Numerical Study of the Buoyancy-Driven Flow in a Four-Electrode Rectangular Electrochemical Cell
NASA Astrophysics Data System (ADS)
Sun, Zhanyu; Agafonov, Vadim; Rice, Catherine; Bindler, Jacob
2009-11-01
Two-dimensional numerical simulation is done on the buoyancy-driven flow in a four-electrode rectangular electrochemical cell. Two kinds of electrode layouts, the anode-cathode-cathode-anode (ACCA) and the cathode-anode-anode-cathode (CAAC) layouts, are studied. In the ACCA layout, the two anodes are placed close to the channel outlets while the two cathodes are located between the two anodes. The CAAC layout can be converted from the ACCA layout by applying higher electric potential on the two middle electrodes. Density gradient was generated by the electrodic reaction I3^-+2e^- =3I^-. When the electrochemical cell is accelerated axially, buoyancy-driven flow occurs. In our model, electro-neutrality is assumed except at the electrodes. The Navier-Stokes equations with the Boussinesq approximation and the Nernst-Planck equations are employed to model the momentum and mass transports, respectively. It is found that under a given axial acceleration, the electrolyte density between the two middle electrodes determines the bulk flow through the electrochemical cell. The cathodic current difference is found to be able to measure the applied acceleration. Other important electro-hydrodynamic characteristics are also discussed.
NASA Astrophysics Data System (ADS)
Nomura, Fumimasa; Kaneko, Tomoyuki; Hamada, Tomoyo; Hattori, Akihiro; Yasuda, Kenji
2013-06-01
To predict the risk of fatal arrhythmia induced by cardiotoxicity in the highly complex human heart system, we have developed a novel quasi-in vivo electrophysiological measurement assay, which combines a ring-shaped human cardiomyocyte network and a set of two electrodes that form a large single ring-shaped electrode for the direct measurement of irregular cell-to-cell conductance occurrence in a cardiomyocyte network, and a small rectangular microelectrode for forced pacing of cardiomyocyte beating and for acquiring the field potential waveforms of cardiomyocytes. The advantages of this assay are as follows. The electrophysiological signals of cardiomyocytes in the ring-shaped network are superimposed directly on a single loop-shaped electrode, in which the information of asynchronous behavior of cell-to-cell conductance are included, without requiring a set of huge numbers of microelectrode arrays, a set of fast data conversion circuits, or a complex analysis in a computer. Another advantage is that the small rectangular electrode can control the position and timing of forced beating in a ring-shaped human induced pluripotent stem cell (hiPS)-derived cardiomyocyte network and can also acquire the field potentials of cardiomyocytes. First, we constructed the human iPS-derived cardiomyocyte ring-shaped network on the set of two electrodes, and acquired the field potential signals of particular cardiomyocytes in the ring-shaped cardiomyocyte network during simultaneous acquisition of the superimposed signals of whole-cardiomyocyte networks representing cell-to-cell conduction. Using the small rectangular electrode, we have also evaluated the response of the cell network to electrical stimulation. The mean and SD of the minimum stimulation voltage required for pacing (VMin) at the small rectangular electrode was 166+/-74 mV, which is the same as the magnitude of amplitude for the pacing using the ring-shaped electrode (179+/-33 mV). The results showed that the addition of a small rectangular electrode into the ring-shaped electrode was effective for the simultaneous measurement of whole-cell-network signals and single-cell/small-cluster signals on a local site in the cell network, and for the pacing by electrical stimulation of cardiomyocyte networks.
NASA Astrophysics Data System (ADS)
Pournoury, M.; Zamiri, A.; Kim, T. Y.; Yurlov, V.; Oh, K.
2016-03-01
Capacitive touch sensor screen with the metal materials has recently become qualified for substitution of ITO; however several obstacles still have to be solved. One of the most important issues is moiré phenomenon. The visibility problem of the metal-mesh, in touch sensor module (TSM) is numerically considered in this paper. Based on human eye contract sensitivity function (CSF), moiré pattern of TSM electrode mesh structure is simulated with MATLAB software for 8 inch screen display in oblique view. Standard deviation of the generated moiré by the superposition of electrode mesh and screen image is calculated to find the optimal parameters which provide the minimum moiré visibility. To create the screen pixel array and mesh electrode, rectangular function is used. The filtered image, in frequency domain, is obtained by multiplication of Fourier transform of the finite mesh pattern (product of screen pixel and mesh electrode) with the calculated CSF function for three different observer distances (L=200, 300 and 400 mm). It is observed that the discrepancy between analytical and numerical results is less than 0.6% for 400 mm viewer distance. Moreover, in the case of oblique view due to considering the thickness of the finite film between mesh electrodes and screen, different points of minimum standard deviation of moiré pattern are predicted compared to normal view.
Measurement strategy for rectangular electrical capacitance tomography sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Jiamin; Ge, Ruihuan; Qiu, Guizhi
2014-04-11
To investigate the influence of the measurement strategy for the rectangular electrical capacitance tomography (ECT) sensor, a Finite Element Method (FEM) is utilized to create the model for simulation. The simulation was carried out using COMSOL Multiphysics(trade mark, serif) and Matlab(trade mark, serif). The length-width ratio of the rectangular sensing area is 5. Twelve electrodes are evenly arranged surrounding the pipe. The covering ratio of the electrodes is 90%. The capacitances between different electrode pairs are calculated for a bar distribution. The air of the relative permittivity 1.0 and the material of the permittivity 3.0 are used for the calibration.more » The relative permittivity of the second phase is 3.0. The noise free and noise data are used for the image reconstruction using the Linear Back Projection (LBP). The measurement strategies with 1-, 2- and 4- electrode excitation are compared using the correlation coefficient. Preliminary results show that the measurement strategy with 2-electrode excitation outperforms other measurement strategies with 1- or 4-electrode excitation.« less
EIT-based fabric pressure sensing.
Yao, A; Yang, C L; Seo, J K; Soleimani, M
2013-01-01
This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results.
Lee, Chany; Jung, Young-Jin; Lee, Sang Jun; Im, Chang-Hwan
2017-02-01
Since there is no way to measure electric current generated by transcranial direct current stimulation (tDCS) inside the human head through in vivo experiments, numerical analysis based on the finite element method has been widely used to estimate the electric field inside the head. In 2013, we released a MATLAB toolbox named COMETS, which has been used by a number of groups and has helped researchers to gain insight into the electric field distribution during stimulation. The aim of this study was to develop an advanced MATLAB toolbox, named COMETS2, for the numerical analysis of the electric field generated by tDCS. COMETS2 can generate any sizes of rectangular pad electrodes on any positions on the scalp surface. To reduce the large computational burden when repeatedly testing multiple electrode locations and sizes, a new technique to decompose the global stiffness matrix was proposed. As examples of potential applications, we observed the effects of sizes and displacements of electrodes on the results of electric field analysis. The proposed mesh decomposition method significantly enhanced the overall computational efficiency. We implemented an automatic electrode modeler for the first time, and proposed a new technique to enhance the computational efficiency. In this paper, an efficient toolbox for tDCS analysis is introduced (freely available at http://www.cometstool.com). It is expected that COMETS2 will be a useful toolbox for researchers who want to benefit from the numerical analysis of electric fields generated by tDCS. Copyright © 2016. Published by Elsevier B.V.
Modeling shape selection of buckled dielectric elastomers
NASA Astrophysics Data System (ADS)
Langham, Jacob; Bense, Hadrien; Barkley, Dwight
2018-02-01
A dielectric elastomer whose edges are held fixed will buckle, given a sufficiently applied voltage, resulting in a nontrivial out-of-plane deformation. We study this situation numerically using a nonlinear elastic model which decouples two of the principal electrostatic stresses acting on an elastomer: normal pressure due to the mutual attraction of oppositely charged electrodes and tangential shear ("fringing") due to repulsion of like charges at the electrode edges. These enter via physically simplified boundary conditions that are applied in a fixed reference domain using a nondimensional approach. The method is valid for small to moderate strains and is straightforward to implement in a generic nonlinear elasticity code. We validate the model by directly comparing the simulated equilibrium shapes with the experiment. For circular electrodes which buckle axisymetrically, the shape of the deflection profile is captured. Annular electrodes of different widths produce azimuthal ripples with wavelengths that match our simulations. In this case, it is essential to compute multiple equilibria because the first model solution obtained by the nonlinear solver (Newton's method) is often not the energetically favored state. We address this using a numerical technique known as "deflation." Finally, we observe the large number of different solutions that may be obtained for the case of a long rectangular strip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sansonnens, L.; Schmidt, H.; Howling, A.A.
The electromagnetic standing wave effect can become the main source of nonuniformity limiting the use of very high frequency in large area reactors exceeding 1 m{sup 2} required for industrial applications. Recently, it has been proposed and shown experimentally in a cylindrical reactor that a shaped electrode in place of the conventional flat electrode can be used in order to suppress the electromagnetic standing wave nonuniformity. In this study, we show experimental measurements demonstrating that the shaped electrode technique can also be applied in large area rectangular reactors. We also present results of electromagnetic screening by a conducting substrate whichmore » has important consequences for industrial application of the shaped electrode technique.« less
An exact analysis of a rectangular plate piezoelectric generator.
Yang, Jiashi; Chen, Ziguang; Hu, Yuantai
2007-01-01
We study thickness-twist vibration of a finite, piezoelectric plate of polarized ceramics or 6-mm crystals driven by surface mechanical loads. An exact solution from the three-dimensional equations of piezoelectricity is obtained. The plate is properly electroded and connected to a circuit such that an electric output is generated. The structure analyzed represents a piezoelectric generator for converting mechanical energy to electrical energy. Analytical expressions for the output voltage, current, power, efficiency, and power density are given. The basic behaviors of the generator are shown by numerical results.
EIT-Based Fabric Pressure Sensing
Yao, A.; Yang, C. L.; Seo, J. K.; Soleimani, M.
2013-01-01
This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results. PMID:23533538
Nikfarjam, Alireza; Hosseini, Seyedsina; Salehifar, Nahideh
2017-05-10
In this research, a single-aligned nanofiber of pure TiO 2 and gold nanoparticle (GNP)-TiO 2 were fabricated using a novel electro-spinning procedure equipped with secondary electrostatic fields on highly sharp triangular and rectangular electrodes provided for gas sensing applications. The sol used for spinning nanofiber consisted of titanium tetraisopropoxide (C 12 H 28 O 4 Ti), acetic acid (CH 3 COOH), ethanol (C 2 H 5 OH), polyvinylpyrrolidone (PVP), and gold nanoparticle solution. FE-SEM, TEM, and XRD were used to characterize the single nanofiber. In triangular electrodes, the electrostatic voltage for aligning single nanofiber between electrodes depends on the angle tip of the electrode, which was around 1.4-2.1, 2-2.9, and 3.2-4.1 kV for 30°, 45°, and 60°, respectively. However, by changing the shape of the electrodes to rectangular samples and by increasing distance between electrodes from 100 to 200 μm, electro-spinning applied voltage decreased. Response of pure TiO 2 single nanofiber sensor was measured for 30-200 ppb carbon monoxide gas. The triangular sample revealed better response and lower threshold than the rectangular sample. Adding appropriate amounts of GNP decreased the operating temperature and increased the responses. CO concentration threshold for the pure TiO 2 and GNP-TiO 2 triangular samples was about 5 ppb and 700 ppt, respectively.
Sampling Scattered Data Onto Rectangular Grids for Volume Visualization
1989-12-01
30 4.4 Building A Rectangular Grid ..... ................ 30 4.5 Sampling Methds ...... ...................... 34 4.6...dimensional data have been developed recently. In computational fluid flow analysis, methods for constructing three dimen- sional numerical grids are...structure of rectangular grids. Because finite element analysis is useful in fields other than fluid flow analysis and the numerical grid has promising
Influence of surface rectangular defect winding layer on burst pressure of CNG-II composite cylinder
NASA Astrophysics Data System (ADS)
You, H. X.; Peng, L.; Zhao, C.; Ma, K.; Zhang, S.
2018-01-01
To study the influence of composite materials’ surface defect on the burst pressure of CNG-II composite cylinder, the surface defect was simplified as a rectangular slot of certain size on the basis of actually investigating the shape of cylinder’s surface defect. A CNG-II composite cylinder with a rectangular slot defect (2mm in depth) was used for burst test, and the numerical simulation software ANSYS was used to calculate its burst pressure. Through comparison between the burst pressure in the test and the numerical analysis result, the correctness of the numerical analysis method was verified. On this basis, the numerical analysis method was conducted for composite cylinders with surface defect in other depth. The result showed that surface defect in the form of rectangular slot had no significant effect on the liner stress of composite cylinder. Instead, it had a great influence on the stress of fiber-wrapped layer. The burst pressure of the composite cylinder decreased as the defect depth increasing. The hoop stress at the bottom of the defect in the shape of rectangular slot exceeded the maximum of the composite materials’ tensile strength, which could result in the burst pressure of composite cylinders decreasing.
Electromagnetic Field Penetration Studies
NASA Technical Reports Server (NTRS)
Deshpande, M.D.
2000-01-01
A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.
Control of the electrode metal transfer by means of the welding current pulse generator
NASA Astrophysics Data System (ADS)
Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Knyaz'kov, S.; Tyasto, A.
2016-04-01
The paper presents a generator of welding current pulses to transfer an electrode metal into the molten pool. A homogeneous artificial line is used to produce near rectangular pulses. The homogeneous artificial line provides the minimum heat input with in the pulse to transfer the electrode metal, and it significantly decreases the impact of disturbances affecting this transfer. The pulse frequency does not exceed 300 Hz, and the duration is 0.6 ÷ 0.9 ms.
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1974-01-01
The elastic deformation of two ellipsoidal solids in contact and subjected to Hertzian stress distribution was evaluated numerically as part of a general study of the elastic deformation of such solids in elastohydrodynamic contacts. In the analysis the contact zone was divided into equal rectangular areas, and it was assumed that a uniform pressure is applied over each rectangular area. The influence of the size of the rectangular area upon accuracy was also studied. The results indicate the distance from the center of the contact at which elastic deformation becomes insignificant.
NASA Astrophysics Data System (ADS)
Xie, Dexuan; Jiang, Yi
2018-05-01
This paper reports a nonuniform ionic size nonlocal Poisson-Fermi double-layer model (nuNPF) and a uniform ionic size nonlocal Poisson-Fermi double-layer model (uNPF) for an electrolyte mixture of multiple ionic species, variable voltages on electrodes, and variable induced charges on boundary segments. The finite element solvers of nuNPF and uNPF are developed and applied to typical double-layer tests defined on a rectangular box, a hollow sphere, and a hollow rectangle with a charged post. Numerical results show that nuNPF can significantly improve the quality of the ionic concentrations and electric fields generated from uNPF, implying that the effect of nonuniform ion sizes is a key consideration in modeling the double-layer structure.
NASA Astrophysics Data System (ADS)
Gao, Xiaobo; Li, Yu Xiao
2018-04-01
AC electro-osmotic (ACEO) micropumps presently involve the planar or nonplanar electrode pair array in the rectangular microchannel. However, this paper presented a theoretical model of an ultra-fast 3D ring ACEO micropump with arrays of asymmetric ring electrode pairs in the cylindrical microchannel. The theory is on the basis of the interaction between the nonuniform electric field and ions of an electric double layer (EDL) on the surface of ring electrodes. Therefore, we first established the equivalent hollow cylinder capacitance of EDL for ring ACEO micropumps. Then, the 3D Poisson-Boltzmann model by solving the electric field and fluidic flow field with the charge conservation and the slip velocity boundary conditions was numerically calculated. For a dilute strong electrolyte solution, the conductivity as a function of the electrolyte concentration can be obtained by the modified Kohlrausch's dilution empirical equation with the molar conductivity. The results revealed that the flow rate of ring ACEO was higher than the planar ACEO, which agreed well with the experiment. The dependences of the time-averaged pumping velocity on the frequency and concentration have similar bell profiles with a maximal value. Moreover, the optimal velocity with proper geometric parameters was obtained at a given frequency, voltage, concentration, and radius. The high-speed ring ACEO micropump will be significant for the experimental studies to further improve the flow rate and be hopeful for applications of microfluidic mixing, particle manipulation, and so on.
NASA Technical Reports Server (NTRS)
Cockrell, C. R.; Beck, Fred B.
1997-01-01
The electromagnetic scattering from an arbitrarily shaped aperture backed by a rectangular cavity recessed in an infinite ground plane is analyzed by the integral equation approach. In this approach, the problem is split into two parts: exterior and interior. The electromagnetic fields in the exterior part are obtained from an equivalent magnetic surface current density assumed to be flowing over the aperture and backed by an infinite ground plane. The electromagnetic fields in the interior part are obtained in terms of rectangular cavity modal expansion functions. The modal amplitudes of cavity modes are determined by enforcing the continuity of the electric field across the aperture. The integral equation with the aperture magnetic current density as an unknown is obtained by enforcing the continuity of magnetic fields across the aperture. The integral equation is then solved for the magnetic current density by the method of moments. The electromagnetic scattering properties of an aperture backed by a rectangular cavity are determined from the magnetic current density. Numerical results on the backscatter radar cross-section (RCS) patterns of rectangular apertures backed by rectangular cavities are compared with earlier published results. Also numerical results on the backscatter RCS patterns of a circular aperture backed by a rectangular cavity are presented.
NASA Technical Reports Server (NTRS)
Vogel, J. M.
1973-01-01
The calculation of the outer inviscid flow about a rectangular wing moving at supersonic speeds is reported. The inviscid equations of motion governing the flow generated by the wing form a set of hyperbolic differential equations. The flow field about the rectangular wing is separated into three regions consisting of the forebody, the afterbody, and the wing wake. Solutions for the forebody are obtained using conical flow techniques while the afterbody and the wing wake regions are treated as initial value problems. The numerical solutions are compared in the two dimensional regions with known exact solutions.
NASA Astrophysics Data System (ADS)
Cai, Yangjian; Zhang, Lei
2006-07-01
A theoretical model is proposed to describe coherent dark hollow beams (DHBs) with rectangular symmetry. The electric field of a coherent rectangular DHB is expressed as a superposition of a series of the electric field of a finite series of fundamental Gaussian beams. Analytical propagation formulas for a coherent rectangular DHB passing through paraxial optical systems are derived in a tensor form. Furthermore, for the more general case, we propose a theoretical model to describe a partially coherent rectangular DHB. Analytical propagation formulas for a partially coherent rectangular DHB passing through paraxial optical systems are derived. The beam propagation factor (M2 factor) for both coherent and partially coherent rectangular DHBs are studied. Numerical examples are given by using the derived formulas. Our models and method provide an effective way to describe and treat the propagation of coherent and partially coherent rectangular DHBs.
Numerical Investigation of Flow Around Rectangular Cylinders with and Without Jets
NASA Technical Reports Server (NTRS)
Tiwari, S. N .; Pidugu, S. B.
1999-01-01
The problem of flow past bluff bodies was studied extensively in the past. The problem of drag reduction is very important in many high speed flow applications. Considerable work has been done in this subject area in case of circular cylinders. The present study attempts to investigate the feasibility of drag reduction on a rectangular cylinder by flow injection by flow injection from the rear stagnation region. The physical problem is modeled as two-dimensional body and numerical analysis is carried out with and without trailing jets. A commercial code is used for this purpose. Unsteady computation is performed in case of rectangular cylinders with no trailing jets where as steady state computation is performed when jet is introduced. It is found that drag can be reduced by introducing jets with small intensity in rear stagnation region of the rectangular cylinders.
Analysis and numerical simulation research of the heating process in the oven
NASA Astrophysics Data System (ADS)
Chen, Yawei; Lei, Dingyou
2016-10-01
How to use the oven to bake delicious food is the most concerned problem of the designers and users of the oven. For this intent, this paper analyzed the heat distribution in the oven based on the basic operation principles and proceeded the data simulation of the temperature distribution on the rack section. Constructing the differential equation model of the temperature distribution changes in the pan when the oven works based on the heat radiation and heat transmission, based on the idea of utilizing cellular automation to simulate heat transfer process, used ANSYS software to proceed the numerical simulation analysis to the rectangular, round-cornered rectangular, elliptical and circular pans and giving out the instantaneous temperature distribution of the corresponding shapes of the pans. The temperature distribution of the rectangular and circular pans proves that the product gets overcooked easily at the corners and edges of rectangular pans but not of a round pan.
Modestov, M.; Kolemen, E.; Fisher, A. E.; ...
2017-11-06
The behavior of free-surface, liquid-metal flows exposed to both magnetic fields and an injected electric current is investigated via experiment and numerical simulations. The purpose of this paper is to provide an experimental and theoretical proof-of-concept for enhanced thermal mixing within fast-flowing, free-surface, liquid-metal plasma facing components that could be used in next-generation fusion reactors. The enhanced hydrodynamic and thermal mixing induced by non-uniform current density near the electrodes appears to improve heat transfer through the thickness of the flowing metal. Also, the outflow heat flux profile is strongly affected by the impact of the J × B forces onmore » flow velocity. The experimental results are compared to COMSOL simulations in order to lay the groundwork for future liquid-metal research.« less
NASA Astrophysics Data System (ADS)
Modestov, M.; Kolemen, E.; Fisher, A. E.; Hvasta, M. G.
2018-01-01
The behavior of free-surface, liquid-metal flows exposed to both magnetic fields and an injected electric current is investigated via experiment and numerical simulations. The purpose of this paper is to provide an experimental and theoretical proof-of-concept for enhanced thermal mixing within fast-flowing, free-surface, liquid-metal plasma facing components that could be used in next-generation fusion reactors. The enhanced hydrodynamic and thermal mixing induced by non-uniform current density near the electrodes appears to improve heat transfer through the thickness of the flowing metal. Also, the outflow heat flux profile is strongly affected by the impact of the J × B forces on flow velocity. The experimental results are compared to COMSOL simulations in order to lay the groundwork for future liquid-metal research.
Kazys, Rymantas J; Sliteris, Reimondas; Sestoke, Justina
2017-10-16
For improvement of the efficiency of air-coupled ultrasonic transducers PMN-32%PT piezoelectric crystals which possess very high piezoelectric properties may be used. The electromechanical coupling factor of such crystals for all main vibration modes such as the thickness extension and transverse extension modes is more than 0.9. Operation of ultrasonic transducers with such piezoelectric elements in transmitting and receiving modes is rather different. Therefore, for transmission and reception of ultrasonic signals, separate piezoelectric elements with different dimensions must be used. The objective of this research was development of novel air-coupled ultrasonic receivers with PMN-32%PT strip-like piezoelectric elements vibrating in a transverse-extension mode with electromechanically controlled operation and suitable for applications in ultrasonic arrays. Performance of piezoelectric receivers made of the PMN-32%PT strip-like elements vibrating in this mode may be efficiently controlled by selecting geometry of the electrodes covering side surfaces of the piezoelectric element. It is equivalent to introduction of electromechanical damping which does not require any additional backing element. For this purpose; we have proposed the continuous electrodes to divide into two pairs of electrodes. The one pair is used to pick up the electric signal; another one is exploited for electromechanical damping. Two types of electrodes may be used-rectangular or non-rectangular-with a gap between them directed at some angle, usually 45°. The frequency bandwidth is wider (up to 9 kHz) in the case of non-rectangular electrodes. The strip-like acoustic matching element bonded to the tip of the PMN-32%PT crystal may significantly enhance the performance of the ultrasonic receiver. It was proposed to use for this purpose AIREX T10.110 rigid polymer foam, the acoustic impedance of which is close to the optimal value necessary for matching with air. It was found that in order to get a wide bandwidth the length of the matching strip should be selected not a quarter wavelength λ/4 at the antiresonance frequency but at lower frequency. It allowed achieving the frequency bandwidth (14-18)% with respect to the central frequency at -3 dB level.
Lattice Boltzmann Equation On a 2D Rectangular Grid
NASA Technical Reports Server (NTRS)
Bouzidi, MHamed; DHumieres, Dominique; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
We construct a multi-relaxation lattice Boltzmann model on a two-dimensional rectangular grid. The model is partly inspired by a previous work of Koelman to construct a lattice BGK model on a two-dimensional rectangular grid. The linearized dispersion equation is analyzed to obtain the constraints on the isotropy of the transport coefficients and Galilean invariance for various wave propagations in the model. The linear stability of the model is also studied. The model is numerically tested for three cases: (a) a vortex moving with a constant velocity on a mesh periodic boundary conditions; (b) Poiseuille flow with an arbitrasy inclined angle with respect to the lattice orientation: and (c) a cylinder &symmetrically placed in a channel. The numerical results of these tests are compared with either analytic solutions or the results obtained by other methods. Satisfactory results are obtained for the numerical simulations.
Comparisons of Force Measurement Methods for DBD Plasma Actuators in Quiescent Air
NASA Technical Reports Server (NTRS)
Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.
2009-01-01
We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators with cylindrical exposed electrodes, as the electrode diameter decrease the force efficiencies increase much faster than a previously reported linear trend. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. Actuators with rectangular cross-section exposed electrodes do not show the same rapid increase at small thicknesses. We have also shown that the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.
Two-step fabrication of single-layer rectangular SnSe flakes
NASA Astrophysics Data System (ADS)
Jiang, Jizhou; Wong, Calvin Pei Yu; Zou, Jing; Li, Shisheng; Wang, Qixing; Chen, Jianyi; Qi, Dianyu; Wang, Hongyu; Eda, Goki; Chua, Daniel H. C.; Shi, Yumeng; Zhang, Wenjing; Thye Shen Wee, Andrew
2017-06-01
Recent findings about ultrahigh thermoelectric performances in SnSe single crystals have stimulated research on this binary semiconductor material. Furthermore, single-layer SnSe is an interesting analogue of phosphorene, with potential applications in two-dimensional (2D) nanoelectronics. Although significant advances in the synthesis of SnSe nanocrystals have been made, fabrication of well-defined large-sized single-layer SnSe flakes in a facile way still remains a challenge. The growth of single-layer rectangular SnSe flakes with a thickness of ~6.8 Å and lateral dimensions of about 30 µm × 50 µm is demonstrated by a two-step synthesis method, where bulk rectangular SnSe flakes were synthesized first by a vapor transport deposition method followed by a nitrogen etching technique to fabricate single-layer rectangular SnSe flakes in an atmospheric pressure system. The as-obtained rectangular SnSe flakes exhibited a pure crystalline phase oriented along the a-axis direction. Field-effect transistor devices fabricated on individual single-layer rectangular SnSe flakes using gold electrodes exhibited p-doped ambipolar behavior and a hole mobility of about 0.16 cm2 V-1 s-1. This two-step fabrication method can be helpful for growing other similar 2D large-sized single-layer materials.
A novel capacitive absolute positioning sensor based on time grating with nanometer resolution
NASA Astrophysics Data System (ADS)
Pu, Hongji; Liu, Hongzhong; Liu, Xiaokang; Peng, Kai; Yu, Zhicheng
2018-05-01
The present work proposes a novel capacitive absolute positioning sensor based on time grating. The sensor includes a fine incremental-displacement measurement component combined with a coarse absolute-position measurement component to obtain high-resolution absolute positioning measurements. A single row type sensor was proposed to achieve fine displacement measurement, which combines the two electrode rows of a previously proposed double-row type capacitive displacement sensor based on time grating into a single row. To achieve absolute positioning measurement, the coarse measurement component is designed as a single-row type displacement sensor employing a single spatial period over the entire measurement range. In addition, this component employs a rectangular induction electrode and four groups of orthogonal discrete excitation electrodes with half-sinusoidal envelope shapes, which were formed by alternately extending the rectangular electrodes of the fine measurement component. The fine and coarse measurement components are tightly integrated to form a compact absolute positioning sensor. A prototype sensor was manufactured using printed circuit board technology for testing and optimization of the design in conjunction with simulations. Experimental results show that the prototype sensor achieves a ±300 nm measurement accuracy with a 1 nm resolution over a displacement range of 200 mm when employing error compensation. The proposed sensor is an excellent alternative to presently available long-range absolute nanometrology sensors owing to its low cost, simple structure, and ease of manufacturing.
Numerical analysis of installation damage of a pre-damaged geogrid with rectangular apertures
NASA Astrophysics Data System (ADS)
Dong, Yan-li; Guo, Hui-juan; Han, Jie; Zhang, Jun
2018-06-01
The geogrid can be damaged in the process or during construction if sufficient care is not exercised. In this study, the numerical software-FLAC was adopted to investigate the responses of pre-damaged geogrids with rectangular apertures when subjected to a uniaxial tensile load at different directions relative to the orientations of ribs in air. To simulate the combined loss of ribs and junction strength, specimens were pre-damaged by reducing certain amount of stiffness of the geogrid ribs. The geogrid ribs were modeled using beam elements jointed rigidly at nodes and subjected to tension in one direction. The numerical study demonstrated that the pre-damaged geogrid with rectangular apertures had similar responses when it was subjected to tension at the loading directions. The pre-damaged geogrids under 30° tension are the most sensitivity to the damage. With the increase of the degree of damage, the tensile strengths decreased relative quickly. An increase of the degree of installation damage of ribs decreased the tensile strength/stiffness of the geogrid with rectangular apertures. A higher reduction factor RFID due to installation damage is suggested when the geogrid is subjected to 30° tension relative to the orientation of ribs.
Insights from depth-averaged numerical simulation of flow at bridge abutments in compound channels.
DOT National Transportation Integrated Search
2011-07-01
Two-dimensional, depth-averaged flow models are used to study the distribution of flow around spill-through abutments situated on floodplains in compound channels and rectangular channels (flow on very wide floodplains may be treated as rectangular c...
Characterization of reaction kinetics in a porous electrode
NASA Technical Reports Server (NTRS)
Fedkiw, Peter S.
1990-01-01
A continuum-model approach, analogous to porous electrode theory, was applied to a thin-layer cell of rectangular and cylindrical geometry. A reversible redox couple is assumed, and the local reaction current density is related to the potential through the formula of Hubbard and Anson for a uniformily accessible thin-layer cell. The placement of the reference electrode is also accounted for in the analysis. Primary emphasis is placed on the effect of the solution-phase ohmic potential drop on the voltammogram characteristics. Correlation equations for the peak-potential displacement from E(sup 0 prime) and the peak current are presented in terms of two dimensionless parameters.
Slotted rectangular waveguide with dielectric sandwich structure inside
NASA Astrophysics Data System (ADS)
Abdullin, R. R.; Sokolov, R. I.
2018-03-01
This paper continues the series of works devoted to the investigation of leaky-wave antenna based on layered rectangular waveguide with periodic transverse slots in broad face. Previously developed wavenumber calculation technique has been adapted for analysis of slotted sandwich waveguide with three layers at least. The paper provides the numerical results of velocity factor dependencies for partially filled slotted rectangular waveguide containing a dielectric slab in the middle position inside or an air gap between two dielectric slabs. Additionally, dispersion properties are also considered for multilayer waveguide with linear laws combinations of thickness and permittivity. This allows recognizing the trends to develop new prospective antennas with complex patterns of tilt angle change. All numerical results obtained are confirmed with the in-situ measurements of transmission coefficient phase.
Edge Effects in a Composite Weakly Reinforced with Fibers of Rectangular Cross Section
NASA Astrophysics Data System (ADS)
Boichuk, V. Yu.
2001-05-01
This paper deal with the edge effect in a composite weakly reinforced with fibers of rectangular cross section and subjected to biaxial uniform loading. The edge effects due to the difference between Poisson's ratios of the composite components are studied. Numerical results are presented
Synchronizability of random rectangular graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estrada, Ernesto, E-mail: ernesto.estrada@strath.ac.uk; Chen, Guanrong
2015-08-15
Random rectangular graphs (RRGs) represent a generalization of the random geometric graphs in which the nodes are embedded into hyperrectangles instead of on hypercubes. The synchronizability of RRG model is studied. Both upper and lower bounds of the eigenratio of the network Laplacian matrix are determined analytically. It is proven that as the rectangular network is more elongated, the network becomes harder to synchronize. The synchronization processing behavior of a RRG network of chaotic Lorenz system nodes is numerically investigated, showing complete consistence with the theoretical results.
Effective way of reducing coupling loss between rectangular microwaveguide and fiber.
Zhou, Hang; Chen, Zilun; Xi, Xiaoming; Hou, Jing; Chen, Jinbao
2012-01-20
We introduce an anamorphic photonic crystal fiber (PCF) produced by postprocessing techniques to improve the coupling loss between a conventional single-mode fiber and rectangular microwaveguide. One end of the round core is connected with the conventional fiber, and the other end of the rectangular core is connected with the rectangular microwaveguide, then the PCF is tapered pro rata. In this way, the loss of mode mismatch between the output of the conventional fiber and the input of the waveguide would be reduced, which results in enhanced coupling efficiency. The conclusion was confirmed by numerical simulation: the new method is better than straight coupling between the optical fiber and the rectangular microwaveguide, and more than 2.8 dB improvement of coupling efficiency is achieved. © 2012 Optical Society of America
Electrochemical Evaluations of Fractal Microelectrodes for Energy Efficient Neurostimulation.
Park, Hyunsu; Takmakov, Pavel; Lee, Hyowon
2018-03-12
Advancements in microfabrication has enabled manufacturing of microscopic neurostimulation electrodes with smaller footprint than ever possible. The smaller electrodes can potentially reduce tissue damage and allow better spatial resolution for neural stimulation. Although electrodes of any shape can easily be fabricated, substantial effort have been focused on identification and characterization of new materials and surface morphology for efficient charge injection, while maintaining simple circular or rectangular Euclidean electrode geometries. In this work we provide a systematic electrochemical evaluation of charge injection capacities of serpentine and fractal-shaped platinum microelectrodes and compare their performance with traditional circular microelectrodes. Our findings indicate that the increase in electrode perimeter leads to an increase in maximum charge injection capacity. Furthermore, we found that the electrode geometry can have even more significant impact on electrode performance than having a larger perimeter for a given surface area. The fractal-shaped microelectrodes, despite having smaller perimeter than other designs, demonstrated superior charge injection capacity. Our results suggest that electrode design can significantly affect both Faradaic and non-Faradaic electrochemical processes, which may be optimized to enable a more energy efficient design for neurostimulation.
Kazi, Salim Newaz; Sadeghinezhad, Emad
2014-01-01
Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations. PMID:25254236
Yarmand, Hooman; Gharehkhani, Samira; Kazi, Salim Newaz; Sadeghinezhad, Emad; Safaei, Mohammad Reza
2014-01-01
Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations.
Rectangular Ion Funnel: A New Ion Funnel Interface for Structures for Lossless Ion Manipulations
Chen, Tsung-Chi; Webb, Ian K.; Prost, Spencer A.; ...
2014-11-19
A recent achievement in Structures for Lossless Ion Manipulations (SLIM) is the ability for near lossless ion focusing, transfer, and trapping in sub-atmospheric pressure regions. While lossless ion manipulations are advantageously applied to the applications of ion mobility separations and gas phase reactions, ion introduction through ring electrode ion funnels or more conventional ion optics to SLIM can involve discontinuities in electric fields or other perturbations that result in ion losses. In this work, we investigated a new funnel design that aims to seamlessly couple to SLIM at the funnel exit. This rectangular ion funnel (RIF) was initially evaluated bymore » ion simulations, fabricated utilizing printed circuit board technology and tested experimentally. The RIF was integrated to a SLIM-TOFMS system, and the operating parameters, including RF, DC bias of the RIF electrodes, and electric fields for effectively interfacing with a SLIM were characterized. The RIF provided a 2-fold sensitivity increase without significant discrimination over a wide m/z range along with greatly improved SLIM operational stability.« less
Effect of inlet conditions for numerical modelling of the urban boundary layer
NASA Astrophysics Data System (ADS)
Gnatowska, Renata
2018-01-01
The paper presents the numerical results obtained with the use of the ANSYS FLUENT commercial code for analysing the flow structure around two rectangular inline surface-mounted bluff bodies immersed in a boundary layer. The effects of the inflow boundary layer for the accuracy of the numerical modelling of the flow field around a simple system of objects are described. The analysis was performed for two concepts. In the former case, the inlet velocity profile was defined using the power law, whereas the kinetic and dissipation energy was defined from the equations according to Richards and Hoxey [1]. In the latter case, the inlet conditions were calculated for the flow over the rough area composed of the rectangular components.
Electrostatic focusing of directly heated linear filament gun using EGUN
NASA Astrophysics Data System (ADS)
Iqbal, Munawar; Lodhi, M. A. K.; Majeed, Zahid; Batani, Dimitri
2011-06-01
This paper presents the optimization of a line source rectangular electron gun using electrostatic focusing. We optimized the gun by shaping the configuration of its electrodes in order to achieve the desired focusing characteristics, namely maximum focusing distance and minimum beam spread. The optimization has been carried out using the software EGUN. We have also simplified the gun design using only one focusing electrode at the same potential as that of the cathode and by avoiding magnetic focusing field, separate focusing electrodes and additional power supply, thus minimizing the cost without any loss in its accuracy and efficient performance. This gun with the optimum configuration was used in actual experiment and the results of the simulation were compared with the experimental measurements.
Biswas, Sanjib; Drzal, Lawrence T
2010-08-01
The diverse physical and chemical aspects of graphene nanosheets such as particle size surface area and edge chemistry were combined to fabricate a new supercapacitor electrode architecture consisting of a highly aligned network of large-sized nanosheets as a series of current collectors within a multilayer configuration of bulk electrode. Capillary driven self-assembly of monolayers of graphene nanosheets was employed to create a flexible, multilayer, free-standing film of highly hydrophobic nanosheets over large macroscopic areas. This nanoarchitecture exhibits a high-frequency capacitative response and a nearly rectangular cyclic voltammogram at 1000 mV/s scanning rate and possesses a rapid current response, small equivalent series resistance (ESR), and fast ionic diffusion for high-power electrical double-layer capacitor (EDLC) application.
Advanced porous electrodes with flow channels for vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Bhattarai, Arjun; Wai, Nyunt; Schweiss, Ruediger; Whitehead, Adam; Lim, Tuti M.; Hng, Huey Hoon
2017-02-01
Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution.
Effect of curvature on the backscattering from leaves
NASA Technical Reports Server (NTRS)
Sarabandi, K.; Senior, T. B. A.; Ulaby, F. T.
1988-01-01
Using a model previously developed for the backscattering cross section of a planar leaf at X-band frequencies and above, the effect of leaf curvature is examined. For normal incidence on a rectangular section of a leaf curved in one and two dimensions, an integral expression for the backscattered field is evaluated numerically and by a stationary phase approximation, leading to a simple analytical expression for the cross section reduction produced by the curvature. Numerical results based on the two methods are virtually identical, and in excellent agreement with measured data for rectangular sections of coleus leaves applied to the surfaces of styrofoam cylinders and spheres of different radii.
Effect of curvature on the backscattering from a leaf
NASA Technical Reports Server (NTRS)
Sarabandi, K.; Senior, T. B. A.; Ulaby, F. T.
1988-01-01
Using a model previously developed for the backscattering cross section of a planar leaf at X-band frequencies and above, the effect of leaf curvature is examined. For normal incidence on a rectangular section of a leaf curved in one and two dimensions, an integral expression for the backscattered field is evaluated numerically and by a stationary phase approximation, leading to a simple analytical expression for the cross-section reduction produced by the curvature. Numerical results based on the two methods are virtually identical, and in excellent agreement with measured data for rectangular sections of coleus leaves applied to the surfaces of styrofoam cylinders and spheres of different radii.
Gao, Mingzhong; Yu, Bin; Qiu, Zhiqiang; Yin, Xiangang; Li, Shengwei; Liu, Qiang
2017-01-01
Rectangular caverns are increasingly used in underground engineering projects, the failure mechanism of rectangular cavern wall rock is significantly different as a result of the cross-sectional shape and variations in wall stress distributions. However, the conventional computational method always results in a long-winded computational process and multiple displacement solutions of internal rectangular wall rock. This paper uses a Laurent series complex method to obtain a mapping function expression based on complex variable function theory and conformal transformation. This method is combined with the Schwarz-Christoffel method to calculate the mapping function coefficient and to determine the rectangular cavern wall rock deformation. With regard to the inverse mapping concept, the mapping relation between the polar coordinate system within plane ς and a corresponding unique plane coordinate point inside the cavern wall rock is discussed. The disadvantage of multiple solutions when mapping from the plane to the polar coordinate system is addressed. This theoretical formula is used to calculate wall rock boundary deformation and displacement field nephograms inside the wall rock for a given cavern height and width. A comparison with ANSYS numerical software results suggests that the theoretical solution and numerical solution exhibit identical trends, thereby demonstrating the method's validity. This method greatly improves the computing accuracy and reduces the difficulty in solving for cavern boundary and internal wall rock displacements. The proposed method provides a theoretical guide for controlling cavern wall rock deformation failure.
Gao, Mingzhong; Qiu, Zhiqiang; Yin, Xiangang; Li, Shengwei; Liu, Qiang
2017-01-01
Rectangular caverns are increasingly used in underground engineering projects, the failure mechanism of rectangular cavern wall rock is significantly different as a result of the cross-sectional shape and variations in wall stress distributions. However, the conventional computational method always results in a long-winded computational process and multiple displacement solutions of internal rectangular wall rock. This paper uses a Laurent series complex method to obtain a mapping function expression based on complex variable function theory and conformal transformation. This method is combined with the Schwarz-Christoffel method to calculate the mapping function coefficient and to determine the rectangular cavern wall rock deformation. With regard to the inverse mapping concept, the mapping relation between the polar coordinate system within plane ς and a corresponding unique plane coordinate point inside the cavern wall rock is discussed. The disadvantage of multiple solutions when mapping from the plane to the polar coordinate system is addressed. This theoretical formula is used to calculate wall rock boundary deformation and displacement field nephograms inside the wall rock for a given cavern height and width. A comparison with ANSYS numerical software results suggests that the theoretical solution and numerical solution exhibit identical trends, thereby demonstrating the method’s validity. This method greatly improves the computing accuracy and reduces the difficulty in solving for cavern boundary and internal wall rock displacements. The proposed method provides a theoretical guide for controlling cavern wall rock deformation failure. PMID:29155892
NASA Astrophysics Data System (ADS)
Chen, Lei
2005-11-01
Electroosmotic flow in nanochannels is characterized by a very small Reynolds number so that mixing is difficult. While several researchers have presented results for the case of periodic wall potential, and for a sudden change in potential there has been no systematic study of the effect of the variation of wall potential on the flow structure. We have calculated the flow and mass transport in a two-dimensional nanochannel having discontinuities in wall potential. Multiple nano-vortices are generated within the bulk flow due to the overpotential at the surface. The distributions of potential, velocity and mole fractions are calculated numerically and the structure of the flow within the ``nano-vortices'' resembles that of the classical Lamb vortex. The parameters that affect the circulation are investigated as well. The long electrode limit (the aspect ratio much less than one ) is investigated for small channels (EDLs are overlapped) and wide (thin EDL) channels as well. It is found that the flow is two-dimensional only near the corners of the electrode and is fully-developed elsewhere. The flow can be thus decomposed into one-dimensional electroosmotic flow and Poiseuille flow. For a wide channel, a singular perturbation analysis is performed for the electroosmotic component. The results are compared with recently generated experimental data. *This work is supported by the Air Force Office of Scientific Research through its Multi-University Research Initiative(MURI) program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslami, E., E-mail: eeslami@iust.ac.ir; Barjasteh, A.; Morshedian, N.
2015-06-15
In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown thatmore » applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap.« less
Scattered acoustic field above a grating of parallel rectangular cavities
NASA Astrophysics Data System (ADS)
Khanfir, A.; Faiz, A.; Ducourneau, J.; Chatillon, J.; Skali Lami, S.
2013-02-01
The aim of this research project was to predict the sound pressure above a wall facing composed of N parallel rectangular cavities. The diffracted acoustic field is processed by generalizing the Kobayashi Potential (KP) method used for determining the electromagnetic field diffracted by a rectangular cavity set in a thick screen. This model enables the diffracted field to be expressed in modal form. Modal amplitudes are subsequently calculated using matrix equations obtained by enforcing boundary conditions. Solving these equations allows the determination of the total reflected acoustic field above the wall facing. This model was compared with experimental results obtained in a semi-anechoic room for a single cavity, a periodic array of three rectangular cavities and an aperiodic grating of nine rectangular cavities of different size and spacing. These facings were insonified by an incident spherical acoustic field, which was decomposed into plane waves. The validity of this model is supported by the agreement between the numerical and experimental results observed.
Chao, Kan; Chen, Bo; Wu, Jiankang
2010-12-01
The formation of an electric double layer and electroosmosis are important theoretic foundations associated with microfluidic systems. Field-modulated electroosmotic flows in microchannels can be obtained by applying modulating electric fields in a direction perpendicular to a channel wall. This paper presents a systematic numerical analysis of modulated electroosmotic flows in a microchannel with discrete electrodes on the basis of the Poisson equation of electric fields in a liquid-solid coupled domain, the Navier-Stokes equation of liquid flow, and the Nernst-Planck equation of ion transport. These equations are nonlinearly coupled and are simultaneously solved numerically for the electroosmotic flow velocity, electric potential, and ion concentrations in the microchannel. A number of numerical examples of modulated electroosmotic flows in microchannels with discrete electrodes are presented, including single electrodes, symmetric/asymmetric double electrodes, and triple electrodes. Numerical results indicate that chaotic circulation flows, micro-vortices, and effective fluid mixing can be realized in microchannels by applying modulating electric fields with various electrode configurations. The interaction of a modulating field with an applied field along the channel is also discussed.
NASA Astrophysics Data System (ADS)
Buonomo, B.; Cirillo, L.; Manca, O.; Nardini, S.; Tamburrino, S.
2017-01-01
In this paper a numerical investigation on laminar forced convection flow of a water-Al2O3 nanofluid in a rectangular microchannel is accomplished. A constant and uniform heat flux on the external surfaces has been applied and a single-phase model approach has been employed. The analysis has been performed in steady state regime for particle size in nanofluids equal to 38 nm. The CFD commercial code Fluent has been employed in order to solve the 3-D numerical model. The geometrical configuration under consideration consists in a duct with a rectangular shaped crossing area. A steady laminar flow and different nanoparticle volume fractions have been considered. The base fluid is water and nanoparticles are made up of alumina (Al2O3). The length the edge and height of the duct are 0.030 m, 1.7 x10-7 and 1.1 x10-7 m, respectively. Results are presented in terms of temperature and velocity distributions, surface shear stress and heat transfer convective coefficient, Nusselt number and required pumping power profiles. Comparison with results related to the fluid dynamic and thermal behaviors are carried out in order to evaluate the enhancement due to the presence of nanoparticles in terms of volumetric concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McHugh, P.R.; Ramshaw, J.D.
MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equationmore » voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.« less
NASA Astrophysics Data System (ADS)
Ali, Sajid; Kamran, Muhammad Ali; Khan, Sikandar
2017-11-01
The fluid sloshing in partially filled road tankers has significantly increased the number of road accidents for the last few decades. Significant research is needed to investigate and to come up with optimum baffles designs that can help to increase the rollover stability of the partially filled tankers. In this investigation, a detailed analysis of the anti-slosh effectiveness of different baffle configurations is presented. This investigation extends the already available studies in the literature by introducing new modified rectangular tank's shapes that correspond to maximum rollover stability as compared to the already available standard tank designs. The various baffles configurations that are analysed in this study are horizontal, vertical, vertical-horizontal and diagonal. In the current study, numerical investigations are performed for rectangular, elliptical and circular tank shapes. Lateral sloshing, caused by constant radius turn manoeuvre, was simulated numerically using the volume-of-fluid method, and effect of the different baffle configurations was analysed. The effect of tank fill levels on sloshing measured in terms of horizontal force and pressure moments is also reported for with and without baffles configurations. Vertical baffles were the most effective at reducing sloshing in modified rectangular tanks, whereas a combination of horizontal and vertical baffles gave better results for the circular and elliptical tanks geometries.
2017-05-31
SUBJECT TERMS nonlinear finite element calculations, nuclear explosion monitoring, topography 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...3D North Korea calculations........ Figure 6. The CRAM 3D finite element outer grid (left) is rectangular......................... Figure 7. Stress...Figure 6. The CRAM 3D finite element outer grid (left) is rectangular. The inner grid (center) is shaped to match the shape of the explosion shock wave
Fabrication of an X-Ray Imaging Detector
NASA Technical Reports Server (NTRS)
Alcorn, G. E.; Burgess, A. S.
1986-01-01
X-ray detector array yields mosaic image of object emitting 1- to 30-keV range fabricated from n-doped silicon wafer. In proposed fabrication technique, thin walls of diffused n+ dopant divide wafer into pixels of rectangular cross section, each containing central electrode of thermally migrated p-type metal. This pnn+ arrangement reduces leakage current by preventing transistor action caused by pnp structure of earlier version.
Stability of Capillary Surfaces in Rectangular Containers: The Right Square Cylinder
NASA Technical Reports Server (NTRS)
Weislogel, M. M.; Hsieh, K. C.
1998-01-01
The linearized governing equations for an ideal fluid are presented for numerical analysis for the stability of free capillary surfaces in rectangular containers against unfavorable disturbances (accelerations,i.e. Rayleigh-Taylor instability). The equations are solved for the case of the right square cylinder. The results are expressed graphically in term of a critical Bond number as a function of system contact angle. A critical wetting phenomena in the corners is shown to significantly alter the region of stability for such containers in contrast to simpler geometries such as the right circular cylinder or the infinite rectangular slot. Such computational results provide additional constraints for the design of fluids systems for space-based applications.
NASA Astrophysics Data System (ADS)
Lyashko, A. D.
2017-11-01
A new analytical presentation of the solution for steady-state oscillations of orthotopic rectangular prism is found. The corresponding infinite system of linear algebraic equations has been deduced by the superposition method. A countable set of precise eigenfrequencies and elementary eigenforms is found. The identities are found which make it possible to improve the convergence of all the infinite series in the solution of the problem. All the infinite series in presentation of solution are analytically summed up. Numerical calculations of stresses in the rectangular orthotropic prism with a uniform along the border and harmonic in time load on two opposite faces have been performed.
Gupta, Amar Prasad; Park, Sangjun; Yeo, Seung Jun; Jung, Jaeik; Cho, Chonggil; Paik, Sang Hyun; Park, Hunkuk; Cho, Young Chul; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang
2017-07-29
We report the design, fabrication and characterization of a carbon nanotube enabled open-type X-ray system for medical imaging. We directly grew the carbon nanotubes used as electron emitter for electron gun on a non-polished raw metallic rectangular-rounded substrate with an area of 0.1377 cm² through a plasma enhanced chemical vapor deposition system. The stable field emission properties with triode electrodes after electrical aging treatment showed an anode emission current of 0.63 mA at a gate field of 7.51 V/μm. The 4.5-inch cubic shape open type X-ray system was developed consisting of an X-ray aperture, a vacuum part, an anode high voltage part, and a field emission electron gun including three electrodes with focusing, gate and cathode electrodes. Using this system, we obtained high-resolution X-ray images accelerated at 42-70 kV voltage by digital switching control between emitter and ground electrode.
Gupta, Amar Prasad; Park, Sangjun; Yeo, Seung Jun; Jung, Jaeik; Cho, Chonggil; Paik, Sang Hyun; Park, Hunkuk; Cho, Young Chul; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang
2017-01-01
We report the design, fabrication and characterization of a carbon nanotube enabled open-type X-ray system for medical imaging. We directly grew the carbon nanotubes used as electron emitter for electron gun on a non-polished raw metallic rectangular-rounded substrate with an area of 0.1377 cm2 through a plasma enhanced chemical vapor deposition system. The stable field emission properties with triode electrodes after electrical aging treatment showed an anode emission current of 0.63 mA at a gate field of 7.51 V/μm. The 4.5-inch cubic shape open type X-ray system was developed consisting of an X-ray aperture, a vacuum part, an anode high voltage part, and a field emission electron gun including three electrodes with focusing, gate and cathode electrodes. Using this system, we obtained high-resolution X-ray images accelerated at 42–70 kV voltage by digital switching control between emitter and ground electrode. PMID:28773237
Calculation of wakefields in 2D rectangular structures
Zagorodnov, I.; Bane, K. L. F.; Stupakov, G.
2015-10-19
We consider the calculation of electromagnetic fields generated by an electron bunch passing through a vacuum chamber structure that, in general, consists of an entry pipe, followed by some kind of transition or cavity, and ending in an exit pipe. We limit our study to structures having rectangular cross section, where the height can vary as function of longitudinal coordinate but the width and side walls remain fixed. For such structures, we derive a Fourier representation of the wake potentials through one-dimensional functions. A new numerical approach for calculating the wakes in such structures is proposed and implemented in themore » computer code echo(2d). The computation resource requirements for this approach are moderate and comparable to those for finding the wakes in 2D rotationally symmetric structures. Finally, we present numerical examples obtained with the new numerical code.« less
NASA Astrophysics Data System (ADS)
Sholiyi, Olusegun Samuel
As the demand for smaller size, lighter weight, lower loss and cost of communications transmit and receive (T/R) modules increases, there is an urgent need to focus investigation to the major subsystem or components that can improve these parameters. Phase shifters contribute greatly to the cost of T/R modules, and thus this research investigation examines a new way to reduce the weight and cost by miniaturizing the phaser design. Characterization of hexaferrite powders compatible with the sequential multilayer micro-fabrication technology and numerical simulations of a novel rectangular micro-coaxial phase shifter are investigated. This effort aims to integrate ferrite material into a rectangular micro-coaxial waveguide at Ka-band using electromagnetic finite element numerical tools. The proposed technique exploits rectangular coaxial waveguide with a symmetrically placed inner signal conductor inside an outer conductor connected to the ground. Strontium ferrite-SU8 composite is used as an anisotropic material of choice in the modelled design. Numerical modeling is employed using High Frequency Structure Simulator, HFSS, a 3-D full wave electromagnetic solver for analyzing the performance of the device. Two model structures were designed for reciprocal and non-reciprocal applications. The first model (Model A) produced a tunable phase shift of almost 60 degrees /cm across 0 to 400 kA/m applied field and at 1800 Gauss. In model B, a non-reciprocal phase shift performance of 20 degrees /cm from a reference phase of 24 degrees at 0 A/m was realized at the same saturation magnetization. A return loss better than 20 dB and an insertion loss less than 1.5 dB were obtained for both models.
Transition between free, mixed and forced convection
NASA Astrophysics Data System (ADS)
Jaeger, W.; Trimborn, F.; Niemann, M.; Saini, V.; Hering, W.; Stieglitz, R.; Pritz, B.; Fröhlich, J.; Gabi, M.
2017-07-01
In this contribution, numerical methods are discussed to predict the heat transfer to liquid metal flowing in rectangular flow channels. A correct representation of the thermo-hydraulic behaviour is necessary, because these numerical methods are used to perform design and safety studies of components with rectangular channels. Hence, it must be proven that simulation results are an adequate representation of the real conditions. Up to now, the majority of simulations are related to forced convection of liquid metals flowing in circular pipes or rod bundle, because these geometries represent most of the components in process engineering (e.g. piping, heat exchanger). Open questions related to liquid metal heat transfer, among others, is the behaviour during the transition of the heat transfer regimes. Therefore, this contribution aims to provide useful information related to the transition from forced to mixed and free convection, with the focus on a rectangular flow channel. The assessment of the thermo-hydraulic behaviour under transitional heat transfer regimes is pursued by means of system code simulations, RANS CFD simulations, LES and DNS, and experimental investigations. Thereby, each of the results will compared to the others. The comparison of external experimental data, DNS data, RANS data and system code simulation results shows that the global heat transfer can be consistently represented for forced convection in rectangular flow channels by these means. Furthermore, LES data is in agreement with RANS CFD results for different Richardson numbers with respect to temperature and velocity distribution. The agreement of the simulation results among each other and the hopefully successful validation by means of experimental data will fosters the confidence in the predicting capabilities of numerical methods, which can be applied to engineering application.
An analysis of stepped trapezoidal-shaped microcantilever beams for MEMS-based devices
NASA Astrophysics Data System (ADS)
Ashok, Akarapu; Gangele, Aparna; Pal, Prem; Pandey, Ashok Kumar
2018-07-01
Microcantilever beams are the most widely used mechanical elements in the design and fabrication of MEMS/NEMS-based sensors and actuators. In this work, we have proposed a new microcantilever beam design based on a stepped trapezoidal-shaped microcantilever. Single-, double-, triple- and quadruple-stepped trapezoidal-shaped microcantilever beams along with conventional rectangular-shaped microcantilever beams were analysed experimentally, numerically and analytically. The microcantilever beams were fabricated from silicon dioxide material using wet bulk micromachining in 25 wt% TMAH. The length, width and thickness of the microcantilever beams were fixed at 200, 40 and 0.96 µm, respectively. A laser vibrometer was utilized to measure the resonance frequency and Q-factor of the microcantilever beams in vacuum as well as in ambient conditions. Furthermore, finite element analysis software, ANSYS, was employed to numerically analyse the resonance frequency, maximum deflection and torsional end rotation of all the microcantilever beam designs. The analytical and numerical resonance frequencies are found to be in good agreement with the experimental resonance frequencies. In the stepped trapezoidal-shaped microcantilever beams with an increasing number of steps, the Q-factor, maximum deflection and torsional end rotation were improved, whereas the resonance frequency was slightly reduced. Nevertheless, the resonance frequency is higher than the basic rectangular-shaped microcantilever beam. The observed quality factor, maximum deflection and torsional end rotation for a quadruple-stepped trapezoidal-shaped microcantilever are 38%, 41% and 52%, respectively, which are higher than those of conventional rectangular-shaped microcantilever beams. Furthermore, for an applied concentrated mass of 1 picogram on the cantilever surface, a greater shift in frequency is obtained for all the stepped trapezoidal-shaped microcantilever beam designs compared to the conventional rectangular microcantilever beam.
A clamped rectangular plate containing a crack
NASA Technical Reports Server (NTRS)
Tang, R.; Erdogan, F.
1985-01-01
The general problem of a rectangular plate clamped along two parallel sides and containing a crack parallel to the clamps is considered. The problem is formulated in terms of a system of singular integral equations and the asymptotic behavior of the stress state near the corners is investigated. Numerical examples are considered for a clamped plate without a crack and with a centrally located crack, and the stress intensity factors and the stresses along the clamps are calculated.
NASA Technical Reports Server (NTRS)
Bunting, Charles F.; Yu, Shih-Pin
2006-01-01
This paper emphasizes the application of numerical methods to explore the ideas related to shielding effectiveness from a statistical view. An empty rectangular box is examined using a hybrid modal/moment method. The basic computational method is presented followed by the results for single- and multiple observation points within the over-moded empty structure. The statistics of the field are obtained by using frequency stirring, borrowed from the ideas connected with reverberation chamber techniques, and extends the ideas of shielding effectiveness well into the multiple resonance regions. The study presented in this paper will address the average shielding effectiveness over a broad spatial sample within the enclosure as the frequency is varied.
An Investigation of the Hypoalgesic Effects of TENS Delivered by a Glove Electrode
Cowan, Stephen; McKenna, Joanne; McCrum-Gardner, Evie; Johnson, Mark I.; Sluka, Kathleen A.; Walsh, Deirdre M.
2009-01-01
This randomized, placebo-controlled, blinded study investigated the hypoalgesic effects of high-frequency transcutaneous electrical nerve stimulation (TENS) delivered via a glove electrode compared with standard self-adhesive electrodes. Fifty-six TENS-naïve, healthy individuals (18 to 50 years old; 28 men, 28 women) were randomly allocated to 1 of 4 groups (n = 14 per group): glove electrode; placebo TENS using a glove electrode; standard electrode; and no treatment control. Active TENS (continuous stimulus, 100 Hz, strong but comfortable intensity) was applied to the dominant forearm/hand for 30 minutes. Placebo TENS was applied using a burst stimulus, 100-Hz frequency, 5-second cycle time for 42 seconds, after which the current amplitude was automatically reset to 0 mA. Pressure pain thresholds (PPTs) were recorded from 3 points on the dominant and nondominant upper limbs before and after TENS. Statistical analyses of dominant PPT data using between-within groups ANOVA showed significant differences between groups at all 3 recording points (P = .01). Post hoc Scheffe tests indicated no significant difference between the standard electrode and glove electrode groups. There was a significant hypoalgesic effect in the standard electrode group compared with the control group and between the glove electrode group and both the control and placebo TENS groups. There was no significant interactive effect between time and group at any of the recording points (P > .05). Perspective This study presents a comparison of the hypoalgesic effects of 2 different types of TENS electrode, a novel glove electrode and standard self-adhesive rectangular electrodes. The glove electrode provides a larger contact area with the skin, thereby stimulating a greater number of nerve fibers. The results show that both electrodes have similar hypoalgesic effects and therefore give the clinician another choice in electrode. PMID:19398378
Exponential current pulse generation for efficient very high-impedance multisite stimulation.
Ethier, S; Sawan, M
2011-02-01
We describe in this paper an intracortical current-pulse generator for high-impedance microstimulation. This dual-chip system features a stimuli generator and a high-voltage electrode driver. The stimuli generator produces flexible rising exponential pulses in addition to standard rectangular stimuli. This novel stimulation waveform is expected to provide superior energy efficiency for action potential triggering while releasing less toxic reduced ions in the cortical tissues. The proposed fully integrated electrode driver is used as the output stage where high-voltage supplies are generated on-chip to significantly increase the voltage compliance for stimulation through high-impedance electrode-tissue interfaces. The stimuli generator has been implemented in 0.18-μm CMOS technology while a 0.8-μm CMOS/DMOS process has been used to integrate the high-voltage output stage. Experimental results show that the rectangular pulses cover a range of 1.6 to 167.2 μA with a DNL and an INL of 0.098 and 0.163 least-significant bit, respectively. The maximal dynamic range of the generated exponential reaches 34.36 dB at full scale within an error of ± 0.5 dB while all of its parameters (amplitude, duration, and time constant) are independently programmable over wide ranges. This chip consumes a maximum of 88.3 μ W in the exponential mode. High-voltage supplies of 8.95 and -8.46 V are generated by the output stage, boosting the voltage swing up to 13.6 V for a load as high as 100 kΩ.
NASA Astrophysics Data System (ADS)
Zhou, Wenhe; He, Xuan; Wu, Jianyun; Wang, Liangbi; Wang, Liangcheng
2017-07-01
The parallel plate capacitive humidity sensor based on the grid upper electrode is considered to be a promising one in some fields which require a humidity sensor with better dynamic characteristics. To strengthen the structure and balance the electric charge of the grid upper electrode, a strip is needed. However, it is the strip that keeps the dynamic characteristics of the sensor from being further improved. The numerical method is time- and cost-saving, but the numerical study on the response time of the sensor is just of bits and pieces. The numerical models presented by these studies did not consider the porosity effect of the polymer film on the dynamic characteristics. To overcome the defect of the grid upper electrode, a new structure of the upper electrode is provided by this paper first, and then a model considering the porosity effects of the polymer film on the dynamic characteristics is presented and validated. Finally, with the help of software FLUENT, parameter effects on the response time of the humidity sensor based on the microhole upper electrode are studied by the numerical method. The numerical results show that the response time of the microhole upper electrode sensor is 86% better than that of the grid upper electrode sensor, the response time of humidity sensor can be improved by reducing the hole spacing, increasing the aperture, reducing film thickness, and reasonably enlarging the porosity of the film.
Method of fabricating an imaging X-ray spectrometer
NASA Technical Reports Server (NTRS)
Alcorn, G. E. (Inventor); Burgess, A. S. (Inventor)
1986-01-01
A process for fabricating an X-ray spectrometer having imaging and energy resolution of X-ray sources is discussed. The spectrometer has an array of adjoinging rectangularly shaped detector cells formed in a silicon body. The walls of the cells are created by laser drilling holes completely through the silicon body and diffusing n(+) phosphorous doping material therethrough. A thermally migrated aluminum electrode is formed centrally through each of the cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peplov, Vladimir V; Saethre, Robert B
The Spallation Neutron Source (SNS) Linac Low Energy Beam Transport (LEBT) chopper system provides fast chopping of the H- ion beam in the LEBT structure. Four identical pulsed power supplies (pulsers) create a series of 2.5 kV pulses to the four deflection electrodes floating on the focusing voltage of -50 kV. Each pulser is connected to the electrode through the network which consists of high voltage (HV) cables, a blocking capacitor, HV feed-through connectors, current-limiting resistors and transient voltage suppressors. Effective beam chopping requires minimal rise/fall time of the rectangular HV pulses on the load. In the present configuration thesemore » values are approximately 100 ns. Methods of reducing rise/fall time on the LEBT electrodes are discussed. Results of simulation and comparative measurements of the original and upgraded system on the test stand are presented. Furthermore, the effect of these changes on reliability degradation caused by arcing in the LEBT structure is discussed.« less
NASA Astrophysics Data System (ADS)
Weiss, Florian M.; Töpper, Tino; Osmani, Bekim; Winterhalter, Carla; Müller, Bert
2014-03-01
Compliant electrodes of microstructures have been a research topic for many years because of the increasing interest in consumer electronics, robotics, and medical applications. This interest includes electrically activated polymers (EAP), mainly applied in robotics, lens systems, haptics and foreseen in a variety of medical devices. Here, the electrodes consist of metals such as gold, graphite, conductive polymers or certain composites. The common metal electrodes have been magnetron sputtered, thermally evaporated or prepared using ion implantation. In order to compare the functionality of planar metal electrodes in EAP microstructures, we have investigated the mechanical properties of magnetron sputtered and thermally evaporated electrodes taking advantage of cantilever bending of the asymmetric, rectangular microstructures. We demonstrate that the deflection of the sputtered electrodes is up to 39 % larger than that of thermally evaporated nanometer-thin film on a single silicone film. This difference has even more impact on nanometer-thin, multi-stack, low-voltage EAP actuators. The stiffening effect of many metallic electrode layers is expected to be one of the greatest drawbacks in the multi-stack approaches, which will be even more pronounced if the elastomer layer thickness will be in the sub-micrometer range. Additionally, an improvement in voltage and strain resolution is presented, which is as low as 2 V or 5 × 10-5 above 10 V applied.
Amatore, Christian; Oleinick, Alexander; Klymenko, Oleksiy V; Svir, Irina
2005-08-12
Herein, we propose a method for reconstructing any plausible macroscopic hydrodynamic flow profile occurring locally within a rectangular microfluidic channel. The method is based on experimental currents measured at single or double microband electrodes embedded in one channel wall. A perfectly adequate quasiconformal mapping of spatial coordinates introduced in our previous work [Electrochem. Commun. 2004, 6, 1123] and an exponentially expanding time grid, initially proposed [J. Electroanal. Chem. 2003, 557, 75] in conjunction with the solution of the corresponding variational problem approached by the Ritz method are used for the numerical reconstruction of flow profiles. Herein, the concept of the method is presented and developed theoretically and its validity is tested on the basis of the use of pseudoexperimental currents emulated by simulation of the diffusion-convection problem in a channel flow cell, to which a random Gaussian current noise is added. The flow profiles reconstructed by our method compare successfully with those introduced a priori into the simulations, even when these include significant distortions compared with either classical Poiseuille or electro-osmotic flows.
Bending of Rectangular Plates with Large Deflections
NASA Technical Reports Server (NTRS)
Levy, Samuel
1942-01-01
The solution of von Karman's fundamental equations for large deflections of plates is presented for the case of a simply supported rectangular plate under combined edge compression and lateral loading. Numerical solutions are given for square plates and for rectangular plates with a width-span ratio of 3:1. The effective widths under edge compression are compared with effective widths according to von Karman, Bengston, Marguerre, and Cox and with experimental results by Ramberg, McPherson, and Levy. The deflections for a square plate under lateral pressure are compared with experimental and theoretical results by Kaiser. It is found that the effective widths agree closely with Marguerre's formula and with the experimentally observed values and that the deflections agree with the experimental results and with Kaiser's work.
Creating virtual electrodes with 2D current steering
NASA Astrophysics Data System (ADS)
Spencer, Thomas C.; Fallon, James B.; Shivdasani, Mohit N.
2018-06-01
Objective. Current steering techniques have shown promise in retinal prostheses as a way to increase the number of distinct percepts elicitable without increasing the number of implanted electrodes. Previously, it has been shown that ‘virtual’ electrodes can be created between simultaneously stimulated electrode pairs, producing unique cortical response patterns. This study investigated whether virtual electrodes could be created using 2D current steering, and whether these virtual electrodes can produce cortical responses with predictable spatial characteristics. Approach. Normally-sighted eyes of seven adult anaesthetised cats were implanted with a 42-channel electrode array in the suprachoroidal space and multi-unit neural activity was recorded from the visual cortex. Stimuli were delivered to individual physical electrodes, or electrodes grouped into triangular, rectangular, and hexagonal arrangements. Varying proportions of charge were applied to each electrode in a group to ‘steer’ current and create virtual electrodes. The centroids of cortical responses to stimulation of virtual electrodes were compared to those evoked by stimulation of single physical electrodes. Main results. Responses to stimulation of groups of up to six electrodes with equal ratios of charge on each electrode resulted in cortical activation patterns that were similar to those elicited by the central physical electrode (centroids: RM ANOVA on ranks, p > 0.05 neural spread: one-way ANOVA on Ranks, p > 0.05). We were also able to steer the centroid of activation towards the direction of any of the electrodes of the group by applying a greater charge to that electrode, but the movement in the centroid was not found to be significant. Significance. The results suggest that current steering is possible in two dimensions between up to at least six electrodes, indicating it may be possible to increase the number of percepts in patients without increasing the number of physical electrodes. Being able to reproduce spatial characteristics of responses to individual physical electrodes suggests that this technique could also be used to compensate for faulty electrodes.
Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations
NASA Astrophysics Data System (ADS)
Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.
2016-09-01
The mode-selective microwave reflector with periodic rectangular corrugations in the inner surface of a circular metallic waveguide is studied in this paper. The relations between the bandwidth and reflection coefficient for different numbers of corrugation sections were studied through a global optimization method. Two types of reflectors were investigated. One does not consider the phase response and the other does. Both types of broadband reflectors operating at W-band were machined and measured to verify the numerical simulations.
Application of Finite Element Method to Analyze Inflatable Waveguide Structures
NASA Technical Reports Server (NTRS)
Deshpande, M. D.
1998-01-01
A Finite Element Method (FEM) is presented to determine propagation characteristics of deformed inflatable rectangular waveguide. Various deformations that might be present in an inflatable waveguide are analyzed using the FEM. The FEM procedure and the code developed here are so general that they can be used for any other deformations that are not considered in this report. The code is validated by applying the present code to rectangular waveguide without any deformations and comparing the numerical results with earlier published results.
Kazys, Rymantas J.; Sliteris, Reimondas; Sestoke, Justina
2017-01-01
For improvement of the efficiency of air-coupled ultrasonic transducers PMN-32%PT piezoelectric crystals which possess very high piezoelectric properties may be used. The electromechanical coupling factor of such crystals for all main vibration modes such as the thickness extension and transverse extension modes is more than 0.9. Operation of ultrasonic transducers with such piezoelectric elements in transmitting and receiving modes is rather different. Therefore, for transmission and reception of ultrasonic signals, separate piezoelectric elements with different dimensions must be used. The objective of this research was development of novel air-coupled ultrasonic receivers with PMN-32%PT strip-like piezoelectric elements vibrating in a transverse-extension mode with electromechanically controlled operation and suitable for applications in ultrasonic arrays. Performance of piezoelectric receivers made of the PMN-32%PT strip-like elements vibrating in this mode may be efficiently controlled by selecting geometry of the electrodes covering side surfaces of the piezoelectric element. It is equivalent to introduction of electromechanical damping which does not require any additional backing element. For this purpose; we have proposed the continuous electrodes to divide into two pairs of electrodes. The one pair is used to pick up the electric signal; another one is exploited for electromechanical damping. Two types of electrodes may be used—rectangular or non-rectangular—with a gap between them directed at some angle, usually 45°. The frequency bandwidth is wider (up to 9 kHz) in the case of non-rectangular electrodes. The strip-like acoustic matching element bonded to the tip of the PMN-32%PT crystal may significantly enhance the performance of the ultrasonic receiver. It was proposed to use for this purpose AIREX T10.110 rigid polymer foam, the acoustic impedance of which is close to the optimal value necessary for matching with air. It was found that in order to get a wide bandwidth the length of the matching strip should be selected not a quarter wavelength λ/4 at the antiresonance frequency but at lower frequency. It allowed achieving the frequency bandwidth (14–18)% with respect to the central frequency at −3 dB level. PMID:29035348
NASA Astrophysics Data System (ADS)
Borisov, S. P.; Kudryavtsev, A. N.
2017-10-01
Linear and nonlinear stages of the instability of a plane detonation wave (DW) and the subsequent process of formation of cellular detonation structure are investigated. A simple model with one-step irreversible chemical reaction is used. The linear analysis is employed to predict the DW front structure at the early stages of its formation. An emerging eigenvalue problem is solved with a global method using a Chebyshev pseudospectral method and the LAPACK software library. A local iterative shooting procedure is used for eigenvalue refinement. Numerical simulations of a propagation of a DW in plane and rectangular channels are performed with a shock capturing WENO scheme of 5th order. A special method of a computational domain shift is implemented in order to maintain the DW in the domain. It is shown that the linear analysis gives certain predictions about the DW structure that are in agreement with the numerical simulations of early stages of DW propagation. However, at later stages, a merger of detonation cells occurs so that their number is approximately halved. Computations of DW propagation in a square channel reveal two different types of spatial structure of the DW front, "rectangular" and "diagonal" types. A spontaneous transition from the rectangular to diagonal type of structure is observed during propagation of the DW.
NASA Astrophysics Data System (ADS)
Abdolkader, Tarek M.; Shaker, Ahmed; Alahmadi, A. N. M.
2018-07-01
With the continuous miniaturization of electronic devices, quantum-mechanical effects such as tunneling become more effective in many device applications. In this paper, a numerical simulation tool is developed under a MATLAB environment to calculate the tunneling probability and current through an arbitrary potential barrier comparing three different numerical techniques: the finite difference method, transfer matrix method, and transmission line method. For benchmarking, the tool is applied to many case studies such as the rectangular single barrier, rectangular double barrier, and continuous bell-shaped potential barrier, each compared to analytical solutions and giving the dependence of the error on the number of mesh points. In addition, a thorough study of the J ‑ V characteristics of MIM and MIIM diodes, used as rectifiers for rectenna solar cells, is presented and simulations are compared to experimental results showing satisfactory agreement. On the undergraduate level, the tool provides a deeper insight for students to compare numerical techniques used to solve various tunneling problems and helps students to choose a suitable technique for a certain application.
Bergues Pupo, Ana E; Reyes, Juan Bory; Bergues Cabrales, Luis E; Bergues Cabrales, Jesús M
2011-09-24
Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections.
NASA Technical Reports Server (NTRS)
Nyce, Thomas A.; Quazzani, Jalil; Durand-Daubin, Arnaud; Rosenberger, Franz
1992-01-01
Mixed convection in a rectangular channel (width/height = 2) with bottom-heated and top-cooled sections is studied by laser Doppler anemometry in nitrogen at Ra = 22,200 and Re = 18.75, 36, and 54. At the lower Re values, symmetry breaking is observed in steady but spatially oscillating flows that prevail over a certain distance from the leading edge of the differentially heated section. Further downstream, unsteady flows are found even for Re = 18.75. Numerical models are used to investigate the effects of adiabatic, conducting (with a conductive-convective heat transfer coefficient), and perfectly conducting side walls; channel tilts and Prandtl number dependence. Good agreement between calculations and experiment is obtained for longitudinal convective roll velocities. The transverse velocities are found to be independent of Re.
Numerical and Experimental Dynamic Characteristics of Thin-Film Membranes
NASA Technical Reports Server (NTRS)
Young, Leyland G.; Ramanathan, Suresh; Hu, Jia-Zhu; Pai, P. Frank
2004-01-01
Presented is a total-Lagrangian displacement-based non-linear finite-element model of thin-film membranes for static and dynamic large-displacement analyses. The membrane theory fully accounts for geometric non-linearities. Fully non-linear static analysis followed by linear modal analysis is performed for an inflated circular cylindrical Kapton membrane tube under different pressures, and for a rectangular membrane under different tension loads at four comers. Finite element results show that shell modes dominate the dynamics of the inflated tube when the inflation pressure is low, and that vibration modes localized along four edges dominate the dynamics of the rectangular membrane. Numerical dynamic characteristics of the two membrane structures were experimentally verified using a Polytec PI PSV-200 scanning laser vibrometer and an EAGLE-500 8-camera motion analysis system.
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.
1995-01-01
A combined finite element method (FEM) and method of moments (MoM) technique is presented to analyze the radiation characteristics of a cavity-fed aperture in three dimensions. Generalized feed modeling has been done using the modal expansion of fields in the feed structure. Numerical results for some feeding structures such as a rectangular waveguide, circular waveguide, and coaxial line are presented. The method also uses the geometrical theory of diffraction (GTD) to predict the effect of a finite ground plane on radiation characteristics. Input admittance calculations for open radiating structures such as a rectangular waveguide, a circular waveguide, and a coaxial line are shown. Numerical data for a coaxial-fed cavity with finite ground plane are verified with experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, T.Q.; Walker, J.S.; Picologlou, B.F.
1988-07-01
Magnetohydrodynamic flows of liquid metals in rectangular ducts with thin conducting walls in the presence of strong nonuniform transverse magnetic fields are examined. The interaction parameter and Hartmann number are assumed to be large, whereas the magnetic Reynolds number is assumed to be small. Under these assumptions, viscous and inertial effects are confined in very thin boundary layers adjacent to the walls. A significant fraction of the fluid flow is concentrated in the boundary layers adjacent to the side walls which are parallel to the magnetic field. This paper describes the analysis and numerical methods for obtaining 3-D solutions formore » flow parameters outside these layers, without solving explicitly for the layers themselves. Numerical solutions are presented for cases which are relevant to the flows of liquid metals in fusion reactor blankets. Experimental results obtained from the ALEX experiments at Argonne National Laboratory are used to validate the numerical code. In general, the agreement is excellent. 5 refs., 14 figs.« less
Wave-filter-based approach for generation of a quiet space in a rectangular cavity
NASA Astrophysics Data System (ADS)
Iwamoto, Hiroyuki; Tanaka, Nobuo; Sanada, Akira
2018-02-01
This paper is concerned with the generation of a quiet space in a rectangular cavity using active wave control methodology. It is the purpose of this paper to present the wave filtering method for a rectangular cavity using multiple microphones and its application to an adaptive feedforward control system. Firstly, the transfer matrix method is introduced for describing the wave dynamics of the sound field, and then feedforward control laws for eliminating transmitted waves is derived. Furthermore, some numerical simulations are conducted that show the best possible result of active wave control. This is followed by the derivation of the wave filtering equations that indicates the structure of the wave filter. It is clarified that the wave filter consists of three portions; modal group filter, rearrangement filter and wave decomposition filter. Next, from a numerical point of view, the accuracy of the wave decomposition filter which is expressed as a function of frequency is investigated using condition numbers. Finally, an experiment on the adaptive feedforward control system using the wave filter is carried out, demonstrating that a quiet space is generated in the target space by the proposed method.
NASA Astrophysics Data System (ADS)
Ma, Chien-Ching; Lin, Hsien-Yang
2005-09-01
This study provides two non-contact optical techniques to investigate the transverse vibration characteristics of piezoceramic rectangular plates in resonance. These methods, including the amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) and laser Doppler vibrometer (LDV), are full-field measurement for AF-ESPI and point-wise displacement measurement for LDV, respectively. The edges of these piezoceramic rectangular plates may either be fixed or free. Both resonant frequencies and mode shapes of vibrating piezoceramic plates can be obtained simultaneously by AF-ESPI. Excellent quality of the interferometric fringe patterns for the mode shapes is obtained. In the LDV system, a built-in dynamic signal analyzer (DSA) composed of DSA software and a plug-in waveform generator board can provide the piezoceramic plates with the swept-sine excitation signal, whose gain at corresponding frequencies is analyzed by the DSA software. The peaks appeared in the frequency response curve are resonant frequencies. In addition to these optical methods, the numerical computation based on the finite element analysis is used to verify the experimental results. Good agreements of the mode shapes and resonant frequencies are obtained for experimental and numerical results.
Fully-coupled analysis of jet mixing problems. Three-dimensional PNS model, SCIP3D
NASA Technical Reports Server (NTRS)
Wolf, D. E.; Sinha, N.; Dash, S. M.
1988-01-01
Numerical procedures formulated for the analysis of 3D jet mixing problems, as incorporated in the computer model, SCIP3D, are described. The overall methodology closely parallels that developed in the earlier 2D axisymmetric jet mixing model, SCIPVIS. SCIP3D integrates the 3D parabolized Navier-Stokes (PNS) jet mixing equations, cast in mapped cartesian or cylindrical coordinates, employing the explicit MacCormack Algorithm. A pressure split variant of this algorithm is employed in subsonic regions with a sublayer approximation utilized for treating the streamwise pressure component. SCIP3D contains both the ks and kW turbulence models, and employs a two component mixture approach to treat jet exhausts of arbitrary composition. Specialized grid procedures are used to adjust the grid growth in accordance with the growth of the jet, including a hybrid cartesian/cylindrical grid procedure for rectangular jets which moves the hybrid coordinate origin towards the flow origin as the jet transitions from a rectangular to circular shape. Numerous calculations are presented for rectangular mixing problems, as well as for a variety of basic unit problems exhibiting overall capabilities of SCIP3D.
Golombeck, M A; Dössel, O; Raiser, J
2003-09-01
Numerical field calculations and experimental investigations were performed to examine the heating of the surface of human skin during the application of a new electrode design for the patient return electrode. The new electrode is characterised by an equipotential ring around the central electrode pads. A multi-layer thigh model was used, to which the patient return electrode and the active electrode were connected. The simulation geometry and the dielectric tissue parameters were set according to the frequency of the current. The temperature rise at the skin surface due to the flow of current was evaluated using a two-step numerical solving procedure. The results were compared with experimental thermographical measurements that yielded a mean value of maximum temperature increase of 3.4 degrees C and a maximum of 4.5 degrees C in one test case. The calculated heating patterns agreed closely with the experimental results. However, the calculated mean value in ten different numerical models of the maximum temperature increase of 12.5 K (using a thermodynamic solver) exceeded the experimental value owing to neglect of heat transport by blood flow and also because of the injection of a higher test current, as in the clinical tests. The implementation of a simple worst-case formula that could significantly simplify the numerical process led to a substantial overestimation of the mean value of the maximum skin temperature of 22.4 K and showed only restricted applicability. The application of numerical methods confirmed the experimental assertions and led to a general understanding of the observed heating effects and hotspots. Furthermore, it was possible to demonstrate the beneficial effects of the new electrode design with an equipotential ring. These include a balanced heating pattern and the absence of hotspots.
NASA Astrophysics Data System (ADS)
Darwiche, Mahmoud Khalil M.
The research presented herein is a contribution to the understanding of the numerical modeling of fully nonlinear, transient water waves. The first part of the work involves the development of a time-domain model for the numerical generation of fully nonlinear, transient waves by a piston type wavemaker in a three-dimensional, finite, rectangular tank. A time-domain boundary-integral model is developed for simulating the evolving fluid field. A robust nonsingular, adaptive integration technique for the assembly of the boundary-integral coefficient matrix is developed and tested. A parametric finite-difference technique for calculating the fluid- particle kinematics is also developed and tested. A novel compatibility and continuity condition is implemented to minimize the effect of the singularities that are inherent at the intersections of the various Dirichlet and/or Neumann subsurfaces. Results are presented which demonstrate the accuracy and convergence of the numerical model. The second portion of the work is a study of the interaction of the numerically-generated, fully nonlinear, transient waves with a bottom-mounted, surface-piercing, vertical, circular cylinder. The numerical model developed in the first part of this dissertation is extended to include the presence of the cylinder at the centerline of the basin. The diffraction of the numerically generated waves by the cylinder is simulated, and the particle kinematics of the diffracted flow field are calculated and reported. Again, numerical results showing the accuracy and convergence of the extended model are presented.
Far-field potentials in cylindrical and rectangular volume conductors.
Dumitru, D; King, J C; Rogers, W E
1993-07-01
The occurrence of a transient dipole is one method of producing a far-field potential. This investigation qualitatively defines the characteristics of the near-field and far-field electrical potentials produced by a transient dipole in both cylindrical and rectangular volume conductors. Most body segments of electrophysiologic interest such as arms, legs, thorax, and neck are roughly cylindrical in shape. A centrally located dipole generator produces a nonzero equipotential region which is found to occur along the cylindrical wall at a distance from the dipole of approximately 1.4 times the cylinder's radius and 1.9 times the cylinder's radius for the center of the cylinder. This distance to the equi-potential zone along the surface wall expands but remains less than 3.0 times the cylindrical radius when the dipole is eccentrically placed. The magnitude of the equipotential region resulting from an asymmetrically placed dipole remains identical to that when the dipole is centrally located. This behavior is found to be very similar in rectangular shallow conducting volumes that model a longitudinal slice of the cylinder, thus allowing a simple experimental model of the cylinder to be utilized. Amplitudes of the equipotential region are inversely proportional to the cylindrical or rectangular volume's cross-sectional area at the location of dipolar imbalance. This study predicts that referential electrode montages, when placed at 3.0 times the radius or greater from a dipolar axially aligned far-field generator in cylindrical homogeneous volume conductors, will record only equipotential far-field effects.
2011-01-01
Background Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Methods Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Results Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. Conclusion The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections. PMID:21943385
Square and rectangular concrete columns confined by CFRP: Experimental and numerical investigation
NASA Astrophysics Data System (ADS)
Monti, G.; Nistico, N.
2008-05-01
The results of an experimental and theoretical investigation into the deformation behavior of CFRP-confined square and rectangular concrete columns under axial loads are presented. Three types of columns are considered: unwrapped; fully wrapped; and fully wrapped, with L-slaped steel angles placed at the corners. A mechanical deformation model for them is proposed, which is based on a nonuniform distribution of the stresses caused by the confining device. The results given by the model are in a good agreement with the experimental results obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassemi, S.A.
1988-04-01
High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.
NASA Technical Reports Server (NTRS)
Kassemi, Siavash A.
1988-01-01
High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Tamekuni, M.; Baker, L. L.
1974-01-01
A method is presented to predict theoretical buckling loads of long, rectangular flat and curved laminated plates with arbitrary orientation of orthotropic axes each lamina. The plate is subjected to combined inplane normal and shear loads. Arbitrary boundary conditions may be stipulated along the longitudinal sides of the plate. In the absence of inplane shear loads and extensional-shear coupling, the analysis is also applicable to finite length plates. Numerical results are presented for curved laminated composite plates with boundary conditions and subjected to various loadings. These results indicate some of the complexities involved in the numerical solution of the analysis for general laminates. The results also show that the reduced bending stiffness approximation when applied to buckling problems could lead to considerable error in some cases and therefore must be used with caution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chao; Xu, Jun; Cao, Lei
The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion andmore » a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. Finally, the test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.« less
Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Zhang, Chao; Xu, Jun; Cao, Lei; Wu, Zenan; Santhanagopalan, Shriram
2017-07-01
The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion and a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. The test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.
Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries
Zhang, Chao; Xu, Jun; Cao, Lei; ...
2017-05-05
The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion andmore » a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. Finally, the test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.« less
Cooling Panel Optimization for the Active Cooling System of a Hypersonic Aircraft
NASA Technical Reports Server (NTRS)
Youn, B.; Mills, A. F.
1995-01-01
Optimization of cooling panels for an active cooling system of a hypersonic aircraft is explored. The flow passages are of rectangular cross section with one wall heated. An analytical fin-type model for incompressible flow in smooth-wall rectangular ducts with coupled wall conduction is proposed. Based on this model, the a flow rate of coolant to each design minimum mass flow rate or coolant for a single cooling panel is obtained by satisfying hydrodynamic, thermal, and Mach number constraints. Also, the sensitivity of the optimal mass flow rate of coolant to each design variable is investigated. In addition, numerical solutions for constant property flow in rectangular ducts, with one side rib-roughened and coupled wall conduction, are obtained using a k-epsilon and wall function turbulence model, these results are compared with predictions of the analytical model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hewett, D.W.; Yu-Jiuan Chen
The authors describe how they hold onto orthogonal mesh discretization when dealing with curved boundaries. Special difference operators were constructed to approximate numerical zones split by the domain boundary; the operators are particularly simple for this rectangular mesh. The authors demonstrated that this simple numerical approach, termed Dynamic Alternating Direction Implicit, turned out to be considerably more efficient than more complex grid-adaptive algorithms that were tried previously.
Bidirectional optical switch based on electrowetting
NASA Astrophysics Data System (ADS)
Liu, Chao; Li, Lei; Wang, Qiong-Hua
2013-05-01
In this paper, we demonstrate a bidirectional optical switch based on electrowetting. Four rectangular polymethyl methacrylate substrates are stacked to form the device and three ITO electrodes are fabricated on the bottom substrate. A black liquid droplet is placed on the middle of the ITO electrode and surrounded by silicone oil. When we apply a voltage to one ITO electrode, the droplet stretches and moves in one direction and a light beam is covered by the stretched droplet, while the droplet yields a space to let the original blocked light pass through. Due to the shift of the droplet, our device functions as a bidirectional optical switch. Our experiment shows that the device can obtain a wide optical attenuation from ˜1 dB to 30 dB and the transmission loss is ˜0.67 dB. The response time of the device is ˜177 ms. The proposed optical switch has potential applications in variable optical attenuators, electronic displays, and light shutters.
Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes.
Hsia, Ben; Marschewski, Julian; Wang, Shuang; In, Jung Bin; Carraro, Carlo; Poulikakos, Dimos; Grigoropoulos, Costas P; Maboudian, Roya
2014-02-07
We report a highly flexible planar micro-supercapacitor with interdigitated finger electrodes of vertically aligned carbon nanotubes (VACNTs). The planar electrode structures are patterned on a thin polycarbonate substrate with a facile, maskless laser-assisted dry transfer method. Sputtered Ni is used to reduce the in-plane resistance of the VACNT electrodes. An ionogel, an ionic liquid in a semi-solid matrix, is used as an electrolyte to form a fully solid-state device. We measure a specific capacitance of 430 μF cm(-2) for a scan rate of 0.1 V s(-1) and achieve rectangular cyclic voltammograms at high scan rates of up to 100 V s(-1). Minimal change in capacitance is observed under bending. Mechanical fatigue tests with more than 1000 cycles confirm the high flexibility and durability of the novel material combination chosen for this device. Our results indicate that this scalable and facile fabrication technique shows promise for application in integrated energy storage for all solid-state flexible microdevices.
Active control of structures using macro-fiber composite (MFC)
NASA Astrophysics Data System (ADS)
Kovalovs, A.; Barkanov, E.; Gluhihs, S.
2007-12-01
This paper presents the use of macro-fiber composites (MFC) for vibration reduces of structures. The MFC consist of polyimid films with IDE-electrodes that are glued on the top and the bottom of rectangular piezoceramic fibers. The interdigitated electrodes deliver the electric field required to activate the piezoelectric effect in the fibers and allows to invoke the stronger longitudinal piezoelectric effect along the length of the fibers. When this actuator embedded in a surface or attached to flexible structures, the MFC actuator provides distributed solid-state deflection and vibration control. The major advantages of the piezoelectric fibre composite actuators are their high performance, flexibility, and durability when compared with the traditional piezoceramic (PZT) actuators. In addition, the ability of MFC devices to couple the electrical and mechanical fields is larger than in monolithic PZT. In this study, we showed the experimental results that an MFC could be used as actuator to find modal parameters and reduce vibration for structures such as an aluminium beam and metal music plate. Two MFC actuators were attached to the surfaces of test subjects. First MFC actuator used to supply a signal as exciter of vibration and second MFC show his application for reduction of vibration in the range of resonance frequencies. Experimental results of aluminium beam with MFC actuators compared with finite element model which modelled in ANSYS software. The applied voltage is modelled as a thermal load according to thermal analogy for MFC. The experimental and numerical results presented in this paper confirm the potential of MFC for use in the vibration control of structures.
NASA Astrophysics Data System (ADS)
Dai, Wanwan; Xie, Xingwang; Li, Dapeng; Han, Xinjie; Liu, Zhonglun; Wei, Dong; Xin, Zhaowei; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng
2018-02-01
Under the condition of existing intense turbulence, the object's wavefront may be severely distorted. So, the wavefront sensors based on the traditional microlens array (MLA) with a fixed focal length can not be used to measure the wavefront effectively. In order to obtain a larger measurement range and higher measurement accuracy, we propose a liquid-crystal microlens array (LCMLA) with needed ability of swing focus over the focal plane and further adjusting focal length, which is constructed by a dual patterned ITO electrodes. The main structure of the LCMLA is divided into two layers, which are made of glass substrate with ITO transparent electrodes. The top layer of each liquid-crystal microlens consists of four rectangular electrodes, and the bottom layer is a circular electrode. In common optical measurements performed, the operations are carried out such as adding the same signal voltage over four electrodes of each microlens to adjust the focal length of the lens cell and adding a signal voltage with different RMS amplitude to adjust the focus position on the focal plane. Experiments show that the LCMLA developed by us demonstrate a desired focal length adjustable function and dynamic swing ability, so as to indicate that the method can be used not only to measure wavefront but also correct the wavefront with strong distortion.
Impacts of selected stimulation patterns on the perception threshold in electrocutaneous stimulation
2011-01-01
Background Consistency is one of the most important concerns to convey stable artificially induced sensory feedback. However, the constancy of perceived sensations cannot be guaranteed, as the artificially evoked sensation is a function of the interaction of stimulation parameters. The hypothesis of this study is that the selected stimulation parameters in multi-electrode cutaneous stimulation have significant impacts on the perception threshold. Methods The investigated parameters included the stimulated location, the number of active electrodes, the number of pulses, and the interleaved time between a pair of electrodes. Biphasic, rectangular pulses were applied via five surface electrodes placed on the forearm of 12 healthy subjects. Results Our main findings were: 1) the perception thresholds at the five stimulated locations were significantly different (p < 0.0001), 2) dual-channel simultaneous stimulation lowered the perception thresholds and led to smaller variance in perception thresholds compared to single-channel stimulation, 3) the perception threshold was inversely related to the number of pulses, and 4) the perception threshold increased with increasing interleaved time when the interleaved time between two electrodes was below 500 μs. Conclusions To maintain a consistent perception threshold, our findings indicate that dual-channel simultaneous stimulation with at least five pulses should be used, and that the interleaved time between two electrodes should be longer than 500 μs. We believe that these findings have implications for design of reliable sensory feedback codes. PMID:21306616
Van Theemsche, Achim; Deconinck, Johan; Van den Bossche, Bart; Bortels, Leslie
2002-10-01
A new more general numerical model for the simulation of electrokinetic flow in rectangular microchannels is presented. The model is based on the dilute solution model and the Navier-Stokes equations and has been implemented in a finite-element-based C++ code. The model includes the ion distribution in the Helmholtz double layer and considers only one single electrical' potential field variable throughout the domain. On a charged surface(s) the surface charge density, which is proportional to the local electrical field, is imposed. The zeta potential results, then, from this boundary condition and depends on concentrations, temperature, ion valence, molecular diffusion coefficients, and geometric conditions. Validation cases show that the model predicts accurately known analytical results, also for geometries having dimensions comparable to the Debye length. As a final study, the electro-osmotic flow in a controlled cross channel is investigated.
Some problems in applications of the linear variational method
NASA Astrophysics Data System (ADS)
Pupyshev, Vladimir I.; Montgomery, H. E.
2015-09-01
The linear variational method is a standard computational method in quantum mechanics and quantum chemistry. As taught in most classes, the general guidance is to include as many basis functions as practical in the variational wave function. However, if it is desired to study the patterns of energy change accompanying the change of system parameters such as the shape and strength of the potential energy, the problem becomes more complicated. We use one-dimensional systems with a particle in a rectangular or in a harmonic potential confined in an infinite rectangular box to illustrate situations where a variational calculation can give incorrect results. These situations result when the energy of the lowest eigenvalue is strongly dependent on the parameters that describe the shape and strength of the potential. The numerical examples described in this work are provided as cautionary notes for practitioners of numerical variational calculations.
The acoustic and instability waves of jets confined inside an acoustically lined rectangular duct
NASA Technical Reports Server (NTRS)
Hu, Fang Q.
1993-01-01
An analysis of linear wave modes associated with supersonic jets confined inside an acoustically lined rectangular duct is presented. Mathematical formulations are given for the vortex-sheet model and continuous mean flow model of the jet flow profiles. Detailed dispersion relations of these waves in a two-dimensional confined jet as well as an unconfined free jet are computed. Effects of the confining duct and the liners on the jet instability and acoustic waves are studied numerically. It is found that the effect of the liners is to attenuate waves that have supersonic phase velocities relative to the ambient flow. Numerical results also show that the growth rates of the instability waves could be reduced significantly by the use of liners. In addition, it is found that the upstream propagating neutral waves of an unconfined jet could become attenuated when the jet is confined.
The 3-dimensional grid: a novel approach to stereoelectroencephalography.
Munyon, Charles; Sweet, Jennifer; Luders, Hans; Lhatoo, Samden; Miller, Jonathan
2015-03-01
Successful surgical treatment of epilepsy requires accurate definition of areas of ictal onset and eloquent brain. Although invasive monitoring can help, subdural grids cannot sample sulci or subcortical tissue; traditional stereoelectroencephalography depth electrodes are usually placed too far apart to provide sufficient resolution for mapping. To report a strategy of depth electrode placement in a dense array to allow precise anatomic localization of epileptic and eloquent cortex. Twenty patients with medically intractable epilepsy either poorly localized or found to arise adjacent to eloquent areas underwent placement of arrays of depth electrodes into and around the putative area of seizure onset with the use of framed stereotaxy. Each array consisted of a "grid" of parallel electrodes in a rectangular pattern with 1 cm between entry sites. In a subset of patients, a few electrodes were placed initially, with additional electrodes placed in a second stage. Trajectories were modified to avoid cortical vessels defined on magnetic resonance imaging. Patients were monitored for 4 to 21 days to establish the precise location of seizure onset. Stimulation was performed to map cortical and subcortical eloquent regions. Electrode locations were coregistered for frameless stereotaxy during subsequent resection of seizure focus. Two hundred fifty-four electrodes were implanted. Discrete regions of seizure onset and functional cortex were identified, which were used during resection to remove epileptogenic tissue while preserving eloquent areas. There were no hemorrhagic or infectious complications; no patient suffered permanent neurological deficit. The 3-dimensional intraparenchymal grid is useful for identifying the location and extent of epileptic and eloquent brain.
NASA Astrophysics Data System (ADS)
Chaabane, Monia; Mhiri, Hatem; Bournot, Philippe
2013-01-01
The thermal behavior of an integrated collector storage solar water heater (ICSSWH) is numerically studied using the package Fluent 6.3. Based on the good agreement between the numerical results and the experimental data of Chaouachi and Gabsi (Renew Energy Revue 9(2):75-82, 2006), an attempt to improve this solar system operating was made by equipping the storage tank with radial fins of rectangular profile. A second 3D CFD model was developed and a series of numerical simulations were conducted for various SWH designs which differ in the depth of this extended surface for heat exchange. As the modified surface presents a higher characteristic length for convective heat transfer from the storage tank to the water, the fins equipped storage tank based SWH is determined to have a higher water temperature and a reduced thermal losses coefficient during the day-time period. Regarding the night operating of this water heater, the results suggest that the modified system presents higher thermal losses.
Baird, Mark E
2003-10-01
The size, shape, and absorption coefficient of a microalgal cell determines, to a first order approximation, the rate at which light is absorbed by the cell. The rate of absorption determines the maximum amount of energy available for photosynthesis, and can be used to calculate the attenuation of light through the water column, including the effect of packaging pigments within discrete particles. In this paper, numerical approximations are made of the mean absorption cross-section of randomly oriented cells, aA. The shapes investigated are spheroids, rectangular prisms with a square base, cylinders, cones and double cones with aspect ratios of 0.25, 0.5, 1, 2, and 4. The results of the numerical simulations are fitted to a modified sigmoid curve, and take advantage of three analytical solutions. The results are presented in a non-dimensionalised format and are independent of size. A simple approximation using a rectangular hyperbolic curve is also given, and an approach for obtaining the upper and lower bounds of aA for more complex shapes is outlined.
Generalization of the van der Pauw relationship derived from electrostatics
NASA Astrophysics Data System (ADS)
Weiss, Jonathan D.
2011-08-01
In an earlier paper, this author, along with two others Weiss et al. (2008) [1], demonstrated that the original van der Pauw relationship could be derived from three-dimensional electrostatics, as opposed to van der Pauw's use of conformal mapping. The earlier derivation was done for a conducting material of rectangular cross section with contacts placed at the corners. Presented here is a generalization of the previous work involving a square sample and a square array of electrodes that are not confined to the corners, since this measurement configuration could be a more convenient one. As in the previous work, the effects of non-zero sample thickness and contact size have been investigated. Buehler and Thurber derived a similar relationship using an infinite series of current images on a large and thin conducting sheet to satisfy the conditions at the boundary of the sample. The results presented here agree with theirs numerically, but analytic agreement could not be shown using any of the perused mathematical literature. By simply equating the two solutions, it appears that, as a byproduct of this work, a new mathematical relationship has been uncovered. Finally, the application of this methodology to the Hall Effect is discussed.
Rapid and efficient mixing in a slip-driven three-dimensional flow in a rectangular channel
NASA Astrophysics Data System (ADS)
Pacheco, J. Rafael; Ping Chen, Kang; Hayes, Mark A.
2006-08-01
A method for generating mixing in an electroosmotic flow of an electrolytic solution in a three-dimensional channel is proposed. When the width-to-height aspect ratio of the channel cross-section is large, mixing of a blob of a solute in a slip-driven three-dimensional flow in a rectangular channel can be used to model and assess the effectiveness of this method. It is demonstrated through numerical simulations that under certain operating conditions, rapid and efficient mixing can be achieved. Future investigation will include the solution of the exact equations and experimentation.
Lamb waves in phononic crystal slabs with square or rectangular symmetries
NASA Astrophysics Data System (ADS)
Brunet, Thomas; Vasseur, Jérôme; Bonello, Bernard; Djafari-Rouhani, Bahram; Hladky-Hennion, Anne-Christine
2008-08-01
We report on both numerical and experimental results showing the occurrence of band gaps for Lamb waves propagating in phononic crystal plates. The structures are made of centered rectangular and square arrays of holes drilled in a silicon plate. A supercell plane wave expansion method is used to calculate the band structures and to predict the position and the magnitude of the gaps. The band structures of phononic crystal slabs are then measured using a laser ultrasonic technique. Lamb waves in the megahertz range and with wave vectors ranging over more than the first two reduced Brillouin zones are investigated.
Study on Pressure Wave Propagation in a Liquid Containing Spherical Bubbles in a Rectangular Duct
NASA Astrophysics Data System (ADS)
Kawahara, Junya; Watanabe, Masao; Kobayashi, Kazumichi
2015-12-01
Pressure wave propagation in a liquid containing several bubbles is numerically investigated. We simulate liner plane wave propagation in a liquid containing 10 spherical bubbles in a rectangular duct with the equation of motion for N spherical bubbles. The sound pressures of the reflected waves from the rigid walls are calculated by using the method of images. The result shows that the phase velocity of the pressure wave propagating in the liquid containing 10 spherical bubbles in the duct agrees well with the low-frequency speed of sound in a homogeneous bubbly liquid.
Geometric effect on second harmonic generation from gold grating
NASA Astrophysics Data System (ADS)
Lu, Jiao; Ding, Baoyong; Huo, Yanyan; Ning, Tingyin
2018-05-01
We numerically investigate second harmonic generation from gold gratings of an ideal rectangular and ladder-shaped cross-section. The SHG efficiency from the gold gratings of the ladder-shaped cross-section is significantly enhanced compared with that from the ideal rectangular cross-section with a maximum enhancement factor of around two. The enhancement is ascribe to the nanostructure dependent local fundamental electric field, the nonlinear sources and thus the far field radiation. Our results have a practical meaning in the explanation of experimental SHG measurement, and the modulation of SHG response in the metallic nanostructure.
Numerical Prediction of Signal for Magnetic Flux Leakage Benchmark Task
NASA Astrophysics Data System (ADS)
Lunin, V.; Alexeevsky, D.
2003-03-01
Numerical results predicted by the finite element method based code are presented. The nonlinear magnetic time-dependent benchmark problem proposed by the World Federation of Nondestructive Evaluation Centers, involves numerical prediction of normal (radial) component of the leaked field in the vicinity of two practically rectangular notches machined on a rotating steel pipe (with known nonlinear magnetic characteristic). One notch is located on external surface of pipe and other is on internal one, and both are oriented axially.
Shirai, Atsushi; Masuda, Sunao
2013-01-01
The authors have previously presented a mathematical model to predict transit time of a neutrophil through an alveolar capillary segment which was modeled as an axisymmetric arc-shaped constriction settled in a cylindrical straight pipe to investigate the influence of entrance curvature of a capillary on passage of the cell. The axially asymmetric cross section of a capillary also influences the transit time because it requires three-dimensional deformation of a cell when it passes through the capillary and could lead to plasma leakage between the cell surface and the capillary wall. In this study, a rectangular channel was introduced, the side walls of which were moderately constricted, as a representative of axially asymmetric capillaries. Dependence of transit time of a neutrophil passing through the constriction on the constriction geometry, i.e., channel height, throat width and curvature radius of the constriction, was numerically investigated, the transit time being compared with that through the axisymmetric model. It was found that the transit time is dominated by the throat hydraulic diameter and curvature radius of the constriction and that the throat aspect ratio little affects the transit time with a certain limitation, indicating that if an appropriate curvature radius is chosen, such a rectangular channel model can be substituted for an axisymmetric capillary model having the same throat hydraulic diameter in terms of the transit time by choosing an appropriate curvature radius. Thus, microchannels fabricated by the photolithography technique, whose cross section is generally rectangular, are expected to be applicable to in vitro model experiments of neutrophil retention and passage in the alveolar capillaries. PMID:23527190
Oscillations and stability of numerical solutions of the heat conduction equation
NASA Technical Reports Server (NTRS)
Kozdoba, L. A.; Levi, E. V.
1976-01-01
The mathematical model and results of numerical solutions are given for the one dimensional problem when the linear equations are written in a rectangular coordinate system. All the computations are easily realizable for two and three dimensional problems when the equations are written in any coordinate system. Explicit and implicit schemes are shown in tabular form for stability and oscillations criteria; the initial temperature distribution is considered uniform.
Effects of anchoring and arc structure on the control authority of a rail plasma actuator
NASA Astrophysics Data System (ADS)
Choi, Young-Joon; Gray, Miles; Sirohi, Jayant; Raja, Laxminarayan L.
2017-09-01
Experiments were conducted on a rail plasma actuator (RailPAc) with different electrode cross sections (rails or rods) to assess methods to improve the actuation authority, defined as the impulse generated for a given electrical input. The arc was characterized with electrical measurements and high-speed images, while impulse measurements quantified the actuation authority. A RailPAc power supply capable of delivering ∼1 kA of current at ∼100 V was connected to rod electrodes (free-floating with circular cross-section) and rail electrodes (flush-mounted in a flat plate with rectangular cross-section). High-speed images show that the rail electrodes cause the arc to anchor itself to the anode electrode and transit in discrete jumps, while rod electrodes permit the arc to transit smoothly without anchoring. The impulse measurements reveal that the anchoring reduces the actuation authority by ∼21% compared to a smooth transit, and the effect of anchoring can be suppressed by reducing the gap between the rails to 2 mm. The study further demonstrates that if a smooth transit is achieved, the control authority can be increased with a larger gap and larger arc current. In conclusion, the actuation authority of a RailPAc can be maximized by carefully choosing a gap width that prevents anchoring. Further study is warranted to increase the RailPAc actuation authority by introducing multiple turns of wires beneath the RailPAc to augment the induced magnetic field.
NASA Astrophysics Data System (ADS)
Chang, C.-C.; Yang, R.-J.
2004-04-01
Electroosmotic flow in microchannels is restricted to low Reynolds number regimes characterized by extremely weak inertia forces and laminar flow. Consequently, the mixing of different species occurs primarily through diffusion, and hence cannot readily be achieved within a short mixing channel. The current study presents a numerical investigation of electrokinetically driven flow mixing in microchannels with various numbers of incorporated patterned rectangular blocks. Furthermore, a novel approach is introduced which patterns heterogeneous surfaces on the upper faces of these rectangular blocks in order to enhance species mixing. The simulation results confirm that the introduction of rectangular blocks within the mixing channel slightly enhances species mixing by constricting the bulk flow, hence creating a stronger diffusion effect. However, it is noted that a large number of blocks and hence a long mixing channel are required if a complete mixing of the species is to be obtained. The results also indicate that patterning heterogeneous upper surfaces on the rectangular blocks is an effective means of enhancing the species mixing. It is shown that increasing the magnitude of the heterogeneous surface zeta potential enables a reduction in the mixing channel length and an improved degree of mixing efficiency.
NASA Technical Reports Server (NTRS)
Wright, William B.
1988-01-01
Transient, numerical simulations of the deicing of composite aircraft components by electrothermal heating have been performed in a 2-D rectangular geometry. Seven numerical schemes and four solution methods were used to find the most efficient numerical procedure for this problem. The phase change in the ice was simulated using the Enthalpy method along with the Method for Assumed States. Numerical solutions illustrating deicer performance for various conditions are presented. Comparisons are made with previous numerical models and with experimental data. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.
Pudendal nerve stimulation and block by a wireless-controlled implantable stimulator in cats.
Yang, Guangning; Wang, Jicheng; Shen, Bing; Roppolo, James R; de Groat, William C; Tai, Changfeng
2014-07-01
The study aims to determine the functionality of a wireless-controlled implantable stimulator designed for stimulation and block of the pudendal nerve. In five cats under α-chloralose anesthesia, the stimulator was implanted underneath the skin on the left side in the lower back along the sacral spine. Two tripolar cuff electrodes were implanted bilaterally on the pudendal nerves in addition to one bipolar cuff electrode that was implanted on the left side central to the tripolar cuff electrode. The stimulator provided high-frequency (5-20 kHz) biphasic stimulation waveforms to the two tripolar electrodes and low-frequency (1-100 Hz) rectangular pulses to the bipolar electrode. Bladder and urethral pressures were measured to determine the effects of pudendal nerve stimulation (PNS) or block. The maximal (70-100 cmH2O) urethral pressure generated by 20-Hz PNS applied via the bipolar electrode was completely eliminated by the pudendal nerve block induced by the high-frequency stimulation (6-15 kHz, 6-10 V) applied via the two tripolar electrodes. In a partially filled bladder, 20-30 Hz PNS (2-8 V, 0.2 ms) but not 5 Hz stimulation applied via the bipolar electrode elicited a large sustained bladder contraction (45.9 ± 13.4 to 52.0 ± 22 cmH2O). During cystometry, the 5 Hz PNS significantly (p < 0.05) increased bladder capacity to 176.5 ± 27.1% of control capacity. The wireless-controlled implantable stimulator successfully generated the required waveforms for stimulation and block of pudendal nerve, which will be useful for restoring bladder functions after spinal cord injury. © 2013 International Neuromodulation Society.
Numerical Modeling of Electrode Degradation During Resistance Spot Welding Using CuCrZr Electrodes
NASA Astrophysics Data System (ADS)
Gauthier, Elise; Carron, Denis; Rogeon, Philippe; Pilvin, Philippe; Pouvreau, Cédric; Lety, Thomas; Primaux, François
2014-05-01
Resistance spot welding is a technique widely used by the automotive industry to assemble thin steel sheets. The cyclic thermo-mechanical loading associated with the accumulation of weld spots progressively deteriorates the electrodes. This study addresses the development of a comprehensive multi-physical model that describes the sequential deterioration. Welding tests achieved on uncoated and Zn-coated steel sheets are analyzed. Finite element analysis is performed using an electrical-thermal-metallurgical model. A numerical experimental design is carried out to highlight the main process parameters and boundary conditions which affect electrode degradation.
Analysis of subsonic wind tunnel with variation shape rectangular and octagonal on test section
NASA Astrophysics Data System (ADS)
Rhakasywi, D.; Ismail; Suwandi, A.; Fadhli, A.
2018-02-01
The need for good design in the aerodynamics field required a wind tunnel design. The wind tunnel design required in this case is capable of generating laminar flow. In this research searched for wind tunnel models with rectangular and octagonal variations with objectives to generate laminar flow in the test section. The research method used numerical approach of CFD (Computational Fluid Dynamics) and manual analysis to analyze internal flow in test section. By CFD simulation results and manual analysis to generate laminar flow in the test section is a design that has an octagonal shape without filled for optimal design.
Computation of an Underexpanded 3-D Rectangular Jet by the CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Himansu, Ananda; Wang, Xiao Y.; Jorgenson, Philip C. E.
2000-01-01
Recently, an unstructured three-dimensional space-time conservation element and solution element (CE/SE) Euler solver was developed. Now it is also developed for parallel computation using METIS for domain decomposition and MPI (message passing interface). The method is employed here to numerically study the near-field of a typical 3-D rectangular under-expanded jet. For the computed case-a jet with Mach number Mj = 1.6. with a very modest grid of 1.7 million tetrahedrons, the flow features such as the shock-cell structures and the axis switching, are in good qualitative agreement with experimental results.
Acoustic response of a rectangular levitator with orifices
NASA Technical Reports Server (NTRS)
El-Raheb, Michael; Wagner, Paul
1990-01-01
The acoustic response of a rectangular cavity to speaker-generated excitation through waveguides terminating at orifices in the cavity walls is analyzed. To find the effects of orifices, acoustic pressure is expressed by eigenfunctions satisfying Neumann boundary conditions as well as by those satisfying Dirichlet ones. Some of the excess unknowns can be eliminated by point constraints set over the boundary, by appeal to Lagrange undetermined multipliers. The resulting transfer matrix must be further reduced by partial condensation to the order of a matrix describing unmixed boundary conditions. If the cavity is subjected to an axial temperature dependence, the transfer matrix is determined numerically.
The rectangular array of magnetic probes on J-TEXT tokamak.
Chen, Zhipeng; Li, Fuming; Zhuang, Ge; Jian, Xiang; Zhu, Lizhi
2016-11-01
The rectangular array of magnetic probes system was newly designed and installed in the torus on J-TEXT tokamak to measure the local magnetic fields outside the last closed flux surface at a single toroidal angle. In the implementation, the experimental results agree well with the theoretical results based on the Spool model and three-dimensional numerical finite element model when the vertical field was applied. Furthermore, the measurements were successfully used as the input of EFIT code to conduct the plasma equilibrium reconstruction. The calculated Faraday rotation angle using the EFIT output is in agreement with the measured one from the three-wave polarimeter-interferometer system.
The rectangular array of magnetic probes on J-TEXT tokamak
NASA Astrophysics Data System (ADS)
Chen, Zhipeng; Li, Fuming; Zhuang, Ge; Jian, Xiang; Zhu, Lizhi
2016-11-01
The rectangular array of magnetic probes system was newly designed and installed in the torus on J-TEXT tokamak to measure the local magnetic fields outside the last closed flux surface at a single toroidal angle. In the implementation, the experimental results agree well with the theoretical results based on the Spool model and three-dimensional numerical finite element model when the vertical field was applied. Furthermore, the measurements were successfully used as the input of EFIT code to conduct the plasma equilibrium reconstruction. The calculated Faraday rotation angle using the EFIT output is in agreement with the measured one from the three-wave polarimeter-interferometer system.
NASA Astrophysics Data System (ADS)
Su, Jinghong; Chen, Xiaodong; Hu, Guoqing
2018-03-01
Inertial migration has emerged as an efficient tool for manipulating both biological and engineered particles that commonly exist with non-spherical shapes in microfluidic devices. There have been numerous studies on the inertial migration of spherical particles, whereas the non-spherical particles are still largely unexplored. Here, we conduct three-dimensional direct numerical simulations to study the inertial migration of rigid cylindrical particles in rectangular microchannels with different width/height ratios under the channel Reynolds numbers (Re) varying from 50 to 400. Cylindrical particles with different length/diameter ratios and blockage ratios are also concerned. Distributions of surface force with the change of rotation angle show that surface stresses acting on the particle end near the wall are the major contributors to the particle rotation. We obtain lift forces experienced by cylindrical particles at different lateral positions on cross sections of two types of microchannels at various Re. It is found that there are always four stable equilibrium positions on the cross section of a square channel, while the stable positions are two or four in a rectangular channel, depending on Re. By comparing the equilibrium positions of cylindrical particles and spherical particles, we demonstrate that the equivalent diameter of cylindrical particles monotonously increases with Re. Our work indicates the influence of a non-spherical shape on the inertial migration and can be useful for the precise manipulation of non-spherical particles.
NASA Astrophysics Data System (ADS)
Chen, Xiaowei; Wang, Wenping; Wan, Min
2013-12-01
It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.
NASA Astrophysics Data System (ADS)
Kosmeier, S.; Langehanenberg, P.; von Bally, G.; Kemper, B.
2012-01-01
Due to the large coherence length of laser light, optical path length (OPL) resolution in laser based digital holographic microscopy suffers from parasitic interferences caused by multiple reflections within the experimental setup. Use of partially coherent light reduces this drawback but requires precise and stable matching of object and reference arm's OPLs and limits the spatial frequency of the interference pattern in off-axis holography. Here, we investigate if the noise properties of spectrally broadened light sources can be generated numerically. Therefore, holograms are coherently captured at different laser wavelengths and the corresponding reconstructed wave fields are numerically superimposed utilizing variable weightings. Gaussian and rectangular spectral shapes of the so synthesized field are analyzed with respect to the resulting noise level, which is quantified in OPL distributions of a reflective test target. Utilizing a Gaussian weighting, the noise level is found to be similar to the one obtained with the partially coherent light of a superluminescent diode. With a rectangular shaped synthesized spectrum, noise is reduced more efficient than with a Gaussian one. The applicability of the method in label-free cell analysis is demonstrated by quantitative phase contrast images obtained from living cancer cells.
NASA Astrophysics Data System (ADS)
Remillieux, Marcel C.; Pasareanu, Stephanie M.; Svensson, U. Peter
2013-12-01
Exterior propagation of impulsive sound and its transmission through three-dimensional, thin-walled elastic structures, into enclosed cavities, are investigated numerically in the framework of linear dynamics. A model was developed in the time domain by combining two numerical tools: (i) exterior sound propagation and induced structural loading are computed using the image-source method for the reflected field (specular reflections) combined with an extension of the Biot-Tolstoy-Medwin method for the diffracted field, (ii) the fully coupled vibro-acoustic response of the interior fluid-structure system is computed using a truncated modal-decomposition approach. In the model for exterior sound propagation, it is assumed that all surfaces are acoustically rigid. Since coupling between the structure and the exterior fluid is not enforced, the model is applicable to the case of a light exterior fluid and arbitrary interior fluid(s). The structural modes are computed with the finite-element method using shell elements. Acoustic modes are computed analytically assuming acoustically rigid boundaries and rectangular geometries of the enclosed cavities. This model is verified against finite-element solutions for the cases of rectangular structures containing one and two cavities, respectively.
Optimal time-domain technique for pulse width modulation in power electronics
NASA Astrophysics Data System (ADS)
Mayergoyz, I.; Tyagi, S.
2018-05-01
Optimal time-domain technique for pulse width modulation is presented. It is based on exact and explicit analytical solutions for inverter circuits, obtained for any sequence of input voltage rectangular pulses. Two optimal criteria are discussed and illustrated by numerical examples.
Complex magnetohydrodynamic low-Reynolds-number flows.
Xiang, Yu; Bau, Haim H
2003-07-01
The interaction between electric currents and a magnetic field is used to produce body (Lorentz) forces in electrolyte solutions. By appropriate patterning of the electrodes, one can conveniently control the direction and magnitude of the electric currents and induce spatially and temporally complicated flow patterns. This capability is useful, not only for fundamental flow studies, but also for inducing fluid flow and stirring in minute devices in which the incorporation of moving components may be difficult. This paper focuses on a theoretical and experimental study of magnetohydrodynamic flows in a conduit with a rectangular cross section. The conduit is equipped with individually controlled electrodes uniformly spaced at a pitch L. The electrodes are aligned transversely to the conduit's axis. The entire device is subjected to a uniform magnetic field. The electrodes are divided into two groups A and C in such a way that there is an electrode of group C between any two electrodes of group A. We denote the various A and C electrodes with subscripts, i.e., A(i) and C(i), where i=0,+/-1,+/-2, .... When positive and negative potentials are, respectively, applied to the even and odd numbered A electrodes, opposing electric currents are induced on the right and left hand sides of each A electrode. These currents generate transverse forces that drive cellular convection in the conduit. We refer to the resulting flow pattern as A. When electrodes of group C are activated, a similar flow pattern results, albeit shifted in space. We refer to this flow pattern as C. By alternating periodically between patterns A and C, one induces Lagrangian chaos. Such chaotic advection may be beneficial for stirring fluids, particularly in microfluidic devices. Since the flow patterns A and C are shifted in space, they also provide a mechanism for Lagrangian drift that allows net migration of passive tracers along the conduit's length.
Liu, Chao; Hu, Guoqing; Jiang, Xingyu; Sun, Jiashu
2015-02-21
Inertial microfluidics has emerged as an important tool for manipulating particles and cells. For a better design of inertial microfluidic devices, we conduct 3D direct numerical simulations (DNS) and experiments to determine the complicated dependence of focusing behaviour on the particle size, channel aspect ratio, and channel Reynolds number. We find that the well-known focusing of the particles at the two centers of the long channel walls occurs at a relatively low Reynolds number, whereas additional stable equilibrium positions emerge close to the short walls with increasing Reynolds number. Based on the numerically calculated trajectories of particles, we propose a two-stage particle migration which is consistent with experimental observations. We further present a general criterion to secure good focusing of particles for high flow rates. This work thus provides physical insight into the multiplex focusing of particles in rectangular microchannels with different geometries and Reynolds numbers, and paves the way for efficiently designing inertial microfluidic devices.
Daneshzand, Mohammad; Faezipour, Miad; Barkana, Buket D.
2017-01-01
Deep brain stimulation (DBS) has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD). Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG) waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the performance of DBS devices. PMID:28848417
Daneshzand, Mohammad; Faezipour, Miad; Barkana, Buket D
2017-01-01
Deep brain stimulation (DBS) has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD). Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG) waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the performance of DBS devices.
A Dynamic Mesh-Based Approach to Model Melting and Shape of an ESR Electrode
NASA Astrophysics Data System (ADS)
Karimi-Sibaki, E.; Kharicha, A.; Bohacek, J.; Wu, M.; Ludwig, A.
2015-10-01
This paper presents a numerical method to investigate the shape of tip and melt rate of an electrode during electroslag remelting process. The interactions between flow, temperature, and electromagnetic fields are taken into account. A dynamic mesh-based approach is employed to model the dynamic formation of the shape of electrode tip. The effect of slag properties such as thermal and electrical conductivities on the melt rate and electrode immersion depth is discussed. The thermal conductivity of slag has a dominant influence on the heat transfer in the system, hence on melt rate of electrode. The melt rate decreases with increasing thermal conductivity of slag. The electrical conductivity of slag governs the electric current path that in turn influences flow and temperature fields. The melting of electrode is a quite unstable process due to the complex interaction between the melt rate, immersion depth, and shape of electrode tip. Therefore, a numerical adaptation of electrode position in the slag has been implemented in order to achieve steady state melting. In fact, the melt rate, immersion depth, and shape of electrode tip are interdependent parameters of process. The generated power in the system is found to be dependent on both immersion depth and shape of electrode tip. In other words, the same amount of power was generated for the systems where the shapes of tip and immersion depth were different. Furthermore, it was observed that the shape of electrode tip is very similar for the systems running with the same ratio of power generation to melt rate. Comparison between simulations and experimental results was made to verify the numerical model.
Fuel cell with metal screen flow-field
Wilson, M.S.; Zawodzinski, C.
1998-08-25
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.
Fuel cell with metal screen flow-field
Wilson, Mahlon S.; Zawodzinski, Christine
2001-01-01
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.
Fuel cell with metal screen flow-field
Wilson, Mahlon S.; Zawodzinski, Christine
1998-01-01
A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.
Numerical algorithm for optimization of positive electrode in lead-acid batteries
NASA Astrophysics Data System (ADS)
Murariu, Ancuta Teodora; Buimaga-Iarinca, Luiza; Morari, Cristian
2017-12-01
The positive electrode in lead-acid batteries is one of the most sensitive parts of the whole battery, since it is affected by various aggresive chemical processes during its life. Therefore, an optimal design of the positive electrode of the battery may have as efect a dramatic improvement of the properties of the battery - such as total capacity or endurance during its life. Our efforts dedicated to this goal cover a range of rather complex tasks, from the design based on numerical analysis to statistic analysis. We present the structure of the software implementation and the results obtained for three types of positive electrodes.
NASA Astrophysics Data System (ADS)
DeLuca, R.
2009-05-01
It is shown that, by applying elementary concepts in electromagnetism and electrochemistry to a system consisting of salt water flowing in a thin rectangular pipe at an average velocity vA under the influence of a transverse magnetic field B0, an electromotive force generator can be conceived. In fact, the Lorentz force acting on the sodium and chlorine ions in a water solution gives rise to a so-called Faraday voltage across the two metal electrodes, positioned at the sides of the pipe. The effect is carried along the following chemical reactions at the electrodes: at the cathode, water is reduced (instead of sodium ions) and hydrogen gas is generated; at the anode, chlorine gas is produced. In college physics teaching, this interdisciplinary subject can be adopted to stress analogies and differences between the Hall voltage in conductors and the Faraday voltage in electrolyte solutions.
Immobilization and release of copper species from a microstructured polypyrrole matrix.
González, M B; Brugnoni, L I; Flamini, D O; Quinzani, L M; Saidman, S B
2017-01-01
Copper species immobilization in hollow rectangular-sectioned microtubes of polypyrrole (PPy) electrosynthesized on 316L stainless steel was carried out using two different methods. One of them involved the immobilization after the PPy electropolymerization and the other one during the electrosynthesis process. The electrodes modified with copper species were rotated at different speeds in well water under open-circuit potential conditions. The release of copper species from the PPy matrix and the antibacterial activity against Escherichia coli were analyzed. The obtained results demonstrate that the amount of copper species released as well as the bactericidal effects against E. coli increases with rotation speed. The PPy coating modified with copper species after the electropolymerization reaction exhibited the best performance in terms of antibacterial activity and corrosion protection. These electrodes were tested in a lab-scale continuous flow system for well water disinfection.
Textile antenna integrated with compact AMC and parasitic elements for WLAN/WBAN applications
NASA Astrophysics Data System (ADS)
Lago, Herwansyah; Soh, Ping Jack; Jamlos, Mohd Faizal; Shohaimi, Nursuriati; Yan, Sen; Vandenbosch, Guy A. E.
2016-12-01
A wearable antenna fully designed and fabricated using textile is presented. Both antenna and artificial magnetic conductor plane are designed for operation in the wireless local area network (WLAN)/wireless body area network (WBAN) band from 2.4 to 2.5 GHz. The AMC unit element is designed based on the rectangular patch structure, which is then integrated using slots and slits for bandwidth broadening. Meanwhile, the combination of the slits and L-shaped parasitic elements applied at four edges of the rectangular antenna structure enabled unidirectional radiation outwards from the body. The structure is coaxially fed using a rectangular ring slot centered on the radiating element. Simulated and measured reflection and radiation performance indicate a satisfactory agreement, fulfilling the requirements for WLAN/WBAN applications both in free space and on body. The shielding effectiveness provided by the AMC plane is also evaluated numerically in terms of specific absorption rate, indicating levels below the European regulatory limit of 2 W/kg.
Numerical analysis of the heat source characteristics of a two-electrode TIG arc
NASA Astrophysics Data System (ADS)
Ogino, Y.; Hirata, Y.; Nomura, K.
2011-06-01
Various kinds of multi-electrode welding processes are used to ensure high productivity in industrial fields such as shipbuilding, automotive manufacturing and pipe fabrication. However, it is difficult to obtain the optimum welding conditions for a specific product, because there are many operating parameters, and because welding phenomena are very complicated. In the present research, the heat source characteristics of a two-electrode TIG arc were numerically investigated using a 3D arc plasma model with a focus on the distance between the two electrodes. The arc plasma shape changed significantly, depending on the electrode spacing. The heat source characteristics, such as the heat input density and the arc pressure distribution, changed significantly when the electrode separation was varied. The maximum arc pressure of the two-electrode TIG arc was much lower than that of a single-electrode TIG. However, the total heat input of the two-electrode TIG arc was nearly constant and was independent of the electrode spacing. These heat source characteristics of the two-electrode TIG arc are useful for controlling the heat input distribution at a low arc pressure. Therefore, these results indicate the possibility of a heat source based on a two-electrode TIG arc that is capable of high heat input at low pressures.
NASA Astrophysics Data System (ADS)
Nakagawa, Ryo; Hashimoto, Ken-ya
2018-07-01
In this paper, we discuss the influence of the electrode width of an interdigital transducer on the third-order nonlinearity of surface acoustic wave (SAW) devices. First, an estimation technique of third-order nonlinear signals based on the linear finite element method is proposed, and the variation of nonlinear signal level with electrode width is estimated. Then, several one-port SAW resonators with different electrode widths are fabricated, and measured nonlinear signal levels are compared with simulation. As predicted by the numerical simulation, nonlinear signal levels became large with electrode width. However, harmonics takes a minimum at a certain electrode width. This tendency disagrees with the simulation. The variation of nonlinear coefficients is evaluated by numerical fitting for the measured data using the nonlinear signal simulator proposed by the authors. As the result, it is concluded that the generation mechanism is not limited to the acoustic strain in electrodes.
NASA Astrophysics Data System (ADS)
Yang, Jingyu; Lin, Jiahui; Liu, Yuejun; Yang, Kang; Zhou, Lanwei; Chen, Guoping
2017-08-01
It is well known that intelligent control theory has been used in many research fields, novel modeling method (DROMM) is used for flexible rectangular active vibration control, and then the validity of new model is confirmed by comparing finite element model with new model. In this paper, taking advantage of the dynamics of flexible rectangular plate, a two-loop sliding mode (TSM) MIMO approach is introduced for designing multiple-input multiple-output continuous vibration control system, which can overcome uncertainties, disturbances or unstable dynamics. An illustrative example is given in order to show the feasibility of the method. Numerical simulations and experiment confirm the effectiveness of the proposed TSM MIMO controller.
A more accurate analysis and design of coaxial-to-rectangular waveguide end launcher
NASA Astrophysics Data System (ADS)
Saad, Saad Michael
1990-02-01
An electromagnetic model is developed for the analysis of the coaxial-to-rectangular waveguide transition of the end-launcher type. The model describes the coupling mechanism in terms of an excitation probe which is fed by a transmission line intermediate section. The model is compared with a coupling loop model. The two models have a few analytical steps in common, but expressions for the probe model are easier to derive and compute. The two models are presented together with numerical examples and experimental verification. The superiority of the probe model is illustrated, and a design method yielding a maximum voltage standing wave ratio of 1.035 over 13 percent bandwidth is outlined.
A lift formula applied to low-Reynolds-number unsteady flows
NASA Astrophysics Data System (ADS)
Wang, Shizhao; Zhang, Xing; He, Guowei; Liu, Tianshu
2013-09-01
A lift formula for a wing in a rectangular control volume is given in a very simple and physically lucid form, providing a rational foundation for calculation of the lift of a flapping wing in highly unsteady and separated flows at low Reynolds numbers. Direct numerical simulations on the stationary and flapping two-dimensional flat plate and rectangular flat-plate wing are conducted to assess the accuracy of the lift formula along with the classical Kutta-Joukowski theorem. In particular, the Lamb vector integral for the vortex force and the acceleration term of fluid for the unsteady inertial effect are evaluated as the main contributions to the unsteady lift generation of a flapping wing.
NASA Technical Reports Server (NTRS)
Deshpande, M. D.
1997-01-01
The dyadic Green's function for an electric current source placed in a rectangular waveguide is derived using a magnetic vector potential approach. A complete solution for the electric and magnetic fields including the source location is obtained by simple differentiation of the vector potential around the source location. The simple differentiation approach which gives electric and magnetic fields identical to an earlier derivation is overlooked by the earlier workers in the derivation of the dyadic Green's function particularly around the source location. Numerical results obtained using the Green's function approach are compared with the results obtained using the Finite Element Method (FEM).
Generalized indical forces on deforming rectangular wings in supersonic flight
NASA Technical Reports Server (NTRS)
Lomax, Harvard; Fuller, Franklyn B; Sluder, Loma
1955-01-01
A method is presented for determining the time-dependent flow over a rectangular wing moving with a supersonic forward speed and undergoing small vertical distortions expressible as polynomials involving spanwise and chordwise distances. The solution for the velocity potential is presented in a form analogous to that for steady supersonic flow having the familiar "reflected area" concept discovered by Evvard. Particular attention is paid to indicial-type motions and results are expressed in terms of generalized indicial forces. Numerical results for Mach numbers equal to 1.1 and 1.2 are given for polynomials of the first and fifth degree in the chordwise and spanwise directions, respectively, on a wing having an aspect ratio of 4.
Stability Test for Transient-Temperature Calculations
NASA Technical Reports Server (NTRS)
Campbell, W.
1984-01-01
Graphical test helps assure numerical stability of calculations of transient temperature or diffusion in composite medium. Rectangular grid forms basis of two-dimensional finite-difference model for heat conduction or other diffusion like phenomena. Model enables calculation of transient heat transfer among up to four different materials that meet at grid point.
NASA Astrophysics Data System (ADS)
Gillespie, M. I.; Kriek, R. J.
2017-12-01
A membraneless Divergent Electrode-Flow-Through (DEFT™) alkaline electrolyser, for unlocking profitable hydrogen production by combining a simplistic, inexpensive, modular and durable design, capable of overcoming existing technology current density thresholds, is ideal for decentralised renewable hydrogen production, with the only requirement of electrolytic flow to facilitate high purity product gas separation. Scale-up of the technology was performed, representing a deviation from the original tested stack design, incorporating elongated electrodes housed in a filter press assembly. The pilot plant operating parameters were limited to a low flow velocity range (0.03 m s-1 -0.04 m s-1) with an electrode gap of 2.5 mm. Performance of this pilot plant demonstrated repeatability to results previously obtained. Mesh electrodes with geometric area of 344.32 cm2 were used for plant performance testing. A NiO anode and Ni cathode combination developed optimal performance yielding 508 mA cm-2 at 2 VDC in contrast to a Ni anode and cathode combination providing 467 mA cm-2 at 2.26 VDC at 0.04 m s-1, 30% KOH and 80 °C. An IrO2/RuO2/TiO2 anode and Pt cathode combination underwent catalyst deactivation. Owing to the nature of the gas/liquid separation system, gas qualities were inadequate compared to results achieved previously. Future improvements will provide qualities similar to results achieved before.
Numerical Study on Electroosmotic Flow in Trapezoidal Microchannels
NASA Astrophysics Data System (ADS)
Zuo, C. C.; Ji, F.; Wang, L. F.
The analysis of electroosmotic flow mechanism in trapezoidal microchannels is performed in this work. The coupled Poisson-Boltzmann equation, Laplace equation, and modified Navier-Stokes equation are solved by finite volume method to describe distribution of electroosmotic flow. The detailed numerical results show that the salt concentration and applied electrical potential have great effects on the fundamental characteristics of elelctroosmotic flow. The most important finding is that the corner and wall effects in trapezoidal microchannels are stronger than those in rectangular microchannels.
Spring constant of a tuning-fork sensor for dynamic force microscopy
Lange, Manfred; Schmuck, Merlin; Schmidt, Nico; Möller, Rolf
2012-01-01
Summary We present an overview of experimental and numerical methods to determine the spring constant of a quartz tuning fork in qPlus configuration. The simple calculation for a rectangular cantilever is compared to the values obtained by the analysis of the thermal excitation and by the direct mechanical measurement of the force versus displacement. To elucidate the difference, numerical simulations were performed taking account of the real geometry including the glue that is used to mount the tuning fork. PMID:23365793
Numerical Field Model Simulation of Fire and Heat Transfer in a Rectangular Compartment
1992-09-01
zero . However, due to the approximation inherent in the numerical scheme, we will be satisfied if S,, tends toward zero as determined by comparison... zero , the appropriate coefficient (A) corresponding to that boundary is also set equal to zero . After the local pressure correction (P’) is determined...chamber just prior to starting the fire. It is assumed that the air is uni- formly at rest, thus all components of velocity are set equal to zero
Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias.
Islam, Nazmul; Reyna, Jairo
2012-04-01
This paper discusses the principle of biased alternating current electroosmosis (ACEO) and its application to move the bulk fluid in a microchannel, as an alternative to mechanical pumping methods. Previous EO-driven flow research has looked at the effect of electrode asymmetry and transverse traveling wave forms on the performance of electroosmotic pumps. This paper presents an analysis that was conducted to assess the effect of combining an AC signal with a DC (direct current) bias when generating the electric field needed to impart electroosmosis (EO) within a microchannel. The results presented here are numerical and experimental. The numerical results were generated through simulations performed using COMSOL 3.5a. Currently available theoretical models for EO flows were embedded in the software and solved numerically to evaluate the effects of channel geometry, frequency of excitation, electrode array geometry, and AC signal with a DC bias on the flow imparted on an electrically conducting fluid. Simulations of the ACEO flow driven by a constant magnitude of AC voltage over symmetric electrodes did not indicate relevant net flows. However, superimposing a DC signal over the AC signal on the same symmetric electrode array leads to a noticeable net forward flow. Moreover, changing the polarity of electrical signal creates a bi-directional flow on symmetrical electrode array. Experimental flow measurements were performed on several electrode array configurations. The mismatch between the numerical and experimental results revealed the limitations of the currently available models for the biased EO. However, they confirm that using a symmetric electrode array excited by an AC signal with a DC bias leads to a significant improvement in flow rates in comparison to the flow rates obtained in an asymmetric electrode array configuration excited just with an AC signal. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sancarlos-González, Abel; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Sapena-Bano, Angel; Riera-Guasp, Martin; Martinez-Roman, Javier; Perez-Cruz, Juan; Roger-Folch, Jose
2017-12-01
AC lines of industrial busbar systems are usually built using conductors with rectangular cross sections, where each phase can have several parallel conductors to carry high currents. The current density in a rectangular conductor, under sinusoidal conditions, is not uniform. It depends on the frequency, on the conductor shape, and on the distance between conductors, due to the skin effect and to proximity effects. Contrary to circular conductors, there are not closed analytical formulas for obtaining the frequency-dependent impedance of conductors with rectangular cross-section. It is necessary to resort to numerical simulations to obtain the resistance and the inductance of the phases, one for each desired frequency and also for each distance between the phases' conductors. On the contrary, the use of the parametric proper generalized decomposition (PGD) allows to obtain the frequency-dependent impedance of an AC line for a wide range of frequencies and distances between the phases' conductors by solving a single simulation in a 4D domain (spatial coordinates x and y, the frequency and the separation between conductors). In this way, a general "virtual chart" solution is obtained, which contains the solution for any frequency and for any separation of the conductors, and stores it in a compact separated representations form, which can be easily embedded on a more general software for the design of electrical installations. The approach presented in this work for rectangular conductors can be easily extended to conductors with an arbitrary shape.
Fuel cell stack with passive air supply
Ren, Xiaoming; Gottesfeld, Shimshon
2006-01-17
A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.
Resistive and Hall weighting functions in three dimensions
NASA Astrophysics Data System (ADS)
Koon, D. W.; Knickerbocker, C. J.
1998-10-01
The authors extend their study of the effect of macroscopic impurities on resistive and Hall measurements to include objects of finite thickness. The effect of such impurities is calculated for a series of rectangular parallelepipeds with two current and two voltage contacts on the corners of one square face. The weighting functions display singularities near these contacts, but these are shown to vanish in the two-dimensional limit, in agreement with previous results. Finally, it is shown that while Hall measurements principally sample the plane of the electrodes, resistivity measurements sample more of the interior of an object of finite thickness.
Numerical Simulations of Vortex Generator Vanes and Jets on a Flat Plate
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Yao, Chung-Sheng; Lin, John C.
2002-01-01
Numerical simulations of a single low-profile vortex generator vane, which is only a small fraction of the boundary-layer thickness, and a vortex generating jet have been performed for flows over a flat plate. The numerical simulations were computed by solving the steady-state solution to the Reynolds-averaged Navier-Stokes equations. The vortex generating vane results were evaluated by comparing the strength and trajectory of the streamwise vortex to experimental particle image velocimetry measurements. From the numerical simulations of the vane case, it was observed that the Shear-Stress Transport (SST) turbulence model resulted in a better prediction of the streamwise peak vorticity and trajectory when compared to the Spalart-Allmaras (SA) turbulence model. It is shown in this investigation that the estimation of the turbulent eddy viscosity near the vortex core, for both the vane and jet simulations, was higher for the SA model when compared to the SST model. Even though the numerical simulations of the vortex generating vane were able to predict the trajectory of the stream-wise vortex, the initial magnitude and decay of the peak streamwise vorticity were significantly under predicted. A comparison of the positive circulation associated with the streamwise vortex showed that while the numerical simulations produced a more diffused vortex, the vortex strength compared very well to the experimental observations. A grid resolution study for the vortex generating vane was also performed showing that the diffusion of the vortex was not a result of insufficient grid resolution. Comparisons were also made between a fully modeled trapezoidal vane with finite thickness to a simply modeled rectangular thin vane. The comparisons showed that the simply modeled rectangular vane produced a streamwise vortex which had a strength and trajectory very similar to the fully modeled trapezoidal vane.
Does preoperative electrical stimulation of the skin alter the healing process?
Borba, Graziela C; Hochman, Bernardo; Liebano, Richard E; Enokihara, Milvia M S S; Ferreira, Lydia M
2011-04-01
In vitro studies have demonstrated that electrical current may affect fibroblast proliferation and synthesis of collagen fibers. In humans, the application of electrical current by positioning the positive electrode on skin wounds resulted in thinner hypertrophic scars. The aim of this study was to evaluate the effects of preoperative electrical stimulation on cutaneous wound healing in rats. Forty rats were divided into two groups of 20 animals each. In the control group, an incision was made on the back of the animals. In the stimulation group, a preoperative electrical stimulation was applied using a rectangular pulse current at a frequency of 7.7 Hz, and intensity of 8 mA, for 30 min, with the positive electrode placed on the back of the animal, and the negative electrode placed on the abdominal wall. Following, an incision was made on their back. Biopsy was carried out on postoperative day 7 and 14, and histologic analysis was performed. The number of newly formed vessels, fibroblasts, and type III collagen fibers in the stimulation group on postoperative day 7 were greater than those in the control group. Preoperative positive-polarity electrical stimulation positively affects angiogenesis and fibroblast proliferation. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Belvin, W. Keith; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual fullscale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consist of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
The Optimization Design of An AC-Electroosmotic Micro mixer
NASA Astrophysics Data System (ADS)
Wang, Yangyang; Suh, Yongkweon; Kang, Sangmo
2007-11-01
We propose the optimization design of an AC-electroosmotic micro-mixer, which is composed of a channel and a series of pairs of electrodes attached on the bottom wall in zigzag patterns. The AC electric field is applied to the electrodes so that a fluid flow takes place around the electrodes across the channel, thus contributing to the mixing of the fluid within the channel. We have performed numerical simulations by using a commercial code (CFX 10) to optimize the shape and pattern of the electrodes via the concept of mixing index. It is found that the best combination of two kinds of electrodes, which leads to good mixing performance, is not simply harmonic one. When the length ratio of the two kinds of electrodes closes to 2:1, we can get the best mixing effect. Furthermore, we will visualize the flow pattern and measure the velocity field with a PTV technique to validate the numerical simulations. In addition, the mixing pattern will be visualized via the experiment.
NASA Astrophysics Data System (ADS)
Takahashi, Toru; Fujino, Takayasu; Ishikawa, Motoo
Time dependent three-dimensional numerical analysis is carried out in order to clarify causes of voltage loss occurring near power takeoff regions and to suggest how to reduce the voltage loss for the scramjet engine driven MHD generator which was developed under the hypersonic vehicle electric power system program in USA. The numerical results under the experimental condition show that the local positive electric field is induced near the power takeoff electrodes. The phenomenon is due to the electric field loss by the high electric current through the weakly ionized plasma with low temperature and also by the low electromotive force near the power takeoff electrodes. When the configuration of power takeoff electrodes is modified, the current density near the power takeoff electrodes becomes small and the electromotive force becomes strong. The electric power output under the optimum electrode configuration of power takeoff is improved by 22 percent, compared with the value under the experimental condition.
NASA Astrophysics Data System (ADS)
Faria, Paula
2010-09-01
For the past few years, the potential of transcranial direct current stimulation (tDCS) for the treatment of several pathologies has been investigated. Knowledge of the current density distribution is an important factor in optimizing such applications of tDCS. For this goal, we used the finite element method to solve the Laplace equation in a spherical head model in order to investigate the three dimensional distribution of the current density and the variation of its intensity with depth using different electrodes montages: the traditional one with two sponge electrodes and new electrode montages: with sponge and EEG electrodes and with EEG electrodes varying the numbers of electrodes. The simulation results confirm the effectiveness of the mixed system which may allow the use of tDCS and EEG recording concomitantly and may help to optimize this neuronal stimulation technique. The numerical results were used in a promising application of tDCS in epilepsy.
Miyoshi, S; Sakajiri, M; Ifukube, T; Matsushima, J
1997-01-01
We have proposed the Tripolar Electrode Stimulation Method (TESM) which may enable us to narrow the stimulation region and to move continuously the stimulation site for the cochlear implants. We evaluated whether or not TESM works according to a theory based on numerical analysis using the auditory nerve fiber model. In this simulation, the sum of the excited model fibers were compared with the compound actions potentials obtained from animal experiments. As a result, this experiment showed that TESM could narrow a stimulation region by controlling the sum of the currents emitted from the electrodes on both sides, and continuously move a stimulation site by changing the ratio of the currents emitted from the electrodes on both sides.
NASA Astrophysics Data System (ADS)
Laura, P. A. A.; Avalos, D. R.
2008-05-01
The Rayleigh-Ritz variational method is applied to the determination of the first four frequency coefficients for small amplitude, transverse vibrations of circular plates with an eccentric, rectangular perforation that is elastically restrained against rotation and translation on both edges. Coordinate functions are used which identically satisfy the boundary conditions at the outer circular edge, while the restraining boundary conditions at the inner edge of the cutout are dealt with directly through the energetic terms in the functional expressions. The procedure seems to show very good numerical stability and convergence properties. As an added bonus, the method allows for increased flexibility in dealing with boundary conditions at the edge of the cutout.
Critical current studies of a HTS rectangular coil
NASA Astrophysics Data System (ADS)
Zhong, Z.; Chudy, M.; Ruiz, H. S.; Zhang, X.; Coombs, T.
2017-05-01
Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.
Pulskamp, Jeffrey S; Bedair, Sarah S; Polcawich, Ronald G; Smith, Gabriel L; Martin, Joel; Power, Brian; Bhave, Sunil A
2012-05-01
This paper reports theoretical analysis and experimental results on a numerical electrode shaping design technique that permits the excitation of arbitrary modes in arbitrary geometries for piezoelectric resonators, for those modes permitted to exist by the nonzero piezoelectric coefficients and electrode configuration. The technique directly determines optimal electrode shapes by assessing the local suitability of excitation and detection electrode placement on two-port resonators without the need for iterative numerical techniques. The technique is demonstrated in 61 different electrode designs in lead zirconate titanate (PZT) thin film on silicon RF micro electro-mechanical system (MEMS) plate, beam, ring, and disc resonators for out-of-plane flexural and various contour modes up to 200 MHz. The average squared effective electromechanical coupling factor for the designs was 0.54%, approximately equivalent to the theoretical maximum value of 0.53% for a fully electroded length-extensional mode beam resonator comprised of the same composite. The average improvement in S(21) for the electrode-shaped designs was 14.6 dB with a maximum improvement of 44.3 dB. Through this piezoelectric electrodeshaping technique, 95% of the designs showed a reduction in insertion loss.
Datta, Subhra; Ghosal, Sandip; Patankar, Neelesh A
2006-02-01
Electroosmotic flow in a straight micro-channel of rectangular cross-section is computed numerically for several situations where the wall zeta-potential is not constant but has a specified spatial variation. The results of the computation are compared with an earlier published asymptotic theory based on the lubrication approximation: the assumption that any axial variations take place on a long length scale compared to a characteristic channel width. The computational results are found to be in excellent agreement with the theory even when the scale of axial variations is comparable to the channel width. In the opposite limit when the wavelength of fluctuations is much shorter than the channel width, the lubrication theory fails to describe the solution either qualitatively or quantitatively. In this short wave limit the solution is well described by Ajdari's theory for electroosmotic flow between infinite parallel plates (Ajdari, A., Phys. Rev. E 1996, 53, 4996-5005.) The infinitely thin electric double layer limit is assumed in the theory as well as in the simulation.
A priori and a posteriori analysis of the flow around a rectangular cylinder
NASA Astrophysics Data System (ADS)
Cimarelli, A.; Leonforte, A.; Franciolini, M.; De Angelis, E.; Angeli, D.; Crivellini, A.
2017-11-01
The definition of a correct mesh resolution and modelling approach for the Large Eddy Simulation (LES) of the flow around a rectangular cylinder is recognized to be a rather elusive problem as shown by the large scatter of LES results present in the literature. In the present work, we aim at assessing this issue by performing an a priori analysis of Direct Numerical Simulation (DNS) data of the flow. This approach allows us to measure the ability of the LES field on reproducing the main flow features as a function of the resolution employed. Based on these results, we define a mesh resolution which maximize the opposite needs of reducing the computational costs and of adequately resolving the flow dynamics. The effectiveness of the resolution method proposed is then verified by means of an a posteriori analysis of actual LES data obtained by means of the implicit LES approach given by the numerical properties of the Discontinuous Galerkin spatial discretization technique. The present work represents a first step towards a best practice for LES of separating and reattaching flows.
On the electromagnetic scattering from infinite rectangular conducting grids
NASA Technical Reports Server (NTRS)
Christodoulou, C.
1985-01-01
The study and development of two numerical techniques for the analysis of electromagnetic scattering from a rectangular wire mesh are described. Both techniques follow from one basic formulation and they are both solved in the spectral domain. These techniques were developed as a result of an investigation towards more efficient numerical computation for mesh scattering. These techniques are efficient for the following reasons: (a1) make use of the Fast Fourier Transform; (b2) they avoid any convolution problems by converting integrodifferential equations into algebraic equations; and (c3) they do not require inversions of any matrices. The first method, the SIT or Spectral Iteration Technique, is applied for regions where the spacing between wires is not less than two wavelengths. The second method, the SDCG or Spectral Domain Conjugate Gradient approach, can be used for any spacing between adjacent wires. A study of electromagnetic wave properties, such as reflection coefficient, induced currents and aperture fields, as functions of frequency, angle of incidence, polarization and thickness of wires is presented. Examples and comparisons or results with other methods are also included to support the validity of the new algorithms.
NASA Astrophysics Data System (ADS)
Qin, Shanlin; Liu, Fawang; Turner, Ian W.
2018-03-01
The consideration of diffusion processes in magnetic resonance imaging (MRI) signal attenuation is classically described by the Bloch-Torrey equation. However, many recent works highlight the distinct deviation in MRI signal decay due to anomalous diffusion, which motivates the fractional order generalization of the Bloch-Torrey equation. In this work, we study the two-dimensional multi-term time and space fractional diffusion equation generalized from the time and space fractional Bloch-Torrey equation. By using the Galerkin finite element method with a structured mesh consisting of rectangular elements to discretize in space and the L1 approximation of the Caputo fractional derivative in time, a fully discrete numerical scheme is derived. A rigorous analysis of stability and error estimation is provided. Numerical experiments in the square and L-shaped domains are performed to give an insight into the efficiency and reliability of our method. Then the scheme is applied to solve the multi-term time and space fractional Bloch-Torrey equation, which shows that the extra time derivative terms impact the relaxation process.
NASA Astrophysics Data System (ADS)
Fu, JiaHui; Raheem, Odai H.
2017-07-01
A novel IMSL tunable phase shifter for HMSIW-LWA-fed rectangular patches based on liquid crystal technology is proposed. Rectangular patches are used as radiators for the opening sidewall of the waveguide and matched section part for a unit cell. The transition structure is added for enhancing the efficiency of HMSIW-LWA due to converting most input power to the leaky mode. The novel IMSL phase shifter is used for investigating the tunable dielectric characteristics of N-LC by applying an electric field to the LC cell, which is controlled by the orientation angle of the LC molecules. Theoretically, the orientation angle is derived and solved numerically with the accurate method. As a result, the HMSIW-LWA can be tuned up to ± 25° for a fixed frequency by tuning the nematic LC with applied voltage from 0 to 20 V. In addition, the realized gain changed from 6 to 9.4 dB for a fixed tuned frequency, and 46° steerable for rest main beams range of the HMSIW-LWA in both forward and backward directions.
NASA Astrophysics Data System (ADS)
Wen, Jici; Wei, Yujie; Cheng, Yang-Tse
2018-07-01
Monitoring in real time the stress state in high capacity electrodes during charge-discharge processes is pivotal to the performance assessment and structural optimization of advanced batteries. The wafer curvature measurement technique broadly employed in thin-film industry, together with stress analysis using the Stoney equation, has been successfully adopted to measure in situ the stress in thin film electrodes. How large plastic deformation or interfacial delamination during electrochemical cycles in such electrodes affects the applicability of Stoney equation remains unclear. Here we develop a robust electrochemical-mechanical coupled numerical procedure to investigate the influence of large plastic deformation and interfacial failure on the measured stress in thin film electrodes. We identify how the constitutive behavior of electrode materials and film-substrate interfacial properties affect the measured stress-capacity curves of electrodes, and hence establish the relationship of electrode material parameters with the characteristics of stress-capacity curves. Using Li-ions batteries as examples, we show that plastic deformation and interfacial delamination account for the asymmetric stress-capacity loops seen in in situ stress measurements. The methods used here, along with the finite-element code in the supplementary material, may be used to model the electrode behavior as a function of the state of charge.
Analytic Expressions for the Gravity Gradient Tensor of 3D Prisms with Depth-Dependent Density
NASA Astrophysics Data System (ADS)
Jiang, Li; Liu, Jie; Zhang, Jianzhong; Feng, Zhibing
2017-12-01
Variable-density sources have been paid more attention in gravity modeling. We conduct the computation of gravity gradient tensor of given mass sources with variable density in this paper. 3D rectangular prisms, as simple building blocks, can be used to approximate well 3D irregular-shaped sources. A polynomial function of depth can represent flexibly the complicated density variations in each prism. Hence, we derive the analytic expressions in closed form for computing all components of the gravity gradient tensor due to a 3D right rectangular prism with an arbitrary-order polynomial density function of depth. The singularity of the expressions is analyzed. The singular points distribute at the corners of the prism or on some of the lines through the edges of the prism in the lower semi-space containing the prism. The expressions are validated, and their numerical stability is also evaluated through numerical tests. The numerical examples with variable-density prism and basin models show that the expressions within their range of numerical stability are superior in computational accuracy and efficiency to the common solution that sums up the effects of a collection of uniform subprisms, and provide an effective method for computing gravity gradient tensor of 3D irregular-shaped sources with complicated density variation. In addition, the tensor computed with variable density is different in magnitude from that with constant density. It demonstrates the importance of the gravity gradient tensor modeling with variable density.
NASA Astrophysics Data System (ADS)
Komodromos, A.; Tekkaya, A. E.; Hofmann, J.; Fleischer, J.
2018-05-01
Since electric motors are gaining in importance in many fields of application, e.g. hybrid electric vehicles, optimization of the linear coil winding process greatly contributes to an increase in productivity and flexibility. For the investigation of the forming behavior of the winding wire the material behavior is characterized in different experimental setups. Numerical examinatons of the linear winding process are carried out in a case study for a rectangular bobbin in order to analyze the influence of forming parameters on the resulting properties of the wound coil. Besides the numerical investigation of the linear winding method by using the finite element method (FEM), a multi-body dynamics (MBD) simulation is carried out. The multi-body dynamics simulation is necessary to represent the movement of the bodies as well as the connection of the components during winding. The finite element method is used to represent the material behavior of the copper wire and the plastic strain distribution within the wire. It becomes clear that the MBD simulation is not sufficient for analyzing the process and the wire behavior in its entirety. Important parameters that define the final coil properties cannot be analyzed in the manner of a precise manifestation, e.g. the clearance between coil bobbin and wire as well as the wire deformation behavior in form of a diameter reduction which negatively affects the ohmic resistance. Finally, the numerical investigations are validated experimentally by linear winding tests.
NASA Technical Reports Server (NTRS)
Cavicchi, Richard H.
1999-01-01
Circular-rectangular transition ducts are used between engine exhausts and nozzles with rectangular cross sections that are designed for high performance aircraft. NASA Glenn Research Center has made experimental investigations of a series of circular-rectangular transition ducts to provide benchmark flow data for comparison with numerical calculations. These ducts are all designed with superellipse cross sections to facilitate grid generation. In response to this challenge, the three-dimensional RNS3D code has been applied to one of these transition ducts. This particular duct has a length-to-inlet diameter ratio of 1.5 and an exit-plane aspect ratio of 3.0. The inlet Mach number is 0.35. Two GRC experiments and the code were run for this duct without inlet swirl. One GRC experiment and the code were also run with inlet swirl. With no inlet swirl the code was successful in predicting pressures and secondary flow conditions, including a pair of counter-rotating vortices at both sidewalls of the exit plane. All these phenomena have been reported from the two GRC experiments. However, these vortices were suppressed in the one experiment when inlet swirl was used; whereas the RNS3D code still predicted them. The experiment was unable to provide data near the sidewalls, the very region where the vortices were predicted.
NASA Astrophysics Data System (ADS)
Viswanath, Kamal; Johnson, Ryan; Kailasanath, Kailas; Malla, Bhupatindra; Gutmark, Ephraim
2017-11-01
The noise from high performance jet engines of both civilian and military aircraft is an area of active concern. Asymmetric exhaust nozzle configurations, in particular rectangular, potentially offer a passive way of modulating the farfield noise and are likely to become more important in the future. High aspect ratio nozzles offer the further benefit of easier airframe integration. In this study we validate the far field noise for ideally and over expanded supersonic jets issuing from a high aspect ratio rectangular nozzle geometry. Validation of the acoustic data is performed against experimentally recorded sound pressure level (SPL) spectra for a host of observer locations around the asymmetric nozzle. Data is presented for a slightly heated jet case for both nozzle pressure ratios. The contrast in the noise profile from low aspect ratio rectangular and circular nozzle jets are highlighted, especially the variation in the azimuthal direction that shows ``quiet'' and ``loud'' planes in the farfield in the peak noise direction. This variation is analyzed in the context of the effect of mixing at the sharp corners, the sense of the vortex pairs setup in the exit plane, and the evolution of the high aspect ratio exit cross-section as it propagates downstream including possible axis-switching. Supported by Office of Naval Research (ONR) through the Computational Physics Task Area under the NRL 6.1 Base Program.
NASA Astrophysics Data System (ADS)
Xu, Bin; Chen, Hongbing; Mo, Y.-L.; Zhou, Tianmin
2018-07-01
Piezoelectric-lead-zirconate-titanate(PZT)-based interface debonding defects detection for concrete filled steel tubulars (CFSTs) has been proposed and validated through experiments, and numerical study on its mechanism has been carried out recently by assuming that concrete material is homogenous. However, concrete is composed of coarse and fine aggregates, mortar and interface transition zones (ITZs) and even initial defects and is a typical nonhomogeneous material and its mesoscale structure might affect the wave propagation in the concrete core of CFST members. Therefore, it is significantly important to further investigate the influence of mesoscale structure of concrete on the stress wave propagation and the response of embedded PZT sensor for the interface debonding detection. In this study, multi-physical numerical simulation on the wave propagation and embedded PZT sensor response of rectangular CFST members with numerical concrete core considering the randomness in circular aggregate distribution, and coupled with surface-mounted PZT actuator and embedded PZT sensor is carried out. The effect of randomness in the circular aggregates distribution and the existence of ITZs are discussed. Both a local stress wave propagation behavior including transmission, reflection, and diffraction at the interface between concrete core and steel tube under a pulse signal excitation and a global wave field in the cross-section of the rectangular CFST models without and with interface debonding defects under sweep frequency excitation are simulated. The sensitivity of an evaluation index based on wavelet packet analysis on the embedded PZT sensor response on the variation of mesoscale parameters of concrete core without and with different interface debonding defects under sweep frequency voltage signal is investigated in details. The results show that the effect of the interface debondings on the embedded PZT measurement is dominant when compared to the meso-scale structures of concrete core. This study verified the feasibility of the PZT based debonding detection for rectangular CFST members even the meso-scale structure of concrete core is considered.
Transition mixing study empirical model report
NASA Technical Reports Server (NTRS)
Srinivasan, R.; White, C.
1988-01-01
The empirical model developed in the NASA Dilution Jet Mixing Program has been extended to include the curvature effects of transition liners. This extension is based on the results of a 3-D numerical model generated under this contract. The empirical model results agree well with the numerical model results for all tests cases evaluated. The empirical model shows faster mixing rates compared to the numerical model. Both models show drift of jets toward the inner wall of a turning duct. The structure of the jets from the inner wall does not exhibit the familiar kidney-shaped structures observed for the outer wall jets or for jets injected in rectangular ducts.
Grys, Maciej; Madeja, Zbigniew; Korohoda, Włodzimierz
2017-01-01
The harmful side effects of electroporation to cells due to local changes in pH, the appearance of toxic electrode products, temperature increase, and the heterogeneity of the electric field acting on cells in the cuvettes used for electroporation were observed and discussed in several laboratories. If cells are subjected to weak electric fields for prolonged periods, for example in experiments on cell electrophoresis or galvanotaxis the same effects are seen. In these experiments investigators managed to reduce or eliminate the harmful side effects of electric current application. For the experiments, disposable 20 μl cuvettes with two walls made of dialysis membranes were constructed and placed in a locally focused electric field at a considerable distance from the electrodes. Cuvettes were mounted into an apparatus for horizontal electrophoresis and the cells were subjected to direct current electric field (dcEF) pulses from a commercial pulse generator of exponentially declining pulses and from a custom-made generator of double and single rectangular pulses. More than 80% of the electroporated cells survived the dcEF pulses in both systems. Side effects related to electrodes were eliminated in both the flow through the dcEF and in the disposable cuvettes placed in the focused dcEFs. With a disposable cuvette system, we also confirmed the sensitization of cells to a dcEF using procaine by observing the loading of AT2 cells with calceine and using a square pulse generator, applying 50 ms single rectangular pulses. We suggest that the same methods of avoiding the side effects of electric current pulse application as in cell electrophoresis and galvanotaxis should also be used for electroporation. This conclusion was confirmed in our electroporation experiments performed in conditions assuring survival of over 80% of the electroporated cells. If the amplitude, duration, and shape of the dcEF pulse are known, then electroporation does not depend on the type of pulse generator. This knowledge of the characteristics of the pulse assures reproducibility of electroporation experiments using different equipment.
NASA Astrophysics Data System (ADS)
Khanjian, Assadour; Habchi, Charbel; Russeil, Serge; Bougeard, Daniel; Lemenand, Thierry
2018-05-01
Convective heat transfer enhancement can be achieved by generating secondary flow structures that are added to the main flow to intensify the fluid exchange between hot and cold regions. One method involves the use of vortex generators to produce streamwise and transverse vortices superimposed to the main flow. This study presents numerical computation results of laminar convection heat transfer in a rectangular channel whose bottom wall is equipped with one row of rectangular wing vortex generators. The governing equations are solved using finite volume method by considering steady state, laminar regime and incompressible flow. Three-dimensional numerical simulations are performed to study the effect of the angle of attack α of the wing on heat transfer and pressure drop. Different values are taken into consideration within the range 0° < α < 30 °. For all of these geometrical configurations the Reynolds number is maintained to Re = 456 . To assess the effect of the angle of attack on the heat transfer enhancement, Nusselt number and the friction factor are studied on both local and global perspectives. Also, the location of the generated vortices within the channel is studied, as well as their effect on the heat transfer enhancement throughout the channel for all α values . Based on both local and global analysis, our results show that the angle of attack α has a direct impact on the heat transfer enhancement. By increasing its value, it leads to better enhancement until an optimal value is reached, beyond which the thermal performances decrease.
Shock Train/Boundary-Layer Interaction in Rectangular Scramjet Isolators
NASA Astrophysics Data System (ADS)
Geerts, Jonathan Simon
Numerous studies of the dual-mode scramjet isolator, a critical component in preventing inlet unstart and/or vehicle loss by containing a collection of flow disturbances called a shock train, have been performed since the dual-mode propulsion cycle was introduced in the 1960s. Low momentum corner flow and other three-dimensional effects inherent to rectangular isolators have, however, been largely ignored in experimental studies of the boundary layer separation driven isolator shock train dynamics. Furthermore, the use of two dimensional diagnostic techniques in past works, be it single-perspective line-of-sight schlieren/shadowgraphy or single axis wall pressure measurements, have been unable to resolve the three-dimensional flow features inside the rectangular isolator. These flow characteristics need to be thoroughly understood if robust dual-mode scramjet designs are to be fielded. The work presented in this thesis is focused on experimentally analyzing shock train/boundary layer interactions from multiple perspectives in aspect ratio 1.0, 3.0, and 6.0 rectangular isolators with inflow Mach numbers ranging from 2.4 to 2.7. Secondary steady-state Computational Fluid Dynamics studies are performed to compare to the experimental results and to provide additional perspectives of the flow field. Specific issues that remain unresolved after decades of isolator shock train studies that are addressed in this work include the three-dimensional formation of the isolator shock train front, the spatial and temporal low momentum corner flow separation scales, the transient behavior of shock train/boundary layer interaction at specific coordinates along the isolator's lateral axis, and effects of the rectangular geometry on semi-empirical relations for shock train length prediction. (Abstract shortened by ProQuest.).
Silver nanostructures synthesis via optically induced electrochemical deposition
NASA Astrophysics Data System (ADS)
Li, Pan; Liu, Na; Yu, Haibo; Wang, Feifei; Liu, Lianqing; Lee, Gwo-Bin; Wang, Yuechao; Li, Wen Jung
2016-06-01
We present a new digitally controlled, optically induced electrochemical deposition (OED) method for fabricating silver nanostructures. Projected light patterns were used to induce an electrochemical reaction in a specialized sandwich-like microfluidic device composed of one indium tin oxide (ITO) glass electrode and an optically sensitive-layer-covered ITO electrode. Silver polyhedral nanoparticles, triangular and hexagonal nanoplates, and nanobelts were controllably synthesized in specific positions at which projected light was illuminated. The silver nanobelts had rectangular cross-sections with an average width of 300 nm and an average thickness of 100 nm. By controlling the applied voltage, frequency, and time, different silver nanostructure morphologies were obtained. Based on the classic electric double-layer theory, a dynamic process of reduction and crystallization can be described in terms of three phases. Because it is template- and surfactant-free, the digitally controlled OED method facilitates the easy, low cost, efficient, and flexible synthesis of functional silver nanostructures, especially quasi-one-dimensional nanobelts.
NASA Astrophysics Data System (ADS)
Wu, Ai-Min; Feng, Chen-Chen; Huang, Hao; Paredes Camacho, Ramon Alberto; Gao, Song; Lei, Ming-Kai; Cao, Guo-Zhong
2017-07-01
Highly porous carbon film (PCF) coated on nickel foam was prepared successfully by microwave plasma-assisted chemical vapor deposition (MPCVD) with C2H2 as carbon source and Ar as discharge gas. The PCF is uniform and dense with 3D-crosslinked nanoscale network structure possessing high degree of graphitization. When used as the electrode material in an electrochemical supercapacitor, the PCF samples verify their advantageous electrical conductivity, ion contact and electrochemical stability. The test results show that the sample prepared under 1000 W microwave power has good electrochemical performance. It displays the specific capacitance of 62.75 F/g at the current density of 2.0 A/g and retains 95% of its capacitance after 10,000 cycles at the current density of 2.0 A/g. Besides, its near-rectangular shape of the cyclic voltammograms (CV) curves exhibits typical character of an electric double-layer capacitor, which owns an enhanced ionic diffusion that can fit the requirements for energy storage applications.
Experimental study of a SINIS detector response time at 350 GHz signal frequency
NASA Astrophysics Data System (ADS)
Lemzyakov, S.; Tarasov, M.; Mahashabde, S.; Yusupov, R.; Kuzmin, L.; Edelman, V.
2018-03-01
Response time constant of a SINIS bolometer integrated in an annular ring antenna was measured at a bath temperature of 100 mK. Samples comprising superconducting aluminium electrodes and normal-metal Al/Fe strip connected to electrodes via tunnel junctions were fabricated on oxidized Si substrate using shadow evaporation. The bolometer was illuminated by a fast black-body radiation source through a band-pass filter centered at 350 GHz with a passband of 7 GHz. Radiation source is a thin NiCr film on sapphire substrate. For rectangular 10÷100 μs current pulse the radiation front edge was rather sharp due to low thermal capacitance of NiCr film and low thermal conductivity of substrate at temperatures in the range 1-4 K. The rise time of the response was ~1-10 μs. This time presumably is limited by technical reasons: high dynamic resistance of series array of bolometers and capacitance of a long twisted pair wiring from SINIS bolometer to a room-temperature amplifier.
NASA Astrophysics Data System (ADS)
Sang, Chaofeng; Sun, Jizhong; Ren, Chunsheng; Wang, Dezhen
2009-02-01
A model of one dimensional in position and three dimensional in velocity space self-consistent particle in cell with Monte Carlo collision technique was employed to simulate the argon discharge between the needle and plane electrodes at high pressure, in which a nanosecond rectangular pulse was applied to the needle electrode. The work focused on the investigation of the spatiotemporal evolution of the discharge versus the needle tip size and working gas pressure. The simulation results showed that the discharge occurred mainly in the region near the needle tip at atmospheric pressure, and that the small radius of the needle tip led to easy discharge. Reducing the gas pressure gave rise to a transition from a corona discharge to a glowlike discharge along the needle-to-plane direction. The microscopic mechanism for the transition can arguably be attributed to the peak of high-energy electrons occurring before the breakdown; the magnitude of the number of these electrons determined whether the breakdown can take place.
Extension of a System Level Tool for Component Level Analysis
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Schallhorn, Paul
2002-01-01
This paper presents an extension of a numerical algorithm for network flow analysis code to perform multi-dimensional flow calculation. The one dimensional momentum equation in network flow analysis code has been extended to include momentum transport due to shear stress and transverse component of velocity. Both laminar and turbulent flows are considered. Turbulence is represented by Prandtl's mixing length hypothesis. Three classical examples (Poiseuille flow, Couette flow and shear driven flow in a rectangular cavity) are presented as benchmark for the verification of the numerical scheme.
Extension of a System Level Tool for Component Level Analysis
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Schallhorn, Paul; McConnaughey, Paul K. (Technical Monitor)
2001-01-01
This paper presents an extension of a numerical algorithm for network flow analysis code to perform multi-dimensional flow calculation. The one dimensional momentum equation in network flow analysis code has been extended to include momentum transport due to shear stress and transverse component of velocity. Both laminar and turbulent flows are considered. Turbulence is represented by Prandtl's mixing length hypothesis. Three classical examples (Poiseuille flow, Couette flow, and shear driven flow in a rectangular cavity) are presented as benchmark for the verification of the numerical scheme.
Numerical simulation of a hovering rotor using embedded grids
NASA Technical Reports Server (NTRS)
Duque, Earl-Peter N.; Srinivasan, Ganapathi R.
1992-01-01
The flow field for a rotor blade in hover was computed by numerically solving the compressible thin-layer Navier-Stokes equations on embedded grids. In this work, three embedded grids were used to discretize the flow field - one for the rotor blade and two to convect the rotor wake. The computations were performed at two hovering test conditions, for a two-bladed rectangular rotor of aspect ratio six. The results compare fairly with experiment and illustrates the use of embedded grids in solving helicopter type flow fields.
Comparison of bipolar vs. tripolar concentric ring electrode Laplacian estimates.
Besio, W; Aakula, R; Dai, W
2004-01-01
Potentials on the body surface from the heart are of a spatial and temporal function. The 12-lead electrocardiogram (ECG) provides useful global temporal assessment, but it yields limited spatial information due to the smoothing effect caused by the volume conductor. The smoothing complicates identification of multiple simultaneous bioelectrical events. In an attempt to circumvent the smoothing problem, some researchers used a five-point method (FPM) to numerically estimate the analytical solution of the Laplacian with an array of monopolar electrodes. The FPM is generalized to develop a bi-polar concentric ring electrode system. We have developed a new Laplacian ECG sensor, a trielectrode sensor, based on a nine-point method (NPM) numerical approximation of the analytical Laplacian. For a comparison, the NPM, FPM and compact NPM were calculated over a 400 x 400 mesh with 1/400 spacing. Tri and bi-electrode sensors were also simulated and their Laplacian estimates were compared against the analytical Laplacian. We found that tri-electrode sensors have a much-improved accuracy with significantly less relative and maximum errors in estimating the Laplacian operator. Apart from the higher accuracy, our new electrode configuration will allow better localization of the electrical activity of the heart than bi-electrode configurations.
NASA Astrophysics Data System (ADS)
Nair, Shiny; Kathiresan, M.; Mukundan, T.
2018-02-01
Device characteristics of organic thin film transistor (OTFT) fabricated with conducting polyaniline:polystyrene sulphonic acid (PANi-PSS) electrodes, patterned by the Parylene lift-off method are systematically analyzed by way of two dimensional numerical simulation. The device simulation was performed taking into account field-dependent mobility, low mobility layer at the electrode-semiconductor interface, trap distribution in pentacene film and trapped charge at the organic/insulator interface. The electrical characteristics of bottom contact thin film transistor with PANi-PSS electrodes and pentacene active material is superior to those with palladium electrodes due to a lower charge injection barrier. Contact resistance was extracted in both cases by the transfer line method (TLM). The extracted charge concentration and potential profile from the two dimensional numerical simulation was used to explain the observed electrical characteristics. The simulated device characteristics not only matched the experimental electrical characteristics, but also gave an insight on the charge injection, transport and trap properties of the OTFTs as a function of different electrode materials from the perspectives of transistor operation.
Scaling Analysis of Alloy Solidification and Fluid Flow in a Rectangular Cavity
NASA Astrophysics Data System (ADS)
Plotkowski, A.; Fezi, K.; Krane, M. J. M.
A scaling analysis was performed to predict trends in alloy solidification in a side-cooled rectangular cavity. The governing equations for energy and momentum were scaled in order to determine the dependence of various aspects of solidification on the process parameters for a uniform initial temperature and an isothermal boundary condition. This work improved on previous analyses by adding considerations for the cooling bulk fluid flow. The analysis predicted the time required to extinguish the superheat, the maximum local solidification time, and the total solidification time. The results were compared to a numerical simulation for a Al-4.5 wt.% Cu alloy with various initial and boundary conditions. Good agreement was found between the simulation results and the trends predicted by the scaling analysis.
NASA Astrophysics Data System (ADS)
Ji, Songsong; Yang, Yibo; Pang, Gang; Antoine, Xavier
2018-01-01
The aim of this paper is to design some accurate artificial boundary conditions for the semi-discretized linear Schrödinger and heat equations in rectangular domains. The Laplace transform in time and discrete Fourier transform in space are applied to get Green's functions of the semi-discretized equations in unbounded domains with single-source. An algorithm is given to compute these Green's functions accurately through some recurrence relations. Furthermore, the finite-difference method is used to discretize the reduced problem with accurate boundary conditions. Numerical simulations are presented to illustrate the accuracy of our method in the case of the linear Schrödinger and heat equations. It is shown that the reflection at the corners is correctly eliminated.
NASA Astrophysics Data System (ADS)
Sakli, Hedi; Benzina, Hafedh; Aguili, Taoufik; Tao, Jun Wu
2009-08-01
This paper is an analysis of rectangular waveguide completely full of ferrite magnetized longitudinally. The analysis is based on the formulation of the transverse operator method (TOM), followed by the application of the Galerkin method. We obtain an eigenvalue equation system. The propagation constant of some homogenous and anisotropic waveguide structures with ferrite has been obtained. The results presented here show that the transverse operator formulation is not only an elegant theoretical form, but also a powerful and efficient analysis method, it is useful to solve a number of the propagation problems in electromagnetic. One advantage of this method is that it presents a fast convergence. Numerical examples are given for different cases and compared with the published results. A good agreement is obtained.
Novel laboratory methods for determining the fine scale electrical resistivity structure of core
NASA Astrophysics Data System (ADS)
Haslam, E. P.; Gunn, D. A.; Jackson, P. D.; Lovell, M. A.; Aydin, A.; Prance, R. J.; Watson, P.
2014-12-01
High-resolution electrical resistivity measurements are made on saturated rocks using novel laboratory instrumentation and multiple electrical voltage measurements involving in principle a four-point electrode measurement but with a single, moving electrode. Flat, rectangular core samples are scanned by varying the electrode position over a range of hundreds of millimetres with an accuracy of a tenth of a millimetre. Two approaches are tested involving a contact electrode and a non-contact electrode arrangement. The first galvanic method uses balanced cycle switching of a floating direct current (DC) source to minimise charge polarisation effects masking the resistivity distribution related to fine scale structure. These contacting electrode measurements are made with high common mode noise rejection via differential amplification with respect to a reference point within the current flow path. A computer based multifunction data acquisition system logs the current through the sample and voltages along equipotentials from which the resistivity measurements are derived. Multiple measurements are combined to create images of the surface resistivity structure, with variable spatial resolution controlled by the electrode spacing. Fine scale sedimentary features and open fractures in saturated rocks are interpreted from the measurements with reference to established relationships between electrical resistivity and porosity. Our results successfully characterise grainfall lamination and sandflow cross-stratification in a brine saturated, dune bedded core sample representative of a southern North Sea reservoir sandstone, studied using the system in constant current, variable voltage mode. In contrast, in a low porosity marble, identification of open fracture porosity against a background very low matrix porosity is achieved using the constant voltage, variable current mode. This new system is limited by the diameter of the electrode that for practical reasons can only be reduced to between 0.5 and 0.75 mm. Improvements to this resolution may be achieved by further reducing the electrode footprint to 0.1 mm × 0.1 mm using a novel high-impedance, non-contact potential probe. Initial results with this non-contact electric potential sensor indicate the possibility for generating images with grain-scale resolution.
NASA Astrophysics Data System (ADS)
Al-Saadi, Osamah; Schmidt, Volkmar; Becken, Michael; Fritsch, Thomas
2017-04-01
Electrical resistivity tomography (ERT) methods have been increasingly used in various shallow depth archaeological prospections in the last few decades. These non-invasive techniques are very useful in saving time, costs, and efforts. Both 2D and 3D ERT techniques are used to obtain detailed images of subsurface anomalies. In two surveyed areas near Nonnweiler (Germany), we present the results of the full 3D setup with a roll-along technique and of the quasi-3D setup (parallel and orthogonal profiles in dipole-dipole configuration). In area A, a dipole-dipole array with 96 electrodes in a uniform rectangular survey grid has been used in full 3D to investigate a presumed Roman building. A roll-along technique has been utilized to cover a large part of the archaeological site with an electrode spacing of 1 meter and with 0.5 meter for a more detailed image. Additional dense parallel 2D profiles have been carried out in dipole-dipole array with 0.25 meter electrode spacing and 0.25 meter between adjacent profiles in both direction for higher- resolution subsurface images. We have designed a new field procedure, which used an electrode array fixed in a frame. This facilitates efficient field operation, which comprised 2376 electrode positions. With the quasi 3D imaging, we confirmed the full 3D inversion model but at a much better resolution. In area B, dense parallel 2D profiles were directly used to survey the second target with also 0.25 meter electrode spacing and profiles separation respectively. The same field measurement design has been utilized and comprised 9648 electrode positions in total. The quasi-3D inversion results clearly revealed the main structures of the Roman construction. These ERT inversion results coincided well with the archaeological excavation, which has been done in some parts of this area. The ERT result successfully images parts from the walls and also smaller internal structures of the Roman building.
Piezoelectrically forced vibrations of rectangular SC-cut quartz plates
NASA Astrophysics Data System (ADS)
Lee, P. C. Y.; Lin, W. S.
1998-06-01
A system of two-dimensional first-order equations for piezoelectric crystal plates with general symmetry and with electroded faces was recently deduced from the three-dimensional equations of linear piezoelectricity. Solutions of these equations for AT-cut plates of quartz were shown to give accurate dispersion curves without corrections, and the resonances predicted agree closely with the experimental data of Koga and Fukuyo [I. Koga and H. Fukuyo, J. Inst. Electr. Commun. Eng. Jpn. 36, 59 (1953)] and that of Nakazawa, Horiuchi, and Ito (M. Nakazawa, K. Horiuchi, and H. Ito, Proceedings of the 1990 IEEE Ultrasonics Symposium, pp. 547-555). In this article, these equations are employed to study the free as well as the forced vibrations of doubly rotated quartz plates. Solutions of straight-crested vibrational modes varying in the x1 and x3 directions of SC-cut quartz plates of infinite extent are obtained and from which dispersion curves are computed. Comparison of those dispersion curves with those from the three-dimensional equations shows that the agreement is very close without any corrections. Resonance frequencies for free vibrations and capacitance ratios for piezoelectrically forced vibrations are computed and examined for various length-to-thickness or width-to-thickness ratios of rectangular SC-cut quartz plates. The capacitance ratio as a function of forcing frequency is computed for a rectangular AT-cut quartz and compared with the experimental data of Seikimoto, Watanabe, and Nakazawa (H. Sekimoto, Y. Watanabe, and M. Nakazawa, Proceedings of the 1992 IEEE Frequency Control Symposium, pp. 532-536) and is in close agreement.
Investigation of the short argon arc with hot anode. II. Analytical model
NASA Astrophysics Data System (ADS)
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; Khodak, A.
2018-01-01
A short atmospheric pressure argon arc is studied numerically and analytically. In a short arc with an inter-electrode gap of several millimeters, non-equilibrium effects in plasma play an important role in operation of the arc. High anode temperature leads to electron emission and intensive radiation from its surface. A complete, self-consistent analytical model of the whole arc comprising of models for near-electrode regions, arc column, and a model of heat transfer in cylindrical electrodes was developed. The model predicts the width of non-equilibrium layers and arc column, voltages and plasma profiles in these regions, and heat and ion fluxes to the electrodes. Parametric studies of the arc have been performed for a range of the arc current densities, inter-electrode gap widths, and gas pressures. The model was validated against experimental data and verified by comparison with numerical solution. Good agreement between the analytical model and simulations and reasonable agreement with experimental data were obtained.
Investigation of the short argon arc with hot anode. II. Analytical model
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; ...
2018-01-22
A short atmospheric pressure argon arc is studied numerically and analytically. In a short arc with an inter-electrode gap of several millimeters, non-equilibrium effects in plasma play an important role in operation of the arc. High anode temperature leads to electron emission and intensive radiation from its surface. A complete, self-consistent analytical model of the whole arc comprising of models for near-electrode regions, arc column, and a model of heat transfer in cylindrical electrodes was developed. The model predicts the width of non-equilibrium layers and arc column, voltages and plasma profiles in these regions, and heat and ion fluxes tomore » the electrodes. Parametric studies of the arc have been performed for a range of the arc current densities, inter-electrode gap widths, and gas pressures. The model was validated against experimental data and verified by comparison with numerical solution. In conclusion, good agreement between the analytical model and simulations and reasonable agreement with experimental data were obtained.« less
Investigation of the short argon arc with hot anode. II. Analytical model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.
A short atmospheric pressure argon arc is studied numerically and analytically. In a short arc with an inter-electrode gap of several millimeters, non-equilibrium effects in plasma play an important role in operation of the arc. High anode temperature leads to electron emission and intensive radiation from its surface. A complete, self-consistent analytical model of the whole arc comprising of models for near-electrode regions, arc column, and a model of heat transfer in cylindrical electrodes was developed. The model predicts the width of non-equilibrium layers and arc column, voltages and plasma profiles in these regions, and heat and ion fluxes tomore » the electrodes. Parametric studies of the arc have been performed for a range of the arc current densities, inter-electrode gap widths, and gas pressures. The model was validated against experimental data and verified by comparison with numerical solution. In conclusion, good agreement between the analytical model and simulations and reasonable agreement with experimental data were obtained.« less
Partially filled electrodes for digital microfluidic devices
NASA Astrophysics Data System (ADS)
Pyne, D. G.; Salman, W. M.; Abdelgawad, M.; Sun, Y.
2013-07-01
As digital microfluidics technology evolves, the need for integrating additional elements (e.g., sensing/detection and heating elements) on the electrode increases. Consequently, electrode area for droplet actuation is reduced to create space for accommodating these additional elements, which undesirably affects force generation. Electrodes cannot simply be scaled larger to compensate for this loss of force, as this would also increase droplet volume and thereby compromise the advantages thought in miniaturization. Here, we present a study evaluating, numerically with preliminary experimental verification, different partially filled electrode designs and suggesting designs that combine high actuation forces with a large reduction in electrode area.
Studies of the effects of curvature on dilution jet mixing
NASA Technical Reports Server (NTRS)
Holdeman, James D.; Srinivasan, Ram; Reynolds, Robert S.; White, Craig D.
1992-01-01
An analytical program was conducted using both three-dimensional numerical and empirical models to investigate the effects of transition liner curvature on the mixing of jets injected into a confined crossflow. The numerical code is of the TEACH type with hybrid numerics; it uses the power-law and SIMPLER algorithms, an orthogonal curvilinear coordinate system, and an algebraic Reynolds stress turbulence model. From the results of the numerical calculations, an existing empirical model for the temperature field downstream of single and multiple rows of jets injected into a straight rectangular duct was extended to model the effects of curvature. Temperature distributions, calculated with both the numerical and empirical models, are presented to show the effects of radius of curvature and inner and outer wall injection for single and opposed rows of cool dilution jets injected into a hot mainstream flow.
Two-dimensional ytterbium oxide nanodisks based biosensor for selective detection of urea.
Ibrahim, Ahmed A; Ahmad, Rafiq; Umar, Ahmad; Al-Assiri, M S; Al-Salami, A E; Kumar, Rajesh; Ansari, S G; Baskoutas, S
2017-12-15
Herein, we demonstrate synthesis and application of two-dimensional (2D) rectangular ytterbium oxide (Yb 2 O 3 ) nanodisks via a facile hydrothermal method. The structural, morphological, compositional, crystallinity, and phase properties of as-synthesized nanodisks were carried out using several analytical techniques that showed well defined 2D rectangular nanodisks/sheet like morphologies. The average thickness and edge length of the nanosheet structures were 20 ± 5nm and 600 ± 50nm, respectively. To develop urea biosensor, glassy carbon electrodes (GCE) were modified with Yb 2 O 3 nanodisks, followed by urease immobilization and Nafion membrane covering (GCE/Yb 2 O 3 /Urease/Nafion). The fabricated biosensor showed sensitivity of 124.84μAmM -1 cm -2 , wide linear range of 0.05-19mM, detection limit down to ~ 2μM, and fast response time of ~ 3s. The developed biosensor was also used for the urea detection in water samples through spike-recovery experiments, which illustrates satisfactory recoveries. In addition, the obtained desirable selectivity towards specific interfering species, long-term stability, reproducibility, and repeatability further confirm the potency of as-fabricated urea biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hernandez-Walls, R.; Martín-Atienza, B.; Salinas-Matus, M.; Castillo, J.
2017-11-01
When solving the linear inviscid shallow water equations with variable depth in one dimension using finite differences, a tridiagonal system of equations must be solved. Here we present an approach, which is more efficient than the commonly used numerical method, to solve this tridiagonal system of equations using a recursion formula. We illustrate this approach with an example in which we solve for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with the analytical solution. This new method is easy to use and understand by undergraduate students, so it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or Differential Equations.
A simple calculation method for determination of equivalent square field.
Shafiei, Seyed Ali; Hasanzadeh, Hadi; Shafiei, Seyed Ahmad
2012-04-01
Determination of the equivalent square fields for rectangular and shielded fields is of great importance in radiotherapy centers and treatment planning software. This is accomplished using standard tables and empirical formulas. The goal of this paper is to present a formula based on analysis of scatter reduction due to inverse square law to obtain equivalent field. Tables are published by different agencies such as ICRU (International Commission on Radiation Units and measurements), which are based on experimental data; but there exist mathematical formulas that yield the equivalent square field of an irregular rectangular field which are used extensively in computation techniques for dose determination. These processes lead to some complicated and time-consuming formulas for which the current study was designed. In this work, considering the portion of scattered radiation in absorbed dose at a point of measurement, a numerical formula was obtained based on which a simple formula was developed to calculate equivalent square field. Using polar coordinate and inverse square law will lead to a simple formula for calculation of equivalent field. The presented method is an analytical approach based on which one can estimate the equivalent square field of a rectangular field and may be used for a shielded field or an off-axis point. Besides, one can calculate equivalent field of rectangular field with the concept of decreased scatter radiation with inverse square law with a good approximation. This method may be useful in computing Percentage Depth Dose and Tissue-Phantom Ratio which are extensively used in treatment planning.
Kishimoto, Fuminao; Matsuhisa, Masayuki; Kawamura, Shinichiro; Fujii, Satoshi; Tsubaki, Shuntaro; Maitani, Masato M.; Suzuki, Eiichi; Wada, Yuji
2016-01-01
Various microwave effects on chemical reactions have been observed, reported and compared to those carried out under conventional heating. These effects are classified into thermal effects, which arise from the temperature rise caused by microwaves, and non-thermal effects, which are attributed to interactions between substances and the oscillating electromagnetic fields of microwaves. However, there have been no direct or intrinsic demonstrations of the non-thermal effects based on physical insights. Here we demonstrate the microwave enhancement of oxidation current of water to generate dioxygen with using an α-Fe2O3 electrode induced by pulsed microwave irradiation under constantly applied potential. The rectangular waves of current density under pulsed microwave irradiation were observed, in other words the oxidation current of water was increased instantaneously at the moment of the introduction of microwaves, and stayed stably at the plateau under continuous microwave irradiation. The microwave enhancement was observed only for the α-Fe2O3 electrode with the specific surface electronic structure evaluated by electrochemical impedance spectroscopy. This discovery provides a firm evidence of the microwave special non-thermal effect on the electron transfer reactions caused by interaction of oscillating microwaves and irradiated samples. PMID:27739529
Effect of sheath gas in atmospheric-pressure plasma jet for potato sprouting suppression
NASA Astrophysics Data System (ADS)
Nishiyama, S.; Monma, M.; Sasaki, K.
2016-09-01
Recently, low-temperature atmospheric-pressure plasma jets (APPJs) attract much interest for medical and agricultural applications. We try to apply APPJs for the suppression of potato sprouting in the long-term storage. In this study, we investigated the effect of sheath gas in APPJ on the suppression efficiency of the potato sprouting. Our APPJ was composed of an insulated thin wire electrode, a glass tube, a grounded electrode which was wound on the glass tube, and a sheath gas nozzle which was attached at the end of the glass tube. The wire electrode was connected to a rectangular-waveform power supply at a frequency of 3 kHz and a voltage of +/- 7 kV. Helium was fed through the glass tube, while we tested dry nitrogen, humid nitrogen, and oxygen as the sheath gas. Eyes of potatoes were irradiated by APPJ for 60 seconds. The sprouting probability was evaluated at two weeks after the plasma irradiation. The sprouting probability was 28% when we employed no sheath gases, whereas an improved probability of 10% was obtained when we applied dry nitrogen as the sheath gas. Optical emission spectroscopy was carried out to diagnose the plasma jet. It was suggested that reactive species originated from nitrogen worked for the efficient suppression of the potato sprouting.
Map projections: A working manual
Snyder, John P.
1987-01-01
With increased computerization, it is important to realize that rectangular coordinates for all these projections may be mathematically calculated with formulas which would have seemed too complicated in the past, but which now may be programmed routinely, especially if aided by numerical examples. A discussion of appearance, usage, and history is given together with both forward and inverse equations for each projection involved.
Evaluation of the influence of bottom roughness on parameters of wave flows in channels
NASA Astrophysics Data System (ADS)
Valov, A. O.; Degtyarev, V. V.; Fedorova, N. N.
2018-03-01
In this paper, a comparative analysis of the results of numerical and experimental studies of the parameters of displacement waves in trays of a rectangular cross-sectional shape with different bottom roughness is performed with the "instantaneous" elimination of the obstacle creating the initial level difference. The program ANSYS complex is used in work.
1988-01-06
the bottom % kall followin,, the interaction. At 6Wuh = 0.35 the shock train would not stay attached to a single wall long enough for the surface...Interaction of a Shock Wave with a Laminar Boundary Layer," Lecture Notes in Physics, Vol. 8, Springer-Verlag, 1971 , pp. 151-163. 51 MacCormack, R. W
NASA Technical Reports Server (NTRS)
Steger, J. L.; Rizk, Y. M.
1985-01-01
An efficient numerical mesh generation scheme capable of creating orthogonal or nearly orthogonal grids about moderately complex three dimensional configurations is described. The mesh is obtained by marching outward from a user specified grid on the body surface. Using spherical grid topology, grids have been generated about full span rectangular wings and a simplified space shuttle orbiter.
Yao, Yelei; Wang, Jianxun; Li, Hao; Liu, Guo; Luo, Yong
2017-07-01
A generic approach to excite TE n0 (n ≥ 1) modes in a rectangular waveguide for confocal gyro-devices is proposed. The exciter consists of a 3 dB H-plane power divider (n ≥ 3) and a mode-converting section. The injection power is split into two in-phase signals with equal amplitudes which simultaneously excite the secondary waveguide via two sets of multiple slots. Both the position and width of the slot are symmetrically distributed with respect to the center line for each set of slots. The slot width complies with a geometry sequence, with adjacent slots being spaced a quarter wavelength apart to cancel the backward wave out. A TE 40 mode exciter at 100 GHz is numerically simulated and optimized, achieving a 1 dB and a 3 dB transmission bandwidth of 18.2 and 21 GHz, respectively. The prototype is fabricated and measured. The cold test is carried out utilizing two identical back-to-back connected mode exciters, and the measured performances are in good agreement with the numerical simulation results when taking into account the wall loss and assembly tolerance.
NASA Astrophysics Data System (ADS)
Hardy, Neil; Dvir, Hila; Fenton, Flavio
Existing pacemakers consider the rectangular pulse to be the optimal form of stimulation current. However, other waveforms for the use of pacemakers could save energy while still stimulating the heart. We aim to find the optimal waveform for pacemaker use, and to offer a theoretical explanation for its advantage. Since the pacemaker battery is a charge source, here we probe the stimulation current waveforms with respect to the total charge delivery. In this talk we present theoretical analysis and numerical simulations of myocyte ion-channel currents acting as an additional source of charge that adds to the external stimulating charge for stimulation purposes. Therefore, we find that as the action potential emerges, the external stimulating current can be reduced accordingly exponentially. We then performed experimental studies in rabbit and cat hearts and showed that indeed exponential truncated pulses with less total charge can still induce activation in the heart. From the experiments, we present curves showing the savings in charge as a function of exponential waveform and we calculated that the longevity of the pacemaker battery would be ten times higher for the exponential current compared to the rectangular waveforms. Thanks to Petit Undergraduate Research Scholars Program and NSF# 1413037.
NASA Astrophysics Data System (ADS)
Jäykkä, Juha; Speight, Martin
2010-12-01
The baby Skyrme model is studied with a novel choice of potential, V=(1)/(2)ϕ32. This “easy plane” potential vanishes at the equator of the target two-sphere. Hence, in contrast to previously studied cases, the boundary value of the field breaks the residual SO(2) internal symmetry of the model. Consequently, even the unit charge Skyrmion has only discrete symmetry and consists of a bound state of two half lumps. A model of long-range inter-Skyrmion forces is developed wherein a unit Skyrmion is pictured as a single scalar dipole inducing a massless scalar field tangential to the vacuum manifold. This model has the interesting feature that the two-Skyrmion interaction energy depends only on the average orientation of the dipoles relative to the line joining them. Its qualitative predictions are confirmed by numerical simulations. Global energy minimizers of charges B=1,…,14,18,32 are found numerically. Up to charge B=6, the minimizers have 2B half lumps positioned at the vertices of a regular 2B-gon. For charges B≥7, rectangular or distorted rectangular arrays of 2B half lumps are preferred, as close to square as possible.
NASA Astrophysics Data System (ADS)
Zidane, A.; Firoozabadi, A.
2017-12-01
We present an efficient and accurate numerical model for multicomponent compressible single-phase flow in 2D and 3D fractured media based on higher-order discretization. The numerical model accounts for heterogeneity and anisotropy in unstructured gridding with low mesh dependency. The efficiency of our model is demonstrated by having comparable CPU time between fractured and unfractured media. The fracture cross-flow equilibrium approach (FCFE) is applied on triangular finite elements (FE) in 2D. This allows simulating fractured reservoirs with all possible orientations of fractures as opposed to rectangular FE. In 3D we apply the FCFE approach on the prism FE. The prism FE with FCFE allows simulating realistic fractured domains compared to hexahedron FE. In addition, when using FCFE on triangular and prism FE there is no limitation on the number of intersecting fractures, whereas in rectangular and hexahedron FE the number is limited to 2 in 2D and 3 in 3D. To generate domains with complicated boundaries, we have developed a computer-aided design (CAD) interface in our model. The advances introduced in this work are demonstrated through various examples.
Efficient three-dimensional Poisson solvers in open rectangular conducting pipe
NASA Astrophysics Data System (ADS)
Qiang, Ji
2016-06-01
Three-dimensional (3D) Poisson solver plays an important role in the study of space-charge effects on charged particle beam dynamics in particle accelerators. In this paper, we propose three new 3D Poisson solvers for a charged particle beam in an open rectangular conducting pipe. These three solvers include a spectral integrated Green function (IGF) solver, a 3D spectral solver, and a 3D integrated Green function solver. These solvers effectively handle the longitudinal open boundary condition using a finite computational domain that contains the beam itself. This saves the computational cost of using an extra larger longitudinal domain in order to set up an appropriate finite boundary condition. Using an integrated Green function also avoids the need to resolve rapid variation of the Green function inside the beam. The numerical operational cost of the spectral IGF solver and the 3D IGF solver scales as O(N log(N)) , where N is the number of grid points. The cost of the 3D spectral solver scales as O(Nn N) , where Nn is the maximum longitudinal mode number. We compare these three solvers using several numerical examples and discuss the advantageous regime of each solver in the physical application.
Impact of uncertainties in free stream conditions on the aerodynamics of a rectangular cylinder
NASA Astrophysics Data System (ADS)
Mariotti, Alessandro; Shoeibi Omrani, Pejman; Witteveen, Jeroen; Salvetti, Maria Vittoria
2015-11-01
The BARC benchmark deals with the flow around a rectangular cylinder with chord-to-depth ratio equal to 5. This flow configuration is of practical interest for civil and industrial structures and it is characterized by massively separated flow and unsteadiness. In a recent review of BARC results, significant dispersion was observed both in experimental and numerical predictions of some flow quantities, which are extremely sensitive to various uncertainties, which may be present in experiments and simulations. Besides modeling and numerical errors, in simulations it is difficult to exactly reproduce the experimental conditions due to uncertainties in the set-up parameters, which sometimes cannot be exactly controlled or characterized. Probabilistic methods and URANS simulations are used to investigate the impact of the uncertainties in the following set-up parameters: the angle of incidence, the free stream longitudinal turbulence intensity and length scale. Stochastic collocation is employed to perform the probabilistic propagation of the uncertainty. The discretization and modeling errors are estimated by repeating the same analysis for different grids and turbulence models. The results obtained for different assumed PDF of the set-up parameters are also compared.
Turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular ribbed channel
NASA Astrophysics Data System (ADS)
Parsaiemehr, Mohammad; Pourfattah, Farzad; Akbari, Omid Ali; Toghraie, Davood; Sheikhzadeh, Ghanbarali
2018-02-01
In present study, the turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular channel have been numerically simulated. The main purpose of present study is investigating the effect of attack angle of inclined rectangular rib, Reynolds number and volume fraction of nanoparticles on heat transfer enhancement. For this reason, the turbulent flow of nanofluid has been simulated at Reynolds numbers ranging from 15000 to 30000 and volume fractions of nanoparticles from 0 to 4%. The changes attack angle of ribs have been investigated ranging from 0 to 180°. The results show that, the changes of attack angle of ribs, due to the changes of flow pattern and created vortexes inside the channel, have significant effect on fluid mixing. Also, the maximum rate of heat transfer enhancement accomplishes in attack angle of 60°. In Reynolds numbers of 15000, 20000 and 30000 and attack angle of 60°, comparing to the attack angle of 0°, the amount of Nusselt number enhances to 2.37, 1.96 and 2 times, respectively. Also, it can be concluded that, in high Reynolds numbers, by using ribs and nanofluid, the performance evaluation criterion improves.
Numerical simulation of magnetic nano drug targeting in a patient-specific coeliac trunk
NASA Astrophysics Data System (ADS)
Boghi, Andrea; Russo, Flavia; Gori, Fabio
2017-09-01
Magnetic nano drug targeting, through the use of an external magnetic field, is a new technique for the treatment of several diseases, which can potentially avoid the dispersion of drugs in undesired locations of the body. Nevertheless, due to the limitations on the intensity of the magnetic field applied, the hydrodynamic forces can reduce the effectiveness of the procedure. This technique is studied in this paper with the Computational Fluid Dynamics (CFD), focusing on the influence of the magnetic probe position, and the direction of the circulating electric current. A single rectangular coil is used to generate the external magnetic field. A patient-specific geometry of the coeliac trunk is reconstructed from DICOM images, with the use of VMTK. A new solver, coupling the Lagrangian dynamics of the nanoparticles with the Eulerian dynamics of the blood, is implemented in OpenFOAM to perform the simulations. The resistive pressure, the Womersley's profile for the inlet velocity and the magnetic field of a rectangular coil are implemented in the software as boundary conditions. The results show the influence of the position of the probe, as well as the limitations associated with the rectangular coil configuration.
Heat Transport Enhancement of Turbulent Thermal Convection by Inserted Channels
NASA Astrophysics Data System (ADS)
Xia, Ke-Qing; Zhang, Lu
2017-11-01
We report an experimental study on the heat transport properties of turbulent Rayleigh Benard Convection (RBC) in a rectangular cell with two types of 3D-printed structures inserted inside. The first one splits the original rectangular cell into 60 identical sub cells whose aspect ratio is 1:1:10 (length, width, height). The second one splits the cell into 30 sub cells, each with a 1:2:10 aspect ratio and a baffle in the center. We find that for large Rayleigh numbers (Ra), the Nusselt numbers (Nu) of both structures increase compared with that of the empty rectangular cell. An enhancement in Nu as much as 20% is found for the second type of insertion at Rayleigh number 2 ×109 . Moreover, the Nu-Ra scaling shows a transition with both geometries. The particle image velocimetry (PIV) measurement within a single sub unit indicates that the transition may be related to the laminar to turbulent transition in flow field. Direct numerical simulations (DNS) confirm the experimental results. Our results demonstrate the potential in using insertions to enhance passive heat transfer. This work was supported by the Research Grants Council (RGC) of HKSAR (Nos. CUHK404513 and CUHK14301115).
A numerical study on liquid charging inside electrostatic atomizers
NASA Astrophysics Data System (ADS)
Kashir, Babak; Perri, Anthony; Sankaran, Abhilash; Staszel, Christopher; Yarin, Alexander; Mashayek, Farzad
2016-11-01
The charging of the dielectric liquid inside an electrostatic atomizer is studied numerically by developing codes based on the OpenFOAM platform. Electrostatic atomization is an appealing technology in painting, fuel injection and oil coating systems due to improved particle-size distribution, enhanced controlability of droplets' trajectories and lower power consumption. The numerical study is conducted concurrently to an experimental investigation to facilitate the validation and deliver feedback for further development. The atomizer includes a pin electrode that is placed at the center of a converging chamber. The chamber orifice is located at a known distance from the electrode tip. The pin electrode is connected to a high voltage that leads to the charging of the liquid. In the present work, the theoretical foundations of separated treatment of the polarized layer and the electronuetral bulk flow are set by describing the governing equations, relevant boundary conditions and the matching condition between these two domains. The resulting split domains are solved numerically to find the distribution of velocity and electrostatic fields over the specified regions. National Science Foundation Award Number: 1505276.
NASA Astrophysics Data System (ADS)
Gacemi, Yahia; Cheknane, Ali; Hilal, Hikmat S.
2018-02-01
Physiochemical processes at the photo-electrode and the counter electrode of dye sensitized solar cells (DSSCs) involving having carbon nanotubes (CNTs) instead of the TiO2 layer, within the working electrode, are simulated in this work. Attention is paid to find the effect of CNT layer thickness on photo-electrochemical (PEC) characteristics of the CNT-DSSCs. Comparison with other conventional TiO2-DSSC systems, taking into account the working electrode film thickness, is also described here. To achieve these goals, a model is presented to explain charge transport and electron recombination which involve electron photo-excitation in dye molecules, injection of electrons from the excited dye to CNT working electrode conduction band, diffusion of electrons inside the CNT electrode, charge transfer between oxidized dye and (I-) and recombination of electrons. The simulation is based on solving non-linear equations using the Newton-Raphson numerical method. This concept is proposed for modelling numerical Faradaic impedance at the photo-electrode and the platinum counter electrode. It then simulates the cell impedance spectrum describing the locus of the three semicircles in the Nyquist diagram. The transient equivalent circuit model is also presented based on optimizing current-voltage curves of CNT-DSSCs so as to optimize the fill factor (FF) and conversion efficiency (η). The results show that the simulated characteristics of CNT-DSSCs, with different active CNT layer thicknesses, are superior to conventional TiO2-DSSCs.
Bjune, Caroline K; Marinis, Thomas F; Brady, Jeanne M; Moran, James; Wheeler, Jesse; Sriram, Tirunelveli S; Parks, Philip D; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N
2015-08-01
An implanted neural stimulator with closed loop control requires electrodes for stimulation pulses and recording neuron activity. Our system features arrays of 64 electrodes. Each electrode can be addressed through a cross bar switch, to enable it to be used for stimulation or recording. This electrode switch, a bank of low noise amplifiers with an integrated analog to digital converter, power conditioning electronics, and a communications and control gate array are co-located with the electrode array in a 14 millimeter diameter satellite package that is designed to be flush mounted in a skull burr hole. Our system features five satellite packages connected to a central hub processor-controller via ten conductor cables that terminate in a custom designed, miniaturized connector. The connector incorporates features of high reliability, military grade devices and utilizes three distinct seals to isolate the contacts from fluid permeation. The hub system is comprised of a connector header, hermetic electronics package, and rechargeable battery pack, which are mounted on and electrically interconnected by a flexible circuit board. The assembly is over molded with a compliant silicone rubber. The electronics package contains two antennas, a large coil, used for recharging the battery and a high bandwidth antenna that is used to download data and update software. The package is assembled from two machined alumina pieces, a flat base with brazed in, electrical feed through pins and a rectangular cover with rounded corners. Titanium seal rings are brazed onto these two pieces so that they can be sealed by laser welding. A third system antenna is incorporated in the flexible circuit board. It is used to communicate with an externally worn control package, which monitors the health of the system and allows both the user and clinician to control or modify various system function parameters.
Flow and Noise from Septa Nozzles
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Bridges, J. E.
2017-01-01
Flow and noise fields are explored for the concept of distributed propulsion. A model-scale experiment is performed with an 8:1 aspect ratio rectangular nozzle that is divided into six passages by five septa. The septa geometries are created by placing plastic inserts within the nozzle. It is found that the noise radiation from the septa nozzle can be significantly lower than that from the baseline rectangular nozzle. The reduction of noise is inferred to be due to the introduction of streamwise vortices in the flow. The streamwise vortices are produced by secondary flow within each passage. Thus, the geometry of the internal passages of the septa nozzle can have a large influence. The flow evolution is profoundly affected by slight changes in the geometry. These conclusions are reached by mostly experimental results of the flowfield aided by brief numerical simulations.
Elastic guided waves in a layered plate with rectangular cross section.
Mukdadi, O M; Desai, Y M; Datta, S K; Shah, A H; Niklasson, A J
2002-11-01
Guided waves in a layered elastic plate of rectangular cross section (finite width and thickness) has been studied in this paper. A semianalytical finite element method in which the deformation of the cross section is modeled by two-dimensional finite elements and analytical representation of propagating waves along the length of the plate has been used. The method is applicable to arbitrary number of layers and general anisotropic material properties of each layer, and is similar to the stiffness method used earlier to study guided waves in a laminated composite plate of infinite width. Numerical results showing the effect of varying the width of the plate on the dispersion of guided waves are presented and are compared with those for an infinite plate. In addition, effect of thin anisotropic coating or interface layers on the guided waves is investigated.
Direct numerical simulations of fluid flow, heat transfer and phase changes
NASA Technical Reports Server (NTRS)
Juric, D.; Tryggvason, G.; Han, J.
1997-01-01
Direct numerical simulations of fluid flow, heat transfer, and phase changes are presented. The simulations are made possible by a recently developed finite difference/front tracking method based on the one-field formulation of the governing equations where a single set of conservation equations is written for all the phases involved. The conservation equations are solved on a fixed rectangular grid, but the phase boundaries are kept sharp by tracking them explicitly by a moving grid of lower dimension. The method is discussed and applications to boiling heat transfer and the solidification of drops colliding with a wall are shown.
Quasistatic packings of droplets in flat microfluidic channels
NASA Astrophysics Data System (ADS)
Kadivar, Erfan
2016-02-01
As observed in recent experiments, monodisperse droplets self-assemble spontaneously in different ordered packings. In this work, we present a numerical study of the droplet packings in the flat rectangular microfluidic channels. Employing the boundary element method, we numerically solve the Stokes equation in two-dimension and investigate the appearance of droplet packing and transition between one and two-row packings of monodisperse emulsion droplets. By calculating packing force applied on the droplet interface, we investigate the effect of flow rate, droplet size, and surface tension on the packing configurations of droplets and transition between different topological packings.
Elastohydrodynamic lubrication theory
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1982-01-01
The isothermal elastohydrodynamic lubrication (EHL) of a point contact was analyzed numerically by simultaneously solving the elasticity and Reynolds equations. In the elasticity analysis the contact zone was divided into equal rectangular areas, and it was assumed that a uniform pressure was applied over each area. In the numerical analysis of the Reynolds equation, a phi analysis (where phi is equal to the pressure times the film thickness to the 3/2 power) was used to help the relaxation process. The EHL point contact analysis is applicable for the entire range of elliptical parameters and is valid for any combination of rolling and sliding within the contact.
Numerical simulation of forced convection in a duct subjected to microwave heating
NASA Astrophysics Data System (ADS)
Zhu, J.; Kuznetsov, A. V.; Sandeep, K. P.
2007-01-01
In this paper, forced convection in a rectangular duct subjected to microwave heating is investigated. Three types of non-Newtonian liquids flowing through the duct are considered, specifically, apple sauce, skim milk, and tomato sauce. A finite difference time domain method is used to solve Maxwell’s equations simulating the electromagnetic field. The three-dimensional temperature field is determined by solving the coupled momentum, energy, and Maxwell’s equations. Numerical results show that the heating pattern strongly depends on the dielectric properties of the fluid in the duct and the geometry of the microwave heating system.
Understanding anode and cathode behaviour in high-pressure discharge lamps
NASA Astrophysics Data System (ADS)
Flesch, P.; Neiger, M.
2005-09-01
High-intensity discharge (HID) lamps have widespread and modern areas of application including general lighting, video/movie projection (e.g. UHP lamp), street/industrial lighting, and automotive headlight lamps (D2/xenon lamp). Even though HID lamps have been known for several decades now, the important plasma-electrode interactions are still not well understood. Because HID lamps are usually operated on ac (electrodes switch alternately from anode to cathode phase), time-dependent simulations including realistic and verified anode and cathode models are essential. Therefore, a recently published investigation of external laser heating of an electrode during anode and cathode phase in an operating HID lamp [28] provided the basis for our present paper. These measurements revealed impressive influences of the external laser heating on electrode fall voltage and electrode temperature. Fortunately, the effects are very different during anode and cathode phase. Thus, by comparing the experimental findings with results from our numerical simulations we can learn much about the principles of electrode behaviour and explain in detail the differences between anode and cathode phase. Furthermore, we can verify our model (which includes plasma column, hot plasma spots in front of the electrodes, constriction zones and near-electrode non-local thermal equilibrium-plasma as well as anode and cathode) that accounts for all relevant physical processes concerning plasma, electrodes and interactions between them. Moreover, we investigate the influence of two different notions concerning ionization and recombination in the near electrode plasma on the numerical results. This improves our physical understanding of near-electrode plasma likewise and further increases the confidence in the model under consideration. These results are important for the understanding and the further development of HID lamps which, due to their small dimensions, are often experimentally inaccessible. Thus, modelling becomes more and more important.
Srikanth, Vadali V S S; Ramana, Gedela Venkata; Kumar, Puttapati Sampath
2016-03-01
Supercapacitors are attractive alternative energy storage sources. They offer high energy/power density with other characteristics like fast discharge/charge time, long operation stability, safety etc. In a supercapacitor, working electrode material is the principal constituent. At present there are numerous electrode materials (with properties) suitable for their use in hybrid type supercapacitors. Carbon/polyaniline (PANi) composites are one class of such electrode materials. Here, perspectives on state-of-the-art carbon/PANi composites namely carbon nanotube/polyaniline and graphene/polyaniline composites expedient as hybrid type supercapacitor electrode materials will be presented.
Numerical analysis of finite Debye-length effects in induced-charge electro-osmosis.
Gregersen, Misha Marie; Andersen, Mathias Baekbo; Soni, Gaurav; Meinhart, Carl; Bruus, Henrik
2009-06-01
For a microchamber filled with a binary electrolyte and containing a flat unbiased center electrode at one wall, we employ three numerical models to study the strength of the resulting induced-charge electro-osmotic (ICEO) flow rolls: (i) a full nonlinear continuum model resolving the double layer, (ii) a linear slip-velocity model not resolving the double layer and without tangential charge transport inside this layer, and (iii) a nonlinear slip-velocity model extending the linear model by including the tangential charge transport inside the double layer. We show that, compared to the full model, the slip-velocity models significantly overestimate the ICEO flow. This provides a partial explanation of the quantitative discrepancy between observed and calculated ICEO velocities reported in the literature. The discrepancy increases significantly for increasing Debye length relative to the electrode size, i.e., for nanofluidic systems. However, even for electrode dimensions in the micrometer range, the discrepancies in velocity due to the finite Debye length can be more than 10% for an electrode of zero height and more than 100% for electrode heights comparable to the Debye length.
Kitazumi, Yuki; Hamamoto, Katsumi; Noda, Tatsuo; Shirai, Osamu; Kano, Kenji
2015-01-01
The fabrication of ultrathin-ring electrodes with a diameter of 2 mm and a thickness of 100 nm is established. The ultrathin-ring electrodes provide a large density of pseudo-steady-state currents, and realize pseudo-steady-state amperometry under quiescent conditions without a Faraday cage. Under the limiting current conditions, the current response at the ultrathin-ring electrode can be well explained by the theory of the microband electrode response. Cyclic voltammograms at the ultrathin-ring electrode show sigmoidal characteristics with some hysteresis. Numerical simulation reveals that the hysteresis can be ascribed to the time-dependence of pseudo-steady-state current. The performance of amperometry with the ultrathin-ring electrode has been verified in its application to redox enzyme kinetic measurements.
NASA Astrophysics Data System (ADS)
Wagle, Sanat; Decharat, Adit; Habib, Anowarul; Ahluwalia, Balpreet S.; Melandsø, Frank
2016-07-01
High frequency crossed-electrode transducers have been investigated, both as single and dual layer transducers. Prototypes of these transducers were developed for 4 crossed lines (yielding 16 square elements) on a polymer substrate, using a layer-by-layer deposition method for poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] with intermediate sputtered electrodes. The transducer was characterized using various methods [LCR analyzer, a pulse-echo experimental setup, and a numerical Finite element method (FEM) model] and evaluated in terms of uniformity of bandwidth and acoustical energy output. All 16 transducer elements produced broad-banded ultrasonic spectra with small variation in central frequency and -6 dB bandwidth. The frequency responses obtained experimentally were verified using a numerical model.
Map projections used by the U.S. Geological Survey
Snyder, John Parr
1982-01-01
With increased computerization, it is important to realize that rectangular coordinates for all these projections may be mathematically calculated with formulas which would have seemed too complicated in the past, but which now may be programed routinely, if clearly delineated with numerical examples. A discussion of appearance, usage, and history is given together with both forward and inverse equations for each projection involved.
Non-equilibrium current via geometric scatterers
NASA Astrophysics Data System (ADS)
Exner, Pavel; Neidhardt, Hagen; Tater, Miloš; Zagrebnov, Valentin A.
2014-10-01
We investigate non-equilibrium particle transport in a system consisting of a geometric scatterer and two leads coupled to heat baths with different chemical potentials. We derive an expression for the corresponding current, the carriers of which are fermions, and analyze numerically its dependence on the model parameters in examples where the scatterer has a rectangular or triangular shape. Dedicated to the memory of Markus Büttiker (1950-2013).
NASA Astrophysics Data System (ADS)
Zolotov, Evgenii M.; Pelekhatyĭ, V. M.; Tavlykaev, R. F.
1990-05-01
A simultaneous increase in the frequency bandwidth and a reduction in the control (drive) power of integrated optical traveling-wave modulators can be achieved as a result of the electrooptic interaction in accordance with a linear frequency-modulated oscillatory law derived by inverse Fourier transformation of a rectangular amplitude-frequency characteristic and a quadratic phase-frequency characteristic of a modulator. This oscillatory law is realized using planar electrode structures with triangular or trapezoidal toothed edges. The tooth repetition frequency is governed by the linearly frequency-modulated oscillations and it rises on increase in the light modulation frequency.
NASA Technical Reports Server (NTRS)
Chao, D. F. K.
1983-01-01
Transient, numerical simulations of the de-icing of composite aircraft components by electrothermal heating were performed for a two dimensional rectangular geometry. The implicit Crank-Nicolson formulation was used to insure stability of the finite-difference heat conduction equations and the phase change in the ice layer was simulated using the Enthalpy method. The Gauss-Seidel point iterative method was used to solve the system of difference equations. Numerical solutions illustrating de-icer performance for various composite aircraft structures and environmental conditions are presented. Comparisons are made with previous studies. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.
Experimental and numerical investigation of the flow in a centrifugal compressor volute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagelstein, D.; Hillewaert, K.; Van Den Braembussche, R.A.
2000-01-01
This paper presents the experimental and numerical investigation of an outward volute of rectangular cross section. The investigation is carried out at the level of stage performance, volute performance, and detailed flow field study at selected peripheral positions for various operating points. The objective of the investigation was to gain further knowledge about the flow structure and loss mechanism in the volute. Simultaneously with the experimental investigation, a numerical simulation of the flow in the volute was carried out. A three-dimensional Euler code was used in which a wall friction term and a tuned artificial dissipation term account for viscousmore » effects. A reasonable agreement between the experimental and numerical results is observed. As a result a good and detailed knowledge about the pressure recovery and loss mechanism in the volute is obtained.« less
NASA Astrophysics Data System (ADS)
Patil, Harshal Bhauso; Dingare, Sunil Vishnu
2018-03-01
Heat exchange upgrade is a vital territory of research area. Utilization of reasonable systems can bring about noteworthy specialized points of interest coming about reserve funds of cost. Rectangular plates are viewed as best balance arrangement utilized for heat exchange improvement. This gives an enlargement strategy to heat exchange with beginning of limit layer and vortex development. To assess and look at the rate of heat exchange enhancement by rectangular plate fins with differing inclinations (0°-30°-60°), shifting Re and heat supply under forced convection are the principle destinations of this study. The study is done by fluctuating introductions of fins with various inclinations, input heat supply and Re under forced convection. The coefficient of heat transfer increments observed with the expansion in air speed for all the examined designs. The coefficient of the heat transfer is discovered higher at the edge of introduction of fins at 30° for inline arrangement and 0° for staggered arrangement. Looking at both the arrangements, it is discovered that the heat transfer coefficient in 0° fin staggered arrangement is about 17% higher than 30° inline arrangement and 76% higher than the vertical plate fin. For plate fin heat sink, boundary layer formation and growth results in decrease of the coefficient of heat transfer in forced convection. This issue is overcome by accommodating some rectangular fins on the plate fin. It brings about increment of heat transfer coefficient of the RPFHS under the states of trial factors. As indicated by past research, it is discovered that examination of the plate fin heat sink with various sorts of fins for horizontal orientation is done yet but this investigation expects to discover the upgrade of transfer coefficient of plate fin heat sink for its vertical position with rectangular plates at different inclinations under the shifting scopes of heat input supply, fin arrangements and Reynolds number (Re).
Design and analysis of a conformal patch antenna for a wearable breast hyperthermia treatment system
NASA Astrophysics Data System (ADS)
Curto, Sergio; Ramasamy, Manoshika; Suh, Minyoung; Prakash, Punit
2015-03-01
To overcome the limitations of currently available clinical hyperthermia systems which are based on rigid waveguide antennas, a wearable microwave hyperthermia system is presented. A light wearable system can improve patient comfort and be located in close proximity to the breast, thereby enhancing energy deposition and reducing power requirements. The objective of this work was to design and assess the feasibility of a conformal patch antenna element of an array system to be integrated into a wearable hyperthermia bra. The feasibility of implementing antennas with silver printed ink technology on flexible substrates was evaluated. A coupled electromagnetic-bioheat transfer solver and a hemispheric heterogeneous numerical breast phantom were used to design and optimize a 915 MHz patch antenna. The optimization goals were device miniaturization, operating bandwidth, enhanced energy deposition pattern in targets, and reduced Efield back radiation. The antenna performance was evaluated for devices incorporating a hemispheric conformal groundplane and a rectangular groundplane configuration. Simulated results indicated a stable -10 dB return loss bandwidth of 88 MHz for both the conformal and rectangular groundplane configurations. Considering applied power levels restricted to 15 W, treatment volumes (T>410C) and depth from the skin surface were 11.32 cm3 and 27.94 mm, respectively, for the conformal groundplane configuration, and 2.79 cm3 and 19.72 mm, respectively, for the rectangular groundplane configuration. E-field back-radiation reduced by 85.06% for the conformal groundplane compared to the rectangular groundplane configuration. A prototype antenna with rectangular groundplane was fabricatd and experimentally evaluated. The groundplane was created by printing silver ink (Metalon JS-B25P) on polyethylene terephthalate (PET) film surface. Experiments revealed stable antenna performance for power levels up to 15.3 W. In conclusion, the proposed patch antenna with conformal groundplane and prined ink technology shows promising performance to be integrated in a clinical array system.
Polydisperse particle-driven gravity currents in non-rectangular cross section channels
NASA Astrophysics Data System (ADS)
Zemach, T.
2018-01-01
We consider a high-Reynolds-number gravity current generated by polydisperse suspension of n types of particles distributed in a fluid of density ρi. Each class of particles in suspension has a different settling velocity. The current propagates along a channel of non-rectangular cross section into an ambient fluid of constant density ρa. The bottom and top of the channel are at z = 0, H, and the cross section is given by the quite general form -f1(z) ≤ y ≤ f2(z) for 0 ≤ z ≤ H. The flow is modeled by the one-layer shallow-water equations obtained for the time-dependent motion. We solve the problem by a finite-difference numerical code to present typical height h, velocity u, and mass fractions of particle (concentrations) (ϕ( j), j = 1, …, n) profiles. The runout length of suspensions in channels of power-law cross sections is analytically predicted using a simplified depth-averaged "box" model. We demonstrate that any degree of polydispersivity adds to the runout length of the currents, relative to that of equivalent monodisperse currents with an average settling velocity. The theoretical predictions are supported by the available experimental data. The present approach is a significant generalization of the particle-driven gravity current problem: on the one hand, now the monodisperse current in non-rectangular channels is a particular case of n = 1. On the other hand, the classical formulation of polydisperse currents for a rectangular channel is now just a particular case, f(z) = const., in the wide domain of cross sections covered by this new model.
Quantum scattering in one-dimensional systems satisfying the minimal length uncertainty relation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph
In quantum gravity theories, when the scattering energy is comparable to the Planck energy the Heisenberg uncertainty principle breaks down and is replaced by the minimal length uncertainty relation. In this paper, the consequences of the minimal length uncertainty relation on one-dimensional quantum scattering are studied using an approach involving a recently proposed second-order differential equation. An exact analytical expression for the tunneling probability through a locally-periodic rectangular potential barrier system is obtained. Results show that the existence of a non-zero minimal length uncertainty tends to shift the resonant tunneling energies to the positive direction. Scattering through a locally-periodic potentialmore » composed of double-rectangular potential barriers shows that the first band of resonant tunneling energies widens for minimal length cases when the double-rectangular potential barrier is symmetric but narrows down when the double-rectangular potential barrier is asymmetric. A numerical solution which exploits the use of Wronskians is used to calculate the transmission probabilities through the Pöschl–Teller well, Gaussian barrier, and double-Gaussian barrier. Results show that the probability of passage through the Pöschl–Teller well and Gaussian barrier is smaller in the minimal length cases compared to the non-minimal length case. For the double-Gaussian barrier, the probability of passage for energies that are more positive than the resonant tunneling energy is larger in the minimal length cases compared to the non-minimal length case. The approach is exact and applicable to many types of scattering potential.« less
A simple calculation method for determination of equivalent square field
Shafiei, Seyed Ali; Hasanzadeh, Hadi; Shafiei, Seyed Ahmad
2012-01-01
Determination of the equivalent square fields for rectangular and shielded fields is of great importance in radiotherapy centers and treatment planning software. This is accomplished using standard tables and empirical formulas. The goal of this paper is to present a formula based on analysis of scatter reduction due to inverse square law to obtain equivalent field. Tables are published by different agencies such as ICRU (International Commission on Radiation Units and measurements), which are based on experimental data; but there exist mathematical formulas that yield the equivalent square field of an irregular rectangular field which are used extensively in computation techniques for dose determination. These processes lead to some complicated and time-consuming formulas for which the current study was designed. In this work, considering the portion of scattered radiation in absorbed dose at a point of measurement, a numerical formula was obtained based on which a simple formula was developed to calculate equivalent square field. Using polar coordinate and inverse square law will lead to a simple formula for calculation of equivalent field. The presented method is an analytical approach based on which one can estimate the equivalent square field of a rectangular field and may be used for a shielded field or an off-axis point. Besides, one can calculate equivalent field of rectangular field with the concept of decreased scatter radiation with inverse square law with a good approximation. This method may be useful in computing Percentage Depth Dose and Tissue-Phantom Ratio which are extensively used in treatment planning. PMID:22557801
Propagation of Finite Amplitude Sound in Multiple Waveguide Modes.
NASA Astrophysics Data System (ADS)
van Doren, Thomas Walter
1993-01-01
This dissertation describes a theoretical and experimental investigation of the propagation of finite amplitude sound in multiple waveguide modes. Quasilinear analytical solutions of the full second order nonlinear wave equation, the Westervelt equation, and the KZK parabolic wave equation are obtained for the fundamental and second harmonic sound fields in a rectangular rigid-wall waveguide. It is shown that the Westervelt equation is an acceptable approximation of the full nonlinear wave equation for describing guided sound waves of finite amplitude. A system of first order equations based on both a modal and harmonic expansion of the Westervelt equation is developed for waveguides with locally reactive wall impedances. Fully nonlinear numerical solutions of the system of coupled equations are presented for waveguides formed by two parallel planes which are either both rigid, or one rigid and one pressure release. These numerical solutions are compared to finite -difference solutions of the KZK equation, and it is shown that solutions of the KZK equation are valid only at frequencies which are high compared to the cutoff frequencies of the most important modes of propagation (i.e., for which sound propagates at small grazing angles). Numerical solutions of both the Westervelt and KZK equations are compared to experiments performed in an air-filled, rigid-wall, rectangular waveguide. Solutions of the Westervelt equation are in good agreement with experiment for low source frequencies, at which sound propagates at large grazing angles, whereas solutions of the KZK equation are not valid for these cases. At higher frequencies, at which sound propagates at small grazing angles, agreement between numerical solutions of the Westervelt and KZK equations and experiment is only fair, because of problems in specifying the experimental source condition with sufficient accuracy.
Fuel cell separator with compressible sealing flanges
Mientek, A.P.
1984-03-30
A separator for separating adjacent fuel cells in a stack of such cells includes a flat, rectangular, gas-impermeable plate disposed between adjacent cells and having two opposite side margins thereof folded back over one side of the plate to form two first seal flanges and having the other side margins thereof folded back over the opposite side of the plate to form two second seal flanges, each of the seal flanges cooperating with the plate to define a channel in which is disposed a resiliently compressible stack of thin metal sheets. The two first seal flanges cooperate with the electrolyte matrix of one of the cells to form a gas-impermeable seal between an electrode of the one cell and one of two reactant gas manifolds. The second seal flanges cooperate with the electrolyte matrix of the other cell for forming a gas-impermeable seal between an electrode of the other cell and the other of the two reactant gas manifolds. The seal flanges cooperate with the associated compressible stacks of sheets for maintaining a spacing between the plate and the electrolyte matrices while accommodating variation of that spacing.
A humidity sensing organic-inorganic composite for environmental monitoring.
Ahmad, Zubair; Zafar, Qayyum; Sulaiman, Khaulah; Akram, Rizwan; Karimov, Khasan S
2013-03-14
In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ~200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ~31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved.
A Humidity Sensing Organic-Inorganic Composite for Environmental Monitoring
Ahmad, Zubair; Zafar, Qayyum; Sulaiman, Khaulah; Akram, Rizwan; Karimov, Khasan S.
2013-01-01
In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ∼200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ∼31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved. PMID:23493124
Fuel cell separator with compressible sealing flanges
Mientek, Anthony P.
1985-04-30
A separator for separating adjacent fuel cells in a stack of such cells includes a flat, rectangular, gas-impermeable plate disposed between adjacent cells and having two opposite side margins thereof folded back over one side of the plate to form two first seal flanges and having the other side margins thereof folded back over the opposite side of the plate to form two second seal flanges, each of the seal flanges cooperating with the plate to define a channel in which is disposed a resiliently compressible stack of thin metal sheets. The two first seal flanges cooperate with the electrolyte matrix of one of the cells to form a gas-impermeable seal between an electrode of the one cell and one of two reactant gas manifolds. The second seal flanges cooperate with the electrolyte matrix of the other cell for forming a gas-impermeable seal between an electrode of the other cell and the other of the two reactant gas manifolds. The seal flanges cooperate with the associated compressible stacks of sheets for maintaining a spacing between the plate and the electrolyte matrices while accommodating variation of that spacing.
NASA Astrophysics Data System (ADS)
Barai, Hasi Rani; Rahman, Md. Mahbubur; Joo, Sang Woo
2017-12-01
Template-free two-dimensional (2D) titania/titanate nanosheets on Ti metal foil (TiNS/Ti) is prepared by a hydrothermal method at 150 °C assisted by KOH(aq.),followed by sintering at 500 °C. A single thin layer of TiNS is grown with 2D morphology when using low concentrations of KOH(aq.) (0.25 and 0.5 M). However, the morphology is transformed to 1D when using a high concentration of KOH(aq.). The TiNS is a mixture of rutile TiO2 and K-titanate (K2Ti3O7 and K2Ti2O5) with the formation of Ti3+ interstitials. The optimized TiNS/Ti electrode exhibits quasi-rectangular cyclic voltammograms (CVs) in a wide potential range. The specific capacitance (Cs) are 6.8 × 103 and 4.7 × 103 μF/cm2 according to the CV (scan rate, 5 mV/s) and charge-discharge measurements (CD, current density, 50 μA/cm2), respectively. These values are much higher than those reported for pure 0D and 1D TiO2 nanostructures.The higher Cs for the TiNS/Ti electrode can be ascribed to the increased rate of K+ intercalation and de-intercalation during charging and discharging, as well as enhanced conductivity enable by the K in the crystal lattice (10.30%) and Ti3+ interstitials (5.2%), respectively. The TiNS/Ti electrode shows excellent stability with the Cs retention of 89% even after 5000 CD cycles.
Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part II: numerical testing
NASA Astrophysics Data System (ADS)
Rõõm, Rein; Männik, Aarne; Luhamaa, Andres; Zirk, Marko
2007-10-01
The semi-implicit semi-Lagrangian (SISL), two-time-level, non-hydrostatic numerical scheme, based on the non-hydrostatic, semi-elastic pressure-coordinate equations, is tested in model experiments with flow over given orography (elliptical hill, mountain ridge, system of successive ridges) in a rectangular domain with emphasis on the numerical accuracy and non-hydrostatic effect presentation capability. Comparison demonstrates good (in strong primary wave generation) to satisfactory (in weak secondary wave reproduction in some cases) consistency of the numerical modelling results with known stationary linear test solutions. Numerical stability of the developed model is investigated with respect to the reference state choice, modelling dynamics of a stationary front. The horizontally area-mean reference temperature proves to be the optimal stability warrant. The numerical scheme with explicit residual in the vertical forcing term becomes unstable for cross-frontal temperature differences exceeding 30 K. Stability is restored, if the vertical forcing is treated implicitly, which enables to use time steps, comparable with the hydrostatic SISL.
Vibration Analysis of Composite Laminate Plate Excited by Piezoelectric Actuators
Her, Shiuh-Chuan; Lin, Chi-Sheng
2013-01-01
Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control. PMID:23529121
Three-dimensional numerical simulations of turbulent cavitating flow in a rectangular channel
NASA Astrophysics Data System (ADS)
Iben, Uwe; Makhnov, Andrei; Schmidt, Alexander
2018-05-01
Cavitation is a phenomenon of formation of bubbles (cavities) in liquid as a result of pressure drop. Cavitation plays an important role in a wide range of applications. For example, cavitation is one of the key problems of design and manufacturing of pumps, hydraulic turbines, ship's propellers, etc. Special attention is paid to cavitation erosion and to performance degradation of hydraulic devices (noise, fluctuations of the mass flow rate, etc.) caused by the formation of a two-phase system with an increased compressibility. Therefore, development of a model to predict cavitation inception and collapse of cavities in high-speed turbulent flows is an important fundamental and applied task. To test the algorithm three-dimensional simulations of turbulent flow of a cavitating liquid in a rectangular channel have been conducted. The obtained results demonstrate the efficiency and robustness of the formulated model and the algorithm.
Luo, Chan; Jiang, Dan; Ding, Chuan-Fan; Konenkov, Nikolai V
2009-09-01
Numeric experiments were performed to study the first and second stability regions and find the optimal configurations of a quadrupole mass filter constructed of circular quadrupole rods with a rectangular wave power supply. The ion transmission contours were calculated using ion trajectory simulations. For the first stability region, the optimal rod set configuration and the ratio r/r(0) is 1.110-1.115; for the second stability region, it is 1.128-1.130. Low-frequency direct current (DC) modulation with the parameters of m = 0.04-0.16 and nu = omega/Omega = 1/8-1/14 improves the mass peak shape of the circular rod quadrupole mass filter at the optimal r/r(0) ratio of 1.130. The amplitude modulation does not improve mass peak shape. Copyright (c) 2009 John Wiley & Sons, Ltd.
Xie, Qin; Dong, Guangxi; Wang, Ben-Xin; Huang, Wei-Qing
2018-05-08
Quad-band terahertz absorber with single-sized metamaterial design formed by a perforated rectangular resonator on a gold substrate with a dielectric gap in between is investigated. The designed metamaterial structure enables four absorption peaks, of which the first three peaks have large absorption coefficient while the last peak possesses a high Q (quality factor) value of 98.33. The underlying physical mechanisms of these peaks are explored; it is found that their near-field distributions are different. Moreover, the figure of merit (FOM) of the last absorption peak can reach 101.67, which is much higher than that of the first three absorption modes and even absorption bands of other works operated in the terahertz frequency. The designed device with multiple-band absorption and high FOM could provide numerous potential applications in terahertz technology-related fields.
Micro thermal energy harvester design optimization
NASA Astrophysics Data System (ADS)
Trioux, E.; Monfray, S.; Basrour, S.
2017-11-01
This paper reports the recent progress of a new technology to scavenge thermal energy, implying a double-step transduction through the thermal buckling of a bilayer aluminum nitride/aluminum bridge and piezoelectric transduction. A completely new scavenger design is presented, with improved performance. The butterfly shape reduces the overall device mechanical rigidity, which leads to a decrease in buckling temperatures compared to previously studied rectangular plates. Firstly, an analytical model exposes the basic principle of the presented device. Then a numerical model completes the explanations by introducing a butterfly shaped structure. Finally the fabrication process is briefly described and both the rectangular and butterfly harvesters are characterized. We compare their performances with an equal thickness of Al and AlN. Secondly, with a thicker Al layer than AlN layer, we will characterize only the butterfly structure in terms of output power and buckling temperatures, and compare it to the previous stack.
NASA Astrophysics Data System (ADS)
Lyubimova, T. P.; Zubova, N. A.
2017-06-01
This paper presents the results of numerical simulation of the Soret-induced convection of ternary mixture in the rectangular cavity elongated in horizontal direction in gravity field. The cavity has rigid impermeable boundaries. It is heated from the bellow and undergoes translational linearly polarized vibrations of finite amplitude and frequency in the horizontal direction. The problem is solved by finite difference method in the framework of full unsteady non-linear approach. The procedure of diagonalization of the molecular diffusion coefficient matrix is applied, allowing to eliminate cross-diffusion components in the equations and to reduce the number of the governing parameters. The calculations are performed for model ternary mixture with positive separation ratios of the components. The data on the vibration effect on temporal evolution of instantaneous and average fields and integral characteristics of the flow and heat and mass transfer at different levels of gravity are obtained.
NASA Astrophysics Data System (ADS)
Xie, Qin; Dong, Guangxi; Wang, Ben-Xin; Huang, Wei-Qing
2018-05-01
Quad-band terahertz absorber with single-sized metamaterial design formed by a perforated rectangular resonator on a gold substrate with a dielectric gap in between is investigated. The designed metamaterial structure enables four absorption peaks, of which the first three peaks have large absorption coefficient while the last peak possesses a high Q (quality factor) value of 98.33. The underlying physical mechanisms of these peaks are explored; it is found that their near-field distributions are different. Moreover, the figure of merit (FOM) of the last absorption peak can reach 101.67, which is much higher than that of the first three absorption modes and even absorption bands of other works operated in the terahertz frequency. The designed device with multiple-band absorption and high FOM could provide numerous potential applications in terahertz technology-related fields.
Park, Jin-Soo; Kim, Soon-Oh; Kim, Kyoung-Woong; Kim, Byung Ro; Moon, Seung-Hyeon
2003-04-04
A numerical analysis was undertaken for enhanced electrokinetic soil processing. To perform chemical conditioning of the electrode reservoirs, the electrokinetic soil process employed a membrane as a barrier between the electrode reservoirs and the contaminated soil. An alkaline solution was purged in the anode reservoir that was bounded by the membrane. A mathematical model was used for demonstration of pH change and phenol removal from a kaolinite soil bed, the prediction of pH variations in both electrode reservoirs, and the determination of an optimized injection time of the anode-purging solution. The time-dependent dispersion coefficient was employed in consideration of the averaging effect of the velocity profile on a one-dimensional transport. The estimation of pH and phenol profiles in the soil bed reasonably agreed with the experimental data. The simulation revealed that the removal efficiency of phenol from the kaolinite soil could be improved by maintaining pH of the anode solution.
NASA Astrophysics Data System (ADS)
Dallon, Kathryn L.; Yao, Jing; Wheeler, Dean R.; Mazzeo, Brian A.
2018-04-01
Measurements of the mechanical properties of lithium-ion battery electrode films can be used to quantify and improve manufacturing processes and to predict the mechanical and electrochemical performance of the battery. This paper demonstrates the use of acoustic resonances to distinguish among commercial-grade battery films with different active electrode materials, thicknesses, and densities. Resonances are excited in a clamped circular area of the film using a pulsed infrared laser, and responses are measured using an electret condenser microphone. A numerical model is used to quantify the sensitivity of resonances to changes in mechanical properties. When the numerical model is compared to simple analytical models for thin plates and membranes, the battery films measured here trend more similarly to the membrane model. Resonance measurements are also used to monitor the drying process. Results from a scanning laser Doppler vibrometer verify the modes excited in the films, and a combination of experimental and simulated results is used to estimate the Young's modulus of the battery electrode coating layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xinfang; White, Ralph E.; Huang, Kevin
With the assumption that the Fermi level (electrochemical potential of electrons) is uniform across the thickness of a mixed ionic and electronic conducting (MIEC) electrode, the charge-transport model in the electrode domain can be reduced to the modified Fick’s first law, which includes a thermodynamic factor A. A transient numerical solution of the Nernst-Planck theory was obtained for a symmetric cell with MIEC electrodes to illustrate the validity of the assumption of a uniform Fermi level. Subsequently, an impedance numerical solution based on the modified Fick’s first law is compared with that from the Nernst-Planck theory. The results show thatmore » Nernst-Planck charge-transport model is essentially the same as the modified Fick’s first law model as long as the MIEC electrodes have a predominant electronic conductivity. However, because of the invalidity of the uniform Fermi level assumption for aMIEC electrolyte with a predominant ionic conductivity, Nernst-Planck theory is needed to describe the charge transport behaviors.« less
Design of the Cross Section Shape of AN Aluminum Crash Box for Crashworthiness Enhancement of a CAR
NASA Astrophysics Data System (ADS)
Kim, S. B.; Huh, H.; Lee, G. H.; Yoo, J. S.; Lee, M. Y.
This paper deals with the crashworthiness of an aluminum crash box for an auto-body with the various shapes of cross section such as a rectangle, a hexagon and an octagon. First, crash boxes with various cross sections were tested with numerical simulation to obtain the energy absorption capacity and the mean load. In case of the simple axial crush, the octagon shape shows higher mean load and energy absorption than the other two shapes. Secondly, the crash boxes were assembled to a simplified auto-body model for the overall crashworthiness. The model consists of a bumper, crash boxes, front side members and a sub-frame representing the behavior of a full car at the low speed impact. The analysis result shows that the rectangular cross section shows the best performance as a crash box which deforms prior to the front side member. The hexagonal and octagonal cross sections undergo torsion and local buckling as the width of cross section decreases while the rectangular cross section does not. The simulation result of the rectangular crash box was verified with the experimental result. The simulation result shows close tendency in the deformed shape and the load-displacement curve to the experimental result.
NASA Astrophysics Data System (ADS)
Pirunčík, Jiří; Kwiecien, Pavel; Fiala, Jan; Richter, Ivan
2017-05-01
This contribution is focused on the numerical studies of resonant processes in individual plasmonic nanostructures, with the attention particularly given to rectangular nanoparticles and concominant localized surface plasmon resonance processes. Relevant models for the description and anylysis of localized surface plasmon resonance are introduced, in particular: quasistatic approximation, Mie theory and in particular, a generalized (quasi)analytical approach for treating rectangularly shaped nanostructures. The parameters influencing resonant behavior of nanoparticles are analyzed with special interest in morphology and sensor applications. Results acquired with Lumerical FDTD Solutions software, using finite-difference time-domain simulation method, are shown and discussed. Simulations were mostly performed for selected nanostructures composed of finite rectangular nanowires with square cross-sections. Systematic analysis is made for single nanowires with varying length, parallel couple of nanowires with varying gap (cut -wires) and selected dolmen structures with varying gap between one nanowire transversely located with respect to parallel couple of nanowires (in both in-plane and -out-of-plane arrangements). The dependence of resonant peaks of cross-section spectral behavior (absorption, scattering, extinction) and their tunability via suitable structuring and morphology changes are primarily researched. These studies are then followed with an analysis of the effect of periodic arrangements. The results can be usable with respect to possible sensor applications.
Electroosmotic flow and ionic conductance in a pH-regulated rectangular nanochannel
NASA Astrophysics Data System (ADS)
Sadeghi, Morteza; Saidi, Mohammad Hassan; Sadeghi, Arman
2017-06-01
Infinite series solutions are obtained for electrical potential, electroosmotic velocity, ionic conductance, and surface physicochemical properties of long pH-regulated rectangular nanochannels of low surface potential utilizing the double finite Fourier transform method. Closed form expressions are also obtained for channels of large height to width ratio for which the depthwise variations vanish. Neglecting the Stern layer impact, the effects of EDL (Electric Double Layer) overlap, multiple ionic species, and association/dissociation reactions on the surface are all taken into account. Moreover, finite-element-based numerical simulations are conducted to account for the end effects as well as to validate the analytical solutions. We show that, with the exception of the migratory ionic conductivity, all the physicochemical parameters are strong functions of the channel aspect ratio. Accordingly, a slit geometry is not a good representative of a rectangular channel when the width is comparable to the height. It is also observed that the distribution of the electrical potential is not uniform over the surface of a charge-regulated channel. In addition, unlike ordinary channels for which an increase in the background salt concentration is always accompanied by higher flow rates, quite the opposite may be true for a pH-regulated duct at higher salt concentrations.
Yan, Pengtao; Zhang, Xuesha; Hou, Meiling; Liu, Yanyan; Liu, Ting; Liu, Kang; Zhang, Ruijun
2018-06-22
In order to develop energy storage devices with high power performance, electrodes should hold well-defined pathways for efficient ionic and electronic transport. Herein, we demonstrate a highly conductive graphene nanosheet/nanometer-sized carbide-derived carbon framework (hcGNS/nCDC). In this architecture, nCDC possesses short transport paths for electrolyte ions, thus ensuring the rapid ions transportation. The excellent electrical conductivity of hcGNS can reduce the electrode internal resistance for the supercapacitor and thus endows the hcGNS/nCDC composite electrodes with excellent electronic transportation performance. Electrochemical measurements show that the cyclic voltammogram of hcGNS/nCDC can maintain a rectangular-like shape with the increase of the scan rate from 5 mV s -1 to 20 V s -1 , and the specific capacitance retention is up to 51% even at a high scan rate of 20 V s -1 , suggesting ultrahigh power performance, which, to the best of our knowledge, is among the best power performances reported so far for the carbon materials. Furthermore, the hcGNS/nCDC composite also shows an excellent cycling stability (no drop in its capacitance occurs even after 10000 cycles). This work demonstrates the advantage in the ultrahigh power performance for the framework having both short transport pathways for electrolyte ions and high electrical conductivity.
Žužek, Monika C; Rozman, Janez; Pečlin, Polona; Vrecl, Milka; Frangež, Robert
2017-02-01
The ability to selectively stimulate Aα, Aβ-fibers and Aδ-fibers in an isolated rat sciatic nerve (SNR) was assessed. The stimulus used was a current, biphasic pulse with a quasitrapezoidal cathodic phase and rectangular anodic phase where parameters were systematically varied: intensity of the cathodic phase (ic); width of the cathodic phase (tc); width of the cathodic exponential decay (texp) and time constant of the exponential decay (τexp). A SNR was stimulated using a pair of hook electrodes while conduction velocity (CV) and compound action potentials (CAP) were measured at two sites along the SNR using another two pairs of electrodes. Results showed that the highest CAP1 (8.5-9 mV), shall be expected when parameters of the stimulus were within the following range: ic=3.8-4 mA, tc=350-400 μs and texp=330-440 μs. Results also showed that with ascending tc and texp, CV of the corresponding superficial region of the SNR was reduced in both, conduction velocity of CAP1 and conduction velocity of CAP2. It was concluded that action potentials (APs) were activated in the Aβ-fibers and Aδ-fibers along with a slight AP inhibition in the Aβ-fibers. The obtained results, could serve as a tool for developing multi-electrode systems that potentially enable fiber-type selective stimulation of nerve fibers.
NASA Astrophysics Data System (ADS)
Yan, Pengtao; Zhang, Xuesha; Hou, Meiling; Liu, Yanyan; Liu, Ting; Liu, Kang; Zhang, Ruijun
2018-06-01
In order to develop energy storage devices with high power performance, electrodes should hold well-defined pathways for efficient ionic and electronic transport. Herein, we demonstrate a highly conductive graphene nanosheet/nanometer-sized carbide-derived carbon framework (hcGNS/nCDC). In this architecture, nCDC possesses short transport paths for electrolyte ions, thus ensuring the rapid ions transportation. The excellent electrical conductivity of hcGNS can reduce the electrode internal resistance for the supercapacitor and thus endows the hcGNS/nCDC composite electrodes with excellent electronic transportation performance. Electrochemical measurements show that the cyclic voltammogram of hcGNS/nCDC can maintain a rectangular-like shape with the increase of the scan rate from 5 mV s‑1 to 20 V s‑1, and the specific capacitance retention is up to 51% even at a high scan rate of 20 V s‑1, suggesting ultrahigh power performance, which, to the best of our knowledge, is among the best power performances reported so far for the carbon materials. Furthermore, the hcGNS/nCDC composite also shows an excellent cycling stability (no drop in its capacitance occurs even after 10000 cycles). This work demonstrates the advantage in the ultrahigh power performance for the framework having both short transport pathways for electrolyte ions and high electrical conductivity.
H-TiO2/C/MnO2 nanocomposite materials for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Di, Jing; Fu, Xincui; Zheng, Huajun; Jia, Yi
2015-06-01
Functionalized TiO2 nanotube arrays with decoration of MnO2 nanoparticles (denoted as H-TiO2/C/MnO2) have been synthesized in the application of electrochemical capacitors. To improve both areal and gravimetric capacitance, hydrogen treatment and carbon coating process were conducted on TiO2 nanotube arrays. By scanning electron microscopy and X-ray photoelectron spectroscopy, it is confirmed that the nanostructure is formed by the uniform incorporation of MnO2 nanoparticles growing round the surface of the TiO2 nanotube arrays. Impedance analysis proves that the enhanced capacitive is due to the decrease of charge transfer resistance and diffusion resistance. Electrochemical measurements performed on this H-TiO2/C/MnO2 nanocomposite when used as an electrode material for an electrochemical pseudocapacitor presents quasi-rectangular shaped cyclic voltammetry curves up to 100 mV/s, with a large specific capacitance (SC) of 299.8 F g-1 at the current density of 0.5 A g-1 in 1 M Na2SO4 electrolyte. More importantly, the electrode also exhibits long-term cycling stability, only 13 % of SC loss after 2000 continuous charge-discharge cycles. Based on the concept of integrating active materials on highly ordered nanostructure framework, this method can be widely applied to the synthesis of high-performance electrode materials for energy storage.
Mintchev, M; Sanmiguel, C; Otto, S; Bowes, K
1998-01-01
Background—Gastric electrical stimulation has been attempted for several years with little success. Aims—To determine whether movement of liquid gastric content could be achieved using microprocessor controlled sequential electrical stimulation. Methods—Eight anaesthetised dogs underwent laparotomy and implantation of four sets of bipolar stainless steel wire electrodes. Each set consisted of two to six electrodes (10×0.25 mm, 3 cm apart) implanted circumferentially. The stomach was filled with water and the process of gastric emptying was monitored. Artificial contractions were produced using microprocessor controlled phase locked bipolar four second trains of 50 Hz, 14 V (peak to peak) rectangular voltage. In four of the dogs four force transducers were implanted close to each circumferential electrode set. In one gastroparetic patient the effect of direct electrical stimulation was determined at laparotomy. Results—Using the above stimulating parameters circumferential gastric contractions were produced which were artificially propagated distally by phase locking the stimulating voltage. Averaged stimulated gastric emptying times were significantly shorter than spontaneus emptying times (t1/2 6.7 (3.0) versus 25.3 (12.9) minutes, p<0.01). Gastric electrical stimulation of the gastroparetic patient at operation produced circumferential contractions. Conclusions—Microprocessor controlled electrical stimulation produced artificial peristalsis and notably accelerated the movement of liquid gastric content. Keywords: gastric electrical stimulation; gastric motility PMID:9824339
Development of a microfluidic device for simultaneous mixing and pumping
NASA Astrophysics Data System (ADS)
Kim, Byoung Jae; Yoon, Sang Youl; Lee, Kyung Heon; Sung, Hyung Jin
2009-01-01
We conducted experimental and numerical studies aimed at developing a microfluidic device capable of simultaneous mixing while pumping. The proposed multifunctional device makes use of alternating current electroosmotic flow and adopts an array of planar asymmetric microelectrodes with a diagonal or herringbone shape. The pumping performance was assessed in terms of the fluid velocity at the center of the microchannel, obtained by micro PIV. To assess the mixing, flow visualizations were carried out over the electrodes to verify the lateral flows. The mixing degree was quantified in terms of a mixing efficiency obtained by three-dimensional numerical simulations. The results showed that simultaneous mixing and pumping was achieved in the channels with diagonal or herringbone electrode configurations. A herringbone electrode configuration showed better pumping compared with a reference, as well as enhanced mixing.
NASA Technical Reports Server (NTRS)
Kendall, B. R.
1979-01-01
Theoretical and numerical analyses were made of planar, cylindrical and spherical electrode time-of-flight mass spectrometers in order to optimize their operating conditions. A numerical analysis of potential barrier gating in time-of-flight spectrometers was also made. The results were used in the design of several small mass spectrometers. These were constructed and tested in a laboratory space simulator. Detailed experimental studies of a miniature cylindrical electrode time of flight mass spectrometer and of a miniature hemispherical electrode time of flight mass spectrometer were made. The extremely high sensitivity of these instruments and their ability to operate at D region pressures with an open source make them ideal instruments for D region ion composition measurements.
Computerized series solution of relativistic equations of motion.
NASA Technical Reports Server (NTRS)
Broucke, R.
1971-01-01
A method of solution of the equations of planetary motion is described. It consists of the use of numerical general perturbations in orbital elements and in rectangular coordinates. The solution is expanded in Fourier series in the mean anomaly with the aid of harmonic analysis and computerized series manipulation techniques. A detailed application to the relativistic motion of the planet Mercury is described both for Schwarzschild and isotropic coordinates.
Postbuckling delamination of a stiffened composite panel using finite element methods
NASA Technical Reports Server (NTRS)
Natsiavas, S.; Babcock, C. D.; Knauss, W. G.
1987-01-01
A combined numerical and experimental study is carried out for the postbuckling behavior of a stiffened composite panel. The panel is rectangular and is subjected to static in-plane compression on two opposite edges to the collapse level. Nonlinear (large deflection) plate theory is employed, together with an experimentally based failure criterion. It is found that the stiffened composite panel can exhibit significant postbuckling strength.
Implicit finite difference methods on composite grids
NASA Technical Reports Server (NTRS)
Mastin, C. Wayne
1987-01-01
Techniques for eliminating time lags in the implicit finite-difference solution of partial differential equations are investigated analytically, with a focus on transient fluid dynamics problems on overlapping multicomponent grids. The fundamental principles of the approach are explained, and the method is shown to be applicable to both rectangular and curvilinear grids. Numerical results for sample problems are compared with exact solutions in graphs, and good agreement is demonstrated.
Dimensional transitions in thermodynamic properties of ideal Maxwell-Boltzmann gases
NASA Astrophysics Data System (ADS)
Aydin, Alhun; Sisman, Altug
2015-04-01
An ideal Maxwell-Boltzmann gas confined in various rectangular nanodomains is considered under quantum size effects. Thermodynamic quantities are calculated from their relations with the partition function, which consists of triple infinite summations over momentum states in each direction. To obtain analytical expressions, summations are converted to integrals for macrosystems by a continuum approximation, which fails at the nanoscale. To avoid both the numerical calculation of summations and the failure of their integral approximations at the nanoscale, a method which gives an analytical expression for a single particle partition function (SPPF) is proposed. It is shown that a dimensional transition in momentum space occurs at a certain magnitude of confinement. Therefore, to represent the SPPF by lower-dimensional analytical expressions becomes possible, rather than numerical calculation of summations. Considering rectangular domains with different aspect ratios, a comparison of the results of derived expressions with those of summation forms of the SPPF is made. It is shown that analytical expressions for the SPPF give very precise results with maximum relative errors of around 1%, 2% and 3% at exactly the transition point for single, double and triple transitions, respectively. Based on dimensional transitions, expressions for free energy, entropy, internal energy, chemical potential, heat capacity and pressure are given analytically valid for any scale.
NASA Astrophysics Data System (ADS)
Zamanov, A. D.
2001-09-01
A problem on the forced vibrations of a rectangular composite plate with locally curved structures is formulated using the exact three-dimensional equations of continuum mechanics and continuum theory. A technique for numerical solution of the problem is developed based on the semianalytic finite-element method. Numerical results are given for the stress distribution in the plate under forced vibrations. The results obtained are analyzed to study the effect of the curvature in the structure of the plate on the distribution of stress amplitudes. It is shown that the curvatures change significantly the stress pattern under either static or dynamic loading
Fillaudeau, L; Winterton, P; Leuliet, J C; Tissier, J P; Maury, V; Semet, F; Debreyne, P; Berthou, M; Chopard, F
2006-12-01
The development of alternative technologies such as the direct Joule effect to pasteurize and sterilize food products is of great scientific and industrial interest. Our objective was 1) to gain insight into the ability to ensure ultra-high-temperature treatment of milk and 2) to investigate the links among thermal, hydraulic, and electrical phenomena in relation to fouling in a direct Joule effect heater. The ohmic heater [OH; E perpendicular to v (where E is the electrical field and v is the velocity); P (power) = 15 kW] was composed of 5 flat rectangular cells [e (space between the plate and electrode) = 15 mm, w (wall) = 76 mm, and L (length of the plate in plate heat exchanger or electrode) = 246 mm]--3 active cells to ensure heating and 2 (at the extremities) for electrical insulation and the recovery of leakage currents. In the first step, the thermal performance of the OH was investigated vs. the flow regimen [50 < Re (Reynolds number) < 5,000], supplied power (0 < P < 15 kW), and electrical conductivity of fluids (0.1 < sigma(20 degrees C) < 2 S/m) under clean conditions with model fluids. This protocol enabled a global thermal approach (thermal and electrical balance, modeling of the temperature profile of a fluid) and local analysis of the wall temperature of the electrode. An empirical correlation was established to estimate the temperature gradient, T(w)-T(b) (where T(w) is the wall temperature and T(b) is the product temperature) under clean conditions (without fouling) and was used to define operating conditions for pure-volume and direct-resistance heating. In the second step, the ability of OH to ensure the ultra-high-temperature treatment of whole milk was investigated and compared with a plate heat exchanger. Special care was taken to investigate the heat transfer phenomena occurring over a range of temperatures from 105 to 138 degrees C. This temperature range corresponds to the part of the process made critical by protein and mineral fouling. The objectives were 1) to demonstrate the ability of an OH to ensure heat treatment of milk, 2) to study the thermal and hydraulic performance with an increasing power and temperature difference between the inlet and outlet of the OH, 3) to define and validate a criterion to follow heat dissipation efficiency, and 4) to compare the fouling propensity with the different configurations. A heat dissipation coefficient, Rh(CO), was defined and validated to monitor the fouling propensity through global electrical and thermal parameters. Finally, a numerical simulation was developed to analyze heat profiles (wall, deposit, bulk). Because of an increasing Joule effect in the static deposit, the simulation showed how wall overheating would definitively cause fouling to spiral out of control.
Dielectric elastomer for stretchable sensors: influence of the design and material properties
NASA Astrophysics Data System (ADS)
Jean-Mistral, C.; Iglesias, S.; Pruvost, S.; Duchet-Rumeau, J.; Chesné, S.
2016-04-01
Dielectric elastomers exhibit extended capabilities as flexible sensors for the detection of load distributions, pressure or huge deformations. Tracking the human movements of the fingers or the arms could be useful for the reconstruction of sporting gesture, or to control a human-like robot. Proposing new measurements methods are addressed in a number of publications leading to improving the sensitivity and accuracy of the sensing method. Generally, the associated modelling remains simple (RC or RC transmission line). The material parameters are considered constant or having a negligible effect which can lead to serious reduction of accuracy. Comparisons between measurements and modelling require care and skill, and could be tricky. Thus, we propose here a comprehensive modelling, taking into account the influence of the material properties on the performances of the dielectric elastomer sensor (DES). Various parameters influencing the characteristics of the sensors have been identified: dielectric constant, hyper-elasticity. The variations of these parameters as a function of the strain impact the linearity and sensitivity of the sensor of few percent. The sensitivity of the DES is also evaluated changing geometrical parameters (initial thickness) and its design (rectangular and dog-bone shapes). We discuss the impact of the shape regarding stress. Finally, DES including a silicone elastomer sandwiched between two high conductive stretchable electrodes, were manufactured and investigated. Classic and reliable LCR measurements are detailed. Experimental results validate our numerical model of large strain sensor (>50%).
NASA Astrophysics Data System (ADS)
Wang, Guoqing
Batteries and fuel cells are widely used to generate electrical energy, especially in recent applications to electric and hybrid vehicles. To simulate a porous electrode for batteries and fuel cells, macro-homogeneous models are often employed in which the actual morphology of the electrode is ignored, thereby making computations much easier. However, such models are based on the volume-averaging technique, which smears the microscopically complex interfacial structures and has to invoke empirical correlations for describing the effective transport properties in a multiphase system. In this work, a methodology is developed to achieve the description on the pore level based on direct numerical simulation (DNS) method. The DNS solves the accurate point-wise conservation equations on a real micro-structure of the porous electrode and hence utilizes the intrinsic transport properties for each phase. To demonstrate the DNS method, an idealized morphology and further a random microstructure are constructed to represent all the phases composing the porous electrode. A single set of conservation equations of charge and species valid in all phases are developed and numerically solved using a finite volume technique. The present DNS model is first applied to simulate the behavior of an intercalative carbon electrode in the widely used lithium-ion cell. The concentration and potential distributions in both solid and electrolyte phases at the pore level are obtained across the electrode during the discharge. The species and charge transport processes, as well as the electrochemical reactions, are computationally visualized when discharging the electrode. In addition, empirical correlations in porous electrode theory, which describe the dependency of effective properties (diffusion coefficient, conductivity, etc.) on the porosity, are corroborated using the fundamental DNS data. Then the discharge processes of a full lithium ion cell at various rates are simulated with DNS approach and verified by the experimental data. In the application to the cathode catalyst layer of PEM fuel cells, DNS is employed to identify three characteristic voltage losses: kinetics losses, ohmic losses and O2 transport losses. On a constructed random microstructure, DNS is also utilized to optimize the inlet air humidity and the composition design and hence achieve the minimum voltage loss during operation. In summary, the newly developed DNS method has provided an effective method to simulate behavior of thin porous electrodes with microscopically complicated geometries and the fundamentals insight into structure-performance relationships of porous electrodes for the first time.
Dielectrophoretic capture of low abundance cell population using thick electrodes.
Marchalot, Julien; Chateaux, Jean-François; Faivre, Magalie; Mertani, Hichem C; Ferrigno, Rosaria; Deman, Anne-Laure
2015-09-01
Enrichment of rare cell populations such as Circulating Tumor Cells (CTCs) is a critical step before performing analysis. This paper presents a polymeric microfluidic device with integrated thick Carbon-PolyDimethylSiloxane composite (C-PDMS) electrodes designed to carry out dielectrophoretic (DEP) trapping of low abundance biological cells. Such conductive composite material presents advantages over metallic structures. Indeed, as it combines properties of both the matrix and doping particles, C-PDMS allows the easy and fast integration of conductive microstructures using a soft-lithography approach while preserving O2 plasma bonding properties of PDMS substrate and avoiding a cumbersome alignment procedure. Here, we first performed numerical simulations to demonstrate the advantage of such thick C-PDMS electrodes over a coplanar electrode configuration. It is well established that dielectrophoretic force ([Formula: see text]) decreases quickly as the distance from the electrode surface increases resulting in coplanar configuration to a low trapping efficiency at high flow rate. Here, we showed quantitatively that by using electrodes as thick as a microchannel height, it is possible to extend the DEP force influence in the whole volume of the channel compared to coplanar electrode configuration and maintaining high trapping efficiency while increasing the throughput. This model was then used to numerically optimize a thick C-PDMS electrode configuration in terms of trapping efficiency. Then, optimized microfluidic configurations were fabricated and tested at various flow rates for the trapping of MDA-MB-231 breast cancer cell line. We reached trapping efficiencies of 97% at 20 μl/h and 78.7% at 80 μl/h, for 100 μm thick electrodes. Finally, we applied our device to the separation and localized trapping of CTCs (MDA-MB-231) from a red blood cells sample (concentration ratio of 1:10).
Sensitivity of inelastic response to numerical integration of strain energy. [for cantilever beam
NASA Technical Reports Server (NTRS)
Kamat, M. P.
1976-01-01
The exact solution to the quasi-static, inelastic response of a cantilever beam of rectangular cross section subjected to a bending moment at the tip is obtained. The material of the beam is assumed to be linearly elastic-linearly strain-hardening. This solution is then compared with three different numerical solutions of the same problem obtained by minimizing the total potential energy using Gaussian quadratures of two different orders and a Newton-Cotes scheme for integrating the strain energy of deformation. Significant differences between the exact dissipative strain energy and its numerical counterpart are emphasized. The consequence of this on the nonlinear transient responses of a beam with solid cross section and that of a thin-walled beam on elastic supports under impulsive loads are examined.
NASA Technical Reports Server (NTRS)
Baldwin, B. S.; Maccormack, R. W.; Deiwert, G. S.
1975-01-01
The time-splitting explicit numerical method of MacCormack is applied to separated turbulent boundary layer flow problems. Modifications of this basic method are developed to counter difficulties associated with complicated geometry and severe numerical resolution requirements of turbulence model equations. The accuracy of solutions is investigated by comparison with exact solutions for several simple cases. Procedures are developed for modifying the basic method to improve the accuracy. Numerical solutions of high-Reynolds-number separated flows over an airfoil and shock-separated flows over a flat plate are obtained. A simple mixing length model of turbulence is used for the transonic flow past an airfoil. A nonorthogonal mesh of arbitrary configuration facilitates the description of the flow field. For the simpler geometry associated with the flat plate, a rectangular mesh is used, and solutions are obtained based on a two-equation differential model of turbulence.
A numerical study of transient heat and mass transfer in crystal growth
NASA Technical Reports Server (NTRS)
Han, Samuel Bang-Moo
1987-01-01
A numerical analysis of transient heat and solute transport across a rectangular cavity is performed. Five nonlinear partial differential equations which govern the conservation of mass, momentum, energy and solute concentration related to crystal growth in solution, are simultaneously integrated by a numerical method based on the SIMPLE algorithm. Numerical results showed that the flow, temperature and solute fields are dependent on thermal and solutal Grashoff number, Prandtl number, Schmidt number and aspect ratio. The average Nusselt and Sherwood numbers evaluated at the center of the cavity decrease markedly when the solutal buoyancy force acts in the opposite direction to the thermal buoyancy force. When the solutal and thermal buoyancy forces act in the same direction, however, Sherwood number increases significantly and yet Nusselt number decreases. Overall effects of convection on the crystal growth are seen to be an enhancement of growth rate as expected but with highly nonuniform spatial growth variations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ho Jun, E-mail: tiger.anima@gmail.com; Yang, Wonkyun; Joo, Junghoon
Semiconductor fabrication often requires the deposition of hydrogenated silicon nitride (SiN{sub x}H{sub y}) film using SiH{sub 4}/NH{sub 3}/N{sub 2}/He capacitively coupled plasma (CCP) discharge. As analysis of the discharge geometry is essential to understanding CCP deposition, the effect of electrode spacing on the two-dimensional distributions of electrons, ions, and metastable and radical molecules was analyzed numerically using a fluid model. The simulation shows that the spatial variations in the ionization rates near the sheath become more obvious as the electrode spacing increases. In addition, as molecule-molecule gas-phase reactions are significantly affected by the local residence time, large electrode spacings aremore » associated with significant volumetric losses for positive ions. Consequently, an increase of the electrode spacing leads axial density profiles of ions to change from bell shaped to double humped. However, NH{sub 4}{sup +} persistently maintains a bell-shaped axial density profile regardless of the degree of electrode spacing. We set the mole fraction of NH{sub 3} to only 1% of the total flow at the inlet, but NH{sub 4}{sup +} is the most abundant positive ion at the large electrode spacings. As the gas flow can transport the radicals around the space between the electrodes, we found that radical density distribution shifts toward the grounded electrode. The shift becomes pronounced as the electrode spacing increases. Finally, to validate our model, we compared the calculated deposition rate profile with the experimental data obtained along the wafer radius. According to our numerical results, the SiN{sub x}H{sub y} deposition rate decreases by approximately 16% when the electrode spacing increases from 9 to 20 mm.« less
NASA Astrophysics Data System (ADS)
Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Tyasto, A.
2016-04-01
It is shown that in order to form the current pulse of a near rectangular shape, which provides conversion of the welding arc into a dynamic mode, it is rational to connect a forming element made on the basis of an artificial forming line in series to the welding DC circuit. The paper presents a diagram of a pulsed device for welding with a non-consumable electrode in argon which was developed using the forming element. The conversion of the arc into the dynamic mode is illustrated by the current and voltage oscillograms of the arc gap and the dynamic characteristic of the arc within the interval of one pulse generation time in the arc gap. The background current travels in the interpulse interval.
Yang, Lei; Cheng, Shuang; Ding, Yong; Zhu, Xingbao; Wang, Zhong Lin; Liu, Meilin
2012-01-11
We present a high-capacity pseudocapacitor based on a hierarchical network architecture consisting of Co(3)O(4) nanowire network (nanonet) coated on a carbon fiber paper. With this tailored architecture, the electrode shows ideal capacitive behavior (rectangular shape of cyclic voltammograms) and large specific capacitance (1124 F/g) at high charge/discharge rate (25.34 A/g), still retaining ~94% of the capacitance at a much lower rate of 0.25 A/g. The much-improved capacity, rate capability, and cycling stability may be attributed to the unique hierarchical network structures, which improves electron/ion transport, enhances the kinetics of redox reactions, and facilitates facile stress relaxation during cycling. © 2011 American Chemical Society
High mobility of large mass movements: a study by means of FEM/DEM simulations
NASA Astrophysics Data System (ADS)
Manzella, I.; Lisjak, A.; Grasselli, G.
2013-12-01
Large mass movements, such as rock avalanches and large volcanic debris avalanches are characterized by extremely long propagation, which cannot be modelled using normal sliding friction law. For this reason several studies and theories derived from field observation, physical theories and laboratory experiments, exist to try to explain their high mobility. In order to investigate more into deep some of the processes recalled by these theories, simulations have been run with a new numerical tool called Y-GUI based on the Finite Element-Discrete Element Method FEM/DEM. The FEM/DEM method is a numerical technique developed by Munjiza et al. (1995) where Discrete Element Method (DEM) algorithms are used to model the interaction between different solids, while Finite Element Method (FEM) principles are used to analyze their deformability being also able to explicitly simulate material sudden loss of cohesion (i.e. brittle failure). In particular numerical tests have been run, inspired by the small-scale experiments done by Manzella and Labiouse (2013). They consist of rectangular blocks released on a slope; each block is a rectangular discrete element made of a mesh of finite elements enabled to fragment. These simulations have highlighted the influence on the propagation of block packing, i.e. whether the elements are piled into geometrical ordinate structure before failure or they are chaotically disposed as a loose material, and of the topography, i.e. whether the slope break is smooth and regular or not. In addition the effect of fracturing, i.e. fragmentation, on the total runout have been studied and highlighted.
NASA Astrophysics Data System (ADS)
Azib, M.; Baudoin, F.; Binaud, N.; Villeneuve-Faure, C.; Bugarin, F.; Segonds, S.; Teyssedre, G.
2018-04-01
Recent experimental results demonstrated that an electrostatic force distance curve (EFDC) can be used for space charge probing in thin dielectric layers. A main advantage of the method is claimed to be its sensitivity to charge localization, which, however, needs to be substantiated by numerical simulations. In this paper, we have developed a model which permits us to compute an EFDC accurately by using the most sophisticated and accurate geometry for the atomic force microscopy probe. To avoid simplifications and in order to reproduce experimental conditions, the EFDC has been simulated for a system constituted of a polarized electrode embedded in a thin dielectric layer (SiN x ). The individual contributions of forces on the tip and on the cantilever have been analyzed separately to account for possible artefacts. The EFDC sensitivity to potential distribution is studied through the change in electrode shape, namely the width and the depth. Finally, the numerical results have been compared with experimental data.
Numerical study on xenon positive column discharges of mercury-free lamp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, Jiting; He, Feng; Miao, Jinsong
2007-02-15
In this paper, the numerical study has been performed on the xenon positive column discharges of mercury-free fluorescent lamp. The plasma discharge characteristics are analyzed by numerical simulation based on two-dimensional fluid model. The effects of cell geometry, such as the dielectric layer, the electrode width, the electrode gap, and the cell height, and the filling gas including the pressure and the xenon percentage are investigated in terms of discharge current and discharge efficiency. The results show that a long transient positive column will form in the xenon lamp when applying ac sinusoidal power and the lamp can operate inmore » a large range of voltage and frequency. The front dielectric layer of the cell plays an important role in the xenon lamp while the back layer has little effect. The ratio of electrode gap to cell height should be large to achieve a long positive column xenon lamp and higher efficiency. Increase of pressure or xenon concentration results in an increase of discharge efficiency and voltage. The discussions will be helpful for the design of commercial xenon lamp cells.« less
Optimal geometry toward uniform current density electrodes
NASA Astrophysics Data System (ADS)
Song, Yizhuang; Lee, Eunjung; Woo, Eung Je; Seo, Jin Keun
2011-07-01
Electrodes are commonly used to inject current into the human body in various biomedical applications such as functional electrical stimulation, defibrillation, electrosurgery, RF ablation, impedance imaging, and so on. When a highly conducting electrode makes direct contact with biological tissues, the induced current density has strong singularity along the periphery of the electrode, which may cause painful sensation or burn. Especially in impedance imaging methods such as the magnetic resonance electrical impedance tomography, we should avoid such singularity since more uniform current density underneath a current-injection electrode is desirable. In this paper, we study an optimal geometry of a recessed electrode to produce a well-distributed current density on the contact area under the electrode. We investigate the geometry of the electrode surface to minimize the edge singularity and produce nearly uniform current density on the contact area. We propose a mathematical framework for the uniform current density electrode and its optimal geometry. The theoretical results are supported by numerical simulations.
Computer-Aided Engineering of Semiconductor Integrated Circuits
1979-07-01
equation using a five point finite difference approximation. Section 4.3.6 describes the numerical techniques and iterative algorithms which are used...neighbor points. This is generally referred to as a five point finite difference scheme on a rectangular grid, as described below. The finite difference ...problems in steady state have been analyzed by the finite difference method [4. 16 ] [4.17 3 or finite element method [4. 18 3, [4. 19 3 as reported last
Steady state magnetic field configurations for the earth's magnetotail
NASA Technical Reports Server (NTRS)
Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.
1989-01-01
A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).
NASA Astrophysics Data System (ADS)
Tarao, H.; Kuisti, H.; Korpinen, L.; Hayashi, N.; Isaka, K.
2012-05-01
Contact currents flow through the human body when a conducting object with different potential is touched. There are limited reports on numerical dosimetry for contact current exposure compared with electromagnetic field exposures. In this study, using an anatomical human adult male model, we performed numerical calculation of internal electric fields resulting from 60 Hz contact current flowing from the left hand to the left foot as a basis case. Next, we performed a variety of similar calculations with varying tissue conductivity and contact area, and compared the results with the basis case. We found that very low conductivity of skin and a small electrode size enhanced the internal fields in the muscle, subcutaneous fat and skin close to the contact region. The 99th percentile value of the fields in a particular tissue type did not reliably account for these fields near the electrode. In the arm and leg, the internal fields for the muscle anisotropy were identical to those in the isotropy case using a conductivity value longitudinal to the muscle fibre. Furthermore, the internal fields in the tissues abreast of the joints such as the wrist and the elbow, including low conductivity tissues, as well as the electrode contact region, exceeded the ICNIRP basic restriction for the general public with contact current as the reference level value.
NASA Astrophysics Data System (ADS)
Jalali Farahani, R.; Fitzenz, D. D.; Nyst, M.
2015-12-01
Major components of tsunami hazard modeling include earthquake source characterization, seabed displacement, wave propagation, and coastal inundation/run-up. Accurate modeling of these components is essential to identify the disaster risk exposures effectively, which would be crucial for insurance industry as well as policy makers to have tsunami resistant design of structures and evacuation planning (FEMA, 2008). In this study, the sensitivity and variability of tsunami coastal inundation due to Cascadia megathrust subduction earthquake are studied by considering the different approaches for seabed displacement model. The first approach is the analytical expressions that were proposed by Okada (1985, 1992) for the surface displacements and strains of rectangular sources. The second approach was introduced by Meade (2006) who introduced analytical solutions for calculating displacements, strains, and stresses on triangular sources. In this study, the seabed displacement using triangular representation of geometrically complex fault surfaces is compared with the Okada rectangular representations for the Cascadia subduction zone. In the triangular dislocation algorithm, the displacement is calculated using superposition of two angular dislocations for each of the three triangle legs. The triangular elements could give a better and gap-free representation of the fault surfaces. In addition, the rectangular representation gives large unphysical vertical displacement along the shallow-depth fault edge that generates unrealistic short-wavelength waves. To study the impact of these two different algorithms on the final tsunami inundation, the initial tsunami wave as well as wave propagation and the coastal inundation are simulated. To model the propagation of tsunami waves and coastal inundation, 2D shallow water equations are modeled using the seabed displacement as the initial condition for the numerical model. Tsunami numerical simulation has been performed on high-resolution bathymetric/topographic computational grids to identify accurate tsunami impact and flooding limits for the west of USA.
I Situ Structural Study of Underpotential Deposition and Electrocatalysis on GOLD(111) Electrodes
NASA Astrophysics Data System (ADS)
Chen, Chun-Hsien
This thesis work has studied systems of Bi, Pb, Ag, and Hg underpotential deposition (UPD) on Au(111) electrodes. The application of the atomic force microscope (AFM), the scanning tunneling microscope (STM), and the surface x-ray scattering (SXS) to these UPD studies has provided in situ measurements from which we investigate factors that determine UPD surface structures and correlate these structures with surface reactivity. For all the UPD systems in this thesis work, atomic level features of the electrode surface have been revealed. In the case of Pb UPD, Pb starts to deposit by forming islands which exhibit a hexagonal close packed structure of Pb adatoms, while, in the other systems, the UPD adatoms form open lattices. In the Bi and Pb studies, we correlate the activities of the modified surface toward electroreduction of H_2O_2 with the adlattice structures. A heterobimetallic bridge model for H_2O_2 on the surface could explain the enhanced reactivity. The full monolayers of Bi and Hg, rhombohedral metals, form rectangular lattice structures on the hexagonal Au(111) surfaces. The partial charge retention on the Bi and Hg adatom opens the adlayer structure when the coverage is less than a full monolayer. The structure of the first submonolayers of Ag UPD is electrolyte-dependent. The electrode surface exhibits 3 x 3 and 4 x 4 overlayer structures in solutions containing sulfate and nitrate, respectively. In perchloric acid another open structure is observed and a close-packed monolayer is formed in acetic acid. The different monolayer structures give rise to packing densities which correlate with electrolyte size. This implies that the anions participate in reducing metal ions.
NASA Astrophysics Data System (ADS)
Mazumder, Malay; Yellowhair, Julius; Stark, Jeremy; Heiling, Calvin; Hudelson, John; Hao, Fang; Gibson, Hannah; Horenstein, Mark
2014-10-01
Large-scale solar plants are mostly installed in semi-arid and desert areas. In those areas, dust layer buildup on solar collectors becomes a major cause for energy yield loss. Development of transparent electrodynamic screens (EDS) and their applications for self-cleaning operation of solar mirrors are presented with a primary focus on the removal dust particles smaller than 30 µm in diameter while maintaining specular reflection efficiency < 90%. An EDS consists of thin rectangular array of parallel transparent conducting electrodes deposited on a transparent dielectric surface. The electrodes are insulated from each other and are embedded within a thin transparent dielectric film. The electrodes are activated using three-phase high-voltage pulses at low current (< 1 mA/m2 ). The three-phase electric field charges the deposited particles, lifts them form the substrate by electrostatic forces and propels the dust layer off of the collector's surface by a traveling wave. The cleaning process takes less than 2 minutes; needs energy less than 1 Wh/m2 without requiring any water or manual labor. The reflection efficiency can be restored > 95% of the original clean-mirror efficiency. We briefly present (1) loss of specular reflection efficiency as a function of particle size distribution of deposited dust, and (2) the effects of the electrode design and materials used for minimizing initial loss of specular reflectivity in producing EDS-integrated solar mirrors. Optimization of EDS by using a figure of merit defined by the ratio of dust removal efficiency to the initial loss of specular reflection efficiency is discussed.
Messaoudi, Noureddine; Bekka, Raïs El'hadi; Ravier, Philippe; Harba, Rachid
2017-02-01
The purpose of this paper was to evaluate the effects of the longitudinal single differential (LSD), the longitudinal double differential (LDD) and the normal double differential (NDD) spatial filters, the electrode shape, the inter-electrode distance (IED) on non-Gaussianity and non-linearity levels of simulated surface EMG (sEMG) signals when the maximum voluntary contraction (MVC) varied from 10% to 100% by a step of 10%. The effects of recruitment range thresholds (RR), the firing rate (FR) strategy and the peak firing rate (PFR) of motor units were also considered. A cylindrical multilayer model of the volume conductor and a model of motor unit (MU) recruitment and firing rate were used to simulate sEMG signals in a pool of 120 MUs for 5s. Firstly, the stationarity of sEMG signals was tested by the runs, the reverse arrangements (RA) and the modified reverse arrangements (MRA) tests. Then the non-Gaussianity was characterised with bicoherence and kurtosis, and non-linearity levels was evaluated with linearity test. The kurtosis analysis showed that the sEMG signals detected by the LSD filter were the most Gaussian and those detected by the NDD filter were the least Gaussian. In addition, the sEMG signals detected by the LSD filter were the most linear. For a given filter, the sEMG signals detected by using rectangular electrodes were more Gaussian and more linear than that detected with circular electrodes. Moreover, the sEMG signals are less non-Gaussian and more linear with reverse onion-skin firing rate strategy than those with onion-skin strategy. The levels of sEMG signal Gaussianity and linearity increased with the increase of the IED, RR and PFR. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pogacean, Florina; Biris, Alexandru R; Coros, Maria; Lazar, Mihaela Diana; Watanabe, Fumiya; Kannarpady, Ganesh K; Al Said, Said A Farha; Biris, Alexandru S; Pruneanu, Stela
2014-01-01
In this paper, we present a novel approach for the electrochemical detection of S-captopril based on graphene AuAg nanostructures used to modify an Au electrode. Multi-layer graphene (Gr) sheets decorated with embedded bimetallic AuAg nanoparticles were successfully synthesized catalytically with methane as the carbon source. The two catalytic systems contained 1.0 wt% Ag and 1.0 wt% Au, while the second had a larger concentration of metals (1.5 wt% Ag and 1.5 wt% Au) and was used for the synthesis of the Gr-AuAg-1 and Gr-AuAg-1.5 multicomponent samples. High-resolution transmission electron microscopy analysis indicated the presence of graphene flakes that had regular shapes (square or rectangular) and dimensions in the tens to hundreds of nanometers. We found that the size of the embedded AuAg nanoparticles varied between 5 and 100 nm, with the majority being smaller than 20 nm. Advanced scanning transmission electron microscopy studies indicated a bimetallic characteristic of the metallic clusters. The resulting Gr-AuAg-1 and Gr-AuAg-1.5 samples were used to modify the surface of commonly used Au substrates and subsequently employed for the direct electrochemical oxidation of S-captopril. By comparing the differential pulse voltammograms recorded with the two modified electrodes at various concentrations of captopril, the peak current was determined to be well-defined, even at relatively low concentration (10−5 M), for the Au/Gr-AuAg-1.5 electrode. In contrast, the signals recorded with the Au/Gr-AuAg-1 electrode were poorly defined within a 5×10−6 to 5×10−3 M concentration range, and many of them overlapped with the background. Such composite materials could find significant applications in nanotechnology, sensing, or nanomedicine. PMID:24596464
Jin, Xinfang; White, Ralph E.; Huang, Kevin
2016-10-04
With the assumption that the Fermi level (electrochemical potential of electrons) is uniform across the thickness of a mixed ionic and electronic conducting (MIEC) electrode, the charge-transport model in the electrode domain can be reduced to the modified Fick’s first law, which includes a thermodynamic factor A. A transient numerical solution of the Nernst-Planck theory was obtained for a symmetric cell with MIEC electrodes to illustrate the validity of the assumption of a uniform Fermi level. Subsequently, an impedance numerical solution based on the modified Fick’s first law is compared with that from the Nernst-Planck theory. The results show thatmore » Nernst-Planck charge-transport model is essentially the same as the modified Fick’s first law model as long as the MIEC electrodes have a predominant electronic conductivity. However, because of the invalidity of the uniform Fermi level assumption for aMIEC electrolyte with a predominant ionic conductivity, Nernst-Planck theory is needed to describe the charge transport behaviors.« less
Validated numerical simulation model of a dielectric elastomer generator
NASA Astrophysics Data System (ADS)
Foerster, Florentine; Moessinger, Holger; Schlaak, Helmut F.
2013-04-01
Dielectric elastomer generators (DEG) produce electrical energy by converting mechanical into electrical energy. Efficient operation requires homogeneous deformation of each single layer. However, by different internal and external influences like supports or the shape of a DEG the deformation will be inhomogeneous and hence negatively affect the amount of the generated electrical energy. Optimization of the deformation behavior leads to improved efficiency of the DEG and consequently to higher energy gain. In this work a numerical simulation model of a multilayer dielectric elastomer generator is developed using the FEM software ANSYS. The analyzed multilayer DEG consists of 49 active dielectric layers with layer thicknesses of 50 μm. The elastomer is silicone (PDMS) while the compliant electrodes are made of graphite powder. In the simulation the real material parameters of the PDMS and the graphite electrodes need to be included. Therefore, the mechanical and electrical material parameters of the PDMS are determined by experimental investigations of test samples while the electrode parameters are determined by numerical simulations of test samples. The numerical simulation of the DEG is carried out as coupled electro-mechanical simulation for the constant voltage energy harvesting cycle. Finally, the derived numerical simulation model is validated by comparison with analytical calculations and further simulated DEG configurations. The comparison of the determined results show good accordance with regard to the deformation of the DEG. Based on the validated model it is now possible to optimize the DEG layout for improved deformation behavior with further simulations.
Material Measurements Using Groundplane Apertures
NASA Technical Reports Server (NTRS)
Komisarek, K.; Dominek, A.; Wang, N.
1995-01-01
A technique for material parameter determination using an aperture in a groundplane is studied. The material parameters are found by relating the measured reflected field in the aperture to a numerical model. Two apertures are studied which can have a variety of different material configurations covering the aperture. The aperture cross-sections studied are rectangular and coaxial. The material configurations involved combinations of single layer and dual layers with or without a resistive exterior resistive sheet. The resistivity of the resistive sheet can be specified to simulate a perfect electric conductor (PEC) backing (0 Ohms/square) to a free space backing (infinity Ohms/square). Numerical parameter studies and measurements were performed to assess the feasibility of the technique.
Prediction of sound fields in acoustical cavities using the boundary element method. M.S. Thesis
NASA Technical Reports Server (NTRS)
Kipp, C. R.; Bernhard, R. J.
1985-01-01
A method was developed to predict sound fields in acoustical cavities. The method is based on the indirect boundary element method. An isoparametric quadratic boundary element is incorporated. Pressure, velocity and/or impedance boundary conditions may be applied to a cavity by using this method. The capability to include acoustic point sources within the cavity is implemented. The method is applied to the prediction of sound fields in spherical and rectangular cavities. All three boundary condition types are verified. Cases with a point source within the cavity domain are also studied. Numerically determined cavity pressure distributions and responses are presented. The numerical results correlate well with available analytical results.
Tempest - Efficient Computation of Atmospheric Flows Using High-Order Local Discretization Methods
NASA Astrophysics Data System (ADS)
Ullrich, P. A.; Guerra, J. E.
2014-12-01
The Tempest Framework composes several compact numerical methods to easily facilitate intercomparison of atmospheric flow calculations on the sphere and in rectangular domains. This framework includes the implementations of Spectral Elements, Discontinuous Galerkin, Flux Reconstruction, and Hybrid Finite Element methods with the goal of achieving optimal accuracy in the solution of atmospheric problems. Several advantages of this approach are discussed such as: improved pressure gradient calculation, numerical stability by vertical/horizontal splitting, arbitrary order of accuracy, etc. The local numerical discretization allows for high performance parallel computation and efficient inclusion of parameterizations. These techniques are used in conjunction with a non-conformal, locally refined, cubed-sphere grid for global simulations and standard Cartesian grids for simulations at the mesoscale. A complete implementation of the methods described is demonstrated in a non-hydrostatic setting.
High-Frequency Nanocapacitor Arrays: Concept, Recent Developments, and Outlook.
Lemay, Serge G; Laborde, Cecilia; Renault, Christophe; Cossettini, Andrea; Selmi, Luca; Widdershoven, Frans P
2016-10-18
We have developed a measurement platform for performing high-frequency AC detection at nanoelectrodes. The system consists of 65 536 electrodes (diameter 180 nm) arranged in a sub-micrometer rectangular array. The electrodes are actuated at frequencies up to 50 MHz, and the resulting AC current response at each separately addressable electrode is measured in real time. These capabilities are made possible by fabricating the electrodes on a complementary metal-oxide-semiconductor (CMOS) chip together with the associated control and readout electronics, thus minimizing parasitic capacitance and maximizing the signal-to-noise ratio. This combination of features offers several advantages for a broad range of experiments. First, in contrast to alternative CMOS-based electrical systems based on field-effect detection, high-frequency operation is sensitive beyond the electrical double layer and can probe entities at a range of micrometers in electrolytes with high ionic strength such as water at physiological salt concentrations. Far from being limited to single- or few-channel recordings like conventional electrochemical impedance spectroscopy, the massively parallel design of the array permits electrically imaging micrometer-scale entities with each electrode serving as a separate pixel. This allows observation of complex kinetics in heterogeneous environments, for example, the motion of living cells on the surface of the array. This imaging aspect is further strengthened by the ability to distinguish between analyte species based on the sign and magnitude of their AC response. Finally, we show here that sensitivity down to the attofarad level combined with the small electrode size permits detection of individual 28 nm diameter particles as they land on the sensor surface. Interestingly, using finite-element methods, it is also possible to calculate accurately the full three-dimensional electric field and current distributions during operation at the level of the Poisson-Nernst-Planck formalism. This makes it possible to validate the interpretation of measurements and to optimize the design of future experiments. Indeed, the complex frequency and spatial dependence of the data suggests that experiments to date have only scratched the surface of the method's capabilities. Future iterations of the hardware will take advantage of the higher frequencies, higher electrode packing densities and smaller electrode sizes made available by continuing advances in CMOS manufacturing. Combined with targeted immobilization of targets at the electrodes, we anticipate that it will soon be possible to realize complex biosensors based on spatial- and time-resolved nanoscale impedance detection.
NASA Astrophysics Data System (ADS)
Tashiro, Shinichi; Tanaka, Manabu
An unified numerical simulation model of AC TIG welding of the aluminum plate considering energy balance among the electrode, the arc and the base metal and employing an analytical model for calculating cleaning rate of the oxide layer has been developed for investigating heat transport properties and weld pool formation process in AC TIG welding of aluminum plate. As a result of this simulation, it was shown that although the heat flux from the arc onto the base metal increases in EN (Electrode Negative) phase due to the electron condensation, that in EP (Electrode Positive) phase conversely decreases because mainly of cooling caused by the electron emission. Furthermore, the validity of the simulation model was confirmed by comparing to experimental results such as the arc voltage, the area of cleaning zone and the shape of weld pool.
Nanostructured gold and platinum electrodes on silicon structures for biosensing
NASA Astrophysics Data System (ADS)
Ogurtsov, V. I.; Sheehan, M. M.
2005-01-01
Gold and platinum metal electrodes on Si/SiO2 having undergone anisotropic potassium hydroxide (KOH) etch treatment are considered. This treatment etches at different rates and directions in the material resulting in creation of numerous pyramid shaped holes in the silicon substrate. This surface is used to make metal electrodes with increased electrode efficiency. The electrodes can serve as the sensors or as the sensor substrates (for surface polymer modification) and because both gold and platinum are inert they have applications for food safety biosensing. Wine, an economically significant food product, was chosen as a matrix, and impedance spectroscopy (EIS) was selected as a method of investigation of electrode behaviour. Based on results of EIS, different complexity equivalent circuits were determined by applying fitting mean square root optimisation of sensor complex impedance measurements.
Kao, Tzu-Jen; Isaacson, David; Saulnier, Gary J.; Newell, Jonathan C.
2009-01-01
The conductivity and permittivity of breast tumors are known to differ significantly from those of normal breast tissues, and electrical impedance tomography (EIT) is being studied as a modality for breast cancer imaging to exploit these differences. At present, X-ray mammography is the primary standard imaging modality used for breast cancer screening in clinical practice, so it is desirable to study EIT in the geometry of mammography. This paper presents a forward model of a simplified mammography geometry and a reconstruction algorithm for breast tumor imaging using EIT techniques. The mammography geometry is modeled as a rectangular box with electrode arrays on the top and bottom planes. A forward model for the electrical impedance imaging problem is derived for a homogeneous conductivity distribution and is validated by experiment using a phantom tank. A reconstruction algorithm for breast tumor imaging based on a linearization approach and the proposed forward model is presented. It is found that the proposed reconstruction algorithm performs well in the phantom experiment, and that the locations of a 5-mm-cube metal target and a 6-mm-cube agar target could be recovered at a target depth of 15 mm using a 32 electrode system. PMID:17405377
Innovative discharge geometries for diffusion-cooled gas lasers
NASA Astrophysics Data System (ADS)
Lapucci, Antonio
2004-09-01
Large area, narrow discharge gap, diffusion cooled gas lasers are nowadays a well established technology for the construction of industrial laser sources. Successful examples exist both with the slab (Rofin-Sinar) or coaxial (Trumpf) geometry. The main physical properties and the associated technical problems of the transverse large area RF discharge, adopted for the excitation of high power diffusion cooled gas lasers, are reviewed here. The main problems of this technology are related to the maintenance of a uniform and stable plasma excitation between closely spaced large-area electrodes at high power-density loading. Some practical solutions such as distributed resonance of the discharge channel proved successful in the case of square or rectangular cross-sections but hardly applicable to geometries such as that of coaxial electrodes. In this paper we present some solutions, adopted by our group, for the development of slab and annular CO2 lasers and for CO2 laser arrays with linear or circular symmetry. We will also briefly mention the difficulties encountered in the extraction of a good quality beam from an active medium with such a cross section. A problem that has also seen some interesting solutions.
You, Bo; Li, Na; Zhu, Hongying; Zhu, Xiaolan; Yang, Jun
2013-03-01
A MnO2 -CNT-graphene oxide (MCGO) nanocomposite is fabricated using graphene oxide (GO) as a surfactant to directly disperse pristine carbon nanotubes (CNTs) for the subsequent deposition of MnO2 nanorods. The resulting MCGO nanocomposite is used as a supercapacitor electrode that shows ideal capacitive behavior (i.e., rectangular-shaped cyclic voltammograms), large specific capacitance (4.7 times higher than that of free MnO2 ) even at high mass loading (3.0 mg cm(-2) ), high energy density (30.4-14.2 Wh kg(-1) ), large power density (2.6-50.5 kW kg(-1) ), and still retains approximately 94 % of the initial specific capacitance after 1000 cycles. The advanced capacity, rate capability, and cycling stability may be attributed to the unique architecture, excellent ion wettability of GO with enriched oxygen-containing functional groups, high conductivity of CNTs, and their synergistic effects when combined with the other components. The results suggest that the MnO2 -CNT-GO hybrid nanocomposite architecture is very promising for next generation high-performance energy storage devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Amaris, M A; Rashev, P Z; Mintchev, M P; Bowes, K L
2002-01-01
Background and aims: Invoked peristaltic contractions and movement of solid content have not been attempted in normal canine colon. The purpose of this study was to determine if movement of solid content through the colon could be produced by microprocessor controlled sequential stimulation. Methods: The study was performed on six anaesthetised dogs. At laparotomy, a 15 cm segment of descending colon was selected, the proximal end closed with a purse string suture, and the distal end opened into a collecting container. Four sets of subserosal stimulating electrodes were implanted at 3 cm intervals. The segment of bowel was filled with a mixture of dog food and 50 plastic pellets before each of 2–5 random sessions of non-stimulated or stimulated emptying. Propagated contractions were generated using microprocessor controlled bipolar trains of 50 Hz rectangular voltage having 20 V (peak to peak) amplitude, 18 second stimulus duration, and a nine second phase lag between stimulation trains in sequential electrode sets. Results: Electrical stimulation using the above mentioned parameters resulted in powerful phasic contractions that closed the lumen. By phase locking the stimulation voltage between adjacent sets of electrodes, propagated contractions could be produced in an aboral or orad direction. The number of evacuated pellets during the stimulation sessions was significantly higher than during the non-stimulated sessions (p<0.01). Conclusions: Microprocessor controlled electrical stimulation accelerated movement of colonic content suggesting the possibility of future implantable colonic stimulators. PMID:11889065
FDTD simulations to assess the performance of CFMA-434 applicators for superficial hyperthermia.
Kok, H Petra; De Greef, Martijn; Correia, Davi; Vörding, Paul J Zum Vörde Sive; Van Stam, Gerard; Gelvich, Edward A; Bel, Arjan; Crezee, Johannes
2009-01-01
Contact flexible microstrip applicators (CFMA), operating at 434 MHz, are applied at the Academic Medical Center (AMC) for superficial hyperthermia (e.g. chest wall recurrences and melanoma). This paper investigates the performance of CFMA, evaluating the stability of the specific absorption rate (SAR) distribution, effective heating depth (EHD) and effective field size (EFS) under different conditions. Simulations were performed using finite differences and were compared to existing measurement data, performed using a rectangular phantom with a superficial fat-equivalent layer of 1 cm and filled with saline solution. The electrode plates of the applicators measure approximately 7 x 20, 29 x 21 and 20 x 29 cm(2). Bolus thickness varied between 1 and 2 cm. The impact of the presence of possible air layers between the rubber frame and the electrodes on the SAR distribution was investigated. The EHD was approximately 1.4 cm and the EFS ranged between approximately 60 and approximately 300 cm(2), depending on the applicator type. Both measurements and simulations showed a split-up of the SAR focus with a 2 cm water bolus. The extent and location of air layers has a strong influence on the shape and size of the iso-SAR contours with a value higher than 50%, but the impact on EFS and EHD is limited. Simulations, confirmed by measurements, showed that the presence of air between the rubber and the electrodes changes the iso-SAR contours, but the impact on the EFS and EHD is limited.
Thermal stresses and deflections of cross-ply laminated plates using refined plate theories
NASA Technical Reports Server (NTRS)
Khdeir, A. A.; Reddy, J. N.
1991-01-01
Exact analytical solutions of refined plate theories are developed to study the thermal stresses and deflections of cross-ply rectangular plates. The state-space approach in conjunction with the Levy method is used to solve exactly the governing equations of the theories under various boundary conditions. Numerical results of the higher-order theory of Reddy for thermal stresses and deflections are compared with those obtained using the classical and first-order plate theories.
Numerical and experimental determination of weld pool shape during high-power diode laser welding
NASA Astrophysics Data System (ADS)
Klimpel, Andrzej; Lisiecki, Aleksander; Szymanski, Andrzej; Hoult, Anthony P.
2003-10-01
In this paper, results of investigations on the shape of weld pool during High Power Diode Laser (HPDL) welding are presented. The results of tests showed that the shape of weld pool and mechanism of laser welding with a rectangular pattern of 808 nm laser radiation differs distinctly from previous laser welding mechanisms. For all power densities the conduction mode welds were observed and weld pool geometry depends significantly on the welding parameters.
NASA Astrophysics Data System (ADS)
Qu, Yegao; Shi, Ruchao; Batra, Romesh C.
2018-02-01
We present a robust sharp-interface immersed boundary method for numerically studying high speed flows of compressible and viscous fluids interacting with arbitrarily shaped either stationary or moving rigid solids. The Navier-Stokes equations are discretized on a rectangular Cartesian grid based on a low-diffusion flux splitting method for inviscid fluxes and conservative high-order central-difference schemes for the viscous components. Discontinuities such as those introduced by shock waves and contact surfaces are captured by using a high-resolution weighted essentially non-oscillatory (WENO) scheme. Ghost cells in the vicinity of the fluid-solid interface are introduced to satisfy boundary conditions on the interface. Values of variables in the ghost cells are found by using a constrained moving least squares method (CMLS) that eliminates numerical instabilities encountered in the conventional MLS formulation. The solution of the fluid flow and the solid motion equations is advanced in time by using the third-order Runge-Kutta and the implicit Newmark integration schemes, respectively. The performance of the proposed method has been assessed by computing results for the following four problems: shock-boundary layer interaction, supersonic viscous flows past a rigid cylinder, moving piston in a shock tube and lifting off from a flat surface of circular, rectangular and elliptic cylinders triggered by shock waves, and comparing computed results with those available in the literature.
Aziz, M A; Imteaz, M A; Huda, Nazmul; Naser, J
2014-01-01
After heavy rainfall, sewer overflow spills to receiving water bodies cause serious concern for the environment, aesthetics and public health. To overcome these problems this study investigated a new self-cleansing sewer overflow screening device. The device has a sewer overflow chamber, a rectangular tank and a slotted ogee weir to capture the gross pollutants. To design an efficient screening device a numerical computational fluid dynamic (CFD) model was used. A plausibility check of the CFD model was done using a one-dimensional analytical model. Results showed that an inlet parallel to the weir ensured better self-cleansing than an inlet perpendicular to the weir. Perforations should be at the bottom of the weir to get increased velocity and shear stress to create a favourable self-cleaning effect of the screening device. Increasing inlet length from 0.3 to 1.5 m reduced wave reflection up to 10%, which increased flow uniformity downstream and improved self-cleansing effect. The orientation of the ogee weir with the rectangular tank was found most uniform with a 1:3 (horizontal:vertical) slope. These results will help to maximise functional efficiency of the new sewer overflow screening device. Otherwise it would be too expensive to alter after installation and at times difficult to customise accordingly to existing urban drainage systems.
Pressure- and buoyancy-driven thermal convection in a rectangular enclosure
NASA Technical Reports Server (NTRS)
Spradley, L. W.; Churchill, S. W.
1975-01-01
Results are presented for unsteady laminar thermal convection in compressible fluids at various reduced levels of gravity in a rectangular enclosure which is heated on one side and cooled on the opposite side. The results were obtained by solving numerically the equations of conservation for a viscous, compressible, heat-conducting, ideal gas in the presence of a gravitational body force. The formulation differs from the Boussinesq simplification in that the effects of variable density are completely retained. A conservative, explicit, time-dependent, finite-difference technique was used and good agreement was found for the limited cases where direct comparison with previous investigations was possible. The solutions show that the thermally induced motion is acoustic in nature at low levels of gravity and that the unsteady-state rate of heat transfer is thereby greatly enhanced relative to pure conduction. The nonlinear variable density profile skews the streamlines towards the cooler walls but is shown to have little effect on the steady-state isotherms.
Propagation of spiral waves pinned to circular and rectangular obstacles.
Sutthiopad, Malee; Luengviriya, Jiraporn; Porjai, Porramain; Phantu, Metinee; Kanchanawarin, Jarin; Müller, Stefan C; Luengviriya, Chaiya
2015-05-01
We present an investigation of spiral waves pinned to circular and rectangular obstacles with different circumferences in both thin layers of the Belousov-Zhabotinsky reaction and numerical simulations with the Oregonator model. For circular objects, the area always increases with the circumference. In contrast, we varied the circumference of rectangles with equal areas by adjusting their width w and height h. For both obstacle forms, the propagating parameters (i.e., wavelength, wave period, and velocity of pinned spiral waves) increase with the circumference, regardless of the obstacle area. Despite these common features of the parameters, the forms of pinned spiral waves depend on the obstacle shapes. The structures of spiral waves pinned to circles as well as rectangles with the ratio w/h∼1 are similar to Archimedean spirals. When w/h increases, deformations of the spiral shapes are observed. For extremely thin rectangles with w/h≫1, these shapes can be constructed by employing semicircles with different radii which relate to the obstacle width and the core diameter of free spirals.
Comparative investigation on magnetic capture selectivity between single wires and a real matrix
NASA Astrophysics Data System (ADS)
Ren, Peng; Chen, Luzheng; Liu, Wenbo; Shao, Yanhai; Zeng, Jianwu
2018-03-01
High gradient magnetic separation (HGMS) achieves the effective separation to fine weakly magnetic minerals through a magnetic matrix. In practice, the matrix is made of numerous magnetic wires, so that an insight into the magnetic capture characteristics of single wires to magnetic minerals would provide a basic foundation for the optimum design and choice of real matrix. The magnetic capture selectivity of cylindrical and rectangular single wires in concentrating ilmenite minerals were investigated through a cyclic pulsating HGMS separator with its key operating parameters (magnetic induction, feed velocity and pulsating frequency) varied, and their capture selectivity characteristics were parallelly compared with that of a real 3.0 mm cylindrical matrix. It was found that the cylindrical single wires have superior capture selectivity to the rectangular one; and, the single wires and the real matrix have basically the same capture trend with changes in the key operating parameters, but the single wires have a much higher capture selectivity than that of real matrix.
High Amplitude Acoustic Behavior of a Slit-Orifice Backed by a Cavity
NASA Technical Reports Server (NTRS)
Ahuja, K. K.; Gaeta, R. J., Jr.; DAgostino, M.; Jones, Mike (Technical Monitor)
2000-01-01
The objective of the study reported here was to acquire detailed acoustic data and limited and flow visualization data for numerical validation a new model of sound absorption by a very narrow rectangular slit backed by a cavity. The sound absorption model is being developed by Dr. C. K. W. Tam of Florida State University. This report documents normal incidence impedance measurements of a singular rectangular slit orifice with no mean flow. All impedance measurements are made within a 1.12 inch (28.5 mm) diameter impedance tube using the two-microphone method for several frequencies in the range 1000-6000Hz and incident sound pressure levels in the range 130 - 150 dB. In the interest of leaving the analysis of the data to the developers of more advanced analytical and computational models of sound absorption by narrow slits, we have refrained from giving our own explanations of the observed results, although many of the observed results can be explained using the classical explanations of sound absorption by orifices.
High Amplitude Acoustic Behavior of a Slit-Orifice Backed by a Cavity
NASA Technical Reports Server (NTRS)
Ahuja, K. K.; Gaeta, R. J., Jr.; DAgostino, M.
2000-01-01
The objective of this study was to acquire detailed acoustic data and limited flow visualization data for numerical validation of a new model of sound absorption by a very narrow rectangular slit backed by a cavity. The sound absorption model is that being developed by Dr. C. K. W. Tam of Florida State University. This report documents normal incidence impedance measurements of a singular rectangular slit orifice with no mean flow. All impedance measurements are made within a 1.12 inch (28.5 mm) diameter impedance tube using the two-microphone method for several frequencies in the range 1000 - 6000Hz and incident sound pressure levels in the range 130 - 150 dB. In the interest of leaving the analysis of the data to the developers of more advanced Analytical and computational models of sound absorption by narrow slits, we authors have refrained from giving our own explanations of the observed results, although many of the observed results can be explained using the classical understanding of sound absorption by orifices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhmedzhanov, I M; Kibalov, D S; Smirnov, V K
We report a detailed numerical simulation of the reflection of visible light from a sub-wavelength grating with a rectangular profile on the silicon surface. Simulation is carried out by the effective refractive index method and rigorous coupled-wave analysis. The dependences of the reflectance on the grating depth, fill factor and angle of incidence for TE and TM polarisations are obtained and analysed. Good agreement between the results obtained by the two methods for grating periods of ∼100 nm is found. The possibility of reducing the polarised light reflectance to about 1% by adjusting the depth and the grating fill factormore » is demonstrated. The characteristics of the Brewster effect manifestation (pseudo-Brewster angle) in the system under study are considered. The possibility of the pseudo-Brewster angle existence and its absence for both polarisations of the incident light is shown as a function of the parameters of a rectangular nanostructure on the surface. (laser applications and other topics in quantum electronics)« less
NASA Astrophysics Data System (ADS)
Sheremet, M. A.; Shishkin, N. I.
2012-07-01
Mathematical simulation of the nonstationary regimes of heat-and-mass transfer in a ventilated rectangular cavity with heat-conducting walls of finite thickness in the presence of a heat-generating element of constant temperature has been carried out with account for the radiative heat transfer in the Rosseland approximation. As mechanisms of energy transfer in this cavity, the combined convection and the thermal radiation in the gas space of the cavity and the heat conduction in the elements of its fencing solid shell were considered. The mathematical model formulated in the dimensionless stream function-vorticity vector-temperature-concentration variables was realized numerically with the use of the finite-difference method. The streamline, temperature-field, and concentration distributions reflecting the influence of the Rayleigh number (Ra = 104, 105, 106), the nonstationarity (0 < τ ≤ 1000), and the optical thickness of the medium (τλ = 50, 100, 200) on the regimes of the gas flow and the heat-and-mass transfer in the cavity have been obtained.
NASA Astrophysics Data System (ADS)
Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Lo, Y.-H.; Lin, T.-R.; Tung, Y.-C.
2017-11-01
Polydimethylsiloxane (PDMS) has become a widely used material to construct microfluidic devices for various biomedical and chemical applications due to its desirable material properties and manufacturability. PDMS microfluidic devices are usually fabricated using soft lithography replica molding methods with master molds made of photolithogrpahy patterned photoresist layers on silicon wafers. The fabricated microfluidic channels often have rectangular cross-sectional geometries with single or multiple heights. In this paper, we develop a single step sequential PDMS wet etching process that can be used to fabricate microfluidic channels with various cross-sectional geometries from single-layer PDMS microfluidic channels. The cross-sections of the fabricated channel can be non-rectangular, and varied along the flow direction. Furthermore, the fabricated cross-sectional geometries can be numerically simulated beforehand. In the experiments, we fabricate microfluidic channels with various cross-sectional geometries using the developed technique. In addition, we fabricate a microfluidic mixer with alternative mirrored cross-sectional geometries along the flow direction to demonstrate the practical usage of the developed technique.
NASA Technical Reports Server (NTRS)
Bain, D. B.; Smith, C. E.; Holdeman, J. D.
1992-01-01
A CFD study was performed to analyze the mixing potential of opposed rows of staggered jets injected into confined crossflow in a rectangular duct. Three jet configurations were numerically tested: (1) straight (0 deg) slots; (2) perpendicular slanted (45 deg) slots angled in opposite directions on top and bottom walls; and (3) parallel slanted (45 deg) slots angled in the same direction on top and bottom walls. All three configurations were tested at slot spacing-to-duct height ratios (S/H) of 0.5, 0.75, and 1.0; a jet-to-mainstream momentum flux ratio (J) of 100; and a jet-to-mainstream mass flow ratio of 0.383. Each configuration had its best mixing performance at S/H of 0.75. Asymmetric flow patterns were expected and predicted for all slanted slot configurations. The parallel slanted slot configuration was the best overall configuration at x/H of 1.0 for S/H of 0.75.
Full Ka Band Waveguide-to-Microstrip Inline Transition Design
NASA Astrophysics Data System (ADS)
Li, Jianxing; Li, Lei; Qiao, Yu; Chen, Juan; Chen, Jianzhong; Zhang, Anxue
2018-05-01
In this paper, a compact and broadband inline waveguide-to-microstrip transition is proposed to cover the full Ka band. The transition can be segmented from the electric point of view into three building blocks, comprising a microstrip line to rectangular coaxial line, a wedged rectangular coaxial line to ridged waveguide, and a final tapered ridged waveguide impedance transformer to standard waveguide. Both good electrical performance and simple modular assembly without any soldering have been simultaneously obtained. The validation of the design concept has been conducted by numerical simulations and experimental measurements. The experimental results of a fabricated back-to-back transition prototype coincide with the simulated results. It shows that the proposed transition achieves good return loss of lower than 15.5 dB and low insertion loss with a fluctuation between 0.23 to 0.60 dB across the entire Ka band. Details of design considerations and operation mechanism as well as simulation and measurement results are presented.
Hybrid LES/RANS simulation of a turbulent boundary layer over a rectangular cavity
NASA Astrophysics Data System (ADS)
Zhang, Qi; Haering, Sigfried; Oliver, Todd; Moser, Robert
2016-11-01
We report numerical investigations of a turbulent boundary layer over a rectangular cavity using a new hybrid RANS/LES model and the traditional Detached Eddy Simulation (DES). Our new hybrid method aims to address many of the shortcomings from the traditional DES. In the new method, RANS/LES blending controlled by a parameter that measures the ratio of the modeled subgrid kinetic energy to an estimate of the subgrid energy based on the resolved scales. The result is a hybrid method automatically resolves as much turbulence as can be supported by the grid and transitions appropriately from RANS to LES without the need for ad hoc delaying functions that are often required for DES. Further, the new model is designed to improve upon DES by accounting for the effects of grid anisotropy and inhomogeneity in the LES region. We present comparisons of the flow features inside the cavity and the pressure time history and spectra as computed using the new hybrid model and DES.
Nonlinear vibrations and dynamic stability of viscoelastic orthotropic rectangular plates
NASA Astrophysics Data System (ADS)
Eshmatov, B. Kh.
2007-03-01
This paper describes the analyses of the nonlinear vibrations and dynamic stability of viscoelastic orthotropic plates. The models are based on the Kirchhoff-Love (K.L.) hypothesis and Reissner-Mindlin (R.M.) generalized theory (with the incorporation of shear deformation and rotatory inertia) in geometrically nonlinear statements. It provides justification for the choice of the weakly singular Koltunov-Rzhanitsyn type kernel, with three rheological parameters. In addition, the implication of each relaxation kernel parameter has been studied. To solve problems of viscoelastic systems with weakly singular kernels of relaxation, a numerical method has been used, based on quadrature formulae. With a combination of the Bubnov-Galerkin and the presented method, problems of nonlinear vibrations and dynamic stability in viscoelastic orthotropic rectangular plates have been solved, according to the K.L. and R.M. hypotheses. A comparison of the results obtained via these theories is also presented. In all problems, the convergence of the Bubnov-Galerkin method has been investigated. The implications of material viscoelasticity on vibration and dynamic stability are presented graphically.
Single-polarization hollow-core square photonic bandgap waveguide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eguchi, Masashi, E-mail: megu@ieee.org; Tsuji, Yasuhide, E-mail: y-tsuji@mmm.muroran-it.ac.jp
Materials with a periodic structure have photonic bandgaps (PBGs), in which light can not be guided within certain wavelength ranges; thus light can be confined within a low-index region by the bandgap effect. In this paper, rectangular-shaped hollow waveguides having waveguide-walls (claddings) using the PBG have been discussed. The design principle for HE modes of hollow-core rectangular PBG waveguides with a Bragg cladding consisting of alternating high- and low-index layers, based on a 1D periodic multilayer approximation for the Bragg cladding, is established and then a novel single-polarization hollow-core square PBG waveguide using the bandgap difference between two polarized wavesmore » is proposed. Our results demonstrated that a single-polarization guiding can be achieved by using the square Bragg cladding structure with different layer thickness ratios in the mutually orthogonal directions and the transmission loss of the guided mode in a designed hollow-core square PBG waveguide is numerically estimated to be 0.04 dB/cm.« less
Maghami, Mohammad Hossein; Sodagar, Amir M; Sawan, Mohamad
2016-11-01
This paper reports on the design, implementation, and test of a stimulation back-end, for an implantable retinal prosthesis. In addition to traditional rectangular pulse shapes, the circuit features biphasic stimulation pulses with both rising and falling exponential shapes, whose time constants are digitally programmable. A class-B second generation current conveyor is used as a wide-swing, high-output-resistance stimulation current driver, delivering stimulation current pulses of up to ±96 μA to the target tissue. Duration of the generated current pulses is programmable within the range of 100 μs to 3 ms. Current-mode digital-to-analog converters (DACs) are used to program the amplitudes of the stimulation pulses. Fabricated using the IBM 130 nm process, the circuit consumes 1.5×1.5 mm 2 of silicon area. According to the measurements, the DACs exhibit DNL and INL of 0.23 LSB and 0.364 LSB, respectively. Experimental results indicate that the stimuli generator meets expected requirements when connected to electrode-tissue impedance of as high as 25 k Ω. Maximum power consumption of the proposed design is 3.4 mW when delivering biphasic rectangular pulses to the target load. A charge pump block is in charge of the upconversion of the standard 1.2-V supply voltage to ±3.3V.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-18
... DEPARTMENT OF COMMERCE International Trade Administration [A-201-836] Light-Walled Rectangular... preliminary results of the administrative review of the antidumping duty order on light-walled rectangular... light-walled rectangular pipe and tube from Mexico. See Light-Walled Rectangular Pipe and Tube From...
Navier-Stokes simulations of unsteady transonic flow phenomena
NASA Technical Reports Server (NTRS)
Atwood, C. A.
1992-01-01
Numerical simulations of two classes of unsteady flows are obtained via the Navier-Stokes equations: a blast-wave/target interaction problem class and a transonic cavity flow problem class. The method developed for the viscous blast-wave/target interaction problem assumes a laminar, perfect gas implemented in a structured finite-volume framework. The approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the blast-waves with stationary targets. The inviscid flux is evaluated using either of two upwind techniques, while the full viscous terms are computed by central differencing. Comparisons of unsteady numerical, analytical, and experimental results are made in two- and three-dimensions for Couette flows, a starting shock-tunnel, and a shock-tube blockage study. The results show accurate wave speed resolution and nonoscillatory discontinuity capturing of the predominantly inviscid flows. Viscous effects were increasingly significant at large post-interaction times. While the blast-wave/target interaction problem benefits from high-resolution methods applied to the Euler terms, the transonic cavity flow problem requires the use of an efficient scheme implemented in a geometrically flexible overset mesh environment. Hence, the Reynolds averaged Navier-Stokes equations implemented in a diagonal form are applied to the cavity flow class of problems. Comparisons between numerical and experimental results are made in two-dimensions for free shear layers and both rectangular and quieted cavities, and in three-dimensions for Stratospheric Observatory For Infrared Astronomy (SOFIA) geometries. The acoustic behavior of the rectangular and three-dimensional cavity flows compare well with experiment in terms of frequency, magnitude, and quieting trends. However, there is a more rapid decrease in computed acoustic energy with frequency than observed experimentally owing to numerical dissipation. In addition, optical phase distortion due to the time-varying density field is modelled using geometrical constructs. The computed optical distortion trends compare with the experimentally inferred result, but underpredicts the fluctuating phase difference magnitude.
Effect of electrode positions on the mixing characteristics of an electroosmotic micromixer.
Seo, H S; Kim, Y J
2014-08-01
In this study, an electrokinetic microchannel with a ring-type mixing chamber is introduced for fast mixing. The modeled micromixer that is used for the study of the electroosmotic effect takes two fluids from different inlets and combines them in a ring-type mixing chamber and, then, they are mixed by the electric fields at the electrodes. In order to compare the mixing performance in the modeled micromixer, we numerically investigated the flow characteristics with different positions of the electrodes in the mixing chamber using the commercial code, COMSOL. In addition, we discussed the concentration distributions of the dissolved substances in the flow fields and compared the mixing efficiency in the modeled micromixer with different electrode positions and operating conditions, such as the frequencies and electric potentials at the electrodes.
An Investigation of Ionic Flows in a Sphere-Plate Electrode Gap
NASA Astrophysics Data System (ADS)
Z. Alisoy, H.; Alagoz, S.; T. Alisoy, G.; B. Alagoz, B.
2013-10-01
This paper presents analyses of ion flow characteristics and ion discharge pulses in a sphere-ground plate electrode system. As a result of variation in electric field intensity in the electrode gap, the ion flows towards electrodes generate non-uniform discharging pulses. Inspection of these pulses provides useful information on ionic stream kinetics, the effective thickness of ion cover around electrodes, and the timing of ion clouds discharge pulse sequences. A finite difference time domain (FDTD) based space-charge motion simulation is used for the numerical analysis of the spatio-temporal development of ionic flows following the first Townsend avalanche, and the simulation results demonstrate expansion of the positive ion flow and compression of the negative ion flow, which results in non-uniform discharge pulse characteristics.
Discrete distributed strain sensing of intelligent structures
NASA Technical Reports Server (NTRS)
Anderson, Mark S.; Crawley, Edward F.
1992-01-01
Techniques are developed for the design of discrete highly distributed sensor systems for use in intelligent structures. First the functional requirements for such a system are presented. Discrete spatially averaging strain sensors are then identified as satisfying the functional requirements. A variety of spatial weightings for spatially averaging sensors are examined, and their wave number characteristics are determined. Preferable spatial weightings are identified. Several numerical integration rules used to integrate such sensors in order to determine the global deflection of the structure are discussed. A numerical simulation is conducted using point and rectangular sensors mounted on a cantilevered beam under static loading. Gage factor and sensor position uncertainties are incorporated to assess the absolute error and standard deviation of the error in the estimated tip displacement found by numerically integrating the sensor outputs. An experiment is carried out using a statically loaded cantilevered beam with five point sensors. It is found that in most cases the actual experimental error is within one standard deviation of the absolute error as found in the numerical simulation.
Parallel 3-D numerical simulation of dielectric barrier discharge plasma actuators
NASA Astrophysics Data System (ADS)
Houba, Tomas
Dielectric barrier discharge plasma actuators have shown promise in a range of applications including flow control, sterilization and ozone generation. Developing numerical models of plasma actuators is of great importance, because a high-fidelity parallel numerical model allows new design configurations to be tested rapidly. Additionally, it provides a better understanding of the plasma actuator physics which is useful for further innovation. The physics of plasma actuators is studied numerically. A loosely coupled approach is utilized for the coupling of the plasma to the neutral fluid. The state of the art in numerical plasma modeling is advanced by the development of a parallel, three-dimensional, first-principles model with detailed air chemistry. The model incorporates 7 charged species and 18 reactions, along with a solution of the electron energy equation. To the author's knowledge, a parallel three-dimensional model of a gas discharge with a detailed air chemistry model and the solution of electron energy is unique. Three representative geometries are studied using the gas discharge model. The discharge of gas between two parallel electrodes is used to validate the air chemistry model developed for the gas discharge code. The gas discharge model is then applied to the discharge produced by placing a dc powered wire and grounded plate electrodes in a channel. Finally, a three-dimensional simulation of gas discharge produced by electrodes placed inside a riblet is carried out. The body force calculated with the gas discharge model is loosely coupled with a fluid model to predict the induced flow inside the riblet.
Impact of electrode geometry on an atmospheric pressure surface barrier discharge
NASA Astrophysics Data System (ADS)
Hasan, M. I.; Morabit, Y.; Dickenson, A.; Walsh, J. L.
2017-06-01
Several of the key characteristics of an atmospheric pressure surface barrier discharge (SBD) are heavily dependent on the geometrical configuration of the plasma generating electrodes. This paper reveals that increasing the surface area of an SBD device by reducing the gaps within the electrodes can have major and unforeseen consequence on the discharge properties. It is experimentally demonstrated that a critical limit exists when reducing the diameter of a circular electrode gap below 5 mm, beyond which the required breakdown voltage increases exponentially and the power deposited in the discharge is impeded. Using a numerical model, it is shown that a reduced electrode gap diameter yields a decrease in the voltage difference between the electrode and dielectric surface, thus lowering the maximum electric field. This study indicates a link between the electrode geometry and the nature of the reactive chemistry produced in the plasma, findings which have wide-reaching implications for many applications where multiple closely packed surface barrier discharges are employed to achieve uniform and large area plasma processing.
NASA Astrophysics Data System (ADS)
Pietsch, Patrick; Westhoff, Daniel; Feinauer, Julian; Eller, Jens; Marone, Federica; Stampanoni, Marco; Schmidt, Volker; Wood, Vanessa
2016-09-01
Despite numerous studies presenting advances in tomographic imaging and analysis of lithium ion batteries, graphite-based anodes have received little attention. Weak X-ray attenuation of graphite and, as a result, poor contrast between graphite and the other carbon-based components in an electrode pore space renders data analysis challenging. Here we demonstrate operando tomography of weakly attenuating electrodes during electrochemical (de)lithiation. We use propagation-based phase contrast tomography to facilitate the differentiation between weakly attenuating materials and apply digital volume correlation to capture the dynamics of the electrodes during operation. After validating that we can quantify the local electrochemical activity and microstructural changes throughout graphite electrodes, we apply our technique to graphite-silicon composite electrodes. We show that microstructural changes that occur during (de)lithiation of a pure graphite electrode are of the same order of magnitude as spatial inhomogeneities within it, while strain in composite electrodes is locally pronounced and introduces significant microstructural changes.
NASA Astrophysics Data System (ADS)
Banerjee, Amit; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu
2017-06-01
Cold field emission characteristics of a fracture fabricated Si nanogap (˜100 nm) were investigated with an ascending electric field (voltage) sweep. The nanogap was formed by controlled fracture of a free-standing silicon micro-beam along <111> direction by a microelectromechanical device, which results in flat, smooth, and conformal electrode pairs. This facilitates simultaneous large area emission, which gives rise to a significant current at low bias voltage, which usually remains indiscernible in nanogaps of this size. The measured emission current-voltage (I-V) characteristics clearly depict two distinct regimes: a linear (I ∝ V) regime at low bias voltage and a nonlinear [ln(I/V 2) ∝ V -1] regime at high bias voltage, separated by a transition point. We propose that the linear regime is owed to direct tunneling of electrons, whereas the nonlinear regime is due to Fowler-Nordheim type emission. This proposition essentially implies that the tunneling potential barrier gradually evolved from a rectangular shape to a triangular shape with increasing field (V). This type of evolution is usually observed in molecular size gaps. We have attempted to correlate the I-V curves acquired through the experiments with the electric field induced barrier shape evolution by numerical calculations involving standard quantum mechanics. The observed linear regime at low bias voltage (<5 V) in a relatively large size gap (˜100 nm) is attributed to the fabrication method adopted in this study. The reported study and the fabricated device are significant for developing a futuristic thermotunneling refrigerator that will find a wide range of application in nanoelectronic devices.
Effect of boundary conditions on thermal plume growth
NASA Astrophysics Data System (ADS)
Kondrashov, A.; Sboev, I.; Rybkin, K.
2016-07-01
We have investigated the influence of boundary conditions on the growth rate of convective plumes. Temperature and rate fields were studied in a rectangular convective cell heated by a spot heater. The results of the full-scale test were compared with the numerical data calculated using the ANSYS CFX software package. The relationship between the heat plume growth rate and heat boundary conditions, the width and height of the cell, size of heater for different kinds of liquid was established.
Propagation of various dark hollow beams through an apertured paraxial ABCD optical system
NASA Astrophysics Data System (ADS)
Cai, Yangjian; Ge, Di
2006-08-01
Propagation of a dark hollow beam (DHB) of circular, elliptical or rectangular symmetry through an apertured paraxial ABCD optical system is investigated. Approximate analytical formulas for various DHBs propagating through an apertured paraxial optical system are derived by expanding the hard-aperture function into a finite sum of complex Gaussian functions in terms of a tensor method. Some numerical results are given. Our formulas provide a convenient way for studying the propagation of various DHBs through an apertured paraxial optical system.
Thermal stresses and deflections of cross-ply laminated plates using refined plate theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khdeir, A.A.; Reddy, J.N.
1991-12-01
Exact analytical solutions of refined plate theories are developed to study the thermal stresses and deflections of cross-ply rectangular plates. The state-space approach in conjunction with the Levy method is used to solve exactly the governing equations of the theories under various boundary conditions. Numerical results of the higher-order theory of Reddy for thermal stresses and deflections are compared with those obtained using the classical and first-order plate theories. 14 refs.
Multi-Dimensional Asymptotically Stable 4th Order Accurate Schemes for the Diffusion Equation
NASA Technical Reports Server (NTRS)
Abarbanel, Saul; Ditkowski, Adi
1996-01-01
An algorithm is presented which solves the multi-dimensional diffusion equation on co mplex shapes to 4th-order accuracy and is asymptotically stable in time. This bounded-error result is achieved by constructing, on a rectangular grid, a differentiation matrix whose symmetric part is negative definite. The differentiation matrix accounts for the Dirichlet boundary condition by imposing penalty like terms. Numerical examples in 2-D show that the method is effective even where standard schemes, stable by traditional definitions fail.
Numerical solution of problems concerning the thermal convection of a variable-viscosity liquid
NASA Astrophysics Data System (ADS)
Zherebiatev, I. F.; Lukianov, A. T.; Podkopaev, Iu. L.
A stabilizing-correction scheme is constructed for integrating the fourth-order equation describing the dynamics of a viscous incompressible liquid. As an example, a solution is obtained to the problem of the solidification of a liquid in a rectangular region with allowance for convective energy transfer in the liquid phase as well as temperature-dependent changes of viscosity. It is noted that the proposed method can be used to study steady-state problems of thermal convection in ingots obtained through continuous casting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hen, Itay; Karliner, Marek
We study the zero-temperature crystalline structure of baby Skyrmions by applying a full-field numerical minimization algorithm to baby Skyrmions placed inside different parallelogramic unit cells and imposing periodic boundary conditions. We find that within this setup, the minimal energy is obtained for the hexagonal lattice, and that in the resulting configuration the Skyrmion splits into quarter Skyrmions. In particular, we find that the energy in the hexagonal case is lower than the one obtained on the well-studied rectangular lattice, in which splitting into half Skyrmions is observed.
PREMIXED FLAME PROPAGATION AND MORPHOLOGY IN A CONSTANT VOLUME COMBUSTION CHAMBER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hariharan, A; Wichman, IS
2014-06-04
This work presents an experimental and numerical investigation of premixed flame propagation in a constant volume rectangular channel with an aspect ratio of six (6) that serves as a combustion chamber. Ignition is followed by an accelerating cusped finger-shaped flame-front. A deceleration of the flame is followed by the formation of a "tulip"-shaped flame-front. Eventually, the flame is extinguished when it collides with the cold wall on the opposite channel end. Numerical computations are performed to understand the influence of pressure waves, instabilities, and flow field effects causing changes to the flame structure and morphology. The transient 2D numerical simulationmore » results are compared with transient 3D experimental results. Issues discussed are the appearance of oscillatory motions along the flame front and the influences of gravity on flame structure. An explanation is provided for the formation of the "tulip" shape of the premixed flame front.« less
Resonances and bound states in the continuum on periodic arrays of slightly noncircular cylinders
NASA Astrophysics Data System (ADS)
Hu, Zhen; Lu, Ya Yan
2018-02-01
Optical bound states in the continuum (BICs), especially those on periodic structures, have interesting properties and potentially important applications. Existing theoretical and numerical studies for optical BICs are mostly for idealized structures with simple and perfect geometric features, such as circular holes, rectangular cylinders and spheres. Since small distortions are always present in actual fabricated structures, we perform a high accuracy numerical study for BICs and resonances on a simple periodic structure with small distortions, i.e., periodic arrays of slightly noncircular cylinders. Our numerical results confirm that symmetries are important not only for the so-called symmetry-protected BICs, but also for the majority of propagating BICs which do not have a symmetry mismatch with the outgoing radiation waves. Typically, the BICs continue to exist if the small distortions keep the relevant symmetries, and they become resonant modes with finite quality factors if the small distortions break a required symmetry.
Numerical modeling of consolidation processes in hydraulically deposited soils
NASA Astrophysics Data System (ADS)
Brink, Nicholas Robert
Hydraulically deposited soils are encountered in many common engineering applications including mine tailing and geotextile tube fills, though the consolidation process for such soils is highly nonlinear and requires the use of advanced numerical techniques to provide accurate predictions. Several commercially available finite element codes poses the ability to model soil consolidation, and it was the goal of this research to assess the ability of two of these codes, ABAQUS and PLAXIS, to model the large-strain, two-dimensional consolidation processes which occur in hydraulically deposited soils. A series of one- and two-dimensionally drained rectangular models were first created to assess the limitations of ABAQUS and PLAXIS when modeling consolidation of highly compressible soils. Then, geotextile tube and TSF models were created to represent actual scenarios which might be encountered in engineering practice. Several limitations were discovered, including the existence of a minimum preconsolidation stress below which numerical solutions become unstable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg; Zhou, Yu
2016-07-15
Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonantmore » frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.« less
Luo, Jianfeng; Tian, Fengjun; Qu, Hongkun; Li, Li; Zhang, Jianzhong; Yang, Xinhua; Yuan, Libo
2017-08-20
We propose a kind of square porous-core photonic crystal fiber (PCF) for polarization-maintaining terahertz (THz) wave guidance. An asymmetry is introduced by implementing rectangular array air holes in the porous core of the PCF, and ultrahigh birefringence and low effective material loss (EML) can be achieved simultaneously. The properties of THz wave propagation are analyzed numerically in detail. The numerical results indicate that the proposed fiber offers a high birefringence of 0.063 and a low EML of 0.081 cm -1 at 1 THz. Moreover, a very low flattened dispersion profile is observed over a wide frequency domain of 0.85-1.9 THz. The zero flattened dispersion can be controlled. It is predicted that this PCF would be used potentially in polarization maintaining and dispersion management of THz waves.
Numerical simulation of hydrodynamic flows in the jet electric
NASA Astrophysics Data System (ADS)
Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.
2016-02-01
On the basis of concepts from magnetic hydrodynamics the mathematical model of hydrodynamic flows in the stream of electric arc plasma, obtained between the rod electrode and the target located perpendicular to the flat conductive, was developed. The same phenomenon occurs in the welding arc, arc plasma and other injection sources of charged particles. The model is based on the equations of magnetic hydrodynamics with special boundary conditions. The obtained system of equations was solved by the numerical method of finite elements with an automatic selection of the time step. Calculations were carried out with regard to the normal plasma inleakage on the solid conducting surface and the surface with the orifice. It was found that the solid surface facilitates three swirling zones. Interaction of these zones leads to the formation of two stable swirling zones, one of which is located at a distance of two radii from the axis and midway between the electrodes, another is located in the immediate vicinity of the continuous electrode. In this zone plasma backflow scattering fine particles is created. Swirling zones are not formed by using the plane electrode with an orifice. Thus, the fine particles can pass through it and consolidate.
NASA Astrophysics Data System (ADS)
Wang, Pengxiang; Chen, Junhong
2009-02-01
The effect of electrode configuration on ozone production in the direct-current corona discharge of dry and humid air is studied by a numerical model that combines the electron distribution in the corona plasma, plasma chemistry and transport phenomena. Two electrode configurations are considered: wire-cylinder discharge with air flowing along the wire axis and wire-plate discharge with air flowing transverse to the wire. The ozone distributions in both types of discharges are compared. For both electrode configurations, the ozone production rate is higher in the negative corona than in the positive corona and it decreases with an increase in relative humidity. More importantly, the detailed ozone distribution in the neighbourhood of the discharge wire, together with the ozone kinetics, reveals the possible difference in the ozone production from the two discharges. With the same operating conditions and sufficiently short flow residence time, the ozone production rate is nearly the same for both electrode configurations. When the flow residence time is longer than the characteristic time for homogeneous ozone destruction, the net ozone production is higher in the wire-cylinder discharge than in the wire-plate discharge due to relatively less ozone destruction.
NASA Astrophysics Data System (ADS)
Kashir, Babak; Perri, Anthony; Yarin, Alexander L.; Mashayek, Farzad
2017-11-01
The charging of leaky dielectric liquids inside an electrostatic atomizer is studied numerically by developed codes based on OpenFOAM platform. Faradaic reactions are taken into account as the electrification mechanism. The impact of ionic finite size (steric terms) in high voltages is also investigated. The fundamental electrohydrodynamic understanding of the charging mechanism is aimed in the present work where the creation of polarized near-electrode layer and the movement of charges due to hydrodynamic flow are studied in conjunction with the solution of the Navier-Stokes equations. The case of a micro channel electrohydrodynamic flow subjected to two electrodes of the opposite polarity is considered as an example, with the goal to predict the resulting net charge at the exit. Even though the electrodes constitute a small portion of the channel wall, otherwise insulated, it is indicated that the channel length plays a dominant role in the discharging net charge. The ionic fluxes at the electrode surfaces are accounted through the Frumkin-Butler-Volmer relation found from the concurrent in-house experimental investigations. This projects was supported by National science Foundation (NSF) GOALI Grant CBET-1505276.
A Gas-Actuated Projectile Launcher for High-Energy Impact Testing of Structures
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Jaunky, Navin; Lawson, Robin E.; Knight, Norman F., Jr.; Lyle, Karen H.
1999-01-01
A gas-act,uated penetration device has been developed for high-energy impact testing of structures. The high-energy impact. t,estiiig is for experimental simulation of uncontained engine failures. The non-linear transient finite element, code LS-DYNA3D has been used in the numerical simula.tions of a titanium rectangular blade with a.n aluminum target, plate. Threshold velocities for different combinations of pitch and yaw angles of the impactor were obtained for the impactor-target, t8est configuration in the numerica.1 simulations. Complet,e penet,ration of the target plate was also simulat,ed numerically. Finally, limited comparison of analytical and experimental results is presented for complete penetration of the target by the impactor.
Magnetic fields end-face effect investigation of HTS bulk over PMG with 3D-modeling numerical method
NASA Astrophysics Data System (ADS)
Qin, Yujie; Lu, Yiyun
2015-09-01
In this paper, the magnetic fields end-face effect of high temperature superconducting (HTS) bulk over a permanent magnetic guideway (PMG) is researched with 3D-modeling numerical method. The electromagnetic behavior of the bulk is simulated using finite element method (FEM). The framework is formulated by the magnetic field vector method (H-method). A superconducting levitation system composed of one rectangular HTS bulk and one infinite long PMG is successfully investigated using the proposed method. The simulation results show that for finite geometrical HTS bulk, even the applied magnetic field is only distributed in x-y plane, the magnetic field component Hz which is along the z-axis can be observed interior the HTS bulk.
Numerical solutions of atmospheric flow over semielliptical simulated hills
NASA Technical Reports Server (NTRS)
Shieh, C. F.; Frost, W.
1981-01-01
Atmospheric motion over obstacles on plane surfaces to compute simulated wind fields over terrain features was studied. Semielliptical, two dimensional geometry and numerical simulation of flow over rectangular geometries is also discussed. The partial differential equations for the vorticity, stream function, turbulence kinetic energy, and turbulence length scale were solved by a finite difference technique. The mechanism of flow separation induced by a semiellipse is the same as flow over a gradually sloping surface for which the flow separation is caused by the interaction between the viscous force, the pressure force, and the turbulence level. For flow over bluff bodies, a downstream recirculation bubble is created which increases the aspect ratio and/or the turbulence level results in flow reattachment close behind the obstacle.
NASA Technical Reports Server (NTRS)
Hirsh, R. S.
1976-01-01
A numerical method is presented for solving the parabolic-elliptic Navier-Stokes equations. The solution procedure is applied to three-dimensional supersonic laminar jet flow issuing parallel with a supersonic free stream. A coordinate transformation is introduced which maps the boundaries at infinity into a finite computational domain in order to eliminate difficulties associated with the imposition of free-stream boundary conditions. Results are presented for an approximate circular jet, a square jet, varying aspect ratio rectangular jets, and interacting square jets. The solution behavior varies from axisymmetric to nearly two-dimensional in character. For cases where comparisons of the present results with those obtained from shear layer calculations could be made, agreement was good.
Analysis and calculation of macrosegregation in a casting ingot, exhibits C and E
NASA Technical Reports Server (NTRS)
Poirier, D. R.; Maples, A. L.
1984-01-01
A computer model which describes the solidification of a binary metal alloy in an insulated rectangular mold with a temperature gradient is presented. A numerical technique, applicable to a broad class of moving boundary problems, was implemented therein. The solidification model described is used to calculate the macrosegregation within the solidified casting by coupling the equations for liquid flow in the solid/liquid or mushy zone with the energy equation for heat flow throughout the ingot and thermal convection in the bulk liquid portion. The rate of development of the solid can be automatically calculated by the model. Numerical analysis of such solidification parameters as enthalpy and boundary layer flow is displayed. On-line user interface and software documentation are presented.
Numerical Calculations of Short-Range Wakefields of Collimators
NASA Astrophysics Data System (ADS)
Ng, C. K.
2001-12-01
The performance of future linear colliders are limited by the effect of short-range collimator wakefields on the beam. The beam quality is sensitive to the positioning of collimators at the end of the linac. The determination of collimator wakefields has been difficult, largely because of the scarcity of measurement data, and of the limitation of applicability of analytical results to realistic structures. In this paper, numerical methods using codes such as MAFIA are used to determine a series of tapered collimators with rectangular apertures that have been built for studies at SLAC (Stanford Linear Accelerator Center). We will study the dependences of the wakefield on the collimator taper angle, the collimator gap as well as the bunch length. Calculations are also compared with measurements.
Gao, Wenyue; Muzyka, Kateryna; Ma, Xiangui; Lou, Baohua; Xu, Guobao
2018-04-28
Developing low-cost and simple electrochemical systems is becoming increasingly important but still challenged for multiplex experiments. Here we report a single-electrode electrochemical system (SEES) using only one electrode not only for a single experiment but also for multiplex experiments based on a resistance induced potential difference. SEESs for a single experiment and multiplex experiments are fabricated by attaching a self-adhesive label with a hole and multiple holes onto an ITO electrode, respectively. This enables multiplex electrochemiluminescence analysis with high sensitivity at a very low safe voltage using a smartphone as a detector. For the multiplex analysis, the SEES using a single electrode is much simpler, cheaper and more user-friendly than conventional electrochemical systems and bipolar electrochemical systems using electrode arrays. Moreover, SEESs are free from the electrochemiluminescent background problem from driving electrodes in bipolar electrochemical systems. Since numerous electrodes and cover materials can be used to fabricate SEESs readily and electrochemistry is being extensively used, SEESs are very promising for broad applications, such as drug screening and high throughput analysis.
Rectangularization of the survival curve in The Netherlands, 1950-1992.
Nusselder, W J; Mackenbach, J P
1996-12-01
In this article we determine whether rectangularization of the survival curve occurred in the Netherlands in the period 1950-1992. Rectangularization is defined as a trend toward a more rectangular shape of the survival curve due to increased survival and concentration of deaths around the mean age at death. We distinguish between absolute and relative rectangularization, depending on whether an increase in life expectancy is accompanied by concentration of deaths into a smaller age interval or into a smaller proportion of total life expectancy. We used measures of variability based on Keyfitz' H and the standard deviation, both life table-based. Our results show that absolute and relative rectangularization of the entire survival curve occurred in both sexes and over the complete period (except for the years 1955-1959 and 1965-1969 in men). At older ages, results differ between sexes, periods, and an absolute versus a relative definition of rectangularization. Above age 60 1/2, relative rectangularization occurred in women over the complete period and in men since 1975-1979 only, whereas absolute rectangularization occurred in both sexes since the period of 1980-1984. The implications of the recent rectangularization at older ages for achieving compression of morbidity are discussed.
NASA Astrophysics Data System (ADS)
Nakayama, M.; Kawakata, H.; Hirano, S.; Doi, I.; Takahashi, N.
2016-12-01
Transmitted waves at high frequencies attenuate strongly through highly porous media such as shallow ground, although the waves enable us to investigate physical properties of the media with high-spatial resolutions. Nakayama et al. (2015, AGU) tried to investigate the spatio-temporal variations in physical properties of a highly porous sand soil during water injection in laboratory. Accelerometers installed in the sand soil received only the signals of no higher than 0.5 kHz, although they used rectangular waveforms as input signals. The wavelength corresponding to 0.5 kHz is about 400 mm because the measured wave velocity is about 200 m/s. The wavelength is comparable to the path lengths of the transmitted waves, so that it cannot be discussed how the temporal variations in physical properties depend on the paths. In this study, we try to transmit waves with wavelengths much shorter than a sand soil and path lengths through a highly porous sand soil. We make a sand soil (750 mm long, 300 mm wide, and 300 mm high) with porosity about 40%. We install a shaker as a wave source at a deep part in the sand soil. In addition, we install accelerometers, pore pressure gauges, and electrodes at different depths. We inject tap water into the sand soil from the bottom, and record transmitted waves together with pore pressure and electrode voltage until the sand soil becomes saturated. Note that we adopt sweep signals (0.1-10 kHz) as the source so that the shaker can generate high frequency waves more strongly than rectangular signals. Accelerometers receive the signals at least up to 5 kHz during the experiment (Figure 1). The wavelength corresponding to 5 kHz is about 40 mm. In conclusion, we succeed in detecting transmitted waves propagating through the highly porous sand soil whose path lengths are about ten times their wave lengths. Acknowledgment: We are grateful to Takayoshi Kishida for supporting the experiment. This work is supported by JSPS KAKENHI Grant Numbers JP15H02996 and 26750135.
Compact waveguide circular polarizer
Tantawi, Sami G.
2016-08-16
A multi-port waveguide is provided having a rectangular waveguide that includes a Y-shape structure with first top arm having a first rectangular waveguide port, a second top arm with second rectangular waveguide port, and a base arm with a third rectangular waveguide port for supporting a TE.sub.10 mode and a TE.sub.20 mode, where the end of the third rectangular waveguide port includes rounded edges that are parallel to a z-axis of the waveguide, a circular waveguide having a circular waveguide port for supporting a left hand and a right hand circular polarization TE.sub.11 mode and is coupled to a base arm broad wall, and a matching feature disposed on the base arm broad wall opposite of the circular waveguide for terminating the third rectangular waveguide port, where the first rectangular waveguide port, the second rectangular waveguide port and the circular waveguide port are capable of supporting 4-modes of operation.
NASA Astrophysics Data System (ADS)
Rao, Lang; Cai, Bo; Yu, Xiao-Lei; Guo, Shi-Shang; Liu, Wei; Zhao, Xing-Zhong
2015-05-01
3D microelectrodes are one-step fabricated into a microfluidic droplet separator by filling conductive silver paste into PDMS microchambers. The advantages of 3D silver paste electrodes in promoting droplet sorting accuracy are systematically demonstrated by theoretical calculation, numerical simulation and experimental validation. The employment of 3D electrodes also helps to decrease the droplet sorting voltage, guaranteeing that cells encapsulated in droplets undergo chip-based sorting processes are at better metabolic status for further potential cellular assays. At last, target droplet containing single cell are selectively sorted out from others by an appropriate electric pulse. This method provides a simple and inexpensive alternative to fabricate 3D electrodes, and it is expected our 3D electrode-integrated microfluidic droplet separator platform can be widely used in single cell operation and analysis.
Advantage of four-electrode over two-electrode defibrillators
NASA Astrophysics Data System (ADS)
Bragard, J.; Šimić, A.; Laroze, D.; Elorza, J.
2015-12-01
Defibrillation is the standard clinical treatment used to stop ventricular fibrillation. An electrical device delivers a controlled amount of electrical energy via a pair of electrodes in order to reestablish a normal heart rate. We propose a technique that is a combination of biphasic shocks applied with a four-electrode system rather than the standard two-electrode system. We use a numerical model of a one-dimensional ring of cardiac tissue in order to test and evaluate the benefit of this technique. We compare three different shock protocols, namely a monophasic and two types of biphasic shocks. The results obtained by using a four-electrode system are compared quantitatively with those obtained with the standard two-electrode system. We find that a huge reduction in defibrillation threshold is achieved with the four-electrode system. For the most efficient protocol (asymmetric biphasic), we obtain a reduction in excess of 80% in the energy required for a defibrillation success rate of 90%. The mechanisms of successful defibrillation are also analyzed. This reveals that the advantage of asymmetric biphasic shocks with four electrodes lies in the duration of the cathodal and anodal phase of the shock.
Quantification of the spatial strain distribution of scoliosis using a thin-plate spline method.
Kiriyama, Yoshimori; Watanabe, Kota; Matsumoto, Morio; Toyama, Yoshiaki; Nagura, Takeo
2014-01-03
The objective of this study was to quantify the three-dimensional spatial strain distribution of a scoliotic spine by nonhomogeneous transformation without using a statistically averaged reference spine. The shape of the scoliotic spine was determined from computed tomography images from a female patient with adolescent idiopathic scoliosis. The shape of the scoliotic spine was enclosed in a rectangular grid, and symmetrized using a thin-plate spline method according to the node positions of the grid. The node positions of the grid were determined by numerical optimization to satisfy symmetry. The obtained symmetric spinal shape was enclosed within a new rectangular grid and distorted back to the original scoliotic shape using a thin-plate spline method. The distorted grid was compared to the rectangular grid that surrounded the symmetrical spine. Cobb's angle was reduced from 35° in the scoliotic spine to 7° in the symmetrized spine, and the scoliotic shape was almost fully symmetrized. The scoliotic spine showed a complex Green-Lagrange strain distribution in three dimensions. The vertical and transverse compressive/tensile strains in the frontal plane were consistent with the major scoliotic deformation. The compressive, tensile and shear strains on the convex side of the apical vertebra were opposite to those on the concave side. These results indicate that the proposed method can be used to quantify the three-dimensional spatial strain distribution of a scoliotic spine, and may be useful in quantifying the deformity of scoliosis. © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sugiyanto, S.; Hardyanto, W.; Marwoto, P.
2018-03-01
Transport phenomena are found in many problems in many engineering and industrial sectors. We analyzed a Lattice Boltzmann method with Two-Relaxation Time (LTRT) collision operators for simulation of pollutant moving through the medium as a two-dimensional (2D) transport problem in a rectangular region model. This model consists of a 2D rectangular region with 54 length (x), 27 width (y), and it has isotropic homogeneous medium. Initially, the concentration is zero and is distributed evenly throughout the region of interest. A concentration of 1 is maintained at 9 < y < 18, whereas the concentration of zero is maintained at 0 < y < 9 and 18 < y < 27. A specific discharge (Darcy velocity) of 1.006 is assumed. A diffusion coefficient of 0.8333 is distributed uniformly with a uniform porosity of 0.35. A computer program is written in MATLAB to compute the concentration of pollutant at any specified place and time. The program shows that LTRT solution with quadratic equilibrium distribution functions (EDFs) and relaxation time τa=1.0 are in good agreement result with other numerical solutions methods such as 3DLEWASTE (Hybrid Three-dimensional Lagrangian-Eulerian Finite Element Model of Waste Transport Through Saturated-Unsaturated Media) obtained by Yeh and 3DFEMWATER-LHS (Three-dimensional Finite Element Model of Water Flow Through Saturated-Unsaturated Media with Latin Hypercube Sampling) obtained by Hardyanto.
Computational modeling of mediator oxidation by oxygen in an amperometric glucose biosensor.
Simelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Razumienė, Julija
2014-02-07
In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior.
Computational Modeling of Mediator Oxidation by Oxygen in an Amperometric Glucose Biosensor
Šimelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Julija, Razumienė
2014-01-01
In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior. PMID:24514882
Lee, Won-Ho; Lee, Jong-Chul
2018-09-01
A numerical simulation was developed for magnetic nanoparticles in a liquid dielectric to investigate the AC breakdown voltage of the magnetic nanofluids according to the volume concentration of the magnetic nanoparticles. In prior research, we found that the dielectric breakdown voltage of the transformer oil-based magnetic nanofluids was positively or negatively affected according to the amount of magnetic nanoparticles under a testing condition of dielectric fluids, and the trajectory of the magnetic nanoparticles in a fabricated chip was visualized to verify the related phenomena via measurements and computations. In this study, a numerical simulation of magnetic nanoparticles in an insulating fluid was developed to model particle tracing for AC breakdown mechanisms happened to a sphere-sphere electrode configuration and to propose a possible mechanism regarding the change in the breakdown strength due to the behavior of the magnetic nanoparticles with different applied voltages.
NASA Astrophysics Data System (ADS)
Akle, Barbar; Khairallah, Reef; Challita, Elio
2014-03-01
Ionic Polymer Metal Composite (IPMC) is an Electo-Active Polymer (EAP) that is well-known for its actuation and sensing behavior. It has been shown that in charge sensing mode an IPMC generates one order of magnitude larger current as compared to piezoelectric materials. However the voltage generated is on the order of couple millivolts, making it less attractive as a sensor and energy harvester. Previous numerical work by the author, demonstrated that increasing the ionic concentration of the ionomer will increase the current and voltage generated by an IPMC. Conversely, the previous study showed that the electrode composition and architecture had minimal effects. This paper will present an experimental investigation of the effect of changing the composition of the ionomer, the membrane thickness, and electrode architecture on the sensing and energy harvesting behavior. The response of all IPMC transducers is analyzed and compared to numerical simulations.
Fulian; Gooch; Fisher; Stevens; Compton
2000-08-01
The development and application of a new electrochemical device using a computer-aided design strategy is reported. This novel design is based on the flow of electrolyte solution past a microwire electrode situated centrally within a large duct. In the design stage, finite element simulations were employed to evaluate feasible working geometries and mass transport rates. The computer-optimized designs were then exploited to construct experimental devices. Steady-state voltammetric measurements were performed for a reversible one-electron-transfer reaction to establish the experimental relationship between electrolysis current and solution velocity. The experimental results are compared to those predicted numerically, and good agreement is found. The numerical studies are also used to establish an empirical relationship between the mass transport limited current and the volume flow rate, providing a simple and quantitative alternative for workers who would prefer to exploit this device without the need to develop the numerical aspects.
Roth, Bradley J.
2002-09-01
Insidious experimental artifacts and invalid theoretical assumptions complicate the comparison of numerical predictions and observed data. Such difficulties are particularly troublesome when studying electrical stimulation of the heart. During unipolar stimulation of cardiac tissue, the artifacts include nonlinearity of membrane dyes, optical signals blocked by the stimulating electrode, averaging of optical signals with depth, lateral averaging of optical signals, limitations of the current source, and the use of excitation-contraction uncouplers. The assumptions involve electroporation, membrane models, electrode size, the perfusing bath, incorrect model parameters, the applicability of a continuum model, and tissue damage. Comparisons of theory and experiment during far-field stimulation are limited by many of these same factors, plus artifacts from plunge and epicardial recording electrodes and assumptions about the fiber angle at an insulating boundary. These pitfalls must be overcome in order to understand quantitatively how the heart responds to an electrical stimulus. (c) 2002 American Institute of Physics.
A numerical study on electrochemical transport of ions in calcium fluoride slag
NASA Astrophysics Data System (ADS)
Karimi-Sibaki, E.; Kharicha, A.; Wu, M.; Ludwig, A.
2016-07-01
Electrically resistive CaF 2-based slags are widely used in electroslag remelting (ESR) process to generate Joule heat for the melting of electrode. The electric current is conducted by ions (electrolyte) such as Ca +2 or F -, thus it is necessary to establish electrochemical models to study electrical behavior of slag. This paper presents a numerical model on electrochemical transport of ions in an arbitrary symmetrical (ZZ) and non-symmetrical (CaF2) stagnant electrolytes blocked by two parallel, planar electrodes. The dimensionless Poisson-Nernst-Planck (PNP) equations are solved to model electro-migration and diffusion of ions. The ions are considered to be inert that no Faradic reactions occur. Spatial variations of concentrations of ions, charge density and electric potential across the electrolyte are analyzed. It is shown that the applied potential has significant influence on the system response. At high applied voltage, the anodic potential drop near the electrode is significantly larger than cathodic potential drop in fully dissociated CaF2 electrolyte.
EIT image reconstruction based on a hybrid FE-EFG forward method and the complete-electrode model.
Hadinia, M; Jafari, R; Soleimani, M
2016-06-01
This paper presents the application of the hybrid finite element-element free Galerkin (FE-EFG) method for the forward and inverse problems of electrical impedance tomography (EIT). The proposed method is based on the complete electrode model. Finite element (FE) and element-free Galerkin (EFG) methods are accurate numerical techniques. However, the FE technique has meshing task problems and the EFG method is computationally expensive. In this paper, the hybrid FE-EFG method is applied to take both advantages of FE and EFG methods, the complete electrode model of the forward problem is solved, and an iterative regularized Gauss-Newton method is adopted to solve the inverse problem. The proposed method is applied to compute Jacobian in the inverse problem. Utilizing 2D circular homogenous models, the numerical results are validated with analytical and experimental results and the performance of the hybrid FE-EFG method compared with the FE method is illustrated. Results of image reconstruction are presented for a human chest experimental phantom.
Flow in out-of-plane double S-bonds
NASA Technical Reports Server (NTRS)
Schmidt, M. C.; Whitelaw, J. H.; Yianneskis, M.
1986-01-01
Developing flows in two out-of-plane double S-bend configurations have been measured by laser-Doppler anemometry. The first duct had a rectangular cross-section 40mmx40mm at the inlet and consisted of a uniform area 22.5 deg. - 22.5 deg. S-duct upstream with a 22.5 deg.- 22.5 deg. S- diffuser downstream. The second duct had a circular cross-section and consisted of a 45 deg. - 45 deg. uniform area S-duct upstream with a 22.5 deg. -22.5 deg. S-diffuser downstream. In both configurations the ratio of the mean radius of curvature to the inlet hydraulic diameter was 7.0, the exit-to-inlet area ratio of the diffusers was 1.5 and the ducts were connected so that the centerline of the S-duct lay in a plane normal to that of the S-diffuser. Streamwise and cross-stream velocity components were measured in laminar flow for the rectangular duct and in turbulent flow for both configurations; measurements of the turbulence levels, cross-correlations and wall static pressures were also made in the turbulent flow cases. Secondary flows of the first kind are present in the first S-duct and they are complemented or counteracted by the secondary flows generated by the area expansion and by the curvature of the S-diffusers downstream. Cross-stream velocities with magnitudes up to 0.19 and 0.11 of the bulk velocity were measured in the laminar and turbulent flows respectively in the rectangular duct and six cross-flow vortices were evident at the exit of the duct in both flow cases. The turbulent flow in the circular duct was qualitatively similar to that in the rectangular configuration, but the cross-stream velocities measured at the exit plane were smaller in the circular geometry. The results are presented in sufficient detail and accuracy for the assessment of numerical calculation methods and are listed in tabular form for this purpose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nur, Adrian; Rahmawati, Alifah; Ilmi, Noor Izzati
Synthesis of nanosized of hydroxyapatite (HA) by electrochemical pulsed direct current (PDC) method has been studied. The aim of this work is to study the influence of various PDC parameters (pH initial, electrode distance, duty cycle, frequency, and amplitude) on particle surface area of HA powders. The electrochemical synthesis was prepared in solution Ca{sup 2+}/EDTA{sup 4−}/PO{sub 4}{sup 3+} at concentration 0.25/0.25/0.15 M for 24 h. The electrochemical cell was consisted of two carbon rectangular electrodes connected to a function generator to produce PDC. There were two treatments for particles after electrosynthesized, namely without aging and aged for 2 days atmore » 40 °C. For both cases, the particles were filtered and washed by demineralized water to eliminate the impurities and unreacted reactants. Then, the particles were dried at 100 °C for 2 days. The dried particles were characterized by X-ray diffraction, surface area analyzer, scanning electron microscopy (SEM), Fourier transform infrared spectra and thermogravimetric and differential thermal analysis. HA particles can be produced when the initial pH > 6. The aging process has significant effect on the produced HA particles. SEM images of HA particles showed that the powders consisted of agglomerates composed of fine crystallites and have morphology plate-like and sphere. The surface area of HA particles is in the range of 25 – 91 m{sup 2}/g. The largest particle surface area of HA was produced at 4 cm electrode distance, 80% cycle duty, frequency 0.1 Hz, amplitude 9 V and with aging process.« less
Jung, Bong-Ki; Chung, Kyoung-Jae; Dang, Jeong-Jeung; Hwang, Y S
2012-02-01
A high monatomic beam fraction is an important factor in a hydrogen ion source to increase the application efficiency. The monatomic fraction of hydrogen plasmas with different plasma electrode materials is measured in a helicon plasma ion source, and aluminum shows the highest value compared to that with the other metals such as copper and molybdenum. Formation of an aluminum oxide layer on the aluminum electrode is determined by XPS analysis, and the alumina layer is verified as the high monatomic fraction. Both experiments and numerical simulations conclude that a low surface recombination coefficient of the alumina layer on the plasma electrode is one of the most important parameters for increasing the monatomic fraction in hydrogen plasma ion sources.
NASA Astrophysics Data System (ADS)
Jung, Bong-Ki; Chung, Kyoung-Jae; Dang, Jeong-Jeung; Hwang, Y. S.
2012-02-01
A high monatomic beam fraction is an important factor in a hydrogen ion source to increase the application efficiency. The monatomic fraction of hydrogen plasmas with different plasma electrode materials is measured in a helicon plasma ion source, and aluminum shows the highest value compared to that with the other metals such as copper and molybdenum. Formation of an aluminum oxide layer on the aluminum electrode is determined by XPS analysis, and the alumina layer is verified as the high monatomic fraction. Both experiments and numerical simulations conclude that a low surface recombination coefficient of the alumina layer on the plasma electrode is one of the most important parameters for increasing the monatomic fraction in hydrogen plasma ion sources.
NASA Astrophysics Data System (ADS)
Loucaides, N. G.; Georghiou, G. E.; Charalambous, C. D.
2007-04-01
The dielectrophoretic concentration of DNA particles suspended in a solution is investigated in a system of parallel electrodes, where the particles are attracted to the edges of the electrodes by positive dielectrophoresis. The AC electroosmotic motion of the fluid is also considered, as well as the diffusion of the particles, using the solution of the Smoluchowski equation. The results examine the effect of AC electroosmosis in steady state dielectrophoretic concentration of particles, by demonstrating that AC electroosmosis significantly reduces the dielectrophoretic concentration at the edges and moves the particles towards the electrode centres.
Laser Beam and Resonator Calculations on Desktop Computers.
NASA Astrophysics Data System (ADS)
Doumont, Jean-Luc
There is a continuing interest in the design and calculation of laser resonators and optical beam propagation. In particular, recently, interest has increased in developing concepts such as one-sided unstable resonators, supergaussian reflectivity profiles, diode laser modes, beam quality concepts, mode competition, excess noise factors, and nonlinear Kerr lenses. To meet these calculation needs, I developed a general-purpose software package named PARAXIA ^{rm TM}, aimed at providing optical scientists and engineers with a set of powerful design and analysis tools that provide rapid and accurate results and are extremely easy to use. PARAXIA can handle separable paraxial optical systems in cartesian or cylindrical coordinates, including complex-valued and misaligned ray matrices, with full diffraction effects between apertures. It includes the following programs:. ABCD provides complex-valued ray-matrix and gaussian -mode analyses for arbitrary paraxial resonators and optical systems, including astigmatism and misalignment in each element. This program required that I generalize the theory of gaussian beam propagation to the case of an off-axis gaussian beam propagating through a misaligned, complex -valued ray matrix. FRESNEL uses FFT and FHT methods to propagate an arbitrary wavefront through an arbitrary paraxial optical system using Huygens' integral in rectangular or radial coordinates. The wavefront can be multiplied by an arbitrary mirror profile and/or saturable gain sheet on each successive propagation through the system. I used FRESNEL to design a one-sided negative-branch unstable resonator for a free -electron laser, and to show how a variable internal aperture influences the mode competition and beam quality in a stable cavity. VSOURCE implements the virtual source analysis to calculate eigenvalues and eigenmodes for unstable resonators with both circular and rectangular hard-edged mirrors (including misaligned rectangular systems). I used VSOURCE to show the validity of the virtual source approach (by comparing its results to those of FRESNEL), to study the properties of hard-edged unstable resonators, and to obtain numerical values of the excess noise factors in such resonators. VRM carries out mode calculations for gaussian variable-reflectivity-mirror lasers. It implements complicated analytical results that I derived to point out the large numerical value of the excess noise factor in geometrically unstable resonators.
Uncertainty-enabled design of electromagnetic reflectors with integrated shape control
NASA Astrophysics Data System (ADS)
Haque, Samiul; Kindrat, Laszlo P.; Zhang, Li; Mikheev, Vikenty; Kim, Daewa; Liu, Sijing; Chung, Jooyeon; Kuian, Mykhailo; Massad, Jordan E.; Smith, Ralph C.
2018-03-01
We implemented a computationally efficient model for a corner-supported, thin, rectangular, orthotropic polyvinylidene fluoride (PVDF) laminate membrane, actuated by a two-dimensional array of segmented electrodes. The laminate can be used as shape-controlled electromagnetic reflector and the model estimates the reflector's shape given an array of control voltages. In this paper, we describe a model to determine the shape of the laminate for a given distribution of control voltages. Then, we investigate the surface shape error and its sensitivity to the model parameters. Subsequently, we analyze the simulated deflection of the actuated bimorph using a Zernike polynomial decomposition. Finally, we provide a probabilistic description of reflector performance using statistical methods to quantify uncertainty. We make design recommendations for nominal parameter values and their tolerances based on optimization under uncertainty using multiple methods.
Interfacial waves generated by electrowetting-driven contact line motion
NASA Astrophysics Data System (ADS)
Ha, Jonghyun; Park, Jaebum; Kim, Yunhee; Shin, Bongsu; Bae, Jungmok; Kim, Ho-Young
2016-10-01
The contact angle of a liquid-fluid interface can be effectively modulated by the electrowetting-on-dielectric (EWOD) technology. Rapid movement of the contact line can be achieved by swift changes of voltage at the electrodes, which can give rise to interfacial waves under the strong influence of surface tension. Here we experimentally demonstrate EWOD-driven interfacial waves of overlapping liquids and compare their wavelength and decay length with the theoretical results obtained by a perturbation analysis. Our theory also allows us to predict the temporal evolution of the interfacial profiles in either rectangular or cylindrical containers, as driven by slipping contact lines. This work builds a theoretical framework to understand and predict the dynamics of capillary waves of a liquid-liquid interface driven by EWOD, which has practical implications on optofluidic devices used to guide light.
Analysis of an anti-reflecting nanowire transparent electrode for solar cells
NASA Astrophysics Data System (ADS)
Zhao, Zhexin; Wang, Ken Xingze; Fan, Shanhui
2017-03-01
Transparent electrodes are an important component in many optoelectronic devices, especially solar cells. In this paper, we investigate a nanowire transparent electrode that also functions as an anti-reflection coating for silicon solar cells, taking into account the practical constraints that the electrode is typically encapsulated and needs to be in electric contact with the semiconductor. Numerical simulations show that the electrode can provide near-perfect broadband anti-reflection over much of the frequency range above the silicon band gap for both polarizations while keeping the sheet resistance sufficiently low. To provide insights into the physics mechanism of this broadband anti-reflection, we introduce a generalized Fabry-Perot model, which captures the effects of the higher order diffraction channels as well as the modification of the reflection coefficient of the interface introduced by the nanowires. This model is validated using frequency-domain electromagnetic simulations. Our work here provides design guidelines for nanowire transparent electrode in a device configuration that is relevant for solar cell applications.
Jointly reconstructing ground motion and resistivity for ERT-based slope stability monitoring
NASA Astrophysics Data System (ADS)
Boyle, Alistair; Wilkinson, Paul B.; Chambers, Jonathan E.; Meldrum, Philip I.; Uhlemann, Sebastian; Adler, Andy
2018-02-01
Electrical resistivity tomography (ERT) is increasingly being used to investigate unstable slopes and monitor the hydrogeological processes within. But movement of electrodes or incorrect placement of electrodes with respect to an assumed model can introduce significant resistivity artefacts into the reconstruction. In this work, we demonstrate a joint resistivity and electrode movement reconstruction algorithm within an iterative Gauss-Newton framework. We apply this to ERT monitoring data from an active slow-moving landslide in the UK. Results show fewer resistivity artefacts and suggest that electrode movement and resistivity can be reconstructed at the same time under certain conditions. A new 2.5-D formulation for the electrode position Jacobian is developed and is shown to give accurate numerical solutions when compared to the adjoint method on 3-D models. On large finite element meshes, the calculation time of the newly developed approach was also proven to be orders of magnitude faster than the 3-D adjoint method and addressed modelling errors in the 2-D perturbation and adjoint electrode position Jacobian.
Manganese oxide-based materials as electrochemical supercapacitor electrodes.
Wei, Weifeng; Cui, Xinwei; Chen, Weixing; Ivey, Douglas G
2011-03-01
Electrochemical supercapacitors (ECs), characteristic of high power and reasonably high energy densities, have become a versatile solution to various emerging energy applications. This critical review describes some materials science aspects on manganese oxide-based materials for these applications, primarily including the strategic design and fabrication of these electrode materials. Nanostructurization, chemical modification and incorporation with high surface area, conductive nanoarchitectures are the three major strategies in the development of high-performance manganese oxide-based electrodes for EC applications. Numerous works reviewed herein have shown enhanced electrochemical performance in the manganese oxide-based electrode materials. However, many fundamental questions remain unanswered, particularly with respect to characterization and understanding of electron transfer and atomic transport of the electrochemical interface processes within the manganese oxide-based electrodes. In order to fully exploit the potential of manganese oxide-based electrode materials, an unambiguous appreciation of these basic questions and optimization of synthesis parameters and material properties are critical for the further development of EC devices (233 references).
The MUSIC algorithm for impedance tomography of small inclusions from discrete data
NASA Astrophysics Data System (ADS)
Lechleiter, A.
2015-09-01
We consider a point-electrode model for electrical impedance tomography and show that current-to-voltage measurements from finitely many electrodes are sufficient to characterize the positions of a finite number of point-like inclusions. More precisely, we consider an asymptotic expansion with respect to the size of the small inclusions of the relative Neumann-to-Dirichlet operator in the framework of the point electrode model. This operator is naturally finite-dimensional and models difference measurements by finitely many small electrodes of the electric potential with and without the small inclusions. Moreover, its leading-order term explicitly characterizes the centers of the small inclusions if the (finite) number of point electrodes is large enough. This characterization is based on finite-dimensional test vectors and leads naturally to a MUSIC algorithm for imaging the inclusion centers. We show both the feasibility and limitations of this imaging technique via two-dimensional numerical experiments, considering in particular the influence of the number of point electrodes on the algorithm’s images.
NASA Astrophysics Data System (ADS)
Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang
2016-09-01
The hydrodynamics of gas-solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s-1 to 3.0 m s-1 with a step of 0.2 m s-1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas-solids bubbling flows.
Domestic and Industrial Water Disinfection Using Boron-Doped Diamond Electrodes
NASA Astrophysics Data System (ADS)
Rychen, Philippe; Provent, Christophe; Pupunat, Laurent; Hermant, Nicolas
This chapter first describes main properties and manufacturing process (production using HF-CVD, quality-control measurements, etc.) of diamond electrodes and more specifically boron-doped diamond (BDD) electrodes. Their exceptional properties make such electrodes particularly suited for many disinfection applications as thanks to their wide working potential window and their high anodic potential, they allow generating a mixture of powerful oxidizing species mainly based on active oxygen and peroxides. Such mixture of disinfecting agents is far more efficient than conventional chemical or physical known techniques. Their efficiency was tested against numerous microorganisms and then proved to be greater than conventional methods. All bacteria and viruses tested up to date were inactivated 3-5 times faster with a treatment based on with BDD electrodes and the DiaCellⓇ technology than with other techniques. Several applications, either industrial or private (wellness and home use), are discussed with a focus on the dedicated products and the main technology advantages.
NASA Astrophysics Data System (ADS)
Hui, Kwun Nam; Hui, Kwan San; Tang, Zikang; Jadhav, V. V.; Xia, Qi Xun
2016-10-01
Hierarchical chestnut-like manganese cobalt oxide (MnCo2O4) nanoneedles (NNs) are successfully grown on nickel foam using a facile and cost-effective hydrothermal method. High resolution TEM image further verifies that the chestnut-like MnCo2O4 structure is assembled by numerous 1D MnCo2O4 nanoneedles, which are formed by numerous interconnected MnCo2O4 nanoparticles with grain diameter of ∼10 nm. The MnCo2O4 electrode exhibits high specific capacitance of 1535 F g-1 at 1 A g-1 and good rate capability (950 F g-1 at 10 A g-1) in a 6 M KOH electrolyte. An asymmetric supercapacitor is fabricated using MnCo2O4 NNs on Ni foam (MnCo2O4 NNs/NF) as the positive electrode and graphene/NF as the negative electrode. The device shows an operation voltage of 1.5 V and delivers a high energy density of ∼60.4 Wh kg-1 at a power density of ∼375 W kg-1. Moreover, the device exhibits an excellent cycling stability of 94.3% capacitance retention after 12000 cycles at 30 A g-1. This work demonstrates that hierarchical chestnut-like MnCo2O4 NNs could be a promising electrode for the high performance energy storage devices.
NASA Astrophysics Data System (ADS)
Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo
2018-05-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.
Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo
2018-05-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.
Lu, Gui-Min; Yu, Jian-Guo
2018-01-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study. PMID:29892347
NASA Astrophysics Data System (ADS)
Haftbaradaran, H.; Maddahian, A.; Mossaiby, F.
2017-05-01
It is well known that phase separation could severely intensify mechanical degradation and expedite capacity fading in lithium-ion battery electrodes during electrochemical cycling. Experiments have frequently revealed that such degradation effects could be substantially mitigated via reducing the electrode feature size to the nanoscale. The purpose of this work is to present a fracture mechanics study of the phase separating planar electrodes. To this end, a phase field model is utilized to predict how phase separation affects evolution of the solute distribution and stress profile in a planar electrode. Behavior of the preexisting flaws in the electrode in response to the diffusion induced stresses is then examined via computing the time dependent stress intensity factor arising at the tip of flaws during both the insertion and extraction half-cycles. Further, adopting a sharp-interphase approximation of the system, a critical electrode thickness is derived below which the phase separating electrode becomes flaw tolerant. Numerical results of the phase field model are also compared against analytical predictions of the sharp-interphase model. The results are further discussed with reference to the available experiments in the literature. Finally, some of the limitations of the model are cautioned.
NASA Technical Reports Server (NTRS)
Haviland, J. K.; Yoo, Y. S.
1976-01-01
Expressions for calculation of subsonic and supersonic, steady and unsteady aerodynamic forces are derived, using the concept of aerodynamic elements applied to the downwash velocity potential method. Aerodynamic elements can be of arbitrary out of plane polygon shape, although numerical calculations are restricted to rectangular elements, and to the steady state case in the supersonic examples. It is suggested that the use of conforming, in place of rectangular elements, would give better results. Agreement with results for subsonic oscillating T tails is fair, but results do not converge as the number of collocation points is increased. This appears to be due to the form of expression used in the calculations. The methods derived are expected to facilitate automated flutter analysis on the computer. In particular, the aerodynamic element concept is consistent with finite element methods already used for structural analysis. The method is universal for the complete Mach number range, and, finally, the calculations can be arranged so that they do not have to be repeated completely for every reduced frequency.
Thermoelastic damping in microrings with circular cross-section
NASA Astrophysics Data System (ADS)
Li, Pu; Fang, Yuming; Zhang, Jianrun
2016-01-01
Predicting thermoelastic damping (TED) is crucial in the design of high Q micro-resonators. Microrings are often critical components in many micro-resonators. Some analytical models for TED in microrings have already been developed in the past. However, the previous works are limited to the microrings with rectangular cross-section. The temperature field in the rectangular cross-section is one-dimensional. This paper deals with TED in the microrings with circular cross-section. The temperature field in the circular cross-section is two-dimensional. This paper first presents a 2-D analytical model for TED in the microrings with circular cross-section. Only the two-dimensional heat conduction in the circular cross-section is considered. The heat conduction along the circumferential direction of the microring is neglected in the 2-D model. Then the 2-D model has been extended to cover the circumferential heat conduction, and a 3-D analytical model for TED has been developed. The analytical results from the present 2-D and 3-D models show good agreement with the numerical results of FEM model. The limitations of the present 2-D analytical model are assessed.
Displacement and frequency analyses of vibratory systems
NASA Astrophysics Data System (ADS)
Low, K. H.
1995-02-01
This paper deals with the frequency and response studies of vibratory systems, which are represented by a set of n coupled second-order differential equations. The following numerical methods are used in the response analysis: central difference, fourth-order Runge-Kutta and modal methods. Data generated in the response analysis are processed to obtain the system frequencies by using the fast Fourier transform (FFT) or harmonic response methods. Two types of the windows are used in the FFT analysis: rectangular and Hanning windows. Examples of two, four and seven degrees of freedom systems are considered, to illustrate the proposed algorithms. Comparisons with those existing results confirm the validity of the proposed methods. The Hanning window attenuates the results that give a narrower bandwidth around the peak if compared with those using the rectangular window. It is also found that in free vibrations of a multi-mass system, the masses will vibrate in a manner that is the superposition of the natural frequencies of the system, while the system will vibrate at the driving frequency in forced vibrations.
NASA Astrophysics Data System (ADS)
Chen, Guohai; Meng, Zeng; Yang, Dixiong
2018-01-01
This paper develops an efficient method termed as PE-PIM to address the exact nonstationary responses of pavement structure, which is modeled as a rectangular thin plate resting on bi-parametric Pasternak elastic foundation subjected to stochastic moving loads with constant acceleration. Firstly, analytical power spectral density (PSD) functions of random responses for thin plate are derived by integrating pseudo excitation method (PEM) with Duhamel's integral. Based on PEM, the new equivalent von Mises stress (NEVMS) is proposed, whose PSD function contains all cross-PSD functions between stress components. Then, the PE-PIM that combines the PEM with precise integration method (PIM) is presented to achieve efficiently stochastic responses of the plate by replacing Duhamel's integral with the PIM. Moreover, the semi-analytical Monte Carlo simulation is employed to verify the computational results of the developed PE-PIM. Finally, numerical examples demonstrate the high accuracy and efficiency of PE-PIM for nonstationary random vibration analysis. The effects of velocity and acceleration of moving load, boundary conditions of the plate and foundation stiffness on the deflection and NEVMS responses are scrutinized.
NASA Technical Reports Server (NTRS)
Lamar, J. E.
1971-01-01
The development of a nonplanar lifting surface method having a continuous distribution of singularities and satisfying the tangent flow boundary condition on the mean camber surface is given. The method predicts some incompressible longitudinal aerodynamic coefficients of rectangular wings which have circular-arc camber. The solution method is of the integral-equation type and the resulting surface integrals are evaluated by either using numerical or analytical techniques, as are appropriate. Applications are made and the results compared with those from an exact two-dimensional circular-arc camber solution, a three-dimensional flat-wing solution which represents the camber by a projected slope onto the flat surface, and a flat-wing experiment. From these comparisons, the present method is found to predict well the flat-wing experiment and limiting values, in addition to the center of pressure variation at an angle of attack of zero for any camber. For wings having camber ratios larger than about 1.25% and moderate to high aspect ratios, the results deterioriate due to the inadequacy of lifting pressure modes employed.
Tang, Yue; Zhang, Zhidong; Wang, Ruibing; Hai, Zhenyin; Xue, Chenyang; Zhang, Wendong; Yan, Shubin
2017-04-06
A surface plasmon polariton refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and ring resonators is proposed and numerically investigated using a finite element method. Fano resonances are observed in the transmission spectra, which result from the coupling between the narrow-band spectral response in the ring resonator and the broadband spectral response in the rectangular resonator. Results are analyzed using coupled-mode theory based on transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect, and the analytical result is in good agreement with the simulation result. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift, and the highest value of sensitivity (S) is 1125 nm/RIU, RIU means refractive index unit. Furthermore, the coupled MIM waveguide structure can be integrated with other photonic devices at the chip scale. The results can provide a guide for future applications of this structure.
A new arrangement with nonlinear sidewalls for tanker ship storage panels
NASA Astrophysics Data System (ADS)
Ketabdari, M. J.; Saghi, H.
2013-03-01
Sloshing phenomenon in a moving container is a complicated free surface flow problem. It has a wide range of engineering applications, especially in tanker ships and Liquefied Natural Gas (LNG) carriers. When the tank in these vehicles is partially filled, it is essential to be able to evaluate the fluid dynamic loads on tank perimeter. Different geometric shapes such as rectangular, cylindrical, elliptical, spherical and circular conical have been suggested for ship storage tanks by previous researchers. In this paper a numerical model is developed based on incompressible and inviscid fluid motion for the liquid sloshing phenomenon. The coupled BEM-FEM is used to solve the governing equations and nonlinear free surface boundary conditions. The results are validated for rectangular container using data obtained for a horizontal periodic sway motion. Using the results of this model a new arrangement of trapezoidal shapes with quadratic sidewalls is suggested for tanker ship storage panels. The suggested geometric shape not only has a maximum surrounded tank volume to the constant available volume, but also reduces the sloshing effects more efficiently than the existing geometric shapes.
Dean Flow Dynamics in Low-Aspect Ratio Spiral Microchannels
Nivedita, Nivedita; Ligrani, Phillip; Papautsky, Ian
2017-01-01
A wide range of microfluidic cell-sorting devices has emerged in recent years, based on both passive and active methods of separation. Curvilinear channel geometries are often used in these systems due to presence of secondary flows, which can provide high throughput and sorting efficiency. Most of these devices are designed on the assumption of two counter rotating Dean vortices present in the curved rectangular channels and existing in the state of steady rotation and amplitude. In this work, we investigate these secondary flows in low aspect ratio spiral rectangular microchannels and define their development with respect to the channel aspect ratio and Dean number. This work is the first to experimentally and numerically investigate Dean flows in microchannels for Re > 100, and show presence of secondary Dean vortices beyond a critical Dean number. We further demonstrate the impact of these multiple vortices on particle and cell focusing. Ultimately, this work offers new insights into secondary flow instabilities for low-aspect ratio, spiral microchannels, with improved flow models for design of more precise and efficient microfluidic devices for applications such as cell sorting and micromixing. PMID:28281579
Instability of rectangular jets
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Thies, Andrew T.
1993-01-01
The instability of rectangular jets is investigated using a vortex-sheet model. It is shown that such jets support four linearly independent families of instability waves. Within each family there are infinitely many modes. A way to classify these modes according to the characteristics of their mode shapes or eigenfunctions is proposed. It is demonstrated that the boundary element method can be used to calculate the dispersion relations and eigenfunctions of these instability wave modes. The method is robust and efficient. A parametric study of the instability wave characteristics has been carried out. A sample of the numerical results is reported here. It is found that the first and third modes of each instability wave family are corner modes. The pressure fluctuations associated with these instability waves are localized near the corners of the jet. The second mode, however, is a center mode with maximum fluctuations concentrated in the central portion of the jet flow. The center mode has the largest spatial growth rate. It is anticipated that as the instability waves propagate downstream the center mode would emerge as the dominant instability of the jet.
Vibrational response of a rectangular duct of finite length excited by a turbulent internal flow
NASA Astrophysics Data System (ADS)
David, Antoine; Hugues, Florian; Dauchez, Nicolas; Perrey-Debain, Emmanuel
2018-05-01
Gas transport ductwork in industrial plants or air conditioning networks can be subject to vibrations induced by the internal flow. Most studies in this matter have been carried out on circular ducts. This paper focuses specifically on the vibratory response of a rectangular duct of finite length excited by an internal turbulent flow. A semi-analytical model taking into account the modal response of the structure due to both aerodynamic and acoustic contributions is derived. The aerodynamic component of the excitation is applied on the basis of Corcos model where the power spectral density of the wall pressure is determined experimentally. The acoustic component is based on the propagating modes in the duct where the acoustic modal contribution are extracted via cross-spectral densities. The vibrational response is given for a 0.2 × 0.1 × 0.5 m3 duct made of 3 mm steel plates excited by 20 m/s or 30 m/s flows. Comparisons between experimental results and numerical predictions show a good agreement. The competition between acoustic and aerodynamic components is highlighted.
Parameter Optimization and Electrode Improvement of Rotary Stepper Micromotor
NASA Astrophysics Data System (ADS)
Sone, Junji; Mizuma, Toshinari; Mochizuki, Shunsuke; Sarajlic, Edin; Yamahata, Christophe; Fujita, Hiroyuki
We developed a three-phase electrostatic stepper micromotor and performed a numerical simulation to improve its performance for practical use and to optimize its design. We conducted its circuit simulation by simplifying its structure, and the effect of springback force generated by supported mechanism using flexures was considered. And we considered new improvement method for electrodes. This improvement and other parameter optimizations achieved the low voltage drive of micromotor.
Venous obstruction in permanent pacemaker patients: an isotopic study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauletti, M.; Di Ricco, G.; Solfanelli, S.
1981-01-01
Isotope venography was used to study the venous circulation proximal to the superior vena cava in two groups of pacemaker patients, one with a single endocavitary electrode and the other with multiple pacing catheters. A control group of patients without pacemakers was also studied. Numerous abnormalities were found, especially in the group with multiple electrodes. These findings suggest that venous obstruction is a common complication of endocardial pacing.
NASA Astrophysics Data System (ADS)
Liu, T.; Reißner, R.; Schiller, G.; Ansar, A.
2018-01-01
The aim of this work is to improve the performance of electrodes prepared via atmospheric plasma spray by means of gas shrouding which is expected to apparently reduce the oxygen content of the plasma plume and subsequently improve the coating quality. Electrodes with dual-layer coating for alkaline water electrolysis were deposited on Ni-coated perforated substrates. Microstructure and morphology were studied by SEM. Element content was measured by EDS. Enthalpy probe was employed for measuring plasma temperature and velocity as well as the gas composition. For verifying and better understanding the shrouding effect numerical calculation was carried out according to the experimental settings. Electrochemical test was carried out to validate the shrouding effect. The results showed slight protecting effect of gas shrouding on plasma plume and the final coating. Over the dual-layer section, the measured oxygen fraction was 3.46 and 3.15% for the case without gas shrouding and with gas shrouding, respectively. With gas shrouding the coating exhibited similar element contents as the coating sprayed by VPS, while no obvious improvement was observed in the microstructure or the morphology. Evident electrochemical improvement was nevertheless achieved that with gas shrouding the electrode exhibited similar performance as that of the VPS-sprayed electrode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Bing-Ang; Li, Bin; Lin, Jie
This paper aims to understand the effect of nanoarchitecture on the performance of pseudocapacitive electrodes consisting of conducting scaffold coated with pseudocapacitive material. To do so, two-dimensional numerical simulations of ordered conducting nanorods coated with a thin film of pseudocapacitive material were performed. The simulations reproduced three-electrode cyclic voltammetry measurements based on a continuum model derived from first principles. Two empirical approaches commonly used experimentally to characterize the contributions of surface-controlled and diffusion-controlled charge storage mechanisms to the total current density with respect to scan rate were theoretically validated for the first time. Moreover, the areal capacitive capacitance, attributed tomore » EDL formation, remained constant and independent of electrode dimensions, at low scan rates. However, at high scan rates, it decreased with decreasing conducting nanorod radius and increasing pseudocapacitive layer thickness due to resistive losses. By contrast, the gravimetric faradaic capacitance, due to reversible faradaic reactions, decreased continuously with increasing scan rate and pseudocapacitive layer thickness but was independent of conducting nanorod radius. Note that the total gravimetric capacitance predicted numerically featured values comparable to experimental measurements. Finally, an optimum pseudocapacitive layer thickness that maximizes total areal capacitance was identified as a function of scan rate and confirmed by scaling analysis.« less
Mei, Bing-Ang; Li, Bin; Lin, Jie; ...
2017-10-27
This paper aims to understand the effect of nanoarchitecture on the performance of pseudocapacitive electrodes consisting of conducting scaffold coated with pseudocapacitive material. To do so, two-dimensional numerical simulations of ordered conducting nanorods coated with a thin film of pseudocapacitive material were performed. The simulations reproduced three-electrode cyclic voltammetry measurements based on a continuum model derived from first principles. Two empirical approaches commonly used experimentally to characterize the contributions of surface-controlled and diffusion-controlled charge storage mechanisms to the total current density with respect to scan rate were theoretically validated for the first time. Moreover, the areal capacitive capacitance, attributed tomore » EDL formation, remained constant and independent of electrode dimensions, at low scan rates. However, at high scan rates, it decreased with decreasing conducting nanorod radius and increasing pseudocapacitive layer thickness due to resistive losses. By contrast, the gravimetric faradaic capacitance, due to reversible faradaic reactions, decreased continuously with increasing scan rate and pseudocapacitive layer thickness but was independent of conducting nanorod radius. Note that the total gravimetric capacitance predicted numerically featured values comparable to experimental measurements. Finally, an optimum pseudocapacitive layer thickness that maximizes total areal capacitance was identified as a function of scan rate and confirmed by scaling analysis.« less
Ngamchuea, Kamonwad; Eloul, Shaltiel; Tschulik, Kristina; Compton, Richard G
2015-07-21
Understanding mass transport is prerequisite to all quantitative analysis of electrochemical experiments. While the contribution of diffusion is well understood, the influence of density gradient-driven natural convection on the mass transport in electrochemical systems is not. To date, it has been assumed to be relevant only for high concentrations of redox-active species and at long experimental time scales. If unjustified, this assumption risks misinterpretation of analytical data obtained from scanning electrochemical microscopy (SECM) and generator-collector experiments, as well as analytical sensors utilizing macroelectrodes/microelectrode arrays. It also affects the results expected from electrodeposition. On the basis of numerical simulation, herein it is demonstrated that even at less than 10 mM concentrations and short experimental times of tens of seconds, density gradient-driven natural convection significantly affects mass transport. This is evident from in-depth numerical simulation for the oxidation of hexacyanoferrate (II) at various electrode sizes and electrode orientations. In each case, the induced convection and its influence on the diffusion layer established near the electrode are illustrated by maps of the velocity fields and concentration distributions evolving with time. The effects of natural convection on mass transport and chronoamperometric currents are thus quantified and discussed for the different cases studied.
Adeyanju, Oyinlolu O.; Al-Angari, Haitham M.; Sahakian, Alan V.
2012-01-01
Background Irreversible electroporation (IRE) is a novel ablation tool that uses brief high-voltage pulses to treat cancer. The efficacy of the therapy depends upon the distribution of the electric field, which in turn depends upon the configuration of electrodes used. Methods We sought to optimize the electrode configuration in terms of the distance between electrodes, the depth of electrode insertion, and the number of electrodes. We employed a 3D Finite Element Model and systematically varied the distance between the electrodes and the depth of electrode insertion, monitoring the lowest voltage sufficient to ablate the tumor, VIRE. We also measured the amount of normal (non-cancerous) tissue ablated. Measurements were performed for two electrodes, three electrodes, and four electrodes. The optimal electrode configuration was determined to be the one with the lowest VIRE, as that minimized damage to normal tissue. Results The optimal electrode configuration to ablate a 2.5 cm spheroidal tumor used two electrodes with a distance of 2 cm between the electrodes and a depth of insertion of 1 cm below the halfway point in the spherical tumor, as measured from the bottom of the electrode. This produced a VIRE of 3700 V. We found that it was generally best to have a small distance between the electrodes and for the center of the electrodes to be inserted at a depth equal to or deeper than the center of the tumor. We also found the distance between electrodes was far more important in influencing the outcome measures when compared with the depth of electrode insertion. Conclusions Overall, the distribution of electric field is highly dependent upon the electrode configuration, but the optimal configuration can be determined using numerical modeling. Our findings can help guide the clinical application of IRE as well as the selection of the best optimization algorithm to use in finding the optimal electrode configuration. PMID:23077449
Quasi-3D Modeling and Efficient Simulation of Laminar Flows in Microfluidic Devices.
Islam, Md Zahurul; Tsui, Ying Yin
2016-10-03
A quasi-3D model has been developed to simulate the flow in planar microfluidic systems with low Reynolds numbers. The model was developed by decomposing the flow profile along the height of a microfluidic system into a Fourier series. It was validated against the analytical solution for flow in a straight rectangular channel and the full 3D numerical COMSOL Navier-Stokes solver for flow in a T-channel. Comparable accuracy to the full 3D numerical solution was achieved by using only three Fourier terms with a significant decrease in computation time. The quasi-3D model was used to model flows in a micro-flow cytometer chip on a desktop computer and good agreement between the simulation and the experimental results was found.
Quasi-3D Modeling and Efficient Simulation of Laminar Flows in Microfluidic Devices
Islam, Md. Zahurul; Tsui, Ying Yin
2016-01-01
A quasi-3D model has been developed to simulate the flow in planar microfluidic systems with low Reynolds numbers. The model was developed by decomposing the flow profile along the height of a microfluidic system into a Fourier series. It was validated against the analytical solution for flow in a straight rectangular channel and the full 3D numerical COMSOL Navier-Stokes solver for flow in a T-channel. Comparable accuracy to the full 3D numerical solution was achieved by using only three Fourier terms with a significant decrease in computation time. The quasi-3D model was used to model flows in a micro-flow cytometer chip on a desktop computer and good agreement between the simulation and the experimental results was found. PMID:27706104
Numerical solutions of 3-dimensional Navier-Stokes equations for closed bluff-bodies
NASA Technical Reports Server (NTRS)
Abolhassani, J. S.; Tiwari, S. N.
1985-01-01
The Navier-Stokes equations are solved numerically. These equations are unsteady, compressible, viscous, and three-dimensional without neglecting any terms. The time dependency of the governing equations allows the solution to progress naturally for an arbitrary initial guess to an asymptotic steady state, if one exists. The equations are transformed from physical coordinates to the computational coordinates, allowing the solution of the governing equations in a rectangular parallelepiped domain. The equations are solved by the MacCormack time-split technique which is vectorized and programmed to run on the CDc VPS 32 computer. The codes are written in 32-bit (half word) FORTRAN, which provides an approximate factor of two decreasing in computational time and doubles the memory size compared to the 54-bit word size.
NASA Astrophysics Data System (ADS)
Cho, Jeonghyun; Han, Cheolheui; Cho, Leesang; Cho, Jinsoo
2003-08-01
This paper treats the kernel function of an integral equation that relates a known or prescribed upwash distribution to an unknown lift distribution for a finite wing. The pressure kernel functions of the singular integral equation are summarized for all speed range in the Laplace transform domain. The sonic kernel function has been reduced to a form, which can be conveniently evaluated as a finite limit from both the subsonic and supersonic sides when the Mach number tends to one. Several examples are solved including rectangular wings, swept wings, a supersonic transport wing and a harmonically oscillating wing. Present results are given with other numerical data, showing continuous results through the unit Mach number. Computed results are in good agreement with other numerical results.
Emergence of Landauer transport from quantum dynamics: A model Hamiltonian approach
NASA Astrophysics Data System (ADS)
Pal, Partha Pratim; Ramakrishna, S.; Seideman, Tamar
2018-04-01
The Landauer expression for computing current-voltage characteristics in nanoscale devices is efficient but not suited to transient phenomena and a time-dependent current because it is applicable only when the charge carriers transition into a steady flux after an external perturbation. In this article, we construct a very general expression for time-dependent current in an electrode-molecule-electrode arrangement. Utilizing a model Hamiltonian (consisting of the subsystem energy levels and their electronic coupling terms), we propagate the Schrödinger wave function equation to numerically compute the time-dependent population in the individual subsystems. The current in each electrode (defined in terms of the rate of change of the corresponding population) has two components, one due to the charges originating from the same electrode and the other due to the charges initially residing at the other electrode. We derive an analytical expression for the first component and illustrate that it agrees reasonably with its numerical counterpart at early times. Exploiting the unitary evolution of a wavefunction, we construct a more general Landauer style formula and illustrate the emergence of Landauer transport from our simulations without the assumption of time-independent charge flow. Our generalized Landauer formula is valid at all times for models beyond the wide-band limit, non-uniform electrode density of states and for time and energy-dependent electronic coupling between the subsystems. Subsequently, we investigate the ingredients in our model that regulate the onset time scale of this steady state. We compare the performance of our general current expression with the Landauer current for time-dependent electronic coupling. Finally, we comment on the applicability of the Landauer formula to compute hot-electron current arising upon plasmon decoherence.
Arena, Christopher B; Mahajan, Roop L; Nichole Rylander, Marissa; Davalos, Rafael V
2013-11-01
Irreversible electroporation (IRE) is a new technology for ablating aberrant tissue that utilizes pulsed electric fields (PEFs) to kill cells by destabilizing their plasma membrane. When treatments are planned correctly, the pulse parameters and location of the electrodes for delivering the pulses are selected to permit destruction of the target tissue without causing thermal damage to the surrounding structures. This allows for the treatment of surgically inoperable masses that are located near major blood vessels and nerves. In select cases of high-dose IRE, where a large ablation volume is desired without increasing the number of electrode insertions, it can become challenging to design a pulse protocol that is inherently nonthermal. To solve this problem we have developed a new electrosurgical device that requires no external equipment or protocol modifications. The design incorporates a phase change material (PCM) into the electrode core that melts during treatment and absorbs heat out of the surrounding tissue. Here, this idea is reduced to practice by testing hollow electrodes filled with gallium on tissue phantoms and monitoring temperature in real time. Additionally, the experimental data generated are used to validate a numerical model of the heat transfer problem, which is then applied to investigate the cooling performance of other classes of PCMs. The results indicate that metallic PCMs, such as gallium, are better suited than organics or salt hydrates for thermal management, because their comparatively higher thermal conductivity aids in heat dissipation. However, the melting point of the metallic PCM must be properly adjusted to ensure that the phase transition is not completed before the end of treatment. When translated clinically, phase change electrodes have the potential to continue to allow IRE to be performed safely near critical structures, even in high-dose cases.
Emergence of Landauer transport from quantum dynamics: A model Hamiltonian approach.
Pal, Partha Pratim; Ramakrishna, S; Seideman, Tamar
2018-04-14
The Landauer expression for computing current-voltage characteristics in nanoscale devices is efficient but not suited to transient phenomena and a time-dependent current because it is applicable only when the charge carriers transition into a steady flux after an external perturbation. In this article, we construct a very general expression for time-dependent current in an electrode-molecule-electrode arrangement. Utilizing a model Hamiltonian (consisting of the subsystem energy levels and their electronic coupling terms), we propagate the Schrödinger wave function equation to numerically compute the time-dependent population in the individual subsystems. The current in each electrode (defined in terms of the rate of change of the corresponding population) has two components, one due to the charges originating from the same electrode and the other due to the charges initially residing at the other electrode. We derive an analytical expression for the first component and illustrate that it agrees reasonably with its numerical counterpart at early times. Exploiting the unitary evolution of a wavefunction, we construct a more general Landauer style formula and illustrate the emergence of Landauer transport from our simulations without the assumption of time-independent charge flow. Our generalized Landauer formula is valid at all times for models beyond the wide-band limit, non-uniform electrode density of states and for time and energy-dependent electronic coupling between the subsystems. Subsequently, we investigate the ingredients in our model that regulate the onset time scale of this steady state. We compare the performance of our general current expression with the Landauer current for time-dependent electronic coupling. Finally, we comment on the applicability of the Landauer formula to compute hot-electron current arising upon plasmon decoherence.
Evaluation of Residence Time on Nitrogen Oxides Removal in Non-Thermal Plasma Reactor
Talebizadeh, Pouyan; Rahimzadeh, Hassan; Babaie, Meisam; Javadi Anaghizi, Saeed; Ghomi, Hamidreza; Ahmadi, Goodarz; Brown, Richard
2015-01-01
Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode. PMID:26496630
Evaluation of Propagation Characteristics Using the Human Body as an Antenna
Li, Jingzhen; Liu, Yuhang; Hao, Yang
2017-01-01
In this paper, an inhomogeneous human body model was presented to investigate the propagation characteristics when the human body was used as an antenna to achieve signal transmission. Specifically, the channel gain of four scenarios, namely, (1) both TX electrode and RX electrode were placed in the air, (2) TX electrode was attached on the human body, and RX electrode was placed in the air, (3) TX electrode was placed in the air, and RX electrode was attached on the human body, (4) both the TX electrode and RX electrode were attached on the human body, were studied through numerical simulation in the frequency range 1 MHz to 90 MHz. Furthermore, the comparisons of input efficiency, accepted efficiency, total efficiency, absorption power of human body, and electric field distribution of different distances of four aforementioned scenarios were explored when the frequency was at 44 MHz. In addition, the influences of different human tissues, electrode position, and the distance between electrode and human body on the propagation characteristics were investigated respectively at 44 MHz. The results showed that the channel gain of Scenario 4 was the maximum when the frequency was from 1 MHz to 90 MHz. The propagation characteristics were almost independent of electrode position when the human body was using as an antenna. However, as the distance between TX electrode and human body increased, the channel gain decreased rapidly. The simulations were verified by experimental measurements. The results showed that the simulations were in agreement with the measurements. PMID:29232905
Evaluation of Propagation Characteristics Using the Human Body as an Antenna.
Li, Jingzhen; Nie, Zedong; Liu, Yuhang; Wang, Lei; Hao, Yang
2017-12-11
In this paper, an inhomogeneous human body model was presented to investigate the propagation characteristics when the human body was used as an antenna to achieve signal transmission. Specifically, the channel gain of four scenarios, namely, (1) both TX electrode and RX electrode were placed in the air, (2) TX electrode was attached on the human body, and RX electrode was placed in the air, (3) TX electrode was placed in the air, and RX electrode was attached on the human body, (4) both the TX electrode and RX electrode were attached on the human body, were studied through numerical simulation in the frequency range 1 MHz to 90 MHz. Furthermore, the comparisons of input efficiency, accepted efficiency, total efficiency, absorption power of human body, and electric field distribution of different distances of four aforementioned scenarios were explored when the frequency was at 44 MHz. In addition, the influences of different human tissues, electrode position, and the distance between electrode and human body on the propagation characteristics were investigated respectively at 44 MHz. The results showed that the channel gain of Scenario 4 was the maximum when the frequency was from 1 MHz to 90 MHz. The propagation characteristics were almost independent of electrode position when the human body was using as an antenna. However, as the distance between TX electrode and human body increased, the channel gain decreased rapidly. The simulations were verified by experimental measurements. The results showed that the simulations were in agreement with the measurements.
Numerical modeling of heat transfer in the fuel oil storage tank at thermal power plant
NASA Astrophysics Data System (ADS)
Kuznetsova, Svetlana A.
2015-01-01
Presents results of mathematical modeling of convection of a viscous incompressible fluid in a rectangular cavity with conducting walls of finite thickness in the presence of a local source of heat in the bottom of the field in terms of convective heat exchange with the environment. A mathematical model is formulated in terms of dimensionless variables "stream function - vorticity vector speed - temperature" in the Cartesian coordinate system. As the results show the distributions of hydrodynamic parameters and temperatures using different boundary conditions on the local heat source.
Analytical results for post-buckling behaviour of plates in compression and in shear
NASA Technical Reports Server (NTRS)
Stein, M.
1985-01-01
The postbuckling behavior of long rectangular isotropic and orthotropic plates is determined. By assuming trigonometric functions in one direction, the nonlinear partial differential equations of von Karman large deflection plate theory are converted into nonlinear ordinary differential equations. The ordinary differential equations are solved numerically using an available boundary value problem solver which makes use of Newton's method. Results for longitudinal compression show different postbuckling behavior between isotropic and orthotropic plates. Results for shear show that change in inplane edge constraints can cause large change in postbuckling stiffness.
Numerical Modeling of Three-Dimensional Confined Flows
NASA Technical Reports Server (NTRS)
Greywall, M. S.
1981-01-01
A three dimensional confined flow model is presented. The flow field is computed by calculating velocity and enthalpy along a set of streamlines. The finite difference equations are obtained by applying conservation principles to streamtubes constructed around the chosen streamlines. With appropriate substitutions for the body force terms, the approach computes three dimensional magnetohydrodynamic channel flows. A listing of a computer code, based on this approach is presented in FORTRAN IV language. The code computes three dimensional compressible viscous flow through a rectangular duct, with the duct cross section specified along the axis.
An Analysis of the Load-Bearing Capacity of Timber-Concrete Composite Beams with Profiled Sheeting
NASA Astrophysics Data System (ADS)
Szumigała, Maciej; Szumigała, Ewa; Polus, Łukasz
2017-12-01
This paper presents an analysis of timber-concrete composite beams. Said composite beams consist of rectangular timber beams and concrete slabs poured into the steel sheeting. The concrete slab is connected with the timber beam using special shear connectors. The authors of this article are trying to patent these connectors. The article contains results from a numerical analysis. It is demonstrated that the type of steel sheeting used as a lost formwork has an influence on the load-bearing capacity and stiffness of the timber-concrete composite beams.
Three-dimensional low Reynolds number flows with a free surface
NASA Technical Reports Server (NTRS)
Degani, D.; Gutfinger, C.
1977-01-01
The two-dimensional leveling problem (Degani, Gutfinger, 1976) is extended to three dimensions in the case where the flow Re number is very low and attention is paid to the free surface boundary condition with surface tension effects included. The no-slip boundary condition on the wall is observed. The numerical solution falls back on the Marker and Cell (MAC) method (Harlow and Welch, 1965) with the computation region divided into a finite number of stationary rectangular cells (or boxes in the 3-D case) and fluid flow traverses the cells (or boxes).
NASA Astrophysics Data System (ADS)
Mesalhy, O. M.; El-Sayed, Mostafa M.
2015-06-01
Flow and heat transfer characteristics of a plate-fin heat sink cooled by a rectangular impinging jet with different cross-sectional area were studied experimentally and numerically. The study concentrated on investigating the effect of jet width, fin numbers, and fin heights on thermal performance. Entropy generation minimization method was used to define the optimum design and operating conditions. It is found that, the jet width that minimizes entropy generation changes with heat sink height and fin numbers.
Time-Dependent Thermally-Driven Interfacial Flows in Multilayered Fluid Structures
NASA Technical Reports Server (NTRS)
Haj-Hariri, Hossein; Borhan, A.
1996-01-01
A computational study of thermally-driven convection in multilayered fluid structures will be performed to examine the effect of interactions among deformable fluid-fluid interfaces on the structure of time-dependent flow in these systems. Multilayered fluid structures in two models configurations will be considered: the differentially heated rectangular cavity with a free surface, and the encapsulated cylindrical liquid bridge. An extension of a numerical method developed as part of our recent NASA Fluid Physics grant will be used to account for finite deformations of fluid-fluid interfaces.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-12
... DEPARTMENT OF COMMERCE International Trade Administration [A-201-836] Light-Walled Rectangular... preliminary results of the administrative review of the antidumping duty order on light-walled rectangular... period of review (POR) from August 1, 2009, through July 31, 2010. \\1\\ See Light-Walled Rectangular Pipe...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-13
... DEPARTMENT OF COMMERCE International Trade Administration [A-201-836] Light-Walled Rectangular... administrative review of the antidumping duty order on light-walled rectangular pipe and tube (LWRPT) from Mexico... Light-Walled Rectangular Pipe and Tube from Mexico, the People's Republic of China, and the Republic of...
Eigenvalues of Rectangular Waveguide Using FEM With Hybrid Elements
NASA Technical Reports Server (NTRS)
Deshpande, Manohar D.; Hall, John M.
2002-01-01
A finite element analysis using hybrid triangular-rectangular elements is developed to estimate eigenvalues of a rectangular waveguide. Use of rectangular vector-edge finite elements in the vicinity of the PEC boundary and triangular elements in the interior region more accurately models the physical nature of the electromagnetic field, and consequently quicken the convergence.
Enhanced charging kinetics of porous electrodes: surface conduction as a short-circuit mechanism.
Mirzadeh, Mohammad; Gibou, Frederic; Squires, Todd M
2014-08-29
We use direct numerical simulations of the Poisson-Nernst-Planck equations to study the charging kinetics of porous electrodes and to evaluate the predictive capabilities of effective circuit models, both linear and nonlinear. The classic transmission line theory of de Levie holds for general electrode morphologies, but only at low applied potentials. Charging dynamics are slowed appreciably at high potentials, yet not as significantly as predicted by the nonlinear transmission line model of Biesheuvel and Bazant. We identify surface conduction as a mechanism which can effectively "short circuit" the high-resistance electrolyte in the bulk of the pores, thus accelerating the charging dynamics and boosting power densities. Notably, the boost in power density holds only for electrode morphologies with continuous conducting surfaces in the charging direction.
Violent transient sloshing-wave interaction with a baffle in a three-dimensional numerical tank
NASA Astrophysics Data System (ADS)
Xue, Mi-An; Zheng, Jinhai; Lin, Pengzhi; Xiao, Zhong
2017-08-01
A finite difference model for solving Navier Stokes equations with turbulence taken into account is used to investigate viscous liquid sloshing-wave interaction with baffles in a tank. The volume-of-fluid and virtual boundary force methods are employed to simulate free surface flow interaction with structures. A liquid sloshing experimental apparatus was established to evaluate the accuracy of the proposed model, as well as to study nonlinear sloshing in a prismatic tank with the baffles. Damping effects of sloshing in a rectangular tank with bottom-mounted vertical baffles and vertical baffles touching the free surface are studied numerically and experimentally. Good agreement is obtained between the present numerical results and experimental data. The numerical results match well with the current experimental data for strong nonlinear sloshing with large free surface slopes. The reduction in sloshing-wave elevation and impact pressure induced by the bottom-mounted vertical baffle and the vertical baffle touching the free surface is estimated by varying the external excitation frequency and the location and height of the vertical baffle under horizontal excitation.
Richter, Christiane; Kotz, Frederik; Giselbrecht, Stefan; Helmer, Dorothea; Rapp, Bastian E
2016-06-01
The fluid mechanics of microfluidics is distinctively simpler than the fluid mechanics of macroscopic systems. In macroscopic systems effects such as non-laminar flow, convection, gravity etc. need to be accounted for all of which can usually be neglected in microfluidic systems. Still, there exists only a very limited selection of channel cross-sections for which the Navier-Stokes equation for pressure-driven Poiseuille flow can be solved analytically. From these equations, velocity profiles as well as flow rates can be calculated. However, whenever a cross-section is not highly symmetric (rectangular, elliptical or circular) the Navier-Stokes equation can usually not be solved analytically. In all of these cases, numerical methods are required. However, in many instances it is not necessary to turn to complex numerical solver packages for deriving, e.g., the velocity profile of a more complex microfluidic channel cross-section. In this paper, a simple spreadsheet analysis tool (here: Microsoft Excel) will be used to implement a simple numerical scheme which allows solving the Navier-Stokes equation for arbitrary channel cross-sections.
Interaction of a conductive crack and of an electrode at a piezoelectric bimaterial interface
NASA Astrophysics Data System (ADS)
Onopriienko, Oleg; Loboda, Volodymyr; Sheveleva, Alla; Lapusta, Yuri
2018-06-01
The interaction of a conductive crack and an electrode at a piezoelectric bi-material interface is studied. The bimaterial is subjected to an in-plane electrical field parallel to the interface and an anti-plane mechanical loading. The problem is formulated and reduced, via the application of sectionally analytic vector functions, to a combined Dirichlet-Riemann boundary value problem. Simple analytical expressions for the stress, the electric field, and their intensity factors as well as for the crack faces' displacement jump are derived. Our numerical results illustrate the proposed approach and permit to draw some conclusions on the crack-electrode interaction.
Factors Affecting Open-Set Word Recognition in Adults with Cochlear Implants
Holden, Laura K.; Finley, Charles C.; Firszt, Jill B.; Holden, Timothy A.; Brenner, Christine; Potts, Lisa G.; Gotter, Brenda D.; Vanderhoof, Sallie S.; Mispagel, Karen; Heydebrand, Gitry; Skinner, Margaret W.
2012-01-01
A monosyllabic word test was administered to 114 postlingually-deaf adult cochlear implant (CI) recipients at numerous intervals from two weeks to two years post-initial CI activation. Biographic/audiologic information, electrode position, and cognitive ability were examined to determine factors affecting CI outcomes. Results revealed that Duration of Severe-to-Profound Hearing Loss, Age at Implantation, CI Sound-field Threshold Levels, Percentage of Electrodes in Scala Vestibuli, Medio-lateral Electrode Position, Insertion Depth, and Cognition were among the factors that affected performance. Knowledge of how factors affect performance can influence counseling, device fitting, and rehabilitation for patients and may contribute to improved device design. PMID:23348845
Tantawi, Sami G.; Dolgashev, Valery A.; Yeremian, Anahid D.
2016-03-15
A high-power microwave RF window is provided that includes a cylindrical waveguide, where the cylindrical waveguide includes a ceramic disk concentrically housed in a central region of the cylindrical waveguide, a first rectangular waveguide, where the first rectangular waveguide is connected by a first elliptical joint to a proximal end of the cylindrical waveguide, and a second rectangular waveguide, where the second rectangular waveguide is connected by a second elliptical joint to a distal end of the cylindrical waveguide.
NASA Astrophysics Data System (ADS)
Im, Chang-Hwan; Park, Ji-Hye; Shim, Miseon; Chang, Won Hyuk; Kim, Yun-Hee
2012-04-01
In this study, local electric field distributions generated by transcranial direct current stimulation (tDCS) with an extracephalic reference electrode were evaluated to address extracephalic tDCS safety issues. To this aim, we generated a numerical model of an adult male human upper body and applied the 3D finite element method to electric current conduction analysis. In our simulations, the active electrode was placed over the left primary motor cortex (M1) and the reference electrode was placed at six different locations: over the right temporal lobe, on the right supraorbital region, on the right deltoid, on the left deltoid, under the chin, and on the right buccinator muscle. The maximum current density and electric field intensity values in the brainstem generated by the extracephalic reference electrodes were comparable to, or even less than, those generated by the cephalic reference electrodes. These results suggest that extracephalic reference electrodes do not lead to unwanted modulation of the brainstem cardio-respiratory and autonomic centers, as indicated by recent experimental studies. The volume energy density was concentrated at the neck area by the use of deltoid reference electrodes, but was still smaller than that around the active electrode locations. In addition, the distributions of elicited cortical electric fields demonstrated that the use of extracephalic reference electrodes might allow for the robust prediction of cortical modulations with little dependence on the reference electrode locations.
Scaling Relations for Intercalation Induced Damage in Electrodes
Chen, Chien-Fan; Barai, Pallab; Smith, Kandler; ...
2016-04-02
Mechanical degradation, owing to intercalation induced stress and microcrack formation, is a key contributor to the electrode performance decay in lithium-ion batteries (LIBs). The stress generation and formation of microcracks are caused by the solid state diffusion of lithium in the active particles. Here in this work, scaling relations are constructed for diffusion induced damage in intercalation electrodes based on an extensive set of numerical experiments with a particle-level description of microcrack formation under disparate operating and cycling conditions, such as temperature, particle size, C-rate, and drive cycle. The microcrack formation and evolution in active particles is simulated based onmore » a stochastic methodology. A reduced order scaling law is constructed based on an extensive set of data from the numerical experiments. The scaling relations include combinatorial constructs of concentration gradient, cumulative strain energy, and microcrack formation. Lastly, the reduced order relations are further employed to study the influence of mechanical degradation on cell performance and validated against the high order model for the case of damage evolution during variable current vehicle drive cycle profiles.« less
A numerical study of steady crystal growth in a vertical Bridgman device
NASA Astrophysics Data System (ADS)
Jalics, Miklos Kalman
Electronics based on semiconductors creates an enormous demand for high quality semiconductor single crystals. The vertical Bridgman device is commonly used for growing single crystals for a variety of materials such as GaAs, InP and HgCdTe. A mathematical model is presented for steady crystal growth under conditions where crystal growth is determined strictly by heat transfer. The ends of the ampoule are chosen far away from the insulation zone to allow for steady growth. A numerical solution is sought for this mathematical model. The equations are transformed into a rectangular geometry and appropriate finite difference techniques are applied on the transformed equations. Newton's method solves the nonlinear problem. To improve efficiency GMRES with preconditioning is used to compute the Newton iterates. The numerical results are used to compare with two current asymptotic theories that assume small Biot numbers. Results indicate that one of the asymptotic theories is accurate for even moderate Biot numbers.
Kazemzadeh, Amin; Ganesan, Poo; Ibrahim, Fatimah; He, Shuisheng; Madou, Marc J
2013-01-01
This paper employs the volume of fluid (VOF) method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical method. The performance of capillary valves in the rectangular and the circular microfluidic structures on super hydrophilic centrifugal microfluidic platforms is studied. The numerical results are also compared with the existing theoretical models and the differences are discussed. Our experimental and computed results show a minimum burst frequency occurring at square capillaries and this result is useful for designing and developing more sophisticated networks of capillary valves. It also predicts that in super hydrophilic microfluidics, the fluid leaks consistently from the capillary valve at low pressures which can disrupt the biomedical procedures in centrifugal microfluidic platforms.
Kazemzadeh, Amin; Ganesan, Poo; Ibrahim, Fatimah; He, Shuisheng; Madou, Marc J.
2013-01-01
This paper employs the volume of fluid (VOF) method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical method. The performance of capillary valves in the rectangular and the circular microfluidic structures on super hydrophilic centrifugal microfluidic platforms is studied. The numerical results are also compared with the existing theoretical models and the differences are discussed. Our experimental and computed results show a minimum burst frequency occurring at square capillaries and this result is useful for designing and developing more sophisticated networks of capillary valves. It also predicts that in super hydrophilic microfluidics, the fluid leaks consistently from the capillary valve at low pressures which can disrupt the biomedical procedures in centrifugal microfluidic platforms. PMID:24069169
Numerical studies of the fluid and optical fields associated with complex cavity flows
NASA Technical Reports Server (NTRS)
Atwood, Christopher A.
1992-01-01
Numerical solutions for the flowfield about several cavity configurations have been computed using the Reynolds averaged Navier-Stokes equations. Comparisons between numerical and experimental results are made in two dimensions for free shear layers and a rectangular cavity, and in three dimensions for the transonic aero-window problem of the Stratospheric Observatory for Infrared Astronomy (SOFIA). Results show that dominant acoustic frequencies and magnitudes of the self excited resonant cavity flows compare well with the experiment. In addition, solution sensitivity to artificial dissipation and grid resolution levels are determined. Optical path distortion due to the flow field is modelled geometrically and is found to match the experiment. The fluid field was computed using a diagonalized scheme within an overset mesh framework. An existing code, OVERFLOW, was utilized with the additions of characteristic boundary condition and output routines required for reduction of the unsteady data. The newly developed code is directly applicable to a generalized three dimensional structured grid zone. Details are provided in a paper included in Appendix A.
Kong, Hye Jeong; Kim, Saerona; Le, Thanh-Hai; Kim, Yukyung; Park, Geunsu; Park, Chul Soon; Kwon, Oh Seok; Yoon, Hyeonseok
2017-11-16
3D nanostructured carbonaceous electrode materials with tunable capacitive phases were successfully developed using graphene/particulate polypyrrole (PPy) nanohybrid (GPNH) precursors without a separate process for incorporating heterogeneous species. The electrode material, namely carbonized GPNHs (CGPNHs) featured a mesophase capacitance consisting of both electric double-layer (EDL) capacitive and pseudocapacitive elements at the molecular level. The ratio of EDL capacitive element to pseudocapacitive element (E-to-P) in the mesophase electrode materials was controlled by varying the PPy-to-graphite weight (P w /G w ) ratio and by heat treatment (T H ), which was demonstrated by characterizing the CGPNHs with elemental analysis, cyclic voltammetry, and a charge/discharge test. The concept of the E-to-P ratio (EPR) index was first proposed to easily identify the capacitive characteristics of the mesophase electrode using a numerical algorithm, which was reasonably consistent with the experimental findings. Finally, the CGPNHs were integrated into symmetric two-electrode capacitor cells, which rendered excellent energy and power densities in both aqueous and ionic liquid electrolytes. It is anticipated that our approach could be widely extended to fabricating versatile hybrid electrode materials with estimation of their capacitive characteristics.
Governing equations for electro-conjugate fluid flow
NASA Astrophysics Data System (ADS)
Hosoda, K.; Takemura, K.; Fukagata, K.; Yokota, S.; Edamura, K.
2013-12-01
An electro-conjugation fluid (ECF) is a kind of dielectric liquid, which generates a powerful flow when high DC voltage is applied with tiny electrodes. This study deals with the derivation of the governing equations for electro-conjugate fluid flow based on the Korteweg-Helmholtz (KH) equation which represents the force in dielectric liquid subjected to high DC voltage. The governing equations consist of the Gauss's law, charge conservation with charge recombination, the KH equation, the continuity equation and the incompressible Navier-Stokes equations. The KH equation consists of coulomb force, dielectric constant gradient force and electrostriction force. The governing equation gives the distribution of electric field, charge density and flow velocity. In this study, direct numerical simulation (DNS) is used in order to get these distribution at arbitrary time. Successive over-relaxation (SOR) method is used in analyzing Gauss's law and constrained interpolation pseudo-particle (CIP) method is used in analyzing charge conservation with charge recombination. The third order Runge-Kutta method and conservative second-order-accurate finite difference method is used in analyzing the Navier-Stokes equations with the KH equation. This study also deals with the measurement of ECF ow generated with a symmetrical pole electrodes pair which are made of 0.3 mm diameter piano wire. Working fluid is FF-1EHA2 which is an ECF family. The flow is observed from the both electrodes, i.e., the flow collides in between the electrodes. The governing equation successfully calculates mean flow velocity in between the collector pole electrode and the colliding region by the numerical simulation.
NASA Astrophysics Data System (ADS)
Xu, Bin; Chen, Hongbing; Xia, Song
2017-03-01
In recent years, Piezoelectric Lead Zirconate Titanate (PZT) based active interfacial debonding defect detection approach for concrete-filled steel tubular (CFST) columns has been proposed and validated experimentally. In order to investigate the mechanism of the PZT based interfacial debonding detection approach, a multi-physics coupling finite element model (FEM) composed of surface-mounted PZT actuator, embedded PZT sensor and a rectangular CFST column is constructed to numerically simulate the stress wave propagation induced by the surface-mounted PZT actuator under different excitation signals with different frequency and amplitude. The measurements of the embedded PZT sensor in concrete core of the CFST columns with different interfacial debonding defect lengths and depths are determined numerically with transient dynamic analysis. The linearity between the PZT response and the input amplitude, the effect of different frequency and measurement distance are discussed and the stress wave fields of CFST members without and with interface debonding defects are compared. Then, the response of the embedded PZT in concrete core is analyzed with wavelet packet analysis. The root mean square deviation (RMSD) of wavelet packet energy spectrum of the PZT measurement is employed as an evaluation index for the interfacial debonding detection. The results showed that the defined index under continuous sinusoidal and sweep frequency signals changes with the interfacial defects length and depth and is capable of effectively identifying the interfacial debonding defect between the concrete core and the steel tubular. Moreover, the index under sweep frequency signal is more sensitive to the interfacial debonding. The simulation results indicate that the interfacial debonding defect leads to the changes in the propagation path, travel time and the magnitude of stress waves. The simulation results meet the findings from the previous experimental study by the authors and help understand the mechanism of interfacial debonding defect detection for CFSTs using PZT technology.
Decay characteristics of electroadhesive forces by periodic electrodes in dielectric layers
NASA Astrophysics Data System (ADS)
Lee, Junseok; Cha, Youngsu
2017-07-01
Electroadhesive force is the force generated by induced dipoles in the gradient of an electric field. Owing to its benefits of mechanical characteristics and versatility, it is widely used to hold and manipulate objects in robotic applications. So far, most studies in this field have been focused on the maximization of the magnitude of electroadhesive force. In this paper, we focus on the decay characteristics of electroadhesive force depending on the spatial distance from electrodes to employ the force to precisely separate a single layer from stacked dielectric layers. It turns out that all configurations with periodically repeating electrodes' arrangement, have the same decay characteristics which significantly depend on the geometrical period of the electrode patterns. Also, we find that the other parameters including the applied voltage and geometry of electrodes have little effect on the decay characteristics. The electric potential of an arbitrary electrode configuration is expanded in terms of the Fourier series, and we use it to analytically prove the high dependence of decay characteristics on the geometrical period. Numerical analysis is performed using the finite element method.
Advanced Boundary Electrode Modeling for tES and Parallel tES/EEG.
Pursiainen, Sampsa; Agsten, Britte; Wagner, Sven; Wolters, Carsten H
2018-01-01
This paper explores advanced electrode modeling in the context of separate and parallel transcranial electrical stimulation (tES) and electroencephalography (EEG) measurements. We focus on boundary condition-based approaches that do not necessitate adding auxiliary elements, e.g., sponges, to the computational domain. In particular, we investigate the complete electrode model (CEM) which incorporates a detailed description of the skin-electrode interface including its contact surface, impedance, and normal current distribution. The CEM can be applied for both tES and EEG electrodes which are advantageous when a parallel system is used. In comparison to the CEM, we test two important reduced approaches: the gap model (GAP) and the point electrode model (PEM). We aim to find out the differences of these approaches for a realistic numerical setting based on the stimulation of the auditory cortex. The results obtained suggest, among other things, that GAP and GAP/PEM are sufficiently accurate for the practical application of tES and parallel tES/EEG, respectively. Differences between CEM and GAP were observed mainly in the skin compartment, where only CEM explains the heating effects characteristic to tES.
Makeyev, Oleksandr; Joe, Cody; Lee, Colin; Besio, Walter G
2017-07-01
Concentric ring electrodes have shown promise in non-invasive electrophysiological measurement demonstrating their superiority to conventional disc electrodes, in particular, in accuracy of Laplacian estimation. Recently, we have proposed novel variable inter-ring distances concentric ring electrodes. Analytic and finite element method modeling results for linearly increasing distances electrode configurations suggested they may decrease the truncation error resulting in more accurate Laplacian estimates compared to currently used constant inter-ring distances configurations. This study assesses statistical significance of Laplacian estimation accuracy improvement due to novel variable inter-ring distances concentric ring electrodes. Full factorial design of analysis of variance was used with one categorical and two numerical factors: the inter-ring distances, the electrode diameter, and the number of concentric rings in the electrode. The response variables were the Relative Error and the Maximum Error of Laplacian estimation computed using a finite element method model for each of the combinations of levels of three factors. Effects of the main factors and their interactions on Relative Error and Maximum Error were assessed and the obtained results suggest that all three factors have statistically significant effects in the model confirming the potential of using inter-ring distances as a means of improving accuracy of Laplacian estimation.
An analysis of hypercritical states in elastic and inelastic systems
NASA Astrophysics Data System (ADS)
Kowalczk, Maciej
The author raises a wide range of problems whose common characteristic is an analysis of hypercritical states in elastic and inelastic systems. the article consists of two basic parts. The first part primarily discusses problems of modelling hypercritical states, while the second analyzes numerical methods (so-called continuation methods) used to solve non-linear problems. The original approaches for modelling hypercritical states found in this article include the combination of plasticity theory and an energy condition for cracking, accounting for the variability and cyclical nature of the forms of fracture of a brittle material under a die, and the combination of plasticity theory and a simplified description of the phenomenon of localization along a discontinuity line. The author presents analytical solutions of three non-linear problems for systems made of elastic/brittle/plastic and elastic/ideally plastic materials. The author proceeds to discuss the analytical basics of continuation methods and analyzes the significance of the parameterization of non-linear problems, provides a method for selecting control parameters based on an analysis of the rank of a rectangular matrix of a uniform system of increment equations, and also provides a new method for selecting an equilibrium path originating from a bifurcation point. The author provides a general outline of continuation methods based on an analysis of the rank of a matrix of a corrective system of equations. The author supplements his theoretical solutions with numerical solutions of non-linear problems for rod systems and problems of the plastic disintegration of a notched rectangular plastic plate.
Saugo, M; Flamini, D O; Brugnoni, L I; Saidman, S B
2015-11-01
The electrosynthesis of polypyrrole films onto Nitinol from sodium salicylate solutions of different concentrations is reported. The morphology and corrosion protection properties of the resulting coatings were examined and they both depend on the sodium salicylate concentration. The immobilisation of silver species in PPy films constituted by hollow rectangular microtubes was studied as a function of the polymer oxidation degree. The highest amount of silver was deposited when the coated electrode was prepolarised at -1.00V (SCE) before silver deposition, suggesting an increase in the amount of non-oxidised segments in the polymer. Finally, the antibacterial activity of the coating against the Gram positive Staphylococcus aureus and Staphylococcus epidermidis bacteria was evaluated. Both strains resulted sensitive to the modified coatings, obtaining a slightly better result against S. aureus. Copyright © 2015 Elsevier B.V. All rights reserved.
Jones, S.O.; Daly, F.V.
1958-10-14
S>An inert gas shield is presented for arc-welding materials such as zirconium that tend to oxidize rapidly in air. The device comprises a rectangular metal box into which the welding electrode is introduced through a rubber diaphragm to provide flexibility. The front of the box is provided with a wlndow having a small hole through which flller metal is introduced. The box is supplied with an inert gas to exclude the atmosphere, and with cooling water to promote the solidification of the weld while in tbe inert atmosphere. A separate water-cooled copper backing bar is provided underneath the joint to be welded to contain the melt-through at the root of the joint, shielding the root of the joint with its own supply of inert gas and cooling the deposited weld metal. This device facilitates the welding of large workpieces of zirconium frequently encountered in reactor construction.
Hydrothermal synthesis of poly(3,4-ethylenedioxythiophene) for high-rate performance supercapacitor
NASA Astrophysics Data System (ADS)
Ahmed, Sultan; Parvaz, M.; Johari, Rahul; Bilal, M.; Ahmad, Sultan; Zaid, M.; Hussain, S.; Islamuddin, Khan, Zishan H.; Rafat, M.
2018-05-01
This work reports the successful preparation of Poly (3,4-ethylenedioxythiophene) (PEDOT) from monomer ethylenedioxythiophene (EDOT), employing hydrothermal method. The structure of the prepared sample was characterized by Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) and the results indicates the successful polymerization of EDOT to the formation of polymer PEDOT. The capacitive performance of the prepared sample were investigated in two-electrode assembly using aqueous solution of 6 M KOH. The assembled capacitor cell shows high rate capability which is evident from both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) studies. The observed CV patterns are almost rectangular even for high scan rates (˜30 V s-1), confirming the high rate performance, while high knee frequency (˜1 kHz), and low response time (˜5.8 ms) observed by impedance analysis confirms the high rate capability of supercapacitor.
High rate performance supercapacitor based on Nb2O5 nanoparticles
NASA Astrophysics Data System (ADS)
Ahmed, Sultan; Ahmed, Ahsan; Rafat, M.
2018-05-01
In the present communication, we report the successful preparation of Nb2O5 nanoparticles from precursor NbCl5 using hydrothermal method, followed by thermal annealing. The surface morphology of the as-prepared material was studied using scanning electron microscopy (SEM) while crystal structure and vibrational response was characterized using X-ray diffraction (XRD) and Raman spectroscopy. The observed results indicate the successful synthesis of Nb2O5 nanoparticles. The electrochemical properties of the material was investigated in two-electrode assembly in 1 M LiClO4 solution using the techniques of electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Both EIS and CV studies show high rate performance of the assembled supercapacitor cells. Fabricated cell offers low response time (˜17.1 ms), and the shape of CV pattern remains almost rectangular, even for high scan rates (˜20 V s-1).
Containers for use in a self supporting assembly
Gillespie, Peter J.
1982-07-13
This invention is directed to a container having side walls and end walls forming a body having a generally rectangular cross-section. Means for restraining lateral and rotational movement of the container relative to an adjacent container while allowing relatively unhindered movement perpendicular to the side walls is also included. The lateral and rotational movement is restrained in a plane parallel to the side walls. The means include a projection connected to at least one of the side walls and extending outwardly therefrom to engage the adjacent container. Also part of this invention is an assembly of containers which includes a plurality of the above described containers arranged side by side with the end walls generally coplanar and the side walls generally parallel. Means for restraining movement perpendicular to the side walls of the plurality of containers is also included. Each of the containers may house a plurality of battery electrodes.
Design Study: Rocket Based MHD Generator
NASA Technical Reports Server (NTRS)
1997-01-01
This report addresses the technical feasibility and design of a rocket based MHD generator using a sub-scale LOx/RP rocket motor. The design study was constrained by assuming the generator must function within the performance and structural limits of an existing magnet and by assuming realistic limits on (1) the axial electric field, (2) the Hall parameter, (3) current density, and (4) heat flux (given the criteria of heat sink operation). The major results of the work are summarized as follows: (1) A Faraday type of generator with rectangular cross section is designed to operate with a combustor pressure of 300 psi. Based on a magnetic field strength of 1.5 Tesla, the electrical power output from this generator is estimated to be 54.2 KW with potassium seed (weight fraction 3.74%) and 92 KW with cesium seed (weight fraction 9.66%). The former corresponds to a enthalpy extraction ratio of 2.36% while that for the latter is 4.16%; (2) A conceptual design of the Faraday MHD channel is proposed, based on a maximum operating time of 10 to 15 seconds. This concept utilizes a phenolic back wall for inserting the electrodes and inter-electrode insulators. Copper electrode and aluminum oxide insulator are suggested for this channel; and (3) A testing configuration for the sub-scale rocket based MHD system is proposed. An estimate of performance of an ideal rocket based MHD accelerator is performed. With a current density constraint of 5 Amps/cm(exp 2) and a conductivity of 30 Siemens/m, the push power density can be 250, 431, and 750 MW/m(sup 3) when the induced voltage uB have values of 5, 10, and 15 KV/m, respectively.
NASA Astrophysics Data System (ADS)
Houzé, Clémence; Pessel, Marc; Durand, Veronique
2016-04-01
Due to the high complexity level of hyporheic flow paths, hydrological and biogeochemical processes which occur in this mixing place are not fully understood yet. Some previous studies made in flumes show that hyporheic flow is strongly connected to the streambed morphology and sediment heterogeneity . There is still a lack of practical field experiment considering a natural environment and representation of natural streambed heterogeneities will be always limited in laboratories. The purpose of this project is to propose an innovative method using 3D Electrical Resistivity Tomography (ERT) monitoring of an artificial tracer injection directly within the streambed sediments in order to visualize the water pathways within the hyporheic zone. Field experiment on a small stream was conducted using a plastic tube as an injection piezometer and home-made electrodes strips arranged in a rectangular form made of 180 electrodes (15 strips of 12 electrodes each). The injection of tracer (NaCl) lasted approximatively 90 minutes, and 24h monitoring with increasing step times was performed. The physical properties of the water are controlled by CTD probes installed upstream and downstream within the river. Inverse time-lapse tomographs show development and persistence of a conductive water plume around the injection point. Due to the low hydraulic conductivity of streambed sediments (clay and overlying loess), the tracer movement is barely visible, as it dilutes gradually in the pore water. Impact of boundary conditions on inversion results can lead to significant differences on images, especially in the shallow part of the profiles. Preferential paths of transport are not highlighted here, but this experiment allows to follow spatially and temporarily the evolution of the tracer in a complex natural environment .
An advanced model framework for solid electrolyte intercalation batteries.
Landstorfer, Manuel; Funken, Stefan; Jacob, Timo
2011-07-28
Recent developments of solid electrolytes, especially lithium ion conductors, led to all solid state batteries for various applications. In addition, mathematical models sprout for different electrode materials and battery types, but are missing for solid electrolyte cells. We present a mathematical model for ion flux in solid electrolytes, based on non-equilibrium thermodynamics and functional derivatives. Intercalated ion diffusion within the electrodes is further considered, allowing the computation of the ion concentration at the electrode/electrolyte interface. A generalized Frumkin-Butler-Volmer equation describes the kinetics of (de-)intercalation reactions and is here extended to non-blocking electrodes. Using this approach, numerical simulations were carried out to investigate the space charge region at the interface. Finally, discharge simulations were performed to study different limitations of an all solid state battery cell. This journal is © the Owner Societies 2011
Peinetti, Ana Sol; Gilardoni, Rodrigo S; Mizrahi, Martín; Requejo, Felix G; González, Graciela A; Battaglini, Fernando
2016-06-07
Nanoelectrode arrays have introduced a complete new battery of devices with fascinating electrocatalytic, sensitivity, and selectivity properties. To understand and predict the electrochemical response of these arrays, a theoretical framework is needed. Cyclic voltammetry is a well-fitted experimental technique to understand the undergoing diffusion and kinetics processes. Previous works describing microelectrode arrays have exploited the interelectrode distance to simulate its behavior as the summation of individual electrodes. This approach becomes limited when the size of the electrodes decreases to the nanometer scale due to their strong radial effect with the consequent overlapping of the diffusional fields. In this work, we present a computational model able to simulate the electrochemical behavior of arrays working either as the summation of individual electrodes or being affected by the overlapping of the diffusional fields without previous considerations. Our computational model relays in dividing a regular electrode array in cells. In each of them, there is a central electrode surrounded by neighbor electrodes; these neighbor electrodes are transformed in a ring maintaining the same active electrode area than the summation of the closest neighbor electrodes. Using this axial neighbor symmetry approximation, the problem acquires a cylindrical symmetry, being applicable to any diffusion pattern. The model is validated against micro- and nanoelectrode arrays showing its ability to predict their behavior and therefore to be used as a designing tool.
A numerical analysis of the British Experimental Rotor Program blade
NASA Technical Reports Server (NTRS)
Duque, Earl P. N.
1989-01-01
Two Computational Fluid Dynamic codes which solve the compressible full-potential and the Reynolds-Averaged Thin-Layer Navier-Stokes equations were used to analyze the nonrotating aerodynamic characteristics of the British Experimental Rotor Program (BERP) helicopter blade at three flow regimes: low angle of attack, high angle of attack and transonic. Excellent agreement was found between the numerical results and experiment. In the low angle of attack regime, the BERP had less induced drag than a comparable aspect ratio rectangular planform wing. At high angle of attack, the blade attained high-lift by maintaining attached flow at the outermost spanwise locations. In the transonic regime, the BERP design reduces the shock strength at the outer spanwise locations which affects wave drag and shock-induced separation. Overall, the BERP blade exhibited many favorable aerodynamic characteristics in comparison to conventional helicopter rotor blades.
NASA Astrophysics Data System (ADS)
Zamanov, A. D.
2002-01-01
Based on the exact three-dimensional equations of continuum mechanics and the Akbarov-Guz' continuum theory, the problem on forced vibrations of a rectangular plate made of a composite material with a periodically curved structure is formulated. The plate is rigidly fixed along the Ox 1 axis. Using the semi-analytic method of finite elements, a numerical procedure is elaborated for investigating this problem. The numerical results on the effect of structural curvings on the stress distribution in the plate under forced vibrations are analyzed. It is shown that the disturbances of the stress σ22 in a hinge-supported plate are greater than in a rigidly fixed one. Also, it is found that the structural curvings considerably affect the stress distribution in plates both under static and dynamic loading.
Numerical analysis of wet separation of particles by density differences
NASA Astrophysics Data System (ADS)
Markauskas, D.; Kruggel-Emden, H.
2017-07-01
Wet particle separation is widely used in mineral processing and plastic recycling to separate mixtures of particulate materials into further usable fractions due to density differences. This work presents efforts aiming to numerically analyze the wet separation of particles with different densities. In the current study the discrete element method (DEM) is used for the solid phase while the smoothed particle hydrodynamics (SPH) is used for modeling of the liquid phase. The two phases are coupled by the use of a volume averaging technique. In the current study, simulations of spherical particle separation were performed. In these simulations, a set of generated particles with two different densities is dropped into a rectangular container filled with liquid. The results of simulations with two different mixtures of particles demonstrated how separation depends on the densities of particles.
NASA Technical Reports Server (NTRS)
Reichert, R, S.; Biringen, S.; Howard, J. E.
1999-01-01
LINER is a system of Fortran 77 codes which performs a 2D analysis of acoustic wave propagation and noise suppression in a rectangular channel with a continuous liner at the top wall. This new implementation is designed to streamline the usage of the several codes making up LINER, resulting in a useful design tool. Major input parameters are placed in two main data files, input.inc and nurn.prm. Output data appear in the form of ASCII files as well as a choice of GNUPLOT graphs. Section 2 briefly describes the physical model. Section 3 discusses the numerical methods; Section 4 gives a detailed account of program usage, including input formats and graphical options. A sample run is also provided. Finally, Section 5 briefly describes the individual program files.
Dubal, Deepak P; Chodankar, Nilesh R; Holze, Rudolf; Kim, Do-Heyoung; Gomez-Romero, Pedro
2017-04-22
A new ruthenium cobalt oxide (RuCo 2 O 4 ) with a unique marigold-like nanostructure and excellent performance as an advanced electrode material has been successfully prepared by a simple electrodeposition (potentiodynamic mode) method. The RuCo 2 O 4 marigolds consist of numerous clusters of ultrathin mesoporous nanoflakes, leaving a large interspace between them to provide numerous electrochemically active sites. Strikingly, this unique marigold-like nanostructure provided excellent electrochemical performance in terms of high energy-storage capacitance (1469 F g -1 at 6 A g -1 ) with excellent rate proficiency and long-lasting operating cycling stability (ca. 91.3 % capacitance retention after 3000 cycles), confirming that the mesoporous nanoflakes participate in the ultrafast electrochemical reactions. Furthermore, an asymmetric supercapacitor was assembled using RuCo 2 O 4 (positive electrode) and activated carbon (negative electrode) with aqueous KOH electrolyte. The asymmetric design allowed an upgraded potential range of 1.4 V, which further provided a good energy density of 32.6 Wh kg -1 (1.1 mWh cm -3 ). More importantly, the cell delivered an energy density of 12.4 Wh kg -1 even at a maximum power density of 3.2 kW kg -1 , which is noticeably superior to carbon-based symmetric systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tada, Shigeru; Hayashi, Masako; Eguchi, Masanori; Tsukamoto, Akira
2017-11-01
We propose a novel, high-performance dielectrophoretic (DEP) cell-separation flow chamber with a parallel-plate channel geometry. The flow chamber, consisting of a planar electrode on the top and an interdigitated-pair electrode array at the bottom, was developed to facilitate the separation of cells by creating a nonuniform AC electric field throughout the volume of the flow chamber. The operation and performance of the device were evaluated using live and dead human epithermal breast (MCF10A) cells. The separation dynamics of the cell suspension in the flow chamber was also investigated by numerically simulating the trajectories of individual cells. A theoretical model to describe the dynamic cell behavior under the action of DEP, including dipole-dipole interparticle, viscous, and gravitational forces, was developed. The results demonstrated that the live cells traveling through the flow chamber congregated into sites where the electric field gradient was minimal, in the middle of the flow stream slightly above the centerlines of the grounded electrodes at the bottom. Meanwhile, the dead cells were trapped on the edges of the high-voltage electrodes at the bottom. Cells were thus successfully separated with a remarkably high separation ratio (∼98%) at the appropriately tuned field frequency and applied voltage. The numerically predicted behavior and spatial distribution of the cells during separation also showed good agreement with those observed experimentally.
Electro-Quasistatic Simulations in Bio-Systems Engineering and Medical Engineering
NASA Astrophysics Data System (ADS)
van Rienen, U.; Flehr, J.; Schreiber, U.; Schulze, S.; Gimsa, U.; Baumann, W.; Weiss, D. G.; Gimsa, J.; Benecke, R.; Pau, H.-W.
2005-05-01
Slowly varying electromagnetic fields play a key role in various applications in bio-systems and medical engineering. Examples are the electric activity of neurons on neurochips used as biosensors, the stimulating electric fields of implanted electrodes used for deep brain stimulation in patients with Morbus Parkinson and the stimulation of the auditory nerves in deaf patients, respectively. In order to simulate the neuronal activity on a chip it is necessary to couple Maxwell's and Hodgkin-Huxley's equations. First numerical results for a neuron coupling to a single electrode are presented. They show a promising qualitative agreement with the experimentally recorded signals. Further, simulations are presented on electrodes for deep brain stimulation in animal experiments where the question of electrode ageing and energy deposition in the surrounding tissue are of major interest. As a last example, electric simulations for a simple cochlea model are presented comparing the field in the skull bones for different electrode types and stimulations in different positions.
Evaluation of excitation strategy with multi-plane electrical capacitance tomography sensor
NASA Astrophysics Data System (ADS)
Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Zhang, Jiaolong; Yang, Wuqiang
2016-11-01
Electrical capacitance tomography (ECT) is an imaging technique for measuring the permittivity change of materials. Using a multi-plane ECT sensor, three-dimensional (3D) distribution of permittivity may be represented. In this paper, three excitation strategies, including single-electrode excitation, dual-electrode excitation in the same plane, and dual-electrode excitation in different planes are investigated by numerical simulation and experiment for two three-plane ECT sensors with 12 electrodes in total. In one sensor, the electrodes on the middle plane are in line with the others. In the other sensor, they are rotated 45° with reference to the other two planes. A linear back projection algorithm is used to reconstruct the images and a correlation coefficient is used to evaluate the image quality. The capacitance data and sensitivity distribution with each measurement strategy and sensor model are analyzed. Based on simulation and experimental results using noise-free and noisy capacitance data, the performance of the three strategies is evaluated.
Numerical modelling of needle-grid electrodes for negative surface corona charging system
NASA Astrophysics Data System (ADS)
Zhuang, Y.; Chen, G.; Rotaru, M.
2011-08-01
Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.
Enhanced Circular Dichroism of Gold Bilayered Slit Arrays Embedded with Rectangular Holes.
Zhang, Hao; Wang, Yongkai; Luo, Lina; Wang, Haiqing; Zhang, Zhongyue
2017-01-01
Gold bilayered slit arrays with rectangular holes embedded into the metal surface are designed to enhance the circular dichroism (CD) effect of gold bilayered slit arrays. The rectangular holes in these arrays block electric currents and generate localized surface plasmons around these holes, thereby strengthening the CD effect. The CD enhancement factor depends strongly on the rotational angle and the structural parameters of the rectangular holes; this factor can be enhanced further by drilling two additional rectangular holes into the metal surfaces of the arrays. These results help facilitate the design of chiral structures to produce a strong CD effect and large electric fields.
Propagation of THz pulses in rectangular subwavelength dielectric waveguides
NASA Astrophysics Data System (ADS)
Lu, Yao; Wu, Qiang; Zhang, Qi; Wang, Ride; Zhao, Wenjuan; Zhang, Deng; Pan, Chongpei; Qi, Jiwei; Xu, Jingjun
2018-06-01
Rectangular subwavelength waveguides are necessary for the development of micro/nanophotonic devices and on-chip platforms. Using a time-resolved imaging system, we studied the transient properties and the propagation modes of THz pulses in rectangular subwavelength dielectric waveguides. The dynamic process of THz pulses was systematically recorded to a movie. In addition, an anomalous group velocity dispersion was demonstrated in rectangular subwavelength waveguides. By using the effective index method, we theoretically calculated the modes in rectangular subwavelength waveguides, which agree well with the experiments and simulations. This work provides the opportunity to improve the analysis and design of the integrated platforms and photonic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wimmer, Thomas, E-mail: thomas.wimmer@medunigraz.at; Srimathveeravalli, Govindarajan; Gutta, Narendra
PurposeNumerical simulations are used for treatment planning in clinical applications of irreversible electroporation (IRE) to determine ablation size and shape. To assess the reliability of simulations for treatment planning, we compared simulation results with empiric outcomes of renal IRE using computed tomography (CT) and histology in an animal model.MethodsThe ablation size and shape for six different IRE parameter sets (70–90 pulses, 2,000–2,700 V, 70–100 µs) for monopolar and bipolar electrodes was simulated using a numerical model. Employing these treatment parameters, 35 CT-guided IRE ablations were created in both kidneys of six pigs and followed up with CT immediately and after 24 h. Histopathologymore » was analyzed from postablation day 1.ResultsAblation zones on CT measured 81 ± 18 % (day 0, p ≤ 0.05) and 115 ± 18 % (day 1, p ≤ 0.09) of the simulated size for monopolar electrodes, and 190 ± 33 % (day 0, p ≤ 0.001) and 234 ± 12 % (day 1, p ≤ 0.0001) for bipolar electrodes. Histopathology indicated smaller ablation zones than simulated (71 ± 41 %, p ≤ 0.047) and measured on CT (47 ± 16 %, p ≤ 0.005) with complete ablation of kidney parenchyma within the central zone and incomplete ablation in the periphery.ConclusionBoth numerical simulations for planning renal IRE and CT measurements may overestimate the size of ablation compared to histology, and ablation effects may be incomplete in the periphery.« less
NASA Astrophysics Data System (ADS)
Shen, Ming; Trébosc, Julien; O'Dell, Luke A.; Lafon, Olivier; Pourpoint, Frédérique; Hu, Bingwen; Chen, Qun; Amoureux, Jean-Paul
2015-09-01
We present an experimental comparison of several through-space Hetero-nuclear Multiple-Quantum Correlation experiments, which allow the indirect observation of homo-nuclear single- (SQ) or double-quantum (DQ) 14N coherences via spy 1H nuclei. These 1H-{14N} D-HMQC sequences differ not only by the order of 14N coherences evolving during the indirect evolution, t1, but also by the radio-frequency (rf) scheme used to excite and reconvert these coherences under Magic-Angle Spinning (MAS). Here, the SQ coherences are created by the application of center-band frequency-selective pulses, i.e. long and low-power rectangular pulses at the 14N Larmor frequency, ν0(14N), whereas the DQ coherences are excited and reconverted using rf irradiation either at ν0(14N) or at the 14N overtone frequency, 2ν0(14N). The overtone excitation is achieved either by constant frequency rectangular pulses or by frequency-swept pulses, specifically Wide-band, Uniform-Rate, and Smooth-Truncation (WURST) pulse shapes. The present article compares the performances of four different 1H-{14N} D-HMQC sequences, including those with 14N rectangular pulses at ν0(14N) for the indirect detection of homo-nuclear (i) 14N SQ or (ii) DQ coherences, as well as their overtone variants using (iii) rectangular or (iv) WURST pulses. The compared properties include: (i) the sensitivity, (ii) the spectral resolution in the 14N dimension, (iii) the rf requirements (power and pulse length), as well as the robustness to (iv) rf offset and (v) MAS frequency instabilities. Such experimental comparisons are carried out for γ-glycine and L-histidine.HCl monohydrate, which contain 14N sites subject to moderate quadrupole interactions. We demonstrate that the optimum choice of the 1H-{14N} D-HMQC method depends on the experimental goal. When the sensitivity and/or the robustness to offset are the major concerns, the D-HMQC sequence allowing the indirect detection of 14N SQ coherences should be employed. Conversely, when the highest resolution and/or adjusted indirect spectral width are needed, overtone experiments are the method of choice. The overtone scheme using WURST pulses results in broader excitation bandwidths than that using rectangular pulses, at the expense of reduced sensitivity. Numerically exact simulations also show that the sensitivity of the overtone 1H-{14N} D-HMQC experiment increases for larger quadrupole interactions.
Tan, Sze-Yin; Unwin, Patrick R; Macpherson, Julie V; Zhang, Jie; Bond, Alan M
2017-03-07
Quantitative studies of electron transfer processes at electrode/electrolyte interfaces, originally developed for homogeneous liquid mercury or metallic electrodes, are difficult to adapt to the spatially heterogeneous nanostructured electrode materials that are now commonly used in modern electrochemistry. In this study, the impact of surface heterogeneity on Fourier-transformed alternating current voltammetry (FTACV) has been investigated theoretically under the simplest possible conditions where no overlap of diffusion layers occurs and where numerical simulations based on a 1D diffusion model are sufficient to describe the mass transport problem. Experimental data that meet these requirements can be obtained with the aqueous [Ru(NH 3 ) 6 ] 3+/2+ redox process at a dual-electrode system comprised of electrically coupled but well-separated glassy carbon (GC) and boron-doped diamond (BDD) electrodes. Simulated and experimental FTACV data obtained with this electrode configuration, and where distinctly different heterogeneous charge transfer rate constants (k 0 values) apply at the individual GC and BDD electrode surfaces, are in excellent agreement. Principally, because of the far greater dependence of the AC current magnitude on k 0 , it is straightforward with the FTACV method to resolve electrochemical heterogeneities that are ∼1-2 orders of magnitude apart, as applies in the [Ru(NH 3 ) 6 ] 3+/2+ dual-electrode configuration experiments, without prior knowledge of the individual kinetic parameters (k 0 1 and k 0 2 ) or the electrode size ratio (θ 1 :θ 2 ). In direct current voltammetry, a difference in k 0 of >3 orders of magnitude is required to make this distinction.
O'Bannon, Shawn P; Dunn, William J; Lenk, Jason S
2006-10-01
The purpose of this in-vitro study was to compare the torsional stability of split crimpable surgical hooks and soldered brass surgical hooks on a rectangular stabilizing archwire. Coated split crimpable hooks (Never-Slip Grip, TP Orthodontics, LaPorte, Ind), ribbed crimpable hooks (TP Orthodontics), and .032-in brass soldered hooks/notched electrodes (Ormco/Sybron Dental Specialties, Orange, Calif) were attached to a 0.019 x 0.025-in stainless steel archwire. The archwire/hook attachment assembly was secured into a dual contact jig and statically mounted to the base of a universal testing machine. The hooks were engaged by a wire loop attached to the upper load cell of the machine, which pulled the wire until the hook was torsionally displaced from the archwire. The mean forces, measured in newtons (N), required to dislodge the hooks were as follows: soldered brass surgical hooks (51.3 +/- 5.2 N), coated split crimpable hooks (49.9 +/- 6.6 N), and ribbed split crimpable hooks (31.3 +/- 5.4 N). Data were analyzed with 1-way ANOVA and Tukey HSD post-hoc tests at alpha = .05. Ribbed split crimpable hooks provided significantly less resistance to torsional displacement than the other types of hooks (P <001). There was no difference between coated split crimpable hooks and soldered brass surgical hooks (P >05). Under the conditions of this study, the results suggest that soldered brass surgical hooks and coated split crimpable hook attachments provide more stability to torsional dislodgement from a rectangular stabilizing archwire than ribbed split crimpable hooks.
Bend losses in rectangular culverts.
DOT National Transportation Integrated Search
2008-09-01
This study investigated bend losses for open channel flow in rectangular channels or culverts. Laboratory experiments were performed for sub-critical flow in rectangular channels with abrupt bends. Bend angles of approximately 30, 45, 60, 75 and 90 d...
Finite element fatigue analysis of rectangular clutch spring of automatic slack adjuster
NASA Astrophysics Data System (ADS)
Xu, Chen-jie; Luo, Zai; Hu, Xiao-feng; Jiang, Wen-song
2015-02-01
The failure of rectangular clutch spring of automatic slack adjuster directly affects the work of automatic slack adjuster. We establish the structural mechanics model of automatic slack adjuster rectangular clutch spring based on its working principle and mechanical structure. In addition, we upload such structural mechanics model to ANSYS Workbench FEA system to predict the fatigue life of rectangular clutch spring. FEA results show that the fatigue life of rectangular clutch spring is 2.0403×105 cycle under the effect of braking loads. In the meantime, fatigue tests of 20 automatic slack adjusters are carried out on the fatigue test bench to verify the conclusion of the structural mechanics model. The experimental results show that the mean fatigue life of rectangular clutch spring is 1.9101×105, which meets the results based on the finite element analysis using ANSYS Workbench FEA system.
Analysis of junior high school students' difficulty in resolving rectangular conceptual problems
NASA Astrophysics Data System (ADS)
Utami, Aliksia Kristiana Dwi; Mardiyana, Pramudya, Ikrar
2017-08-01
Geometry is one part of the mathematics that must be learned in school and it has important effects on the development of creative thinking skills of learners, but in fact, there are some difficulties experienced by the students. This research focuses on analysis difficulty in resolving rectangular conceptual problems among junior high school students in every creative thinking skills level. This research used a descriptive method aimed to identify the difficulties and cause of the difficulties experienced by five students. The difficulties are associated with rectangular shapes and related problems. Data collection was done based on students' work through test, interview, and observations. The result revealed that student' difficulties in understanding the rectangular concept can be found at every creative thinking skills level. The difficulties are identifying the objects rectangular in the daily life except for a rectangle and square, analyzing the properties of rectangular shapes, and seeing the interrelationships between figures.
A modal analysis of lamellar diffraction gratings in conical mountings
NASA Technical Reports Server (NTRS)
Li, Lifeng
1992-01-01
A rigorous modal analysis of lamellar grating, i.e., gratings having rectangular grooves, in conical mountings is presented. It is an extension of the analysis of Botten et al. which considered non-conical mountings. A key step in the extension is a decomposition of the electromagnetic field in the grating region into two orthogonal components. A computer program implementing this extended modal analysis is capable of dealing with plane wave diffraction by dielectric and metallic gratings with deep grooves, at arbitrary angles of incidence, and having arbitrary incident polarizations. Some numerical examples are included.
NASA Astrophysics Data System (ADS)
Deshamukhya, Tuhin; Bhanja, Dipankar; Nath, Sujit; Maji, Ambarish; Choubey, Gautam
2017-07-01
The following study is concerned with determination of temperature distribution of porous fins under convective and insulated tip conditions. The authors have made an effort to study the effect of various important parameters involved in the transfer of heat through porous fins as well as the temperature distribution along the fin length subjected to both convective as well as insulated ends. The non-linear equation obtained has been solved by Adomian Decomposition method and validated with a numerical scheme called Finite Difference method by using a central difference scheme and Gauss Siedel Iterative method.
A comparative study of spherical and flat-Earth geopotential modeling at satellite elevations
NASA Technical Reports Server (NTRS)
Parrott, M. H.; Hinze, W. J.; Braile, L. W.
1985-01-01
Flat-Earth and spherical-Earth geopotential modeling of crustal anomaly sources at satellite elevations are compared by computing gravity and scalar magnetic anomalies perpendicular to the strike of variably dimensioned rectangular prisms at altitudes of 150, 300, and 450 km. Results indicate that the error caused by the flat-Earth approximation is less than 10% in most geometric conditions. Generally, error increase with larger and wider anomaly sources at higher altitudes. For most crustal source modeling applications at conventional satellite altitudes, flat-Earth modeling can be justified and is numerically efficient.
A viscous flow analysis for the tip vortex generation process
NASA Technical Reports Server (NTRS)
Shamroth, S. J.; Briley, W. R.
1979-01-01
A three dimensional, forward-marching, viscous flow analysis is applied to the tip vortex generation problem. The equations include a streamwise momentum equation, a streamwise vorticity equation, a continuity equation, and a secondary flow stream function equation. The numerical method used combines a consistently split linearized scheme for parabolic equations with a scalar iterative ADI scheme for elliptic equations. The analysis is used to identify the source of the tip vortex generation process, as well as to obtain detailed flow results for a rectangular planform wing immersed in a high Reynolds number free stream at 6 degree incidence.
Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics
NASA Astrophysics Data System (ADS)
Farajpour, Ali; Danesh, Mohammad; Mohammadi, Moslem
2011-12-01
This paper presents an investigation on the buckling characteristics of nanoscale rectangular plates under bi-axial compression considering non-uniformity in the thickness. Based on the nonlocal continuum mechanics, governing differential equations are derived. Numerical solutions for the buckling loads are obtained using the Galerkin method. The present study shows that the buckling behaviors of single-layered graphene sheets (SLGSs) are strongly sensitive to the nonlocal and non-uniform parameters. The influence of percentage change of thickness on the stability of SLGSs is more significant in the strip-type nonoplates (nanoribbons) than in the square-type nanoplates.
Mid-infrared supercontinuum in a Ge11:5As24Se64:5 chalcogenide waveguide
NASA Astrophysics Data System (ADS)
Sakunasinha, Panarit; Suwanarat, Suksan; Chiangga, Surasak
2015-07-01
We present results of numerical simulations of a supercontinuum generation (SCG) in a Ge11:5As24Se64:5 chalcogenide rectangular waveguide with air as an upper cladding and the lower cladding is magnesium fluoride. A broadband infrared 1.3-3.0 μm SCG could be achieved by pumping with femtosecond pulses in the two zero dispersion wavelengths. The effect of chirp on SCG spectrum has been also investigated. The simulation shows a significant SCG spectral flatness in the mid-infrared range with positive frequency chirp input pulses.
Effects of Mass Flow Rate on the Thermal-Flow Characteristics of Microwave CO2 Plasma.
Hong, Chang-Ki; Na, Young-Ho; Uhm, Han-Sup; Kim, Youn-Jea
2015-03-01
In this study, the thermal-flow characteristics of atmospheric pressure microwave CO2 plasma were numerically investigated by simulation. The electric and gas flow fields in the reaction chamber with a microwave axial injection torch operated at 2.45 GHz were simulated. The microwave launcher had the standard rectangular waveguide WR340 geometry. The simulation was performed by using the COMSOL Multiphysics plasma model with various mass flow rates of CO2. The electric fields, temperature profiles and the density of electrons were graphically depicted for different CO2 inlet mass flow rates.
Larmor precession and barrier tunneling time of a neutral spinning particle
NASA Astrophysics Data System (ADS)
Li, Zhi-Jian; Liang, J. Q.; Kobe, D. H.
2001-10-01
The Larmor precession of a neutral spinning particle in a magnetic field confined to the region of a one-dimensional rectangular barrier is investigated for both a nonrelativistic and a relativistic incoming particle. The spin precession serves as a clock to measure the time spent by a quantum particle traversing a potential barrier. With the help of a general spin coherent state it is explicitly shown that the precession time is equal to the dwell time in both the nonrelativistic and relativistic cases. We also present a numerical estimation of the precession time showing an apparent superluminal tunneling.
Quantification of electrical field-induced flow reversal in a microchannel.
Pirat, C; Naso, A; van der Wouden, E J; Gardeniers, J G E; Lohse, D; van den Berg, A
2008-06-01
We characterize the electroosmotic flow in a microchannel with field effect flow control. High resolution measurements of the flow velocity, performed by micro particle image velocimetry, evidence the flow reversal induced by a local modification of the surface charge due to the presence of the gate. The shape of the microchannel cross-section is accurately extracted from these measurements. Experimental velocity profiles show a quantitative agreement with numerical results accounting for this exact shape. Analytical predictions assuming a rectangular cross-section are found to give a reasonable estimate of the velocity far enough from the walls.
Radiative Instabilities in Three-Dimensional Astrophysical Masers
NASA Technical Reports Server (NTRS)
Scappaticci, Gerardo A.; Watson, William D.
1995-01-01
Inherent instabilities in the radiative transfer for astrophysical masers have been recognized and calculated in the linear maser idealization in our previous investigations. The same instabilities are now shown to occur in the more realistic, three-dimensional geometries. Fluctuations in the emergent flux result and may be related to the observed fluctuations in the radiative flux from the 1665 MHz OH masers that have been reported to occur on timescales as short as 1000 s. The time-dependent differential equations of radiative transfer are solved numerically for three-dimensional astrophysical masers. Computations are performed for spherical and elongated (rectangular parallelepiped) geometries.
NASA Astrophysics Data System (ADS)
Suzuki, Naoya; Tanigawa, Hiroshi; Suzuki, Kenichiro
2013-04-01
Resonators based on microelectromechanical systems (MEMS) have received considerable attention for their applications for wireless equipment. The requirements for this application include small size, high frequency, wide bandwidth and high portability. However, few MEMS resonators with wide-frequency tuning have been reported. A fishbone-shaped resonator has a resonant frequency with a maximum response that can be changed according to the location and number of several exciting electrodes. Therefore, it can be expected to provide wide-frequency tuning. The resonator has three types of electrostatic forces that can be generated to deform a main beam. We evaluate the vibrational modes caused by each exciting electrodes by comparing simulated results with measured ones. We then successfully demonstrate the frequency tuning of the first to fifth resonant modes by using the algorithm we propose here. The resulting frequency tuning covers 178 to 1746 kHz. In addition, we investigate the suppression of the anchor loss to enhance the Q-factor. An experiment shows that tapered-shaped anchors provide a higher Q-factor than rectangular-shaped anchors. The Q-factor of the resonators supported by suspension beams is also discussed. Because the suspension beams cause complicated vibrational modes for higher frequencies, the enhancement of the Q-factor for high vibrational modes cannot be obtained here. At present, the tapered-anchor resonators are thought to be most suitable for frequency tuning applications.
Fagan, Jeffrey A; Sides, Paul J; Prieve, Dennis C
2004-06-08
Electroosmotic flow in the vicinity of a colloidal particle suspended over an electrode accounts for observed changes in the average height of the particle when the electrode passes alternating current at 100 Hz. The main findings are (1) electroosmotic flow provides sufficient force to move the particle and (2) a phase shift between the purely electrical force on the particle and the particle's motion provides evidence of an E2 force acting on the particle. The electroosmotic force in this case arises from the boundary condition applied when faradaic reactions occur on the electrode. The presence of a potential-dependent electrode reaction moves the likely distribution of electrical current at the electrode surface toward uniform current density around the particle. In the presence of a particle the uniform current density is associated with a nonuniform potential; thus, the electric field around the particle has a nonzero radial component along the electrode surface, which interacts with unbalanced charge in the diffuse double layer on the electrode to create a flow pattern and impose an electroosmotic-flow-based force on the particle. Numerical solutions are presented for these additional height-dependent forces on the particle as a function of the current distribution on the electrode and for the time-dependent probability density of a charged colloidal particle near a planar electrode with a nonuniform electrical potential boundary condition. The electrical potential distribution on the electrode, combined with a phase difference between the electric field in solution and the electrode potential, can account for the experimentally observed motion of particles in ac electric fields in the frequency range from approximately 10 to 200 Hz.
Lateral trapping of DNA inside a voltage gated nanopore
NASA Astrophysics Data System (ADS)
Töws, Thomas; Reimann, Peter
2017-06-01
The translocation of a short DNA fragment through a nanopore is addressed when the perforated membrane contains an embedded electrode. Accurate numerical solutions of the coupled Poisson, Nernst-Planck, and Stokes equations for a realistic, fully three-dimensional setup as well as analytical approximations for a simplified model are worked out. By applying a suitable voltage to the membrane electrode, the DNA can be forced to preferably traverse the pore either along the pore axis or at a small but finite distance from the pore wall.
Effect of Electrode Loss on the Dynamic Range of Linearized Directional Coupler Modulators
2006-02-01
Coupler Modulators George A. Brost , Richard Michalak, Paul Payson, and Kevin Magde Abstract—Numerical simulations were used to study the effect of...RANGE OF LINEARIZED DIRECTIONAL COUPLER MODULATORS In-House N/A 62204F LINKI SN 01 George A. Brost , Richard Michalak, Paul Payson and Kevin Magde AFRL...Fazio Nash BROST et al.: EFFECT OF ELECTRODE LOSS ON THE DYNAMIC RANGE OF LINEARIZED DCMs 515 Fig. 1. Frequency dependence of SFDR for the 1 2 DCM (s
Analysis of Deflection Enhancement Using Epsilon Assembly Microcantilevers Based Sensors
Khaled, Abdul-Rahim A.; Vafai, Kambiz
2011-01-01
The present work analyzes theoretically and verifies the advantage of utilizing ɛ-microcantilever assemblies in microsensing applications. The deflection profile of these innovative ɛ-assembly microcantilevers is compared with that of the rectangular microcantilever and modified triangular microcantlever. Various force-loading conditions are considered. The theorem of linear elasticity for thin beams is used to obtain the deflections. The obtained defections are validated against an accurate numerical solution utilizing finite element method with maximum deviation less than 10 percent. It is found that the ɛ-assembly produces larger deflections than the rectangular microcantilever under the same base surface stress and same extension length. In addition, the ɛ-microcantilever assembly is found to produce larger deflection than the modified triangular microcantilever. This deflection enhancement is found to increase as the ɛ-assembly’s free length decreases for various types of force loading conditions. Consequently, the ɛ-microcantilever is shown to be superior in microsensing applications as it provides favorable high detection capability with a reduced susceptibility to external noises. Finally, this work paves a way for experimentally testing the ɛ-assembly to show whether detective potential of microsensors can be increased. PMID:22163694