1991.

  14. Computing Trimmed, Mean-Camber Surfaces At Minimum Drag

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Hodges, William T.

    1995-01-01

    VLMD computer program determines subsonic mean-camber surfaces of trimmed noncoplanar planforms with minimum vortex drag at specified lift coefficient. Up to two planforms designed together. Method used that of subsonic vortex lattice method of chord loading specification, ranging from rectangular to triangular, left specified by user. Program versatile and applied to isolated wings, wing/canard configurations, tandem wing, and wing/-winglet configuration. Written in FORTRAN.

  15. Effects of spoiler surfaces on the aeroelastic behavior of a low-aspect-ratio rectangular wing

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.

    1990-01-01

    An experimental research study to determine the effectiveness of spoiler surfaces in suppressing flutter onset for a low-aspect-ratio, rectangular wing was conducted in the Langley Transonic Dynamics Tunnel (TDT). The wing model used in this flutter test consisted of a rigid wing mounted to the wind-tunnel wall by a flexible, rectangular beam. The flexible beam was connected to the wing root and cantilever mounted to the wind-tunnel wall. The wing had a 1.5 aspect ratio based on wing semispan and a NACA 64A010 airfoil shape. The spoiler surfaces consisted of thin, rectangular aluminum plates that were vertically mounted to the wing surface. The spoiler surface geometry and location on the wing surface were varied to determine the effects of these parameters on the classical flutter of the wing model. Subsonically, the experiment showed that spoiler surfaces increased the flutter dynamic pressure with each successive increase in spoiler height or width. This subsonic increase in flutter dynamic pressure was approximately 15 percent for the maximum height spoiler configuration and for the maximum width spoiler configuration. At transonic Mach numbers, the flutter dynamic pressure conditions were increased even more substantially than at subsonic Mach numbers for some of the smaller spoiler surfaces. But greater than a certain spoiler size (in terms of either height or width) the spoilers forced a torsional instability in the transonic regime that was highly Mach number dependent. This detrimental torsional instability was found at dynamic pressures well below the expected flutter conditions. Variations in the spanwise location of the spoiler surfaces on the wing showed little effect on flutter. Flutter analysis was conducted for the basic configuration (clean wing with all spoiler surface mass properties included). The analysis correlated well with the clean wing experimental flutter results.

  16. Preliminary Measurements of the Noise Characteristics of Some Jet-Augmented-Flap Configurations

    NASA Technical Reports Server (NTRS)

    Maglieri, Domenic J.; Hubbard, Harvey H.

    1959-01-01

    Experimental noise studies were conducted on model configurations of some proposed jet-augmented flaps to determine their far-field noise characteristics. The tests were conducted using cold-air jets of circular and rectangular exits having equal areas, at pressure ratios corresponding to exit velocities slightly below choking. Results indicated that the addition of a flap to a nozzle may change both its noise radiation pattern and frequency spectrum. Large reductions in the noise radiated in the downward direction are realized when the flow from a long narrow rectangular nozzle as permitted to attach to and flow along a large flap surface. Deflecting or turning the jet flow by means of impingement on the under surfaces increases the noise radiated in all directions and especially in the downward direction for the jet-flap configurations tested. Turning of the flow from nozzles by means of a flap turns the noise pattern approximately an equal amount. The principle of using a jet-flap shield with flow attachment may have some application as a noise suppressor.

  17. Penning plasma based simultaneous light emission source of visible and VUV lights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, G. L., E-mail: glvyas27@gmail.com; Prakash, R.; Pal, U. N.

    In this paper, a laboratory-based penning plasma discharge source is reported which has been developed in two anode configurations and is able to produce visible and VUV lights simultaneously. The developed source has simultaneous diagnostics facility using Langmuir probe and optical emission spectroscopy. The two anode configurations, namely, double ring and rectangular configurations, have been studied and compared for optimum use of the geometry for efficient light emissions and recording. The plasma is produced using helium gas and admixture of three noble gases including helium, neon, and argon. The source is capable to produce eight spectral lines for pure heliummore » in the VUV range from 20 to 60 nm and total 24 spectral lines covering the wavelength range 20–106 nm for the admixture of gases. The large range of VUV lines is generated from gaseous admixture rather from the sputtered materials. The recorded spectrum shows that the plasma light radiations in both visible and VUV range are larger in double ring configuration than that of the rectangular configurations at the same discharge operating conditions. To clearly understand the difference, the imaging of the discharge using ICCD camera and particle-in-cell simulation using VORPAL have also been carried out. The effect of ion diffusion, metastable collision with the anode wall and the nonlinear effects are correlated to explain the results.« less

  18. A systematic study of supersonic jet noise.

    NASA Technical Reports Server (NTRS)

    Louis, J. F.; Letty, R. P.; Patel, J. R.

    1972-01-01

    The acoustic fields for a rectangular and for an axisymmetric nozzle configuration are studied. Both nozzles are designed for identical flow parameters. It is tried to identify the dominant noise mechanisms. The other objective of the study is to establish scaling laws of supersonic jet noise. A shock tunnel is used in the investigations. Measured sound directivity, propagation direction of Mach waves obtained by shadowgraphs, and the slight dependence of the acoustic efficiency on the level of expansion indicate that Mach waves contribute significantly to the noise produced by a rectangular jet.

  19. Mass peak shape improvement of a quadrupole mass filter when operating with a rectangular wave power supply.

    PubMed

    Luo, Chan; Jiang, Dan; Ding, Chuan-Fan; Konenkov, Nikolai V

    2009-09-01

    Numeric experiments were performed to study the first and second stability regions and find the optimal configurations of a quadrupole mass filter constructed of circular quadrupole rods with a rectangular wave power supply. The ion transmission contours were calculated using ion trajectory simulations. For the first stability region, the optimal rod set configuration and the ratio r/r(0) is 1.110-1.115; for the second stability region, it is 1.128-1.130. Low-frequency direct current (DC) modulation with the parameters of m = 0.04-0.16 and nu = omega/Omega = 1/8-1/14 improves the mass peak shape of the circular rod quadrupole mass filter at the optimal r/r(0) ratio of 1.130. The amplitude modulation does not improve mass peak shape. Copyright (c) 2009 John Wiley & Sons, Ltd.

  20. Computation of Three-Dimensional Compressible Flow From a Rectangular Nozzle with Delta Tabs

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.; Steffen, C. J., Jr.; Zaman, K. B. M. Q.

    1999-01-01

    A three-dimensional viscous flow analysis is performed using a time-marching Reynolds-averaged Navier-Stokes code for a 3:1 rectangular nozzle with two delta tabs located at the nozz1e exit plane to enhance mixing. Two flow configurations, a subsonic jet case and a supersonic jet case using the same rate configuration, which were previously studied experimentally, are computed and compared with the experimental data. The experimental data include streamwise velocity and vorticity distributions for the subsonic case, and Mach number distributions for the supersonic case, at various axial locations downstream of the nozzle exit. The computational results show very good agreement with the experimental data. In addition, the effect of compressibility on vorticity dynamics is examined by comparing the vorticity contours of the subsonic jet case with those of the supersonic jet case which were not measured in the experiment.

  1. Transmission line design for a power distribution system at 20 kHz for aircraft

    NASA Technical Reports Server (NTRS)

    Zelby, L. W.; Mathes, J. B.; Shawver, J. W.

    1986-01-01

    A low inductance, low characteristic impedance transmission line was designed for a 20 kHz power distribution system. Several different conductor configurations were considered: strip lines, interdigitated metal ribbons, and standard insulated wires in multiwire configurations (circular and rectangular cylindrical arrangements). The final design was a rectangular arrangement of multiple wires of the same gauge with alternating polarities from wire to wire. This offered the lowest inductance per unit length (on the order of several nanohenries/meter) and the lowest characteristic impedance (on the order of one Ohm). Standard multipin connectors with gold-plated elements were recommended with this transmission line, the junction boxes to be internally connected with flat metal ribbons for low inductance, and the line to be constructed in sections of suitable length. Computer programs for the calculation of inductance of multiwire lines and of capacitances of strip lines were developed.

  2. Electromagnetic scattering and radiation from microstrip patch antennas and spirals residing in a cavity

    NASA Technical Reports Server (NTRS)

    Volakis, J. L.; Gong, J.; Alexanian, A.; Woo, A.

    1992-01-01

    A new hybrid method is presented for the analysis of the scattering and radiation by conformal antennas and arrays comprised of circular or rectangular elements. In addition, calculations for cavity-backed spiral antennas are given. The method employs a finite element formulation within the cavity and the boundary integral (exact boundary condition) for terminating the mesh. By virtue of the finite element discretization, the method has no restrictions on the geometry and composition of the cavity or its termination. Furthermore, because of the convolutional nature of the boundary integral and the inherent sparseness of the finite element matrix, the storage requirement is kept very low at O(n). These unique features of the method have already been exploited in other scattering applications and have permitted the analysis of large-size structures with remarkable efficiency. In this report, we describe the method's formulation and implementation for circular and rectangular patch antennas in different superstrate and substrate configurations which may also include the presence of lumped loads and resistive sheets/cards. Also, various modelling approaches are investigated and implemented for characterizing a variety of feed structures to permit the computation of the input impedance and radiation pattern. Many computational examples for rectangular and circular patch configurations are presented which demonstrate the method's versatility, modeling capability and accuracy.

  3. Traffic of leukocytes in microfluidic channels with rectangular and rounded cross-sections.

    PubMed

    Yang, Xiaoxi; Forouzan, Omid; Burns, Jennie M; Shevkoplyas, Sergey S

    2011-10-07

    Traffic of leukocytes in microvascular networks (particularly through arteriolar bifurcations and venular convergences) affects the dynamics of capillary blood flow, initiation of leukocyte adhesion during inflammation, and localization and development of atherosclerotic plaques in vivo. Recently, a growing research effort has been focused on fabricating microvascular networks comprising artificial vessels with more realistic, rounded cross-sections. This paper investigated the impact of the cross-sectional geometry of microchannels on the traffic of leukocytes flowing with human whole blood through a non-symmetrical bifurcation that consisted of a 50 μm mother channel bifurcating into 30 μm and 50 μm daughter branches. Two versions of the same bifurcation comprising microchannels with rectangular and rounded cross-sections were fabricated using conventional multi-layer photolithography to produce rectangular microchannles that were then rounded in situ using a recently developed method of liquid PDMS/air bubble injection. For microchannels with rounded cross-sections, about two-thirds of marginated leukocytes traveling along a path in the top plane of the bifurcation entered the smallest 30 μm daughter branch. This distribution was reversed in microchannels with rectangular cross-sections--the majority of leukocytes traveling along a similar path continued to follow the 50 μm microchannels after the bifurcation. This dramatic difference in the distribution of leukocyte traffic among the branches of the bifurcation can be explained by preferential margination of leukocytes towards the corners of the 50 μm mother microchannels with rectangular cross-sections, and by the additional hindrance to leukocyte entry created by the sharp transition from the 50 μm mother microchannel to the 30 μm daughter branch at the intersection. The results of this study suggest that the trajectories of marginated leukocytes passing through non-symmetrical bifurcations are significantly affected by the cross-sectional geometry of microchannels and emphasize the importance of using microfludic systems with geometrical configurations closely matching physiological configurations when modeling the dynamics of whole blood flow in the microcirculation.

  4. Steady state magnetic field configurations for the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.

    1989-01-01

    A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).

  5. TranAir: A full-potential, solution-adaptive, rectangular grid code for predicting subsonic, transonic, and supersonic flows about arbitrary configurations. Theory document

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.

    1992-01-01

    A new computer program, called TranAir, for analyzing complex configurations in transonic flow (with subsonic or supersonic freestream) was developed. This program provides accurate and efficient simulations of nonlinear aerodynamic flows about arbitrary geometries with the ease and flexibility of a typical panel method program. The numerical method implemented in TranAir is described. The method solves the full potential equation subject to a set of general boundary conditions and can handle regions with differing total pressure and temperature. The boundary value problem is discretized using the finite element method on a locally refined rectangular grid. The grid is automatically constructed by the code and is superimposed on the boundary described by networks of panels; thus no surface fitted grid generation is required. The nonlinear discrete system arising from the finite element method is solved using a preconditioned Krylov subspace method embedded in an inexact Newton method. The solution is obtained on a sequence of successively refined grids which are either constructed adaptively based on estimated solution errors or are predetermined based on user inputs. Many results obtained by using TranAir to analyze aerodynamic configurations are presented.

  6. Resistivity Measurement by Dual-Configuration Four-Probe Method

    NASA Astrophysics Data System (ADS)

    Yamashita, Masato; Nishii, Toshifumi; Mizutani, Hiroya

    2003-02-01

    The American Society for Testing and Materials (ASTM) Committee has published a new technique for the measurement of resistivity which is termed the dual-configuration four-probe method. The resistivity correction factor is the function of only the data which are obtained from two different electrical configurations of the four probes. The measurement of resistivity and sheet resistance are performed for graphite rectangular plates and indium tin oxide (ITO) films by the conventional four-probe method and the dual-configuration four-probe method. It is demonstrated that the dual-configuration four-probe method which includes a probe array with equal separations of 10 mm can be applied to specimens having thicknesses up to 3.7 mm if a relative resistivity difference up to 5% is allowed.

  7. METHOD AND APPARATUS FOR PULSING A CHARGED PARTICLE BEAM

    DOEpatents

    Aaland, K.; Kuenning, R.W.; Harmon, R.K.

    1961-05-01

    A system is offered for pulsing a continuous beam of charged particles to form beam pulses that are consistently rectangular and of precise time durations which may be varied over an extremely wide range at a widely variable range of repetition rates. The system generally comprises spaced deflection plates on opposite sides of a beam axis in between which a unidirectional bias field is established to deflect the beam for impingement on an off-axis collector. The bias field is periodically neutralized by the application of fast rise time substantially rectangular pulses to one of the deflection plates in opposition to the bias field and then after a time delay to the other deflection plate in aiding relation to the bias field and during the flat crest portion of the bias opposing pulses. The voltage distribution of the resulting deflection field then includes neutral or zero portions which are of symmetrical substantially rectangular configuration relative to time and during which the beam axially passes the collector in the form of a substantially rectangular beam pulse.

  8. Realization of Rectangular Artificial Spin Ice and Direct Observation of High Energy Topology.

    PubMed

    Ribeiro, I R B; Nascimento, F S; Ferreira, S O; Moura-Melo, W A; Costa, C A R; Borme, J; Freitas, P P; Wysin, G M; de Araujo, C I L; Pereira, A R

    2017-10-25

    In this work, we have constructed and experimentally investigated frustrated arrays of dipoles forming two-dimensional artificial spin ices with different lattice parameters (rectangular arrays with horizontal and vertical lattice spacings denoted by a and b respectively). Arrays with three different aspect ratios γ = a/b = [Formula: see text], [Formula: see text] and [Formula: see text] are studied. Theoretical calculations of low-energy demagnetized configurations for these same parameters are also presented. Experimental data for demagnetized samples confirm most of the theoretical results. However, the highest energy topology (doubly-charged monopoles) does not emerge in our theoretical model, while they are seen in experiments for large enough γ. Our results also insinuate that the string tension connecting two magnetic monopoles in a pair vanishes in rectangular lattices with a critical ratio γ = γ c  = [Formula: see text], supporting previous theoretical predictions.

  9. The analysis of single-electron orbits in a free electron laser based upon a rectangular hybrid wiggler

    NASA Astrophysics Data System (ADS)

    Kordbacheh, A.; Ghahremaninezhad, Roghayeh; Maraghechi, B.

    2012-09-01

    A three-dimensional analysis of a novel free-electron laser (FEL) based upon a rectangular hybrid wiggler (RHW) is presented. This RHW is designed in a configuration composed of rectangular rings with alternating ferrite and dielectric spacers immersed in a solenoidal magnetic field. An analytic model of RHW is introduced by solution of Laplace's equation for the magnetostatic fields under the appropriate boundary conditions. The single-electron orbits in combined RHW and axial guide magnetic fields are studied when only the first and the third spatial harmonic components of the RHW field are taken into account and the higher order terms are ignored. The results indicate that the third spatial harmonic leads to group III orbits with a strong negative mass regime particularly in large solenoidal magnetic fields. RHW is found to be a promising candidate with favorable characteristics to be used in microwave FEL.

  10. Mach 4 Performance of a Fixed-Geometry Hypersonic Inlet with Rectangular-to-Elliptical Shape Transition

    NASA Technical Reports Server (NTRS)

    Smart, Michael K.; Trexler, Carl A.

    2003-01-01

    Wind-tunnel testing of a hypersonic inlet with rectangular-to-elliptical shape transition has been conducted at Mach 4.0. These tests were performed to investigate the starting and back-pressure limits of this fixed-geometry inlet at conditions well below the Mach 5.7 design point. Results showed that the inlet required side spillage holes in order to self-start at Mach 4.0. Once started, the inlet generated a compression ratio of 12.6, captured almost 80% of available air and withstood a back-pressure ratio of 30.3 relative to tunnel static pressure. The spillage penalty for self-starting was estimated to be 4% of available air. These experimental results, along with previous experimental results at Mach 6.2 indicate that fixed-geometry inlets with rectangular-to-elliptical shape transition are a viable configuration for airframe- integrated scramjets that operate over a significant Mach number range.

  11. Width effects in transonic flow over a rectangular cavity

    DOE PAGES

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; ...

    2015-07-24

    A previous experiment by the present authors studied the flow over a finite-width rectangular cavity at freestream Mach numbers 1.5–2.5. In addition, this investigation considered the influence of three-dimensional geometry that is not replicated by simplified cavities that extend across the entire wind-tunnel test section. The latter configurations have the attraction of easy optical access into the depths of the cavity, but they do not reproduce effects upon the turbulent structures and acoustic modes due to the length-to-width ratio, which is becoming recognized as an important parameter describing the nature of the flow within narrower cavities.

  12. TranAir: A full-potential, solution-adaptive, rectangular grid code for predicting subsonic, transonic, and supersonic flows about arbitrary configurations. User's manual

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.

    1992-01-01

    The TranAir computer program calculates transonic flow about arbitrary configurations at subsonic, transonic, and supersonic freestream Mach numbers. TranAir solves the nonlinear full potential equations subject to a variety of boundary conditions modeling wakes, inlets, exhausts, porous walls, and impermeable surfaces. Regions with different total temperature and pressure can be represented. The user's manual describes how to run the TranAir program and its graphical support programs.

  13. AIC Computations Using Navier-Stokes Equations on Single Image Supercomputers For Design Optimization

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru

    2004-01-01

    A procedure to accurately generate AIC using the Navier-Stokes solver including grid deformation is presented. Preliminary results show good comparisons between experiment and computed flutter boundaries for a rectangular wing. A full wing body configuration of an orbital space plane is selected for demonstration on a large number of processors. In the final paper the AIC of full wing body configuration will be computed. The scalability of the procedure on supercomputer will be demonstrated.

  14. Regenerable metallic oxide systems for removal of carbon dioxide: A concept

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    Design concepts for portable canisters for removal of carbon dioxide are described. One is screen pack configuration consisting of brazed rectangular canister with four metal oxide packs inserted. Other is radial flow canister with perforated central tube. Methods of production and operating principles are presented.

  15. Photon Sail History, Engineering, and Mission Analysis. Appendix

    NASA Technical Reports Server (NTRS)

    Matloff, Gregory L.; Taylor, Travis; Powell, Conley

    2004-01-01

    This Appendix summarizes the results of a Teledyne Brown Engineering, Inc. report to the In-Space propulsion research group of the NASA Marshall Space Flight Center (MSFC) that was authored by Taylor et al. in 2003. The subject of this report is the technological maturity, readiness, and capability of the photon solar sail to support space-exploration missions. Technological maturity for solar photon sail concepts is extremely high high for rectangular (or square) solar sail configurations due to the historical development of the rectangular design by the NASA Jet Propulsion Laboratory (JPL). L'Garde Inc., ILC Dover Inc., DLR, and many other corporations and agencies. However, future missions and mission analysis may prove that the rectangular sail design is not the best architecture for achieving mission goals. Due to the historical focus on rectangular solar sail spacecraft designs, the maturity of other architectures such as hoop-supported disks, multiple small disk arrays, parachute sails, heliogyro sails, perforated sails, multiple vane sails (such as the Planetary Society's Cosmos 1), inflated pillow sails, etc., have not reached a high level of technological readiness. (Some sail architectures are shown in Fig. A.1.) The possibilities of different sail architectures and some possible mission concepts are discussed in this Appendix.

  16. Jet Surface Interaction Scrubbing Noise from High Aspect-Ratio Rectangular Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bozak, Richard F.

    2015-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity of the airframe. Distributed propulsion system with exhaust configurations that resemble a high aspect ratio rectangular jet are among geometries of interest. Nearby solid surfaces could provide noise shielding for the purpose of reduced community noise. Interaction of high-speed jet exhaust with structure could also generate new sources of sound as a result of flow scrubbing past the structure, and or scattered noise from sharp edges. The present study provides a theoretical framework to predict the scrubbing noise component from a high aspect ratio rectangular exhaust in proximity of a solid surface. The analysis uses the Greens function (GF) to the variable density Pridmore-Brown equation in a transversely sheared mean flow. Sources of sound are defined as the auto-covariance function of second-rank velocity fluctuations in the jet plume, and are modeled using a RANS-based acoustic analogy approach. Acoustic predictions are presented in an 8:1 aspect ratio rectangular exhaust at three subsonic Mach numbers. The effect of nearby surface on the scrubbing noise component is shown on both reflected and shielded sides of the plate.

  17. Two-dimensional integrating matrices on rectangular grids. [solving differential equations associated with rotating structures

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.

    1981-01-01

    The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.

  18. Optimal glottal configuration for ease of phonation.

    PubMed

    Lucero, J C

    1998-06-01

    Recent experimental studies have shown the existence of optimal values of the glottal width and convergence angle, at which the phonation threshold pressure is minimum. These results indicate the existence of an optimal glottal configuration for ease of phonation, not predicted by the previous theory. In this paper, the origin of the optimal configuration is investigated using a low dimensional mathematical model of the vocal fold. Two phenomena of glottal aerodynamics are examined: pressure losses due to air viscosity, and air flow separation from a divergent glottis. The optimal glottal configuration seems to be a consequence of the combined effect of both factors. The results agree with the experimental data, showing that the phonation threshold pressure is minimum when the vocal folds are slightly separated in a near rectangular glottis.

  19. Fluxoids configurations in finite superconducting networks

    NASA Astrophysics Data System (ADS)

    Sharon, Omri J.; Haham, Noam; Shaulov, Avner A.; Yeshurun, Yosef

    2017-12-01

    Analysis of superconducting ladders consisting of rectangular loops, yields an Ising like expression for the total energy of the ladders as a function of the loops vorticities and the applied magnetic field. This expression shows that fluxoids can be treated as repulsively interacting objects driven towards the ladder center by the applied field. Distinctive repulsive interactions between fluxoids are obtained depending on the ratio l between the loops length and the common width of adjacent loops. A 'short range' and a 'long range' interactions obtained for l ≳ 1 and l ≪ 1, respectively, give rise to remarkably different fluxoid configurations. The different configurations of fluxoids in different types of ladders are illustrated by simulations.

  20. Subsonic longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration having spanwise leading-edge vortex enhancement

    NASA Technical Reports Server (NTRS)

    Huffman, J. K.; Fox, C. H., Jr.

    1977-01-01

    A configuration which integrates a close coupled canard wing combination, spanwise blowing for enhancement of the wing leading edge vortex, an engine-over-wing concept, and a wing trailing edge coanda-effect flap is studied. The data on the configuration are presented in tabular from without discussion. The investigation was conducted in the Langley 7- by 10-foot high speed tunnel at a Mach number of 0.166 through an angle-of-attack range from -2 to 22 deg. Rectangular main engine nozzles of aspect ratio 4, 6, and 8 were tested over a momentum coefficient range from 1.0 to 1.8.

  1. A Biomechanical Comparison of Three 1.5-mm Plate and Screw Configurations and a Single 2.0-mm Plate for Internal Fixation of a Mandibular Condylar Fracture

    PubMed Central

    Aquilina, Peter; Parr, William C.H.; Chamoli, Uphar; Wroe, Stephen; Clausen, Philip

    2014-01-01

    The most stable pattern of internal fixation for mandibular condyle fractures is an area of ongoing discussion. This study investigates the stability of three patterns of plate fixation using readily available, commercially pure titanium implants. Finite element models of a simulated mandibular condyle fracture were constructed. The completed models were heterogeneous in bone material properties, contained approximately 1.2 million elements and incorporated simulated jaw adducting musculature. Models were run assuming linear elasticity and isotropic material properties for bone. No human subjects were involved in this investigation. The stability of the simulated condylar fracture reduced with the different implant configurations, and the von Mises stresses of a 1.5-mm X-shaped plate, a 1.5-mm rectangular plate, and a 1.5-mm square plate (all Synthes (Synthes GmbH, Zuchwil, Switzerland) were compared. The 1.5-mm X plate was the most stable of the three 1.5-mm profile plate configurations examined and had comparable mechanical performance to a single 2.0-mm straight four-hole plate. This study does not support the use of rectangular or square plate patterns in the open reduction and internal fixation of mandibular condyle fractures. It does provide some support for the use of a 1.5-mm X plate to reduce condylar fractures in selected clinical cases. PMID:25136411

  2. Rectangular beam (5 X 40 cm multipole ion source). M.S. Thesis - Nov. 1979; [applications to electron bombardment in materials processing

    NASA Technical Reports Server (NTRS)

    Haynes, C. M.

    1980-01-01

    A 5 x 40 cm rectangular-beam ion source was designed and fabricated. A multipole field configuration was used to facilitate design of the modular rectangular chamber, while a three-grid ion optics system was used for increased ion current densities. For the multipole chamber, a magnetic integral of 0.000056 Tesla-m was used to contain the primary electrons. This integral value was reduced from the initial design value, with the reduction found necessary for discharge stability. The final value of magnetic integral resulted in discharge losses at typical operating conditions which ranged from 600 to 1000 eV/ion, in good agreement with the design value of 800 eV/ion. The beam current density at the ion optics was limited to about 3.2 mA/sq cm at 500 eV and to about 3.5 mA/sq cm at 1000 ev. The effects of nonuniform ion current, dimension tolerance, and grid thermal warping were considered. The use of multiple rectangular-beam ion sources to process wider areas than would be possible with a single source (approx. 40 cm) was also studied. Beam profiles were surveyed at a variety of operating conditions and the results of various amounts of beam overlap calculated.

  3. Radiation pattern synthesis of planar antennas using the iterative sampling method

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Coffey, E. L.

    1975-01-01

    A synthesis method is presented for determining an excitation of an arbitrary (but fixed) planar source configuration. The desired radiation pattern is specified over all or part of the visible region. It may have multiple and/or shaped main beams with low sidelobes. The iterative sampling method is used to find an excitation of the source which yields a radiation pattern that approximates the desired pattern to within a specified tolerance. In this paper the method is used to calculate excitations for line sources, linear arrays (equally and unequally spaced), rectangular apertures, rectangular arrays (arbitrary spacing grid), and circular apertures. Examples using these sources to form patterns with shaped main beams, multiple main beams, shaped sidelobe levels, and combinations thereof are given.

  4. Stress analysis and evaluation of a rectangular pressure vessel

    NASA Astrophysics Data System (ADS)

    Rezvani, M. A.; Ziada, H. H.; Shurrab, M. S.

    1992-10-01

    This study addresses structural analysis and evaluation of an abnormal rectangular pressure vessel, designed to house equipment for drilling and collecting samples from Hanford radioactive waste storage tanks. It had to be qualified according to ASME boiler and pressure vessel code, section 8; however, it had the cover plate bolted along the long face, a configuration not addressed by the code. Finite element method was used to calculate stresses resulting from internal pressure; these stresses were then used to evaluate and qualify the vessel. Fatigue is not a concern; thus, it can be built according to section 8, division 1 instead of division 2. Stress analysis was checked against the code. A stayed plate was added to stiffen the long side of the vessel.

  5. Transformation formulas relating geodetic coordinates to a tangent to Earth, plane coordinate system

    NASA Technical Reports Server (NTRS)

    Credeur, L.

    1981-01-01

    Formulas and their approximation were developed to map geodetic position to an Earth tangent plane with an airport centered rectangular coordinate system. The transformations were developed for use in a terminal area air traffic model with deterministic aircraft traffic. The exact configured vehicle's approximation equations used in their precision microwave landing system navigation experiments.

  6. Unsteady loads due to propulsive lift configurations. Part D: The development of an experimental facility for the investigation of scaling effects on propulsive lift configurations

    NASA Technical Reports Server (NTRS)

    Haviland, J. K.; Herling, W. W.

    1978-01-01

    The design and construction of an experimental facility for the investigation of scaling effects in propulsive lift configurations are described. The facility was modeled after an existing full size NASA facility which consisted of a coaxial turbofan jet engine with a rectangular nozzle in a blown surface configuration. The flow field of the model facility was examined with and without a simulated wing surface in place at several locations downstream of the nozzle exit plane. Emphasis was placed on obtaining pressure measurements which were made with static probes and surface pressure ports connected via plastic tubing to condenser microphones for fluctuating measurements. Several pressure spectra were compared with those obtained from the NASA facility, and were used in a preliminary evaluation of scaling laws.

  7. Two-Phase Flow in Microchannels with Non-Circular Cross Section

    NASA Astrophysics Data System (ADS)

    Eckett, Chris A.; Strumpf, Hal J.

    2002-11-01

    Two-phase flow in microchannels is of practical importance in several microgravity space technology applications. These include evaporative and condensing heat exchangers for thermal management systems and vapor cycle systems, phase separators, and bioreactors. The flow passages in these devices typically have a rectangular cross-section or some other non-circular cross-section; may include complex flow paths with branches, merges and bends; and may involve channel walls of different wettability. However, previous experimental and analytical investigations of two-phase flow in reduced gravity have focussed on straight, circular tubes. This study is an effort to determine two-phase flow behavior, both with and without heat transfer, in microchannel configurations other than straight, circular tubes. The goals are to investigate the geometrical effects on flow pattern, pressure drop and liquid holdup, as well as to determine the relative importance of capillary, surface tension, inertial, and gravitational forces in such geometries. An evaporative heat exchanger for microgravity thermal management systems has been selected as the target technology in this investigation. Although such a heat exchanger has never been developed at Honeywell, a preliminary sizing has been performed based on knowledge of such devices in normal gravity environments. Fin shapes considered include plain rectangular, offset rectangular, and wavy fin configurations. Each of these fin passages represents a microchannel of non-circular cross section. The pans at the inlet and outlet of the heat exchanger are flow branches and merges, with up to 90-deg bends. R-134a has been used as the refrigerant fluid, although ammonia may well be used in the eventual application.

  8. Electromagnetic characterization of conformal antennas

    NASA Technical Reports Server (NTRS)

    Volakis, John L.; Kempel, Leo C.; Alexanian, Angelos; Jin, J. M.; Yu, C. L.; Woo, Alex C.

    1992-01-01

    The ultimate objective of this project is to develop a new technique which permits an accurate simulation of microstrip patch antennas or arrays with various feed, superstrate and/or substrate configurations residing in a recessed cavity whose aperture is planar, cylindrical or otherwise conformed to the substructure. The technique combines the finite element and boundary integral methods to formulate a system suitable for solution via the conjugate gradient method in conjunction with the fast Fourier transform. The final code is intended to compute both scattering and radiation patterns of the structure with an affordable memory demand. With upgraded capabilities, the four included papers examined the radar cross section (RCS), input impedance, gain, and resonant frequency of several rectangular configurations using different loading and substrate/superstrate configurations.

  9. A 5 x 40 cm rectangular-beam multipole ion source

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Kaufman, H. R.; Haynes, C. M.

    1981-01-01

    A rectangular ion source particularly suited for the continuous sputter processing of materials over a wide area is discussed. A multipole magnetic field configuration was used to design an ion source with a 5 x 40 cm beam area, while a three-grid ion optics system was used to maximize ion current density at the design ion energy of 500 eV. An average extracted current density of about 4 mA/sq cm could be obtained from 500 eV Ar ions. The difference between the experimental performance and the design value of 6 mA/sq cm is attributed to grid misalignment due to thermal expansion. The discharge losses at typical operating conditions ranged from about 600 to 1000 eV/ion, in reasonable agreement with the design value of 800 eV/ion. The use of multiple rectangular-beam ion sources to process wider areas than would be possible with a single source was also studied, and the most uniform coverage was found to be obtainable with a 0 to 2 cm overlap.

  10. Generation of three-dimensional body-fitted coordinates using hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Rizk, Y. M.

    1985-01-01

    An efficient numerical mesh generation scheme capable of creating orthogonal or nearly orthogonal grids about moderately complex three dimensional configurations is described. The mesh is obtained by marching outward from a user specified grid on the body surface. Using spherical grid topology, grids have been generated about full span rectangular wings and a simplified space shuttle orbiter.

  11. Static Thrust and Vectoring Performance of a Spherical Convergent Flap Nozzle with a Nonrectangular Divergent Duct

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    1998-01-01

    The static internal performance of a multiaxis-thrust-vectoring, spherical convergent flap (SCF) nozzle with a non-rectangular divergent duct was obtained in the model preparation area of the Langley 16-Foot Transonic Tunnel. Duct cross sections of hexagonal and bowtie shapes were tested. Additional geometric parameters included throat area (power setting), pitch flap deflection angle, and yaw gimbal angle. Nozzle pressure ratio was varied from 2 to 12 for dry power configurations and from 2 to 6 for afterburning power configurations. Approximately a 1-percent loss in thrust efficiency from SCF nozzles with a rectangular divergent duct was incurred as a result of internal oblique shocks in the flow field. The internal oblique shocks were the result of cross flow generated by the vee-shaped geometric throat. The hexagonal and bowtie nozzles had mirror-imaged flow fields and therefore similar thrust performance. Thrust vectoring was not hampered by the three-dimensional internal geometry of the nozzles. Flow visualization indicates pitch thrust-vector angles larger than 10' may be achievable with minimal adverse effect on or a possible gain in resultant thrust efficiency as compared with the performance at a pitch thrust-vector angle of 10 deg.

  12. Aeroacoustic Characteristics of a Rectangular Multi-Element Supersonic Jet Mixer-Ejector Nozzle

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Taghavi, Ray

    1996-01-01

    This paper provides a unique, detailed evaluation of the acoustics and aerodynamics of a rectangular multi-element supersonic jet mixer-ejector noise suppressor. The performance of such mixer-ejectors is important in aircraft engine application for noise suppression and thrust augmentation. In contrast to most prior experimental studies on ejectors that reported either aerodynamic or acoustic data, our work documents both types of data. We present information on the mixing, pumping, ejector wall pressure distribution, thrust augmentation and noise suppression characteristics of four simple, multi-element, jet mixer-ejector configurations. The four configurations included the effect of ejector area ratio (AR = ejector area/primary jet area) and the effect of non-parallel ejector walls. We also studied in detail the configuration that produced the best noise suppression characteristics. Our results show that ejector configurations that produced the maximum maximum pumping (entrained flow per secondary inlet area) also exhibited the lowest wall pressures in the inlet region, and the maximum thrust augmentation. When cases having the same total mass flow were compared, we found that noise suppression trends corresponded with those for pumping. Surprisingly, the mixing (quantified by the peak Mach number, and flow uniformity) at the ejector exit exhibited no relationship to the noise suppression at moderate primary jet fully expanded Mach numbers (Mj is less than 1.4). However, the noise suppression dependence on the mixing was apparent at higher Mj. The above observations are justified by noting that the mixing at the ejector exit is ot a strong factor in determining the radiated noise when noise produced internal to the ejector dominates the noise field outside the ejector.

  13. On the attenuation of sound by three-dimensionally segmented acoustic liners in a rectangular duct

    NASA Technical Reports Server (NTRS)

    Koch, W.

    1979-01-01

    Axial segmentation of acoustically absorbing liners in rectangular, circular or annual duct configurations is a very useful concept for obtaining higher noise attenuation with respect to the bandwidth of absorption as well as the maximum attenuation. As a consequence, advanced liner concepts are proposed which induce a modal energy transfer in both cross-sectional directions to further reduce the noise radiated from turbofan engines. However, these advanced liner concepts require three-dimensional geometries which are difficult to treat theoretically. A very simple three-dimensional problem is investigated analytically. The results show a strong dependence on the positioning of the liner for some incident source modes while the effect of three-dimensional segmentation appears to be negligible over the frequency range considered.

  14. Steady film flow over a substrate with rectangular trenches forming air inclusions

    NASA Astrophysics Data System (ADS)

    Varchanis, S.; Dimakopoulos, Y.; Tsamopoulos, J.

    2017-12-01

    Film flow along an inclined, solid substrate featuring periodic rectangular trenches may either completely wet the trench floor (Wenzel state) or get pinned on the entrance and exit corners of the trench (Cassie state) or assume other configurations in between these two extremes. Such intermediate configurations are examined in the present study. They are bounded by a second gas-liquid interface inside the trench, which adheres to its walls forming two three-phase contact lines, and encloses a different amount of air under different physical conditions. The Galerkin finite-element method is used to solve the Navier-Stokes equations in a physical domain, which is adaptively remeshed. Multiple steady solutions, connected by turning points and transcritical bifurcations as well as isolated solution branches, are revealed by pseudo-arc-length continuation. Two possible configurations of a single air inclusion inside the trench are examined: the inclusion either surrounds the upstream convex corner or is attached to the upstream trench wall. The penetration of the liquid inside the trench is enhanced primarily by increasing either the wettability of the substrate or capillary over viscous forces or by decreasing the flow rate. Flow hysteresis may occur when the liquid wetting of the upstream wall decreases abruptly, leading to drastically different flow patterns for the same parameter values. The interplay of inertia, viscous, gravity, and capillary forces along with substrate wettability determines the volume of the air encapsulated in the trench and the extent of deformation of the outer free surface.

  15. Numerical Simulations of Noise Generated by High Aspect Ratio Supersonic Rectangular Jets - Validation

    NASA Astrophysics Data System (ADS)

    Viswanath, Kamal; Johnson, Ryan; Kailasanath, Kailas; Malla, Bhupatindra; Gutmark, Ephraim

    2017-11-01

    The noise from high performance jet engines of both civilian and military aircraft is an area of active concern. Asymmetric exhaust nozzle configurations, in particular rectangular, potentially offer a passive way of modulating the farfield noise and are likely to become more important in the future. High aspect ratio nozzles offer the further benefit of easier airframe integration. In this study we validate the far field noise for ideally and over expanded supersonic jets issuing from a high aspect ratio rectangular nozzle geometry. Validation of the acoustic data is performed against experimentally recorded sound pressure level (SPL) spectra for a host of observer locations around the asymmetric nozzle. Data is presented for a slightly heated jet case for both nozzle pressure ratios. The contrast in the noise profile from low aspect ratio rectangular and circular nozzle jets are highlighted, especially the variation in the azimuthal direction that shows ``quiet'' and ``loud'' planes in the farfield in the peak noise direction. This variation is analyzed in the context of the effect of mixing at the sharp corners, the sense of the vortex pairs setup in the exit plane, and the evolution of the high aspect ratio exit cross-section as it propagates downstream including possible axis-switching. Supported by Office of Naval Research (ONR) through the Computational Physics Task Area under the NRL 6.1 Base Program.

  16. Aerodynamic analysis of three advanced configurations using the TranAir full-potential code

    NASA Technical Reports Server (NTRS)

    Madson, M. D.; Carmichael, R. L.; Mendoza, J. P.

    1989-01-01

    Computational results are presented for three advanced configurations: the F-16A with wing tip missiles and under wing fuel tanks, the Oblique Wing Research Aircraft, and an Advanced Turboprop research model. These results were generated by the latest version of the TranAir full potential code, which solves for transonic flow over complex configurations. TranAir embeds a surface paneled geometry definition in a uniform rectangular flow field grid, thus avoiding the use of surface conforming grids, and decoupling the grid generation process from the definition of the configuration. The new version of the code locally refines the uniform grid near the surface of the geometry, based on local panel size and/or user input. This method distributes the flow field grid points much more efficiently than the previous version of the code, which solved for a grid that was uniform everywhere in the flow field. TranAir results are presented for the three configurations and are compared with wind tunnel data.

  17. Circular, confined distribution for charged particle beams

    DOEpatents

    Garnett, Robert W.; Dobelbower, M. Christian

    1995-01-01

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

  18. Circular, confined distribution for charged particle beams

    DOEpatents

    Garnett, R.W.; Dobelbower, M.C.

    1995-11-21

    A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

  19. Aerodynamic characteristics at Mach numbers from 0.6 to 2.16 of a supersonic cruise fighter configuration with a design Mach number of 1.8

    NASA Technical Reports Server (NTRS)

    Shrout, B. L.

    1977-01-01

    An investigation was made in the Langley 8-foot transonic tunnel and the Langley Unitary Plan wind tunnel, over a Mach number range of 0.6 to 2.16, to determine the static longitudinal and lateral aerodynamic characteristics of a model of a supersonic-cruise fighter. The configuration, which is designed for efficient cruise at Mach number 1.8, is a twin-engine tailless arrow-wing concept with a single rectangular inlet beneath the fuselage and outboard vertical tails and ventral fins. It had untrimmed values of lift-drage ratio ranging from 10 at subsonic speeds to 6.4 at the design Mach number. The configuration was statically stable both longitudinally and laterally.

  20. Allocating application to group of consecutive processors in fault-tolerant deadlock-free routing path defined by routers obeying same rules for path selection

    DOEpatents

    Leung, Vitus J [Albuquerque, NM; Phillips, Cynthia A [Albuquerque, NM; Bender, Michael A [East Northport, NY; Bunde, David P [Urbana, IL

    2009-07-21

    In a multiple processor computing apparatus, directional routing restrictions and a logical channel construct permit fault tolerant, deadlock-free routing. Processor allocation can be performed by creating a linear ordering of the processors based on routing rules used for routing communications between the processors. The linear ordering can assume a loop configuration, and bin-packing is applied to this loop configuration. The interconnection of the processors can be conceptualized as a generally rectangular 3-dimensional grid, and the MC allocation algorithm is applied with respect to the 3-dimensional grid.

  1. Predicting propagation limits of laser-supported detonation by Hugoniot analysis

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Ofosu, Joseph A.; Komurasaki, Kimiya; Koizumi, Hiroyuki

    2015-01-01

    Termination conditions of a laser-supported detonation (LSD) wave were investigated using control volume analysis with a Shimada-Hugoniot curve and a Rayleigh line. Because the geometric configurations strongly affect the termination condition, a rectangular tube was used to create the quasi-one-dimensional configuration. The LSD wave propagation velocity and the pressure behind LSD were measured. Results reveal that the detonation states during detonation and at the propagation limit are overdriven detonation and Chapman-Jouguet detonation, respectively. The termination condition is the minimum velocity criterion for the possible detonation solution. Results were verified using pressure measurements of the stagnation pressure behind the LSD wave.

  2. Heating times for round and rectangular cross sections of wood in steam

    Treesearch

    William T. Simpson

    2001-01-01

    Heat sterilization of wood in various forms is currently receiving attention as a means of killing insects or pathogens to prevent their transfer from one region of the world to another in trade. One concern is the amount of time required to heat wood of various cross-sectional sizes and configurations to a temperature that will kill the insects or pathogens....

  3. A comparative study of optimum and suboptimum direct-detection laser ranging receivers

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.

    1978-01-01

    A summary of previously proposed receiver strategies for direct-detection laser ranging receivers is presented. Computer simulations are used to compare performance of candidate implementation strategies in the 1- to 100-photoelectron region. Under the condition of no background radiation, the maximum-likelihood and minimum mean-square error estimators were found to give the same performance for both bell-shaped and rectangular optical-pulse shapes. For signal energies greater than 100 photoelectrons, the root-mean-square range error is shown to decrease as Q to the -1/2 power for bell-shaped pulses and Q to the -1 power for rectangular pulses, where Q represents the average pulse energy. Of several receiver implementations presented, the matched-filter peak detector was found to be preferable. A similar configuration, using a constant-fraction discriminator, exhibited a signal-level dependent time bias.

  4. Pressure loadings in a rectangular cavity with and without a captive store

    DOE PAGES

    Barone, Matthew; Arunajatesan, Srinivasan

    2016-05-31

    Simulations of the flow past a rectangular cavity containing a model captive store are performed using a hybrid Reynolds-averaged Navier–Stokes/large-eddy simulation model. Calculated pressure fluctuation spectra are validated using measurements made on the same configuration in a trisonic wind tunnel at Mach numbers of 0.60, 0.80, and 1.47. The simulation results are used to calculate unsteady integrated forces and moments acting on the store. Spectra of the forces and moments, along with correlations calculated for force/moment pairs, reveal that a complex relationship exists between the unsteady integrated forces and the measured resonant cavity modes, as indicated in the cavity wallmore » pressure measurements. As a result, the structure of identified cavity resonant tones is examined by visualization of filtered surface pressure fields.« less

  5. Numerical simulation of magnetic nano drug targeting in a patient-specific coeliac trunk

    NASA Astrophysics Data System (ADS)

    Boghi, Andrea; Russo, Flavia; Gori, Fabio

    2017-09-01

    Magnetic nano drug targeting, through the use of an external magnetic field, is a new technique for the treatment of several diseases, which can potentially avoid the dispersion of drugs in undesired locations of the body. Nevertheless, due to the limitations on the intensity of the magnetic field applied, the hydrodynamic forces can reduce the effectiveness of the procedure. This technique is studied in this paper with the Computational Fluid Dynamics (CFD), focusing on the influence of the magnetic probe position, and the direction of the circulating electric current. A single rectangular coil is used to generate the external magnetic field. A patient-specific geometry of the coeliac trunk is reconstructed from DICOM images, with the use of VMTK. A new solver, coupling the Lagrangian dynamics of the nanoparticles with the Eulerian dynamics of the blood, is implemented in OpenFOAM to perform the simulations. The resistive pressure, the Womersley's profile for the inlet velocity and the magnetic field of a rectangular coil are implemented in the software as boundary conditions. The results show the influence of the position of the probe, as well as the limitations associated with the rectangular coil configuration.

  6. Tests with three-dimensional adjustments in the rectangular working section of the French T2 wind tunnel with an AS 07-type swept-back wing model

    NASA Technical Reports Server (NTRS)

    Blanchard, A.; Payry, M. J.; Breil, J. F.

    1986-01-01

    The results obtained on the AS 07 wing and the working section walls for three types of configurations are reported. The first, called non-adapted, corresponds to the divergent upper and lower rectilinear walls which compensate for limit layer thickening. It can serve as a basis for complete flow calculations. The second configuration corresponds to wall shapes determined from calculations which tend to minimize interference at the level of the fuselage. Finally, the third configuration, called two-dimensional adaptation, uses the standard method for T2 profile tests. This case was tested to determine the influence of wall shape and error magnitude. These results are not sufficient to validate the three-dimensional adaptation; they must be coordinated with calculations or with unlimited atmosphere tests.

  7. A Spreadsheet for the Mixing of Rows of Jets with Confined Crossflow in a Rectangular Duct. Supplement

    NASA Technical Reports Server (NTRS)

    Holderman, James D.; Clisset, James R.; Moder, Jeffrey P.

    2010-01-01

    This is a printout of the supplemental spreadsheet that is a supplement to the document found in NASA/TM-2010-216100. The calculations for cases of opposed rows of jets with the orifices on one side shifted show that staggering can improve the mixing, particularly for cases where jets would overpenetrate slightly if the orifices were in an aligned configuration.

  8. Modeling and design of optimal flow perfusion bioreactors for tissue engineering applications.

    PubMed

    Hidalgo-Bastida, L Araida; Thirunavukkarasu, Sundaramoorthy; Griffiths, Sarah; Cartmell, Sarah H; Naire, Shailesh

    2012-04-01

    Perfusion bioreactors have been used in different tissue engineering applications because of their consistent distribution of nutrients and flow-induced shear stress within the tissue-engineering scaffold. A widely used configuration uses a scaffold with a circular cross-section enclosed within a cylindrical chamber and inlet and outlet pipes which are connected to the chamber on either side through which media is continuously circulated. However, fluid-flow experiments and simulations have shown that the majority of the flow perfuses through the center. This pattern creates stagnant zones in the peripheral regions as well as in those of high flow rate near the inlet and outlet. This non-uniformity of flow and shear stress, owing to a circular design, results in limited cell proliferation and differentiation in these areas. The focus of this communication is to design an optimized perfusion system using computational fluid dynamics as a mathematical tool to overcome the time-consuming trial and error experimental method. We compared the flow within a circular and a rectangular bioreactor system. Flow simulations within the rectangular bioreactor are shown to overcome the limitations in the circular design. This communication challenges the circular cross-section bioreactor configuration paradigm and provides proof of the advantages of the new design over the existing one. Copyright © 2011 Wiley Periodicals, Inc.

  9. A Solar Volumetric Receiver: Influence of Absorbing Cells Configuration on Device Thermal Performance

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Shuja, S. Z.

    2017-01-01

    Thermal performance of a solar volumetric receiver incorporating the different cell geometric configurations is investigated. Triangular, hexagonal, and rectangular absorbing cells are incorporated in the analysis. The fluid volume fraction, which is the ratio of the volume of the working fluid over the total volume of solar volumetric receiver, is introduced to assess the effect of cell size on the heat transfer rates in the receiver. In this case, reducing the fluid volume fraction corresponds to increasing cell size in the receiver. SiC is considered as the cell material, and air is used as the working fluid in the receiver. The Lambert's Beer law is incorporated to account for the solar absorption in the receiver. A finite element method is used to solve the governing equation of flow and heat transfer. It is found that the fluid volume fraction has significant effect on the flow field in the solar volumetric receiver, which also modifies thermal field in the working fluid. The triangular absorbing cell gives rise to improved effectiveness of the receiver and then follows the hexagonal and rectangular cells. The second law efficiency of the receiver remains high when hexagonal cells are used. This occurs for the fluid volume fraction ratio of 0.5.

  10. Material Measurements Using Groundplane Apertures

    NASA Technical Reports Server (NTRS)

    Komisarek, K.; Dominek, A.; Wang, N.

    1995-01-01

    A technique for material parameter determination using an aperture in a groundplane is studied. The material parameters are found by relating the measured reflected field in the aperture to a numerical model. Two apertures are studied which can have a variety of different material configurations covering the aperture. The aperture cross-sections studied are rectangular and coaxial. The material configurations involved combinations of single layer and dual layers with or without a resistive exterior resistive sheet. The resistivity of the resistive sheet can be specified to simulate a perfect electric conductor (PEC) backing (0 Ohms/square) to a free space backing (infinity Ohms/square). Numerical parameter studies and measurements were performed to assess the feasibility of the technique.

  11. Design optimization of the S-frame to improve crashworthiness

    NASA Astrophysics Data System (ADS)

    Liu, Shu-Tian; Tong, Ze-Qi; Tang, Zhi-Liang; Zhang, Zong-Hua

    2014-08-01

    In this paper, the S-frames, the front side rail structures of automobile, were investigated for crashworthiness. Various cross-sections including regular polygon, non-convex polygon and multi-cell with inner stiffener sections were investigated in terms of energy absorption of S-frames. It was determined through extensive numerical simulation that a multi-cell S-frame with double vertical internal stiffeners can absorb more energy than the other configurations. Shape optimization was also carried out to improve energy absorption of the S-frame with a rectangular section. The center composite design of experiment and the sequential response surface method (SRSM) were adopted to construct the approximate design sub-problem, which was then solved by the feasible direction method. An innovative double S-frame was obtained from the optimal result. The optimum configuration of the S-frame was crushed numerically and more plastic hinges as well as shear zones were observed during the crush process. The energy absorption efficiency of the structure with the optimal configuration was improved compared to the initial configuration.

  12. Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beach, R.; Burdick, A.

    2014-03-01

    This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance. IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations. These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with fourmore » outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.« less

  13. Pitot-Pressure Measurements in Flow Fields Behind a Rectangular Nozzle with Exhaust Jet for Free-Stream Mach Numbers of 0.00, 0.60, and 1.20

    NASA Technical Reports Server (NTRS)

    Putnam, L. E.; Mercer, C. E.

    1986-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to measure the flow field in and around the jet exhaust from a nonaxisymmetric nozzle configuration. The nozzle had a rectangular exit with a width-to-height ratio of 2.38. Pitot-pressure measurements were made at five longitudinal locations downstream of the nozzle exit. The maximum distance downstream of the exit was about 5 nozzle heights. These measurements were made at free-stream Mach numbers of 0.00, 0.60, and 1.20 with the nozzle operating at a ratio of nozzle total pressure to free-stream static pressure of 4.0. The jet exhaust was simulated with high-pressure air that had an exit total temperature essentially equal to the free-stream total temperature.

  14. Role of impurities on the optical properties of rectangular graphene flakes

    NASA Astrophysics Data System (ADS)

    Sadeq, Z. S.; Muniz, Rodrigo A.; Sipe, J. E.

    2018-01-01

    We study rectangular graphene flakes using mean field states as the basis for a configuration interaction calculation, which allows us to analyze the low lying electronic excited states including electron correlations beyond the mean field level. We find that the lowest energy transition is polarized along the long axis of the flake, but the charge distributions involved in these transitions are invariably localized on the zigzag edges. We also investigate the impact of both short and long range impurity potentials on the optical properties of these systems. We predict that even a weak impurity localized at a zigzag edge of the flake can have a significant—and often dramatic—effect on its optical properties. This is in contrast to impurities localized at armchair edges or central regions of the flake, for which we predict almost no change to the optical properties of the flake even with strong impurity potentials.

  15. Optimum Solar Conversion Cell Configurations

    NASA Technical Reports Server (NTRS)

    Chen, Bin (Inventor)

    2015-01-01

    Methods for maximizing a fraction of light energy absorbed in each of three classes of light concentrators (rectangular parallelepipeds, paraboloids and prisms) by choice of incident angle of radiation and of one or more geometrical or physical parameters (absorber thickness, paraboloid dimensions, location of paraboloid focus, prism angles, concentrator material, cladding, prism angles, etc.). Alternatively, the light energy absorbed plus the light energy that escapes through non-total internal reflection within the light concentrator can be minimized.

  16. Stress-intensity factors for small surface and corner cracks in plates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Atluri, S. N.; Newman, J. C., Jr.

    1988-01-01

    Three-dimensional finite-element and finite-alternating methods were used to obtain the stress-intensity factors for small surface and corner cracked plates subjected to remote tension and bending loads. The crack-depth-to-crack-length ratios (a/c) ranged from 0.2 to 1 and the crack-depth-to-plate-thickness ratios (a/t) ranged from 0.05 to 0.2. The performance of the finite-element alternating method was studied on these crack configurations. A study of the computational effort involved in the finite-element alternating method showed that several crack configurations could be analyzed with a single rectangular mesh idealization, whereas the conventional finite-element method requires a different mesh for each configuration. The stress-intensity factors obtained with the finite-element-alternating method agreed well (within 5 percent) with those calculated from the finite-element method with singularity elements.

  17. Assessment of ALEGRA Computation for Magnetostatic Configurations

    DOE PAGES

    Grinfeld, Michael; Niederhaus, John Henry; Porwitzky, Andrew

    2016-03-01

    Here, a closed-form solution is described here for the equilibrium configurations of the magnetic field in a simple heterogeneous domain. This problem and its solution are used for rigorous assessment of the accuracy of the ALEGRA code in the quasistatic limit. By the equilibrium configuration we understand the static condition, or the stationary states without macroscopic current. The analysis includes quite a general class of 2D solutions for which a linear isotropic metallic matrix is placed inside a stationary magnetic field approaching a constant value H i° at infinity. The process of evolution of the magnetic fields inside and outsidemore » the inclusion and the parameters for which the quasi-static approach provides for self-consistent results is also explored. Lastly, it is demonstrated that under spatial mesh refinement, ALEGRA converges to the analytic solution for the interior of the inclusion at the expected rate, for both body-fitted and regular rectangular meshes.« less

  18. Numerical investigation on forced convection in rectangular cross section micro-channels with nanofluids

    NASA Astrophysics Data System (ADS)

    Buonomo, B.; Cirillo, L.; Manca, O.; Nardini, S.; Tamburrino, S.

    2017-01-01

    In this paper a numerical investigation on laminar forced convection flow of a water-Al2O3 nanofluid in a rectangular microchannel is accomplished. A constant and uniform heat flux on the external surfaces has been applied and a single-phase model approach has been employed. The analysis has been performed in steady state regime for particle size in nanofluids equal to 38 nm. The CFD commercial code Fluent has been employed in order to solve the 3-D numerical model. The geometrical configuration under consideration consists in a duct with a rectangular shaped crossing area. A steady laminar flow and different nanoparticle volume fractions have been considered. The base fluid is water and nanoparticles are made up of alumina (Al2O3). The length the edge and height of the duct are 0.030 m, 1.7 x10-7 and 1.1 x10-7 m, respectively. Results are presented in terms of temperature and velocity distributions, surface shear stress and heat transfer convective coefficient, Nusselt number and required pumping power profiles. Comparison with results related to the fluid dynamic and thermal behaviors are carried out in order to evaluate the enhancement due to the presence of nanoparticles in terms of volumetric concentration.

  19. Miniaturized dual band multislotted patch antenna on polytetrafluoroethylene glass microfiber reinforced for C/X band applications.

    PubMed

    Islam, M T; Samsuzzaman, M

    2014-01-01

    This paper introduces a new configuration of compact, triangular- and diamond-slotted, microstrip-fed, low-profile antenna for C/X band applications on polytetrafluoroethylene glass microfiber reinforced material substrate. The antenna is composed of a rectangular-shaped patch containing eight triangles and two diamond-shaped slots and an elliptical-slotted ground plane. The rectangular-shaped patch is obtained by cutting two diamond slots in the middle of the rectangular patch, six triangular slots on the left and right side of the patch, and two triangular slots on the up and down side of the patch. The slotted radiating patch, the elliptical-slotted ground plane, and the microstrip feed enable the matching bandwidth to be widened. A prototype of the optimized antenna was fabricated on polytetrafluoroethylene glass microfiber reinforced material substrate using LPKF prototyping machine and investigated to validate the proposed design. The simulated results are compared with the measured data, and good agreement is achieved. The proposed antenna offers fractional bandwidths of 13.69% (7.78-8.91 GHz) and 10.35% (9.16-10.19 GHz) where S11 < -10 dB at center frequencies of 8.25 GHz and 9.95 GHz, respectively, and relatively stable gain, good radiation efficiency, and omnidirectional radiation patterns in the matching band.

  20. Flow and Heat Transfer in 180-Degree Turn Square Ducts: Effects of Turning Configuration and System Rotation

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Chyu, Ming-King

    1993-01-01

    Forced flow through channels connected by sharp bends is frequently encountered in various rocket and gas turbine engines. For example, the transfer ducts, the coolant channels surround the combustion chamber, the internal cooling passage in a blade or vane, the flow path in the fuel element of a nuclear rocket engine, the flow around a pressure relieve valve piston, and the recirculated base flow of multiple engine clustered nozzles. Transport phenomena involved in such a flow passage are complex and considered to be very different from those of conventional turning flow with relatively mild radii of curvature. While previous research pertaining to this subject has been focused primarily on the experimental heat transfer, very little analytical work is directed to understanding the flowfield and energy transport in the passage. Therefore, the primary goal of this paper is to benchmark the predicted wall heat fluxes using a state-of-the-art computational fluid dynamics (CFD) formulation against those of measurement for a rectangular turn duct. Other secondary goals include studying the effects of turning configurations, e.g., the semi-circular turn, and the rounded-corner turn, and the effect of system rotation. The computed heat fluxes for the rectangular turn duct compared favorably with those of the experimental data. The results show that the flow pattern, pressure drop, and heat transfer characteristics are different among the three turning configurations, and are substantially different with system rotation. Also demonstrated in this work is that the present computational approach is quite effective and efficient and will be suitable for flow and thermal modeling in rocket and turbine engine applications.

  1. Numerical investigation on the performance of fin and tube heat exchangers using rectangular vortex generators

    NASA Astrophysics Data System (ADS)

    Zeeshan, Mohd; Hazarika, Saheera Azmi; Nath, Sujit; Bhanja, Dipankar

    2017-07-01

    In the present work, a 3-D numerical investigation has been performed to explore the effect of attack angles on the thermal-hydraulic performance of fin and tube heat exchanger (FTHE) using rectangular winglet pairs (RWPs). RWPs are placed adjacent to the tubes and three attack angels are considered for the study i.e. 5°, 15° and 25°. The effect of attack angles are examined on the heat transfer characteristics as well as in pressure drop penalty with airside Reynolds number Rea ranges from 500 to 900. Two performance evaluation criteria namely PEC1 i.e. area goodness factor (j/f) and PEC2 i.e. heat transfer rate per unit fan power consumption (Q/Pf) are considered for the performance evaluation. Furthermore, MOORA method is applied to obtain the performance order of FTHE configurations by taking PEC1 and PEC2 as beneficial attributes and fan power Pf as a non-beneficial attribute, keeping equal importance to each attribute. The results show that 5° attack angle provides the better performance in terms of PEC1 as heat transfer coefficient is increased by 27.70% at Rea=500 and 32.73% at Rea=900 respectively with 13.01% increased pressure drop penalty at Rea=500 and 14.26% at Rea=900 respectively. In terms of PEC2, though the 5° attack angle provides the high values of Q/Pf factor among the 15° and 25° attack angles, but it is found insignificant to replace the baseline configuration i.e. plain fin and tube heat exchanger configuration without vortex generators. Moreover, in MOORA optimization analysis also, it is found that 5° attack angle provides the better thermal-hydraulic performance.

  2. Electrostatic focusing of directly heated linear filament gun using EGUN

    NASA Astrophysics Data System (ADS)

    Iqbal, Munawar; Lodhi, M. A. K.; Majeed, Zahid; Batani, Dimitri

    2011-06-01

    This paper presents the optimization of a line source rectangular electron gun using electrostatic focusing. We optimized the gun by shaping the configuration of its electrodes in order to achieve the desired focusing characteristics, namely maximum focusing distance and minimum beam spread. The optimization has been carried out using the software EGUN. We have also simplified the gun design using only one focusing electrode at the same potential as that of the cathode and by avoiding magnetic focusing field, separate focusing electrodes and additional power supply, thus minimizing the cost without any loss in its accuracy and efficient performance. This gun with the optimum configuration was used in actual experiment and the results of the simulation were compared with the experimental measurements.

  3. Electromagnetic Monitoring and Control of a Plurality of Nanosatellites

    NASA Technical Reports Server (NTRS)

    Soloway, Donald I. (Inventor)

    2017-01-01

    A method for monitoring position of and controlling a second nanosatellite (NS) relative to a position of a first NS. Each of the first and second NSs has a rectangular or cubical configuration of independently activatable, current-carrying solenoids, each solenoid having an independent magnetic dipole moment vector, .mu.1 and .mu.2. A vector force F and a vector torque are expressed as linear or bilinear combinations of the first set and second set of magnetic moments, and a distance vector extending between the first and second NSs is estimated. Control equations are applied to estimate vectors, .mu.1 and .mu.2, required to move the NSs toward a desired NS configuration. This extends to control of N nanosatellites.

  4. The waveguide laser - A review

    NASA Technical Reports Server (NTRS)

    Degnan, J. J.

    1976-01-01

    The present article reviews the fundamental physical principles essential to an understanding of waveguide gas and liquid lasers, and the current technological state of these devices. At the present time, waveguide laser transitions span the visible through submillimeter regions of the wavelength spectrum. The introduction discusses the many applications of waveguide lasers and the wide variety of laser configurations that are possible. Section 1 summarizes the properties of modes in hollow dielectric waveguides of circular, rectangular, and planar cross section. Section 2 considers various approaches to optical feedback including internal and external mirror Fabry-Perot type resonators, hollow waveguide distributed feedback structures, and ring-resonant configurations. Section 3 discusses those aspects of molecular kinetic and laser theory pertinent to the design and optimization of waveguide gas lasers.

  5. Application of multigrid methods to the solution of liquid crystal equations on a SIMD computer

    NASA Technical Reports Server (NTRS)

    Farrell, Paul A.; Ruttan, Arden; Zeller, Reinhardt R.

    1993-01-01

    We will describe a finite difference code for computing the equilibrium configurations of the order-parameter tensor field for nematic liquid crystals in rectangular regions by minimization of the Landau-de Gennes Free Energy functional. The implementation of the free energy functional described here includes magnetic fields, quadratic gradient terms, and scalar bulk terms through the fourth order. Boundary conditions include the effects of strong surface anchoring. The target architectures for our implementation are SIMD machines, with interconnection networks which can be configured as 2 or 3 dimensional grids, such as the Wavetracer DTC. We also discuss the relative efficiency of a number of iterative methods for the solution of the linear systems arising from this discretization on such architectures.

  6. Heat pipe design handbook, part 2. [digital computer code specifications

    NASA Technical Reports Server (NTRS)

    Skrabek, E. A.

    1972-01-01

    The utilization of a digital computer code for heat pipe analysis and design (HPAD) is described which calculates the steady state hydrodynamic heat transport capability of a heat pipe with a particular wick configuration, the working fluid being a function of wick cross-sectional area. Heat load, orientation, operating temperature, and heat pipe geometry are specified. Both one 'g' and zero 'g' environments are considered, and, at the user's option, the code will also perform a weight analysis and will calculate heat pipe temperature drops. The central porous slab, circumferential porous wick, arterial wick, annular wick, and axial rectangular grooves are the wick configurations which HPAD has the capability of analyzing. For Vol. 1, see N74-22569.

  7. Slab reformer

    DOEpatents

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  8. Slab reformer

    DOEpatents

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1985-03-12

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  9. Slab reformer

    NASA Technical Reports Server (NTRS)

    Spurrier, Francis R. (Inventor); DeZubay, Egon A. (Inventor); Murray, Alexander P. (Inventor); Vidt, Edward J. (Inventor)

    1984-01-01

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  10. Optimal domain decomposition strategies

    NASA Technical Reports Server (NTRS)

    Yoon, Yonghyun; Soni, Bharat K.

    1995-01-01

    The primary interest of the authors is in the area of grid generation, in particular, optimal domain decomposition about realistic configurations. A grid generation procedure with optimal blocking strategies has been developed to generate multi-block grids for a circular-to-rectangular transition duct. The focus of this study is the domain decomposition which optimizes solution algorithm/block compatibility based on geometrical complexities as well as the physical characteristics of flow field. The progress realized in this study is summarized in this paper.

  11. Slab reformer

    NASA Technical Reports Server (NTRS)

    Spurrier, Francis R. (Inventor); DeZubay, Egon A. (Inventor); Murray, Alexander P. (Inventor); Vidt, Edward J. (Inventor)

    1985-01-01

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  12. Gestalt grouping via closure degrades suprathreshold depth percepts.

    PubMed

    Deas, Lesley M; Wilcox, Laurie M

    2014-08-19

    It is well known that the perception of depth is susceptible to changes in configuration. For example, stereoscopic precision for a pair of vertical lines can be dramatically reduced when these lines are connected to form a closed object. Here, we extend this paradigm to suprathreshold estimates of perceived depth. Using a touch-sensor, observers made quantitative estimates of depth between a vertical line pair presented in isolation or as edges of a closed rectangular object with different figural interpretations. First, we show that the amount of depth estimated within a closed rectangular object is consistently reduced relative to the vertical edges presented in isolation or when they form the edges of two segmented objects. We then demonstrate that the reduction in perceived depth for closed objects is modulated by manipulations that influence perceived closure of the central figure. Depth percepts were most disrupted when the horizontal connectors and vertical lines matched in color. Perceived depth increased slightly when the connectors had opposite contrast polarity, but increased dramatically when flankers were added. Thus, as grouping cues were added to counter the interpretation of a closed object, the depth degradation effect was systematically eliminated. The configurations tested here rule out explanations based on early, local interactions such as inhibition or cue conflict; instead, our results provide strong evidence of the impact of Gestalt grouping, via closure, on depth magnitude percepts from stereopsis. © 2014 ARVO.

  13. Effects of deflected thrust on the longitudinal aerodynamic characteristics of a close-coupled wing-canard configuration. [in the Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Yip, L. P.; Paulson, J. W., Jr.

    1977-01-01

    The effects of power on the longitudinal aerodynamic characteristics of a close-coupled wing-canard fighter configuration with partial-span rectangular nozzles at the trailing edge of the wing were investigated. Data were obtained on a basic wing-strake configuration for nozzle and flap deflections from 0 deg to 30 deg and for nominal thrust coefficients from 0 to 0.30. The model was tested over an angle-of-attack range from -2 deg to 40 deg at Mach numbers of 0.15 and 0.18. Results show substantial improvements in lift-curve slope, in maximum lift, and in drag-due-to-lift efficiency when the canard and strakes have been added to the basic wing-fuselage (wing-alone) configuration. Addition of power increased both lift-curve slope and maximum lift, improved longitudinal stability, and reduced drag due to lift on both the wing-canard and wing-canard-strake configurations. These beneficial effects are primarily derived from boundary-layer control due to moderate thrust coefficients which delay flow separation on the nozzle and inboard portion of the wing flaps.

  14. Physical vapor transport of mercurous chloride under a nonlinear thermal profile

    NASA Technical Reports Server (NTRS)

    Mennetrier, Christophe; Duval, Walter M. B.; Singh, Narsingh B.

    1992-01-01

    Our study investigates numerically the flow field characteristics during the growth of mercurous chloride (Hg2Cl2) crystals in a rectangular ampoule under terrestrial and microgravity conditions for a nonlinear thermal gradient. With a residual gas lighter than the nutrient, the solutal Grashof number is dominant. We observe that in tilted configurations, when solutal convection is dominant, the maximum transport rate occurs at approximately 40 percent. For the vertical configurations, we were able to obtain solutions only for the cases either below the critical Rayleigh numbers or the stabilized configurations. The total mass flux decreases exponentially with an increase of pressure of residual gas, but it increases following a power law with the temperature difference driving the transport. The nonlinear thermal gradient appears to destabilize the flow field when thermal convection is dominant for both vertical top-heated and bottom-heated configurations. However, when the solutal Grashof number is dominant, the density gradient resulting from the solutal gradient appears to stabilize the flow for the bottom-heated configuration. The flow field for the top-heated configuration is destabilized for high Grashof numbers. The microgravity environment provides a means for lowering convection. For gravity levels of 10(exp -3) g(0) or less, the Stefan wind drives the flow, and no recirculating cell is predicted.

  15. Jammed systems of oriented needles always percolate on square lattices

    NASA Astrophysics Data System (ADS)

    Kondrat, Grzegorz; Koza, Zbigniew; Brzeski, Piotr

    2017-08-01

    Random sequential adsorption (RSA) is a standard method of modeling adsorption of large molecules at the liquid-solid interface. Several studies have recently conjectured that in the RSA of rectangular needles, or k -mers, on a square lattice, percolation is impossible if the needles are sufficiently long (k of order of several thousand). We refute these claims and present rigorous proof that in any jammed configuration of nonoverlapping, fixed-length, horizontal, or vertical needles on a square lattice, all clusters are percolating clusters.

  16. Conductor for a fluid-cooled winding

    DOEpatents

    Kenney, Walter J.

    1983-01-01

    A conductor and method of making the conductor are provided for use in winding electrical coils which are cooled by a fluid communicating with the conductor. The conductor is cold worked through twisting and reshaping steps to form a generally rectangular cross section conductor having a plurality of helical cooling grooves extending axially of the conductor. The conductor configuration makes it suitable for a wide variety of winding applications and permits the use of simple strip insulation between turns and perforated sheet insulation between layers of the winding.

  17. Slab reformer

    DOEpatents

    Spurrier, F.R.; DeZubay, E.A.; Murray, A.P.; Vidt, E.J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations are disclosed particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant. 14 figs.

  18. Crystalline embryos at ice-vapor interfaces

    NASA Technical Reports Server (NTRS)

    Bartley, D. L.

    1976-01-01

    The nucleation of small monolayer ice-like clusters at the basal and prism ice-vapor interfaces is considered. It is found that the basal surfaces prefer triangular embryos with an orientation that reverses from layer to layer, whereas the most stable clusters on the prism surfaces are rectangular in configuration. At any given saturation ratio, the preferred prism clusters are found to have a critical energy of formation significantly lower than that of the basal clusters, basically because of differences in cluster corner free energies.

  19. Aircraft noise propagation. [sound diffraction by wings

    NASA Technical Reports Server (NTRS)

    Hadden, W. J.; Pierce, A. D.

    1978-01-01

    Sound diffraction experiments conducted at NASA Langley Research Center to study the acoustical implications of the engine over wing configuration (noise-shielding by wing) and to provide a data base for assessing various theoretical approaches to the problem of aircraft noise reduction are described. Topics explored include the theory of sound diffraction around screens and wedges; the scattering of spherical waves by rectangular patches; plane wave diffraction by a wedge with finite impedence; and the effects of ambient flow and distribution sources.

  20. Spring constant of a tuning-fork sensor for dynamic force microscopy

    PubMed Central

    Lange, Manfred; Schmuck, Merlin; Schmidt, Nico; Möller, Rolf

    2012-01-01

    Summary We present an overview of experimental and numerical methods to determine the spring constant of a quartz tuning fork in qPlus configuration. The simple calculation for a rectangular cantilever is compared to the values obtained by the analysis of the thermal excitation and by the direct mechanical measurement of the force versus displacement. To elucidate the difference, numerical simulations were performed taking account of the real geometry including the glue that is used to mount the tuning fork. PMID:23365793

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hen, Itay; Karliner, Marek

    We study the zero-temperature crystalline structure of baby Skyrmions by applying a full-field numerical minimization algorithm to baby Skyrmions placed inside different parallelogramic unit cells and imposing periodic boundary conditions. We find that within this setup, the minimal energy is obtained for the hexagonal lattice, and that in the resulting configuration the Skyrmion splits into quarter Skyrmions. In particular, we find that the energy in the hexagonal case is lower than the one obtained on the well-studied rectangular lattice, in which splitting into half Skyrmions is observed.

  2. Modeling Vortex Generators in the Wind-US Code

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.

    2010-01-01

    A source term model which simulates the effects of vortex generators was implemented into the Wind-US Navier Stokes code. The source term added to the Navier-Stokes equations simulates the lift force which would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, supersonic flow in a rectangular duct with a counterrotating vortex generator pair, and subsonic flow in an S-duct with 22 co-rotating vortex generators. The validation results indicate that the source term vortex generator model provides a useful tool for screening vortex generator configurations and gives comparable results to solutions computed using a gridded vane.

  3. Experimental investigation of crossflow jet mixing in a rectangular duct

    NASA Technical Reports Server (NTRS)

    Liscinsky, D. S.; True, B.; Holdeman, J. D.

    1993-01-01

    An experimental investigation of the mixing of nonreacting opposed rows of jets injected normal to a confined rectangular crossflow has been conducted. Planar Mie-scattering was used to measure the time-average concentration distribution of the jet fluid in planes perpendicular to the duct axis. The mixing effectiveness of round orifice injectors was measured as a function of orifice spacing and orifice diameter. Mixing effectiveness was determined using a spatial unmixedness parameter based on the variance of mean jet concentration distributions. Optimum mixing was obtained when the spacing-to-duct height ratio was inversely proportional to the square root of the jet-to-mainstream momentum-flux ratio. For opposed rows of round holes with centerlines inline, mixing was similar for blockages up to 75 percent. Lower levels of unmixedness were obtained as a function of downstream location when axial injection length was minimized. Mixing may be enhanced if orifice centerlines of opposed rows are staggered, but note that blockage must be less than 50 percent for this configuration.

  4. Effects of van der Waals Force and Thermal Stresses on Pull-in Instability of Clamped Rectangular Microplates

    PubMed Central

    Batra, Romesh C.; Porfiri, Maurizio; Spinello, Davide

    2008-01-01

    We study the influence of von Kármán nonlinearity, van der Waals force, and thermal stresses on pull-in instability and small vibrations of electrostatically actuated microplates. We use the Galerkin method to develop a tractable reduced-order model for electrostatically actuated clamped rectangular microplates in the presence of van der Waals forces and thermal stresses. More specifically, we reduce the governing two-dimensional nonlinear transient boundary-value problem to a single nonlinear ordinary differential equation. For the static problem, the pull-in voltage and the pull-in displacement are determined by solving a pair of nonlinear algebraic equations. The fundamental vibration frequency corresponding to a deflected configuration of the microplate is determined by solving a linear algebraic equation. The proposed reduced-order model allows for accurately estimating the combined effects of van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflection profile with an extremely limited computational effort. PMID:27879752

  5. Asymptotic modal analysis of a rectangular acoustic cavity excited by wall vibration

    NASA Technical Reports Server (NTRS)

    Peretti, Linda F.; Dowell, Earl H.

    1992-01-01

    Asymptotic modal analysis, a method that has recently been developed for structural dynamical systems, has been applied to a rectangular acoustic cavity. The cavity had a flexible vibrating portion on one wall, and the other five walls were rigid. Banded white noise was transmitted through the flexible portion (plate) only. Both the location along the wall and the size of the plate were varied. The mean square pressure levels of the cavity interior were computed as a ratio of the result obtained from classical modal analysis to that obtained from asymptotic modal analysis for the various plate configurations. In general, this ratio converged to 1.0 as the number of responding modes increased. Intensification effects were found due to both the excitation location and the response location. The asymptotic modal analysis method was both efficient and accurate in solving the given problem. The method has advantages over the traditional methods that are used for solving dynamics problems with a large number of responding modes.

  6. Aspect Ratio of Receiver Node Geometry based Indoor WLAN Propagation Model

    NASA Astrophysics Data System (ADS)

    Naik, Udaykumar; Bapat, Vishram N.

    2017-08-01

    This paper presents validation of indoor wireless local area network (WLAN) propagation model for varying rectangular receiver node geometry. The rectangular client node configuration is a standard node arrangement in computer laboratories of academic institutes and research organizations. The model assists to install network nodes for the better signal coverage. The proposed model is backed by wide ranging real time received signal strength measurements at 2.4 GHz. The shadow fading component of signal propagation under realistic indoor environment is modelled with the dependency on varying aspect ratio of the client node geometry. The developed new model is useful in predicting indoor path loss for IEEE 802.11b/g WLAN. The new model provides better performance in comparison to well known International Telecommunication Union and free space propagation models. It is shown that the proposed model is simple and can be a useful tool for indoor WLAN node deployment planning and quick method for the best utilisation of the office space.

  7. Effects of van der Waals Force and Thermal Stresses on Pull-in Instability of Clamped Rectangular Microplates.

    PubMed

    Batra, Romesh C; Porfiri, Maurizio; Spinello, Davide

    2008-02-15

    We study the influence of von Karman nonlinearity, van der Waals force, and a athermal stresses on pull-in instability and small vibrations of electrostatically actuated mi-croplates. We use the Galerkin method to develop a tractable reduced-order model for elec-trostatically actuated clamped rectangular microplates in the presence of van der Waals forcesand thermal stresses. More specifically, we reduce the governing two-dimensional nonlineartransient boundary-value problem to a single nonlinear ordinary differential equation. For thestatic problem, the pull-in voltage and the pull-in displacement are determined by solving apair of nonlinear algebraic equations. The fundamental vibration frequency corresponding toa deflected configuration of the microplate is determined by solving a linear algebraic equa-tion. The proposed reduced-order model allows for accurately estimating the combined effectsof van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflectionprofile with an extremely limited computational effort.

  8. A computer program to calculate the longitudinal aerodynamic characteristics of upper-surface-blown wing-flap configurations

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.

    1978-01-01

    A user's manual is presented for a computer program in which a vortex-lattice lifting-surface method is used to model the wing and multiple flaps. The engine wake model consists of a series of closely spaced vortex rings with rectangular cross sections. The jet wake is positioned such that the lower boundary of the jet is tangent to the wing and flap upper surfaces. The two potential flow models are used to calculate the wing-flap loading distribution including the influence of the wakes from up to two engines on the semispan. The method is limited to the condition where the flow and geometry of the configurations are symmetric about the vertical plane containing the wing root chord. The results include total configuration forces and moments, individual lifting-surface load distributions, pressure distributions, flap hinge moments, and flow field calculation at arbitrary field points. The use of the program, preparation of input, the output, program listing, and sample cases are described.

  9. Alternate space station freedom configuration considerations to accommodate solar dynamic power

    NASA Technical Reports Server (NTRS)

    Deryder, L. J.; Cruz, J. N.; Heck, M. L.; Robertson, B. P.; Troutman, P. A.

    1989-01-01

    The results of a technical audit of the Space Station Freedom Program conducted by the Program Director was announced in early 1989 and included a proposal to use solar dynamic power generation systems to provide primary electrical energy for orbital flight operations rather than photovoltaic solar array systems. To generate the current program baseline power of 75 kW, two or more solar concentrators approximately 50 feet in diameter would be required to replace four pairs of solar arrays whose rectangular blanket size is approximately 200 feet by 30 feet. The photovoltaic power system concept uses solar arrays to generate electricity that is stored in nickel-hydrogen batteries. The proposed concept uses the solar concentrator dishes to reflect and focus the Sun's energy to heat helium-xenon gas to drive electricity generating turbines. The purpose here is to consider the station configuration issues for incorporation of solar dynamic power system components. Key flight dynamic configuration geometry issues are addressed and an assembly sequence scenario is developed.

  10. Advanced designs for non-imaging submillimeter-wave Winston cone concentrators

    NASA Astrophysics Data System (ADS)

    Nelson, A. O.; Grossman, E. N.

    2014-05-01

    We describe the design and simulation of several non-imaging concentrators designed to couple submillimeter wavelength radiation from free space into highly overmoded, rectangular, WR-10 waveguide. Previous designs are altered to improve the uniformity of efficiency rather than the efficiency itself. The concentrators are intended for use as adapters between instruments using overmoded WR-10 waveguide as input or output and sources propagating through free space. Previous simulation and measurement have shown that the angular response is primarily determined by the Winston cone and is well predicted by geometric optics theory while the efficiencies are primarily determined by the transition section. Additionally, previous work has shown insensitivity to polarization, orientation and beam size. Several separate concentrator designs are studied, all of which use a Winston cone (also known as a compound parabolic concentrator) with an input diameter ranging from 4 mm to 16 mm, and "throat" diameters of less than 0.5 mm to 4 mm as the initial interface. The use of various length adiabatic circular-to-rectangular transition sections is investigated, along with the effect of an additional, 25 mm waveguide section designed to model the internal waveguide of the power meter. Adapters without a transition section and a rectangular Winston cone throat aperture and double cone configurations are also studied. Adapters are analyzed in simulation for consistent efficiency across the opening aperture.

  11. Miniaturized Dual Band Multislotted Patch Antenna on Polytetrafluoroethylene Glass Microfiber Reinforced for C/X Band Applications

    PubMed Central

    Islam, M. T.; Samsuzzaman, M.

    2014-01-01

    This paper introduces a new configuration of compact, triangular- and diamond-slotted, microstrip-fed, low-profile antenna for C/X band applications on polytetrafluoroethylene glass microfiber reinforced material substrate. The antenna is composed of a rectangular-shaped patch containing eight triangles and two diamond-shaped slots and an elliptical-slotted ground plane. The rectangular-shaped patch is obtained by cutting two diamond slots in the middle of the rectangular patch, six triangular slots on the left and right side of the patch, and two triangular slots on the up and down side of the patch. The slotted radiating patch, the elliptical-slotted ground plane, and the microstrip feed enable the matching bandwidth to be widened. A prototype of the optimized antenna was fabricated on polytetrafluoroethylene glass microfiber reinforced material substrate using LPKF prototyping machine and investigated to validate the proposed design. The simulated results are compared with the measured data, and good agreement is achieved. The proposed antenna offers fractional bandwidths of 13.69% (7.78–8.91 GHz) and 10.35% (9.16–10.19 GHz) where S11 < −10 dB at center frequencies of 8.25 GHz and 9.95 GHz, respectively, and relatively stable gain, good radiation efficiency, and omnidirectional radiation patterns in the matching band. PMID:24987742

  12. Spectral Optical Readout of Rectangular-Miniature Hollow Glass Tubing for Refractive Index Sensing.

    PubMed

    Rigamonti, Giulia; Bello, Valentina; Merlo, Sabina

    2018-02-16

    For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances.

  13. Spacesuit Water Membrane Evaporator Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Vogel, Matt R.; Peterson, Keith; Zapata, Felipe, III; Dillon, Paul; Trevino, Luis A.

    2008-01-01

    For future lunar extra-vehicular activities (EVA), one method under consideration for rejecting crew and electronics heat involves evaporating water through a hydrophobic, porous Teflon membrane. A Spacesuit Water Membrane Evaporator (SWME) prototype using the Teflon membrane was tested successfully by Ungar and Thomas (2001) with predicted performance matching test data well. The above referenced work laid the foundation for the design of the SWME development unit, which is being considered for service in the Constellation System Spacesuit Element (CSSE) Portable Life Support System (PLSS). Multiple PLSS SWME configurations were considered on the basis of thermal performance, mass, volume, and performance and manufacturing risk. All configurations were a variation of an alternating concentric water and vapor channel configuration or a stack of alternating rectangular water and vapor channels. Supporting thermal performance trades mapped maximum SWME heat rejection as a function of water channel thickness, vapor channel thickness, channel length, number of water channels, porosity of the membrane structural support, and backpressure valve throat area. Preliminary designs of each configuration were developed to determine total mass and volume as well as to understand manufacturing issues. Review of configurations led to the selection of a concentric annulus configuration that meets the requirements of 800 watts (W) of heat rejection. Detailed design of the SWME development unit will be followed by fabrication of a prototype test unit, with thermal testing expected to start in 2008.

  14. Tunable fiber Bragg grating ring lasers using macro fiber composite actuators

    NASA Astrophysics Data System (ADS)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-10-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley's optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from -500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG's holds promise for enhanced tunability in future research.

  15. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  16. Mooring Design Selection of Aquaculture Cage for Indonesian Ocean

    NASA Astrophysics Data System (ADS)

    Mulyadi, Y.; Syahroni, N.; Sambodho, K.; Zikra, M.; Wahyudi; Adia, H. B. P.

    2018-03-01

    Fish production is important for the economy in fishing community and for ensuring food security. Climate change will lead a threat to fish productivity. Therefore, a solution offered is to cultivate certain fish, especially those with high economic value by using offshore aquaculture technology. A Sea Station cage is one of the offshore aquaculture cage model that has been used in some locations. As a floating structure, the Sea Station cage need a mooring system to maintain its position. This paper presents the selection analysis of the mooring system designs of the Sea Station cage model that it is suitable with Indonesia Ocean. There are 3 mooring configurations that are linear array, rectangular array, and 4 points mooring type. The nylon mooring rope type has been selected to be used on the 3 mooring configurations and the rope has a diameter of 104 mm with a breaking force of 2.3 MN. Based on results from comparing the 3 mooring configurations, the best mooring configuration is linear array with the tension on the rope of 217 KN and has the safety factor of 0.2 based on DNVGL OS-E301

  17. Primary zone dynamics in a gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Sullivan, J. P.; Barron, D.; Seal, M.; Morgan, D.; Murthy, S. N. B.

    1989-01-01

    Fluid mechanical investigations simulating the flow in the primary zone of a gas turbine combustor are presented using three generic test rigs: (1) rotating pipe yielding a swirling jet of air; (2) primary zone model with a single swirler and various primary jet configurations, operated with air; and (3) two rectangular models of a (stretched-out) annular combustor with five swirlers in the backwall and with various primary jet configurations, one operated with air and the other with water. Concentration measurements are obtained using laser sheet imaging techniques and velocity measurements using a laser Doppler velocimeter. The results show recirculation zones, intense mixing, instabilities of the interacting jets and the presence of large random vortical motions. The flowfields are shown to exhibit bimodal behavior, have asymmetries despite symmetrical geometry and inlet conditions and display strong jet/swirler and swirler/swirler interactions.

  18. Design of three-dimensional scramjet inlets for hypersonic propulsion

    NASA Technical Reports Server (NTRS)

    Simmons, J. M.; Weidner, E. H.

    1986-01-01

    The paper outlines an approach to the design of three-dimensional inlets for scramjet engines. The basis of the techniques used is the method of streamline tracing through an inviscid axisymmetric flow field. A technique is described for making a smooth change of cross-section shape from rectangular to circular. A feature is the considerable use of computer-graphics to provide a 'user-oriented' procedure which can produce promising design configurations for subsequent analysis with CFD codes. An example is given to demonstrate the capabilities of the design techniques.

  19. Time-Dependent Thermally-Driven Interfacial Flows in Multilayered Fluid Structures

    NASA Technical Reports Server (NTRS)

    Haj-Hariri, Hossein; Borhan, A.

    1996-01-01

    A computational study of thermally-driven convection in multilayered fluid structures will be performed to examine the effect of interactions among deformable fluid-fluid interfaces on the structure of time-dependent flow in these systems. Multilayered fluid structures in two models configurations will be considered: the differentially heated rectangular cavity with a free surface, and the encapsulated cylindrical liquid bridge. An extension of a numerical method developed as part of our recent NASA Fluid Physics grant will be used to account for finite deformations of fluid-fluid interfaces.

  20. Advanced Filters and Components for Power Applications

    DTIC Science & Technology

    2006-08-31

    PCB with a rectangular and circular coil version on each board. The printed windings are placed in an end-tapped configuration, with the winding...of fiat circular loops of various diameters in a system without magnetic material. We have found that the most accurate prediction for this...application is that of [31]. The formula for mutual inductance of circular traces is: Mt=°T f 00 S(kr2, kri)S(ka 2 , kai)Q(kh)e-k zdk (3.2) h2ln (rf) In (az) J0

  1. Flutter of a Low-Aspect-Ratio Rectangular Wing

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.

    1989-01-01

    A flutter test of a low-aspect-ratio rectangular wing was conducted in the Langley Transonic Dynamics Tunnel (TDT). The model used in this flutter test consisted of a rigid wing mounted to the wind-tunnel wall by a flexible, rectangular beam. The flexible support shaft was connected to the wing root and was cantilever mounted to the wind-tunnel wall. The wing had an aspect ratio of 1.5 based on the wing semispan and an NACA 64A010 airfoil shape. The flutter boundary of the model was determined for a Mach number range of 0.5 to 0.97. The shape of the transonic flutter boundary was determined. Actual flutter points were obtained on both the subsonic and supersonic sides of the flutter bucket. The model exhibited a deep transonic flutter bucket over a narrow range of Mach number. At some Mach numbers, the flutter conditions were extrapolated using a subcritical response technique. In addition to the basic configuration, modifications were made to the model structure such that the first bending frequency was changed without significantly affecting the first torsion frequency. The experiment showed that increasing the bending stiffness of the model support shaft through these modifications lowered the flutter dynamic pressure. Flutter analysis was conducted for the basic model as a comparison with the experimental results. This flutter analysis was conducted with subsonic lifting-surface (kernel function) aerodynamics using the k method for the flutter solution.

  2. Solving three-body-breakup problems with outgoing-flux asymptotic conditions

    NASA Astrophysics Data System (ADS)

    Randazzo, J. M.; Buezas, F.; Frapiccini, A. L.; Colavecchia, F. D.; Gasaneo, G.

    2011-11-01

    An analytically solvable three-body collision system (s wave) model is used to test two different theoretical methods. The first one is a configuration interaction expansion of the scattering wave function using a basis set of Generalized Sturmian Functions (GSF) with purely outgoing flux (CISF), introduced recently in A. L. Frapicinni, J. M. Randazzo, G. Gasaneo, and F. D. Colavecchia [J. Phys. B: At. Mol. Opt. Phys.JPAPEH0953-407510.1088/0953-4075/43/10/101001 43, 101001 (2010)]. The second one is a finite element method (FEM) calculation performed with a commercial code. Both methods are employed to analyze different ways of modeling the asymptotic behavior of the wave function in finite computational domains. The asymptotes can be simulated very accurately by choosing hyperspherical or rectangular contours with the FEM software. In contrast, the CISF method can be defined both in an infinite domain or within a confined region in space. We found that the hyperspherical (rectangular) FEM calculation and the infinite domain (confined) CISF evaluation are equivalent. Finally, we apply these models to the Temkin-Poet approach of hydrogen ionization.

  3. Sharp organic interface of molecular C60 chains and a pentacene derivative SAM on Au(788): A combined STM & DFT study

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Tang, Jian-Ming; Larson, Amanda M.; Miller, Glen P.; Pohl, Karsten

    2013-12-01

    Controlling the molecular structure of the donor-acceptor interface is essential to overcoming the efficiency bottleneck in organic photovoltaics. We present a study of self-assembled fullerene (C60) molecular chains on perfectly ordered 6,13-dichloropentacene (DCP) monolayers forming on a vicinal Au(788) surface using scanning tunneling microscopy in conjunction with density functional theory calculations. DCP is a novel pentacene derivative optimized for photovoltaic applications. The molecules form a brick-wall patterned centered rectangular lattice with the long axis parallel to the monatomic steps that separate the 3.9 nm wide Au(111) terraces. The strong interaction between the C60 molecules and the gold substrate is well screened by the DCP monolayer. At submonolayer C60 coverage, the fullerene molecules form long parallel chains, 1.1 nm apart, with a rectangular arrangement instead of the expected close-packed configuration along the upper step edges. The perfectly ordered DCP structure is unaffected by the C60 chain formation. The controlled sharp highly-ordered organic interface has the potential to improve the conversion efficiency in organic photovoltaics.

  4. Modeling Vortex Generators in a Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.

    2011-01-01

    A source-term model that simulates the effects of vortex generators was implemented into the Wind-US Navier-Stokes code. The source term added to the Navier-Stokes equations simulates the lift force that would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, subsonic flow in an S-duct with 22 corotating vortex generators, and supersonic flow in a rectangular duct with a counter-rotating vortex-generator pair. The model was also used to successfully simulate microramps in supersonic flow by treating each microramp as a pair of vanes with opposite angles of incidence. The validation results indicate that the source-term vortex-generator model provides a useful tool for screening vortex-generator configurations and gives comparable results to solutions computed using gridded vanes.

  5. A Novel, Real-Valued Genetic Algorithm for Optimizing Radar Absorbing Materials

    NASA Technical Reports Server (NTRS)

    Hall, John Michael

    2004-01-01

    A novel, real-valued Genetic Algorithm (GA) was designed and implemented to minimize the reflectivity and/or transmissivity of an arbitrary number of homogeneous, lossy dielectric or magnetic layers of arbitrary thickness positioned at either the center of an infinitely long rectangular waveguide, or adjacent to the perfectly conducting backplate of a semi-infinite, shorted-out rectangular waveguide. Evolutionary processes extract the optimal physioelectric constants falling within specified constraints which minimize reflection and/or transmission over the frequency band of interest. This GA extracted the unphysical dielectric and magnetic constants of three layers of fictitious material placed adjacent to the conducting backplate of a shorted-out waveguide such that the reflectivity of the configuration was 55 dB or less over the entire X-band. Examples of the optimization of realistic multi-layer absorbers are also presented. Although typical Genetic Algorithms require populations of many thousands in order to function properly and obtain correct results, verified correct results were obtained for all test cases using this GA with a population of only four.

  6. Technical activities of the configuration aeroelasticity branch

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R. (Editor)

    1991-01-01

    A number of recent technical activities of the Configuration Aeroelasticity Branch of the NASA Langley Research Center are discussed in detail. The information on the research branch is compiled in twelve separate papers. The first of these topics is a summary of the purpose of the branch, including a full description of the branch and its associated projects and program efforts. The next ten papers cover specific projects and are as follows: Experimental transonic flutter characteristics of supersonic cruise configurations; Aeroelastic effects of spoiler surfaces mounted on a low aspect ratio rectangular wing; Planform curvature effects on flutter of 56 degree swept wing determined in Transonic Dynamics Tunnel (TDT); An introduction to rotorcraft testing in TDT; Rotorcraft vibration reduction research at the TDT; A preliminary study to determine the effects of tip geometry on the flutter of aft swept wings; Aeroelastic models program; NACA 0012 pressure model and test plan; Investigation of the use of extension twist coupling in composite rotor blades; and Improved finite element methods for rotorcraft structures. The final paper describes the primary facility operation by the branch, the Langley TDT.

  7. Application of characteristic time concepts for hydraulic fracture configuration design, control, and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advani, S.H.; Lee, T.S.; Moon, H.

    1992-10-01

    The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracturemore » toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.« less

  8. Application of characteristic time concepts for hydraulic fracture configuration design, control, and optimization. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advani, S.H.; Lee, T.S.; Moon, H.

    1992-10-01

    The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracturemore » toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.« less

  9. Switching fields and their distributions in rounded-rectangle [Co/Pd]8 nanodots and nanorings with identical configuration

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Wang, Y.; He, X. D.; Adeyeye, A. O.

    2018-04-01

    We present two different types of magnetization reversal behaviors for the identically-configured Co/Pd multilayers with rounded-rectangular nanodots and nanorings for various edge-to-edge distances (s), by using focused magneto-optic Kerr measurements and magnetic force microscopy measurements. For the nanodots with a fixed outer diameter of d = 580 nm, the switching field Hsw and switching field distribution (SFD) are almost invariant with respect to s. However, the Hsw and SFD for the nanodot arrays could be easily modulated by varying d, which is ascribed to the size effect. In contrast, the Hsw and SFD are strongly dependent on s for the nanorings. Compared to the strongly coupled magnetic moments of the closely-packed nanorings, the magnetostatic interaction among nanodots is negligible, which should be responsible for the observed different magnetization reversal behaviors.

  10. Knudsen torque: A rotational mechanism driven by thermal force

    NASA Astrophysics Data System (ADS)

    Li, Qi; Liang, Tengfei; Ye, Wenjing

    2014-09-01

    Thermally induced mechanical loading has been shown to have significant effects on micro- and nano-objects immersed in a gas with a nonuniform temperature field. While the majority of existing studies and related applications focus on forces, we investigate the torque, and thus the rotational motion, produced by such a mechanism. Our study has found that a torque can be induced if the configuration of the system is asymmetric. In addition, both the magnitude and the direction of the torque depend highly on the system configuration, indicating the possibility of manipulating the rotational motion via geometrical design. Based on this feature, two types of rotational micromotor that are of practical importance, namely pendulum motor and unidirectional motor, are designed. The magnitude of the torque at Kn =0.5 can reach to around 2nN×μm for a rectangular microbeam with a length of 100μm.

  11. Isospectrals of non-uniform Rayleigh beams with respect to their uniform counterparts

    PubMed Central

    Ganguli, Ranjan

    2018-01-01

    In this paper, we look for non-uniform Rayleigh beams isospectral to a given uniform Rayleigh beam. Isospectral systems are those that have the same spectral properties, i.e. the same free vibration natural frequencies for a given boundary condition. A transformation is proposed that converts the fourth-order governing differential equation of non-uniform Rayleigh beam into a uniform Rayleigh beam. If the coefficients of the transformed equation match with those of the uniform beam equation, then the non-uniform beam is isospectral to the given uniform beam. The boundary-condition configuration should be preserved under this transformation. We present the constraints under which the boundary configurations will remain unchanged. Frequency equivalence of the non-uniform beams and the uniform beam is confirmed by the finite-element method. For the considered cases, examples of beams having a rectangular cross section are presented to show the application of our analysis. PMID:29515879

  12. Hover performance tests of baseline metal and Advanced Technology Blade (ATB) rotor systems for the XV-15 tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Bartie, K.; Alexander, H.; Mcveigh, M.; Lamon, S.; Bishop, H.

    1986-01-01

    Rotor hover performance data were obtained for two full-scale rotor systems designed for the XV-15 Tilt Rotor Research Aircraft. One rotor employed the rectangular planform metal blades (rotor solidity = 0.089) which were used on the initial flight configuration of the XV-15. The second rotor configuration examined the nonlinear taper, composite-construction, Advanced Technology Blade (ATB), (rotor solidity = 0.10) designed to replace the metal blades on the XV-15. Variations of the baseline ATB tip and cuff shapes were also tested. A new six-component rotor force and moment balance designed to obtain highly accurate data over a broad range of thrust and torque conditions is described. The test data are presented in nondimensional coefficient form for the performance results, and in dimensional form for the steady and alternating loads. Some wake and acoustic data are also shown.

  13. Ducted combustion chamber for direct injection engines and method

    DOEpatents

    Mueller, Charles

    2015-03-03

    An internal combustion engine includes an engine block having a cylinder bore and a cylinder head having a flame deck surface disposed at one end of the cylinder bore. A piston connected to a rotatable crankshaft and configured to reciprocate within the cylinder bore has a piston crown portion facing the flame deck surface such that a combustion chamber is defined within the cylinder bore and between the piston crown and the flame deck surface. A fuel injector having a nozzle tip disposed in fluid communication with the combustion chamber has at least one nozzle opening configured to inject a fuel jet into the combustion chamber along a fuel jet centerline. At least one duct defined in the combustion chamber between the piston crown and the flame deck surface has a generally rectangular cross section and extends in a radial direction relative to the cylinder bore substantially along the fuel jet centerline.

  14. Numerical simulation of turbulent flow affected by vortex generators in straight channel

    NASA Astrophysics Data System (ADS)

    Souckova, Natalie; Simurda, David; Uruba, Vaclav

    2012-04-01

    The presented work is the next step after several experimental examinations of the vortex generator (VG) influence on flow separation occurring on a model of the NACA 63A421 airfoil with a deflected simple flap. The other purpose of this simulation is to obtain beneficial information that can be utilized for the preparation of the experimental investigation of the same configuration using Particle image Velocimetry method (PIV) in the future. The numerical simulation was performed for one single pair and two pairs of low-profile VGs of the same size, whose heights were smaller than the boundary layer thickness. The rectangular vane type VGs in such configuration, which generates counter-rotating vortices, was examined. The behaviour of vortices produced by VG pair or pairs in several positions downstream the VGs is investigated and will be used as a background of the measurement.

  15. Space Station

    NASA Image and Video Library

    1986-08-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts a configuration with enhanced capabilities. It builds on the horizontal boom and module pattern of the revised baseline. This configuration would feature dual keels, two vertical spines 105-meters long joined by upper and lower booms. The structure carrying the modules would become a transverse boom of a basically rectangular structure. The two new booms, 45-meters in length, would provide extensive accommodations for attached payloads, and would offer a wide field of view. Power would be increased significantly, with the addition if a 50-kW solar dynamic power system.

  16. Isentropic Compression with a Rectangular Configuration for Tungstene and Tantalum, Computations and Comparison with Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefrancois, A.; Reisman, D. B.; Bastea, M.

    2006-02-13

    Isentropic compression experiments and numerical simulations on metals are performed at Z accelerator facility from Sandia National Laboratory and at Lawrence Livermore National Laboratory in order to study the isentrope, associated Hugoniot and phase changes of these metals. 3D configurations have been calculated here to benchmark the new beta version of the electromagnetism package coupled with the dynamics in Ls-Dyna and compared with the ICE Z shots 1511 and 1555. The electromagnetism module is being developed in the general-purpose explicit and implicit finite element program LS-DYNA{reg_sign} in order to perform coupled mechanical/thermal/electromagnetism simulations. The Maxwell equations are solved using amore » Finite Element Method (FEM) for the solid conductors coupled with a Boundary Element Method (BEM) for the surrounding air (or vacuum). More details can be read in the references.« less

  17. Parametric Method to Define Area of Allowable Configurations while Changing Position of Restricted Zones

    NASA Astrophysics Data System (ADS)

    Pritykin, F. N.; Nefedov, D. I.; Rogoza, Yu A.; Zinchenko, Yu V.

    2018-03-01

    The article presents the findings related to the development of the module for automatic collision detection of the manipulator with restricted zones for virtual motion modeling. It proposes the parametric method for specifying the area of allowable joint configurations. The authors study the cases when restricted zones are specified using the horizontal plane or front-projection planes. The joint coordinate space is specified by rectangular axes in the direction of which the angles defining the displacements in turning pairs are laid off. The authors present the results of modeling which enabled to develop a parametric method for specifying a set of cross-sections defining the shape and position of allowable configurations in different positions of a restricted zone. All joint points that define allowable configurations refer to the indicated sections. The area of allowable configurations is specified analytically by using several kinematic surfaces that limit it. A geometric analysis is developed based on the use of the area of allowable configurations characterizing the position of the manipulator and reported restricted zones. The paper presents numerical calculations related to virtual simulation of the manipulator path performed by the mobile robot Varan when using the developed algorithm and restricted zones. The obtained analytical dependencies allow us to define the area of allowable configurations, which is a knowledge pool to ensure the intelligent control of the manipulator path in a predefined environment. The use of the obtained region to synthesize a joint trajectory makes it possible to correct the manipulator path to foresee and eliminate deadlocks when synthesizing motions along the velocity vector.

  18. Initial Stage of Aerosol Formation from Oversaturated Vapors

    NASA Astrophysics Data System (ADS)

    Lushnikov, A. A.; Zagainov, V. A.; Lyubovtseva, Yu. S.

    2018-03-01

    The formation of aerosol particles from oversaturated vapor was considered assuming that the stable nuclei of the new phase contain two (dimers) or three (trimers) condensing vapor molecules. Exact expressions were derived and analyzed for the partition functions of the dimer and trimer suspended in a carrier gas for the rectangular well and repulsive core intermolecular potentials. The equilibrium properties of these clusters and the nucleation rate of aerosol particles were discussed. The bound states of clusters were introduced using a limitation on their total energy: molecular clusters with a negative total energy were considered to exclude configurations with noninteracting fragments.

  19. Quasistatic packings of droplets in flat microfluidic channels

    NASA Astrophysics Data System (ADS)

    Kadivar, Erfan

    2016-02-01

    As observed in recent experiments, monodisperse droplets self-assemble spontaneously in different ordered packings. In this work, we present a numerical study of the droplet packings in the flat rectangular microfluidic channels. Employing the boundary element method, we numerically solve the Stokes equation in two-dimension and investigate the appearance of droplet packing and transition between one and two-row packings of monodisperse emulsion droplets. By calculating packing force applied on the droplet interface, we investigate the effect of flow rate, droplet size, and surface tension on the packing configurations of droplets and transition between different topological packings.

  20. Simple design of slanted grating with simplified modal method.

    PubMed

    Li, Shubin; Zhou, Changhe; Cao, Hongchao; Wu, Jun

    2014-02-15

    A simplified modal method (SMM) is presented that offers a clear physical image for subwavelength slanted grating. The diffraction characteristic of the slanted grating under Littrow configuration is revealed by the SMM as an equivalent rectangular grating, which is in good agreement with rigorous coupled-wave analysis. Based on the equivalence, we obtained an effective analytic solution for simplifying the design and optimization of a slanted grating. It offers a new approach for design of the slanted grating, e.g., a 1×2 beam splitter can be easily designed. This method should be helpful for designing various new slanted grating devices.

  1. Frequency-wavenumber processing for infrasound distributed arrays.

    PubMed

    Costley, R Daniel; Frazier, W Garth; Dillion, Kevin; Picucci, Jennifer R; Williams, Jay E; McKenna, Mihan H

    2013-10-01

    The work described herein discusses the application of a frequency-wavenumber signal processing technique to signals from rectangular infrasound arrays for detection and estimation of the direction of travel of infrasound. Arrays of 100 sensors were arranged in square configurations with sensor spacing of 2 m. Wind noise data were collected at one site. Synthetic infrasound signals were superposed on top of the wind noise to determine the accuracy and sensitivity of the technique with respect to signal-to-noise ratio. The technique was then applied to an impulsive event recorded at a different site. Preliminary results demonstrated the feasibility of this approach.

  2. Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beach, R.; Burdick, A.

    2014-03-01

    This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance (Rutkowski, H. Manual D -- Residential Duct Systems, 3rd edition, Version 1.00. Arlington, VA: Air Conditioning Contractors of America, 2009.). IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations (Beach, R., Prahl, D., and Lange, R. CFD Analysis of Flexible Duct Junction Boxmore » Design. Golden, CO: National Renewable Energy Laboratory, submitted for publication 2013). These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with four outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.« less

  3. Effect of the angle of attack of a rectangular wing on the heat transfer enhancement in channel flow at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Khanjian, Assadour; Habchi, Charbel; Russeil, Serge; Bougeard, Daniel; Lemenand, Thierry

    2018-05-01

    Convective heat transfer enhancement can be achieved by generating secondary flow structures that are added to the main flow to intensify the fluid exchange between hot and cold regions. One method involves the use of vortex generators to produce streamwise and transverse vortices superimposed to the main flow. This study presents numerical computation results of laminar convection heat transfer in a rectangular channel whose bottom wall is equipped with one row of rectangular wing vortex generators. The governing equations are solved using finite volume method by considering steady state, laminar regime and incompressible flow. Three-dimensional numerical simulations are performed to study the effect of the angle of attack α of the wing on heat transfer and pressure drop. Different values are taken into consideration within the range 0° < α < 30 °. For all of these geometrical configurations the Reynolds number is maintained to Re = 456 . To assess the effect of the angle of attack on the heat transfer enhancement, Nusselt number and the friction factor are studied on both local and global perspectives. Also, the location of the generated vortices within the channel is studied, as well as their effect on the heat transfer enhancement throughout the channel for all α values . Based on both local and global analysis, our results show that the angle of attack α has a direct impact on the heat transfer enhancement. By increasing its value, it leads to better enhancement until an optimal value is reached, beyond which the thermal performances decrease.

  4. CFD mixing analysis of axially opposed rows of jets injected into confined crossflow

    NASA Technical Reports Server (NTRS)

    Bain, D. B.; Smith, C. E.; Holdeman, J. D.

    1993-01-01

    A computational fluid dynamics (CFD) parametric study was performed to analyze axially opposed rows of jets mixing with crossflow in a rectangular duct. Isothermal analysis was conducted to determine the influence of lateral geometric arrangement on mixing. Two lateral arrangements were analyzed: (1) inline (jets' centerlines aligned with each other on top and bottom walls), and (2) staggered (jets' centerlines offset with each other on top and bottom walls). For a jet-to-mainstream mass flow ratio (MR) of 2.0, design parameters were systematically varied for jet-to-mainstream momentum-flux ratios (J) between 16 and 64 and orifice spacing-to-duct height ratios (S/H) between 0.125 and 1.5. Comparisons were made between geometries optimized for S/H at a specified J. Inline configurations had a unique spacing for best mixing at a specified J. In contrast, staggered configurations had two 'good mixing' spacings for each J, one corresponding to optimum inline spacing and the other corresponding to optimum non-impinging jet spacing. The inline configurations, due to their smaller orifice size at optimum S/H, produced better initial mixing characteristics. At downstream locations (e.g. x/H of 1.5), the optimum non-impinging staggered configuration produced better mixing than the optimum inline configuration for J of 64; the opposite results were observed for J of 16. Increasing J resulted in better mixing characteristics if each configuration was optimized with respect to orifice spacing. Mixing performance was shown to be similar to results from previous dilution jet mixing investigations (MR less than 0.5).

  5. Lessons Learned in the Selection and Development of Test Cases for the Aeroelastic Prediction Workshop: Rectangular Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel; Wieseman, Carol D.; Florance, Jennifer P.; Schuster, David M.

    2013-01-01

    The Aeroelastic Prediction Workshop brought together an international community of computational fluid dynamicists as a step in defining the state of the art in computational aeroelasticity. The Rectangular Supercritical Wing (RSW) was chosen as the first configuration to study due to its geometric simplicity, perceived simple flow field at transonic conditions and availability of an experimental data set containing forced oscillation response data. Six teams performed analyses of the RSW; they used Reynolds-Averaged Navier-Stokes flow solvers exercised assuming that the wing had a rigid structure. Both steady-state and forced oscillation computations were performed by each team. The results of these calculations were compared with each other and with the experimental data. The steady-state results from the computations capture many of the flow features of a classical supercritical airfoil pressure distribution. The most dominant feature of the oscillatory results is the upper surface shock dynamics. Substantial variations were observed among the computational solutions as well as differences relative to the experimental data. Contributing issues to these differences include substantial wind tunnel wall effects and diverse choices in the analysis parameters.

  6. Development of Schlieren Imaging for Analysis of Supersonic Complex Multi-stream Rectangular Nozzle

    NASA Astrophysics Data System (ADS)

    Coleman, Thomas; Berry, Matthew; Magstadt, Andrew; Gogineni, Sivaram; Glauser, Mark; Skytop Turbulence Laboratories Team; Spectral Energies LLC. Collaboration

    2015-11-01

    A schlieren apparatus has been installed to provide the shock structure of the flow in a supersonic complex multi-stream rectangular jet nozzle. The schlieren images collected are being used for analysis which is paired with unsteady pressure data taken simultaneously, both of which complement PIV data taken in same facility. The schlieren setup is of Herschellian z-type configuration aligned vertically and perpendicular to the nozzle exit. By making use of large twin parabolic mirrors, a 12.5 inch diameter test window has been achieved, capable of capturing the evolution of shock cells from development to collapse. An LED light source was used with its driver circuit to allow for controlled microsecond pulses for collecting time resolved schlieren. Schlieren results to date indicate that there is a shock train arising inside the nozzle and persisting downstream that is quasi steady. This has also been observed in simulations. The shock structure appears to have a dominant effect in that they localize and provide the skeleton for the other flow structures, affecting and being affected by the adjacent shear layers. We would like to acknowledge SBIR Phase 2 with Spectral Energies under direction of Barry Kiel (Program Manager).

  7. Flow and Heat Transfer Tests in New Loop at 2757 kPa (400 psi)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert

    2016-06-13

    A helium flow and heat transfer experiment has been designed for the new helium flow loop facility at LANL. This new facility is centered on an Aerzen GM 12.4 Root’s blower, selected for operation at higher pressure, up to 2757 kPa, and mass flow rate, up to 400 g/s. This replaces the previous Tuthill PD plus 3206 blower and loop limited to 2067 kPa (300 psi) and 100 g/s. The resistively heated test piece is comprised of 7 electric heaters with embedded thermocouples. The plant design for the Mo100 to Mo99 targets requires sharp bends and geometry changes in themore » helium flow tube immediately before and after the target. An idealized fully developed flow configuration with straight entry and exit will be tested and compared with an option that employs rectangular tubing to make the bend at a radius consistent with and practical for the actual plant design. The current plant design, with circular tubing and a sudden contraction to rectangular just prior to target entrance, will also be tested. This requires some modification of the test piece, as described in the report.« less

  8. Optimal Pulse Configuration Design for Heart Stimulation. A Theoretical, Numerical and Experimental Study.

    NASA Astrophysics Data System (ADS)

    Hardy, Neil; Dvir, Hila; Fenton, Flavio

    Existing pacemakers consider the rectangular pulse to be the optimal form of stimulation current. However, other waveforms for the use of pacemakers could save energy while still stimulating the heart. We aim to find the optimal waveform for pacemaker use, and to offer a theoretical explanation for its advantage. Since the pacemaker battery is a charge source, here we probe the stimulation current waveforms with respect to the total charge delivery. In this talk we present theoretical analysis and numerical simulations of myocyte ion-channel currents acting as an additional source of charge that adds to the external stimulating charge for stimulation purposes. Therefore, we find that as the action potential emerges, the external stimulating current can be reduced accordingly exponentially. We then performed experimental studies in rabbit and cat hearts and showed that indeed exponential truncated pulses with less total charge can still induce activation in the heart. From the experiments, we present curves showing the savings in charge as a function of exponential waveform and we calculated that the longevity of the pacemaker battery would be ten times higher for the exponential current compared to the rectangular waveforms. Thanks to Petit Undergraduate Research Scholars Program and NSF# 1413037.

  9. Rectangular QPSK for generation of optical eight-ary phase-shift keying.

    PubMed

    Lu, Guo-Wei; Sakamoto, Takahide; Kawanishi, Tetsuya

    2011-09-12

    Quadrature phase-shift keying (QPSK) is usually generated using an in-phase/quadrature (IQ) modulator in a balanced driving-condition, showing a square-shape constellation in complex plane. This conventional QPSK is referred to as square QPSK (S-QPSK) in this paper. On the other hand, when an IQ modulator is driven in an un-balanced manner with different amplitudes in in-phase (I) and quadrature (Q) branches, a rectangular QPSK (R-QPSK) could be synthesized. The concept of R-QPSK is proposed for the first time and applied to optical eight-ary phase-shift keying (8PSK) transmitter. By cascading an S-QPSK and an R-QPSK, an optical 8PSK could be synthesized. The transmitter configuration is based on two cascaded IQ modulators, which also could be used to generate other advanced multi-level formats like quadrature amplitude modulation (QAM) when different driving and bias conditions are applied. Therefore, the proposed transmitter structure has potential to be deployed as a versatile transmitter for synthesis of several different multi-level modulation formats for the future dynamic optical networks. A 30-Gb/s optical 8PSK is experimentally demonstrated using the proposed solution.

  10. Numerical simulation of magnetic nano drug targeting in patient-specific lower respiratory tract

    NASA Astrophysics Data System (ADS)

    Russo, Flavia; Boghi, Andrea; Gori, Fabio

    2018-04-01

    Magnetic nano drug targeting, with an external magnetic field, can potentially improve the drug absorption in specific locations of the body. However, the effectiveness of the procedure can be reduced due to the limitations of the magnetic field intensity. This work investigates this technique with the Computational Fluid Dynamics (CFD) approach. A single rectangular coil generates the external magnetic field. A patient-specific geometry of the Trachea, with its primary and secondary bronchi, is reconstructed from Digital Imaging and Communications in Medicine (DICOM) formatted images, throughout the Vascular Modelling Tool Kit (VMTK) software. A solver, coupling the Lagrangian dynamics of the magnetic nanoparticles with the Eulerian dynamics of the air, is used to perform the simulations. The resistive pressure, the pulsatile inlet velocity and the rectangular coil magnetic field are the boundary conditions. The dynamics of the injected particles is investigated without and with the magnetic probe. The flow field promotes particles adhesion to the tracheal wall. The particles volumetric flow rate in both cases has been calculated. The magnetic probe is shown to increase the particles flow in the target region, but at a limited extent. This behavior has been attributed to the small particle size and the probe configuration.

  11. Impact of uncertainties in free stream conditions on the aerodynamics of a rectangular cylinder

    NASA Astrophysics Data System (ADS)

    Mariotti, Alessandro; Shoeibi Omrani, Pejman; Witteveen, Jeroen; Salvetti, Maria Vittoria

    2015-11-01

    The BARC benchmark deals with the flow around a rectangular cylinder with chord-to-depth ratio equal to 5. This flow configuration is of practical interest for civil and industrial structures and it is characterized by massively separated flow and unsteadiness. In a recent review of BARC results, significant dispersion was observed both in experimental and numerical predictions of some flow quantities, which are extremely sensitive to various uncertainties, which may be present in experiments and simulations. Besides modeling and numerical errors, in simulations it is difficult to exactly reproduce the experimental conditions due to uncertainties in the set-up parameters, which sometimes cannot be exactly controlled or characterized. Probabilistic methods and URANS simulations are used to investigate the impact of the uncertainties in the following set-up parameters: the angle of incidence, the free stream longitudinal turbulence intensity and length scale. Stochastic collocation is employed to perform the probabilistic propagation of the uncertainty. The discretization and modeling errors are estimated by repeating the same analysis for different grids and turbulence models. The results obtained for different assumed PDF of the set-up parameters are also compared.

  12. Program LRCDM2: Improved aerodynamic prediction program for supersonic canard-tail missiles with axisymmetric bodies

    NASA Technical Reports Server (NTRS)

    Dillenius, Marnix F. E.

    1985-01-01

    Program LRCDM2 was developed for supersonic missiles with axisymmetric bodies and up to two finned sections. Predicted are pressure distributions and loads acting on a complete configuration including effects of body separated flow vorticity and fin-edge vortices. The computer program is based on supersonic panelling and line singularity methods coupled with vortex tracking theory. Effects of afterbody shed vorticity on the afterbody and tail-fin pressure distributions can be optionally treated by companion program BDYSHD. Preliminary versions of combined shock expansion/linear theory and Newtonian/linear theory have been implemented as optional pressure calculation methods to extend the Mach number and angle-of-attack ranges of applicability into the nonlinear supersonic flow regime. Comparisons between program results and experimental data are given for a triform tail-finned configuration and for a canard controlled configuration with a long afterbody for Mach numbers up to 2.5. Initial tests of the nonlinear/linear theory approaches show good agreement for pressures acting on a rectangular wing and a delta wing with attached shocks for Mach numbers up to 4.6 and angles of attack up to 20 degrees.

  13. Slow Crack Growth Behavior and Life/Reliability Analysis of 96 wt % Alumina at Ambient Temperature With Various Specimen/Loading Configurations

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Powers, Lynn M.; Nemeth, Noel N.

    2000-01-01

    Extensive constant stress-rate testing for 96 wt % alumina was conducted in room-temperature distilled water using four different specimen/loading configurations: rectangular beam test specimens under four-point uniaxial flexure, square plate test specimens in ring-on-ring biaxial flexure, square plate test specimens in ball-on-ring biaxial flexure, and dog-boned tensile test specimens in pure tension. The slow crack growth (SCG) parameter n was almost independent of specimen/loading configurations, in either four-point uniaxial flexure, ring-on-ring biaxial flexure, ball-on-ring biaxial flexure, or pure tension, ranging from n = 35 to 47 with an average value of n = 41.1 +/- 4.5. The prediction of fatigue strength/reliability based on the four-point uniaxial flexure data by using the CARES/Life design code as well as a simple PIA model was in good agreement with both the ring-on-ring biaxial and the ball-on-ring biaxial flexure data. A poor prediction using the PIA model was observed for the dog-boned tensile test specimens, presumably due to different flaw population involved in the tensile test specimens.

  14. Vibrations of cantilevered circular cylindrical shells Shallow versus deep shell theory

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Leissa, A. W.; Wang, A. J.

    1983-01-01

    Free vibrations of cantilevered circular cylindrical shells having rectangular planforms are studied in this paper by means of the Ritz method. The deep shell theory of Novozhilov and Goldenveizer is used and compared with the usual shallow shell theory for a wide range of shell parameters. A thorough convergence study is presented along with comparisons to previously published finite element solutions and experimental results. Accurately computed frequency parameters and mode shapes for various shell configurations are presented. The present paper appears to be the first comprehensive study presenting rigorous comparisons between the two shell theories in dealing with free vibrations of cantilevered cylindrical shells.

  15. Conversion of the optical orbital angular momentum in a plasmon-assisted second-harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yongmei; Wei, Dunzhao; Zhu, Yunzhi

    We experimentally demonstrate the plasmon-assisted second-harmonic generation of an optical orbital angular momentum (OAM) beam. Because of the shape resonance, the plasmons in a periodic array of rectangular metal holes greatly enhance the nonlinear optical conversion of an OAM state. The OAM conservation (i.e., 2l{sub 1} = l{sub 2} with l{sub 1} and l{sub 2} being the OAM numbers of the fundamental and second-harmonic waves, respectively) holds well under our experimental configuration. Our results provide a potential way to realize nonlinear optical manipulation of an OAM mode in a nano-photonic device.

  16. Monitoring by forward scatter radar techniques: an improved second-order analytical model

    NASA Astrophysics Data System (ADS)

    Falconi, Marta Tecla; Comite, Davide; Galli, Alessandro; Marzano, Frank S.; Pastina, Debora; Lombardo, Pierfrancesco

    2017-10-01

    In this work, a second-order phase approximation is introduced to provide an improved analytical model of the signal received in forward scatter radar systems. A typical configuration with a rectangular metallic object illuminated while crossing the baseline, in far- or near-field conditions, is considered. An improved second-order model is compared with a simplified one already proposed by the authors and based on a paraxial approximation. A phase error analysis is carried out to investigate benefits and limitations of the second-order modeling. The results are validated by developing full-wave numerical simulations implementing the relevant scattering problem on a commercial tool.

  17. 1T Pixel Using Floating-Body MOSFET for CMOS Image Sensors.

    PubMed

    Lu, Guo-Neng; Tournier, Arnaud; Roy, François; Deschamps, Benoît

    2009-01-01

    We present a single-transistor pixel for CMOS image sensors (CIS). It is a floating-body MOSFET structure, which is used as photo-sensing device and source-follower transistor, and can be controlled to store and evacuate charges. Our investigation into this 1T pixel structure includes modeling to obtain analytical description of conversion gain. Model validation has been done by comparing theoretical predictions and experimental results. On the other hand, the 1T pixel structure has been implemented in different configurations, including rectangular-gate and ring-gate designs, and variations of oxidation parameters for the fabrication process. The pixel characteristics are presented and discussed.

  18. Total absorption peak by use of a rigid frame porous layer backed by a rigid multi-irregularities grating.

    PubMed

    Groby, J-P; Lauriks, W; Vigran, T E

    2010-05-01

    The acoustic properties of a low resistivity porous layer backed by a rigid plate containing periodic rectangular irregularities, creating a multicomponent diffraction gratings, are investigated. Numerical and experimental results show that the structure possesses a total absorption peak at the frequency of the modified mode of the layer, when designed as proposed in the article. These results are explained by an analysis of the acoustic response of the whole structure and especially by the modal analysis of the configuration. When more than one irregularity per spatial period is considered, additional higher frequency peaks are observed.

  19. Identification of Experimental Unsteady Aerodynamic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Piatak, David J.; Scott, Robert C.

    2003-01-01

    The identification of experimental unsteady aerodynamic impulse responses using the Oscillating Turntable (OTT) at NASA Langley's Transonic Dynamics Tunnel (TDT) is described. Results are presented for two configurations: a Rigid Semispan Model (RSM) and a rectangular wing with a supercritical airfoil section. Both models were used to acquire unsteady pressure data due to pitching oscillations on the OTT. A deconvolution scheme involving a step input in pitch and the resultant step response in pressure, for several pressure transducers, is used to identify the pressure impulse responses. The identified impulse responses are then used to predict the pressure response due to pitching oscillations at several frequencies. Comparisons with the experimental data are presented.

  20. A study of internal drag of small-scale ducts at Mach number 4

    NASA Technical Reports Server (NTRS)

    Graham, L. A.; Hunton, L. W.

    1972-01-01

    An experimental investigation was made to examine the applicability of methods used to determine internal drag of small ducts and to study some of the problems encountered in assessing momentum losses in such ducts. Test Mach numbers ranged from 3.7 to 4.4 at angles of attack of 0 and 5 degrees and at a constant Reynolds number of 4.3 million per foot. The configurations represented small ducts used to simulate external aerodynamics of air breathing propulsion systems and consisted of wing nacelle models of ducts with circular, square, and rectangular inlets and with a two-dimensional inlet.

  1. On the identification of a harmonic force on a viscoelastic plate from response data

    NASA Technical Reports Server (NTRS)

    D'Cruz, J.; Crisp, J. D. C.; Ryall, T. G.

    1992-01-01

    The problem of determining the force acting on a structure from measurements of the response of the structure to the force is an inverse problem. Presented is a method for determining the location, magnitude, and phase of a harmonic point force acting on a simply-supported classical viscoelastic rectangular plate from a number of displacement readings at discrete points on the plate. Presented also is a demonstration of the robustness of the solution technique to the effects of measurement noise as well as a means by which problems involving more general structural and loading configurations may be solved.

  2. Experimental investigation of non-planar sheared outboard wing planforms

    NASA Technical Reports Server (NTRS)

    Naik, D. A.; Ostowari, C.

    1988-01-01

    The outboard planforms of wings have been found to be of prime importance in studies of induced drag reduction. This conclusion is based on an experimental and theoretical study of the aerodynamic characteristics of planar and nonplanar outboard wing forms. Six different configurations; baseline rectangular, planar sheared, sheared with dihedral, sheared with anhedral, rising arc, and drooping arc were investigated for two different spans. Span efficiencies as much as 20 percent greater than baseline can be realized with nonplanar wing forms. Optimization studies show that this advantage can be achieved along with a bending moment benefit. Parasite drag and lateral stability estimations were not included in the analysis.

  3. Detached-Eddy Simulations of Separated Flow Around Wings With Ice Accretions: Year One Report

    NASA Technical Reports Server (NTRS)

    Choo, Yung K. (Technical Monitor); Thompson, David; Mogili, Prasad

    2004-01-01

    A computational investigation was performed to assess the effectiveness of Detached-Eddy Simulation (DES) as a tool for predicting icing effects. The AVUS code, a public domain flow solver, was employed to compute solutions for an iced wing configuration using DES and steady Reynolds Averaged Navier-Stokes (RANS) equation methodologies. The configuration was an extruded GLC305/944-ice shape section with a rectangular planform. The model was mounted between two walls so no tip effects were considered. The numerical results were validated by comparison with experimental data for the same configuration. The time-averaged DES computations showed some improvement in lift and drag results near stall when compared to steady RANS results. However, comparisons of the flow field details did not show the level of agreement suggested by the integrated quantities. Based on our results, we believe that DES may prove useful in a limited sense to provide analysis of iced wing configurations when there is significant flow separation, e.g., near stall, where steady RANS computations are demonstrably ineffective. However, more validation is needed to determine what role DES can play as part of an overall icing effects prediction strategy. We conclude the report with an assessment of existing computational tools for application to the iced wing problem and a discussion of issues that merit further study.

  4. Combustion Dynamic Characteristics Identification in a 9-point LDI Combustor Under Choked Outlet Boundary Conditions

    NASA Technical Reports Server (NTRS)

    He, Zhuohui J.; Chang, Clarence T.

    2017-01-01

    Combustion dynamics data were collected at the NASA Glenn Research Center's CE-5 flame tube test facility under combustor outlet choked conditions. Two 9-point Swirl-Venturi Lean Direct Injection (SV-LDI) configurations were tested in a rectangular cuboid combustor geometry. Combustion dynamic data were measured at different engine operational conditions up to inlet air pressure and temperature of 24.13 bar and 828 K, respectively. In this study, the effects of acoustic cavity resonance, precessing vortex core (PVC), and non-uniform thermal expansion on the dynamic noise spectrum are identified by comparing the dynamic data that collected at various combustor inlet conditions along with combustor geometric calculations. The results show that the acoustic cavity resonance noises were seen in the counter-rotating pilot configuration but not in the co-rotating pilot configuration. Dynamic pressure noise band at around 0.9 kHz was only detected at the P'41 location (9.8 cm after fuel injector face) but not at the P'42 location (29 cm after the fuel injector face); the amplitude of this noise band depended on the thermal expansion ratio (T4/T3). The noise band at around 1.8 kHz was found to depend on the inlet air pressure or the air density inside the combustor. The PVC frequency was not observed in these two configurations.

  5. Design of air blast pressure sensors based on miniature silicon membrane and piezoresistive gauges

    NASA Astrophysics Data System (ADS)

    Riondet, J.; Coustou, A.; Aubert, H.; Pons, P.; Lavayssière, M.; Luc, J.; Lefrançois, A.

    2017-11-01

    Available commercial piezoelectric pressure sensors are not able to accurately reproduce the ultra-fast transient pressure occurring during an air blast experiment. In this communication a new pressure sensor prototype based on a miniature silicon membrane and piezoresistive gauges is reported for significantly improving the performances in terms of time response. Simulation results demonstrate the feasibility of a pressure transducer having a fundamental resonant frequency almost ten times greater than the commercial piezoelectric sensors one. The sensor uses a 5μm-thick SOI membrane and four P-type silicon gauges (doping level ≅ 1019 at/cm3) in Wheatstone bridge configuration. To obtain a good trade-off between the fundamental mechanical resonant frequency and pressure sensitivity values, the typical dimension of the rectangular membrane is fixed to 30μm x 90μm with gauge dimension of 1μm x 5μm. The achieved simulated mechanical resonant frequency of these configuration is greater than 40MHz with a sensitivity of 0.04% per bar.

  6. Topological transitions in unidirectional flow of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Cummings, Linda; Anderson, Thomas; Mema, Ensela; Kondic, Lou

    2015-11-01

    Recent experiments by Sengupta et al. (Phys. Rev. Lett. 2013) revealed interesting transitions that can occur in flow of nematic liquid crystal under carefully controlled conditions within a long microfluidic channel of rectangular cross-section, with homeotropic anchoring at the walls. At low flow rates the director field of the nematic adopts a configuration that is dominated by the surface anchoring, being nearly parallel to the channel height direction over most of the cross-section; but at high flow rates there is a transition to a flow-dominated state, where the director configuration at the channel centerline is aligned with the flow (perpendicular to the channel height direction). We analyze simple channel-flow solutions to the Leslie-Ericksen model for nematics. We demonstrate that two solutions exist, at all flow rates, but that there is a transition between the elastic free energies of these solutions: the anchoring-dominated solution has the lowest energy at low flow rates, and the flow-dominated solution has lowest energy at high flow rates. NSF DMS 1211713.

  7. Stability Characteristics of Two Missiles of Fineness Ratios 12 and 18 with Six Rectangular Fins of Very Low Aspect Ratio Over a Mach Number Range of 1.4 to 3.2

    NASA Technical Reports Server (NTRS)

    Henning, Allen B.

    1959-01-01

    Two rocket-propelled missiles have been test flown by the Langley Pilotless Aircraft Research Division in order to study the stability characteristics of a body with six rectangular fins of very low aspect ratio. The fins, which had exposed aspect ratios of approximately o.o4 and 0.02 per fin, were mounted on bodies of fineness ratios of 12 and 18, respectively. Each body had a nose with a fineness ratio of 3.5 and a cylindrical afterbody. The body and the fin chord of the model having a fineness ratio of 12 were extended the length of 6 body diameters to produce the model with a fineness ratio of 18. The missiles were disturbed in flight by pulse rockets in order to obtain the stability data. The tests were performed over a Mach number range of 1.4 to 3.2 and a Reynolds number range of 2 x 10(exp 6) to 21 x l0(exp 6). The results of these tests indicate that these configurations with the long rectangular fins of very low aspect ratio showed little induced roll" with the missile of highest fineness ratio and longest fin chord exhibiting the least amount. Extending the body and fin chord of the shorter missile six body diameters and thereby increasing the fin area approximately 115 percent increased the lift-curve slope based on body cross-sectional area approximately 40 to 55 percent, increased the dynamic stability by a substantial amount, and increased the drag from 14 to 33 percent throughout the comparable Mach number range. The center-of-pressure location of both missiles remained constant over the Mach number range.

  8. Development of a flocculation sub-model for a 3-D CFD model based on rectangular settling tanks.

    PubMed

    Gong, M; Xanthos, S; Ramalingam, K; Fillos, J; Beckmann, K; Deur, A; McCorquodale, J A

    2011-01-01

    To assess performance and evaluate alternatives to improve the efficiency of rectangular Gould II type final settling tanks (FSTs), New York City Department of Environmental Protection and City College of NY developed a 3D computer model depicting the actual structural configuration of the tanks and the current and proposed hydraulic and solids loading rates. Fluent 6.3.26™ was the base platform for the computational fluid dynamics (CFD) model, for which sub-models of the SS settling characteristics, turbulence, flocculation and rheology were incorporated. This was supplemented by field and bench scale experiments to quantify the coefficients integral to the sub-models. The 3D model developed can be used to consider different baffle arrangements, sludge withdrawal mechanisms and loading alternatives to the FSTs. Flocculation in the front half of the rectangular tank especially in the region before and after the inlet baffle is one of the vital parameters that influences the capture efficiency of SS. Flocculation could be further improved by capturing medium and small size particles by creating an additional zone with an in-tank baffle. This was one of the methods that was adopted in optimizing the performance of the tank where the CCNY 3D CFD model was used to locate the in-tank baffle position. This paper describes the development of the flocculation sub-model and the relationship of the flocculation coefficients in the known Parker equation to the initial mixed liquor suspended solids (MLSS) concentration X0. A new modified equation is proposed removing the dependency of the breakup coefficient to the initial value of X0 based on preliminary data using normal and low concentration mixed liquor suspended solids values in flocculation experiments performed.

  9. 76 FR 9547 - Light-Walled Rectangular Pipe and Tube From Mexico; Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-836] Light-Walled Rectangular... preliminary results of the administrative review of the antidumping duty order on light-walled rectangular... light-walled rectangular pipe and tube from Mexico. See Light-Walled Rectangular Pipe and Tube From...

  10. Product Module Rig Test

    NASA Technical Reports Server (NTRS)

    Holdeman, James D. (Technical Monitor); Chiappetta, Louis, Jr.; Hautman, Donald J.; Ols, John T.; Padget, Frederick C., IV; Peschke, William O. T.; Shirley, John A.; Siskind, Kenneth S.

    2004-01-01

    The low emissions potential of a Rich-Quench-Lean (RQL) combustor for use in the High Speed Civil Transport (HSCT) application was evaluated as part of Work Breakdown Structure (WBS) 1.0.2.7 of the NASA Critical Propulsion Components (CPC) Program under Contract NAS3-27235. Combustion testing was conducted in cell 1E of the Jet Burner Test Stand at United Technologies Research Center. Specifically, a Rich-Quench-Lean combustor, utilizing reduced scale quench technology implemented in a quench vane concept in a product-like configuration (Product Module Rig), demonstrated the capability of achieving an emissions index of nitrogen oxides (NOx EI) of 8.5 gm/Kg fuel at the supersonic flight condition (relative to the program goal of 5 gm/Kg fuel). Developmental parametric testing of various quench vane configurations in the more fundamental flametube, Single Module Rig Configuration, demonstrated NOx EI as low as 5.2. All configurations in both the Product Module Rig configuration and the Single Module Rig configuration demonstrated exceptional efficiencies, greater than 99.95 percent, relative to the program goal of 99.9 percent efficiency at supersonic cruise conditions. Sensitivity of emissions to quench orifice design parameters were determined during the parametric quench vane test series in support of the design of the Product Module Rig configuration. For the rectangular quench orifices investigated, an aspect ratio (length/width) of approximately 2 was found to be near optimum. An optimum for orifice spacing was found to exist at approximately 0.167 inches, resulting in 24 orifices per side of a quench vane, for the 0.435 inch quench zone channel height investigated in the Single Module Rig. Smaller quench zone channel heights appeared to be beneficial in reducing emissions. Measurements were also obtained in the Single Module Rig configuration on the sensitivity of emissions to the critical combustor parameters of fuel/air ratio, pressure drop, and residence time. Minimal sensitivity was observed for all of these parameters.

  11. Rectangularization of the survival curve in The Netherlands, 1950-1992.

    PubMed

    Nusselder, W J; Mackenbach, J P

    1996-12-01

    In this article we determine whether rectangularization of the survival curve occurred in the Netherlands in the period 1950-1992. Rectangularization is defined as a trend toward a more rectangular shape of the survival curve due to increased survival and concentration of deaths around the mean age at death. We distinguish between absolute and relative rectangularization, depending on whether an increase in life expectancy is accompanied by concentration of deaths into a smaller age interval or into a smaller proportion of total life expectancy. We used measures of variability based on Keyfitz' H and the standard deviation, both life table-based. Our results show that absolute and relative rectangularization of the entire survival curve occurred in both sexes and over the complete period (except for the years 1955-1959 and 1965-1969 in men). At older ages, results differ between sexes, periods, and an absolute versus a relative definition of rectangularization. Above age 60 1/2, relative rectangularization occurred in women over the complete period and in men since 1975-1979 only, whereas absolute rectangularization occurred in both sexes since the period of 1980-1984. The implications of the recent rectangularization at older ages for achieving compression of morbidity are discussed.

  12. Coherent and partially coherent dark hollow beams with rectangular symmetry and paraxial propagation properties

    NASA Astrophysics Data System (ADS)

    Cai, Yangjian; Zhang, Lei

    2006-07-01

    A theoretical model is proposed to describe coherent dark hollow beams (DHBs) with rectangular symmetry. The electric field of a coherent rectangular DHB is expressed as a superposition of a series of the electric field of a finite series of fundamental Gaussian beams. Analytical propagation formulas for a coherent rectangular DHB passing through paraxial optical systems are derived in a tensor form. Furthermore, for the more general case, we propose a theoretical model to describe a partially coherent rectangular DHB. Analytical propagation formulas for a partially coherent rectangular DHB passing through paraxial optical systems are derived. The beam propagation factor (M2 factor) for both coherent and partially coherent rectangular DHBs are studied. Numerical examples are given by using the derived formulas. Our models and method provide an effective way to describe and treat the propagation of coherent and partially coherent rectangular DHBs.

  13. Compact waveguide circular polarizer

    DOEpatents

    Tantawi, Sami G.

    2016-08-16

    A multi-port waveguide is provided having a rectangular waveguide that includes a Y-shape structure with first top arm having a first rectangular waveguide port, a second top arm with second rectangular waveguide port, and a base arm with a third rectangular waveguide port for supporting a TE.sub.10 mode and a TE.sub.20 mode, where the end of the third rectangular waveguide port includes rounded edges that are parallel to a z-axis of the waveguide, a circular waveguide having a circular waveguide port for supporting a left hand and a right hand circular polarization TE.sub.11 mode and is coupled to a base arm broad wall, and a matching feature disposed on the base arm broad wall opposite of the circular waveguide for terminating the third rectangular waveguide port, where the first rectangular waveguide port, the second rectangular waveguide port and the circular waveguide port are capable of supporting 4-modes of operation.

  14. Integrated residential photovoltaic array development

    NASA Astrophysics Data System (ADS)

    Shepard, N. F., Jr.

    1981-02-01

    An optimum integrated residential photovoltaic array/module is addressed. Nineteen existing or proposed systems intended for residential applications are described. Each of these systems is rated against a comprehensive set of evaluation criteria in an effort to formulate three module design concepts for further study and analysis. This evaluation led to a number of observations which are enumerated and should be considered in future module and array designs. Three module concepts are presented as baseline design approaches to be further analyzed and optimized. These options include: (1) a rectangular, direct mounted, shingle type module; (2) an integrally mounted module with nonconductive exposed elements; and (3) an aluminum framed, stand off module. Preliminary design drawings are presented for each of these module configurations.

  15. Calculation of unsteady aerodynamics for four AGARD standard aeroelastic configurations

    NASA Technical Reports Server (NTRS)

    Bland, S. R.; Seidel, D. A.

    1984-01-01

    Calculated unsteady aerodynamic characteristics for four Advisory Group for Aeronautical Research Development (AGARD) standard aeroelastic two-dimensional airfoils and for one of the AGARD three-dimensional wings are reported. Calculations were made using the finite-difference codes XTRAN2L (two-dimensional flow) and XTRAN3S (three-dimensional flow) which solve the transonic small disturbance potential equations. Results are given for the 36 AGARD cases for the NACA 64A006, NACA 64A010, and NLR 7301 airfoils with experimental comparisons for most of these cases. Additionally, six of the MBB-A3 airfoil cases are included. Finally, results are given for three of the cases for the rectangular wing.

  16. Ballistic pulse propagation in quantum wire waveguides: Toward localization and control of electron wave packets in space and time

    NASA Astrophysics Data System (ADS)

    Hayata, K.; Tsuji, Y.; Koshiba, M.

    1992-10-01

    A theoretical formulation of electron pulse propagation in quantum wire structures with mesoscopic scale cross sections is presented, assuming quantum ballistic transport of electron wave packets over a certain characteristic length. As typical mesoscopic structures for realizing coherent electron transmission, two traveling-wave configurations are considered: straight quantum wire waveguides and quantum wire bend structures (quantum whispering galleries). To estimate temporal features of the pulse during propagation, the walk off, the dispersion, and the pulse coherence lengths are defined as useful characteristic lengths. Numerical results are shown for ultrashort pulse propagation through rectangular wire waveguides. Effects due to an external electric field are discussed as well.

  17. Tool For Driving Many Fasteners Simultaneously

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr.

    1995-01-01

    Proposed tool tightens or loosens several bolts, screws, nuts, or other threaded fasteners arranged in circle on compressor head, automotive wheel, pipe-end flange, or similar object. Enables assembly or disassembly in fraction of time needed to tighten fasteners one at a time. Simultaneously applies same torque to all fasteners, preventing distortion and enhancing reliability. Concept not limited to circular fastener patterns. Adapted to rectangular configurations like on engine intake manifolds, by adding gears to drive train to provide proper spacing. Designed to deliver fixed or adjustable maximum torque. To ensure even seal loading, piston pressure simultaneously ramped from initial to final values to maintain relatively constant torque loading on all fasteners until final specifications limit achieved.

  18. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    An optimum integrated residential photovoltaic array/module is addressed. Nineteen existing or proposed systems intended for residential applications are described. Each of these systems is rated against a comprehensive set of evaluation criteria in an effort to formulate three module design concepts for further study and analysis. This evaluation led to a number of observations which are enumerated and should be considered in future module and array designs. Three module concepts are presented as baseline design approaches to be further analyzed and optimized. These options include: (1) a rectangular, direct mounted, shingle type module; (2) an integrally mounted module with nonconductive exposed elements; and (3) an aluminum framed, stand off module. Preliminary design drawings are presented for each of these module configurations.

  19. A fast ultrasonic simulation tool based on massively parallel implementations

    NASA Astrophysics Data System (ADS)

    Lambert, Jason; Rougeron, Gilles; Lacassagne, Lionel; Chatillon, Sylvain

    2014-02-01

    This paper presents a CIVA optimized ultrasonic inspection simulation tool, which takes benefit of the power of massively parallel architectures: graphical processing units (GPU) and multi-core general purpose processors (GPP). This tool is based on the classical approach used in CIVA: the interaction model is based on Kirchoff, and the ultrasonic field around the defect is computed by the pencil method. The model has been adapted and parallelized for both architectures. At this stage, the configurations addressed by the tool are : multi and mono-element probes, planar specimens made of simple isotropic materials, planar rectangular defects or side drilled holes of small diameter. Validations on the model accuracy and performances measurements are presented.

  20. Augmenting ejector endwall effects. [V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Porter, J. L.; Squyers, R. A.

    1979-01-01

    Rectangular inlet ejectors which had multiple hypermixing nozzles for their primary jets were investigated for the effects of endwall blowing on thrust augmentation performance. The ejector configurations tested had both straight wall and active boundary layer control type diffusers. Endwall flows were energized and controlled by simple blowing jets suitably located in the ejector. Both the endwall and boundary layer control diffuser blowing rates were varied to determine optimum performance. High area ratio diffusers with insufficient endwall blowing showed endwall separation and rapid degradation of thrust performance. Optimized values of diffuser boundary layer control and endwall nozzle blowing rates in an ejector augmenter were shown to achieve high levels of augmentation performance for maximum compactness.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jager, Yetta; Efroymson, Rebecca Ann; Sublette, K.

    Quantitative tools are needed to evaluate the ecological effects of increasing petroleum production. In this article, we describe two stochastic models for simulating the spatial distribution of brine spills on a landscape. One model uses general assumptions about the spatial arrangement of spills and their sizes; the second model distributes spills by siting rectangular well complexes and conditioning spill probabilities on the configuration of pipes. We present maps of landscapes with spills produced by the two methods and compare the ability of the models to reproduce a specified spill area. A strength of the models presented here is their abilitymore » to extrapolate from the existing landscape to simulate landscapes with a higher (or lower) density of oil wells.« less

  2. Results of an investigation of the 0.003-scale space shuttle external tank MSFC model 460 in the NASA/MSFC 14 x 14 inch Trisonic Wind Tunnel to determine static pressure distributions during reentry (TA2F), volume 3

    NASA Technical Reports Server (NTRS)

    Ramsey, P. E.; Winkler, G. W.

    1975-01-01

    Static pressure distributions for the external tank (ET) at reentry conditions are presented. Basic configuration of the model was the MCR 0200 ET modified to include a rectangular crossbar at the aft ET/orbiter attach point. Mach numbers were 1.96, 3.48, and 4.96. Reynolds number per foot at these Mach numbers were 6.95 million, 6.42 million, and 4.95 million, respectively. Angle of attack range was -8 to 100 degrees and roll angle was 0 to 315 degrees.

  3. Document localization algorithms based on feature points and straight lines

    NASA Astrophysics Data System (ADS)

    Skoryukina, Natalya; Shemiakina, Julia; Arlazarov, Vladimir L.; Faradjev, Igor

    2018-04-01

    The important part of the system of a planar rectangular object analysis is the localization: the estimation of projective transform from template image of an object to its photograph. The system also includes such subsystems as the selection and recognition of text fields, the usage of contexts etc. In this paper three localization algorithms are described. All algorithms use feature points and two of them also analyze near-horizontal and near- vertical lines on the photograph. The algorithms and their combinations are tested on a dataset of real document photographs. Also the method of localization quality estimation is proposed that allows configuring the localization subsystem independently of the other subsystems quality.

  4. Performance evaluation and comparison of three-terminal energy selective electron devices with different connective ways and filter configurations

    NASA Astrophysics Data System (ADS)

    Peng, Wanli; Zhang, Yanchao; Yang, Zhimin; Chen, Jincan

    2018-02-01

    Three-terminal energy selective electron (ESE) devices consisting of three electronic reservoirs connected by two energy filters and an electronic conductor with negligible resistance may work as ESE refrigerators and amplifiers. They have three possible connective ways for the electronic conductor and six electronic transmission forms. The configuration of energy filters may be described by the different transmission functions such as the rectangular and Lorentz transmission functions. The ESE devices with three connective ways can be, respectively, regarded as three equivalent hybrid systems composed of an ESE heat engine and an ESE refrigerator/heat pump. With the help of the theory of the ESE devices operated between two electronic reservoirs, the coefficients of performance and cooling rates (heat-pumping rates) of hybrid systems are directly derived. The general performance characteristics of hybrid systems are revealed. The optimal regions of these devices are determined. The performances of the devices with three connective ways of the electronic conductor and two configurations of energy filters are compared in detail. The advantages and disadvantages of each of three-terminal ESE devices are expounded. The results obtained here may provide some guidance for the optimal design and operation of three-terminal ESE devices.

  5. Alternate high capacity heat pipe

    NASA Technical Reports Server (NTRS)

    Voss, F. E.

    1986-01-01

    The performance predictions for a fifty foot heat pipe (4 foot evaporator - 46 foot condensor) are discussed. These performance predictions are supported by experimental data for a four foot heat pipe. Both heat pipes have evaporators with axial groove wick structures and condensers with powder metal external artery wick structures. The predicted performance of a rectangular axial groove/external artery heat pipe operating in space is given. Heat transport versus groove width is plotted for 100, 200 and 300 grooves in the evaporator. The curves show that maximum power is achieved for groove widths from 0.040 to 0.053 as the number of grooves varies from 300 to 100. The corresponding range of maximum power is 3150 to 2400 watts. The relationships between groove width and heat pipe evaporate diameter for 100, 200 and 300 grooves in the evaporator are given. A four foot heat pipe having a three foot condenser and one foot evaporator was built and tested. The evaporator wick structure used axial grooves with rectangular cross sections, and the condenser wick structure used powder metal with an external artery configuration. Fabrication drawings are enclosed. The predicted and measured performance for this heat pipe is shown. The agreement between predicted and measured performance is good and therefore substantiates the predicted performance for a fifty foot heat pipe.

  6. Location and orientation of panel on the screen as a structural visual element to highlight text displayed

    NASA Astrophysics Data System (ADS)

    Léger, Laure; Chevalier, Aline

    2017-07-01

    Searching for information on the internet has become a daily activity. It is considered to be a complex cognitive activity that involves visual attention. Many studies have demonstrated that users' information search are affected both by the spatial configuration of words and the elements displayed on the screen: elements that are used to structure web pages. One of these elements, the web panel, contains information. Web panel is a rectangular area with a colored background that was used to highlighting content presented in this specific rectangular area. Our general hypothesis was that the presence of a panel on a web page would affect the structure of a word display, as a result, information search accuracy. We carried out an experiment in which we manipulated the presence vs. the absence of a panel, as well as its orientation on the screen (vertical vs. horizontal). Twenty participants were asked to answer questions while their eye movements were recorded. Results showed that the presence of a panel resulted in reduced accuracy and shorter response times. Panel orientation affected scanpaths, especially when they were orientated vertically. We discuss these findings and suggest ways in which this research could be developed further in future.

  7. Mixing of Multiple Jets with a Confined Subsonic Crossflow. Part 2; Opposed Rows of Orifices in Rectangular Ducts

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Liscinsky, D. S.; Bain, D. B.

    1999-01-01

    This paper summarizes experimental and computational results on the mixing of opposed rows of jets with a confined subsonic crossflow in rectangular ducts. The studies from which these results were excerpted investigated flow and geometric variations typical of the complex three-dimensional flowfield in the combustion chambers in gas turbine engines. The principal observation was that the momentum-flux ratio, J, and the orifice spacing, S/H, were the most significant flow and geometric variables. Jet penetration was critical, and penetration decreased as either momentum-flux ratio or orifice spacing decreased. It also appeared that jet penetration remained similar with variations in orifice size, shape, spacing, and momentum-flux ratio when the orifice spacing was inversely proportional to the square-root of the momentum-flux ratio. It was also seen that planar averages must be considered in context with the distributions. Note also that the mass-flow ratios and the orifices investigated were often very large (jet-to-mainstream mass-flow ratio > 1 and the ratio of orifices-area-to-mainstream- cross-sectional-area up to 0.5, respectively), and the axial planes of interest were often just downstream of the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations.

  8. Mixing of Multiple Jets With a Confined Subsonic Crossflow. Part 2; Opposed Rows of Orifices in Rectangular Ducts

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.; Liscinsky, David S.; Bain, Daniel B.

    1997-01-01

    This paper summarizes experimental and computational results on the mixing of opposed rows of jets with a confined subsonic crossflow in rectangular ducts. The studies from which these results were excerpted investigated flow and geometric variations typical of the complex 3-D flowfield in the combustion chambers in gas turbine engines. The principal observation was that the momentum-flux ratio, J, and the orifice spacing, S/H, were the most significant flow and geometric variables. Jet penetration was critical, and penetration decreased as either momentum-flux ratio or orifice spacing decreased. It also appeared that jet penetration remained similar with variations in orifice size, shape, spacing, and momentum-flux ratio when the orifice spacing was inversely proportional to the square-root of the momentum-flux ratio. It was also seen that planar averages must be considered in context with the distributions. Note also that the mass-flow ratios and the offices investigated were often very large (jet-to-mainstream mass-flow ratio greater than 1 and the ratio of orifices-area-to-mainstream-cross-sectional-area up to 0.5 respectively), and the axial planes of interest were often just downstream of the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations.

  9. Supersonic axial-force characteristics of a rectangular-box cavity with various length-to-depth ratios in a flat plate

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.; Stallings, R. L., Jr.

    1986-01-01

    A wind-tunnel investigation has been conducted at Mach numbers of 1.50, 2.16, and 2.86 to obtain axial-force data on a metric rectangular-box cavity with various length-to-depth ratios. The model was tested at angles of attack from -4 deg to -2 deg. The results are summarized to show variations in cavity axial-force coefficient for deep- and shallow-cavity configurations with detached and attached cavity flow fields, respectively. The results of the investigation indicate that for a wide range of cavity lengths and depths, good correlations of the cavity axial-force coefficients (based on cavity rear-face area) are obtained when these coefficients are plotted as a function of cavity length-to-depth ratio. Abrupt increases in the cavity axial-force coefficients at an angle of attack of 0 deg. reflect the transition from an open (detached) cavity flow field to a closed (attached) cavity flow field. Cavity length-to-depth ratio is the dominant factor affecting the switching of the cavity flow field from one type to the other. The type of cavity flow field (open or closed) is not dependent on the test angles of attack except near the critical value of length-to-depth ratio.

  10. An experimental study of the aerodynamic characteristics of planar and non-planar outboard wing planforms

    NASA Technical Reports Server (NTRS)

    Naik, D. A.; Ostowari, C.

    1987-01-01

    A series of wind tunnel experiments have been conducted to investigate the aerodynamic characteristics of several planar and nonplanar wingtip planforms. Seven different configurations: base-line rectangular, elliptical, swept and tapered, swept and tapered with dihedral, swept and tapered with anhedral, rising arc, and drooping arc, were investigated for two different spans. The data are available in terms of coefficient plots of force data, flow visualization photographs, and velocity and pressure flowfield surveys. All planforms, particularly the nonplanar, have some advantages over the baseline rectangular planform. Span efficiencies up to 20-percent greater than baseline are a possibility. However, it is suggested that the span efficiency concept might need refinement for nonplanar wings. Flow survey data show the change in effective span with vortex roll-up. The flow visualization shows the occurrence of mushroom-cell-separation flow patterns at angles of attack corresponding to stall. These grow with an increase in post-stall angle of attack. For the larger aspect ratios, the cells are observed to split into sub-cells at the higher angles of attack. For all angles of attack, some amount of secondary vortex flow is observed for the planar and nonplanar out-board planforms with sweep and taper.

  11. Blended-Wing-Body Structural Technology Study

    NASA Technical Reports Server (NTRS)

    Starnes, James H.

    1998-01-01

    In most studies of stability of plates, the axial stress has been taken as uniform compression throughout flat rectangular plates. Buckling of isotropic plates under a compressive stress that varies linearly from one loaded edge to the other has been studied by Libove et al. Cases of practical interest exist, however, in which the axial stress is not uniform but varies from tension at both loaded edges to compression in the middle. An example is the stability of the crown of the hat stiffened panel, a candidate configuration of the upper and lower skin of the Blended Wing Body (BWB) Aircraft. The BWB Aircraft is an advanced long-range ultra-high-capacity airliner with the principal feature being the pressurized wide double-deck body which is blended into the wing. In the present research, analytical methods are used to investigate the local stability of the crown in order to minimize its weight while optimizing its buckling strength. The crown is modeled as a rectangular laminated composite plate subjected to a second degree parabolic variation of axial stresses in the longitudinal direction. A varying tension-compression- tension axial stresses are induced in the crown of the stiffeners due to bending. The change in axial stresses is equilibrated by nonuniform shear stresses along the plate edges and transverse normal stresses.

  12. Influence of thread shape and inclination on the biomechanical behaviour of plateau implant systems.

    PubMed

    Calì, Michele; Zanetti, Elisabetta Maria; Oliveri, Salvatore Massimo; Asero, Riccardo; Ciaramella, Stefano; Martorelli, Massimo; Bignardi, Cristina

    2018-03-01

    To assess the influence of implant thread shape and inclination on the mechanical behaviour of bone-implant systems. The study assesses which factors influence the initial and full osseointegration stages. Point clouds of the original implant were created using a non-contact reverse engineering technique. A 3D tessellated surface was created using Geomagic Studio ® software. From cross-section curves, generated by intersecting the tessellated model and cutting-planes, a 3D parametric CAD model was created using SolidWorks ® 2017. By the permutation of three thread shapes (rectangular, 30° trapezoidal, 45° trapezoidal) and three thread inclinations (0°, 3° or 6°), nine geometric configurations were obtained. Two different osseointegration stages were analysed: the initial osseointegration and a full osseointegration. In total, 18 different FE models were analysed and two load conditions were applied to each model. The mechanical behaviour of the models was analysed by Finite Element (FE) Analysis using ANSYS ® v. 17.0. Static linear analyses were also carried out. ANOVA was used to assess the influence of each factor. Models with a rectangular thread and 6° inclination provided the best results and reduced displacement in the initial osseointegration stages up to 4.58%. This configuration also reduced equivalent VM stress peaks up to 54%. The same effect was confirmed for the full osseointegration stage, where 6° inclination reduced stress peaks by up to 62%. The FE analysis confirmed the beneficial effect of thread inclination, reducing the displacement in immediate post-operative conditions and equivalent VM stress peaks. Thread shape does not significantly influence the mechanical behaviour of bone-implant systems but contributes to reducing stress peaks in the trabecular bone in both the initial and full osseointegration stages. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Update on Waveguide-Embedded Differential MMIC Amplifiers

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Schleht, Erich

    2010-01-01

    There is an update on the subject matter of Differential InP HEMT MMIC Amplifiers Embedded in Waveguides (NPO-42857) NASA Tech Briefs, Vol. 33, No. 9 (September 2009), page 35. To recapitulate: Monolithic microwave integrated-circuit (MMIC) amplifiers of a type now being developed for operation at frequencies of hundreds of gigahertz contain InP high-electron-mobility transistors (HEMTs) in a differential configuration. The MMICs are designed integrally with, and embedded in, waveguide packages. The instant work does not mention InP HEMTs but otherwise reiterates part of the subject matter of the cited prior article, with emphasis on the following salient points: An MMIC is mounted in the electric-field plane ("E-plane") of a waveguide and includes a finline transition to each differential-amplifier stage. The differential configuration creates a virtual ground within each pair of transistor-gate fingers, eliminating the need for external radio-frequency grounding. This work concludes by describing a single-stage differential submillimeter-wave amplifier packaged in a rectangular waveguide and summarizing results of tests of this amplifier at frequencies of 220 and 305 GHz.

  14. Agglomeration Multigrid for an Unstructured-Grid Flow Solver

    NASA Technical Reports Server (NTRS)

    Frink, Neal; Pandya, Mohagna J.

    2004-01-01

    An agglomeration multigrid scheme has been implemented into the sequential version of the NASA code USM3Dns, tetrahedral cell-centered finite volume Euler/Navier-Stokes flow solver. Efficiency and robustness of the multigrid-enhanced flow solver have been assessed for three configurations assuming an inviscid flow and one configuration assuming a viscous fully turbulent flow. The inviscid studies include a transonic flow over the ONERA M6 wing and a generic business jet with flow-through nacelles and a low subsonic flow over a high-lift trapezoidal wing. The viscous case includes a fully turbulent flow over the RAE 2822 rectangular wing. The multigrid solutions converged with 12%-33% of the Central Processing Unit (CPU) time required by the solutions obtained without multigrid. For all of the inviscid cases, multigrid in conjunction with an explicit time-stepping scheme performed the best with regard to the run time memory and CPU time requirements. However, for the viscous case multigrid had to be used with an implicit backward Euler time-stepping scheme that increased the run time memory requirement by 22% as compared to the run made without multigrid.

  15. 77 FR 1915 - Light-Walled Rectangular Pipe and Tube From Mexico; Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-836] Light-Walled Rectangular... preliminary results of the administrative review of the antidumping duty order on light-walled rectangular... period of review (POR) from August 1, 2009, through July 31, 2010. \\1\\ See Light-Walled Rectangular Pipe...

  16. 75 FR 55559 - Light-Walled Rectangular Pipe and Tube From Mexico: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-836] Light-Walled Rectangular... administrative review of the antidumping duty order on light-walled rectangular pipe and tube (LWRPT) from Mexico... Light-Walled Rectangular Pipe and Tube from Mexico, the People's Republic of China, and the Republic of...

  17. Eigenvalues of Rectangular Waveguide Using FEM With Hybrid Elements

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Hall, John M.

    2002-01-01

    A finite element analysis using hybrid triangular-rectangular elements is developed to estimate eigenvalues of a rectangular waveguide. Use of rectangular vector-edge finite elements in the vicinity of the PEC boundary and triangular elements in the interior region more accurately models the physical nature of the electromagnetic field, and consequently quicken the convergence.

  18. RF window assembly comprising a ceramic disk disposed within a cylindrical waveguide which is connected to rectangular waveguides through elliptical joints

    DOEpatents

    Tantawi, Sami G.; Dolgashev, Valery A.; Yeremian, Anahid D.

    2016-03-15

    A high-power microwave RF window is provided that includes a cylindrical waveguide, where the cylindrical waveguide includes a ceramic disk concentrically housed in a central region of the cylindrical waveguide, a first rectangular waveguide, where the first rectangular waveguide is connected by a first elliptical joint to a proximal end of the cylindrical waveguide, and a second rectangular waveguide, where the second rectangular waveguide is connected by a second elliptical joint to a distal end of the cylindrical waveguide.

  19. A Gas-Actuated Projectile Launcher for High-Energy Impact Testing of Structures

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin; Lawson, Robin E.; Knight, Norman F., Jr.; Lyle, Karen H.

    1999-01-01

    A gas-act,uated penetration device has been developed for high-energy impact testing of structures. The high-energy impact. t,estiiig is for experimental simulation of uncontained engine failures. The non-linear transient finite element, code LS-DYNA3D has been used in the numerical simula.tions of a titanium rectangular blade with a.n aluminum target, plate. Threshold velocities for different combinations of pitch and yaw angles of the impactor were obtained for the impactor-target, t8est configuration in the numerica.1 simulations. Complet,e penet,ration of the target plate was also simulat,ed numerically. Finally, limited comparison of analytical and experimental results is presented for complete penetration of the target by the impactor.

  20. NASA Trapezoidal Wing Simulation Using Stress-w and One- and Two-Equation Turbulence Models

    NASA Technical Reports Server (NTRS)

    Rodio, J. J.; Xiao, X; Hassan, H. A.; Rumsey, C. L.

    2014-01-01

    The Wilcox 2006 stress-omega model (also referred to as WilcoxRSM-w2006) has been implemented in the NASA Langley code CFL3D and used to study a variety of 2-D and 3-D configurations. It predicted a variety of basic cases reasonably well, including secondary flow in a supersonic rectangular duct. One- and two-equation turbulence models that employ the Boussinesq constitutive relation were unable to predict this secondary flow accurately because it is driven by normal turbulent stress differences. For the NASA trapezoidal wing at high angles of attack, the WilcoxRSM-w2006 model predicted lower maximum lift than experiment, similar to results of a two-equation model.

  1. Astable Oscillator Circuits using Silicon-on-Insulator Timer Chip for Wide Range Temperature Sensing

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Culley, Dennis; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Two astable oscillator circuits were constructed using a new silicon-on-insulator (SOI) 555 timer chip for potential use as a temperature sensor in harsh environments encompassing jet engine and space mission applications. The two circuits, which differed slightly in configuration, were evaluated between -190 and 200 C. The output of each circuit was made to produce a stream of rectangular pulses whose frequency was proportional to the sensed temperature. The preliminary results indicated that both circuits performed relatively well over the entire test temperature range. In addition, after the circuits were subjected to limited thermal cycling over the temperature range of -190 to 200 C, the performance of either circuit did not experience any significant change.

  2. Optimized multisectioned acoustic liners

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1979-01-01

    New calculations show that segmenting is most efficient at high frequencies with relatively long duct lengths where the attenuation is low for both uniform and segmented liners. Statistical considerations indicate little advantage in using optimized liners with more than two segments while the bandwidth of an optimized two-segment liner is shown to be nearly equal to that of a uniform liner. Multielement liner calculations show a large degradation in performance due to changes in assumed input modal structure. Computer programs are used to generate theoretical attenuations for a number of liner configurations for liners in a rectangular duct with no mean flow. Overall, the use of optimized multisectioned liners fails to offer sufficient advantage over a uniform liner to warrant their use except in low frequency single mode application.

  3. Multilayered nano-architecture of variable sized graphene nanosheets for enhanced supercapacitor electrode performance.

    PubMed

    Biswas, Sanjib; Drzal, Lawrence T

    2010-08-01

    The diverse physical and chemical aspects of graphene nanosheets such as particle size surface area and edge chemistry were combined to fabricate a new supercapacitor electrode architecture consisting of a highly aligned network of large-sized nanosheets as a series of current collectors within a multilayer configuration of bulk electrode. Capillary driven self-assembly of monolayers of graphene nanosheets was employed to create a flexible, multilayer, free-standing film of highly hydrophobic nanosheets over large macroscopic areas. This nanoarchitecture exhibits a high-frequency capacitative response and a nearly rectangular cyclic voltammogram at 1000 mV/s scanning rate and possesses a rapid current response, small equivalent series resistance (ESR), and fast ionic diffusion for high-power electrical double-layer capacitor (EDLC) application.

  4. Systems and methods for detecting nuclear radiation in the presence of backgrounds

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2005-06-21

    Systems and methods for the simultaneous detection and identification of radiation species, including neutrons, gammas/x-rays and minimum ionizing particles (MIPs). A plurality of rectangular and/or triangularly shaped radiation sensitive scintillators can be configured from a plurality of nano-sized particles, dopants and an extruded plastic material. A wavelength-shifting fiber can then be located within a central hole of each extruded scintillator, wherein the wavelength-shifting fiber absorbs scintillation light and re-emits the light at a longer wavelength, thereby piping the light to a photodetector whose response to the light indicates the presence of radiation The resulting method and system can simultaneously detect neutrons, gamma rays, x-rays and cosmic rays (MIPs) and identify each.

  5. Design of microstrip patch antennas using knowledge insertion through retraining

    NASA Astrophysics Data System (ADS)

    Divakar, T. V. S.; Sudhakar, A.

    2018-04-01

    The traditional way of analyzing/designing neural network is to collect experimental data and train neural network. Then, the trained neural network acts as global approximate function. The network is then used to calculate parameters for unknown configurations. The main drawback of this method is one does not have enough experimental data, cost of prototypes being a major factor [1-4]. Therefore, in this method the author collected training data from available approximate formulas with in full design range and trained the network with it. After successful training, the network is retrained with available measured results. This simple way inserts experimental knowledge into the network [5]. This method is tested for rectangular microstrip antenna and circular microstrip antenna.

  6. Augmentor emissions reduction technology program. [for turbofan engines

    NASA Technical Reports Server (NTRS)

    Colley, W. C.; Kenworthy, M. J.; Bahr, D. W.

    1977-01-01

    Technology to reduce pollutant emissions from duct-burner-type augmentors for use on advanced supersonic cruise aircraft was investigated. Test configurations, representing variations of two duct-burner design concepts, were tested in a rectangular sector rig at inlet temperature and pressure conditions corresponding to takeoff, transonic climb, and supersonic cruise flight conditions. Both design concepts used piloted flameholders to stabilize combustion of lean, premixed fuel/air mixtures. The concepts differed in the flameholder type used. High combustion efficiency (97%) and low levels of emissions (1.19 g/kg fuel) were achieved. The detailed measurements suggested the direction that future development efforts should take to obtain further reductions in emission levels and associated improvements in combustion efficiency over an increased range of temperature rise conditions.

  7. Flow in serpentine coolant passages with trip strips

    NASA Technical Reports Server (NTRS)

    Tse, D. G.-N.

    1995-01-01

    Under the subject contract, an effort is being conducted at Scientific Research Associates, Inc. (SRA) to obtain flow field measurements in the coolant passage of a rotating turbine blade with ribbed walls, both in the stationary and rotating frames. The data obtained will be used for validation of computational tools and assessment of turbine blade cooling strategies. The configuration of the turbine blade passage model is given, and the measuring plane locations are given. The model has a four-pass passage with three 180 turns. This geometry was chosen to allow analyses of the velocity measurements corresponding to the heat transfer results obtained by Wagner. Two passes of the passage have a rectangular cross-section of 1.0 in x 0.5 in. Another two passes have a square cross-section of 0.5 in x 0.5 in. Trips with a streamwise pitch to trip height (P/e) = 5 and trip height to coolant passage width (e/Z) = 0.1, were machined along the leading and trailing walls. These dimensions are typical of those used in turbine blade coolant passages. The trips on these walls are staggered by the half-pitch. The trips are skewed at +/- 45 deg, and this allows the effect of trip orientation to be examined. Experiments will be conducted with flow entering the model through the 1.0 in x 0.5 in rectangular passage (Configuration C) and the 0.5 in x 0. 5 in square passage (Configuration D) to examine the effect of passage aspect ratio. Velocity measurements were obtained with a Reynolds number (Re) of 25,000, based on the hydraulic diameter of and bulk mean velocity in the half inch square passage. The coordinate system used in presenting the results for configurations C and D, respectively, is shown. The first, second and third passes of the passage will be referred to as the first, second and third passages, respectively, in later discussion. Streamwise distance (x) from the entrance is normalized by the hydraulic diameter (D). Vertical (y) and tangential (z) distances are normalized by the half passage height (H) and width (Z), respectively. The x coordinate and U component are positive in the streamwise direction. The y coordinate and V component are positive against gravity. The z coordinate and W component are positive in the direction of rotation. The velocities are normalized by the bulk mean velocity (Ub) of 3.44 m/s based on the half-inch square passage. The contours of the 1.0 in x 0.5 in and 0.5 in x 0.5 in passages were evaluated from 11 x 30 and 9 x 30 measurement grids, respectively.

  8. The effect of the configuration and the interior design of a virtual weightless space station on human spatial orientation.

    PubMed

    Aoki, Hirofumi; Ohno, Ryuzo; Yamaguchi, Takao

    2005-01-01

    In a virtual weightless environment, subjects' orientation skills were studied to examine what kind of cognitive errors people make when they moved through the interior space of virtual space stations and what kind of visual information effectively decreases those errors. Subjects wearing a head-mounted display moved from one end to the other end in space station-like routes constructed of rectangular and cubical modules, and did Pointing and Modeling tasks. In Experiment 1, configurations of the routes were changed with such variables as the number of bends, the number of embedding planes, and the number of planes with respect to the body posture. The results indicated that spatial orientation ability was relevant to the variables and that orientational errors were explained by two causes. One of these was that the place, the direction, and the sequence of turns were incorrect. The other was that subjects did not recognize the rotation of the frame of reference, especially when they turned in pitch direction rather than in yaw. In Experiment 2, the effect of the interior design was examined by testing three design settings. Wall colors that showed the allocentric frame of reference and the different interior design of vertical and horizontal modules were effective; however, there was a limit to the effectiveness in complicated configurations. c2005 Published by Elsevier Ltd.

  9. Effects of using two- versus three-dimensional computational modeling of fluidized beds Part I, hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Nan; Battaglia, Francine; Pannala, Sreekanth

    2008-01-01

    Simulations of fluidized beds are performed to study and determine the effect on the use of coordinate systems and geometrical configurations to model fluidized bed reactors. Computational fluid dynamics is employed for an Eulerian-Eulerian model, which represents each phase as an interspersed continuum. The transport equation for granular temperature is solved and a hyperbolic tangent function is used to provide a smooth transition between the plastic and viscous regimes for the solid phase. The aim of the present work is to show the range of validity for employing simulations based on a 2D Cartesian coordinate system to approximate both cylindricalmore » and rectangular fluidized beds. Three different fluidization regimes, bubbling, slugging and turbulent regimes, are investigated and the results of 2D and 3D simulations are presented for both cylindrical and rectangular domains. The results demonstrate that a 2D Cartesian system can be used to successfully simulate and predict a bubbling regime. However, caution must be exercised when using 2D Cartesian coordinates for other fluidized regimes. A budget analysis that explains all the differences in detail is presented in Part II [N. Xie, F. Battaglia, S. Pannala, Effects of Using Two-Versus Three-Dimensional Computational Modeling of Fluidized Beds: Part II, budget analysis, 182 (1) (2007) 14] to complement the hydrodynamic theory of this paper.« less

  10. On the Induced Flow of an Electrically Conducting Liquid in a Rectangular Duct by Electric and Magnetic Fields of Finite Extent

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Jones, William Prichard; Huerta, Robert H.

    1961-01-01

    Reported here are the results of a systematic study of a model of the direct-current electromagnetic pump. Of particular interest is the motion imparted to the electrically conducting fluid in the rectangular duct by the body forces that result from applied electric and magnetic fields. The purpose of the investigation is to associate the observed fluid motion with the characteristics of the electric and magnetic fields which cause them. The experiments were carried out with electromagnetic fields that moved a stream of copper sulphate solution through a clear plastic channel. Ink filaments injected into the stream ahead of the region where the fields were applied identify the motion of the fluid elements as they passed through the test channel. Several magnetic field configurations were employed with a two-dimensional electric current distribution in order to study and identify the magnitude of some of the effects on the fluid motion brought about by nonuniformities in the electromagnetic fields. A theoretical analysis was used to guide and evaluate the identification of the several fluid motions observed. The agreement of the experimental data with the theoretical predictions is satisfactory. It is found that sizable variations in the velocity profile and pressure head of the output stream are produced by the shape of the electric and magnetic fields.

  11. Spectral Optical Readout of Rectangular–Miniature Hollow Glass Tubing for Refractive Index Sensing

    PubMed Central

    Rigamonti, Giulia; Bello, Valentina

    2018-01-01

    For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances. PMID:29462907

  12. Inverted S-Shaped Compact Antenna for X-Band Applications

    PubMed Central

    Samsuzzaman, M.; Islam, M. T.

    2014-01-01

    A novel probe-fed compact inverted S-shaped multifrequency patch antenna is designed. By employing two rectangular slots that change the conventional rectangular patch into an inverted S-shaped patch, the antenna is able to operate in triple frequency in the X-band. The performance criteria of the proposed design have been experimentally verified by fabricating a printed prototype. The measured results show that the −10 dB impedance bandwidth of the proposed antenna at lower band is 5.02% (8.69–9.14 GHz), at middle band is 9.13% (10.47–11.48 GHz), and at upper band is 3.79% (11.53–11.98 GHz). Two elliptical slots are introduced in the ground plane to increase the peak gain. The antenna is excited by a simple probe feeding mechanism. The overall antenna dimension is  0.52λ × 0.60λ × 0.046λ at a lower resonance frequency of 9.08 GHz. The antenna configuration and parametric investigation are conducted with the help of the high frequency structural simulator, and a good agreement is achieved between the simulated and measured data. The stable gain, omnidirectional radiation pattern, and consistent radiation efficiency in the achieved operating band make the proposed antenna a suitable candidate for X-band applications. PMID:24895656

  13. Enhanced Circular Dichroism of Gold Bilayered Slit Arrays Embedded with Rectangular Holes.

    PubMed

    Zhang, Hao; Wang, Yongkai; Luo, Lina; Wang, Haiqing; Zhang, Zhongyue

    2017-01-01

    Gold bilayered slit arrays with rectangular holes embedded into the metal surface are designed to enhance the circular dichroism (CD) effect of gold bilayered slit arrays. The rectangular holes in these arrays block electric currents and generate localized surface plasmons around these holes, thereby strengthening the CD effect. The CD enhancement factor depends strongly on the rotational angle and the structural parameters of the rectangular holes; this factor can be enhanced further by drilling two additional rectangular holes into the metal surfaces of the arrays. These results help facilitate the design of chiral structures to produce a strong CD effect and large electric fields.

  14. Propagation of THz pulses in rectangular subwavelength dielectric waveguides

    NASA Astrophysics Data System (ADS)

    Lu, Yao; Wu, Qiang; Zhang, Qi; Wang, Ride; Zhao, Wenjuan; Zhang, Deng; Pan, Chongpei; Qi, Jiwei; Xu, Jingjun

    2018-06-01

    Rectangular subwavelength waveguides are necessary for the development of micro/nanophotonic devices and on-chip platforms. Using a time-resolved imaging system, we studied the transient properties and the propagation modes of THz pulses in rectangular subwavelength dielectric waveguides. The dynamic process of THz pulses was systematically recorded to a movie. In addition, an anomalous group velocity dispersion was demonstrated in rectangular subwavelength waveguides. By using the effective index method, we theoretically calculated the modes in rectangular subwavelength waveguides, which agree well with the experiments and simulations. This work provides the opportunity to improve the analysis and design of the integrated platforms and photonic devices.

  15. Bend losses in rectangular culverts.

    DOT National Transportation Integrated Search

    2008-09-01

    This study investigated bend losses for open channel flow in rectangular channels or culverts. Laboratory experiments were performed for sub-critical flow in rectangular channels with abrupt bends. Bend angles of approximately 30, 45, 60, 75 and 90 d...

  16. Finite element fatigue analysis of rectangular clutch spring of automatic slack adjuster

    NASA Astrophysics Data System (ADS)

    Xu, Chen-jie; Luo, Zai; Hu, Xiao-feng; Jiang, Wen-song

    2015-02-01

    The failure of rectangular clutch spring of automatic slack adjuster directly affects the work of automatic slack adjuster. We establish the structural mechanics model of automatic slack adjuster rectangular clutch spring based on its working principle and mechanical structure. In addition, we upload such structural mechanics model to ANSYS Workbench FEA system to predict the fatigue life of rectangular clutch spring. FEA results show that the fatigue life of rectangular clutch spring is 2.0403×105 cycle under the effect of braking loads. In the meantime, fatigue tests of 20 automatic slack adjusters are carried out on the fatigue test bench to verify the conclusion of the structural mechanics model. The experimental results show that the mean fatigue life of rectangular clutch spring is 1.9101×105, which meets the results based on the finite element analysis using ANSYS Workbench FEA system.

  17. Analysis of junior high school students' difficulty in resolving rectangular conceptual problems

    NASA Astrophysics Data System (ADS)

    Utami, Aliksia Kristiana Dwi; Mardiyana, Pramudya, Ikrar

    2017-08-01

    Geometry is one part of the mathematics that must be learned in school and it has important effects on the development of creative thinking skills of learners, but in fact, there are some difficulties experienced by the students. This research focuses on analysis difficulty in resolving rectangular conceptual problems among junior high school students in every creative thinking skills level. This research used a descriptive method aimed to identify the difficulties and cause of the difficulties experienced by five students. The difficulties are associated with rectangular shapes and related problems. Data collection was done based on students' work through test, interview, and observations. The result revealed that student' difficulties in understanding the rectangular concept can be found at every creative thinking skills level. The difficulties are identifying the objects rectangular in the daily life except for a rectangle and square, analyzing the properties of rectangular shapes, and seeing the interrelationships between figures.

  18. Dual-Mode Combustion

    NASA Technical Reports Server (NTRS)

    Goyne, Christopher P.; McDaniel, James C.

    2002-01-01

    The Department of Mechanical and Aerospace Engineering at the University of Virginia has conducted an investigation of the mixing and combustion processes in a hydrogen fueled dual-mode scramjet combustor. The experiment essentially consisted of the "direct connect" continuous operation of a Mach 2 rectangular combustor with a single unswept ramp fuel injector. The stagnation enthalpy of the test flow simulated a flight Mach number of 5. Measurements were obtained using conventional wall instrumentation and laser based diagnostics. These diagnostics included, pressure and wall temperature measurements, Fuel Plume Imaging (FPI) and Particle Image Velocimetry (PIV). A schematic of the combustor configuration and a summary of the measurements obtained are presented. The experimental work at UVa was parallel by Computational Fluid Dynamics (CFD) work at NASA Langley. The numerical and experiment results are compared in this document.

  19. Orthogonal feeding techniques for tapered slot antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1998-01-01

    For array of "brick" configuration there are electrical and mechanical advantages to feed the antenna with a feed on a substrate perpendicular to the antenna substrate. Different techniques have been proposed for exciting patch antennas using such a feed structure.Rncently, an aperture-coupled dielectric resonator antenna using a perpendicular feed substrate has been demonstrated to have very good power coupling efficiency. For a two-dimensional rectangular array with tapered slot antenna elements, a power combining network on perpendicular substrate is generally required to couple power to or from the array. In this paper, we will describe two aperture-coupled techniques for coupling microwave power from a linearly tapered slot antenna (LTSA) to a microstrip feed on a perpendicular substrate. In addition, we will present measured results for return losses and radiation patterns.

  20. A Concept for the HIFiRE 8 Flight Test

    NASA Astrophysics Data System (ADS)

    Alesi, H.; Paull, A.; Smart, M.; Bowcutt, K. G.

    2015-09-01

    HIFiRE 8 is a hypersonic flight test experiment scheduled for launch in late 2018 from the Woomera Test Center in Australia. This project aims to develop a Flight Test Vehicle that will, for the first time, complete 30 seconds of scramjet powered hypersonic flight at a Mach Number of 7.0. The engine used for this flight will be a rectangular to elliptic shape transition scramjet. It will be fuelled with gaseous hydrogen. The flight test engine configuration will be derived using scientific and engineering evaluation in the UQ shock tunnel T4 and other potential ground-based facilities. This paper presents current plans for the HIFiRE 8 trajectory, mission events, airframe and engine designs and also includes descriptions of critical subsystems and associated modelling, simulation and analysis activities.

  1. Flow structure and heat exchange analysis in internal cooling channel of gas turbine blade

    NASA Astrophysics Data System (ADS)

    Szwaba, Ryszard; Kaczynski, Piotr; Doerffer, Piotr; Telega, Janusz

    2016-08-01

    This paper presents the study of the flow structure and heat transfer, and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade. The investigations focus on heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include corner fillet, ribs with fillet radii and special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features.

  2. Method and structure for cache aware transposition via rectangular subsections

    DOEpatents

    Gustavson, Fred Gehrung; Gunnels, John A

    2014-02-04

    A method and structure for transposing a rectangular matrix A in a computer includes subdividing the rectangular matrix A into one or more square submatrices and executing an in-place transposition for each of the square submatrices A.sub.ij.

  3. Lid design for low level waste container

    DOEpatents

    Holbrook, R.H.; Keener, W.E.

    1995-02-28

    A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame. 6 figs.

  4. Lid design for low level waste container

    DOEpatents

    Holbrook, Richard H.; Keener, Wendell E.

    1995-01-01

    A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame.

  5. Reconfigurable microfluidic device with discretized sidewall

    PubMed Central

    Oono, Masahiro; Yamaguchi, Keisuke; Rasyid, Amirul; Takano, Atsushi; Tanaka, Masato

    2017-01-01

    Various microfluidic features, such as traps, have been used to manipulate flows, cells, and other particles within microfluidic systems. However, these features often become undesirable in subsequent steps requiring different fluidic configurations. To meet the changing needs of various microfluidic configurations, we developed a reconfigurable microfluidic channel with movable sidewalls using mechanically discretized sidewalls of laterally aligned rectangular pins. The user can deform the channel sidewall at any time after fabrication by sliding the pins. We confirmed that the flow resistance of the straight microchannel could be reversibly adjusted in the range of 101–105 Pa s/μl by manually displacing one of the pins comprising the microchannel sidewall. The reconfigurable microchannel also made it possible to manipulate flows and cells by creating a segmented patterned culture of COS-7 cells and a coculture of human umbilical vein endothelial cells (HUVECs) and human lung fibroblasts (hLFs) inside the microchannel. The reconfigurable microfluidic device successfully maintained a culture of COS-7 cells in a log phase throughout the entire period of 216 h. Furthermore, we performed a migration assay of cocultured HUVEC and hLF spheroids within one microchannel and observed their migration toward each other. PMID:28503247

  6. Ballistic Resistance of Honeycomb Sandwich Panels under In-Plane High-Velocity Impact

    PubMed Central

    Yang, Shu; Wang, Dong; Yang, Li-Jun

    2013-01-01

    The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs. PMID:24187526

  7. Ballistic resistance of honeycomb sandwich panels under in-plane high-velocity impact.

    PubMed

    Qi, Chang; Yang, Shu; Wang, Dong; Yang, Li-Jun

    2013-01-01

    The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs.

  8. Single Null Negative Triangularity Tokamak for Power Handling

    NASA Astrophysics Data System (ADS)

    Kikuchi, Mitsuru; Medvedev, S.; Takizuka, T.; Sauter, O.; Merle, A.; Coda, S.; Chen, D.; Li, J. X.

    2017-10-01

    Power and particle control in fusion reactor is challenge and we proposed the negative triangularity tokamak (NTT) to eliminate ELM by operating L-mode edge with improved core confinement. The SN configuration has more flexibility in shaping by adopting rectangular-shaped TF coils. The limiting normalized beta is 3.56 with wall stabilization and 3.14 without wall. The vertical stability is assured under a reasonable control system. The wetted area on the divertor plates becomes wider in proportion to the larger major radius at the divertor strike points due to the NT configuration. In addition to the major-radius effect, the ``Flux Tune Expansion (FTE)'' is adopted to further reduce the heat load on the divertor plate by factor of 2.6 with a coil current 3 MA. L-mode edge also allows further increase in wetted area. The fusion power of 3 GW is deliverable only at normalized beta 2.1. Therefore this reactor may be operable stably against the serious MHD activities. The CD power for SS operation is 175 MW at Q = 17. AC operation is also possible option. A required HH factor is relatively modest H = 1.12.

  9. Urban Morphology Influence on Urban Albedo: A Revisit with the S olene Model

    NASA Astrophysics Data System (ADS)

    Groleau, Dominique; Mestayer, Patrice G.

    2013-05-01

    This heuristic study of the urban morphology influence on urban albedo is based on some 3,500 simulations with the S olene model. The studied configurations include square blocks in regular and staggered rows, rectangular blocks with different street widths, cross-shaped blocks, infinite street canyons and several actual districts in Marseilles, Toulouse and Nantes, France. The scanned variables are plan density, facade density, building height, layout orientation, latitude, date and time of the day. The sky-view factors of the ground and canopy surfaces are also considered. This study demonstrates the significance of the facade density, in addition to the built plan density, as the explanatory geometrical factor to characterize the urban morphology, rather than building height. On the basis of these albedo calculations the puzzling results of Kondo et al. (Boundary-Layer Meteorol 100:225-242, 2001) for the influence of building height are explained, and the plan density influence is quantitatively assessed. It is shown that the albedo relationship with plan and facade densities obtained with the regular square plot configuration may be considered as a reference for all other configurations, with the exception of the infinite street canyon that shows systematic differences for the lower plan densities. The curves representing this empirical relationship may be used as a sort of abacus for all other geometries while an approximate simple mathematical model is proposed, as well as relationships between the albedo and sky-view factors.

  10. 76 FR 64105 - Light-Walled Rectangular Pipe From Taiwan; Scheduling of an Expedited Five-Year Review Concerning...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-410 (Third Review)] Light-Walled... Order on Light-Walled Rectangular Pipe From Taiwan AGENCY: United States International Trade Commission... determine whether revocation of the antidumping duty order on light-walled rectangular pipe from Taiwan...

  11. 77 FR 3497 - Light-Walled Rectangular Pipe and Tube From Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-410 (Third Review)] Light-Walled... order on light-walled rectangular pipe and tube from Taiwan would be likely to lead to continuation or... views of the Commission are contained in USITC Publication 4301 (January 2012), Light-Walled Rectangular...

  12. Effective way of reducing coupling loss between rectangular microwaveguide and fiber.

    PubMed

    Zhou, Hang; Chen, Zilun; Xi, Xiaoming; Hou, Jing; Chen, Jinbao

    2012-01-20

    We introduce an anamorphic photonic crystal fiber (PCF) produced by postprocessing techniques to improve the coupling loss between a conventional single-mode fiber and rectangular microwaveguide. One end of the round core is connected with the conventional fiber, and the other end of the rectangular core is connected with the rectangular microwaveguide, then the PCF is tapered pro rata. In this way, the loss of mode mismatch between the output of the conventional fiber and the input of the waveguide would be reduced, which results in enhanced coupling efficiency. The conclusion was confirmed by numerical simulation: the new method is better than straight coupling between the optical fiber and the rectangular microwaveguide, and more than 2.8 dB improvement of coupling efficiency is achieved. © 2012 Optical Society of America

  13. Electromagnetic Scattering from Arbitrarily Shaped Aperture Backed by Rectangular Cavity Recessed in Infinite Ground Plane

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.; Beck, Fred B.

    1997-01-01

    The electromagnetic scattering from an arbitrarily shaped aperture backed by a rectangular cavity recessed in an infinite ground plane is analyzed by the integral equation approach. In this approach, the problem is split into two parts: exterior and interior. The electromagnetic fields in the exterior part are obtained from an equivalent magnetic surface current density assumed to be flowing over the aperture and backed by an infinite ground plane. The electromagnetic fields in the interior part are obtained in terms of rectangular cavity modal expansion functions. The modal amplitudes of cavity modes are determined by enforcing the continuity of the electric field across the aperture. The integral equation with the aperture magnetic current density as an unknown is obtained by enforcing the continuity of magnetic fields across the aperture. The integral equation is then solved for the magnetic current density by the method of moments. The electromagnetic scattering properties of an aperture backed by a rectangular cavity are determined from the magnetic current density. Numerical results on the backscatter radar cross-section (RCS) patterns of rectangular apertures backed by rectangular cavities are compared with earlier published results. Also numerical results on the backscatter RCS patterns of a circular aperture backed by a rectangular cavity are presented.

  14. Hexagonal Pixels and Indexing Scheme for Binary Images

    NASA Technical Reports Server (NTRS)

    Johnson, Gordon G.

    2004-01-01

    A scheme for resampling binaryimage data from a rectangular grid to a regular hexagonal grid and an associated tree-structured pixel-indexing scheme keyed to the level of resolution have been devised. This scheme could be utilized in conjunction with appropriate image-data-processing algorithms to enable automated retrieval and/or recognition of images. For some purposes, this scheme is superior to a prior scheme that relies on rectangular pixels: one example of such a purpose is recognition of fingerprints, which can be approximated more closely by use of line segments along hexagonal axes than by line segments along rectangular axes. This scheme could also be combined with algorithms for query-image-based retrieval of images via the Internet. A binary image on a rectangular grid is generated by raster scanning or by sampling on a stationary grid of rectangular pixels. In either case, each pixel (each cell in the rectangular grid) is denoted as either bright or dark, depending on whether the light level in the pixel is above or below a prescribed threshold. The binary data on such an image are stored in a matrix form that lends itself readily to searches of line segments aligned with either or both of the perpendicular coordinate axes. The first step in resampling onto a regular hexagonal grid is to make the resolution of the hexagonal grid fine enough to capture all the binaryimage detail from the rectangular grid. In practice, this amounts to choosing a hexagonal-cell width equal to or less than a third of the rectangular- cell width. Once the data have been resampled onto the hexagonal grid, the image can readily be checked for line segments aligned with the hexagonal coordinate axes, which typically lie at angles of 30deg, 90deg, and 150deg with respect to say, the horizontal rectangular coordinate axis. Optionally, one can then rotate the rectangular image by 90deg, then again sample onto the hexagonal grid and check for line segments at angles of 0deg, 60deg, and 120deg to the original horizontal coordinate axis. The net result is that one has checked for line segments at angular intervals of 30deg. For even finer angular resolution, one could, for example, then rotate the rectangular-grid image +/-45deg before sampling to perform checking for line segments at angular intervals of 15deg.

  15. 3D visualization of two-phase flow in the micro-tube by a simple but effective method

    NASA Astrophysics Data System (ADS)

    Fu, X.; Zhang, P.; Hu, H.; Huang, C. J.; Huang, Y.; Wang, R. Z.

    2009-08-01

    The present study provides a simple but effective method for 3D visualization of the two-phase flow in the micro-tube. An isosceles right-angle prism combined with a mirror located 45° bevel to the prism is employed to synchronously obtain the front and side views of the flow patterns with a single camera, where the locations of the prism and the micro-tube for clear imaging should satisfy a fixed relationship which is specified in the present study. The optical design is proven successfully by the tough visualization work at the cryogenic temperature range. The image deformation due to the refraction and geometrical configuration of the test section is quantitatively investigated. It is calculated that the image is enlarged by about 20% in inner diameter compared to the real object, which is validated by the experimental results. Meanwhile, the image deformation by adding a rectangular optical correction box outside the circular tube is comparatively investigated. It is calculated that the image is reduced by about 20% in inner diameter with a rectangular optical correction box compared to the real object. The 3D re-construction process based on the two views is conducted through three steps, which shows that the 3D visualization method can easily be applied for two-phase flow research in micro-scale channels and improves the measurement accuracy of some important parameters of the two-phase flow such as void fraction, spatial distribution of bubbles, etc.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lifeng, E-mail: walfe@nuaa.edu.cn; Hu, Haiyan

    The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermalmore » vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.« less

  17. 78 FR 54864 - Light-Walled Rectangular Pipe and Tube From Mexico: Preliminary Results and Partial Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-836] Light-Walled Rectangular... the antidumping duty order on light-walled rectangular pipe and tube (LWR pipe and tube) from Mexico... The merchandise subject to the order is certain welded carbon- quality light-walled steel pipe and...

  18. Experimental Modal Analysis of Rectangular and Circular Beams

    ERIC Educational Resources Information Center

    Emory, Benjamin H.; Zhu, Wei Dong

    2006-01-01

    Analytical and experimental methods are used to determine the natural frequencies and mode shapes of Aluminum 6061-T651 beams with rectangular and circular cross-sections. A unique test stand is developed to provide the rectangular beam with different boundary conditions including clamped-free, clamped-clamped, clamped-pinned, and pinned-pinned.…

  19. 77 FR 4278 - Light-Walled Rectangular Pipe and Tube From Turkey: Extension of Time Limits for Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-489-815] Light-Walled Rectangular Pipe and Tube From Turkey: Extension of Time Limits for Preliminary Results of Antidumping Duty..., light- walled rectangular pipe and tube from Turkey for the May 1, 2010, through April 30, 2011, period...

  20. 76 FR 57953 - Light-Walled Rectangular Pipe and Tube From Turkey; Notice of Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... Pipe and Tube From Turkey; Notice of Final Results of Antidumping Duty Administrative Review AGENCY... pipe and tube from Turkey. See Light-Walled Rectangular Pipe and Tube From Turkey; Notice of... order covering light- walled rectangular pipe and tube from Turkey. See Preliminary Results. The...

  1. 78 FR 74161 - Light-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey; Scheduling of Full...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ...-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey; Scheduling of Full Five-Year... Turkey AGENCY: United States International Trade Commission. ACTION: Notice. SUMMARY: The Commission... on light- walled rectangular pipe and tube from China, Korea, Mexico, and Turkey would be likely to...

  2. Factorization of differential expansion for non-rectangular representations

    NASA Astrophysics Data System (ADS)

    Morozov, A.

    2018-04-01

    Factorization of the differential expansion (DE) coefficients for colored HOMFLY-PT polynomials of antiparallel double braids, originally discovered for rectangular representations R, in the case of rectangular representations R, is extended to the first non-rectangular representations R = [2, 1] and R = [3, 1]. This increases chances that such factorization will take place for generic R, thus fixing the shape of the DE. We illustrate the power of the method by conjecturing the DE-induced expression for double-braid polynomials for all R = [r, 1]. In variance with the rectangular case, the knowledge for double braids is not fully sufficient to deduce the exclusive Racah matrix S¯ — the entries in the sectors with nontrivial multiplicities sum up and remain unseparated. Still, a considerable piece of the matrix is extracted directly and its other elements can be found by solving the unitarity constraints.

  3. Triple-band metamaterial absorption utilizing single rectangular hole

    NASA Astrophysics Data System (ADS)

    Kim, Seung Jik; Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak

    2017-01-01

    In the general metamaterial absorber, the single absorption band is made by the single meta-pattern. Here, we introduce the triple-band metamaterial absorber only utilizing single rectangular hole. We also demonstrate the absorption mechanism of the triple absorption. The first absorption peak was caused by the fundamental magnetic resonance in the metallic part between rectangular holes. The second absorption was generated by induced tornado magnetic field. The process of realizing the second band is also presented. The third absorption was induced by the third-harmonic magnetic resonance in the metallic region between rectangular holes. In addition, the visible-range triple-band absorber was also realized by using similar but smaller single rectangular-hole structure. These results render the simple metamaterials for high frequency in large scale, which can be useful in the fabrication of metamaterials operating in the optical range.

  4. Dynamic response of RC beams strengthened with near surface mounted Carbon-FRP rods subjected to damage

    NASA Astrophysics Data System (ADS)

    Capozucca, R.; Blasi, M. G.; Corina, V.

    2015-07-01

    Near surface mounted (NSM) technique with fiber reinforced polymer (FRP) is becoming a common method in the strengthening of concrete beams. The availability of NSM FRP technique depends on many factors linked to materials and geometry - dimensions of the rods used, type of FRP material employed, rods’ surface configuration, groove size - and to adhesion between concrete and FRP rods. In this paper detection of damage is investigated measuring the natural frequency values of beam in the case of free-free ends. Damage was due both to reduction of adhesion between concrete and carbon-FRP rectangular and circular rods and cracking of concrete under static bending tests on beams. Comparison between experimental and theoretical frequency values evaluating frequency changes due to damage permits to monitor actual behaviour of RC beams strengthened by NSM CFRP rods.

  5. Elliptic generation of composite three-dimensional grids about realistic aircraft

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1986-01-01

    An elliptic method for generating composite grids about realistic aircraft is presented. A body-conforming grid is first generated about the entire aircraft by the solution of Poisson's differential equation. This grid has relatively coarse spacing, and it covers the entire physical domain. At boundary surfaces, cell size is controlled and cell skewness is nearly eliminated by inhomogeneous terms, which are found automatically by the program. Certain regions of the grid in which high gradients are expected, and which map into rectangular solids in the computational domain, are then designated for zonal refinement. Spacing in the zonal grids is reduced by adding points with a simple, algebraic scheme. Details of the grid generation method are presented along with results of the present application, a wing-body configuration based on the F-16 fighter aircraft.

  6. Optimization of self-acting step thrust bearings for load capacity and stiffness.

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1972-01-01

    Linearized analysis of a finite-width rectangular step thrust bearing. Dimensionless load capacity and stiffness are expressed in terms of a Fourier cosine series. The dimensionless load capacity and stiffness were found to be a function of the dimensionless bearing number, the pad length-to-width ratio, the film thickness ratio, the step location parameter, and the feed groove parameter. The equations obtained in the analysis were verified. The assumptions imposed were substantiated by comparing the results with an existing exact solution for the infinite width bearing. A digital computer program was developed which determines optimal bearing configuration for maximum load capacity or stiffness. Simple design curves are presented. Results are shown for both compressible and incompressible lubrication. Through a parameter transformation the results are directly usable in designing optimal step sector thrust bearings.

  7. Satellite Testbed for Evaluating Cryogenic-Liquid Behavior in Microgravity

    NASA Technical Reports Server (NTRS)

    Putman, Philip Travis (Inventor)

    2017-01-01

    Provided is a testbed for conducting an experiment on a substance in a cryogenic liquid state in a microgravity environment. The testbed includes a frame with rectangular nominal dimensions, and a source section including a supply of the substance to be evaluated in the cryogenic liquid state. An experiment section includes an experiment vessel in fluid communication with the storage section to receive the substance from the storage section and condense the substance into the cryogenic liquid state. A sensor is adapted to sense a property of the substance in the cryogenic liquid state in the experiment vessel as part of the experiment. A bus section includes a controller configured to control delivery of the substance from the storage section to the experiment vessel, and receive property data indicative of the property sensed by the sensor for subsequent evaluation on Earth.

  8. Secondary Vortex Structures in Vortex Generator Induced Flow

    NASA Astrophysics Data System (ADS)

    Velte, Clara; Okulov, Valery; Hansen, Martin

    2010-11-01

    Passive rectangular vane actuators can induce a longitudinal vortex that redistributes the momentum in the boundary layer to control the flow. Recent experiments [1] as well as previous studies [2] have shown that a secondary vortex of opposite sign is generated along with the primary one, supposedly from local separation of the boundary layer due to the primary vortex. 2D flow visualizations of a vortex in the vicinity of a boundary support this hypothesis [3]. These secondary vortices are studied for various configurations -- single generator, counter- and co-rotating cascades. The objective is to study their removal through cancelation in cascades using Stereoscopic Particle Image Velocimetry and flow visualization.[4pt] [1] Velte, Hansen and Okulov, J. Fluid Mech. 619, 2009.[0pt] [2] Zhang, Int. J. Heat Fluid Flow 21 2000.[0pt] [3] Harris, Miller and Williamson, APS abstract 2009.

  9. Transition aerodynamics for 20-percent-scale VTOL unmanned aerial vehicle

    NASA Technical Reports Server (NTRS)

    Kjerstad, Kevin J.; Paulson, John W., Jr.

    1993-01-01

    An investigation was conducted in the Langley 14- by 22-Foot Subsonic Tunnel to establish a transition data base for an unmanned aerial vehicle utilizing a powered-lift ejector system and to evaluate alterations to the ejector system for improved vehicle performance. The model used in this investigation was a 20-percent-scale, blended-body, arrow-wing configuration with integrated twin rectangular ejectors. The test was conducted from hover through transition conditions with variations in angle of attack, angle of sideslip, free-stream dynamic pressure, nozzle pressure ratio, and model ground height. Force and moment data along with extensive surface pressure data were obtained. A laser velocimeter technique for measuring inlet flow velocities was demonstrated at a single flow condition, and also a low order panel method was successfully used to numerically simulate the ejector inlet flow.

  10. Compact all-fiber figure-9 dissipative soliton resonance mode-locked double-clad Er:Yb laser.

    PubMed

    Krzempek, Karol; Sotor, Jaroslaw; Abramski, Krzysztof

    2016-11-01

    The first demonstration of a compact all-fiber figure-9 double-clad erbium-ytterbium laser working in the dissipative soliton resonance (DSR) regime is presented. Mode-locking was achieved using a nonlinear amplifying loop (NALM) resonator configuration. The laser was assembled with an additional 475 m long spool of SMF28 fiber in the NALM loop in order to obtain large net-anomalous cavity dispersion (-10.4  ps2), and therefore ensure that DSR would be the dominant mode-locking mechanism. At maximum pump power (4.78 W) the laser generated rectangular-shaped pulses with 455 ns duration and an average power of 950 mW, which at a repetition frequency of 412 kHz corresponds to a record energy of 2.3 μJ per pulse.

  11. The Moment of Inertia of a Rectangular Rod

    NASA Astrophysics Data System (ADS)

    Takeuchi, Takao

    2007-11-01

    Recently an inexpensive setup to obtain the moment of inertia of a rotating system was proposed by Peter E. Banks. An equally simple and inexpensive experiment to obtain the moment of inertia of a uniform rod is proposed in this paper. A rectangular rod with a hole somewhere in the rod was used for this purpose. The moment of inertia of a rectangular rod around the hole location was attempted. The experimental setup is shown in Fig. 1. Various supporting rods, clamps, and rubber stoppers to hold the rectangular rod in place at point p are not shown.

  12. All-fiber optical filter with an ultranarrow and rectangular spectral response.

    PubMed

    Zou, Xihua; Li, Ming; Pan, Wei; Yan, Lianshan; Azaña, José; Yao, Jianping

    2013-08-15

    Optical filters with an ultranarrow and rectangular spectral response are highly desired for high-resolution optical/electrical signal processing. An all-fiber optical filter based on a fiber Bragg grating with a large number of phase shifts is designed and fabricated. The measured spectral response shows a 3 dB bandwidth of 650 MHz and a rectangular shape factor of 0.513 at the 25 dB bandwidth. This is the narrowest rectangular bandpass response ever reported for an all-fiber filter, to the best of our knowledge. The filter has also the intrinsic advantages of an all-fiber implementation.

  13. Rectangular-cladding silicon slot waveguide with improved nonlinear performance

    NASA Astrophysics Data System (ADS)

    Huang, Zengzhi; Huang, Qingzhong; Wang, Yi; Xia, Jinsong

    2018-04-01

    Silicon slot waveguides have great potential in hybrid silicon integration to realize nonlinear optical applications. We propose a rectangular-cladding hybrid silicon slot waveguide. Simulation result shows that, with a rectangular-cladding, the slot waveguide can be formed by narrower silicon strips, so the two-photon absorption (TPA) loss in silicon is decreased. When the cladding material is a nonlinear polymer, the calculated TPA figure of merit (FOMTPA) is 4.4, close to the value of bulk nonlinear polymer of 5.0. This value confirms the good nonlinear performance of rectangular-cladding silicon slot waveguides.

  14. 78 FR 1199 - Light-Walled Rectangular Pipe and Tube From Mexico: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-201-836] Light-Walled Rectangular... order on light-walled rectangular pipe and tube (LWR pipe and tube) from Mexico. This review covers two... but received no such comments. We also did not receive a request for a hearing. \\1\\ See Light-Walled...

  15. 77 FR 21527 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From the Republic of Korea: Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... in coils) and without patterns in relief), of iron or non-alloy quality steel; and (2) flat-rolled... rectangular or non-rectangular cross section where such non-rectangular cross-section is achieved subsequent... characteristics that are painted, varnished, or coated with plastic or other non-metallic substances are included...

  16. Sampling Scattered Data Onto Rectangular Grids for Volume Visualization

    DTIC Science & Technology

    1989-12-01

    30 4.4 Building A Rectangular Grid ..... ................ 30 4.5 Sampling Methds ...... ...................... 34 4.6...dimensional data have been developed recently. In computational fluid flow analysis, methods for constructing three dimen- sional numerical grids are...structure of rectangular grids. Because finite element analysis is useful in fields other than fluid flow analysis and the numerical grid has promising

  17. 78 FR 42546 - Light-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey: Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ...-Walled Rectangular Pipe and Tube From China, Korea, Mexico, and Turkey: Notice of Commission... light-walled rectangular pipe and tube from China, Korea, Mexico, and Turkey would be likely to lead to... institution from the Government of Turkey, the Commission found that the respondent interested party group...

  18. 75 FR 33779 - Light-Walled Rectangular Pipe and Tube from Turkey; Notice of Preliminary Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... Pipe and Tube from Turkey; Notice of Preliminary Results of Antidumping Duty Administrative Review... review of the antidumping duty order on light-walled rectangular pipe and tube from Turkey. Atlas Tube... the antidumping duty order on light-walled rectangular ripe and tube from Turkey on May 30, 2008. See...

  19. 77 FR 55455 - Light-Walled Rectangular Pipe and Tube From Turkey: Notice of Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ... Pipe and Tube From Turkey: Notice of Final Results of Antidumping Duty Administrative Review AGENCY... administrative review of the antidumping duty order on light-walled rectangular pipe and tube from Turkey.\\1\\ The... entitled ``Final Results of Review'' below. \\1\\ See Light-Walled Rectangular Pipe and Tube from Turkey...

  20. Computer code for the prediction of nozzle admittance

    NASA Technical Reports Server (NTRS)

    Nguyen, Thong V.

    1988-01-01

    A procedure which can accurately characterize injector designs for large thrust (0.5 to 1.5 million pounds), high pressure (500 to 3000 psia) LOX/hydrocarbon engines is currently under development. In this procedure, a rectangular cross-sectional combustion chamber is to be used to simulate the lower traverse frequency modes of the large scale chamber. The chamber will be sized so that the first width mode of the rectangular chamber corresponds to the first tangential mode of the full-scale chamber. Test data to be obtained from the rectangular chamber will be used to assess the full scale engine stability. This requires the development of combustion stability models for rectangular chambers. As part of the combustion stability model development, a computer code, NOAD based on existing theory was developed to calculate the nozzle admittances for both rectangular and axisymmetric nozzles. This code is detailed.

  1. Method of manufacturing a large-area segmented photovoltaic module

    DOEpatents

    Lenox, Carl

    2013-11-05

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  2. Electromagnetic Field Penetration Studies

    NASA Technical Reports Server (NTRS)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  3. Minimization of the Renyi entropy production in the space-partitioning process.

    PubMed

    Cybulski, O; Babin, V; Hołyst, R

    2005-04-01

    The spontaneous division of space in Fleming-Viot processes is studied in terms of non-extensive thermodynamics. We analyze a system of n different types of Brownian particles confined in a box. Particles of different types annihilate each other when they come into close contact. Each process of annihilation is accompanied by a simultaneous nucleation of a particle of the same type, so that the number of particles of each component remains constant. The system eventually reaches a stationary state, in which the available space is divided into n separate subregions, each occupied by particles of one type. Within each subregion, the particle density distribution minimizes the Renyi entropy production. We show that the sum of these entropy productions in the stationary state is also minimized, i.e., the resulting boundaries between different components adopt a configuration which minimizes the total entropy production. The evolution of the system leads to decreasing of the total entropy production monotonically in time, irrespective of the initial conditions. In some circumstances, the stationary state is not unique-the entropy production may have several local minima for different configurations. In the case of a rectangular box, the existence and stability of different stationary states are studied as a function of the aspect ratio of the rectangle.

  4. Liquid droplet radiator development status

    NASA Technical Reports Server (NTRS)

    White, K. Alan, III

    1987-01-01

    Development of the Liquid Droplet Radiator (LDR) is described. Significant published results of previous investigators are presented, and work currently in progress is discussed. Several proposed LDR configurations are described, and the rectangular and triangular configurations currently of most interest are examined. Development of the droplet generator, collector, and auxiliary components are discussed. Radiative performance of a droplet sheet is considered, and experimental results are seen to be in very good agreement with analytical predictions. The collision of droplets in the droplet sheet, the charging of droplets by the space plasma, and the effect of atmospheric drag on the droplet sheet are shown to be of little consequence, or can be minimized by proper design. The LDR is seen to be less susceptible than conventional technology to the effects of micrometeoroids or hostile threats. The identification of working fluids which are stable in the orbital environments of interest is also made. Methods for reducing spacecraft contamination from an LDR to an acceptable level are discussed. Preliminary results of microgravity testing of the droplet generator are presented. Possible future NASA and Air Force missions enhanced or enabled by a LDR are also discussed. System studies indicate that the LDR is potentially less massive than heat pipe radiators. Planned microgravity testing aboard the Shuttle or space station is seen to be a logical next step in LDR development.

  5. Isometric deformations of unstretchable material surfaces, a spatial variational treatment

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chao; Fosdick, Roger; Fried, Eliot

    2018-07-01

    The stored energy of an unstretchable material surface is assumed to depend only upon the curvature tensor. By control of its edge(s), the surface is deformed isometrically from its planar undistorted reference configuration into an equilibrium shape. That shape is to be determined from a suitably constrained variational problem as a state of relative minimal potential energy. We pose the variational problem as one of relative minimum potential energy in a spatial form, wherein the deformation of a flat, undistorted region D in E2 to its distorted form S in E3 is assumed specified. We then apply the principle that the first variation of the potential energy, expressed as a functional over S ∪ ∂S , must vanish for all admissible variations that correspond to isometric deformations from the distorted configuration S and that also contain the essence of flatness that characterizes the reference configuration D , but is not covered by the single statement that the variation of S correspond to an isometric deformation. We emphasize the commonly overlooked condition that the spatial expression of the variational problem requires an additional variational constraint of zero Gaussian curvature to ensure that variations from S that are isometric deformations also contain the notion of flatness. In this context, it is particularly revealing to observe that the two constraints produce distinct, but essential and complementary, conditions on the first variation of S. The resulting first variation integral condition, together with the constraints, may be applied, for example, to the case of a flat, undistorted, rectangular strip D that is deformed isometrically into a closed ring S by connecting its short edges and specifying that its long edges are free of loading and, therefore, subject to zero traction and couple traction. The elementary example of a closed ring without twist as a state of relative minimum potential energy is discussed in detail, and the bending of the strip by opposing specific bending moments on its short edges is treated as a particular case. Finally, the constrained variational problem, with the introduction of appropriate constraint reactions as Lagrangian multipliers to account for the requirements that the deformation from D to S is isometric and that D is flat, is formulated in the spatial form, and the associated Euler-Lagrange equations are derived. We then solve the Euler-Lagrange equations for two representative problems in which a planar undistorted rectangular material strip is isometrically deformed by applied edge tractions and couple tractions (i.e., specific edge moments) into (i) a bent and twisted circular cylindrical helical state, and (ii) a state conformal with the surface of a right circular conical form.

  6. Psyplot: Visualizing rectangular and triangular Climate Model Data with Python

    NASA Astrophysics Data System (ADS)

    Sommer, Philipp

    2016-04-01

    The development and use of climate models often requires the visualization of geo-referenced data. Creating visualizations should be fast, attractive, flexible, easily applicable and easily reproducible. There is a wide range of software tools available for visualizing raster data, but they often are inaccessible to many users (e.g. because they are difficult to use in a script or have low flexibility). In order to facilitate easy visualization of geo-referenced data, we developed a new framework called "psyplot," which can aid earth system scientists with their daily work. It is purely written in the programming language Python and primarily built upon the python packages matplotlib, cartopy and xray. The package can visualize data stored on the hard disk (e.g. NetCDF, GeoTIFF, any other file format supported by the xray package), or directly from the memory or Climate Data Operators (CDOs). Furthermore, data can be visualized on a rectangular grid (following or not following the CF Conventions) and on a triangular grid (following the CF or UGRID Conventions). Psyplot visualizes 2D scalar and vector fields, enabling the user to easily manage and format multiple plots at the same time, and to export the plots into all common picture formats and movies covered by the matplotlib package. The package can currently be used in an interactive python session or in python scripts, and will soon be developed for use with a graphical user interface (GUI). Finally, the psyplot framework enables flexible configuration, allows easy integration into other scripts that uses matplotlib, and provides a flexible foundation for further development.

  7. Scattered acoustic field above a grating of parallel rectangular cavities

    NASA Astrophysics Data System (ADS)

    Khanfir, A.; Faiz, A.; Ducourneau, J.; Chatillon, J.; Skali Lami, S.

    2013-02-01

    The aim of this research project was to predict the sound pressure above a wall facing composed of N parallel rectangular cavities. The diffracted acoustic field is processed by generalizing the Kobayashi Potential (KP) method used for determining the electromagnetic field diffracted by a rectangular cavity set in a thick screen. This model enables the diffracted field to be expressed in modal form. Modal amplitudes are subsequently calculated using matrix equations obtained by enforcing boundary conditions. Solving these equations allows the determination of the total reflected acoustic field above the wall facing. This model was compared with experimental results obtained in a semi-anechoic room for a single cavity, a periodic array of three rectangular cavities and an aperiodic grating of nine rectangular cavities of different size and spacing. These facings were insonified by an incident spherical acoustic field, which was decomposed into plane waves. The validity of this model is supported by the agreement between the numerical and experimental results observed.

  8. Rectangular optical filter based on high-order silicon microring resonators

    NASA Astrophysics Data System (ADS)

    Bao, Jia-qi; Yu, Kan; Wang, Li-jun; Yin, Juan-juan

    2017-07-01

    The rectangular optical filter is one of the most important optical switching components in the dense wavelength division multiplexing (DWDM) fiber-optic communication system and the intelligent optical network. The integrated highorder silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum response. In general, the spectrum response rectangular degree of the single MRR is very low, so it cannot be used in the DWDM system. Using the high-order MRRs, the bandwidth of flat-top pass band, the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously. In this paper, a rectangular optical filter based on highorder MRRs with uniform couplers is presented and demonstrated. Using 15 coupled race-track MRRs with 10 μm in radius, the 3 dB flat-top pass band of 2 nm, the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully.

  9. A modal approach to piano soundboard vibroacoustic behavior.

    PubMed

    Trévisan, Benjamin; Ege, Kerem; Laulagnet, Bernard

    2017-02-01

    This paper presents an analytical method for modeling the vibro-acoustic behavior of ribbed non-rectangular orthotropic clamped plates. To do this, the non-rectangular plate is embedded in an extended rectangular simply supported plate on which a spring distribution is added, blocking the extended part of the surface, and allowing the description of any inner surface shapes. The acoustical radiation of the embedded plate is ensured using the radiation impedances of the extended rectangular simply supported plate. This method is applied to an upright piano soundboard: a non-rectangular orthotropic plate ribbed in both directions by several straight stiffeners. A modal decomposition is adopted on the basis of the rectangular extended simply supported plate modes, making it possible to calculate the modes of a piano soundboard in the frequency range [0;3000] Hz, showing the different associated mode families. Likewise, the acoustical radiation is calculated using the radiation impedances of a simply supported baffled plate, demonstrating the influence of the string coupling point positions on the acoustic radiated power. The paper ends with the introduction of indicators taking into account spatial and spectral variations of the excitation depending on the notes, which add to the accuracy of the study from the musical standpoint. A parametrical study, which includes several variations of soundboard design, highlights the complexity of rendering high-pitched notes homogeneous.

  10. Turbulence Measurements of Rectangular Nozzles with Bevel

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2015-01-01

    This paper covers particle image velocimetry measurements of a family of rectangular nozzles with aspect ratios 2, 4, and 8, in the high subsonic flow regime. Far-field acoustic results, presented previously, showed that increasing aspect ratios increased the high frequency noise, especially directed in the polar plane containing the minor axis of the nozzle. The measurements presented here have important implications in the modeling of turbulent sources for acoustic analogy theories. While the nonaxisymmetric mean flow from the rectangular nozzles can be studied reliably using computational solutions, the nonaxisymmetry of the turbulent fluctuations, particularly at the level of velocity components, cannot; only measurements such as these can determine the impact of nozzle geometry on acoustic source anisotropy. Additional nozzles were constructed that extended the wide lip on one side of these nozzles to form beveled nozzles. The paper first documents the velocity fields, mean and variance, from the round, rectangular, and beveled rectangular nozzles at high subsonic speeds. A second section introduces measures of the isotropy of the turbulence, such as component ratios and lengthscales, first by showing them for a round jet and then for the rectangular nozzles. From these measures the source models of acoustic analogy codes can be judged or modified to account for these anisotropies.

  11. Analysis of the rectangular resonator with butterfly MMI coupler using SOI

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Ho; Park, Jun-Hee; Kim, Eudum; Jeon, Su-Jin; Kim, Ji-Hoon; Choi, Young-Wan

    2018-02-01

    We propose a rectangular resonator sensor structure with butterfly MMI coupler using SOI. It consists of the rectangular resonator, total internal reflection (TIR) mirror, and the butterfly MMI coupler. The rectangular resonator is expected to be used as bio and chemical sensors because of the advantages of using MMI coupler and the absence of bending loss unlike ring resonators. The butterfly MMI coupler can miniaturize the device compared to conventional MMI by using a linear butterfly shape instead of a square in the MMI part. The width, height, and slab height of the rib type waveguide are designed to be 1.5 μm, 1.5 μm, and 0.9 μm, respectively. This structure is designed as a single mode. When designing a TIR mirror, we considered the Goos-Hänchen shift and critical angle. We designed 3:1 MMI coupler because rectangular resonator has no bending loss. The width of MMI is designed to be 4.5 μm and we optimize the length of the butterfly MMI coupler using finite-difference time-domain (FDTD) method for higher Q-factor. It has the equal performance with conventional MMI even though the length is reduced by 1/3. As a result of the simulation, Qfactor of rectangular resonator can be obtained as 7381.

  12. A Theoretical Investigation of the Input Characteristics of a Rectangular Cavity-Backed Slot Antenna

    NASA Technical Reports Server (NTRS)

    Cockrell, C. R.

    1975-01-01

    Equations which represent the magnetic and electric stored energies are derived for an infinite section of rectangular waveguide and a rectangular cavity. These representations which are referred to as being physically observable are obtained by considering the difference in the volume integrals appearing in the complex Poynting theorem. It is shown that the physically observable stored energies are determined by the field components that vanish in a reference plane outside the aperture. These physically observable representations are used to compute the input admittance of a rectangular cavity-backed slot antenna in which a single propagating wave is assumed to exist in the cavity. The slot is excited by a voltage source connected across its center; a sinusoidal distribution is assumed in the slot. Input-admittance calculations are compared with measured data. In addition, input-admittance curves as a function of electrical slot length are presented for several size cavities. For the rectangular cavity backed slot antenna, the quality factor and relative bandwidth were computed independently by using these energy relationships. It is shown that the asymptotic relationship which is usually assumed to exist between the quality bandwidth and the reciprocal of relative bandwidth is equally valid for the rectangular cavity backed slot antenna.

  13. Two-step fabrication of single-layer rectangular SnSe flakes

    NASA Astrophysics Data System (ADS)

    Jiang, Jizhou; Wong, Calvin Pei Yu; Zou, Jing; Li, Shisheng; Wang, Qixing; Chen, Jianyi; Qi, Dianyu; Wang, Hongyu; Eda, Goki; Chua, Daniel H. C.; Shi, Yumeng; Zhang, Wenjing; Thye Shen Wee, Andrew

    2017-06-01

    Recent findings about ultrahigh thermoelectric performances in SnSe single crystals have stimulated research on this binary semiconductor material. Furthermore, single-layer SnSe is an interesting analogue of phosphorene, with potential applications in two-dimensional (2D) nanoelectronics. Although significant advances in the synthesis of SnSe nanocrystals have been made, fabrication of well-defined large-sized single-layer SnSe flakes in a facile way still remains a challenge. The growth of single-layer rectangular SnSe flakes with a thickness of ~6.8 Å and lateral dimensions of about 30 µm  ×  50 µm is demonstrated by a two-step synthesis method, where bulk rectangular SnSe flakes were synthesized first by a vapor transport deposition method followed by a nitrogen etching technique to fabricate single-layer rectangular SnSe flakes in an atmospheric pressure system. The as-obtained rectangular SnSe flakes exhibited a pure crystalline phase oriented along the a-axis direction. Field-effect transistor devices fabricated on individual single-layer rectangular SnSe flakes using gold electrodes exhibited p-doped ambipolar behavior and a hole mobility of about 0.16 cm2 V-1 s-1. This two-step fabrication method can be helpful for growing other similar 2D large-sized single-layer materials.

  14. Apparatus and Method for Low-Temperature Training of Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Swanger, A. M.; Fesmire, J. E.; Trigwell, S.; Gibson, T. L.; Williams, M. K.; Benafan, O.

    2015-01-01

    An apparatus and method for the low-temperature thermo-mechanical training of shape memory alloys (SMA) has been developed. The experimental SMA materials are being evaluated as prototypes for applicability in novel thermal management systems for future cryogenic applications. Alloys providing two-way actuation at cryogenic temperatures are the chief target. The mechanical training regimen was focused on the controlled movement of rectangular strips, with S-bend configurations, at temperatures as low as 30 K. The custom holding fixture included temperature sensors and a low heat-leak linear actuator with a magnetic coupling. The fixture was mounted to a Gifford-McMahon cryocooler providing up to 25 W of cooling power at 20 K and housed within a custom vacuum chamber. Operations included both training cycles and verification of shape memory movement. The system design and operation are discussed. Results of the training for select prototype alloys are presented.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peplov, Vladimir V; Saethre, Robert B

    The Spallation Neutron Source (SNS) Linac Low Energy Beam Transport (LEBT) chopper system provides fast chopping of the H- ion beam in the LEBT structure. Four identical pulsed power supplies (pulsers) create a series of 2.5 kV pulses to the four deflection electrodes floating on the focusing voltage of -50 kV. Each pulser is connected to the electrode through the network which consists of high voltage (HV) cables, a blocking capacitor, HV feed-through connectors, current-limiting resistors and transient voltage suppressors. Effective beam chopping requires minimal rise/fall time of the rectangular HV pulses on the load. In the present configuration thesemore » values are approximately 100 ns. Methods of reducing rise/fall time on the LEBT electrodes are discussed. Results of simulation and comparative measurements of the original and upgraded system on the test stand are presented. Furthermore, the effect of these changes on reliability degradation caused by arcing in the LEBT structure is discussed.« less

  16. Heptagraphene: Tunable dirac cones in a graphitic structure

    DOE PAGES

    Lopez-Bezanilla, Alejandro; Martin, Ivar; Littlewood, Peter B.

    2016-09-13

    Here, we predict the existence and dynamical stability of heptagraphene, a new graphitic structure formed of rings of 10 carbon atoms bridged by carbene groups yielding seven-membered rings. Despite the rectangular unit cell, the band structure is topologically equivalent to that of strongly distorted graphene. Density-functional-theory calculations demonstrate that heptagraphene has Dirac cones on symmetry lines that are robust against biaxial strain but which open a gap under shear. At high deformation values bond reconstructions lead to different electronic band arrangements in dynamically stable configurations. Within a tight-binding framework this richness of the electronic behavior is identified as a directmore » consequence of the symmetry breaking within the cell which, unlike other graphitic structures, leads to band gap opening. A combined approach of chemical and physical modification of graphene unit cell unfurls the opportunity to design carbon-based systems in which one aims to tune an electronic band gap.« less

  17. Numerical techniques for the solution of the compressible Navier-Stokes equations and implementation of turbulence models. [separated turbulent boundary layer flow problems

    NASA Technical Reports Server (NTRS)

    Baldwin, B. S.; Maccormack, R. W.; Deiwert, G. S.

    1975-01-01

    The time-splitting explicit numerical method of MacCormack is applied to separated turbulent boundary layer flow problems. Modifications of this basic method are developed to counter difficulties associated with complicated geometry and severe numerical resolution requirements of turbulence model equations. The accuracy of solutions is investigated by comparison with exact solutions for several simple cases. Procedures are developed for modifying the basic method to improve the accuracy. Numerical solutions of high-Reynolds-number separated flows over an airfoil and shock-separated flows over a flat plate are obtained. A simple mixing length model of turbulence is used for the transonic flow past an airfoil. A nonorthogonal mesh of arbitrary configuration facilitates the description of the flow field. For the simpler geometry associated with the flat plate, a rectangular mesh is used, and solutions are obtained based on a two-equation differential model of turbulence.

  18. Topology Optimisation of Wideband Coaxial-to-Waveguide Transitions

    NASA Astrophysics Data System (ADS)

    Hassan, Emadeldeen; Noreland, Daniel; Wadbro, Eddie; Berggren, Martin

    2017-03-01

    To maximize the matching between a coaxial cable and rectangular waveguides, we present a computational topology optimisation approach that decides for each point in a given domain whether to hold a good conductor or a good dielectric. The conductivity is determined by a gradient-based optimisation method that relies on finite-difference time-domain solutions to the 3D Maxwell’s equations. Unlike previously reported results in the literature for this kind of problems, our design algorithm can efficiently handle tens of thousands of design variables that can allow novel conceptual waveguide designs. We demonstrate the effectiveness of the approach by presenting optimised transitions with reflection coefficients lower than -15 dB over more than a 60% bandwidth, both for right-angle and end-launcher configurations. The performance of the proposed transitions is cross-verified with a commercial software, and one design case is validated experimentally.

  19. Topology Optimisation of Wideband Coaxial-to-Waveguide Transitions.

    PubMed

    Hassan, Emadeldeen; Noreland, Daniel; Wadbro, Eddie; Berggren, Martin

    2017-03-23

    To maximize the matching between a coaxial cable and rectangular waveguides, we present a computational topology optimisation approach that decides for each point in a given domain whether to hold a good conductor or a good dielectric. The conductivity is determined by a gradient-based optimisation method that relies on finite-difference time-domain solutions to the 3D Maxwell's equations. Unlike previously reported results in the literature for this kind of problems, our design algorithm can efficiently handle tens of thousands of design variables that can allow novel conceptual waveguide designs. We demonstrate the effectiveness of the approach by presenting optimised transitions with reflection coefficients lower than -15 dB over more than a 60% bandwidth, both for right-angle and end-launcher configurations. The performance of the proposed transitions is cross-verified with a commercial software, and one design case is validated experimentally.

  20. Conformal dual-band textile antenna with metasurface for WBAN application

    NASA Astrophysics Data System (ADS)

    Giman, Fatin Nabilah; Soh, Ping Jack; Jamlos, Mohd Faizal; Lago, Herwansyah; Al-Hadi, Azremi Abdullah; Abdulmalek, Mohamedfareq; Abdulaziz, Nidhal

    2017-01-01

    This paper presents the design of a dual-band wearable planar slotted dipole integrated with a metasurface. It operates in the 2.45 GHz (lower) and 5.8 GHz (upper) bands and made fully using textiles to suit wireless body area network applications. The metasurface in the form of an artificial magnetic conductor (AMC) plane is formed using a rectangular patch incorporated with a diamond-shaped slot to generate dual-phase response. This plane is then integrated with the planar slotted dipole antenna prior to its assessment in free space and bent configurations. Simulations and measurements indicated a good agreement, and the antenna featured an impedance bandwidth of 164 and 592 MHz in the lower and upper band, respectively. The presence of the AMC plane also minimized the backward radiation toward the human body and enhanced realized gains by up to 3.01 and 7.04 dB in the lower and upper band.

  1. Topology Optimisation of Wideband Coaxial-to-Waveguide Transitions

    PubMed Central

    Hassan, Emadeldeen; Noreland, Daniel; Wadbro, Eddie; Berggren, Martin

    2017-01-01

    To maximize the matching between a coaxial cable and rectangular waveguides, we present a computational topology optimisation approach that decides for each point in a given domain whether to hold a good conductor or a good dielectric. The conductivity is determined by a gradient-based optimisation method that relies on finite-difference time-domain solutions to the 3D Maxwell’s equations. Unlike previously reported results in the literature for this kind of problems, our design algorithm can efficiently handle tens of thousands of design variables that can allow novel conceptual waveguide designs. We demonstrate the effectiveness of the approach by presenting optimised transitions with reflection coefficients lower than −15 dB over more than a 60% bandwidth, both for right-angle and end-launcher configurations. The performance of the proposed transitions is cross-verified with a commercial software, and one design case is validated experimentally. PMID:28332585

  2. Purging of multilayer insulation by gas diffusion

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Spuckler, C. M.

    1976-01-01

    An experimental investigation was conducted to determine the time required to purge a multilayer insulation (MLI) panel with gaseous helium by means of gas diffusion to obtain a condensable (nitrogen) gas concentration of less than 1 percent within the panel. Two flat, rectangular MLI panel configurations, one incorporating a butt joint, were tested. The insulation panels consisted of 15 double-aluminized Mylar radiation shields separated by double silk net spacers. The test results indicated that the rate which the condensable gas concentration at the edge or at the butt joint of an MLI panel was reduced was a significant factor in the total time required to reduce the condensable gas concentration within the panel to less than 1 percent. The experimental data agreed well with analytical predictions made by using a simple, one-dimensional gas diffusion model in which the boundary conditions at the edge of the MLI panel were time dependent.

  3. A design handbook for phase change thermal control and energy storage devices. [selected paraffins

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.; Griggs, E. I.

    1977-01-01

    Comprehensive survey is given of the thermal aspects of phase change material devices. Fundamental mechanisms of heat transfer within the phase change device are discussed. Performance in zero-g and one-g fields are examined as it relates to such a device. Computer models for phase change materials, with metal fillers, undergoing conductive and convective processes are detailed. Using these models, extensive parametric data are presented for a hypothetical configuration with a rectangular phase change housing, using straight fins as the filler, and paraffin as the phase change material. These data are generated over a range of realistic sizes, material properties, and thermal boundary conditions. A number of illustrative examples are given to demonstrate use of the parametric data. Also, a complete listing of phase change material property data are reproduced herein as an aid to the reader.

  4. 2-D and 3-D mixing flow analyses of a scramjet-afterbody configuration

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Eleshaky, Mohamed E.; Engelund, Walter C.

    1989-01-01

    A cold simulant gas study of propulsion/airframe integration for a hypersonic vehicle powered by a scramjet engine is presented. The specific heat ratio of the hot exhaust gases are matched by utilizing a cold mixture of argon and Freon-12. Solutions are obtained for a hypersonic corner flow and a supersonic rectangular flow in order to provide the upstream boundary conditions. The computational test examples also provide a comparison of this flow with that of air as the expanding supersonic jet, where the specific heats are assumed to be constant. It is shown that the three-dimensional computational fluid capabilities developed for these types of flow may be utilized to augment the conventional wind tunnel studies of scramjet afterbody flows using cold simulant exhaust gases, which in turn can help in the design of a scramjet internal-external nozzle.

  5. CFD for hypersonic propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    1991-01-01

    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

  6. CFD for hypersonic propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    1990-01-01

    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

  7. Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer

    NASA Astrophysics Data System (ADS)

    Szwaba, Ryszard; Kaczynski, Piotr; Telega, Janusz; Doerffer, Piotr

    2017-12-01

    This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The investigations focus on the heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of internal cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include a corner fillets, ribs with fillet radii and a special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which has very realistic features.

  8. Recent transonic unsteady pressure measurements at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.; Hess, R. W.

    1985-01-01

    Four semispan wing model configurations were studied in the Transonic Dynamics Tunnel (TDT). The first model had a clipped delta planform with a circular arc airfoil, the second model had a high aspect ratio planform with a supercritical airfoil, the third model has a rectangular planform with a supercritical airfoil and the fourth model had a high aspect ratio planform with a supercritical airfoil. To generate unsteady flow, the first and third models were equipped with pitch oscillation mechanisms and the first, second and fourth models were equipped with control surface oscillation mechanisms. The fourth model was similar in planform and airfoil shape to the second model, but it is the only one of the four models that has an elastic wing structure. The unsteady pressure studies of the four models are described and some typical results for each model are presented. Comparison of selected experimental data with analytical results also are included.

  9. Apparatus and method for low-temperature training of shape memory alloys

    NASA Astrophysics Data System (ADS)

    Swanger, A. M.; Fesmire, J. E.; Trigwell, S.; Gibson, T. L.; Williams, M. K.; Benafan, O.

    2015-12-01

    An apparatus and method for the low-temperature thermo-mechanical training of shape memory alloys (SMA) has been developed. The experimental SMA materials are being evaluated as prototypes for applicability in novel thermal management systems for future cryogenic applications. Alloys providing two-way actuation at cryogenic temperatures are the chief target. The mechanical training regimen was focused on the controlled movement of rectangular strips, with S-bend configurations, at temperatures as low as 30 K. The custom holding fixture included temperature sensors and a low heat-leak linear actuator with a magnetic coupling. The fixture was mounted to a Gifford-McMahon cryocooler providing up to 25 W of cooling power at 20 K and housed within a custom vacuum chamber. Operations included both training cycles and verification of shape memory movement. The system design and operation are discussed. Results of the training for select prototype alloys are presented.

  10. Optical fiber meta-tips

    NASA Astrophysics Data System (ADS)

    Principe, Maria; Micco, Alberto; Crescitelli, Alessio; Castaldi, Giuseppe; Consales, Marco; Esposito, Emanuela; La Ferrara, Vera; Galdi, Vincenzo; Cusano, Andrea

    2016-04-01

    We report on the first example of a "meta-tip" configuration that integrates a metasurface on the tip of an optical fiber. Our proposed design is based on an inverted-Babinet plasmonic metasurface obtained by patterning (via focused ion beam) a thin gold film deposited on the tip of an optical fiber, so as to realize an array of rectangular aperture nanoantennas with spatially modulated sizes. By properly tuning the resonances of the aperture nanoantennas, abrupt variations can be impressed in the field wavefront and polarization. We fabricated and characterized several proof-of-principle prototypes operating an near-infrared wavelengths, and implementing the beam-steering (with various angles) of the cross-polarized component, as well as the excitation of surface waves. Our results pave the way to the integration of the exceptional field-manipulation capabilities enabled by metasurfaces with the versatility and ubiquity of fiber-optics technological platforms.

  11. ENDOR with band-selective shaped inversion pulses

    NASA Astrophysics Data System (ADS)

    Tait, Claudia E.; Stoll, Stefan

    2017-04-01

    Electron Nuclear DOuble Resonance (ENDOR) is based on the measurement of nuclear transition frequencies through detection of changes in the polarization of electron transitions. In Davies ENDOR, the initial polarization is generated by a selective microwave inversion pulse. The rectangular inversion pulses typically used are characterized by a relatively low selectivity, with full inversion achieved only for a limited number of spin packets with small resonance offsets. With the introduction of pulse shaping to EPR, the rectangular inversion pulses can be replaced with shaped pulses with increased selectivity. Band-selective inversion pulses are characterized by almost rectangular inversion profiles, leading to full inversion for spin packets with resonance offsets within the pulse excitation bandwidth and leaving spin packets outside the excitation bandwidth largely unaffected. Here, we explore the consequences of using different band-selective amplitude-modulated pulses designed for NMR as the inversion pulse in ENDOR. We find an increased sensitivity for small hyperfine couplings compared to rectangular pulses of the same bandwidth. In echo-detected Davies-type ENDOR, finite Fourier series inversion pulses combine the advantages of increased absolute ENDOR sensitivity of short rectangular inversion pulses and increased sensitivity for small hyperfine couplings of long rectangular inversion pulses. The use of pulses with an almost rectangular frequency-domain profile also allows for increased control of the hyperfine contrast selectivity. At X-band, acquisition of echo transients as a function of radiofrequency and appropriate selection of integration windows during data processing allows efficient separation of contributions from weakly and strongly coupled nuclei in overlapping ENDOR spectra within a single experiment.

  12. Global field synchronization in gamma range of the sleep EEG tracks sleep depth: Artifact introduced by a rectangular analysis window.

    PubMed

    Rusterholz, Thomas; Achermann, Peter; Dürr, Roland; Koenig, Thomas; Tarokh, Leila

    2017-06-01

    Investigating functional connectivity between brain networks has become an area of interest in neuroscience. Several methods for investigating connectivity have recently been developed, however, these techniques need to be applied with care. We demonstrate that global field synchronization (GFS), a global measure of phase alignment in the EEG as a function of frequency, must be applied considering signal processing principles in order to yield valid results. Multichannel EEG (27 derivations) was analyzed for GFS based on the complex spectrum derived by the fast Fourier transform (FFT). We examined the effect of window functions on GFS, in particular of non-rectangular windows. Applying a rectangular window when calculating the FFT revealed high GFS values for high frequencies (>15Hz) that were highly correlated (r=0.9) with spectral power in the lower frequency range (0.75-4.5Hz) and tracked the depth of sleep. This turned out to be spurious synchronization. With a non-rectangular window (Tukey or Hanning window) these high frequency synchronization vanished. Both, GFS and power density spectra significantly differed for rectangular and non-rectangular windows. Previous papers using GFS typically did not specify the applied window and may have used a rectangular window function. However, the demonstrated impact of the window function raises the question of the validity of some previous findings at higher frequencies. We demonstrated that it is crucial to apply an appropriate window function for determining synchronization measures based on a spectral approach to avoid spurious synchronization in the beta/gamma range. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Operation in the turbulent jet field of a linear array of multiple rectangular jets using a two-dimensional jet (Variation of mean velocity field)

    NASA Astrophysics Data System (ADS)

    Fujita, Shigetaka; Harima, Takashi

    2016-03-01

    The mean flowfield of a linear array of multiple rectangular jets run through transversely with a two-dimensional jet, has been investigated, experimentally. The object of this experiment is to operate both the velocity scale and the length scale of the multiple rectangular jets using a two-dimensional jet. The reason of the adoption of this nozzle exit shape was caused by the reports of authors in which the cruciform nozzle promoted the inward secondary flows strongly on both the two jet axes. Aspect ratio of the rectangular nozzle used in this experiment was 12.5. Reynolds number based on the nozzle width d and the exit mean velocity Ue (≅ 39 m / s) was kept constant 25000. Longitudinal mean velocity was measured using an X-array Hot-Wire Probe (lh = 3.1 μm in diameter, dh = 0.6 mm effective length : dh / lh = 194) operated by the linearized constant temperature anemometers (DANTEC), and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 60 seconds. From this experiment, it was revealed that the magnitude of the inward secondary flows on both the y and z axes in the upstream region of the present jet was promoted by a two-dimensional jet which run through transversely perpendicular to the multiple rectangular jets, therefore the potential core length on the x axis of the present jet extended 2.3 times longer than that of the multiple rectangular jets, and the half-velocity width on the rectangular jet axis of the present jet was suppressed 41% shorter compared with that of the multiple rectangular jets.

  14. Fluid-acoustic interactions in a low area ratio supersonic jet ejector

    NASA Technical Reports Server (NTRS)

    Krothapalli, Anjaneyulu; Ross, Christopher; Yamomoto, K.; Joshi, M. C.

    1994-01-01

    An experimental investigation carried out to determine aerodynamic and acoustic characteristics of a low area ratio rectangular jet ejector is reported. A supersonic primary jet issuing from a rectangular convergent-divergent nozzle of aspect ratio 4, into a rectangular duct of area ratio 3, was used. Improved performance was found when the ejector screech tone is most intense and appears to match the most unstable Strouhal number of the free rectangular jet. When the primary jet was operating at over and ideally expanded conditions, significant noise reduction was obtained with the ejector as compared to a corresponding free jet. Application of particle image velocimetry to high speed ejector flows was demonstrated through the measurement of instantaneous two dimensional velocity fields.

  15. [Light response characteristics of photosynthesis and model comparison of Distylium chinense in different flooding durations].

    PubMed

    Liu, Ze-bin; Cheng, Rui-mei; Xiao, Wen-fa; Guo, Quan-shui; Wang, Na

    2015-04-01

    The light responses of photosynthesis of two-year-old Distytum chinense seedlings subjected to a simulated reservoir flooding environment in autumn and winter seasons were measured by using a Li-6400 XT portable photosynthesis system, and the light response curves were fitted and analyzed by three models of the rectangular hyperbola, non-rectangular hyperbola and modified rectangular hyperbola to investigate the applicability of different light response models for the D. chinense in different flooding durations and the adaption regulation of light response parameters to flooding stress. The results showed that the fitting effect of the non-rectangular hyperbola model for light response process of D. chinense under normal growth condition and under short-term flooding (15 days of flooding) was better than that of the other two models, while the fitting effect of the modified rectangular hyperbola model for light response process of D. chinense under longer-term flooding (30, 45 and 60 days of flooding) was better than that of the other two models. The modified rectangular hyperbola model gave the best fitted results of light compensation point (LCP) , maximum net photosynthetic rate (P(n max)) and light saturation point (LSP), and the non-rectangular hyperbola model gave the best fitted result of dark respiration rate (R(d)). The apparent quantum yield (Φ), P(n max) and LSP of D. chinense gradually decreased, and the LCP and R(d) of D. chinense gradually increased in early flooding (30 days), but D. chinense gradually produced adaptability for flooding as the flooding duration continued to increase, and various physiological indexes were gradually stabilized. Thus, this species has adaptability to some degree to the flooding environment.

  16. RF Magnetic Field Uniformity of Rectangular Planar Coils for Resonance Imaging

    DTIC Science & Technology

    2016-02-04

    coil with square -shaped overlapping turns along the 135mm length of the coil. This paper compares these two coils to determine which has a more...in which, the coil arrays consist of a few square or circular coils side-by-side or overlapping. Mobile unilateral NMR/MRI scanners were...magnetic field along the length of a normal rectangular coil (NRC) and a rectangular coil with overlapping square -shaped turns (RCOS). The RCOS coil is

  17. SU-E-T-598: The Effects of Arm Speed for Quality Assurance and Commissioning Measurements in Rectangular and Cylindrical Scanners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhtiari, M; Schmitt, J

    2014-06-01

    Purpose: Cylindrical and rectangular scanning water tanks are examined with different scanning speeds to investigate the TG-106 criteria and the errors induced in the measurements. Methods: Beam profiles were measured in a depth of R50 for a low-energy electron beam (6 MeV) using rectangular and cylindrical tanks. The speeds of the measurements (arm movement) were varied in different profile measurements. Each profile was measured with a certain speed to obtain the average and standard deviation as a parameter for investigating the reproducibility and errors. Results: At arm speeds of ∼0.8 mm/s the errors were as large as 2% and 1%more » with rectangular and cylindrical tanks, respectively. The errors for electron beams and for photon beams in other depths were within the TG-106 criteria of 1% for both tank shapes. Conclusion: The measurements of low-energy electron beams in a depth of R50, as an extreme case scenario, are sensitive to the speed of the measurement arms for both rectangular and cylindrical tanks. The measurements in other depths, for electron beams and photon beams, with arm speeds of less than 1 cm/s are within the TG-106 criteria. An arm speed of 5 mm/s appeared to be optimal for fast and accurate measurements for both cylindrical and rectangular tanks.« less

  18. A computer program for converting rectangular coordinates to latitude-longitude coordinates

    USGS Publications Warehouse

    Rutledge, A.T.

    1989-01-01

    A computer program was developed for converting the coordinates of any rectangular grid on a map to coordinates on a grid that is parallel to lines of equal latitude and longitude. Using this program in conjunction with groundwater flow models, the user can extract data and results from models with varying grid orientations and place these data into grid structure that is oriented parallel to lines of equal latitude and longitude. All cells in the rectangular grid must have equal dimensions, and all cells in the latitude-longitude grid measure one minute by one minute. This program is applicable if the map used shows lines of equal latitude as arcs and lines of equal longitude as straight lines and assumes that the Earth 's surface can be approximated as a sphere. The program user enters the row number , column number, and latitude and longitude of the midpoint of the cell for three test cells on the rectangular grid. The latitude and longitude of boundaries of the rectangular grid also are entered. By solving sets of simultaneous linear equations, the program calculates coefficients that are used for making the conversion. As an option in the program, the user may build a groundwater model file based on a grid that is parallel to lines of equal latitude and longitude. The program reads a data file based on the rectangular coordinates and automatically forms the new data file. (USGS)

  19. Square and Rectangular Arrays from Directed Assembly of Sphere-forming Diblock Copolymers in Thin Films

    NASA Astrophysics Data System (ADS)

    Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul

    2010-03-01

    Patterns of square and rectangular arrays with nanoscale dimensions are scientifically and technologically important. Fabrication of square array patterns in thin films has been demonstrated by directed assembly of cylinder-forming diblock copolymers on chemically patterned substrates, supramolecular assembly of diblock copolymers, and self-assembly of triblock terpolymers. However, a macroscopic area of square array patterns with long-range order has not been achieved, and the fabrication of rectangular arrays has not been reported so far. Here we report a facile approach for fabricating patterns of square and rectangular arrays by directing the assembly of sphere-forming diblock copolymers on chemically patterned substrates. On stripe patterns, a square arrangement of half spheres, corresponding to the (100) plane of the body-centred cubic (BCC) lattice, formed on film surfaces. When the underlying pattern periods mismatched with the copolymer period, the square pattern could be stretched (up to ˜60%) or compressed (˜15%) to form rectangular arrays. Monte Carlo simulations have been further used to verify the experimental results and the 3-dimensional arrangements of spheres.

  20. Simulation of multipactor on the rectangular grooved dielectric surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Libing; Wang, Jianguo, E-mail: wanguiuc@mail.xjtu.edu.cn; Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024

    2015-11-15

    Multipactor discharge on the rectangular grooved dielectric surface is simulated self-consistently by using a two-and-a-half dimensional (2.5 D) electrostatic particle-in-cell (PIC) code. Compared with the electromagnetic PIC code, the former can give much more accurate solution for the space charge field caused by the multipactor electrons and the deposited surface charge. According to the rectangular groove width and height, the multipactor can be divided into four models, the spatial distributions of the multipactor electrons and the space charge fields are presented for these models. It shows that the rectangular groove in different models gives very different suppression effect on themore » multipactor, effective and efficient suppression on the multipactor can only be reached with a proper groove size.« less

  1. Propellant Feed System for Swirl-Coaxial Injection

    NASA Technical Reports Server (NTRS)

    Reynolds, David Christopher (Inventor)

    2015-01-01

    A propellant feed system for swirl-coaxial injection of a liquid propellant includes a reservoir having a bottom plate and at least one tube originating in the bottom plate and extending therefrom. The tube has rectangular slits defined in and distributed tangentially and evenly about a portion of the tube that is disposed in the bottom plate. Drain holes are provided in the bottom plate and tunnels are defined in the bottom plate. Each tunnel fluidly couples one of the drain holes to a corresponding one of the rectangular slits. Each tunnel includes (i) a bend of at least 90.degree., and (ii) a straight portion leading to its corresponding rectangular slit wherein the straight portion is at least five times as long as a hydraulic diameter of the corresponding rectangular slit.

  2. Control of jet noise

    NASA Technical Reports Server (NTRS)

    Schreck, Stefan

    1992-01-01

    To investigate the possibility of active control of jet noise, knowledge of the noise generation mechanisms in natural jets is essential. Once these mechanisms are determined, active control can be used to manipulate the noise production processes. We investigated the evolution of the flow fields and the acoustic fields of rectangular and circular jets. A predominant flapping mode was found in the supersonic rectangular jets. We hope to increase the spreading of supersonic jets by active control of the flapping mode found in rectangular supersonic jets.

  3. Synchronizability of random rectangular graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estrada, Ernesto, E-mail: ernesto.estrada@strath.ac.uk; Chen, Guanrong

    2015-08-15

    Random rectangular graphs (RRGs) represent a generalization of the random geometric graphs in which the nodes are embedded into hyperrectangles instead of on hypercubes. The synchronizability of RRG model is studied. Both upper and lower bounds of the eigenratio of the network Laplacian matrix are determined analytically. It is proven that as the rectangular network is more elongated, the network becomes harder to synchronize. The synchronization processing behavior of a RRG network of chaotic Lorenz system nodes is numerically investigated, showing complete consistence with the theoretical results.

  4. Flow Characteristics Near to Stent Strut Configurations on Femoropopliteal Artery

    NASA Astrophysics Data System (ADS)

    Paisal, Muhammad Sufyan Amir; Fadhil Syed Adnan, Syed; Taib, Ishkrizat; Ismail, Al Emran; Kamil Abdullah, Mohammad; Nordin, Normayati; Seri, Suzairin Md; Darlis, Nofrizalidris

    2017-08-01

    Femoropopiteal artery stenting is a common procedure suggested by medical expert especially for patient who is diagnosed with severe stenosis. Many researchers reported that the growth of stenosis is significantly related to the geometry of stent strut configuration. The different shapes of stent geometry are presenting the different flow pattern and re-circulation in stented femoropopliteal artery. The blood flow characteristics near to the stent geometry are predicted for the possibility of thrombosis and atherosclerosis to be formed as well as increase the growth of stenosis. Thus, this study aims to determine the flow characteristic near to stent strut configuration based on different hemodynamic parameters. Three dimensional models of stent and simplified femoropopliteal artery are modelled using computer aided design (CAD) software. Three different models of stent shapes; hexagon, circle and rectangle are simulated using computational fluid dynamic (CFD) method. Then, parametric study is implemented to predict the performance of stent due to hemodynamic differences. The hemodynamic parameters considered are pressure, velocity, low wall shear stress (WSSlow) and wall shear stress (WSS). From the observation, flow re-circulation has been formed for all simulated stent models which the proximal region shown the severe vortices. However, rectangular shape of stent strut (Type P3) shows the lowest WSSlow and the highest WSS between the range of 4 dyne/cm2 and 70 dyne/cm2. Stent Type P3 also shows the best hemodynamic stent performance as compare to others. In conclusion, Type P3 has a favourable result in hemodynamic stent performance that predicted less probability of thrombosis and atherosclerosis to be formed as well as reduces the growth of restenosis.

  5. Critical review of the building downwash algorithms in AERMOD.

    PubMed

    Petersen, Ron L; Guerra, Sergio A; Bova, Anthony S

    2017-08-01

    The only documentation on the building downwash algorithm in AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model), referred to as PRIME (Plume Rise Model Enhancements), is found in the 2000 A&WMA journal article by Schulman, Strimaitis and Scire. Recent field and wind tunnel studies have shown that AERMOD can overpredict concentrations by factors of 2 to 8 for certain building configurations. While a wind tunnel equivalent building dimension study (EBD) can be conducted to approximately correct the overprediction bias, past field and wind tunnel studies indicate that there are notable flaws in the PRIME building downwash theory. A detailed review of the theory supported by CFD (Computational Fluid Dynamics) and wind tunnel simulations of flow over simple rectangular buildings revealed the following serious theoretical flaws: enhanced turbulence in the building wake starting at the wrong longitudinal location; constant enhanced turbulence extending up to the wake height; constant initial enhanced turbulence in the building wake (does not vary with roughness or stability); discontinuities in the streamline calculations; and no method to account for streamlined or porous structures. This paper documents theoretical and other problems in PRIME along with CFD simulations and wind tunnel observations that support these findings. Although AERMOD/PRIME may provide accurate and unbiased estimates (within a factor of 2) for some building configurations, a major review and update is needed so that accurate estimates can be obtained for other building configurations where significant overpredictions or underpredictions are common due to downwash effects. This will ensure that regulatory evaluations subject to dispersion modeling requirements can be based on an accurate model. Thus, it is imperative that the downwash theory in PRIME is corrected to improve model performance and ensure that the model better represents reality.

  6. Orthonormal aberration polynomials for anamorphic optical imaging systems with rectangular pupils.

    PubMed

    Mahajan, Virendra N

    2010-12-20

    The classical aberrations of an anamorphic optical imaging system, representing the terms of a power-series expansion of its aberration function, are separable in the Cartesian coordinates of a point on its pupil. We discuss the balancing of a classical aberration of a certain order with one or more such aberrations of lower order to minimize its variance across a rectangular pupil of such a system. We show that the balanced aberrations are the products of two Legendre polynomials, one for each of the two Cartesian coordinates of the pupil point. The compound Legendre polynomials are orthogonal across a rectangular pupil and, like the classical aberrations, are inherently separable in the Cartesian coordinates of the pupil point. They are different from the balanced aberrations and the corresponding orthogonal polynomials for a system with rotational symmetry but a rectangular pupil.

  7. Force-free magnetic fields - The magneto-frictional method

    NASA Technical Reports Server (NTRS)

    Yang, W. H.; Sturrock, P. A.; Antiochos, S. K.

    1986-01-01

    The problem under discussion is that of calculating magnetic field configurations in which the Lorentz force j x B is everywhere zero, subject to specified boundary conditions. We choose to represent the magnetic field in terms of Clebsch variables in the form B = grad alpha x grad beta. These variables are constant on any field line so that each field line is labeled by the corresponding values of alpha and beta. When the field is described in this way, the most appropriate choice of boundary conditions is to specify the values of alpha and beta on the bounding surface. We show that such field configurations may be calculated by a magneto-frictional method. We imagine that the field lines move through a stationary medium, and that each element of magnetic field is subject to a frictional force parallel to and opposing the velocity of the field line. This concept leads to an iteration procedure for modifying the variables alpha and beta, that tends asymptotically towards the force-free state. We apply the method first to a simple problem in two rectangular dimensions, and then to a problem of cylindrical symmetry that was previously discussed by Barnes and Sturrock (1972). In one important respect, our new results differ from the earlier results of Barnes and Sturrock, and we conclude that the earlier article was in error.

  8. On Entropy Trail

    NASA Astrophysics Data System (ADS)

    Farokhi, Saeed; Taghavi, Ray; Keshmiri, Shawn

    2015-11-01

    Stealth technology is developed for military aircraft to minimize their signatures. The primary attention was focused on radar signature, followed by the thermal and noise signatures of the vehicle. For radar evasion, advanced configuration designs, extensive use of carbon composites and radar-absorbing material, are developed. On thermal signature, mainly in the infra-red (IR) bandwidth, the solution was found in blended rectangular nozzles of high aspect ratio that are shielded from ground detectors. For noise, quiet and calm jets are integrated into vehicles with low-turbulence configuration design. However, these technologies are totally incapable of detecting new generation of revolutionary aircraft. These shall use all electric, distributed, propulsion system that are thermally transparent. In addition, composite skin and non-emitting sensors onboard the aircraft will lead to low signature. However, based on the second-law of thermodynamics, there is no air vehicle that can escape from leaving an entropy trail. Entropy is thus the only inevitable signature of any system, that once measured, can detect the source. By characterizing the entropy field based on its statistical properties, the source may be recognized, akin to face recognition technology. Direct measurement of entropy is cumbersome, however as a derived property, it can be easily measured. The measurement accuracy depends on the probe design and the sensors onboard. One novel air data sensor suite is introduced with promising potential to capture the entropy trail.

  9. Computation of Turbulent Recirculating Flow in Channels, and for Impingement Cooling

    NASA Technical Reports Server (NTRS)

    Chang, Byong Hoon

    1992-01-01

    Fully elliptic forms of the transport equations have been solved numerically for two flow configurations. The first is turbulent flow in a channel with transverse rectangular ribs, and the second is impingement cooling of a plane surface. Both flows are relevant to proposed designs for active cooling of hypersonic vehicles using supercritical hydrogen as the coolant. Flow downstream of an abrupt pipe expansion and of a backward-facing step were also solved with various near-wall turbulence models as benchmark problems. A simple form of periodicity boundary condition was used for the channel flow with transverse rectangular ribs. The effects of various parameters on heat transfer in channel flow with transverse ribs and in impingement cooling were investigated using the Yap modified Jones and Launder low Reynolds number k-epsilon turbulence model. For the channel flow, predictions were in adequate agreement with experiment for constant property flow, with the results for friction superior to those for heat transfer. For impingement cooling, the agreement with experiment was generally good, but the results suggest that improved modelling of the dissipation rate of turbulence kinetic energy is required in order to obtain improved heat transfer prediction, especially near the stagnation point. The k-epsilon turbulence model was used to predict the mean flow and heat transfer for constant and variable property flows. The effect of variable properties for channel flow was investigated using the same turbulence model, but comparison with experiment yielded no clear conclusions. Also, the wall function method was modified for use in the variable properties flow with a non-adiabatic surface, and an empirical model is suggested to correctly account for the behavior of the viscous sublayer with heating.

  10. CFD Assessment of Orifice Aspect Ratio and Mass Flow Ratio on Jet Mixing in Rectangular Ducts

    NASA Technical Reports Server (NTRS)

    Bain, D. B.; Smith, C. E.; Holdeman, J. D.

    1994-01-01

    Isothermal CFD analysis was performed on axially opposed rows of jets mixing with cross flow in a rectangular duct. Laterally, the jets' centerlines were aligned with each other on the top and bottom walls. The focus of this study was to characterize the effects of orifice aspect ratio and jet-to-mainstream mass flow ratio on jet penetration and mixing. Orifice aspect ratios (L/W) of 4-to-1, 2-to-1, and 1-to-1, along with circular holes, were parametrically analyzed. Likewise, jet-to-mainstream mass flow ratios (MR) of 2.0, 0.5, and 0.25 were systematically investigated. The jet-to-mainstream momentum-flux ratio (J) was maintained at 36 for all cases, and the orifice spacing-to-duct height (S/H) was varied until optimum mixing was attained for each configuration. The numerical results showed that orifice aspect ratio (and likewise orifice blockage) had little effect on jet penetration and mixing. Based on mixing characteristics alone, the 4-to-1 slot was comparable to the circular orifice. The 4-to-1 slot has a smaller jet wake which may be advantageous for reducing emissions. However, the axial length of a 4-to-1 slot may be prohibitively long for practical application, especially for MR of 2.0. The jet-to-mainstream mass flow ratio had a more significant effect on jet penetration and mixing. For a 4-to-1 aspect ratio orifice, the design correlating parameter for optimum mixing (C = (S/H)(sq. root J)) varied from 2.25 for a mass flow ratio of 2.0 to 1.5 for a mass flow ratio of 0.25.

  11. Rectangular Microstrip Antenna with Slot Embedded Geometry

    NASA Astrophysics Data System (ADS)

    Ambresh, P. A.; Hadalgi, P. M.; Hunagund, P. V.; Sujata, A. A.

    2014-09-01

    In this paper, a novel design that improves the performance of conventional rectangular microstrip antenna is discussed. Design adopts basic techniques such as probe feeding technique with rectangular inverted patch structure as superstrate, air filled dielectric medium as substrate and slot embedded patch. Prototype of the proposed antenna has been fabricated and various antenna performance parameters such as impedance bandwidth, return loss, radiation pattern and antenna gain are considered for Electromagnetic-study. The antennas are designed for the wireless application operating in the frequency range of 3.3 GHz to 3.6 GHz, and UK based fixed satellite service application (3 GHz to 4 GHz), and are named as single inverted patch conventional rectangular microstrip antenna (SIP-CRMSA) and slots embedded inverted patch rectangular microstrip antenna (SEIP-RMSA), respectively. Measurement outcomes for SEIP-RMSA1 and SEIP-RMSA2 showed the satisfactory performance with an achievable impedance bandwidth of 260 MHz (7 %) and 250 MHz (6.72 %), with return loss (RL) of -11.06 dB and -17.98 dB, achieved gain of 8.17 dB and 5.17 dB with 10% and 8% size reduction in comparison with the conventional patch antenna.

  12. Sensorimotor-Conceptual Integration in Free Walking Enhances Divergent Thinking for Young and Older Adults

    PubMed Central

    Kuo, Chun-Yu; Yeh, Yei-Yu

    2016-01-01

    Prior research has shown that free walking can enhance creative thinking. Nevertheless, it remains unclear whether bidirectional body-mind links are essential for the positive effect of free walking on creative thinking. Moreover, it is unknown whether the positive effect can be generalized to older adults. In Experiment 1, we replicated previous findings with two additional groups of young participants. Participants in the rectangular-walking condition walked along a rectangular path while generating unusual uses for chopsticks. Participants in the free-walking group walked freely as they wished, and participants in the free-generation condition generated unconstrained free paths while the participants in the random-experienced condition walked those paths. Only the free-walking group showed better performance in fluency, flexibility, and originality. In Experiment 2, two groups of older adults were randomly assigned to the free-walking and rectangular-walking conditions. The free-walking group showed better performance than the rectangular-walking group. Moreover, older adults in the free-walking group outperformed young adults in the rectangular-walking group in originality and performed comparably in fluency and flexibility. Bidirectional links between proprioceptive-motor kinematics and metaphorical abstract concepts can enhance divergent thinking for both young and older adults. PMID:27790178

  13. Treatment of mandibular angle fracture with a 2mm, 3 dimensional rectangular grid compression miniplates: A prospective clinical study.

    PubMed

    Mansuri, Samir; Abdulkhayum, Abdul Mujeeb; Gazal, Giath; Hussain, Mohammed Abid Zahir

    2013-12-01

    Surgical treatment of fracture mandible using an internal fixation has changed in the last decades to achieve the required rigidity, stability and immediate restoration of function. The aim of the study was to do a Prospective study of 10 patients to determine the efficacy of rectangular grid compression miniplates in mandibular fractures. This study was carried out using 2.0 rectangular grid compression miniplates and 8 mm multidirectional screws as a rigid internal fixation in 10 patients without post operative intermaxillary fixation (IMF). Follow up was done for period of 6 months. All fractures were healed with an absolute stability in post operative period. None of the patient complained of post operative difficulty in occlusion. Within the limits of this study, it can be concluded that rectangular grid compression miniplates was rigid, reliable and thus can be recommended for the treatment of mandibular angle fractures. How to cite this article: Mansuri S, Abdulkhayum AM, Gazal G, Hussain MA. Treatment of mandibular angle fracture with a 2mm, 3 dimensional rectangular grid compression miniplates: A prospective clinical study. J Int Oral Health 2013;5(6):93-100 .

  14. Influence of surface rectangular defect winding layer on burst pressure of CNG-II composite cylinder

    NASA Astrophysics Data System (ADS)

    You, H. X.; Peng, L.; Zhao, C.; Ma, K.; Zhang, S.

    2018-01-01

    To study the influence of composite materials’ surface defect on the burst pressure of CNG-II composite cylinder, the surface defect was simplified as a rectangular slot of certain size on the basis of actually investigating the shape of cylinder’s surface defect. A CNG-II composite cylinder with a rectangular slot defect (2mm in depth) was used for burst test, and the numerical simulation software ANSYS was used to calculate its burst pressure. Through comparison between the burst pressure in the test and the numerical analysis result, the correctness of the numerical analysis method was verified. On this basis, the numerical analysis method was conducted for composite cylinders with surface defect in other depth. The result showed that surface defect in the form of rectangular slot had no significant effect on the liner stress of composite cylinder. Instead, it had a great influence on the stress of fiber-wrapped layer. The burst pressure of the composite cylinder decreased as the defect depth increasing. The hoop stress at the bottom of the defect in the shape of rectangular slot exceeded the maximum of the composite materials’ tensile strength, which could result in the burst pressure of composite cylinders decreasing.

  15. The study and development of the empirical correlations equation of natural convection heat transfer on vertical rectangular sub-channels

    NASA Astrophysics Data System (ADS)

    Kamajaya, Ketut; Umar, Efrizon; Sudjatmi, K. S.

    2012-06-01

    This study focused on natural convection heat transfer using a vertical rectangular sub-channel and water as the coolant fluid. To conduct this study has been made pipe heaters are equipped with thermocouples. Each heater is equipped with five thermocouples along the heating pipes. The diameter of each heater is 2.54 cm and 45 cm in length. The distance between the central heating and the pitch is 29.5 cm. Test equipment is equipped with a primary cooling system, a secondary cooling system and a heat exchanger. The purpose of this study is to obtain new empirical correlations equations of the vertical rectangular sub-channel, especially for the natural convection heat transfer within a bundle of vertical cylinders rectangular arrangement sub-channels. The empirical correlation equation can support the thermo-hydraulic analysis of research nuclear reactors that utilize cylindrical fuel rods, and also can be used in designing of baffle-free vertical shell and tube heat exchangers. The results of this study that the empirical correlation equations of natural convection heat transfer coefficients with rectangular arrangement is Nu = 6.3357 (Ra.Dh/x)0.0740.

  16. A new metamaterial-based wideband rectangular invisibility cloak

    NASA Astrophysics Data System (ADS)

    Islam, S. S.; Hasan, M. M.; Faruque, M. R. I.

    2018-02-01

    A new metamaterial-based wideband electromagnetic rectangular cloak is being introduced in this study. The metamaterial unit cell shows sharp transmittances in the C- and X-bands and displays wideband negative effective permittivity region there. The metamaterial unit cell was then applied in designing a rectangular-shaped electromagnetic cloak. The scattering reduction technique was adopted for the cloaking operation. The cloak operates in the certain portion of C-and X-bands that covers more than 4 GHz bandwidth region. The experimental results were provided as well for the metamaterial and the cloak.

  17. Natural frequencies of thin rectangular plates clamped on contour using the Finite Element Method

    NASA Astrophysics Data System (ADS)

    (Barboni Haţiegan, L.; Haţiegan, C.; Gillich, G. R.; Hamat, C. O.; Vasile, O.; Stroia, M. D.

    2018-01-01

    This paper presents the determining of natural frequencies of plates without and with damages using the finite element method of SolidWorks program. The first thirty natural frequencies obtained for thin rectangular rectangular plates clamped on contour without and with central damages a for different dimensions. The relative variation of natural frequency was determined and the obtained results by the finite element method (FEM) respectively relative variation of natural frequency, were graphically represented according to their vibration natural modes. Finally, the obtained results were compared.

  18. Research on the comparison of extension mechanism of cellular automaton based on hexagon grid and rectangular grid

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie

    2009-10-01

    Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of concept for hexagonal which has great dominance.

  19. 25. DETAIL OF THE MASONRY ARCH OF A RECTANGULAR COKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. DETAIL OF THE MASONRY ARCH OF A RECTANGULAR COKE OVEN. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  20. VIEW OF INTERIOR SPACE WITH RECTANGULAR SHAPE STRETCH PRESS CONTAINMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF INTERIOR SPACE WITH RECTANGULAR SHAPE STRETCH PRESS CONTAINMENT PIT IN BACKGROUND, FACING NORTH. - Douglas Aircraft Company Long Beach Plant, Aircraft Parts Shipping & Receiving Building, 3855 Lakewood Boulevard, Long Beach, Los Angeles County, CA

  1. Strength and stiffness of reinforced rectangular columns under biaxially eccentric thrust.

    DOT National Transportation Integrated Search

    1976-01-01

    Compression tests on nine reinforced concrete rectangular columns subjected to : constant thrust and biaxially eccentric moments were conducted at the off-campus : research facility of The University of Texas, The Civil Engineering Structures : Labor...

  2. Mode instability in a Yb-doped stretched core fiber

    NASA Astrophysics Data System (ADS)

    Xia, N.; Yoo, S.

    2017-02-01

    In this work we present the theoretical study of transverse mode instability (TMI) in ytterbium (Yb)-doped rectangular core fibers with different core aspect ratios using the fast Fourier transform (FFT) beam propagation method (BPM). As expected, the rectangular core fiber with larger aspect ratio (AR.) offers more efficient heat dissipation than a circular core fiber. However, it is found that the rectangular core fiber does not benefit from the better heat dissipation to suppress the TMI when compared to the circular core counterpart. The temperature building in the rectangular core fiber decreases by up to 24.6% with a 10:1 aspect ratio core, while threshold pump power drops by up to 38.3% when compared with a circular core fiber with the same core area. Our study reveals that a smaller effective refractive index difference between modes and a weaker gain saturation effect compensate the thermal advantage from more efficient heat dissipation.

  3. Cos-Gaussian modal field of a terahertz rectangular metal waveguide filled with multiple slices of dielectric

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Cao, Qing; Zhang, Huifang; Shen, Pengcheng; Xing, Lujing

    2018-06-01

    Based on the TE01 mode of a rectangular metal waveguide and the Gaussian mode of a fiber, we propose the cos-Gaussian mode of a terahertz rectangular metal waveguide filled with multiple slices of dielectric. First, we consider a rectangular metal waveguide filled with an ideal graded-index dielectric along one direction. Furthermore, we replace the graded-index dielectric with multiple slices of dielectric according to the effective medium theory. The modal field, the effective index, and the coupling efficiency of this waveguide are investigated. It is found that the approximately linearly polarized electric field is Gaussian along one dimensionality and cosine along the other one. In addition, the low loss and high coupling efficiency with a Gaussian beam can be acquired at 0.9 THz. By optimization, the coupling efficiency could reach 88.5%.

  4. Evolution of low-aspect-ratio rectangular synthetic jets in a quiescent environment

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Feng, Li-Hao; Wang, Jin-Jun; Li, Tian

    2018-06-01

    An experimental study was conducted on the evolution of low-aspect-ratio (AR) rectangular synthetic jets using time-resolved two-dimensional particle image velocimetry and stereoscopic particle image velocimetry. Five orifice ARs ranging from 1 to 5 were found to have an obvious effect on the axis switching of vortex rings and the near-field flow physics at a uniform Reynolds number of 166 and non-dimensional stroke length of 4.5. Compared with conventional continuous jets, rectangular synthetic jets displayed more times of axis switching and the first axis-switching location was closer to the jet exit. Two types of different streamwise vortices, SV-I and SV-II, were detected in the near field as the characteristic products of axis switching. Influenced by the axis switching and streamwise vortices, significant entrainment and mixing enhancement was demonstrated for low-AR rectangular synthetic jets.

  5. Numerical Investigation of Flow Around Rectangular Cylinders with and Without Jets

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N .; Pidugu, S. B.

    1999-01-01

    The problem of flow past bluff bodies was studied extensively in the past. The problem of drag reduction is very important in many high speed flow applications. Considerable work has been done in this subject area in case of circular cylinders. The present study attempts to investigate the feasibility of drag reduction on a rectangular cylinder by flow injection by flow injection from the rear stagnation region. The physical problem is modeled as two-dimensional body and numerical analysis is carried out with and without trailing jets. A commercial code is used for this purpose. Unsteady computation is performed in case of rectangular cylinders with no trailing jets where as steady state computation is performed when jet is introduced. It is found that drag can be reduced by introducing jets with small intensity in rear stagnation region of the rectangular cylinders.

  6. Analysis and numerical simulation research of the heating process in the oven

    NASA Astrophysics Data System (ADS)

    Chen, Yawei; Lei, Dingyou

    2016-10-01

    How to use the oven to bake delicious food is the most concerned problem of the designers and users of the oven. For this intent, this paper analyzed the heat distribution in the oven based on the basic operation principles and proceeded the data simulation of the temperature distribution on the rack section. Constructing the differential equation model of the temperature distribution changes in the pan when the oven works based on the heat radiation and heat transmission, based on the idea of utilizing cellular automation to simulate heat transfer process, used ANSYS software to proceed the numerical simulation analysis to the rectangular, round-cornered rectangular, elliptical and circular pans and giving out the instantaneous temperature distribution of the corresponding shapes of the pans. The temperature distribution of the rectangular and circular pans proves that the product gets overcooked easily at the corners and edges of rectangular pans but not of a round pan.

  7. On solving three-dimensional open-dimension rectangular packing problems

    NASA Astrophysics Data System (ADS)

    Junqueira, Leonardo; Morabito, Reinaldo

    2017-05-01

    In this article, a recently proposed three-dimensional open-dimension rectangular packing problem is considered, in which the objective is to find a minimal volume rectangular container that packs a set of rectangular boxes. The literature has tackled small-sized instances of this problem by means of optimization solvers, position-free mixed-integer programming (MIP) formulations and piecewise linearization approaches. In this study, the problem is alternatively addressed by means of grid-based position MIP formulations, whereas still considering optimization solvers and the same piecewise linearization techniques. A comparison of the computational performance of both models is then presented, when tested with benchmark problem instances and with new instances, and it is shown that the grid-based position MIP formulation can be competitive, depending on the characteristics of the instances. The grid-based position MIP formulation is also embedded with real-world practical constraints, such as cargo stability, and results are additionally presented.

  8. One-dimensional nonlinear theory for rectangular helix traveling-wave tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Chengfang, E-mail: fchffchf@126.com; Zhao, Bo; Yang, Yudong

    A 1-D nonlinear theory of a rectangular helix traveling-wave tube (TWT) interacting with a ribbon beam is presented in this paper. The RF field is modeled by a transmission line equivalent circuit, the ribbon beam is divided into a sequence of thin rectangular electron discs with the same cross section as the beam, and the charges are assumed to be uniformly distributed over these discs. Then a method of computing the space-charge field by solving Green's Function in the Cartesian Coordinate-system is fully described. Nonlinear partial differential equations for field amplitudes and Lorentz force equations for particles are solved numericallymore » using the fourth-order Runge-Kutta technique. The tube's gain, output power, and efficiency of the above TWT are computed. The results show that increasing the cross section of the ribbon beam will improve a rectangular helix TWT's efficiency and reduce the saturated length.« less

  9. 28. CROSS SECTION OF A RECTANGULAR COKE OVEN SHOWING THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. CROSS SECTION OF A RECTANGULAR COKE OVEN SHOWING THE INTERNAL STRUCTURE OF THE OVEN. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  10. Natural Vibration Analysis of Clamped Rectangular Orthotropic Plates

    NASA Astrophysics Data System (ADS)

    dalaei, m.; kerr, a. d.

    The natural vibrations of clamped rectangular orthotropic plates are analyzed using the extended Kantorovich method. The developed iterative scheme converges very rapidly to the final result. The obtained natural frequencies are evaluated for a square plate made of Kevlar 49 Epoxy and the obtained results are compared with those published by Kanazawa and Kawai, and by Leissa. The agreement was found to be very close. As there are no exact analytical solutions for clamped rectangular plates, the generated closed form expression for the natural modes, and the corresponding natural frequencies, are very suitable for use in engineering analyses.

  11. Numerical evaluation of the surface deformation of elastic solids subjected to a hertzian contact stress

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1974-01-01

    The elastic deformation of two ellipsoidal solids in contact and subjected to Hertzian stress distribution was evaluated numerically as part of a general study of the elastic deformation of such solids in elastohydrodynamic contacts. In the analysis the contact zone was divided into equal rectangular areas, and it was assumed that a uniform pressure is applied over each rectangular area. The influence of the size of the rectangular area upon accuracy was also studied. The results indicate the distance from the center of the contact at which elastic deformation becomes insignificant.

  12. Study of proton radiation effects among diamond and rectangular gate MOSFET layouts

    NASA Astrophysics Data System (ADS)

    Seixas, L. E., Jr.; Finco, S.; Silveira, M. A. G.; Medina, N. H.; Gimenez, S. P.

    2017-01-01

    This paper describes an experimental comparative study of proton ionizing radiation effects between the metal-oxide-semiconductor (MOS) Field Effect Transistors (MOSFETs) implemented with hexagonal gate shapes (diamond) and their respective counterparts designed with the classical rectangular ones, regarding the same gate areas, channel widths and geometrical ratios (W/L). The devices were manufactured by using the 350 nm bulk complementary MOS (CMOS) integrated circuits technology. The diamond MOSFET with α angles higher or equal to 90° tends to present a smaller vulnerability to the high doses ionizing radiation than those observed in the typical rectangular MOSFET counterparts.

  13. A design method for entrance sections of transonic wind tunnels with rectangular cross sections

    NASA Technical Reports Server (NTRS)

    Lionel, L.; Mcdevitt, J. B.

    1975-01-01

    A mathematical technique developed to design entrance sections for transonic or high-speed subsonic wind tunnels with rectangular cross sections is discribed. The transition from a circular cross-section setting chamber to a rectangular test section is accomplished smoothly so as not to introduce secondary flows (vortices or boundary-layer separation) into a uniform test stream. The results of static-pressure measurements in the transition region and of static and total-pressure surveys in the test section of a pilot model for a new facility at the Ames Research Center are presented.

  14. Electrochemical apparatus comprising modified disposable rectangular cuvette

    DOEpatents

    Dattelbaum, Andrew M; Gupta, Gautam; Morris, David E

    2013-09-10

    Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.

  15. Method And Apparatus For Launching Microwave Energy Into A Plasma Processing Chamber

    DOEpatents

    DOUGHTY, FRANK C.; [et al

    2001-05-01

    A method and apparatus for launching microwave energy to a plasma processing chamber in which the required magnetic field is generated by a permanent magnet structure and the permanent magnet material effectively comprises one or more surfaces of the waveguide structure. The waveguide structure functions as an impedance matching device and controls the field pattern of the launched microwave field to create a uniform plasma. The waveguide launcher may comprise a rectangular waveguide, a circular waveguide, or a coaxial waveguide with permanent magnet material forming the sidewalls of the guide and a magnetization pattern which produces the required microwave electron cyclotron resonance magnetic field, a uniform field absorption pattern, and a rapid decay of the fields away from the resonance zone. In addition, the incorporation of permanent magnet material as a portion of the waveguide structure places the magnetic material in close proximity to the vacuum chamber, allowing for a precisely controlled magnetic field configuration, and a reduction of the amount of permanent magnet material required.

  16. Active Flow Control in an Aggressive Transonic Diffuser

    NASA Astrophysics Data System (ADS)

    Skinner, Ryan W.; Jansen, Kenneth E.

    2017-11-01

    A diffuser exchanges upstream kinetic energy for higher downstream static pressure by increasing duct cross-sectional area. The resulting stream-wise and span-wise pressure gradients promote extensive separation in many diffuser configurations. The present computational work evaluates active flow control strategies for separation control in an asymmetric, aggressive diffuser of rectangular cross-section at inlet Mach 0.7 and Re 2.19M. Corner suction is used to suppress secondary flows, and steady/unsteady tangential blowing controls separation on both the single ramped face and the opposite flat face. We explore results from both Spalart-Allmaras RANS and DDES turbulence modeling frameworks; the former is found to miss key physics of the flow control mechanisms. Simulated baseline, steady, and unsteady blowing performance is validated against experimental data. Funding was provided by Northrop Grumman Corporation, and this research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

  17. Gust alleviation for a STOL transport by using elevator, spoilers, and flaps

    NASA Technical Reports Server (NTRS)

    Lallman, F. J.

    1974-01-01

    Control laws were developed to investigate methods of alleviating the response of a STOL transport to gusty air. The transport considered in the study had triple-slotted, externally blown jet flaps and a large T-tail. The control devices used were the elevator, spoilers, and flaps. A hybrid computing system was used to simulate linearized longitudinal dynamics of the aircraft and to implement a conjugate gradient optimal search algorithm. The aircraft was simulated in the low-speed approach condition only. Feedback control matrices were found which minimized the average of a quadratic functional involving passenger compartment accelerations, pitch angle and rate, flight path angle and speed variations. The optimization was performed for artificially designed gust inputs in the form of predetermined rectangular waveforms. Results were obtained for elevator, spoilers, and flaps acting singly and in combination. Additional results were obtained for unit sinusoidal gust inputs by using the gain matrices computed for the artificial test gusts. Various sensor configurations were also investigated.

  18. Flutter Analysis of the Thermal Protection Layer on the NASA HIAD

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2013-01-01

    A combination of classical plate theory and a supersonic aerodynamic model is used to study the aeroelastic flutter behavior of a proposed thermal protection system (TPS) for the NASA HIAD. The analysis pertains to the rectangular configurations currently being tested in a NASA wind-tunnel facility, and may explain why oscillations of the articles could be observed. An analysis using a linear flat plate model indicated that flutter was possible well within the supersonic flow regime of the wind tunnel tests. A more complex nonlinear analysis of the TPS, taking into account any material curvature present due to the restraint system or substructure, indicated that significantly greater aerodynamic forcing is required for the onset of flutter. Chaotic and periodic limit cycle oscillations (LCOs) of the TPS are possible depending on how the curvature is imposed. When the pressure from the base substructure on the bottom of the TPS is used as the source of curvature, the flutter boundary increases rapidly and chaotic behavior is eliminated.

  19. Visualization of the freeze/thaw characteristics of a copper/water heat pipe - Effects of non-condensible gas

    NASA Technical Reports Server (NTRS)

    Ochterbeck, J. M.; Peterson, G. P.

    1991-01-01

    The freeze/thaw characteristics of a copper/water heat pipe of rectangular cross section were investigated experimentally to determine the effect of variations in the amount of non-condensible gases (NCG) present. The transient internal temperature profiles in both the liquid and vapor channels are presented along with contours of the frozen fluid configuration obtained through visual observation. Several interesting phenomena were observed including total blockage of the vapor channel by a solid plug, evaporator dryout during restart, and freezing blowby. In addition, the restart characteristics are shown to be strongly dependent upon the shutdown procedure used prior to freezing, indicating that accurate prediction of the startup or restart characteristics requires a complete thermal history. Finally, the experimental results indicate that the freeze/thaw characteristics of room temperature heat pipes may be significantly different from those occurring in higher temperature, liquid metal heat pipes due to differences in the vapor pressures in the frozen condition.

  20. Beam splitting of low-contrast binary gratings under second Bragg angle incidence.

    PubMed

    Zheng, Jiangjun; Zhou, Changhe; Wang, Bo; Feng, Jijun

    2008-05-01

    Beam splitting of low-contrast rectangular gratings under second Bragg angle incidence is studied. The grating period is between lambda and 2lambda. The diffraction behaviors of the three transmitted propagating orders are illustrated by analyzing the first three propagating grating modes. From a simplified modal approach, the design conditions of gratings as a high-efficiency element with most of its energy concentrated in the -2nd transmitted order (~90%) and of gratings as a 1 x 2 beam splitter with a total efficiency over 90% are derived. The grating parameters for achieving exactly the splitting pattern by use of rigorous coupled-wave analysis verified the design method. A 1 x 3 beam splitter is also demonstrated. Moreover, the polarization-dependent diffraction behaviors are investigated, which suggest the possibility of designing polarization-selective elements under such a configuration. The proposed concept of using the second Bragg angle should be helpful for developing new grating-based devices.

  1. Pressure drop and He II flow through fine mesh screens

    NASA Astrophysics Data System (ADS)

    Maddocks, J. R.; van Sciver, S. W.

    1989-05-01

    Fluid acquisition systems for He II transfer devices will utilize gallery arms to ensure that the fluid encounters the pump inlet. In near term experiments such as Superfluid Helium on Orbit Transfer (SHOOT), the preferred configuration consists of several rectangular channels which have one side made from a Dutch weave stainless steel screen having 325 x 2300 wires per inch. The effective pore diameter for this screen is about 5 microns. The present paper reports on measurements of pressure drop across a screen when it is subjected to a flow of liquid helium. The experiment measures the time rate of change of the level in two different helium reservoirs connected by a screen-blocked channel. Results with normal helium are compared with predictions based on the Armour-Cannon (1968) equations. The He II data show considerable deviation from the classical result. A discussion of the He II pressure drop results in terms of two fluid hydrodynamics is included.

  2. Spatially adjustable microplasma generation in proto-metamaterials using microwave radiative power transfer

    NASA Astrophysics Data System (ADS)

    Kim, Hyunjun; Parsons, Stephen; Hopwood, Jeffrey

    2018-01-01

    A proto-metamaterial structure creates periodic microplasma in three-dimensions within a sub-wavelength volume. A typical implementation consists of a 3 × 3 × 3 rectangular array of 2.4 GHz split ring resonators with each resonator’s split forming a 150 μm discharge gap. All 27 plasmas can be simultaneously ignited in argon up to 260 Torr and sustained by 50 W of radiation power at 650 Torr. Periodic microplasma formation alters the original properties of the material as demonstrated by the electromagnetic transmission spectra between 2.1 and 2.6 GHz with and without plasma. The average electron density of microplasmas at 650 Torr is estimated to be 2-5 × 1019 m-3 by comparing simulated and measured microwave transmission spectra. In addition, both simulation and experimental results demonstrate that the spatial variation of plasma is configurable according to coupled mode theory. Therefore, this structure allows spatially adjustable plasma creation through frequency-selective electromagnetic coupling.

  3. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr

    2014-02-15

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm{sup 3}), four helicon plasma injectors with annular permanent magnetsmore » and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.« less

  4. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus

    NASA Astrophysics Data System (ADS)

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae; Hwang, Y. S.

    2014-02-01

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm3), four helicon plasma injectors with annular permanent magnets and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.

  5. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus.

    PubMed

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae; Hwang, Y S

    2014-02-01

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm(3)), four helicon plasma injectors with annular permanent magnets and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.

  6. Noise, Turbulence, and Thrust of Subsonic Free Jets from Lobed Nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Wang, F. Y.

    2002-01-01

    A study of noise benefit, vis-a-vis thrust penalty, and its correlation to turbulence intensities was conducted for free jets issuing from lobed nozzles. Four convergent nozzles with constant exit area were used in the experiments. Three of these were of rectangular lobed configuration having six, ten and fourteen lobes; the fourth was a circular nozzle. Increasing the number of lobes resulted in a progressive reduction in the turbulence intensities as well as in the overall radiated noise. The noise reduction was pronounced at the low frequency end of the spectrum. However, there was an increase in the high frequency noise that rendered the overall benefit less attractive when compared on a scaled-up A-weighted basis. A reduction in noise was accompanied by a commensurate reduction in the turbulent kinetic energy in the flow field. As expected, increasing the number of lobes involved progressive reduction in the thrust coefficient. Among the cases studied, the six-lobed nozzle had the optimum reduction in turbulence and noise with the least thrust penalty.

  7. Development and application of a program to calculate transonic flow around an oscillating three-dimensional wing using finite difference procedures

    NASA Technical Reports Server (NTRS)

    Weatherill, Warren H.; Ehlers, F. Edward

    1989-01-01

    A finite difference method for solving the unsteady transonic flow about harmonically oscillating wings is investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. Difference equations are derived for harmonic transonic flow to include a coordinate transformation for swept and tapered planforms. A pilot program is developed for three-dimensional planar lifting surface configurations (including thickness) for the CRAY-XMP at Boeing Commercial Airplanes and for the CYBER VPS-32 at the NASA Langley Research Center. An investigation is made of the effect of the location of the outer boundaries on accuracy for very small reduced frequencies. Finally, the pilot program is applied to the flutter analysis of a rectangular wing.

  8. Pressure drop and He II flow through fine mesh screens

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R.; Van Sciver, S. W.

    1989-01-01

    Fluid acquisition systems for He II transfer devices will utilize gallery arms to ensure that the fluid encounters the pump inlet. In near term experiments such as Superfluid Helium on Orbit Transfer (SHOOT), the preferred configuration consists of several rectangular channels which have one side made from a Dutch weave stainless steel screen having 325 x 2300 wires per inch. The effective pore diameter for this screen is about 5 microns. The present paper reports on measurements of pressure drop across a screen when it is subjected to a flow of liquid helium. The experiment measures the time rate of change of the level in two different helium reservoirs connected by a screen-blocked channel. Results with normal helium are compared with predictions based on the Armour-Cannon (1968) equations. The He II data show considerable deviation from the classical result. A discussion of the He II pressure drop results in terms of two fluid hydrodynamics is included.

  9. Optical touch sensing: practical bounds for design and performance

    NASA Astrophysics Data System (ADS)

    Bläßle, Alexander; Janbek, Bebart; Liu, Lifeng; Nakamura, Kanna; Nolan, Kimberly; Paraschiv, Victor

    2013-02-01

    Touch sensitive screens are used in many applications ranging in size from smartphones and tablets to display walls and collaborative surfaces. In this study, we consider optical touch sensing, a technology best suited for large-scale touch surfaces. Optical touch sensing utilizes cameras and light sources placed along the edge of the display. Within this framework, we first find a sufficient number of cameras necessary for identifying a convex polygon touching the screen, using a continuous light source on the boundary of a circular domain. We then find the number of cameras necessary to distinguish between two circular objects in a circular or rectangular domain. Finally, we use Matlab to simulate the polygonal mesh formed from distributing cameras and light sources on a circular domain. Using this, we compute the number of polygons in the mesh and the maximum polygon area to give us information about the accuracy of the configuration. We close with summary and conclusions, and pointers to possible future research directions.

  10. Numerical studies of the fluid and optical fields associated with complex cavity flows

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1992-01-01

    Numerical solutions for the flowfield about several cavity configurations have been computed using the Reynolds averaged Navier-Stokes equations. Comparisons between numerical and experimental results are made in two dimensions for free shear layers and a rectangular cavity, and in three dimensions for the transonic aero-window problem of the Stratospheric Observatory for Infrared Astronomy (SOFIA). Results show that dominant acoustic frequencies and magnitudes of the self excited resonant cavity flows compare well with the experiment. In addition, solution sensitivity to artificial dissipation and grid resolution levels are determined. Optical path distortion due to the flow field is modelled geometrically and is found to match the experiment. The fluid field was computed using a diagonalized scheme within an overset mesh framework. An existing code, OVERFLOW, was utilized with the additions of characteristic boundary condition and output routines required for reduction of the unsteady data. The newly developed code is directly applicable to a generalized three dimensional structured grid zone. Details are provided in a paper included in Appendix A.

  11. A study of flow past an airfoil with a jet issuing from its lower surface

    NASA Technical Reports Server (NTRS)

    Krothapalli, A.; Leopold, D.

    1984-01-01

    The aerodynamics of a NACA 0018 airfoil with a rectangular jet of finite aspect ratio exiting from its lower surface at 90 deg to the chord were investigated. The jet was located at 50% of the wing chord. Measurements include static pressures on the airfoil surface, total pressures in the near wake, and local velocity vectors in different planes of the wake. The effects of jet cross flow interaction on the aerodynamics of the airfoil are studied. It is indicated that at all values of momentum coefficients, the jet cross flow interaction produces a strong contra-rotating vortex structure in the near wake. The flow behind the jet forms a closed recirculation region which extends up to a chord length down stream of the trailing edge which results in the flow field to become highly three dimensional. The various aerodynamic force coefficients vary significantly along the span of the wing. The results are compared with a jet flap configuration.

  12. Parallel pumping of a ferromagnetic nanostripe: Confinement quantization and off-resonant driving

    NASA Astrophysics Data System (ADS)

    Yarbrough, P. M.; Livesey, K. L.

    2018-01-01

    The parametric excitation of spin waves in a rectangular, ferromagnetic nanowire in the parallel pump configuration and with an applied field along the long axis of the wire is studied theoretically, using a semi-classical and semi-analytic Hamiltonian approach. We find that as a function of static applied field strength, there are jumps in the pump power needed to excite thermal spin waves. At these jumps, there is the possibility to non-resonantly excite spin waves near kz = 0. Spin waves with negative or positive group velocity and with different standing wave structures across the wire width can be excited by tuning the applied field. By using a magnetostatic Green's function that depends on both the nanowire's width and thickness—rather than just its aspect ratio—we also find that the threshold field strength varies considerably for nanowires with the same aspect ratio but of different sizes. Comparisons between different methods of calculations are made and the advantages and disadvantages of each are discussed.

  13. Detector shape in hexagonal sampling grids

    NASA Astrophysics Data System (ADS)

    Baronti, Stefano; Capanni, Annalisa; Romoli, Andrea; Santurri, Leonardo; Vitulli, Raffaele

    2001-12-01

    Recent improvements in CCD technology make hexagonal sampling attractive for practical applications and bring a new interest on this topic. In the following the performances of hexagonal sampling are analyzed under general assumptions and compared with the performances of conventional rectangular sampling. This analysis will take into account both the lattice form (squared, rectangular, hexagonal, and regular hexagonal), and the pixel shape. The analyzed hexagonal grid will not based a-priori on a regular hexagon tessellation, i.e., no constraints will be made on the ratio between the sampling frequencies in the two spatial directions. By assuming an elliptic support for the spectrum of the signal being sampled, sampling conditions will be expressed for a generic hexagonal sampling grid, and a comaprison with the well-known sampling conditions for a comparable rectangular lattice will be performed. Further, by considering for sake of clarity a spectrum with a circular support, the comparison will be performed under the assumption of same number of pixels for unity of surface, and the particular case of regular hexagonal sampling grid will also be considered. Regular hexagonal lattice with regular hexagonal sensitivity shape of the detector elements will result as the best trade-off between the proposed sampling requirement. Concerning the detector shape, the hexagonal is more advantageous than the rectangular. To show that a figure of merit is defined which takes into account that the MTF (modulation transfer function) of a hexagonal detector is not separable, conversely from that of a rectangular detector. As a final result, octagonal shape detectors are compared to those with rectangular and hexagonal shape in the two hypotheses of equal and ideal fill factor, respectively.

  14. Equivalent square formula for determining the surface dose of rectangular field from 6 MV therapeutic photon beam.

    PubMed

    Apipunyasopon, Lukkana; Srisatit, Somyot; Phaisangittisakul, Nakorn

    2013-09-06

    The purpose of the study was to investigate the use of the equivalent square formula for determining the surface dose from a rectangular photon beam. A 6 MV therapeutic photon beam delivered from a Varian Clinac 23EX medical linear accelerator was modeled using the EGS4nrc Monte Carlo simulation package. It was then used to calculate the dose in the build-up region from both square and rectangular fields. The field patterns were defined by various settings of the X- and Y-collimator jaw ranging from 5 to 20 cm. Dose measurements were performed using a thermoluminescence dosimeter and a Markus parallel-plate ionization chamber on the four square fields (5 × 5, 10 × 10, 15 × 15, and 20 × 20 cm2). The surface dose was acquired by extrapolating the build-up doses to the surface. An equivalent square for a rectangular field was determined using the area-to-perimeter formula, and the surface dose of the equivalent square was estimated using the square-field data. The surface dose of square field increased linearly from approximately 10% to 28% as the side of the square field increased from 5 to 20 cm. The influence of collimator exchange on the surface dose was found to be not significant. The difference in the percentage surface dose of the rectangular field compared to that of the relevant equivalent square was insignificant and can be clinically neglected. The use of the area-to-perimeter formula for an equivalent square field can provide a clinically acceptable surface dose estimation for a rectangular field from a 6 MV therapy photon beam.

  15. Insights from depth-averaged numerical simulation of flow at bridge abutments in compound channels.

    DOT National Transportation Integrated Search

    2011-07-01

    Two-dimensional, depth-averaged flow models are used to study the distribution of flow around spill-through abutments situated on floodplains in compound channels and rectangular channels (flow on very wide floodplains may be treated as rectangular c...

  16. 75 FR 57456 - Light-Walled Rectangular Pipe and Tube from the People's Republic of China: Final Results of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ...'') U.S. affiliated importer FitMAX Inc. (``FitMAX'') on June 2, 2010 and June 16, 2010. FitMAX... carbon- quality light-walled steel pipe and tube, of rectangular (including square) cross section, having...

  17. Whole article corrigendum: "Surface-plasmon-enhanced GaN-LED based on the multilayered rectangular nano-grating" [Optics Communications 322 (2014) 66-72

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Zhang, Haosu; Zhu, Zhendong; Li, Qunqing; Jin, Guofan

    2017-02-01

    This article proposes a surface-plasmon-enhanced GaN-LED based on the multilayered rectangular nano-grating. This structure contains a SiO2 film, an Ag film and a HfO2 film sequentially coated on the rectangularly-patterned p-GaN layer. The Ag film is used to enhance the internal quantum efficiency. The HfO2 cover-layer symmetrizes the distribution of refractive index besides the Ag film to improve the light extraction efficiency and surface-plasmon (SP) extraction efficiency. The inserted SiO2 layer is utilized to further improve the SP extraction efficiency. The properties of SP modes and Purcell effect in this structure are investigated. The photoluminescence experiments demonstrate that its peak intensity of top-emission is about 2.5 times greater than that from the reference structure covered by a single-layer Ag film on the rectangularly-patterned p-GaN layer.

  18. A high-power microwave circular polarizer and its application on phase shifter.

    PubMed

    Shao, Hao; Hu, Yongmei; Chang, Chao; Guo, Letian

    2016-04-01

    A high-power waveguide dual circular polarizer was theoretically designed and proof-of-principle was experimentally tested. It consists of two incident rectangular waveguides with a perpendicular H-plane junction, one circular waveguide with a pair of trapezoidal grooves coupled in E-plane at the top, a spherical crown located at the bottom, and an iris at the perpendicular junction of two rectangular waveguides. When wave incidents at one of the two separated rectangular waveguides, it, respectively, generates a left-hand circular polarized wave or a right-hand circular polarized wave in the circular waveguide. By adding a dumbbell-like metal plug driven with a high speed servomotor, a movable short circuit is formed along the circular waveguide to adjust the output RF phase of the rectangular port, realizing a high-speed high-power phase shifter. The C-band high power microwave (HPM) experiments were carried out, and the power capacity of the HPM polarizer and phase shifter was demonstrated to reach gigawatt level.

  19. Free vibration of rectangular plates with a small initial curvature

    NASA Technical Reports Server (NTRS)

    Adeniji-Fashola, A. A.; Oyediran, A. A.

    1988-01-01

    The method of matched asymptotic expansions is used to solve the transverse free vibration of a slightly curved, thin rectangular plate. Analytical results for natural frequencies and mode shapes are presented in the limit when the dimensionless bending rigidity, epsilon, is small compared with in-plane forces. Results for different boundary conditions are obtained when the initial deflection is: (1) a polynomial in both directions, and (2) the product of a polynomial and a trigonometric function, and arbitrary. For the arbitrary initial deflection case, the Fourier series technique is used to define the initial deflection. The results obtained show that the natural frequencies of vibration of slightly curved plates are coincident with those of perfectly flat, prestressed rectangular plates. However, the eigenmodes are very different from those of initially flat prestressed rectangular plates. The total deflection is found to be the sum of the initial deflection, the deflection resulting from the solution of the flat plate problem, and the deflection resulting from the static problem.

  20. Evaluation of radiation exposure with Tru-Align intraoral rectangular collimation system using OSL dosimeters.

    PubMed

    Goren, Arthur D; Bonvento, Michael J; Fernandez, Thomas J; Abramovitch, Kenneth; Zhang, Wenjian; Roe, Nadine; Seltzer, Jared; Steinberg, Mitchell; Colosi, Dan C

    2011-03-01

    A pilot study to compare radiation exposure with the Tru-Align rectangular collimation system to round collimation exposures was undertaken. Radiation exposure at various points within the cross sections of the collimators and entrance, intraoral and exit dose measurements were measured using InLight OSL dosimeters. Overall dose reduction with the use of the rectangular collimation system was estimated by taking into account the ratios of collimator openings and the average radiation exposure at the measurement points. Use of the Tru-Align system resulted in an average radiation exposure within the perimeter of the projected outline of the rectangular collimator of 36.1 mR, compared to 148.5 mR with the round collimator. Our calculations indicate a dose reduction by a factor of approximately 3.2 in the case of the Tru-Align system compared to round collimation. The Tru-Align system was easy to use, but in some situations failed to allow Xray coverage of the entire surface of the image receptor, leading to cone cuts.

  1. Variation in flexural properties of photo-pultruded composite archwires: analyses of round and rectangular profiles.

    PubMed

    Fallis, D W; Kusy, R P

    2000-11-01

    Prototype continuous, unidirectional, fiber-reinforced composite archwires were manufactured into round and rectangular profiles utilizing a photo-pultrusion process. Both 0.022 inch (0.56 mm) diameter and 0.021 x 0.028 inch (0.53 x 0.71 mm) rectangular composites were formed utilizing commercially available S2-glass reinforcement within a polymeric matrix. Reinforcement was varied according to the number, denier and twists per inch (TPI) of four S2-glass yarns to volume levels of 32-74% for round and 41-61% for rectangular profiles. Cross-sectional geometry was evaluated via light microscopy to determine loading characteristics; whereas two flexural properties (the elastic moduli and flexural strengths) were determined by 3-point bending tests. Morphological evaluation of samples revealed that as the TPI increased from 1 to 8, the yarns were more separated from one another and distributed more peripherally within a profile. For round and rectangular profiles utilizing 1 TPI fibers, moduli increased with fiber content approaching theoretical values. For round profiles utilizing 1 TPI and 4 TPI fibers, flexural strengths increased until the loading geometry was optimized. In contrast, the flexural strengths of composites that were pultruded with 8 TPI fibers were not improved at any loading level. Doubling the denier of the yarn, without altering the loading, increased both the moduli and flexural strengths in rectangular samples; whereas, the increases observed in round samples were not statistically significant. At optimal loading the maximum mean moduli and strengths equaled 53.6 +/- 2.0 and 1.36 +/- 0.17 GPa for round wire and equaled 45.7 +/- 0.8 and 1.40 +/- 0.05 GPa for rectangular wires, respectively. These moduli were midway between that of martensitic NiTi (33.4 GPa) and beta-titanium (72.4 GPa), and produced about one-quarter the force of a stainless steel wire per unit of activation. Values of strengths placed this composite material in the range of published values for beta-titanium wires (1.3-1.5 GPa). Copyright 2000 Kluwer Academic Publishers

  2. High Quality Facade Segmentation Based on Structured Random Forest, Region Proposal Network and Rectangular Fitting

    NASA Astrophysics Data System (ADS)

    Rahmani, K.; Mayer, H.

    2018-05-01

    In this paper we present a pipeline for high quality semantic segmentation of building facades using Structured Random Forest (SRF), Region Proposal Network (RPN) based on a Convolutional Neural Network (CNN) as well as rectangular fitting optimization. Our main contribution is that we employ features created by the RPN as channels in the SRF.We empirically show that this is very effective especially for doors and windows. Our pipeline is evaluated on two datasets where we outperform current state-of-the-art methods. Additionally, we quantify the contribution of the RPN and the rectangular fitting optimization on the accuracy of the result.

  3. Numerical calculation of flow fields about rectangular wings of finite thickness in supersonic flow. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Vogel, J. M.

    1973-01-01

    The calculation of the outer inviscid flow about a rectangular wing moving at supersonic speeds is reported. The inviscid equations of motion governing the flow generated by the wing form a set of hyperbolic differential equations. The flow field about the rectangular wing is separated into three regions consisting of the forebody, the afterbody, and the wing wake. Solutions for the forebody are obtained using conical flow techniques while the afterbody and the wing wake regions are treated as initial value problems. The numerical solutions are compared in the two dimensional regions with known exact solutions.

  4. 27. VIEW LOOKING THROUGH A RECTANGULAR COKE OVEN. NOTE THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. VIEW LOOKING THROUGH A RECTANGULAR COKE OVEN. NOTE THE USE OF BOTH BRICK AND STONE IN THE CONSTRUCTION OF THE OVEN. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  5. Reflections on the Gall-Peters Projection.

    ERIC Educational Resources Information Center

    Robinson, Arthur H.

    1987-01-01

    Explains the cartographic qualities of rectangular world maps and compares the merits of various projections such as the Mercator and the recently-created Gall-Peters. States that the Gall-Peters projection does not provide a reasonable base for a general world map; that no rectangular projection does. (JDH)

  6. 75 FR 1751 - Light-Walled Rectangular Pipe and Tube from Turkey: Extension of Time Limits for Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-489-815] Light-Walled Rectangular Pipe and Tube from Turkey: Extension of Time Limits for Preliminary Results of Antidumping Duty Administrative Review AGENCY: Import Administration, International Trade Administration, Department of Commerce...

  7. 76 FR 4289 - Light-Walled Rectangular Pipe and Tube From Turkey: Extension of Time Limit for Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-489-815] Light-Walled Rectangular Pipe and Tube From Turkey: Extension of Time Limit for Preliminary Results of Antidumping Duty Administrative Review AGENCY: Import Administration, International Trade Administration, Department of Commerce...

  8. Interfacial instabilities in vibrated fluids

    NASA Astrophysics Data System (ADS)

    Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier

    2016-07-01

    Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced that leads to splitting (fluid separation). We investigate the interaction of these prominent interfacial instabilities in the absence of gravity, concentrating on harmonically vibrated rectangular containers of fluid. We compare vibroequilibria theory with direct numerical simulations and consider the effect of surfaces waves, which can excite sloshing motion of the vibroequilibria. We systematically investigate the saddle-node bifurcation experienced by a symmetric singly connected vibroequilibria solution, for sufficiently deep containers, as forcing is increased. Beyond this instability, the fluid rapidly separates into (at least) two distinct masses. Pronounced hysteresis is associated with this transition, even in the presence of gravity. The interaction of vibroequilibria and frozen waves is investigated in two-fluid systems. Preparations for a parabolic flight experiment on fluids vibrated at high frequencies are discussed.

  9. Diode lasers for direct application by utilizing a trepanning optic for remote oscillation welding of aluminum and copper

    NASA Astrophysics Data System (ADS)

    Fritsche, Haro; Müller, Norbert; Ferrario, Fabio; Fetissow, Sebastian; Grohe, Andreas; Hagen, Thomas; Steger, Ronny; Katzemaikat, Tristan; Ashkenasi, David; Gries, Wolfgang

    2017-02-01

    We report the first direct diode laser module integrated with a trepanning optic for remote oscillation welding. The trepanning optic is assembled with a collimated DirectProcess 900 laser engine. This modular laser is based on single emitters and beam combiners to achieve fiber coupled modules with a beam parameter product or BPP < 8 mm mrad at all power levels up to 1 kW, as well as free space collimated outputs with even lower BPP. The initial design consists in vertically stacking several diodes in the fast axis which leads to a rectangular output of about 100 W with BPP of <3.5 mm*mrad in the fast axis and <5 mm*mrad in the slow axis. Next, further power scaling is accomplished by polarization combining and wavelength multiplexing yielding high optical efficiencies of more than 80% and resulting in a building block module with over 500 W launched into a 100 μm fiber with 0.15 NA. The beam profile of the free space module remains rectangular, with a nearly flat top and conserves the beam parameter product of the original vertical stack without the power loss of fiber coupling. The 500 W building blocks feature a highly flexible emitting wavelength bandwidth. New wavelengths can be configured by simply exchanging parts and without modifying the production process. This design principle provides the option to adapt the wavelength configuration to match a broad set of applications, from the UV to the visible and to the far IR depending on the commercial availability of laser diodes. This opens numerous additional applications like laser pumping, scientific and medical applications, as well as materials processing applications such as cutting and welding of copper aluminum or steel. Furthermore, the module's short lead lengths enable very short pulses. Integrated with electronics, the module's pulse width can be adjusted from micro-seconds to cw mode operation by simple software commands. An optical setup can be directly attached instead of a fiber to the laser module thanks to its modular design. This paper's experimental results are based on a trepanning optic attached to the laser module. Alltogether the setup approximately fits in a shoe box and weighs less than 20 kg which allows for direct mounting onto a 3D-gantry system. The oscillating weld performance of the 500 W direct diode laser utilizing a novel trepanning optic is discussed for its application to aluminum/aluminum and aluminum/copper joints.

  10. Optical implementation of (3, 3, 2) regular rectangular CC-Banyan optical network

    NASA Astrophysics Data System (ADS)

    Yang, Junbo; Su, Xianyu

    2007-07-01

    CC-Banyan network plays an important role in the optical interconnection network. Based on previous reports of (2, 2, 3) the CC-Banyan network, another rectangular-Banyan network, i.e. (3, 3, 2) rectangular CC-Banyan network, has been discussed. First, according to its construction principle, the topological graph and the routing rule of (3, 3, 2) rectangular CC-Banyan network have been proposed. Then, the optically experimental setup of (3, 3, 2) rectangular CC-Banyan network has been designed and achieved. Each stage of node switch consists of phase spatial light modulator (PSLM) and polarizing beam-splitter (PBS), and fiber has been used to perform connection between adjacent stages. PBS features that s-component (perpendicular to the incident plane) of the incident light beam is reflected, and p-component (parallel to the incident plane) passes through it. According to switching logic, under the control of external electrical signals, PSLM functions to control routing paths of the signal beams, i.e. the polarization of each optical signal is rotated or not rotated 90° by a programmable PSLM. Finally, the discussion and analysis show that the experimental setup designed here can realize many functions such as optical signal switch and permutation. It has advantages of large number of input/output-ports, compact in structure, and low energy loss. Hence, the experimental setup can be used in optical communication and optical information processing.

  11. Method for exciting inductive-resistive loads with high and controllable direct current

    DOEpatents

    Hill, Jr., Homer M.

    1976-01-01

    Apparatus and method for transmitting dc power to a load circuit by applying a dc voltage from a standard waveform synthesizer to duration modulate a bipolar rectangular wave generator. As the amplitude of the dc voltage increases, the widths of the rectangular wave generator output pulses increase, and as the amplitude of the dc voltage decreases, the widths of the rectangular wave generator output pulses decrease. Thus, the waveform synthesizer selectively changes the durations of the rectangular wave generator bipolar output pulses so as to produce a rectangular wave ac carrier that is duration modulated in accordance with and in direct proportion to the voltage amplitude from the synthesizer. Thereupon, by transferring the carrier to the load circuit through an amplifier and a rectifier, the load current also corresponds directly to the voltage amplitude from the synthesizer. To this end, the rectified wave at less than 100% duty factor, amounts to a doubled frequency direct voltage pulse train for applying a direct current to the load, while the current ripple is minimized by a high L/R in the load circuit. In one embodiment, a power transmitting power amplifier means having a dc power supply is matched to the load circuit through a transformer for current magnification without sacrificing load current duration capability, while negative voltage and current feedback are provided in order to insure good output fidelity.

  12. A standalone perfusion platform for drug testing and target validation in micro-vessel networks

    PubMed Central

    Zhang, Boyang; Peticone, Carlotta; Murthy, Shashi K.; Radisic, Milica

    2013-01-01

    Studying the effects of pharmacological agents on human endothelium includes the routine use of cell monolayers cultivated in multi-well plates. This configuration fails to recapitulate the complex architecture of vascular networks in vivo and does not capture the relationship between shear stress (i.e. flow) experienced by the cells and dose of the applied pharmacological agents. Microfluidic platforms have been applied extensively to create vascular systems in vitro; however, they rely on bulky external hardware to operate, which hinders the wide application of microfluidic chips by non-microfluidic experts. Here, we have developed a standalone perfusion platform where multiple devices were perfused at a time with a single miniaturized peristaltic pump. Using the platform, multiple micro-vessel networks, that contained three levels of branching structures, were created by culturing endothelial cells within circular micro-channel networks mimicking the geometrical configuration of natural blood vessels. To demonstrate the feasibility of our platform for drug testing and validation assays, a drug induced nitric oxide assay was performed on the engineered micro-vessel network using a panel of vaso-active drugs (acetylcholine, phenylephrine, atorvastatin, and sildenafil), showing both flow and drug dose dependent responses. The interactive effects between flow and drug dose for sildenafil could not be captured by a simple straight rectangular channel coated with endothelial cells, but it was captured in a more physiological branching circular network. A monocyte adhesion assay was also demonstrated with and without stimulation by an inflammatory cytokine, tumor necrosis factor-α. PMID:24404058

  13. Experimental determination of heat transfer in a Poiseuille-Rayleigh-Bénard flow

    NASA Astrophysics Data System (ADS)

    Taher, R.; Abid, C.

    2018-05-01

    This paper deals with an experimental study of heat transfer in a Poiseuille-Rayleigh-Bénard flow. This situation corresponds to a mixed convection phenomenon in a horizontal rectangular channel uniformly heated from below. Flow visualisation and temperature measurements were achieved in order to describe the flow regimes and heat transfer behaviour. The classical measurement techniques such employing thermocouples give local measurement on one hand and on other hand they often disturb the flow. As the flow is three-dimensional, these techniques are not efficient. In order to not disturb the flow, a non-intrusive method is used for thermal measurement. The Planar laser Induced Fluorescence (PLIF) was implemented to determine thermal fields in the fluid. Experiments conducted for various Reynolds and Rayleigh numbers allow to determine the heat transfer and thus to propose correlation for Nusselt number for a mixed convection flow in Poiseuille-Rayleigh-Bénard configuration. First a description of the use of this technique in water flow is presented and then the obtained results for various Reynolds and Rayleigh numbers allow to propose a correlation for the Nusselt number for such configuration of mixed convection. The comparison between the obtained heat transfer and the pure forced convection one confirms the well-known result that the convective heat transfer is greatly enhanced in mixed convection. Indeed, secondary flow induced by buoyant forces contributes to the refreshment of thermal boundary layers and so acts like mixers, which significantly enhances heat transfer.

  14. Airborne polarimetric Doppler weather radar: trade-offs between various engineering specifications

    NASA Astrophysics Data System (ADS)

    Vivekanandan, Jothiram; Loew, Eric

    2018-01-01

    NCAR EOL is investigating potential configurations for the next-generation airborne phased array radar (APAR) that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. The APAR will operate at C band. The APAR will use the electronic scanning (e-scan) feature to acquire the optimal number of independent samples for recording research-quality measurements. Since the airborne radar has only a limited time for collecting measurements over a specified region (moving aircraft platform ˜ 100 m s-1), beam multiplexing will significantly enhance its ability to collect high-resolution, research-quality measurements. Beam multiplexing reduces errors in radar measurements while providing rapid updates of scan volumes. Beamwidth depends on the size of the antenna aperture. Beamwidth and directivity of elliptical, circular, and rectangular antenna apertures are compared and radar sensitivity is evaluated for various polarimetric configurations and transmit-receive (T/R) elements. In the case of polarimetric measurements, alternate transmit with alternate receive (single-channel receiver) and simultaneous reception (dual-channel receiver) is compared. From an overall architecture perspective, element-level digitization of T/R module versus digital sub-array is considered with regard to flexibility in adaptive beamforming, polarimetric performance, calibration, and data quality. Methodologies for calibration of the radar and removing bias in polarimetric measurements are outlined. The above-mentioned engineering options are evaluated for realizing an optimal APAR system suitable for measuring the high temporal and spatial resolutions of Doppler and polarimetric measurements of precipitation and clouds.

  15. On the radiation impedance of a rectangular piston

    NASA Technical Reports Server (NTRS)

    Levine, H.

    1982-01-01

    Single integral representations for the resistive and reactive components of the radiation impedance appropriate to a rectangular piston are established, thereby enabling a systematic refinement of estimates at both short and long wave lengths. Comparisons with previous analyses are made explicit as well as extensions and corrections thereto.

  16. 46 CFR 72.05-20 - Stairways, ladders, and elevators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... factor of safety of 4 based on the ultimate strength. (j) The stringers, treads, and all platforms and... means of an intermediate landing of rectangular or nearly rectangular shape based on the actual...) Except as further noted the provisions of this section apply to all vessels. (2) For small vessels...

  17. 46 CFR 72.05-20 - Stairways, ladders, and elevators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... factor of safety of 4 based on the ultimate strength. (j) The stringers, treads, and all platforms and... means of an intermediate landing of rectangular or nearly rectangular shape based on the actual...) Except as further noted the provisions of this section apply to all vessels. (2) For small vessels...

  18. Effect of wall roughness on liquid oscillations damping in rectangular tanks

    NASA Technical Reports Server (NTRS)

    Bugg, F. M.

    1970-01-01

    Tests were conducted in two rectangular glass tanks using silicon carbide grit bonded to walls to determine effect of wall roughness for damping liquid oscillations. Tests included effects of roughness height, roughness location, roughness at various values, amplitude decay, Reynolds number, and boundary layer thickness.

  19. Evaluation of a rectangular rapid flashing beacon system at the Belmont Ridge Road and W&OD Trail mid-block crosswalk.

    DOT National Transportation Integrated Search

    2015-05-01

    On April 8, 2013, the Virginia Department of Transportation (VDOT) installed a Rectangular Rapid Flashing Beacon : (RRFB) system at Belmont Ridge Road in Loudoun County that included two units at the Washington and Old Dominion : (W&OD) Trail crossin...

  20. Students' Reasoning about Invariance of Volume as a Quantity

    ERIC Educational Resources Information Center

    Kara, Melike

    2013-01-01

    The aims of this study were to investigate how upper-elementary-grade students compare the volume of rectangular prisms of equal volume (specifically, students' noticing and reasoning for invariance of volume and coordination of the three linear dimensions of rectangular prisms) and how students' levels of sophistication in volume measurement…

  1. Comparing the Volumes of Rectangular Prisms

    ERIC Educational Resources Information Center

    Assuah, Charles K.; Wiest, Lynda R.

    2010-01-01

    Can middle-grades students determine which of two rectangular prisms has a larger volume? Can they do so without using a formula? Geometry, and particularly the concept of volume, is important in many subjects, such as physics and chemistry. Students greatly enhance their mathematics knowledge when they make generalizations and construct arguments…

  2. New coplanar waveguide to rectangular waveguide end launcher

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Taub, S. R.

    1992-01-01

    A new coplanar waveguide to rectangular waveguide end launcher is experimentally demonstrated. The end launcher operates over the Ka-band frequencies that are designated for the NASA Advanced Communication Technology Satellite uplink. The measured insertion loss and return loss are better than 0.5 and -10 dB, respectively.

  3. Edge Effects in a Composite Weakly Reinforced with Fibers of Rectangular Cross Section

    NASA Astrophysics Data System (ADS)

    Boichuk, V. Yu.

    2001-05-01

    This paper deal with the edge effect in a composite weakly reinforced with fibers of rectangular cross section and subjected to biaxial uniform loading. The edge effects due to the difference between Poisson's ratios of the composite components are studied. Numerical results are presented

  4. Deriving detector-specific correction factors for rectangular small fields using a scintillator detector.

    PubMed

    Qin, Yujiao; Zhong, Hualiang; Wen, Ning; Snyder, Karen; Huang, Yimei; Chetty, Indrin J

    2016-11-08

    The goal of this study was to investigate small field output factors (OFs) for flat-tening filter-free (FFF) beams on a dedicated stereotactic linear accelerator-based system. From this data, the collimator exchange effect was quantified, and detector-specific correction factors were generated. Output factors for 16 jaw-collimated small fields (from 0.5 to 2 cm) were measured using five different detectors including an ion chamber (CC01), a stereotactic field diode (SFD), a diode detector (Edge), Gafchromic film (EBT3), and a plastic scintillator detector (PSD, W1). Chamber, diodes, and PSD measurements were performed in a Wellhofer water tank, while films were irradiated in solid water at 100 cm source-to-surface distance and 10 cm depth. The collimator exchange effect was quantified for rectangular fields. Monte Carlo (MC) simulations of the measured configurations were also performed using the EGSnrc/DOSXYZnrc code. Output factors measured by the PSD and verified against film and MC calculations were chosen as the benchmark measurements. Compared with plastic scintillator detector (PSD), the small volume ion chamber (CC01) underestimated output factors by an average of -1.0% ± 4.9% (max. = -11.7% for 0.5 × 0.5 cm2 square field). The stereotactic diode (SFD) overestimated output factors by 2.5% ± 0.4% (max. = 3.3% for 0.5 × 1 cm2 rectangular field). The other diode detector (Edge) also overestimated the OFs by an average of 4.2% ± 0.9% (max. = 6.0% for 1 × 1 cm2 square field). Gafchromic film (EBT3) measure-ments and MC calculations agreed with the scintillator detector measurements within 0.6% ± 1.8% and 1.2% ± 1.5%, respectively. Across all the X and Y jaw combinations, the average collimator exchange effect was computed: 1.4% ± 1.1% (CC01), 5.8% ± 5.4% (SFD), 5.1% ± 4.8% (Edge diode), 3.5% ± 5.0% (Monte Carlo), 3.8% ± 4.7% (film), and 5.5% ± 5.1% (PSD). Small field detectors should be used with caution with a clear understanding of their behaviors, especially for FFF beams and small, elongated fields. The scintillator detector exhibited good agreement against Gafchromic film measurements and MC simulations over the range of field sizes studied. The collimator exchange effect was found to be impor-tant at these small field sizes. Detector-specific correction factors were computed using the scintillator measurements as the benchmark. © 2016 The Authors.

  5. Metal Standards for Waveguide Characterization of Materials

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.; Kory, Carol L.

    2009-01-01

    Rectangular-waveguide inserts that are made of non-ferromagnetic metals and are sized and shaped to function as notch filters have been conceived as reference standards for use in the rectangular- waveguide method of characterizing materials with respect to such constitutive electromagnetic properties as permittivity and permeability. Such standards are needed for determining the accuracy of measurements used in the method, as described below. In this method, a specimen of a material to be characterized is cut to a prescribed size and shape and inserted in a rectangular- waveguide test fixture, wherein the specimen is irradiated with a known source signal and detectors are used to measure the signals reflected by, and transmitted through, the specimen. Scattering parameters [also known as "S" parameters (S11, S12, S21, and S22)] are computed from ratios between the transmitted and reflected signals and the source signal. Then the permeability and permittivity of the specimen material are derived from the scattering parameters. Theoretically, the technique for calculating the permeability and permittivity from the scattering parameters is exact, but the accuracy of the results depends on the accuracy of the measurements from which the scattering parameters are obtained. To determine whether the measurements are accurate, it is necessary to perform comparable measurements on reference standards, which are essentially specimens that have known scattering parameters. To be most useful, reference standards should provide the full range of scattering-parameter values that can be obtained from material specimens. Specifically, measurements of the backscattering parameter (S11) from no reflection to total reflection and of the forward-transmission parameter (S21) from no transmission to total transmission are needed. A reference standard that functions as a notch (band-stop) filter can satisfy this need because as the signal frequency is varied across the frequency range for which the filter is designed, the scattering parameters vary over the ranges of values between the extremes of total reflection and total transmission. A notch-filter reference standard in the form of a rectangular-waveguide insert that has a size and shape similar to that of a material specimen is advantageous because the measurement configuration used for the reference standard can be the same as that for a material specimen. Typically a specimen is a block of material that fills a waveguide cross-section but occupies only a small fraction of the length of the waveguide. A reference standard of the present type (see figure) is a metal block that fills part of a waveguide cross section and contains a slot, the long dimension of which can be chosen to tailor the notch frequency to a desired value. The scattering parameters and notch frequency can be estimated with high accuracy by use of commercially available electromagnetic-field-simulating software. The block can be fabricated to the requisite precision by wire electrical-discharge machining. In use, the accuracy of measurements is determined by comparison of (1) the scattering parameters calculated from the measurements with (2) the scattering parameters calculated by the aforementioned software.

  6. Device for reducing vehicle aerodynamic resistance

    DOEpatents

    Graham, Sean C.

    2006-08-22

    A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular body disposed above rear wheels, comprising a plurality of load bearing struts attached to the bottom of the rectangular body adjacent its sides, a plurality of opposing flat sheets attached to the load bearing struts, and angled flaps attached to the lower edge of the opposing sheets defining an obtuse angle with the opposing flat sheets extending inwardly with respect to the sides of the rectangular body to a predetermined height above the ground, which, stiffen the opposing flat sheets, bend to resist damage when struck by the ground, and guide airflow around the rear wheels of the vehicle to reduce its aerodynamic resistance when moving.

  7. Climatology of Station Storm Rainfall in the Continental United States: Parameters of the Bartlett-Lewis and Poisson Rectangular Pulses Models

    NASA Technical Reports Server (NTRS)

    Hawk, Kelly Lynn; Eagleson, Peter S.

    1992-01-01

    The parameters of two stochastic models of point rainfall, the Bartlett-Lewis model and the Poisson rectangular pulses model, are estimated for each month of the year from the historical records of hourly precipitation at more than seventy first-order stations in the continental United States. The parameters are presented both in tabular form and as isopleths on maps. The Poisson rectangular pulses parameters are useful in implementing models of the land surface water balance. The Bartlett-Lewis parameters are useful in disaggregating precipitation to a time period shorter than that of existing observations. Information is also included on a floppy disk.

  8. Influence of burner form and pellet type on domestic pellet boiler performance

    NASA Astrophysics Data System (ADS)

    Rastvorov, D. V.; Osintsev, K. V.; Toropov, E. V.

    2017-10-01

    The study presents combustion and emission results obtained using two serial pellet boilers of the same heating capacity 40 kW. These boilers have been designed by producers for domestic conditions of exploitation. The principal difference between boilers was the type of the burner. The study concerns the efficiency and ecological performance difference between burners of circular and rectangular forms. The features of the combustion process in both types of burners were studied when boiler operated with different sorts of pellets. The results suggest that the burner of circular form excels the rectangular form burner. However, there is some difference of NOx emission between circular and rectangular burners.

  9. Fracture Response Enhancement Of Aluminum Using In-Situ Selective Reinforcement

    NASA Technical Reports Server (NTRS)

    Abada, Christopher H.; Farley, Gary L.; Hyer, Michael W.

    2006-01-01

    A computer-based parametric study of the effect of reinforcement architectures on fracture response of aluminum compact-tension (CT) specimens is performed. Eleven different reinforcement architectures consisting of rectangular and triangular cross-section reinforcements were evaluated. Reinforced specimens produced between 13 and 28 percent higher fracture load than achieved with the unreinforced case. Reinforcements with blunt leading edges (rectangular reinforcements) exhibited superior performance relative to the triangular reinforcements with sharp leading edges. Relative to the rectangular reinforcements, the most important architectural feature was reinforcement thickness. At failure, the reinforcements carried between 58 and 85 percent of the load applied to the specimen, suggesting that there is considerable load transfer between the base material and the reinforcement.

  10. Relativistic energy-dispersion relations of 2D rectangular lattices

    NASA Astrophysics Data System (ADS)

    Ata, Engin; Demirhan, Doğan; Büyükkılıç, Fevzi

    2017-04-01

    An exactly solvable relativistic approach based on inseparable periodic well potentials is developed to obtain energy-dispersion relations of spin states of a single-electron in two-dimensional (2D) rectangular lattices. Commutation of axes transfer matrices is exploited to find energy dependencies of the wave vector components. From the trace of the lattice transfer matrix, energy-dispersion relations of conductance and valence states are obtained in transcendental form. Graphical solutions of relativistic and nonrelativistic transcendental energy-dispersion relations are plotted to compare how lattice parameters V0, core and interstitial size of the rectangular lattice affects to the energy-band structures in a situation core and interstitial diagonals are of equal slope.

  11. Stability of Capillary Surfaces in Rectangular Containers: The Right Square Cylinder

    NASA Technical Reports Server (NTRS)

    Weislogel, M. M.; Hsieh, K. C.

    1998-01-01

    The linearized governing equations for an ideal fluid are presented for numerical analysis for the stability of free capillary surfaces in rectangular containers against unfavorable disturbances (accelerations,i.e. Rayleigh-Taylor instability). The equations are solved for the case of the right square cylinder. The results are expressed graphically in term of a critical Bond number as a function of system contact angle. A critical wetting phenomena in the corners is shown to significantly alter the region of stability for such containers in contrast to simpler geometries such as the right circular cylinder or the infinite rectangular slot. Such computational results provide additional constraints for the design of fluids systems for space-based applications.

  12. Fast Noncircular 2D-DOA Estimation for Rectangular Planar Array

    PubMed Central

    Xu, Lingyun; Wen, Fangqing

    2017-01-01

    A novel scheme is proposed for direction finding with uniform rectangular planar array. First, the characteristics of noncircular signals and Euler’s formula are exploited to construct a new real-valued rectangular array data. Then, the rotational invariance relations for real-valued signal space are depicted in a new way. Finally the real-valued propagator method is utilized to estimate the pairing two-dimensional direction of arrival (2D-DOA). The proposed algorithm provides better angle estimation performance and can discern more sources than the 2D propagator method. At the same time, it has very close angle estimation performance to the noncircular propagator method (NC-PM) with reduced computational complexity. PMID:28417926

  13. Distributed strain measurement in a rectangular plate using an array of optical fiber sensors

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Wade, J. C.

    1984-01-01

    Single mode optical fiber waveguide has been used to determine the two-dimensional strain distribution on a simply supported rectangular plate. Each of the fifty individual fibers in the rectangular grid array attached to one surface of the plate yields a measurement of the strain integrated along the length of that fiber on the specimen. By using similar sensor information from all of the fibers, both the functional form and the amplitude of the distribution may be determined. Limits on the dynamic range and spatial resolution are indicated. Applications in the measurement of internal strain and the monitoring of physically small critical-structural components are suggested.

  14. Turbulent slurry flow measurement using ultrasonic Doppler method in rectangular pipe

    NASA Astrophysics Data System (ADS)

    Bareš, V.; Krupička, J.; Picek, T.; Brabec, J.; Matoušek, V.

    2014-03-01

    Distribution of velocity and Reynolds stress was measured using ultrasonic velocimetry in flows of water and Newtonian water-ballotini slurries in a pressurized Plexiglas pipe. Profiles of the measured parameters were sensed in the vertical plane at the centreline of a rectangular cross section of the pipe. Reference measurements in clear water produced expected symmetrical velocity profiles the shape of which was affected by secondary currents developed in the rectangular pipe. Slurry-flow experiments provided information on an effect of the concentration of solid grains on the internal structure of the flow. Strong attenuation of velocity fluctuations caused by a presence of grains was identified. The attenuation increased with the increasing local concentration of the grains.

  15. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    NASA Astrophysics Data System (ADS)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  16. On improvement of the series convergence in the problem of the vibrations of orhotropic rectangular prism

    NASA Astrophysics Data System (ADS)

    Lyashko, A. D.

    2017-11-01

    A new analytical presentation of the solution for steady-state oscillations of orthotopic rectangular prism is found. The corresponding infinite system of linear algebraic equations has been deduced by the superposition method. A countable set of precise eigenfrequencies and elementary eigenforms is found. The identities are found which make it possible to improve the convergence of all the infinite series in the solution of the problem. All the infinite series in presentation of solution are analytically summed up. Numerical calculations of stresses in the rectangular orthotropic prism with a uniform along the border and harmonic in time load on two opposite faces have been performed.

  17. 75 FR 82070 - Light-Walled Rectangular Pipe and Tube From China, Korea, and Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-449 and 731-TA-1118-1120 (Remand)] Light... panel proceeding in Light-Walled Rectangular Pipe and Tube from Mexico, USA-MEX-1904-04, to file... that an industry in the United States was materially injured by reason of subsidized imports of light...

  18. 77 FR 5240 - Light-Walled Welded Rectangular Carbon Steel Tubing From Taiwan: Continuation of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-583-803] Light-Walled Welded... revocation of the antidumping duty order on light-walled welded rectangular carbon steel tubing from Taiwan..., and the ITC instituted, the sunset review of the antidumping duty order \\1\\ on light-walled welded...

  19. Mathematical Explorations: Maximizing Volume with Solids and Nets

    ERIC Educational Resources Information Center

    Miles, Victoria L.

    2014-01-01

    One of the most common household polyhedra is a cereal box. For over 100 years, American companies like Kellogg's™ have packaged cereal in containers shaped like rectangular prisms. Why is a rectangular prism the most commonly used solid for holding cereal? Would another design work equally or more efficient? This article describes an…

  20. Bivariate normal, conditional and rectangular probabilities: A computer program with applications

    NASA Technical Reports Server (NTRS)

    Swaroop, R.; Brownlow, J. D.; Ashwworth, G. R.; Winter, W. R.

    1980-01-01

    Some results for the bivariate normal distribution analysis are presented. Computer programs for conditional normal probabilities, marginal probabilities, as well as joint probabilities for rectangular regions are given: routines for computing fractile points and distribution functions are also presented. Some examples from a closed circuit television experiment are included.

  1. 78 FR 48416 - Light-Walled Rectangular Pipe and Tube From the People's Republic of China: Final Results of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-915] Light-Walled Rectangular..., Department of Commerce. DATES: Effective Date: August 8, 2013. SUMMARY: On April 2, 2013, the Department of Commerce (Department) initiated the first sunset review of the countervailing duty order on light-walled...

  2. Catalog of Non-Stellar Objects

    DTIC Science & Technology

    1977-09-12

    multiplication with the matrix S", /l 0 " 0 V S" =10 cose -sine , (la) \\0 sine cose/ where e is the 1950.0 obliquity of the ecliptic , viz...helicocentric rectangular ecliptic coordinates. Let these be (x’", y"’, zŕ) = r;1". Then heliocentric rectangular equatorial coordinates are obtained by

  3. The Effects of a Rectangular Rapid-Flashing Beacon on Vehicle Speed

    ERIC Educational Resources Information Center

    VanWagner, Michelle; Van Houten, Ron; Betts, Brian

    2011-01-01

    In 2008, nearly 31% of vehicle fatalities were related to failure to adhere to safe vehicle speeds (National Highway Traffic Safety Administration [NHTSA], 2009). The current study evaluated the effect of a rectangular rapid-flashing beacon (RRFB) triggered by excessive speed on vehicle speed using a combined alternating treatments and reversal…

  4. FDTD Analysis of U-Slot Rectangular Patch Antenna

    NASA Technical Reports Server (NTRS)

    Luk, K. M.; Tong, K. F.; Shum, S. M.; Lee, K. F.; Lee, R. Q.

    1997-01-01

    The U-slot rectangular patch antenna (Figure I) has been found experimentally to provide impedance and gain bandwidths of about 300 without the need of stacked or coplanar parasitic elements [1,2]. In this paper, simulation results of the U-slot patch using FDTD analysis are presented. Comparison with measured results are given.

  5. Derivation and application of an analytical rock displacement solution on rectangular cavern wall using the inverse mapping method.

    PubMed

    Gao, Mingzhong; Yu, Bin; Qiu, Zhiqiang; Yin, Xiangang; Li, Shengwei; Liu, Qiang

    2017-01-01

    Rectangular caverns are increasingly used in underground engineering projects, the failure mechanism of rectangular cavern wall rock is significantly different as a result of the cross-sectional shape and variations in wall stress distributions. However, the conventional computational method always results in a long-winded computational process and multiple displacement solutions of internal rectangular wall rock. This paper uses a Laurent series complex method to obtain a mapping function expression based on complex variable function theory and conformal transformation. This method is combined with the Schwarz-Christoffel method to calculate the mapping function coefficient and to determine the rectangular cavern wall rock deformation. With regard to the inverse mapping concept, the mapping relation between the polar coordinate system within plane ς and a corresponding unique plane coordinate point inside the cavern wall rock is discussed. The disadvantage of multiple solutions when mapping from the plane to the polar coordinate system is addressed. This theoretical formula is used to calculate wall rock boundary deformation and displacement field nephograms inside the wall rock for a given cavern height and width. A comparison with ANSYS numerical software results suggests that the theoretical solution and numerical solution exhibit identical trends, thereby demonstrating the method's validity. This method greatly improves the computing accuracy and reduces the difficulty in solving for cavern boundary and internal wall rock displacements. The proposed method provides a theoretical guide for controlling cavern wall rock deformation failure.

  6. A Comparison between heat transfer performance of rectangular and semicircular tubes considering boundary effects on Brownian motions in the presence of Ag / water nanofluids: Applicable in the design of cooling system of photovoltaic cells

    PubMed Central

    Aberoumand, Sadegh

    2017-01-01

    The present study aims to experimentally investigate heat transfer performance of rectangular and semicircular tubes in the presence of Ag / water nanofluids. The nanoparticles of Ag (silver) were used in seven different volume concentrations of 0.03%, 0.07%, 0.1%, 0.2%, 0.4%, 1% and 2%. The experiment was conducted in relatively low Reynolds numbers of 301 to 740. A heater with the power of 200 W was used to keep the outer surface of the tubes under a constant heat flux condition. In addition, the rectangular tube has been designed within the same length as the semicircular one and also within the same hydraulic diameter. Moreover, the average nanoparticles size was 20 nm. The outcome results of the present empirical work indicate that, for all the examined Reynolds numbers, the semicircular tube has higher convective heat transfer coefficient for all the utilized volume concentrations of Ag nanoparticles. The possible reasons behind this advantage are discussed through the present work mainly by taking the boundary effect on Brownian motions into account. Coming to this point that the conventional design for cooling system of photovoltaic cells is a heat sink with the rectangular graves, it is discussed that using a semicircular design may have the advantage over the rectangular one in convective heat transfer coefficient enhancement and hence a better cooling performance for these solar cells. PMID:28753603

  7. A Comparison between heat transfer performance of rectangular and semicircular tubes considering boundary effects on Brownian motions in the presence of Ag / water nanofluids: Applicable in the design of cooling system of photovoltaic cells.

    PubMed

    Jafarimoghaddam, Amin; Aberoumand, Sadegh

    2017-01-01

    The present study aims to experimentally investigate heat transfer performance of rectangular and semicircular tubes in the presence of Ag / water nanofluids. The nanoparticles of Ag (silver) were used in seven different volume concentrations of 0.03%, 0.07%, 0.1%, 0.2%, 0.4%, 1% and 2%. The experiment was conducted in relatively low Reynolds numbers of 301 to 740. A heater with the power of 200 W was used to keep the outer surface of the tubes under a constant heat flux condition. In addition, the rectangular tube has been designed within the same length as the semicircular one and also within the same hydraulic diameter. Moreover, the average nanoparticles size was 20 nm. The outcome results of the present empirical work indicate that, for all the examined Reynolds numbers, the semicircular tube has higher convective heat transfer coefficient for all the utilized volume concentrations of Ag nanoparticles. The possible reasons behind this advantage are discussed through the present work mainly by taking the boundary effect on Brownian motions into account. Coming to this point that the conventional design for cooling system of photovoltaic cells is a heat sink with the rectangular graves, it is discussed that using a semicircular design may have the advantage over the rectangular one in convective heat transfer coefficient enhancement and hence a better cooling performance for these solar cells.

  8. Derivation and application of an analytical rock displacement solution on rectangular cavern wall using the inverse mapping method

    PubMed Central

    Gao, Mingzhong; Qiu, Zhiqiang; Yin, Xiangang; Li, Shengwei; Liu, Qiang

    2017-01-01

    Rectangular caverns are increasingly used in underground engineering projects, the failure mechanism of rectangular cavern wall rock is significantly different as a result of the cross-sectional shape and variations in wall stress distributions. However, the conventional computational method always results in a long-winded computational process and multiple displacement solutions of internal rectangular wall rock. This paper uses a Laurent series complex method to obtain a mapping function expression based on complex variable function theory and conformal transformation. This method is combined with the Schwarz-Christoffel method to calculate the mapping function coefficient and to determine the rectangular cavern wall rock deformation. With regard to the inverse mapping concept, the mapping relation between the polar coordinate system within plane ς and a corresponding unique plane coordinate point inside the cavern wall rock is discussed. The disadvantage of multiple solutions when mapping from the plane to the polar coordinate system is addressed. This theoretical formula is used to calculate wall rock boundary deformation and displacement field nephograms inside the wall rock for a given cavern height and width. A comparison with ANSYS numerical software results suggests that the theoretical solution and numerical solution exhibit identical trends, thereby demonstrating the method’s validity. This method greatly improves the computing accuracy and reduces the difficulty in solving for cavern boundary and internal wall rock displacements. The proposed method provides a theoretical guide for controlling cavern wall rock deformation failure. PMID:29155892

  9. Modular heat exchanger

    DOEpatents

    Giardina, A.R.

    1981-03-03

    A shell and tube heat exchanger is described having a plurality of individually removable tube bundle modules. A lattice of structural steel forming rectangular openings therein is placed at each end of a cylindrical shell. Longitudinal structural members are placed in the shell between corners of the rectangular openings situated on opposite ends of the shell. Intermediate support members interconnect the longitudinal supports so as to increase the longitudinal supports rigidity. Rectangular parallelepiped tube bundle modules occupy the space defined by the longitudinal supports and end supports and each include a rectangular tube sheet situated on each end of a plurality of tubes extending there through, a plurality of rectangular tube supports located between the tube sheets, and a tube bundle module stiffening structure disposed about the bundle's periphery and being attached to the tube sheets and tube supports. The corners of each tube bundle module have longitudinal framework members which are mateable with and supported by the longitudinal support members. Intermediate support members constitute several lattices, each of which is situated in a plane between the end support members. The intermediate support members constituting the several lattices extend horizontally and vertically between longitudinal supports of adjacent tube module voids. An alternative embodiment for intermediate support members constitute a series of structural plates situated at the corners of the module voids and having recesses therein for receiving the respective longitudinal support members adjacent thereto, protrusions separating the recesses, and a plurality of struts situated between protrusions of adjacent structural plates. 12 figs.

  10. Modular heat exchanger

    DOEpatents

    Giardina, Angelo R. [Marple Township, Delaware County, PA

    1981-03-03

    A shell and tube heat exchanger having a plurality of individually removable tube bundle modules. A lattice of structural steel forming rectangular openings therein is placed at each end of a cylindrical shell. Longitudinal structural members are placed in the shell between corners of the rectangular openings situated on opposite ends of the shell. Intermediate support members interconnect the longitudinal supports so as to increase the longitudinal supports rigidity. Rectangular parallelpiped tube bundle moldules occupy the space defined by the longitudinal supports and end supports and each include a rectangular tube sheet situated on each end of a plurality of tubes extending therethrough, a plurality of rectangular tube supports located between the tube sheets, and a tube bundle module stiffening structure disposed about the bundle's periphery and being attached to the tube sheets and tube supports. The corners of each tube bundle module have longitudinal framework members which are mateable with and supported by the longitudinal support members. Intermediate support members constitute several lattice, each of which is situate d in a plane between the end support members. The intermediate support members constituting the several lattice extend horizontally and vertically between longitudinal supports of adjacent tube module voids. An alternative embodiment for intermediate support members constitute a series of structural plates situated at the corners of the module voids and having recesses therein for receiving the respective longitudinal support members adjacent thereto, protrusions separating the recesses, and a plurality of struts situated between protrusions of adjacent structural plates.

  11. RF Curves for Extraction from the Accumulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGinnis, Dav; /Fermilab

    2002-03-10

    Since the start of Run IIa, the RF curves for the extraction process from the Accumulator have been based on an algorithm described in Pbar Note 636. There are a number of problems with this procedure that result in a dilution of the longitudinal phase space of the extracted beam. The procedure consists of a number of steps in which the frequency curve during each process is a linear time ramp. For a constant bend field, the synchronous phase angle is given as: {Lambda} = sin({phi}{sub s}) = -h/{eta} (1/f{sub rf}){sup 2}df{sub rf}/dt/qV/pc where h is the harmonic number ofmore » the RF. Equation (1) shows that if the frequency curve consists of a number of linear time ramps with different slopes, there will be discontinuities in the synchronous phase. These discontinuities in the synchronous phase will lead to dipole oscillations of the beam in the RF bucket. The discontinuities observed for the present RF curves are about 10 degrees. In the procedure outlined in Pbar Note 636, the RF bucket is formed on the high energy edge of the rectangular momentum distribution. As the RF bucket is pulled away from the core, it is also programmed to increase in area. If the distribution is not perfectly rectangular, or if the bucket is not formed at the edge of the distribution, the growing bucket will gather up more particles at the edges of the bucket resulting in a substantial increase of longitudinal emittance. Finally, it is fairly difficult to prepare a rectangular momentum distribution and keep it rectangular for extended periods of time. Once the rectangular distribution is prepared, the core momentum cooling must be turned off. If there is a delay in the extraction process, the sharp edges of the rectangular distribution will soon diffuse. With the momentum cooling disabled, the longitudinal emittance of the core will grow resulting in larger longitudinal emittances for the extracted beam.« less

  12. In vitro evaluation of frictional forces of two ceramic orthodontic brackets versus a stainless steel bracket in combination with two types of archwires

    PubMed Central

    Arash, Valiollah; Rabiee, Mahmoud; Rakhshan, Vahid; Khorasani, Sara; Sobouti, Farhad

    2015-01-01

    Purpose: The aim of this study was to compare frictional forces between monocrystalline alumina (MA), polycrystalline alumina (PA), and stainless steel (SS) brackets with two SS wires: Rectangular and round. Materials and Methods: In this in vitro study, 60 0.022 brackets [20 PA (0° torque, Forestadent, Germany) and 20 MA (0° torque, Ormco, California, USA)] brackets plus 20 SS brackets (0° torque, Foretadent, Germany) and 60 SS archwires (30 rectangular 0.019 ×0.025 archwires and 30 round 0.018 archwires, Ortho Technology, USA) were used in subgroups of 10 from the combination of all brackets and all archwires. A universal testing machine (Instron, Model STM 250, Germany) was used to investigate the static frictional resistance. The angulation between the bracket and wire was 0°, and the wires were pulled through the slots at a crosshead speed of 10 mm/min. Two-way and one-way analyses of variance (ANOVA) and Tukey tests were used to analyze the data. Results: Mean (SD) static frictional force for each group was as follows: MA + round: 3.47 (0.38); MA + rectangular: 4.05 (0.47); PA + round: 4.14 (0.37); PA + rectangular: 4.45 (0.65); SS + round: 3.28 (0.22); and SS + rectangular: 4.22 (0.61). Significant effects of bracket types (P = 0.001) and archwire types (P = 0.000) on the friction force were detected using ANOVA. Tukey test indicated significant differences between PA brackets with both SS and MA brackets (P < 0.05), but not between SS and MA brackets. The two archwires as well had significantly different effects (Tukey P = 0.000). Conclusions: Based on the present in-vitro study, the PA brackets might create higher frictional forces compared to both SS and MA brackets. The rectangular 0.019 ×0.025 archwire might create greater forces than round 0.018 archwire. PMID:26020037

  13. In vitro evaluation of frictional forces of two ceramic orthodontic brackets versus a stainless steel bracket in combination with two types of archwires.

    PubMed

    Arash, Valiollah; Rabiee, Mahmoud; Rakhshan, Vahid; Khorasani, Sara; Sobouti, Farhad

    2015-01-01

    The aim of this study was to compare frictional forces between monocrystalline alumina (MA), polycrystalline alumina (PA), and stainless steel (SS) brackets with two SS wires: Rectangular and round. In this in vitro study, 60 0.022 brackets [20 PA (0° torque, Forestadent, Germany) and 20 MA (0° torque, Ormco, California, USA)] brackets plus 20 SS brackets (0° torque, Foretadent, Germany) and 60 SS archwires (30 rectangular 0.019 ×0.025 archwires and 30 round 0.018 archwires, Ortho Technology, USA) were used in subgroups of 10 from the combination of all brackets and all archwires. A universal testing machine (Instron, Model STM 250, Germany) was used to investigate the static frictional resistance. The angulation between the bracket and wire was 0°, and the wires were pulled through the slots at a crosshead speed of 10 mm/min. Two-way and one-way analyses of variance (ANOVA) and Tukey tests were used to analyze the data. Mean (SD) static frictional force for each group was as follows: MA + round: 3.47 (0.38); MA + rectangular: 4.05 (0.47); PA + round: 4.14 (0.37); PA + rectangular: 4.45 (0.65); SS + round: 3.28 (0.22); and SS + rectangular: 4.22 (0.61). Significant effects of bracket types (P = 0.001) and archwire types (P = 0.000) on the friction force were detected using ANOVA. Tukey test indicated significant differences between PA brackets with both SS and MA brackets (P < 0.05), but not between SS and MA brackets. The two archwires as well had significantly different effects (Tukey P = 0.000). Based on the present in-vitro study, the PA brackets might create higher frictional forces compared to both SS and MA brackets. The rectangular 0.019 ×0.025 archwire might create greater forces than round 0.018 archwire.

  14. No difference in the graft shift between a round and a rounded rectangular femoral tunnel for anterior cruciate ligament reconstruction: an experimental study.

    PubMed

    Takata, Yasushi; Nakase, Junsuke; Oshima, Takeshi; Shimozaki, Kengo; Asai, Kazuki; Tsuchiya, Hiroyuki

    2018-05-16

    We developed a novel technique of creating a rounded rectangular femoral bone tunnel for anatomical, single-bundle, autologous hamstring tendon anterior cruciate ligament (ACL) reconstruction. Although this tunnel has many advantages, its non-circular shape has raised concerns regarding excessive graft shift within the bone tunnel. This study aimed to compare the graft shift between round and rounded rectangular tunnels using a graft diameter tester for simulating the femoral bone tunnel. Seven semitendinosus tendon grafts harvested from fresh-frozen cadavers were prepared by removing all excess soft tissue. The two ends of a double-fold hamstring tendon were sutured using a baseball stitch and then looped over a TightRope (Arthrex Co., Ltd., Naples, Florida, USA) to make a fourfold graft. The diameter of the graft was standardized to 8 mm using a round graft diameter tester. A round and an original rounded rectangular graft diameter tester were used for simulating the respective femoral bone tunnels. The graft was inserted into the tunnel, with the TightRope positioned on the outside of the tunnel. The distal end of the graft was tensioned to 40 N at an angle of 75° to reproduce the most severe graft bending angle. Digital photographs of the tunnel aperture taken at each simulated tunnel and the range of graft shift in the simulated tunnel were analyzed by ImageJ software. Statistical analyses were performed using the Tukey test. P < 0.05 was considered to be significant. There were no significant differences between the round and the rounded rectangular tunnel groups (P > 0.05) in terms of graft shift, gap area, and graft shift ratio. In a simulated ACL reconstruction, there is no difference in the graft shift between a round and a rounded rectangular bone tunnel.

  15. Solving vertical and horizontal well hydraulics problems analytically in Cartesian coordinates with vertical and horizontal anisotropies

    NASA Astrophysics Data System (ADS)

    Batu, Vedat

    2012-01-01

    SummaryA new generalized three-dimensional analytical solution is developed for a partially-penetrating vertical rectangular parallelepiped well screen in a confined aquifer by solving the three-dimensional transient ground water flow differential equation in x- y- z Cartesian coordinates system for drawdown by taking into account the three principal hydraulic conductivities ( Kx, Ky, and Kz) along the x- y- z coordinate directions. The fully penetrating screen case becomes equivalent to the single vertical fracture case of Gringarten and Ramey (1973). It is shown that the new solution and Gringarten and Ramey solution (1973) match very well. Similarly, it is shown that this new solution for a horizontally tiny fully penetrating parallelepiped rectangular parallelepiped screen case match very well with Theis (1935) solution. Moreover, it is also shown that the horizontally tiny partially-penetrating parallelepiped rectangular well screen case of this new solution match very well with Hantush (1964) solution. This new analytical solution can also cover a partially-penetrating horizontal well by representing its screen interval with vertically tiny rectangular parallelepiped. Also the solution takes into account both the vertical anisotropy ( azx = Kz/ Kx) as well as the horizontal anisotropy ( ayx = Ky/ Kx) and has potential application areas to analyze pumping test drawdown data from partially-penetrating vertical and horizontal wells by representing them as tiny rectangular parallelepiped as well as line sources. The solution has also potential application areas for a partially-penetrating parallelepiped rectangular vertical fracture. With this new solution, the horizontal anisotropy ( ayx = Ky/ Kx) in addition to the vertical anisotropy ( azx = Kz/ Kx) can also be determined using observed drawdown data. Most importantly, with this solution, to the knowledge of the author, it has been shown the first time in the literature that some well-known well hydraulics problems can also be solved in Cartesian coordinates with some additional advantages other than the conventional cylindrical coordinates method.

  16. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing of the Gen4 SWME is underway.

  17. Rectangular Array Model Supporting Students' Spatial Structuring in Learning Multiplication

    ERIC Educational Resources Information Center

    Shanty, Nenden Octavarulia; Wijaya, Surya

    2012-01-01

    We examine how rectangular array model can support students' spatial structuring in learning multiplication. To begin, we define what we mean by spatial structuring as the mental operation of constructing an organization or form for an object or set of objects. For that reason, the eggs problem was chosen as the starting point in which the…

  18. Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides.

    PubMed

    Astley, Victoria; McCracken, Blake; Mendis, Rajind; Mittleman, Daniel M

    2011-04-15

    We describe an experimental and theoretical characterization of rectangular resonant cavities integrated into parallel-plate waveguides, using terahertz pulses. When the waveguide is excited with the lowest-order transverse-electric mode, these cavities exhibit resonances with narrow linewidths. Broadband transmission spectra are compared with the results of mode-matching calculations, for various cavity dimensions.

  19. Mixed boundary-value problem for an orthotropic rectangular strip with variable coefficients of elasticity

    NASA Astrophysics Data System (ADS)

    Sargsyan, M. Z.; Poghosyan, H. M.

    2018-04-01

    A dynamical problem for a rectangular strip with variable coefficients of elasticity is solved by an asymptotic method. It is assumed that the strip is orthotropic, the elasticity coefficients are exponential functions of y, and mixed boundary conditions are posed. The solution of the inner problem is obtained using Bessel functions.

  20. Conceptual Inflatable Fabric Structures for Protective Crew Quarters Systems in Space Vehicles and Space Habitat Structures

    DTIC Science & Technology

    2015-11-30

    Membrane Liner FEA Model ........................................................15 Rectangular PCQS with Embedded Air Beams FEA Model...2 2 Component Air Volumes of the Rectangular PCQS Concept with Inner Membrane Liner ...GCR Galactic cosmic rays or radiation HPF High-performance fibers IML Inner membrane liner K Degree Kelvin LaRC Langley Research Center m Mass

  1. Self-similar grid patterns in free-space shuffle-exchange networks

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.

    1993-12-01

    Self-similar grid patterns are proposed as an alternative to rectangular grid, array optoelectronic sources, and detectors of smart pixels. For shuffle based multistage interconnection networks, it is suggested that smart pixel should not be arrayed on a rectangular grid and that smart pixel unit cell should be the kernel of a self-similar grid pattern.

  2. A Computer Program To Increase Comprehension of the Cartesian Rectangular Coordinate System in High School Pre-Algebra Students.

    ERIC Educational Resources Information Center

    Exley, I. Sheck

    The high percentage of high school pre-algebra students having difficulty learning the abstract concept of graphing ordered pairs on the Cartesian rectangular coordinate system was addressed by the creation and implementation of a computer-managed instructional program. Modules consisted of a pretest, instruction, two practice sessions, and a…

  3. 77 FR 61819 - WTO Dispute Settlement Proceeding Regarding United States-Countervailing and Anti-Dumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... comments should be submitted electronically to www.regulations.gov , docket number USTR-2012-0031. If you...); Light-Walled Rectangular Pipe and Tube (C-570-915); Laminated Woven Sacks (C-570-917); Certain New... Rectangular Pipe and Tube (A-570-916); Laminated Woven Sacks (A-570-914); Certain New Pneumatic Off-The-Road...

  4. 78 FR 47671 - Final Results of Expedited Sunset Reviews of Antidumping Duty Orders: Light-Walled Rectangular...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... Pipe and Tube From Mexico, Turkey, the People's Republic of China, and the Republic of Korea AGENCY... Rectangular Pipe and Tube from Mexico, the People's Republic of China, and the Republic of Korea: Antidumping... and Tube from Mexico, Turkey, the People's Republic of China, and the Republic of South Korea'' (July...

  5. Applications of Hydrofoils with Leading Edge Protuberances

    DTIC Science & Technology

    2012-03-30

    of angles of attack. Table 20 presents important hydrodynamic characteristics of the finite-span rectangular hydrofoils with cavitation . 107...Table 20. Hydrodynamic characteristics of finite-span rectangular planform hydrofoils with cavitation . Rec = 7.2 × 105 [deg−1] CLmax α...characteristics of the swept planform hydrofoils under cavitation conditions. Table 21. Hydrodynamic characteristics of swept planform hydrofoils under cavitation

  6. Investigation of Transmission Resonances with Specific Properties in Rectangular Semiconductor Quantum Wells

    ERIC Educational Resources Information Center

    Niketic, Nemanja; Milanovic, Vitomir; Radovanovic, Jelena

    2012-01-01

    In this paper we provide a detailed analysis of the energy position and type of transmission maxima in rectangular quantum wells (QWs), taking into consideration the difference of electron effective masses in the barrier and well layers. Particular attention is given to transmission maxima that are less than unity and the implications of effective…

  7. 75 FR 61127 - Light-Walled Rectangular Pipe and Tube from Turkey; Notice of Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... Pipe and Tube from Turkey; Notice of Final Results of Antidumping Duty Administrative Review AGENCY... Tube from Turkey. See Light-Walled Rectangular Pipe and Tube from Turkey; Notice of Preliminary Results... pipe and tube from Turkey. See Preliminary Results. The parties subject to this review are Tos[ccedil...

  8. Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells.

    PubMed

    Lee, Sangjun; In, Sungjun; Mason, Daniel R; Park, Namkyoo

    2013-02-25

    We present investigation and optimization of a newly proposed plasmonic organic solar cell geometry based on the incorporation of nanovoids into conventional rectangular backplane gratings. Hybridization of strongly localized plasmonic modes of the nanovoids with Fabry-Perot cavity modes originating from surface plasmon reflection at the grating elements is shown to significantly boost performance in the long wavelength regime. This constitutes improved broadband operation while maintaining absorption enhancements at short wavelengths derived from conventional rectangular grating. Our calculations predict a figure of merit enhancement of up to 41% compared to when the nanovoid indented grating is absent. This is a significant improvement over the previously considered rectangular grating structures, which is further shown to be maintained over the entire angular range.

  9. Flow Through a Rectangular-to-Semiannular Diffusing Transition Duct

    NASA Technical Reports Server (NTRS)

    Foster, Jeff; Wendt, Bruce J.; Reichert, Bruce A.; Okiishi, Theodore H.

    1997-01-01

    Rectangular-to-semiannular diffusing transition ducts are critical inlet components on supersonic airplanes having bifucated engine inlets. This paper documents measured details of the flow through a rectangular-to-semiannular transition duct having an expansion area ratio of 1.53. Three-dimensional velocity vectors and total pressures at the exit plane of the diffuser are presented. Surface oil-flow visualization and surface static pressure data are shown. The tests were conducted with an inlet Mach number of 0.786 and a Reynolds number based on the inlet centerline velocity and exit diameter of 3.2 x 10(exp 6). The measured data are compared with previously published computational results. The ability of vortex generators to reduce circumferential total pressure distortion is demonstrated.

  10. Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Scanning

    NASA Technical Reports Server (NTRS)

    Cole, H. J.; Chambers, D. M.; Dixit, S. N.; Britten, J. A.; Shore, B. W.; Kavaya, M. J.

    1999-01-01

    The application of specialized rectangular relief transmission gratings to coherent lidar beam scanning is presented. Two types of surface relief transmission grating approaches are studied with an eye toward potential insertion of a constant thickness, diffractive scanner where refractive wedges now exist. The first diffractive approach uses vertically oriented relief structure in the surface of an optical flat; illumination of the diffractive scanner is off-normal in nature. The second grating design case describes rectangular relief structure slanted at a prescribed angle with respect to the surface. In this case, illumination is normal to the diffractive scanner. In both cases, performance predictions for 2.0 micron, circularly polarized light at beam deflection angles of 30 or 45 degrees are presented.

  11. Bending of Rectangular Plates with Large Deflections

    NASA Technical Reports Server (NTRS)

    Levy, Samuel

    1942-01-01

    The solution of von Karman's fundamental equations for large deflections of plates is presented for the case of a simply supported rectangular plate under combined edge compression and lateral loading. Numerical solutions are given for square plates and for rectangular plates with a width-span ratio of 3:1. The effective widths under edge compression are compared with effective widths according to von Karman, Bengston, Marguerre, and Cox and with experimental results by Ramberg, McPherson, and Levy. The deflections for a square plate under lateral pressure are compared with experimental and theoretical results by Kaiser. It is found that the effective widths agree closely with Marguerre's formula and with the experimentally observed values and that the deflections agree with the experimental results and with Kaiser's work.

  12. Multistrand superconductor cable

    DOEpatents

    Borden, A.R.

    1984-03-08

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easil

  13. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1993-01-01

    Condensation heat transfer in a horizontal rectangular duct was experimentally and analytically investigated. To prevent the dripping of condensate on the film, the experiment was conducted inside a horizontal rectangular duct with vapor condensing only on the bottom cooled plate of the duct. R-113 and FC-72 (Fluorinert Electronic Fluid developed by the 3M Company) were used as the condensing fluids. The experimental program included measurements of film thickness, local and average heat transfer coefficients, wave length, wave speed, and a study of wave initiation. The measured film thickness was used to obtain the local heat transfer coefficient. The wave initiation was studied both with condensation and with an adiabatic air-liquid flow. The test sections used in both experiments were identical.

  14. Effect of Reinforcement Architecture on Fracture of Selectively Reinforced Metallic Compact Tension Specimens

    NASA Technical Reports Server (NTRS)

    Abada, Christopher H.; Farley, Gary L.; Hyer, Michael W.

    2006-01-01

    A computer-based parametric study of the effect of reinforcement architectures on fracture response of aluminum compact-tension (CT) specimens is performed. Eleven different reinforcement architectures consisting of rectangular and triangular cross-section reinforcements were evaluated. Reinforced specimens produced between 13 and 28 percent higher fracture load than achieved with the non-reinforced case. Reinforcements with blunt leading edges (rectangular reinforcements) exhibited superior performance relative to the triangular reinforcements with sharp leading edges. Relative to the rectangular reinforcements, the most important architectural feature was reinforcement thickness. At failure, the reinforcements carried between 58 and 85 percent of the load applied to the specimen, suggesting that there is considerable load transfer between the base material and the reinforcement.

  15. Mixing of Multiple Jets With a Confined Subsonic Crossflow

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.

    1998-01-01

    Results from a recently completed enhanced mixing program are summarized in the two technical papers. These studies were parts of a High Speed Research (HSR)-supported joint Government/industry/university program that involved, in addition to the NASA Lewis Research Center, researchers at United Technologies Research Center, Allison Engine Company, CFD Research Corporation, and the University of California, Irvine. The studies investigated the mixing of jets injected normal to a confined subsonic mainsteam in both rectangular and cylindrical ducts. Experimental and computational studies were performed in both nonreacting and reacting flows. The orifice geometries and flow conditions were selected as typical of the complex three-dimensional flows in the combustion chambers in low-emission gas turbine engines. The principal conclusion from both the experiments and modeling was that the momentum-flux ratio J and orifice spacing S/H were the most significant flow and geometry variables, respectively. Conserved scalar distributions were similar-independent of reaction, orifice diameter H/d, and shape-when the orifice spacing and the square root of the momentum-flux ratio were inversely proportional. Jet penetration was critical, and penetration decreased as either momentum-flux ratio or orifice spacing decreased. We found that planar averages must be considered in context with the distributions. The mass-flow ratios and the orifices investigated were often very large. The jet-to-mainstream mass-flow ratio was varied from significantly less than 1 to greater than 1. The orifice-area to mainstream-cross-sectional-area was varied from approx. 0 to 0.5, and the axial planes of interest were often just downstream of the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations. As an example of the results, the accompanying figure shows the effects of different rates of mass addition on the opposite walls of a rectangular duct.

  16. Experiments on Exhaust Noise of Tightly Integrated Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Brown, Clifford A.; Bozak, Richard F.

    2014-01-01

    A wide-ranging series of tests have been completed that seek to map the effects of installation, including jet by jet interaction effects, on exhaust noise from various nozzles in forward flight. The primary data was far-field acoustic spectral directivity. The goals of the test series were (i) to generate enough data for empirical models of the different effects, and (ii) to provide data for advanced computational noise predictions methods applied to simplified yet realistic configurations. Data is presented that demonstrate several checks on data quality and that provide an overview of trends observed to date. Among the findings presented here: (i) Data was repeatable between jet rigs for single nozzles with and without surfaces to within +/- 0.5 dB. (ii) The presence of a second jet caused a strong reduction of the summed noise in the plane of the two plumes and an increase over the expected source doubling in most other azimuthal planes. (iii) The impact of the second jet was reduced when the jets were unheated. (iv) The impact of adding a second isolated rectangular jet was relatively independent of the nozzle aspect ratio up to aspect ratio 8:1. (v) Forward flight had similar impact on a high aspect ratio (8:1) jet as on an axisymmetric jet, except at the peak noise angle where the impact was less. (vi) The effect of adding a second round jet to a tightly integrated nozzle where the nozzle lip was less than a diameter from the surface was very dependent upon the length of the surface downstream of the nozzle. (vii) When the nozzles were rectangular and tightly integrated with the airframe surface the impact of a second jet was very dependent upon how close together the two jets were. This paper serves as an overview of the test; other papers presented in the same conference will give more detailed analysis of the results.

  17. A method for removing arm backscatter from EPID images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Brian W.; Greer, Peter B.; School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales 2308

    2013-07-15

    Purpose: To develop a method for removing the support arm backscatter from images acquired using current Varian electronic portal imaging devices (EPIDs).Methods: The effect of arm backscatter on EPID images was modeled using a kernel convolution method. The parameters of the model were optimized by comparing on-arm images to off-arm images. The model was used to develop a method to remove the effect of backscatter from measured EPID images. The performance of the backscatter removal method was tested by comparing backscatter corrected on-arm images to measured off-arm images for 17 rectangular fields of different sizes and locations on the imager.more » The method was also tested using on- and off-arm images from 42 intensity modulated radiotherapy (IMRT) fields.Results: Images generated by the backscatter removal method gave consistently better agreement with off-arm images than images without backscatter correction. For the 17 rectangular fields studied, the root mean square difference of in-plane profiles compared to off-arm profiles was reduced from 1.19% (standard deviation 0.59%) on average without backscatter removal to 0.38% (standard deviation 0.18%) when using the backscatter removal method. When comparing to the off-arm images from the 42 IMRT fields, the mean {gamma} and percentage of pixels with {gamma} < 1 were improved by the backscatter removal method in all but one of the images studied. The mean {gamma} value (1%, 1 mm) for the IMRT fields studied was reduced from 0.80 to 0.57 by using the backscatter removal method, while the mean {gamma} pass rate was increased from 72.2% to 84.6%.Conclusions: A backscatter removal method has been developed to estimate the image acquired by the EPID without any arm backscatter from an image acquired in the presence of arm backscatter. The method has been shown to produce consistently reliable results for a wide range of field sizes and jaw configurations.« less

  18. Application of the parametric proper generalized decomposition to the frequency-dependent calculation of the impedance of an AC line with rectangular conductors

    NASA Astrophysics Data System (ADS)

    Sancarlos-González, Abel; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Sapena-Bano, Angel; Riera-Guasp, Martin; Martinez-Roman, Javier; Perez-Cruz, Juan; Roger-Folch, Jose

    2017-12-01

    AC lines of industrial busbar systems are usually built using conductors with rectangular cross sections, where each phase can have several parallel conductors to carry high currents. The current density in a rectangular conductor, under sinusoidal conditions, is not uniform. It depends on the frequency, on the conductor shape, and on the distance between conductors, due to the skin effect and to proximity effects. Contrary to circular conductors, there are not closed analytical formulas for obtaining the frequency-dependent impedance of conductors with rectangular cross-section. It is necessary to resort to numerical simulations to obtain the resistance and the inductance of the phases, one for each desired frequency and also for each distance between the phases' conductors. On the contrary, the use of the parametric proper generalized decomposition (PGD) allows to obtain the frequency-dependent impedance of an AC line for a wide range of frequencies and distances between the phases' conductors by solving a single simulation in a 4D domain (spatial coordinates x and y, the frequency and the separation between conductors). In this way, a general "virtual chart" solution is obtained, which contains the solution for any frequency and for any separation of the conductors, and stores it in a compact separated representations form, which can be easily embedded on a more general software for the design of electrical installations. The approach presented in this work for rectangular conductors can be easily extended to conductors with an arbitrary shape.

  19. Torque efficiency of square and rectangular archwires into 0.018 and 0.022 in. conventional brackets.

    PubMed

    Papageorgiou, Spyridon N; Sifakakis, Iosif; Doulis, Ioannis; Eliades, Theodore; Bourauel, Christoph

    2016-01-01

    The aim of this study was to compare the torque efficacy of square and rectangular wires in 0.018- and 0.022-in. conventionally ligated brackets. Brackets of the same prescription were evaluated in both slot dimensions. Identical acrylic resin models of the maxilla were bonded with the brackets and mounted on the Orthodontic Measurement and Simulation System. Ten 0.018 × 0.018 in., 0.018 × 0.022 in., and 0.018 × 0.025 in. stainless steel wires were evaluated in the 0.018-in. brackets and ten 0.019 × 0.019 in., 0.019 × 0.025 in., and 0.019 × 0.026 in. stainless steel wires were evaluated in the 0.022-in. brackets. A 15° buccal root torque was gradually applied to the right central incisor bracket, and the moments were recorded at this position. One-way ANOVA was applied for both bracket slot sizes along with post hoc analysis for the various archwire sizes. The mean measured moments varied between 10.78 and 30.60 Nmm among the assessed wire-and-bracket combinations. Both square and rectangular archwires in the 0.018-in. bracket system exerted statistically significantly higher moments in comparison with their counterparts in the 0.022-in. bracket system. Rectangular archwires exerted statistically significantly higher moments than square archwires, both for the 0.018- and the 0.022-in. bracket system. Rectangular archwires seem to be more efficient in torque exertion, especially in 0.018-in. brackets.

  20. Residual stresses of thin, short rectangular plates

    NASA Technical Reports Server (NTRS)

    Andonian, A. T.; Danyluk, S.

    1985-01-01

    The analysis of the residual stresses in thin, short rectangular plates is presented. The analysis is used in conjunction with a shadow moire interferometry technique by which residual stresses are obtained over a large spatial area from a strain measurement. The technique and analysis are applied to a residual stress measurement of polycrystalline silicon sheet grown by the edge-defined film growth technique.

  1. 29. DETAIL OF A STONE USED IN THE CONSTRUCTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. DETAIL OF A STONE USED IN THE CONSTRUCTION OF A RECTANGULAR COKE OVEN, SHOWING THE MAKER'S MARK. STONE FROM THE GARFIELD COMPANY WERE USED IN THE CONSTRUCTION OF BOTH THE BEEHIVE AND RECTANGULAR OVENS. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  2. Scattering of E Polarized Plane Wave by Rectangular Cavity With Finite Flanges

    NASA Astrophysics Data System (ADS)

    Vinogradova, Elena D.

    2017-11-01

    The rigorous Method of Regularization is implemented for accurate analysis of wave scattering by rectangular cavity with finite flanges. The solution is free from limitations on problem parameters. The calculation of the induced surface current, bistatic radar cross section (RCS) and frequency dependence of monostatic RCS are performed with controlled accuracy in a wide frequency band.

  3. Modal analysis applied to circular, rectangular, and coaxial waveguides

    NASA Technical Reports Server (NTRS)

    Hoppe, D. J.

    1988-01-01

    Recent developments in the analysis of various waveguide components and feedhorns using Modal Analysis (Mode Matching Method) are summarized. A brief description of the theory is presented, and the important features of the method are pointed out. Specific examples in circular, rectangular, and coaxial waveguides are included, with comparisons between the theory and experimental measurements. Extensions to the methods are described.

  4. Use of Geometric Properties of Landmark Arrays for Reorientation Relative to Remote Cities and Local Objects

    ERIC Educational Resources Information Center

    Mou, Weimin; Nankoo, Jean-François; Zhou, Ruojing; Spetch, Marcia L.

    2014-01-01

    Five experiments investigated how human adults use landmark arrays in the immediate environment to reorient relative to the local environment and relative to remote cities. Participants learned targets' directions with the presence of a proximal 4 poles forming a rectangular shape and an array of more distal poles forming a rectangular shape. Then…

  5. Tabulated dose uniformity ratio and minimum dose data: rectangular 60Co source plaques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galanter, L.

    1971-01-01

    The data tabulated herein extend to rectangular cobalt-60 plaques the information presented for square plaques in BNL 50145 (Revised). The user is referred to BNL 50145 (Revised) and to the other reports listed for a complete discussion of the parameters involved in data generation and for instructions on the use of these data in gamma irradiator design.

  6. Research on the Cross Section Precision of High-strength Steel Tube with Rectangular Section in Rotary Draw Bending

    NASA Astrophysics Data System (ADS)

    Yang, Hongliang; Zhao, Hao; Xing, Zhongwen

    2017-11-01

    For the demand of energy conservation and security improvement, high-strength steel (HSS) is increasingly being used to produce safety related automotive components. However, cross-section distortion occurs easily in bending of HSS tube with rectangular section (RS), affecting the forming precision. HSS BR1500HS tube by rotary draw bending is taken as the study object and a description method of cross-section distortion is proposed in this paper. The influence on cross-section precision of geometric parameters including cross-section position, thickness of tube, bend radius etc. are studied by experiment. Besides, simulation of the rotary draw bending of HSS tube with rectangular section by ABAQUS are carried out and compared to the experiment. The results by simulation agree well with the experiment and show that the cross-section is approximately trapezoidal after distortion; the maximum of distortion exists at 45 ∼ 60° of the bending direction; and the absolute and relative distortion values increase with the decreasing of tube thickness or bending radius. Therefore, the results can provide a reference for the design of geometric parameters of HSS tube with rectangular section in rotary draw bending.

  7. Computational analysis of electrokinetically driven flow mixing in microchannels with patterned blocks

    NASA Astrophysics Data System (ADS)

    Chang, C.-C.; Yang, R.-J.

    2004-04-01

    Electroosmotic flow in microchannels is restricted to low Reynolds number regimes characterized by extremely weak inertia forces and laminar flow. Consequently, the mixing of different species occurs primarily through diffusion, and hence cannot readily be achieved within a short mixing channel. The current study presents a numerical investigation of electrokinetically driven flow mixing in microchannels with various numbers of incorporated patterned rectangular blocks. Furthermore, a novel approach is introduced which patterns heterogeneous surfaces on the upper faces of these rectangular blocks in order to enhance species mixing. The simulation results confirm that the introduction of rectangular blocks within the mixing channel slightly enhances species mixing by constricting the bulk flow, hence creating a stronger diffusion effect. However, it is noted that a large number of blocks and hence a long mixing channel are required if a complete mixing of the species is to be obtained. The results also indicate that patterning heterogeneous upper surfaces on the rectangular blocks is an effective means of enhancing the species mixing. It is shown that increasing the magnitude of the heterogeneous surface zeta potential enables a reduction in the mixing channel length and an improved degree of mixing efficiency.

  8. Numerical analysis of installation damage of a pre-damaged geogrid with rectangular apertures

    NASA Astrophysics Data System (ADS)

    Dong, Yan-li; Guo, Hui-juan; Han, Jie; Zhang, Jun

    2018-06-01

    The geogrid can be damaged in the process or during construction if sufficient care is not exercised. In this study, the numerical software-FLAC was adopted to investigate the responses of pre-damaged geogrids with rectangular apertures when subjected to a uniaxial tensile load at different directions relative to the orientations of ribs in air. To simulate the combined loss of ribs and junction strength, specimens were pre-damaged by reducing certain amount of stiffness of the geogrid ribs. The geogrid ribs were modeled using beam elements jointed rigidly at nodes and subjected to tension in one direction. The numerical study demonstrated that the pre-damaged geogrid with rectangular apertures had similar responses when it was subjected to tension at the loading directions. The pre-damaged geogrids under 30° tension are the most sensitivity to the damage. With the increase of the degree of damage, the tensile strengths decreased relative quickly. An increase of the degree of installation damage of ribs decreased the tensile strength/stiffness of the geogrid with rectangular apertures. A higher reduction factor RFID due to installation damage is suggested when the geogrid is subjected to 30° tension relative to the orientation of ribs.

  9. Study of thermal and hydraulic efficiency of supersonic tube of temperature stratification

    NASA Astrophysics Data System (ADS)

    Tsynaeva, Anna A.; Nikitin, Maxim N.; Tsynaeva, Ekaterina A.

    2017-10-01

    Efficiency of supersonic pipe for temperature stratification with finned subsonic surface of heat transfer is the major of this paper. Thermal and hydraulic analyses of this pipe were conducted to asses effects from installation of longitudinal rectangular and parabolic fins as well as studs of cylindrical, rectangular and parabolic profiles. The analysis was performed based on refined empirical equations of similarity, dedicated to heat transfer of high-speed gas flow with plain wall, and Kármán equation with Nikuradze constants. Results revealed cylindrical studs (with height-to-diameter ratio of 5:1) to be 1.5 times more efficient than rectangular fins of the same height. At the same time rectangular fins (with height-to-thickness ratio of 5:1) were tend to enhance heat transfer rate up to 2.67 times compared to bare walls from subsonic side of the pipe. Longitudinal parabolic fins have minuscule effect on combined efficiency of considered pipe since extra head losses void any gain of heat transfer. Obtained results provide perspective of increasing efficiency of supersonic tube for temperature stratification. This significantly broadens device applicability in thermostatting systems for equipment, cooling systems for energy converting machinery, turbine blades and aerotechnics.

  10. Acoustic Measurements of Rectangular Nozzles with Bevel

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2012-01-01

    A series of convergent rectangular nozzles of aspect ratios 2:1, 4:1, and 8:1 were constructed with uniform exit velocity profiles. Additional nozzles were constructed that extended the wide lip on one side of these nozzles to form beveled nozzles. Far-field acoustic measurements were made and analyzed, and the results presented. The impact of aspect ratio on jet noise was similar to that of enhanced mixing devices: reduction in aft, peak frequency noise with an increase in broadside, high frequency noise. Azimuthally, it was found that rectangular jets produced more noise directed away from their wide sides than from their narrow sides. The azimuthal dependence decreased at aft angles where noise decreased. The effect of temperature, keeping acoustic Mach number constant, was minimal. Since most installations would have the observer on the wide size of the nozzle, the increased high frequency noise has a deleterious impact on the observer. Extending one wide side of the rectangular nozzle, evocative of an aft deck in an installed propulsion system, increased the noise of the jet with increasing length. The impact of both aspect ratio and bevel length were relatively well behaved, allowing a simple bilinear model to be constructed relative to a simple round jet.

  11. Miniaturized printed K shaped monopole antenna with truncated ground plane for 2.4/5.2/5.5/5.8 wireless lan applications

    NASA Astrophysics Data System (ADS)

    Chandan, Bharti, Gagandeep; Srivastava, Toolika; Rai, B. S.

    2018-04-01

    A novel truncated ground plane monopole antenna is proposed for wide band wireless local area network (WLAN) applications. The antenna contains a rectangular patch with a rectangular ring, a circular slot and a truncated ground plane printed on opposite sides of a low cost substrate FR4. The operating frequency bands for the antenna are band1 (2.4-2.88 GHz) and band 2 (4.8-6.3 GHz) with ≤ - 10 dB return loss which covers 2.4/5.2/5.5/5.8 GHz WLAN bands. The antenna is compact with overall dimension 26×40×0.8 mmł and with the dimension of patch 16×16×0.8 mm3. The two bands of antenna is obtained by cutting a rectangular ring and a circular slot in the patch and return loss is improved by cutting two rectangular slot in the ground plane. Performance measures of the antenna are shown in terms of return loss, current distribution, radiation pattern and gain. To verify the simulated results, the antenna is also fabricated and tested. The simulated and fabricated results have been found in good agreement.

  12. Design Guideline for New Generation of High-Temperature Guarded Hot Plate

    NASA Astrophysics Data System (ADS)

    Wu, J.; Hameury, J.; Failleau, G.; Blahut, A.; Vachova, T.; Strnad, R.; Krause, M.; Rafeld, E.; Hammerschmidt, U.

    2018-02-01

    This paper complements the existing measurement standards and literature for high-temperature guarded hot plates (HTGHPs) by addressing specific issues relating to thermal conductivity measurement of technical insulation at high temperatures. The examples given are focused on the designs of HTGHPs for measuring thin thermal insulation. The sensitivity studies have been carried out on major influencing factors that affect the thermal conductivity measurements using HTGHPs, e.g., the uncertainty of temperature measurements, plate flatness and center-guard gap design and imbalance. A new configuration of center-guard gap with triangular shape cross section has been optimized to obtain the same thermal resistance as a 2 mm wide gap with rectangular shape cross section that has been used in the HTGHPs at NPL and LNE. Recommendations have been made on the selections of heater plate materials, high-temperature high-emissivity coatings and miniature temperature sensors. For the first time, thermal stress analysis method has been applied to the field of HTGHPs, in order to estimate the effect of differential thermal expansion on the flatness of thin rigid specimens during thermal conductivity tests in a GHP.

  13. Two-dimensional aerodynamic characteristics of several polygon-shaped cross-sectional models applicable to helicopter fuselages

    NASA Technical Reports Server (NTRS)

    Kelley, Henry L.; Crowell, Cynthia A.; Wilson, John C.

    1992-01-01

    A wind-tunnel investigation was conducted to determine 2-D aerodynamic characteristics of nine polygon-shaped models applicable to helicopter fuselages. The models varied from 1/2 to 1/5 scale and were nominally triangular, diamond, and rectangular in shape. Side force and normal force were obtained at increments of angle of flow incidence from -45 to 90 degrees. The data were compared with results from a baseline UH-60 tail-boom cross-section model. The results indicate that the overall shapes of the plots of normal force and side force were similar to the characteristic shape of the baseline data; however, there were important differences in magnitude. At a flow incidence of 0 degrees, larger values of normal force for the polygon models indicate an increase in fuselage down load of 1 to 2.5 percent of main-rotor thrust compared with the baseline value. Also, potential was indicated among some of the configurations to produce high fuselage side forces and yawing moments compared with the baseline model.

  14. Apparatus for and method of correcting for astigmatism in a light beam reflected off of a light reflecting surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawicki, R.H.; Sweatt, W.

    1987-03-03

    An apparatus is described for correcting for astigmatism in a light beam reflected off of a light reflecting surface, comprising: (a) a first means defining a flat, rectangular light reflecting surface which is resiliently bendable, to a limited extent, into different concave and/or convex cylindrical curvatures about a particular axis. The first means is configured so that the light reflecting surface can be adjustably bent into the selected cylindrical curvature by applying a particular bending moment to the first means with respect to the surface, depending upon the curvature desired. The first means includes an integrally formed body member havingmore » a main plate-like segment including a front fact defining the light reflecting surface and a pair of spaced-apart flange segments extending rearwardly of the main segment; and (b) second means acting on the first means for adjustably bending the light reflecting surface into a particular selected one of the different cylindrical curvatures, depending upon the astigmatism to be corrected for.« less

  15. A New Forced Oscillation Capability for the Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Cleckner, Craig S.

    2002-01-01

    A new forced oscillation system has been installed and tested at NASA Langley Research Center's Transonic Dynamics Tunnel (TDT). The system is known as the Oscillating Turntable (OTT) and has been designed for the purpose of oscillating, large semispan models in pitch at frequencies up to 40 Hz to acquire high-quality unsteady pressure and loads data. Precisely controlled motions of a wind-tunnel model on the OTT can yield unsteady aerodynamic phenomena associated with flutter, limit cycle oscillations, shock dynamics, and non-linear aerodynamic effects on many vehicle configurations. This paper will discuss general design and components of the OTT and will present test data from performance testing and from research tests on two rigid semispan wind-tunnel models. The research tests were designed to challenge the OTT over a wide range of operating conditions while acquiring unsteady pressure data on a small rectangular supercritical wing and a large supersonic transport wing. These results will be presented to illustrate the performance capabilities, consistency of oscillations, and usefulness of the OTT as a research tool.

  16. Buckling analysis of stiff thin films suspended on a substrate with tripod surface relief structure

    NASA Astrophysics Data System (ADS)

    Yu, Qingmin; Chen, Furong; Li, Ming; Cheng, Huanyu

    2017-09-01

    A wavy configuration is a simple yet powerful structural design strategy, which has been widely used in flexible and stretchable electronics. A buckled structure created from a prestretch-contact-release process represents an early effort. Substrates with engineered surface relief structures (e.g., rectangular islands or tripod structure) have enabled stretchability to the devices without sacrificing their electric performance (e.g., high areal coverage for LEDs/photovoltaics/batteries/supercapacitors). In particular, the substrate with a tripod surface relief structure allows wrinkled devices to be suspended on a soft tripod substrate. This minimizes the contact area between devices and the deformed substrate, which contributes to a significantly reduced interfacial stress/strain. To uncover the underlying mechanism of such a design, we exploit the energy method to analytically investigate the buckling and postbuckling behaviors of stiff films suspended on a stretchable polymeric substrate with a tripod surface relief structure. Validated by finite element analysis, the predications from such an analytical study elucidate the deformed profile and maximum strain in the buckled and postbuckled stiff thin device films, providing a useful toolkit for future experimental designs.

  17. Jet-Surface Interaction Noise from High-Aspect Ratio Nozzles: Test Summary

    NASA Technical Reports Server (NTRS)

    Brown, Clifford; Podboy, Gary

    2017-01-01

    Noise and flow data have been acquired for a 16:1 aspect ratio rectangular nozzle exhausting near a simple surface at the NASA Glenn Research Center as part of an ongoing effort to understand, model, and predict the noise produced by current and future concept aircraft employing a tightly integrated engine airframe designs. The particular concept under consideration in this experiment is a blended-wing-body airframe powered by a series of electric fans exhausting through slot nozzle over an aft deck. The exhaust Mach number and surface length were parametrically varied during the test. Far-field noise data were acquired for all nozzle surface geometries and exhaust flow conditions. Phased-array noise source localization data and in-flow pressure data were also acquired for a subset of the isolated (no surface) and surface configurations; these measurements provide data that have proven useful for modeling the jet-surface interaction noise source and the surface effect on the jet-mixing noise in round jets. A summary of the nozzle surface geometry, flow conditions tested, and data collected are presented.

  18. Strain evaluation of strengthened concrete structures using FBG sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau Kintak; Zhou Limin; Ye Lin

    1999-12-02

    Fibre-optic Bragg Grating (FBG) sensor presents a great deal of potential in monitoring the internal status of the concrete structures after repairing or strengthening by an external adhered reinforcement. It can be used in a variety of configurations ranging from pointwise to multi-point strain measurement in order to investigate the strain distribution of the structures. In this paper, an experimental investigation on the rectangular notched-concrete beam, which was strengthened by glass fibre composites with the embedment of multiplexing FBG sensors is presented. Three point bending test was performed to investigate the strain profile of the specimen. Frequency modulated continuous wavemore » (FMCW) technique was used to measure the strain variation of the fibre-grating regions. The results give a good agreement with the electrical resistance strain gauge in early loading condition. The difference of the strain-measuring results between the strain-gauge and FBG sensor was increased when further increasing the applied load. It was suspected that the micro/marco cracks occurred on the concrete surface and that the externally bonded strain-measuring device cannot be detected.« less

  19. Lightning Simulation and Design Program (LSDP)

    NASA Astrophysics Data System (ADS)

    Smith, D. A.

    This computer program simulates a user-defined lighting configuration. It has been developed as a tool to aid in the design of exterior lighting systems. Although this program is used primarily for perimeter security lighting design, it has potential use for any application where the light can be approximated by a point source. A data base of luminaire photometric information is maintained for use with this program. The user defines the surface area to be illuminated with a rectangular grid and specifies luminaire positions. Illumination values are calculated for regularly spaced points in that area and isolux contour plots are generated. The numerical and graphical output for a particular site mode are then available for analysis. The amount of time spent on point-to-point illumination computation with this progress is much less than that required for tedious hand calculations. The ease with which various parameters can be interactively modified with the progress also reduces the time and labor expended. Consequently, the feasibility of design ideas can be examined, modified, and retested more thoroughly, and overall design costs can be substantially lessened by using this progress as an adjunct to the design process.

  20. Two-dimensional noncontact transportation of small objects in air using flexural vibration of a plate.

    PubMed

    Kashima, Ryota; Koyama, Daisuke; Matsukawa, Mami

    2015-12-01

    This paper investigates a two-dimensional ultrasonic manipulation technique for small objects in air. The ultrasonic levitation system consists of a rectangular vibrating plate with four ultrasonic transducers and a reflector. The configuration of the vibrator, the resonant frequency, and the positions of the four transducers with step horns were determined from finite element analysis such that an intense acoustic standing-wave field could be generated between the plates. A lattice flexural vibration mode with a wavelength of 28.3 mm was excited on the prototype plate at 24.6 kHz. Small objects could get trapped in air along the horizontal nodal plane of the standing wave. By controlling the driving phase difference between the transducers, trapped objects could be transported without contact in a two-dimensional plane. When the phase difference was changed from 0° to 720°, the distance moved by a small particle in the orthogonal direction was approximately 29 mm, which corresponds with the wavelength of the flexural vibration on the vibrating plate.

  1. Providing pressure inputs to multizone building models

    DOE PAGES

    Herring, Steven J.; Batchelor, Simon; Bieringer, Paul E.; ...

    2016-02-13

    A study to assess how the fidelity of wind pressure inputs and indoor model complexity affect the predicted air change rate for a study building is presented. The purpose of the work is to support the development of a combined indoor-outdoor hazard prediction tool, which links the CONTAM multizone building simulation tool with outdoor dispersion models. The study building, representing a large office block of a simple rectangular geometry under natural ventilation, was based on a real building used in the Joint Urban 2003 experiment. A total of 1600 indoor model flow simulations were made, driven by 100 meteorological conditionsmore » which provided a wide range of building surface pressures. These pressures were applied at four levels of resolution to four different building configurations with varying numbers of internal zones and indoor and outdoor flow paths. Analysis of the results suggests that surface pressures and flow paths across the envelope should be specified at a resolution consistent with the dimensions of the smallest volume of interest, to ensure that appropriate outputs are obtained.« less

  2. Mobile Bay, Alabama area seen in Skylab 4 Earth Resources Experiment Package

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A near vertical view of the Mobile Bay, Alabama area seen in this Skylab 4 Earth Resources Experiment Package S190-B (five-inch earth terrain camera) photograph taken from the Skylab space station in earth orbit. North of Mobile the Tombigbee and Alabama Rivers join to form the Mobile River. Detailed configuration of the individual stream channels and boundaries can be defined as the Mobile River flows into Mobile Bay and into the Gulf of Mexico. The Mobile River Valley with its numerous stream channels is a distinct light shade in contrast to the dark green shade of the adjacent areas. The red coloration of Mobile Bay reflects the sediment load carried into the bay by the rivers. The westerly movement of the shore currents at the mouth of Mobile Bay is shown by the contrasting light blue of the sediment-laden current the the blue of the Gulf. Agricultural areas east and west of Mobile Bay are characterized by a rectangular pattern in green to white shades. Color variations may reflect

  3. Charts relating the compressive buckling stress of longitudinally supported plates to the effective deflectional and rotational stiffness of the supports

    NASA Technical Reports Server (NTRS)

    Anderson, Roger A; Semonian, Joseph W

    1954-01-01

    A stability analysis is made of a long flat rectangular plate subjected to a uniform longitudinal compressive stress and supported along its longitudinal edges and along one or more longitudinal lines by elastic line supports. The elastic supports possess deflectional and rotational stiffness. Such configuration is an idealization of the compression cover skin and internal structure of a wing and tail surfaces. The results of the analysis are presented in the form of charts in which the buckling-stress coefficient is plotted against the buckle length of the plate for a wide range of support stiffnesses. The charts make possible the determination of the compressive buckling stress of plates supported by members whose stiffness may or may not be defined by elementary beam bending and twisting theory but yet whose effective restraint is amenable to evaluation. The deflectional and rotational stiffness provided by longitudinal stiffeners and full-depth webs is discussed and numerical examples are given to illustrate the application of the charts to the design of wing structures.

  4. Chincup treatment modifies the mandibular shape in children with prognathism.

    PubMed

    Alarcón, José Antonio; Bastir, Markus; Rosas, Antonio; Molero, Julia

    2011-07-01

    Although chincups are the preferred treatment for growing children with mandibular prognathism, the mechanism by which chincups improve this condition remains unclear. The aim of this study was to use geometric morphometrics to evaluate changes in the shape of the mandible of prognathic children treated with a chincup. Geometric morphometrics were used to evaluate the short-term mandibular shape changes in 50 prognathic children treated with chincups compared with 40 untreated matched controls. Twenty-one 2-dimensional mandibular landmarks from cephalograms taken before and after 36 months of treatment or observation were analyzed by Procrustes superimposition and thin plate spline. Permutation tests of the treated patients showed highly significant differences in the mandibular shapes before and after treatment, and compared with the control group after the observation period. The thin plate spline grid deformations indicated more rectangular mandibular configuration, forward condyle orientation, condyle neck compression, gonial area compression, and symphysis narrowing. Early chincup treatment widely modifies the mandibular shape of prognathic children to improve Class III malocclusion. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  5. Effect of Fin Passage Length on Optimization of Cylinder Head Cooling Fins

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Graham, R. W.

    1977-01-01

    The heat transfer performance of baffled cooling fins on cylinder heads of small, air-cooled, general-aviation aircraft engines was analyzed to determine the potential for improving cooling fin design. Flow baffles were assumed to be installed tightly against the fin end edges, an ideal baffle configuration for guiding all flow between the fins. A rectangular flow passage is thereby formed between each set of two adjacent fins, the fin base surface, and the baffle. These passages extend around each side of the cylinder head, and the cooling air absorbs heat as it flows within them. For each flow passage length, the analysis was concerned with optimizing fin spacing and thickness to achieve the best heat transfer for each fin width. Previous literature has been concerned mainly with maximizing the local fin conductance and has not considered the heating of the gas in the flow direction, which leads to higher wall temperatures at the fin passage exits. If the fins are close together, there is a large surface area, but the airflow is restricted.

  6. Cross-guide Moreno directional coupler in empty substrate integrated waveguide

    NASA Astrophysics Data System (ADS)

    Miralles, E.; Belenguer, A.; Esteban, H.; Boria, V.

    2017-05-01

    Substrate integrated waveguides (SIWs) combine the advantages of rectangular waveguides (low losses) and planar circuits (low cost and low profile). Empty substrate integrated waveguide (ESIW) has been proposed as a novel configuration in SIWs recently. This technology significantly reduces the losses of conventional SIW by removing its inner dielectric. The cross-guide directional coupler is a well-known low-profile design for having a broadband waveguide coupler. In this paper a cross-guide coupler with ESIW technique is proposed. In such a manner, the device can be integrated with microwave circuits and other printed circuit board components. It is the first time that a cross-guide coupler is implemented in ESIW technology. The designed, fabricated, and measured device presents good results as a matter of insertion loss of 1 dB (including transitions), reflection under 20 dB, coupling between 19.5 and 21.5 dB, and directivity higher than 15 dB over targeted frequency range from 12.4 GHz to 18 GHz. The coupler implemented in ESIW improves the directivity when compared to similar solutions in other empty substrate integrated waveguide solutions.

  7. CFD analysis on control of secondary losses in STME LOX turbines with endwall fences

    NASA Technical Reports Server (NTRS)

    Chyu, Mingking K.

    1992-01-01

    The rotor blade in the newly designed LOX turbine for the future Space Transportation Main Engine (STME) has a severe flow turning angle, nearly 160 degrees. The estimated secondary loss in the rotor alone accounts for nearly 50 percent of the total loss over the entire stage. To reduce such a loss, one of the potential methods is to use fences attached on the turbine endwall (hub). As a prelude to examining the effects of endwall fence with actual STME turbine configuration, the present study focuses on similar issues with a different, but more generic, geometry - a rectangular duct with a 160-degree bend. The duct cross-section has a 2-to-1 aspect ratio and the radii of curvature for the inner and outer wall are 0.25 and 1.25 times the duct width, respectively. The present emphasis lies in examining the effects of various fence-length extending along the streamwise direction. The flowfield is numerically simulated using the FDNS code developed earlier by Wang and Chen. The FDNS code is a pressure based, finite-difference, Navier-Stokes equations solver.

  8. Large dynamic range pressure sensor based on two semicircle-holes microstructured fiber.

    PubMed

    Liu, Zhengyong; Htein, Lin; Lee, Kang-Kuen; Lau, Kin-Tak; Tam, Hwa-Yaw

    2018-01-08

    This paper presents a sensitive and large dynamic range pressure sensor based on a novel birefringence microstructured optical fiber (MOF) deployed in a Sagnac interferometer configuration. The MOF has two large semicircle holes in the cladding and a rectangular strut with germanium-doped core in the center. The fiber structure permits surrounding pressure to induce large effective index difference between the two polarized modes. The calculated and measured group birefringence of the fiber are 1.49 × 10 -4 , 1.23 × 10 -4 , respectively, at the wavelength of 1550 nm. Experimental results shown that the pressure sensitivity of the sensor varied from 45,000 pm/MPa to 50,000 pm/MPa, and minimum detectable pressure of 80 Pa and dynamic range of better than 116 dB could be achieved with the novel fiber sensor. The proposed sensor could be used in harsh environment and is an ideal candidate for downhole applications where high pressure measurement at elevated temperature up to 250 °C is needed.

  9. Mathematical modeling of polymer flooding using the unstructured Voronoi grid

    NASA Astrophysics Data System (ADS)

    Kireev, T. F.; Bulgakova, G. T.; Khatmullin, I. F.

    2017-12-01

    Effective recovery of unconventional oil reserves necessitates development of enhanced oil recovery techniques such as polymer flooding. The study investigated the model of polymer flooding with effects of adsorption and water salinity. The model takes into account six components that include elements of the classic black oil model. These components are polymer, salt, water, dead oil, dry gas and dissolved gas. Solution of the problem is obtained by finite volume method on unstructured Voronoi grid using fully implicit scheme and the Newton’s method. To compare several different grid configurations numerical simulation of polymer flooding is performed. The oil rates obtained by a hexagonal locally refined Voronoi grid are shown to be more accurate than the oil rates obtained by a rectangular grid with the same number of cells. The latter effect is caused by high solution accuracy near the wells due to the local grid refinement. Minimization of the grid orientation effect caused by the hexagonal pattern is also demonstrated. However, in the inter-well regions with large Voronoi cells flood front tends to flatten and the water breakthrough moment is smoothed.

  10. Why square lattices are not seen on curved ionic membranes

    NASA Astrophysics Data System (ADS)

    Thomas, Creighton; Olvera de La Cruz, Monica

    2013-03-01

    Ionic crystalline membranes on curved surfaces are ubiquitous in nature, appearing for example on the membranes of halophilic organisms. Even when these membranes buckle into polyhedra with square or rectangular sides, the crystalline structure is seen to have hexagonal symmetry. Here, we theoretically and numerically investigate the effects of curvature on square lattices. Our model system consists of both positive and negative ions with a 1:1 charge ratio adsorbed onto the surface of a sphere. In flat space, the lowest-energy configuration of this system can be a square lattice. This bipartite arrangement is favored because there are two types of ions. It leads to a fundamentally different defect structure than what has been seen when triangular lattices are favored. We classify these defects and find that curvature disrupts long-range square symmetry in a crystal. Through numerical simulations, we see that small square regions are possible in some cases, but this phase coexists with other structures, limiting the scale of these square-lattice microstructures. Thus, at large length scales, curvature leads to triangular structures.

  11. Effect of back-pressure forcing on shock train structures in rectangular channels

    NASA Astrophysics Data System (ADS)

    Gnani, F.; Zare-Behtash, H.; White, C.; Kontis, K.

    2018-04-01

    The deceleration of a supersonic flow to the subsonic regime inside a high-speed engine occurs through a series of shock waves, known as a shock train. The generation of such a flow structure is due to the interaction between the shock waves and the boundary layer inside a long and narrow duct. The understanding of the physics governing the shock train is vital for the improvement of the design of high-speed engines and the development of flow control strategies. The present paper analyses the sensitivity of the shock train configuration to a back-pressure variation. The complex characteristics of the shock train at an inflow Mach number M = 2 in a channel of constant height are investigated with two-dimensional RANS equations closed by the Wilcox k-ω turbulence model. Under a sinusoidal back-pressure variation, the simulated results indicate that the shock train executes a motion around its mean position that deviates from a perfect sinusoidal profile with variation in oscillation amplitude, frequency, and whether the pressure is first increased or decreased.

  12. Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping

    NASA Astrophysics Data System (ADS)

    Dimitriadis, Panayiotis; Tegos, Aristoteles; Oikonomou, Athanasios; Pagana, Vassiliki; Koukouvinos, Antonios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2016-03-01

    One-dimensional and quasi-two-dimensional hydraulic freeware models (HEC-RAS, LISFLOOD-FP and FLO-2d) are widely used for flood inundation mapping. These models are tested on a benchmark test with a mixed rectangular-triangular channel cross section. Using a Monte-Carlo approach, we employ extended sensitivity analysis by simultaneously varying the input discharge, longitudinal and lateral gradients and roughness coefficients, as well as the grid cell size. Based on statistical analysis of three output variables of interest, i.e. water depths at the inflow and outflow locations and total flood volume, we investigate the uncertainty enclosed in different model configurations and flow conditions, without the influence of errors and other assumptions on topography, channel geometry and boundary conditions. Moreover, we estimate the uncertainty associated to each input variable and we compare it to the overall one. The outcomes of the benchmark analysis are further highlighted by applying the three models to real-world flood propagation problems, in the context of two challenging case studies in Greece.

  13. Design and implementation of low profile antenna for dual-band applications using rotated e-shaped conductor-backed plane.

    PubMed

    Jalali, Mahdi; Sedghi, Tohid; Shafei, Shahin

    2014-01-01

    A novel configuration of a printed monopole antenna with a very compact size for satisfying WLAN operations at the 5.2/5.8 GHz and also for X-band operations at the 10 GHz has been proposed. The antenna includes a simple square-shaped patch as the radiator, the rotated U-shaped conductor back plane element with embedded strip on it, and the partial rectangular ground surface. By using the rotated U-shaped conductor-backed plane with proper values, good impedance matching and improvement in bandwidth can be achieved, at the lower and upper bands. The impedance bandwidth for S11 < -10 dB is about 1.15 GHz for 5 GHz band and 5.3 GHz for X-band. The measured peak gains are about 1.9 dBi at WLAN-band and 4.2 dBi at X-band. The experimental results represent that the realized antenna with good omnidirectional radiation characteristics, enough impedance bandwidth, and reasonable gains can be appropriate for various applications of the future developed technologies and handheld devices.

  14. Meta-tips for lab-on-fiber optrodes

    NASA Astrophysics Data System (ADS)

    Principe, M.; Consales, M.; Micco, A.; Crescitelli, A.; Castaldi, G.; Esposito, E.; La Ferrara, V.; Cutolo, A.; Galdi, V.; Cusano, A.

    2016-05-01

    We realize the first optical-fiber "meta-tip" that integrates a metasurface on the tip of an optical fiber. In our proposed configuration a Babinet-inverted plasmonic metasurface is fabricated by patterning (via focused-ion-beam) an array of rectangular aperture nanoantennas in a thin gold film. Via spatial modulation of the nanoantennas size, we properly tune their resonances so as to impress abrupt arbitrary phase variations in the transmitted field wavefront. As a proof-of-principle, we fabricate and characterize several prototypes implementing in the near-infrared the beam-steering with various angles. We also explore the limit case where surface waves are excited, and its capability to work as refractive index sensors. Notably, its sensitivity overwhelms that of the corresponding gradient-free plasmonic array, thus paving the way to the use of metasurfaces for label-free chemical and biological sensing. Our experimental results, in fairly good agreement with numerical predictions, demonstrate the practical feasibility of the meta-tip concept, and set the stage for the integration of metasurfaces, and their exceptional capabilities to manipulate light, in fiber-optics technological platforms, within the emerging "lab-on-fiber" paradigm.

  15. Long baseline planar superconducting gradiometer for biomagnetic imaging

    NASA Astrophysics Data System (ADS)

    Granata, C.; Vettoliere, A.; Nappi, C.; Lisitskiy, M.; Russo, M.

    2009-07-01

    A niobium based dc-superconducting quantum interference device (SQUID) planar gradiometer with a long baseline (50 mm) for biomagnetic applications has been developed. The pickup antenna consists of two integrated rectangular coils connected in series and magnetically coupled to a dc-SQUID in a double parallel washer configuration by two series multiturn input coils. Due to a high intrinsic responsivity, the sensors have shown at T =4.2 K a white magnetic flux noise spectral density as low as 3 μΦ0/Hz1/2. The spectral density of the magnetic field noise referred to one sensing coil, is 3.0 fT/Hz1/2 resulting in a gradient spectral noise of 0.6 fT/(cm Hz1/2). In order to verify the effectiveness of such sensors for biomagnetic applications, the magnetic response to a current dipole has been calculated and the results have been compared with those of an analogous axial gradiometer. The results show that there is no significant difference. Due to their high intrinsic balance and good performances, planar gradiometers may be the elective sensors for biomagnetic application in a soft shielded environment.

  16. Integration of Propulsion-Airframe-Aeroacoustic Technologies and Design Concepts for a Quiet Blended-Wing-Body Transport

    NASA Technical Reports Server (NTRS)

    Hill, G. A.; Brown, S. A.; Geiselhart, K. A.

    2004-01-01

    This paper summarizes the results of studies undertaken to investigate revolutionary propulsion-airframe configurations that have the potential to achieve significant noise reductions over present-day commercial transport aircraft. Using a 300 passenger Blended-Wing-Body (BWB) as a baseline, several alternative low-noise propulsion-airframe-aeroacoustic (PAA) technologies and design concepts were investigated both for their potential to reduce the overall BWB noise levels, and for their impact on the weight, performance, and cost of the vehicle. Two evaluation frameworks were implemented for the assessments. The first was a Multi-Attribute Decision Making (MADM) process that used a Pugh Evaluation Matrix coupled with the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). This process provided a qualitative evaluation of the PAA technologies and design concepts and ranked them based on how well they satisfied chosen design requirements. From the results of the evaluation, it was observed that almost all of the PAA concepts gave the BWB a noise benefit, but degraded its performance. The second evaluation framework involved both deterministic and probabilistic systems analyses that were performed on a down-selected number of BWB propulsion configurations incorporating the PAA technologies and design concepts. These configurations included embedded engines with Boundary Layer Ingesting Inlets, Distributed Exhaust Nozzles installed on podded engines, a High Aspect Ratio Rectangular Nozzle, Distributed Propulsion, and a fixed and retractable aft airframe extension. The systems analyses focused on the BWB performance impacts of each concept using the mission range as a measure of merit. Noise effects were also investigated when enough information was available for a tractable analysis. Some tentative conclusions were drawn from the results. One was that the Boundary Layer Ingesting Inlets provided improvements to the BWB's mission range, by increasing the propulsive efficiency at cruise, and therefore offered a means to offset performance penalties imposed by some of the advanced PAA configurations. It was also found that the podded Distributed Exhaust Nozzle configuration imposed high penalties on the mission range and the need for substantial synergistic performance enhancements from an advanced integration scheme was identified. The High Aspect Ratio Nozzle showed inconclusive noise results and posed significant integration difficulties. Distributed Propulsion, in general, imposed performance penalties but may offer some promise for noise reduction from jet-to-jet shielding effects. Finally, a retractable aft airframe extension provided excellent noise reduction for a modest decrease in range.

  17. Characterizing octagonal and rectangular fibers for MAROON-X

    NASA Astrophysics Data System (ADS)

    Sutherland, Adam P.; Stuermer, Julian; Miller, Katrina R.; Seifahrt, Andreas; Bean, Jacob L.

    2016-07-01

    We report on the scrambling performance and focal-ratio-degradation (FRD) of various octagonal and rectangular fibers considered for MAROON-X. Our measurements demonstrate the detrimental effect of thin claddings on the FRD of octagonal and rectangular fibers and that stress induced at the connectors can further increase the FRD. We find that fibers with a thick, round cladding show low FRD. We further demonstrate that the scrambling behavior of non-circular fibers is often complex and introduce a new metric to fully capture non-linear scrambling performance, leading to much lower scrambling gain values than are typically reported in the literature (<=1000 compared to 10,000 or more). We find that scrambling gain measurements for small-core, non-circular fibers are often speckle dominated if the fiber is not agitated.

  18. Control of electromagnetic edge effects in electrically-small rectangular plasma reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trampel, Christopher P.; Stieler, Daniel S.; PowerFilm, Inc., 2337 230th Street, Ames, Iowa 50014

    Electromagnetic fields supported by rectangular reactors for plasma enhanced chemical vapor deposition are studied theoretically. Expressions for the fields in an electrically-small rectangular reactor with plasma in the chamber are derived. Modal field decompositions are employed under the homogeneous plasma slab approximation. The amplitude of each mode is determined analytically. It is shown that the field can be represented by the standing wave, evanescent waves tied to the edges, and an evanescent wave tied to the corners of the reactor. The impact of boundary conditions at the plasma edge on nonuniformity is quantified. Uniformity may be improved by placing amore » lossy magnetic layer on the reactor sidewalls. It is demonstrated that nonuniformity is a decreasing function of layer thickness.« less

  19. Rising dynamics of a bubble confined in vertical cells with rectangular cross-sections

    NASA Astrophysics Data System (ADS)

    Murano, Mayuko; Okumura, Ko

    2017-11-01

    Recently, the drag friction acting on a fluid drop in confined space has been actively studied. Here, we investigate the rising velocity of a bubble in a vertical cell with a rectangular cross-section, both theoretically and experimentally, in which understanding of the drag force acting on the rising bubble is crucial. Although the drag force in such confined space could involve several regimes, we study a special case in which the bubble is long and the aspect-ratio of the rectangular cross-section of the cell is high. As a result, we found new scaling law for the rising velocity and the drag force, and confirmed the laws experimentally. Crossover to the rising dynamics in a Hele-Shaw cell will be also discussed.

  20. Purification, crystallization and preliminary crystallographic analysis of a 6-pyruvoyltetrahydropterin synthase homologue from Esherichia coli.

    PubMed

    Seo, Kyung Hye; Supangat; Kim, Hye Lim; Park, Young Shik; Jeon, Che Ok; Lee, Kon Ho

    2008-02-01

    6-Pyruvoyltetrahydropterin synthase from E. coli (ePTPS) has been crystallized using the hanging-drop vapour-diffusion method. Hexagonal- and rectangular-shaped crystals were obtained. Diffraction data were collected from the hexagonal and rectangular crystals to 3.0 and 2.3 A resolution, respectively. The hexagonal plate-shaped crystals belonged to space group P321, with unit-cell parameters a = b = 112.59, c = 68.82 A , and contained two molecules in the asymmetric unit. The rectangular crystals belonged to space group I222, with unit-cell parameters a = 112.76, b = 117.66, c = 153.57 A , and contained six molecules in the asymmetric unit. The structure of ePTPS in both crystal forms has been determined by molecular replacement.

  1. Purification, crystallization and preliminary crystallographic analysis of a 6-pyruvoyltetrahydropterin synthase homologue from Esherichia coli

    PubMed Central

    Seo, Kyung Hye; Supangat; Kim, Hye Lim; Park, Young Shik; Jeon, Che Ok; Lee, Kon Ho

    2008-01-01

    6-Pyruvoyltetrahydropterin synthase from E. coli (ePTPS) has been crystallized using the hanging-drop vapour-diffusion method. Hexagonal- and rectangular-shaped crystals were obtained. Diffraction data were collected from the hexagonal and rectangular crystals to 3.0 and 2.3 Å resolution, respectively. The hexagonal plate-shaped crystals belonged to space group P321, with unit-cell parameters a = b = 112.59, c = 68.82 Å, and contained two molecules in the asymmetric unit. The rectangular crystals belonged to space group I222, with unit-cell parameters a = 112.76, b = 117.66, c = 153.57 Å, and contained six molecules in the asymmetric unit. The structure of ePTPS in both crystal forms has been determined by molecular replacement. PMID:18271114

  2. Implementation of rectangular slit-inserted ultra-wideband tapered slot antenna.

    PubMed

    Kim, Sun-Woong; Choi, Dong-You

    2016-01-01

    In this paper, a tapered slot antenna capable of ultra-wideband communication was designed. In the proposed antenna, rectangular slits were inserted to enhance the bandwidth and reduce the area of the antenna. The rectangular slit-inserted tapered slot antenna operated at a bandwidth of 8.45 GHz, and the bandwidth improved upon the basic tapered slot antenna by 4.72 GHz. The radiation pattern of the antenna was suitable for location recognition in a certain direction owing to an appropriate 3 dB beam width. The antenna gain was analyzed within the proposed bandwidth, and the highest gain characteristic at 7.55 dBi was exhibited at a 5-GHz band. The simulation and measurement results of the proposed tapered slot antenna were similar.

  3. Acoustic plane waves incident on an oblique clamped panel in a rectangular duct

    NASA Technical Reports Server (NTRS)

    Unz, H.; Roskam, J.

    1980-01-01

    The theory of acoustic plane waves incident on an oblique clamped panel in a rectangular duct was developed from basic theoretical concepts. The coupling theory between the elastic vibrations of the panel (plate) and the oblique incident acoustic plane wave in infinite space was considered in detail, and was used for the oblique clamped panel in the rectangular duct. The partial differential equation which governs the vibrations of the clamped panel (plate) was modified by adding to it stiffness (spring) forces and damping forces. The Transmission Loss coefficient and the Noise Reduction coefficient for oblique incidence were defined and derived in detail. The resonance frequencies excited by the free vibrations of the oblique finite clamped panel (plate) were derived and calculated in detail for the present case.

  4. Rectangular illumination using a secondary optics with cylindrical lens for LED street light.

    PubMed

    Chen, Hsi-Chao; Lin, Jun-Yu; Chiu, Hsuan-Yi

    2013-02-11

    The illumination pattern of an LED street light is required to have a rectangular distribution at a divergence-angle ratio of 7:3 for economical illumination. Hence, research supplying a secondary optics with two cylindrical lenses was different from free-form curvature for rectangular illumination. The analytical solution for curvatures with different ratio rectangles solved this detail by light tracing and boundary conditions. Similarities between the experiments and the simulation for a single LED and a 9-LED module were analyzed by Normalized Cross Correlation (NCC), and the error rate was studied by the Root Mean Square (RMS). The tolerance of position must be kept under ± 0.2 mm in the x, y and z directions to ensure that the relative illumination is over 99%.

  5. Aeroelastic Studies of a Rectangular Wing with a Hole: Correlation of Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Conyers, Howard J.; Dowell, Earl H.; Hall, Kenneth C.

    2010-01-01

    Two rectangular wing models with a hole have been designed and tested in the Duke University wind tunnel to better understand the effects of damage. A rectangular hole is used to simulate damage. The wing with a hole is modeled structurally as a thin elastic plate using the finite element method. The unsteady aerodynamics of the plate-like wing with a hole is modeled using the doublet lattice method. The aeroelastic equations of motion are derived using Lagrange's equation. The flutter boundary is found using the V-g method. The hole's location effects the wing's mass, stiffness, aerodynamics and therefore the aeroelastic behavior. Linear theoretical models were shown to be capable of predicting the critical flutter velocity and frequency as verified by wind tunnel tests.

  6. Rectangular pulsed LD pumped saturable output coupler (SOC) Q-switched microchip laser

    NASA Astrophysics Data System (ADS)

    Wang, Yan-biao; Wang, Sha; Feng, Guo-ying; Zhou, Shou-huan

    2017-02-01

    We studied the cw LD and rectangular pulsed LD pumped saturable output coupler (SOC) passively Q-switched Nd:YVO4 transmission microchip laser experimentally. We demonstrated that the SOC passively Q-switched Nd:YVO4 transmission microchip laser pumped by a highly stabilized narrow bandwidth pulsed LD has a much lower timing jitter than pumped by a continuous wave (CW) LD, especially at low output frequency regime. By changing the pump beam size in the rectangular shape pulsed pump scheme, the output frequency can be achieved from 333.3 kHz to 71.4 kHz, while the relative timing jitter decreased from 0.09865% to 0.03115% accordingly. Additionally, the microchip laser has a good stability of output power, the power fluctuation below 2%.

  7. Intrinsic polarization control in rectangular GaN nanowire lasers

    DOE PAGES

    Li, Changyi; Liu, Sheng; Luk, Ting S.; ...

    2016-02-01

    In this study, we demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444kW/cm 2 and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent controlmore » over the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates.« less

  8. Slotted rectangular waveguide with dielectric sandwich structure inside

    NASA Astrophysics Data System (ADS)

    Abdullin, R. R.; Sokolov, R. I.

    2018-03-01

    This paper continues the series of works devoted to the investigation of leaky-wave antenna based on layered rectangular waveguide with periodic transverse slots in broad face. Previously developed wavenumber calculation technique has been adapted for analysis of slotted sandwich waveguide with three layers at least. The paper provides the numerical results of velocity factor dependencies for partially filled slotted rectangular waveguide containing a dielectric slab in the middle position inside or an air gap between two dielectric slabs. Additionally, dispersion properties are also considered for multilayer waveguide with linear laws combinations of thickness and permittivity. This allows recognizing the trends to develop new prospective antennas with complex patterns of tilt angle change. All numerical results obtained are confirmed with the in-situ measurements of transmission coefficient phase.

  9. A note on the application of the Prigogine theorem to rotation of tokamak-plasmas in absence of external torques.

    PubMed

    Sonnino, Giorgio; Cardinali, Alessandro; Sonnino, Alberto; Nardone, Pasquale; Steinbrecher, György; Zonca, Fulvio

    2014-03-01

    Rotation of tokamak-plasmas, not at the mechanical equilibrium, is investigated using the Prigogine thermodynamic theorem. This theorem establishes that, for systems confined in rectangular boxes, the global motion of the system with barycentric velocity does not contribute to dissipation. This result, suitably applied to toroidally confined plasmas, suggests that the global barycentric rotations of the plasma, in the toroidal and poloidal directions, are pure reversible processes. In case of negligible viscosity and by supposing the validity of the balance equation for the internal forces, we show that the plasma, even not in the mechanical equilibrium, may freely rotate in the toroidal direction with an angular frequency, which may be higher than the neoclassical estimation. In addition, its toroidal rotation may cause the plasma to rotate globally in the poloidal direction at a speed faster than the expression found by the neoclassical theory. The eventual configuration is attained when the toroidal and poloidal angular frequencies reaches the values that minimize dissipation. The physical interpretation able to explain the reason why some layers of plasma may freely rotate in one direction while, at the same time, others may freely rotate in the opposite direction, is also provided. Invariance properties, herein studied, suggest that the dynamic phase equation might be of the second order in time. We then conclude that a deep and exhaustive study of the invariance properties of the dynamical and thermodynamic equations is the most correct and appropriate way for understanding the triggering mechanism leading to intrinsic plasma-rotation in toroidal magnetic configurations.

  10. Application of Optimization Techniques to Design of Unconventional Rocket Nozzle Configurations

    NASA Technical Reports Server (NTRS)

    Follett, W.; Ketchum, A.; Darian, A.; Hsu, Y.

    1996-01-01

    Several current rocket engine concepts such as the bell-annular tri-propellant engine, and the linear aerospike being proposed for the X-33 require unconventional three dimensional rocket nozzles which must conform to rectangular or sector shaped envelopes to meet integration constraints. These types of nozzles exist outside the current experience database, therefore, the application of efficient design methods for these propulsion concepts is critical to the success of launch vehicle programs. The objective of this work is to optimize several different nozzle configurations, including two- and three-dimensional geometries. Methodology includes coupling computational fluid dynamic (CFD) analysis to genetic algorithms and Taguchi methods as well as implementation of a streamline tracing technique. Results of applications are shown for several geometeries including: three dimensional thruster nozzles with round or super elliptic throats and rectangualar exits, two- and three-dimensional thrusters installed within a bell nozzle, and three dimensional thrusters with round throats and sector shaped exits. Due to the novel designs considered for this study, there is little experience which can be used to guide the effort and limit the design space. With a nearly infinite parameter space to explore, simple parametric design studies cannot possibly search the entire design space within the time frame required to impact the design cycle. For this reason, robust and efficient optimization methods are required to explore and exploit the design space to achieve high performance engine designs. Five case studies which examine the application of various techniques in the engineering environment are presented in this paper.

  11. The role of transparency in da Vinci stereopsis.

    PubMed

    Zannoli, Marina; Mamassian, Pascal

    2011-10-15

    The majority of natural scenes contains zones that are visible to one eye only. Past studies have shown that these monocular regions can be seen at a precise depth even though there are no binocular disparities that uniquely constrain their locations in depth. In the so-called da Vinci stereopsis configuration, the monocular region is a vertical line placed next to a binocular rectangular occluder. The opacity of the occluder has been mentioned to be a necessary condition to obtain da Vinci stereopsis. However, this opacity constraint has never been empirically tested. In the present study, we tested whether da Vinci stereopsis and perceptual transparency can interact using a classical da Vinci configuration in which the opacity of the occluder varied. We used two different monocular objects: a line and a disk. We found no effect of the opacity of the occluder on the perceived depth of the monocular object. A careful analysis of the distribution of perceived depth revealed that the monocular object was perceived at a depth that increased with the distance between the object and the occluder. The analysis of the skewness of the distributions was not consistent with a double fusion explanation, favoring an implication of occlusion geometry in da Vinci stereopsis. A simple model that includes the geometry of the scene could account for the results. In summary, the mechanism responsible to locate monocular regions in depth is not sensitive to the material properties of objects, suggesting that da Vinci stereopsis is solved at relatively early stages of disparity processing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Coupled optical-thermal-fluid and structural analyses of novel light-trapping tubular panels for concentrating solar power receivers

    NASA Astrophysics Data System (ADS)

    Ortega, Jesus D.; Christian, Joshua M.; Yellowhair, Julius E.; Ho, Clifford K.

    2015-09-01

    Traditional tubular receivers used in concentrating solar power are formed using tubes connected to manifolds to form panels; which in turn are arranged in cylindrical or rectangular shapes. Previous and current tubular receivers, such as the ones used in Solar One, Solar Two, and most recently the Ivanpah solar plants, have used a black paint coating to increase the solar absorptance of the receiver. However, these coatings degrade over time and must be reapplied, increasing the receiver maintenance cost. This paper presents the thermal efficiency evaluation of novel receiver tubular panels that have a higher effective solar absorptance due to a light-trapping effect created by arranging the tubes in each panel into unique geometric configurations. Similarly, the impact of the incidence angle on the effective solar absorptance and thermal efficiency is evaluated. The overarching goal of this work is to achieve effective solar absorptances of ~90% and thermal efficiencies above 85% without using an absorptance coating. Several panel geometries were initially proposed and were down-selected based on structural analyses considering the thermal and pressure loading requirements of molten salt and supercritical carbon-dioxide receivers. The effective solar absorptance of the chosen tube geometries and panel configurations were evaluated using the ray-tracing modeling capabilities of SolTrace. The thermal efficiency was then evaluated by coupling computational fluid dynamics with the ray-tracing results using ANSYS Fluent. Compared to the base case analysis (flat tubular panel), the novel tubular panels have shown an increase in effective solar absorptance and thermal efficiency by several percentage points.

  13. A Analysis of the Low Frequency Sound Field in Non-Rectangular Enclosures Using the Finite Element Method.

    NASA Astrophysics Data System (ADS)

    Geddes, Earl Russell

    The details of the low frequency sound field for a rectangular room can be studied by the use of an established analytic technique--separation of variables. The solution is straightforward and the results are well-known. A non -rectangular room has boundary conditions which are not separable and therefore other solution techniques must be used. This study shows that the finite element method can be adapted for use in the study of sound fields in arbitrary shaped enclosures. The finite element acoustics problem is formulated and the modification of a standard program, which is necessary for solving acoustic field problems, is examined. The solution of the semi-non-rectangular room problem (one where the floor and ceiling remain parallel) is carried out by a combined finite element/separation of variables approach. The solution results are used to construct the Green's function for the low frequency sound field in five rooms (or data cases): (1) a rectangular (Louden) room; (2) The smallest wall of the Louden room canted 20 degrees from normal; (3) The largest wall of the Louden room canted 20 degrees from normal; (4) both the largest and the smallest walls are canted 20 degrees; and (5) a five-sided room variation of Case 4. Case 1, the rectangular room was calculated using both the finite element method and the separation of variables technique. The results for the two methods are compared in order to access the accuracy of the finite element method models. The modal damping coefficient are calculated and the results examined. The statistics of the source and receiver average normalized RMS P('2) responses in the 80 Hz, 100 Hz, and 125 Hz one-third octave bands are developed. The receiver averaged pressure response is developed to determine the effect of the source locations on the response. Twelve source locations are examined and the results tabulated for comparison. The effect of a finite sized source is looked at briefly. Finally, the standard deviation of the spatial pressure response is studied. The results for this characteristic show that it not significantly different in any of the rooms. The conclusions of the study are that only the frequency variations of the pressure response are affected by a room's shape. Further, in general, the simplest modification of a rectangular room (i.e., changing the angle of only one of the smallest walls), produces the most pronounced decrease of the pressure response variations in the low frequency region.

  14. Feeding a sub-ns-risetime rectangular pulse onto a rod-shaped resistive high-voltage divider in risetime <2 ns

    NASA Astrophysics Data System (ADS)

    Zeng, Zhengzhong; Ma, Lianying

    2004-01-01

    A simple and effective bridge-type feeding network consisting only of ordinary resistors and conductive wires is designed and tested which launches a 0.8 ns risetime, 40 ns width, and kV-level rectangular pulse from a coaxial cable onto a rod-shaped resistive high-voltage divider with risetime <2 ns with no significant distortion.

  15. Misfit stress relaxation in composite core-shell nanowires with parallelepiped cores using rectangular prismatic dislocation loops

    NASA Astrophysics Data System (ADS)

    Krasnitckii, S. A.; Kolomoetc, D. R.; Smirnov, A. M.; Gutkin, M. Yu

    2018-03-01

    The misfit stress relaxation via generation of rectangular prismatic dislocation loops at the interface in core-shell nanowires is considered. The core has the shape of a long parallelepiped of a square cross-section. The energy change caused by loop generation in such nanowires is calculated. Critical conditions for the onset of such loops are calculated and analyzed.

  16. Modeling the Radar Signature of Thin Metallic Objects with the AFDTD Software

    DTIC Science & Technology

    2014-09-01

    CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jason Cornelius and Traian Dogaru 5d. PROJECT NUMBER ...17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 28 19a. NAME OF RESPONSIBLE PERSON Traian Dogaru A... number of geometric objects, which are part of the AFDTDGRID library.3 These objects are rectangular plate, rectangular box, polygonal

  17. An Investigation into the Performance, Solution Strategies and Difficulties in Middle School Students' Calculation of the Volume of a Rectangular Prism

    ERIC Educational Resources Information Center

    Tekin-Sitrava, Reyhan; Isiksal-Bostan, Mine

    2014-01-01

    This qualitative study examined middle school students' performance, solution strategies, difficulties and the underlying reasons for their difficulties in calculating the volume of a rectangular prism. The data was collected from 35 middle school students (6th, 7th and 8th grade students) enrolled in a private school in Istanbul, Turkey. The data…

  18. Coupling Poisson rectangular pulse and multiplicative microcanonical random cascade models to generate sub-daily precipitation timeseries

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Niebisch, Michael; Müller, Hannes; Schümberg, Sabine; Zha, Tingting; Maurer, Thomas; Hinz, Christoph

    2018-07-01

    To simulate the impacts of within-storm rainfall variabilities on fast hydrological processes, long precipitation time series with high temporal resolution are required. Due to limited availability of observed data such time series are typically obtained from stochastic models. However, most existing rainfall models are limited in their ability to conserve rainfall event statistics which are relevant for hydrological processes. Poisson rectangular pulse models are widely applied to generate long time series of alternating precipitation events durations and mean intensities as well as interstorm period durations. Multiplicative microcanonical random cascade (MRC) models are used to disaggregate precipitation time series from coarse to fine temporal resolution. To overcome the inconsistencies between the temporal structure of the Poisson rectangular pulse model and the MRC model, we developed a new coupling approach by introducing two modifications to the MRC model. These modifications comprise (a) a modified cascade model ("constrained cascade") which preserves the event durations generated by the Poisson rectangular model by constraining the first and last interval of a precipitation event to contain precipitation and (b) continuous sigmoid functions of the multiplicative weights to consider the scale-dependency in the disaggregation of precipitation events of different durations. The constrained cascade model was evaluated in its ability to disaggregate observed precipitation events in comparison to existing MRC models. For that, we used a 20-year record of hourly precipitation at six stations across Germany. The constrained cascade model showed a pronounced better agreement with the observed data in terms of both the temporal pattern of the precipitation time series (e.g. the dry and wet spell durations and autocorrelations) and event characteristics (e.g. intra-event intermittency and intensity fluctuation within events). The constrained cascade model also slightly outperformed the other MRC models with respect to the intensity-frequency relationship. To assess the performance of the coupled Poisson rectangular pulse and constrained cascade model, precipitation events were stochastically generated by the Poisson rectangular pulse model and then disaggregated by the constrained cascade model. We found that the coupled model performs satisfactorily in terms of the temporal pattern of the precipitation time series, event characteristics and the intensity-frequency relationship.

  19. The value of thyroid shielding in intraoral radiography

    PubMed Central

    Hazenoot, Bart; Sanderink, Gerard C H; Berkhout, W Erwin R

    2016-01-01

    Objectives: To evaluate the utility of the application of a thyroid shield in intraoral radiography when using rectangular collimation. Methods: Experimental data were obtained by measuring the absorbed dose at the position of the thyroid gland in a RANDO® (The Phantom Laboratory, Salem, NY) male phantom with a dosemeter. Four protocols were tested: round collimation and rectangular collimation, both with and without thyroid shield. Five exposure positions were deployed: upper incisor (Isup), upper canine (Csup), upper premolar (Psup), upper molar (Msup) and posterior bitewing (BW). Exposures were made with 70 kV and 7 mA and were repeated 10 times. The exposure times were as recommended for the exposure positions for the respective collimator type by the manufacturer for digital imaging. The data were statistically analyzed with a three-way ANOVA test. Significance was set at p < 0.01. Results: The ANOVA test revealed that the differences between mean doses of all protocols and geometries were statistically significant, p < 0.001. For the Isup, thyroid dose levels were comparable with both collimators at a level indicating primary beam exposure. Thyroid shield reduced this dose with circa 75%. For the Csup position, round collimation also revealed primary beam exposure, and thyroid shield yield was 70%. In Csup with rectangular collimation, the thyroid dose was reduced with a factor 4 compared with round collimation and thyroid shield yielded an additional 42% dose reduction. The thyroid dose levels for the Csup, Psup, Msup and BW exposures were lower with rectangular collimation without thyroid shield than with round collimation with thyroid shield. With rectangular collimation, the thyroid shield in Psup, Msup and BW reduced the dose 10% or less, where dose levels were already low, implying no clinical significance. Conclusions: For the exposures in the upper anterior region, thyroid shield results in an important dose reduction for the thyroid. For the other exposures, thyroid shield augments little to the reduction achieved by rectangular collimation. The use of thyroid shield is to be advised, when performing upper anterior radiography. PMID:27008105

  20. Advanced Ring-Shaped Microelectrode Assay Combined with Small Rectangular Electrode for Quasi-In vivo Measurement of Cell-to-Cell Conductance in Cardiomyocyte Network

    NASA Astrophysics Data System (ADS)

    Nomura, Fumimasa; Kaneko, Tomoyuki; Hamada, Tomoyo; Hattori, Akihiro; Yasuda, Kenji

    2013-06-01

    To predict the risk of fatal arrhythmia induced by cardiotoxicity in the highly complex human heart system, we have developed a novel quasi-in vivo electrophysiological measurement assay, which combines a ring-shaped human cardiomyocyte network and a set of two electrodes that form a large single ring-shaped electrode for the direct measurement of irregular cell-to-cell conductance occurrence in a cardiomyocyte network, and a small rectangular microelectrode for forced pacing of cardiomyocyte beating and for acquiring the field potential waveforms of cardiomyocytes. The advantages of this assay are as follows. The electrophysiological signals of cardiomyocytes in the ring-shaped network are superimposed directly on a single loop-shaped electrode, in which the information of asynchronous behavior of cell-to-cell conductance are included, without requiring a set of huge numbers of microelectrode arrays, a set of fast data conversion circuits, or a complex analysis in a computer. Another advantage is that the small rectangular electrode can control the position and timing of forced beating in a ring-shaped human induced pluripotent stem cell (hiPS)-derived cardiomyocyte network and can also acquire the field potentials of cardiomyocytes. First, we constructed the human iPS-derived cardiomyocyte ring-shaped network on the set of two electrodes, and acquired the field potential signals of particular cardiomyocytes in the ring-shaped cardiomyocyte network during simultaneous acquisition of the superimposed signals of whole-cardiomyocyte networks representing cell-to-cell conduction. Using the small rectangular electrode, we have also evaluated the response of the cell network to electrical stimulation. The mean and SD of the minimum stimulation voltage required for pacing (VMin) at the small rectangular electrode was 166+/-74 mV, which is the same as the magnitude of amplitude for the pacing using the ring-shaped electrode (179+/-33 mV). The results showed that the addition of a small rectangular electrode into the ring-shaped electrode was effective for the simultaneous measurement of whole-cell-network signals and single-cell/small-cluster signals on a local site in the cell network, and for the pacing by electrical stimulation of cardiomyocyte networks.

Top