Compact waveguide circular polarizer
Tantawi, Sami G.
2016-08-16
A multi-port waveguide is provided having a rectangular waveguide that includes a Y-shape structure with first top arm having a first rectangular waveguide port, a second top arm with second rectangular waveguide port, and a base arm with a third rectangular waveguide port for supporting a TE.sub.10 mode and a TE.sub.20 mode, where the end of the third rectangular waveguide port includes rounded edges that are parallel to a z-axis of the waveguide, a circular waveguide having a circular waveguide port for supporting a left hand and a right hand circular polarization TE.sub.11 mode and is coupled to a base arm broad wall, and a matching feature disposed on the base arm broad wall opposite of the circular waveguide for terminating the third rectangular waveguide port, where the first rectangular waveguide port, the second rectangular waveguide port and the circular waveguide port are capable of supporting 4-modes of operation.
Thermocapillary Technique for Shaping and Fabricating Optical Ribbon Waveguides
NASA Astrophysics Data System (ADS)
Fiedler, Kevin; Troian, Sandra
The demand for ever increasing bandwidth and higher speed communication has ushered the next generation optoelectronic integrated circuits which directly incorporate polymer optical waveguide devices. Polymer melts are very versatile materials which have been successfully cast into planar single- and multimode waveguides using techniques such as embossing, photolithography and direct laser writing. In this talk, we describe a novel thermocapillary patterning method for fabricating waveguides in which the free surface of an ultrathin molten polymer film is exposed to a spatially inhomogeneous temperature field via thermal conduction from a nearby cooled mask pattern held in close proximity. The ensuring surface temperature distribution is purposely designed to pool liquid selectively into ribbon shapes suitable for optical waveguiding, but with rounded and not rectangular cross sectional areas due to capillary forces. The solidified waveguide patterns which result from this non-contact one step procedure exhibit ultrasmooth interfaces suitable for demanding optoelectronic applications. To complement these studies, we have also conducted finite element simulations for quantifying the influence of non-rectangular cross-sectional shapes on mode propagation and losses. Kf gratefully acknowledges support from a NASA Space Technology Research Fellowship.
NASA Astrophysics Data System (ADS)
Sjöberg, Daniel; Larsson, Christer
2015-06-01
We present a method aimed at reducing uncertainties and instabilities when characterizing materials in waveguide setups. The method is based on measuring the S parameters for three different orientations of a rectangular sample block in a rectangular waveguide. The corresponding geometries are modeled in a commercial full-wave simulation program, taking any material parameters as input. The material parameters of the sample are found by minimizing the squared distance between measured and calculated S parameters. The information added by the different sample orientations is quantified using the Cramér-Rao lower bound. The flexibility of the method allows the determination of material parameters of an arbitrarily shaped sample that fits in the waveguide.
Tantawi, Sami G.; Dolgashev, Valery A.; Yeremian, Anahid D.
2016-03-15
A high-power microwave RF window is provided that includes a cylindrical waveguide, where the cylindrical waveguide includes a ceramic disk concentrically housed in a central region of the cylindrical waveguide, a first rectangular waveguide, where the first rectangular waveguide is connected by a first elliptical joint to a proximal end of the cylindrical waveguide, and a second rectangular waveguide, where the second rectangular waveguide is connected by a second elliptical joint to a distal end of the cylindrical waveguide.
Split-Block Waveguide Polarization Twist for 220 to 325 GHz
NASA Technical Reports Server (NTRS)
Ward, John; Chattopadhyay, Goutam
2008-01-01
A split-block waveguide circuit that rotates polarization by 90 has been designed with WR-3 input and output waveguides, which are rectangular waveguides used for a nominal frequency range of 220 to 325 GHz. Heretofore, twisted rectangular waveguides equipped with flanges at the input and output have been the standard means of rotating the polarizations of guided microwave signals. However, the fabrication and assembly of such components become difficult at high frequency due to decreasing wavelength, such that twisted rectangular waveguides become impractical at frequencies above a few hundred gigahertz. Conventional twisted rectangular waveguides are also not amenable to integration into highly miniaturized subassemblies of advanced millimeter- and submillimeter-wave detector arrays now undergoing development. In contrast, the present polarization- rotating waveguide can readily be incorporated into complex integrated waveguide circuits such as miniaturized detector arrays fabricated by either conventional end milling of metal blocks or by deep reactive ion etching of silicon blocks. Moreover, the present split-block design can be scaled up in frequency to at least 5 THz. The main step in fabricating a splitblock polarization-rotating waveguide of the present design is to cut channels having special asymmetrically shaped steps into mating upper and lower blocks (see Figure 1). The dimensions of the steps are chosen to be consistent with the WR-3 waveguide cross section, which is 0.864 by 0.432 mm. The channels are characterized by varying widths with constant depths of 0.432, 0.324, and 0.216 mm and by relatively large corner radii to facilitate fabrication. The steps effect both a geometric transition and the corresponding impedance-matched electromagnetic-polarization transition between (1) a WR-3 rectangular waveguide oriented with the electric field vector normal to the block mating surfaces and (2) a corresponding WR-3 waveguide oriented with its electric field vector parallel to the mating surfaces of the blocks. A prototype has been built and tested. Figure 2 presents test results indicative of good performance over nearly the entire WR-3 waveguide frequency band.
Single-polarization hollow-core square photonic bandgap waveguide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eguchi, Masashi, E-mail: megu@ieee.org; Tsuji, Yasuhide, E-mail: y-tsuji@mmm.muroran-it.ac.jp
Materials with a periodic structure have photonic bandgaps (PBGs), in which light can not be guided within certain wavelength ranges; thus light can be confined within a low-index region by the bandgap effect. In this paper, rectangular-shaped hollow waveguides having waveguide-walls (claddings) using the PBG have been discussed. The design principle for HE modes of hollow-core rectangular PBG waveguides with a Bragg cladding consisting of alternating high- and low-index layers, based on a 1D periodic multilayer approximation for the Bragg cladding, is established and then a novel single-polarization hollow-core square PBG waveguide using the bandgap difference between two polarized wavesmore » is proposed. Our results demonstrated that a single-polarization guiding can be achieved by using the square Bragg cladding structure with different layer thickness ratios in the mutually orthogonal directions and the transmission loss of the guided mode in a designed hollow-core square PBG waveguide is numerically estimated to be 0.04 dB/cm.« less
Silicon micromachined waveguides for millimeter and submillimeter wavelengths
NASA Technical Reports Server (NTRS)
Yap, Markus; Tai, Yu-Chong; Mcgrath, William R.; Walker, Christopher
1992-01-01
The majority of radio receivers, transmitters, and components operating at millimeter and submillimeter wavelengths utilize rectangular waveguides in some form. However, conventional machining techniques for waveguides operating above a few hundred GHz are complicated and costly. This paper reports on the development of silicon micromachining techniques to create silicon-based waveguide circuits which can operate at millimeter and submillimeter wavelengths. As a first step, rectangular WR-10 waveguide structures have been fabricated from (110) silicon wafers using micromachining techniques. The waveguide is split along the broad wall. Each half is formed by first etching a channel completely through a wafer. Potassium hydroxide is used to etch smooth mirror-like vertical walls and LPCVD silicon nitride is used as a masking layer. This wafer is then bonded to another flat wafer using a polyimide bonding technique and diced into the U-shaped half wavelengths. Finally, a gold layer is applied to the waveguide walls. Insertion loss measurements show losses comparable to those of standard metal waveguides. It is suggested that active devices and planar circuits can be integrated with the waveguides, solving the traditional mounting problems. Potential applications in terahertz instrumentation technology are further discussed.
Propagation of THz pulses in rectangular subwavelength dielectric waveguides
NASA Astrophysics Data System (ADS)
Lu, Yao; Wu, Qiang; Zhang, Qi; Wang, Ride; Zhao, Wenjuan; Zhang, Deng; Pan, Chongpei; Qi, Jiwei; Xu, Jingjun
2018-06-01
Rectangular subwavelength waveguides are necessary for the development of micro/nanophotonic devices and on-chip platforms. Using a time-resolved imaging system, we studied the transient properties and the propagation modes of THz pulses in rectangular subwavelength dielectric waveguides. The dynamic process of THz pulses was systematically recorded to a movie. In addition, an anomalous group velocity dispersion was demonstrated in rectangular subwavelength waveguides. By using the effective index method, we theoretically calculated the modes in rectangular subwavelength waveguides, which agree well with the experiments and simulations. This work provides the opportunity to improve the analysis and design of the integrated platforms and photonic devices.
Pass-Band Characteristics of an L-Shaped Waveguide in a Diamond Structure Photonic Crystal
NASA Astrophysics Data System (ADS)
Chen, Shibin; Ma, Jingcun; Yao, Yunshi; Liu, Xin; Lin, Ping
2018-06-01
The conduction characteristics of a L-shaped waveguide in a diamond structure photonic crystal is investigated in this paper. The waveguides were fabricated with titanium dioxide ceramic via 3-D printing and sintering. The effects of the position and size of line defects on the transmission characteristics are first simulated using a finite-difference time-domain method. The simulated results show that, when the length of the rectangular defect equals the lattice constant, multiple extended modes are generated. When the centers of the single unit cell of the diamond structure and the line defect waveguide coincide, higher transmission efficiency in the line defect can be achieved. In addition, the corner of the L-shaped waveguide was optimized to reduce reflection loss at the turning point using the arc transition of the large diameter. Our experimental results indicate that L-shaped waveguides with an optimized photonic band gap structure and high-K materials can produce a pass-band between 13.8 GHz and 14.4 GHz and increase transmission efficiency. The computed results agree with the experimental results. Our results may help the integration of microwave devices in the future and possibly enable new applications of photonic crystals.
Rectangular-cladding silicon slot waveguide with improved nonlinear performance
NASA Astrophysics Data System (ADS)
Huang, Zengzhi; Huang, Qingzhong; Wang, Yi; Xia, Jinsong
2018-04-01
Silicon slot waveguides have great potential in hybrid silicon integration to realize nonlinear optical applications. We propose a rectangular-cladding hybrid silicon slot waveguide. Simulation result shows that, with a rectangular-cladding, the slot waveguide can be formed by narrower silicon strips, so the two-photon absorption (TPA) loss in silicon is decreased. When the cladding material is a nonlinear polymer, the calculated TPA figure of merit (FOMTPA) is 4.4, close to the value of bulk nonlinear polymer of 5.0. This value confirms the good nonlinear performance of rectangular-cladding silicon slot waveguides.
New coplanar waveguide to rectangular waveguide end launcher
NASA Technical Reports Server (NTRS)
Simons, R. N.; Taub, S. R.
1992-01-01
A new coplanar waveguide to rectangular waveguide end launcher is experimentally demonstrated. The end launcher operates over the Ka-band frequencies that are designated for the NASA Advanced Communication Technology Satellite uplink. The measured insertion loss and return loss are better than 0.5 and -10 dB, respectively.
Zhou, Yong Jin; Yang, Bao Jia
2015-05-10
Although subwavelength planar terahertz (THz) plasmonic devices can be implemented based on planar spoof surface plasmons (SPs), they still suffer from a little high propagation loss. Here the dispersion and propagation characteristics of the spoof plasmonic waveguide composed of double metal strips corrugated with dumbbell shaped grooves have been investigated. It has been found that much lower propagation loss and longer propagation length can be achieved based on the waveguide compared with the conventional spoof plasmonic waveguide with rectangular grooves. Moreover, the waveguide can implement a decrease in size of about 22%. An ultra-wideband THz plasmonic filter for planar circuits has been demonstrated based on the proposed waveguide. The experimental verification at the microwave frequency has been conducted by scaling up the geometry size of the filter.
A high-power microwave circular polarizer and its application on phase shifter.
Shao, Hao; Hu, Yongmei; Chang, Chao; Guo, Letian
2016-04-01
A high-power waveguide dual circular polarizer was theoretically designed and proof-of-principle was experimentally tested. It consists of two incident rectangular waveguides with a perpendicular H-plane junction, one circular waveguide with a pair of trapezoidal grooves coupled in E-plane at the top, a spherical crown located at the bottom, and an iris at the perpendicular junction of two rectangular waveguides. When wave incidents at one of the two separated rectangular waveguides, it, respectively, generates a left-hand circular polarized wave or a right-hand circular polarized wave in the circular waveguide. By adding a dumbbell-like metal plug driven with a high speed servomotor, a movable short circuit is formed along the circular waveguide to adjust the output RF phase of the rectangular port, realizing a high-speed high-power phase shifter. The C-band high power microwave (HPM) experiments were carried out, and the power capacity of the HPM polarizer and phase shifter was demonstrated to reach gigawatt level.
Metal Standards for Waveguide Characterization of Materials
NASA Technical Reports Server (NTRS)
Lambert, Kevin M.; Kory, Carol L.
2009-01-01
Rectangular-waveguide inserts that are made of non-ferromagnetic metals and are sized and shaped to function as notch filters have been conceived as reference standards for use in the rectangular- waveguide method of characterizing materials with respect to such constitutive electromagnetic properties as permittivity and permeability. Such standards are needed for determining the accuracy of measurements used in the method, as described below. In this method, a specimen of a material to be characterized is cut to a prescribed size and shape and inserted in a rectangular- waveguide test fixture, wherein the specimen is irradiated with a known source signal and detectors are used to measure the signals reflected by, and transmitted through, the specimen. Scattering parameters [also known as "S" parameters (S11, S12, S21, and S22)] are computed from ratios between the transmitted and reflected signals and the source signal. Then the permeability and permittivity of the specimen material are derived from the scattering parameters. Theoretically, the technique for calculating the permeability and permittivity from the scattering parameters is exact, but the accuracy of the results depends on the accuracy of the measurements from which the scattering parameters are obtained. To determine whether the measurements are accurate, it is necessary to perform comparable measurements on reference standards, which are essentially specimens that have known scattering parameters. To be most useful, reference standards should provide the full range of scattering-parameter values that can be obtained from material specimens. Specifically, measurements of the backscattering parameter (S11) from no reflection to total reflection and of the forward-transmission parameter (S21) from no transmission to total transmission are needed. A reference standard that functions as a notch (band-stop) filter can satisfy this need because as the signal frequency is varied across the frequency range for which the filter is designed, the scattering parameters vary over the ranges of values between the extremes of total reflection and total transmission. A notch-filter reference standard in the form of a rectangular-waveguide insert that has a size and shape similar to that of a material specimen is advantageous because the measurement configuration used for the reference standard can be the same as that for a material specimen. Typically a specimen is a block of material that fills a waveguide cross-section but occupies only a small fraction of the length of the waveguide. A reference standard of the present type (see figure) is a metal block that fills part of a waveguide cross section and contains a slot, the long dimension of which can be chosen to tailor the notch frequency to a desired value. The scattering parameters and notch frequency can be estimated with high accuracy by use of commercially available electromagnetic-field-simulating software. The block can be fabricated to the requisite precision by wire electrical-discharge machining. In use, the accuracy of measurements is determined by comparison of (1) the scattering parameters calculated from the measurements with (2) the scattering parameters calculated by the aforementioned software.
Eigenvalues of Rectangular Waveguide Using FEM With Hybrid Elements
NASA Technical Reports Server (NTRS)
Deshpande, Manohar D.; Hall, John M.
2002-01-01
A finite element analysis using hybrid triangular-rectangular elements is developed to estimate eigenvalues of a rectangular waveguide. Use of rectangular vector-edge finite elements in the vicinity of the PEC boundary and triangular elements in the interior region more accurately models the physical nature of the electromagnetic field, and consequently quicken the convergence.
The concept for realization of quantum-cascade lasers emitting at 7.5 μm wavelength
NASA Astrophysics Data System (ADS)
Novikov, I. I.; Babichev, A. V.; Bugrov, V. E.; Gladyshev, A. G.; Karachinsky, L. Ya; Kolodeznyi, E. S.; Kurochkin, A. S.; Savelyev, A. V.; Sokolovskii, G. S.; Egorov, A. Yu
2017-11-01
We consider the advantages and disadvantages of various designs of waveguide for heterostructures of quantum cascade lasers (QCL) in a spectral region of 7.5 μm. Based on a numerical calculation we make a comparison of light wave distribution in QCL waveguides with different designs. We demonstrate the benefits of practical QCL realization with an extended five-layered waveguide formed by introducing extra layers of InGaAs, which allows to modify the spatial distribution of the light wave and get the rectangular shape of the spatial distribution of light wave intensity in the laser active area.
NASA Astrophysics Data System (ADS)
Bellegarde, Cyril; Pargon, Erwine; Sciancalepore, Corrado; Petit-Etienne, Camille; Lemonnier, Olivier; Ribaud, Karen; Hartmann, Jean-Michel; Lyan, Philippe
2018-02-01
The superior confinement of light provided by the high refractive index contrast in Si/SiO2 waveguides allows the use of sub-micron photonic waveguides. However, when downscaling waveguides to sub-micron dimensions, propagation losses become dominated by sidewall roughness scattering. In a previous study, we have shown that hydrogen annealing after waveguide patterning yielded smooth silicon sidewalls. Our optimized silicon patterning process flow allowed us to reduce the sidewall roughness down to 0.25 nm (1σ) while maintaining rectangular Strip waveguides. As a result, record low optical losses of less than 1 dB/cm were measured at telecom wavelengths for waveguides with dimensions larger than 350 nm. With Rib waveguides, losses are expected to be even lower. However, in this case the Si reflow during the H2 anneal leads to the formation of a foot at the bottom of the structure and to a rounding of its top. A compromise is thus to be found between low losses and conservation of the rectangular shape of the Rib waveguide. This work proposes to investigate the impact of temperature and duration of the H2 anneal on the Rib profile, sidewalls roughness and optical performances. The impact of a Si/SiO2 interface is also studied. The introduction of H2 thermal annealing allows to obtain very low losses of 0.5 dB/cm at 1310 nm wavelength for waveguide dimensions of 300-400 nm, but it comes along an increase of the pattern bottom width of 41%, with a final bottom width of 502 nm.
NASA Astrophysics Data System (ADS)
Wang, Kai; Cao, Qing; Zhang, Huifang; Shen, Pengcheng; Xing, Lujing
2018-06-01
Based on the TE01 mode of a rectangular metal waveguide and the Gaussian mode of a fiber, we propose the cos-Gaussian mode of a terahertz rectangular metal waveguide filled with multiple slices of dielectric. First, we consider a rectangular metal waveguide filled with an ideal graded-index dielectric along one direction. Furthermore, we replace the graded-index dielectric with multiple slices of dielectric according to the effective medium theory. The modal field, the effective index, and the coupling efficiency of this waveguide are investigated. It is found that the approximately linearly polarized electric field is Gaussian along one dimensionality and cosine along the other one. In addition, the low loss and high coupling efficiency with a Gaussian beam can be acquired at 0.9 THz. By optimization, the coupling efficiency could reach 88.5%.
NASA Technical Reports Server (NTRS)
Law, P. H.; Burkholder, R. J.; Pathak, P. H.
1988-01-01
The electromagnetic fields (EM) backscatter from a 3-dimensional perfectly conducting S-shaped open-ended cavity with a planar interior termination is analyzed when it is illuminated by an external plane wave. The analysis is based on a self-consistent multiple scattering method which accounts for the multiple wave interactions between the open end and the interior termination. The scattering matrices which described the reflection and transmission coefficients of the waveguide modes reflected and transmitted at each junction between the different waveguide sections, as well at the scattering from the edges at the open end are found via asymptotic high frequency methods such as the geometrical and physical theories of diffraction used in conjunction with the equivalent current method. The numerical results for an S-shaped inlet cavity are compared with the backscatter from a straight inlet cavity; the backscattered patterns are different because the curvature of an S-shaped inlet cavity redistributes the energy reflected from the interior termination in a way that is different from a straight inlet cavity.
Mullett, L.B.; Loach, B.G.; Adams, G.L.
1958-06-24
>Loaded waveguides are described for the propagation of electromagnetic waves with reduced phase velocities. A rectangular waveguide is dimensioned so as to cut-off the simple H/sub 01/ mode at the operating frequency. The waveguide is capacitance loaded, so as to reduce the phase velocity of the transmitted wave, by connecting an electrical conductor between directly opposite points in the major median plane on the narrower pair of waveguide walls. This conductor may take a corrugated shape or be an aperature member, the important factor being that the electrical length of the conductor is greater than one-half wavelength at the operating frequency. Prepared for the Second U.N. International ConferThe importance of nuclear standards is duscussed. A brief review of the international callaboration in this field is given. The proposal is made to let the International Organization for Standardization (ISO) coordinate the efforts from other groups. (W.D.M.)
24-Way Radial Power Combiner/Divider for 31 to 36 GHz
NASA Technical Reports Server (NTRS)
Epp, Larry; Hoppe, Daniel; Khan, Abdur; Kelley, Daniel
2008-01-01
The figure shows a prototype radial power-combining waveguide structure, capable of operation at frequencies from 31 to 36 GHz, that features an unusually large number (N = 24) of combining (input) ports. The combination of wide-band operation and large N is achieved by incorporating several enhancements over a basic radial power-combiner design. In addition, the structure can be operated as a power divider by reversing the roles of the input and output ports. In this structure, full-height waveguides at the combining ports are matched in impedance to reduced-height radial waveguides inside the combiner base. This match is effected by impedance-transforming stepped waveguide sections. This matching scheme is essential to achievement of large N because N is limited by the height of the waveguides in the base. Power is coupled from the 24 reduced- height radial waveguides into the TE01 mode of a circular waveguide in the base with the help of a matching post at the bottom of the base. ( TE signifies transverse electric, the first subscript is the azimuthal mode number, and the second subscript is the radial mode number.) More specifically, the matching post matches the reflections from the walls of the 24 reduced-height waveguides and enables the base design to exceed the bandwidth requirement. After propagating along the circular waveguide, the combined power is coupled, via a mode transducer, to a rectangular waveguide output port. The mode transducer is divided into three sections, each sized and shaped as part of an overall design to satisfy the mode-conversion and output-coupling requirements while enabling the circular waveguide to be wide enough for combining the 24 inputs over the frequency range of 31 to 36 GHz. During the design process, it was found that two different rectangular waveguide outputs could be accommodated through modification of only the first section of the mode converter, thereby enabling operation in multiple frequency ranges.
Slotted rectangular waveguide with dielectric sandwich structure inside
NASA Astrophysics Data System (ADS)
Abdullin, R. R.; Sokolov, R. I.
2018-03-01
This paper continues the series of works devoted to the investigation of leaky-wave antenna based on layered rectangular waveguide with periodic transverse slots in broad face. Previously developed wavenumber calculation technique has been adapted for analysis of slotted sandwich waveguide with three layers at least. The paper provides the numerical results of velocity factor dependencies for partially filled slotted rectangular waveguide containing a dielectric slab in the middle position inside or an air gap between two dielectric slabs. Additionally, dispersion properties are also considered for multilayer waveguide with linear laws combinations of thickness and permittivity. This allows recognizing the trends to develop new prospective antennas with complex patterns of tilt angle change. All numerical results obtained are confirmed with the in-situ measurements of transmission coefficient phase.
Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides.
Astley, Victoria; McCracken, Blake; Mendis, Rajind; Mittleman, Daniel M
2011-04-15
We describe an experimental and theoretical characterization of rectangular resonant cavities integrated into parallel-plate waveguides, using terahertz pulses. When the waveguide is excited with the lowest-order transverse-electric mode, these cavities exhibit resonances with narrow linewidths. Broadband transmission spectra are compared with the results of mode-matching calculations, for various cavity dimensions.
Modal analysis applied to circular, rectangular, and coaxial waveguides
NASA Technical Reports Server (NTRS)
Hoppe, D. J.
1988-01-01
Recent developments in the analysis of various waveguide components and feedhorns using Modal Analysis (Mode Matching Method) are summarized. A brief description of the theory is presented, and the important features of the method are pointed out. Specific examples in circular, rectangular, and coaxial waveguides are included, with comparisons between the theory and experimental measurements. Extensions to the methods are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidabras, Jason W.; Anderson, James R.; Mainali, Laxman
Experimental results have been reported on an oversize rectangular waveguide assembly operating nominally at 94 GHz. It was formed using commercially available WR28 waveguide as well as a pair of specially designed tapers with a hyperbolic-cosine shape from WR28 to WR10 waveguide [R. R. Mett et al., Rev. Sci. Instrum. 82, 074704 (2011)]. The oversize section reduces broadband insertion loss for an Electron Paramagnetic Resonance (EPR) probe placed in a 3.36 T magnet. Hyperbolic-cosine tapers minimize reflection of the main mode and the excitation of unwanted propagating waveguide modes. Oversize waveguide is distinguished from corrugated waveguide, overmoded waveguide, or quasi-opticmore » techniques by minimal coupling to higher-order modes. Only the TE{sub 10} mode of the parent WR10 waveguide is propagated. In the present work, a new oversize assembly with a gradual 90° twist was implemented. Microwave power measurements show that the twisted oversize waveguide assembly reduces the power loss in the observe and pump arms of a W-band bridge by an average of 2.35 dB and 2.41 dB, respectively, over a measured 1.25 GHz bandwidth relative to a straight length of WR10 waveguide. Network analyzer measurements confirm a decrease in insertion loss of 2.37 dB over a 4 GHz bandwidth and show minimal amplitude distortion of approximately 0.15 dB. Continuous wave EPR experiments confirm these results. The measured phase variations of the twisted oversize waveguide assembly, relative to an ideal distortionless transmission line, are reduced by a factor of two compared to a straight length of WR10 waveguide. Oversize waveguide with proper transitions is demonstrated as an effective way to increase incident power and the return signal for broadband EPR experiments. Detailed performance characteristics, including continuous wave experiment using 1 μM 2,2,6,6-tetramethylpiperidine-1-oxyl in aqueous solution, provided here serve as a benchmark for other broadband low-loss probes in millimeter-wave EPR bridges.« less
Application of Finite Element Method to Analyze Inflatable Waveguide Structures
NASA Technical Reports Server (NTRS)
Deshpande, M. D.
1998-01-01
A Finite Element Method (FEM) is presented to determine propagation characteristics of deformed inflatable rectangular waveguide. Various deformations that might be present in an inflatable waveguide are analyzed using the FEM. The FEM procedure and the code developed here are so general that they can be used for any other deformations that are not considered in this report. The code is validated by applying the present code to rectangular waveguide without any deformations and comparing the numerical results with earlier published results.
2017-05-04
Wallraff *Correspondence: philipp.kurpiers@phys.ethz.ch Department of Physics, ETH Zürich, Zürich, CH-8093, Switzerland Abstract Low- loss waveguides...and single photon levels. More specifically, we characterize the frequency-dependent loss of a range of coaxial and rectangular microwave waveguides...down to 0.005 dB/m using a resonant-cavity technique. We study the loss tangent and relative permittivity of commonly used dielectric waveguide materials
Excitation of a Parallel Plate Waveguide by an Array of Rectangular Waveguides
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam
2011-01-01
This work addresses the problem of excitation of a parallel plate waveguide by an array of rectangular waveguides that arises in applications such as the continuous transverse stub (CTS) antenna and dual-polarized parabolic cylindrical reflector antennas excited by a scanning line source. In order to design the junction region between the parallel plate waveguide and the linear array of rectangular waveguides, waveguide sizes have to be chosen so that the input match is adequate for the range of scan angles for both polarizations. Electromagnetic wave scattered by the junction of a parallel plate waveguide by an array of rectangular waveguides is analyzed by formulating coupled integral equations for the aperture electric field at the junction. The integral equations are solved by the method of moments. In order to make the computational process efficient and accurate, the method of weighted averaging was used to evaluate rapidly oscillating integrals encountered in the moment matrix. In addition, the real axis spectral integral is evaluated in a deformed contour for speed and accuracy. The MoM results for a large finite array have been validated by comparing its reflection coefficients with corresponding results for an infinite array generated by the commercial finite element code, HFSS. Once the aperture electric field is determined by MoM, the input reflection coefficients at each waveguide port, and coupling for each polarization over the range of useful scan angles, are easily obtained. Results for the input impedance and coupling characteristics for both the vertical and horizontal polarizations are presented over a range of scan angles. It is shown that the scan range is limited to about 35 for both polarizations and therefore the optimum waveguide is a square of size equal to about 0.62 free space wavelength.
The spectra of rectangular lattices of quantum waveguides
NASA Astrophysics Data System (ADS)
Nazarov, S. A.
2017-02-01
We obtain asymptotic formulae for the spectral segments of a thin (h\\ll 1) rectangular lattice of quantum waveguides which is described by a Dirichlet problem for the Laplacian. We establish that the structure of the spectrum of the lattice is incorrectly described by the commonly accepted quantum graph model with the traditional Kirchhoff conditions at the vertices. It turns out that the lengths of the spectral segments are infinitesimals of order O(e-δ/h), δ> 0, and O(h) as h\\to+0, and gaps of width O(h-2) and O(1) arise between them in the low- frequency and middle- frequency spectral ranges respectively. The first spectral segment is generated by the (unique) eigenvalue in the discrete spectrum of an infinite cross-shaped waveguide \\Theta. The absence of bounded solutions of the problem in \\Theta at the threshold frequency means that the correct model of the lattice is a graph with Dirichlet conditions at the vertices which splits into two infinite subsets of identical edges- intervals. By using perturbations of finitely many joints, we construct any given number of discrete spectrum points of the lattice below the essential spectrum as well as inside the gaps.
Lierstuen, L O; Sudbø, A S
1995-02-20
The butt-coupling loss between different tapered rectangular waveguides and a standard single-mode optical fiber has been calculated. Losses as low as 0.16 dB can be reached for waveguides with a refractive-index contrast in the range of 0.5% to 1.96%. The fabrication tolerances are such that practical devices with coupling losses below 0.25 dB are feasible.
Huang, Yen-Chieh; Wang, Tsong-Dong; Lin, Yen-Hou; Lee, Ching-Han; Chuang, Ming-Yun; Lin, Yen-Yin; Lin, Fan-Yi
2011-11-21
We report forward and backward THz-wave difference frequency generations at 197 and 469 μm from a PPLN rectangular crystal rod with an aperture of 0.5 (height in z) × 0.6 (width in y) mm(2) and a length of 25 mm in x. The crystal rod appears as a waveguide for the THz waves but as a bulk material for the optical mixing waves near 1.54 μm. We measured enhancement factors of 1.6 and 1.8 for the forward and backward THz-wave output powers, respectively, from the rectangular waveguide in comparison with those from a PPLN slab waveguide of the same length, thickness, and domain period under the same pump and signal intensity of 100 MW/cm(2). © 2011 Optical Society of America
Integration of a terahertz quantum cascade laser with a hollow waveguide
Wanke, Michael C [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM
2012-07-03
The present invention is directed to the integration of a quantum cascade laser with a hollow waveguide on a chip to improve both the beam pattern and manufacturability. By coupling the QCL output into a single-mode rectangular waveguide the radiation mode structure can be known and the propagation, manipulation, and broadcast of the QCL radiation can then be entirely controlled by well-established rectangular waveguide techniques. By controlling the impedance of the interface, enhanced functions, such as creating amplifiers, efficient coupling to external cavities, and increasing power output from metal-metal THz QCLs, are also enabled.
NASA Technical Reports Server (NTRS)
Knox, R. M.; Toulios, P. P.; Onoda, G. Y.
1972-01-01
Program results are described in which the use of a/high permittivity rectangular dielectric image waveguide has been investigated for use in microwave and millimeter wavelength circuits. Launchers from rectangular metal waveguide to image waveguide are described. Theoretical and experimental evaluations of the radiation from curved image waveguides are given. Measurements of attenuation due to conductor and dielectric losses, adhesives, and gaps between the dielectric waveguide and the image plane are included. Various passive components are described and evaluations given. Investigations of various techniques for fabrication of image waveguide circuits using ceramic waveguides are also presented. Program results support the evaluation of the image line approach as an advantageous method for realizing low loss integrated electronic circuits for X-band and above.
1990-01-01
1988. 12 K. T. Shu and J. H. Ginsberg, "Ray Solution for Finite Amplitude Two- Dimensional Waves in a Hard -Walled Rectangular Waveguide", 115th...the effect of nonlinearity on a hard -walled rectangular waveguide. The excitation would induce only the fundamental nonplanar symmetric mode if the...interacting waves. In linear the surface of the plate vanishes. Such lines are perpendicu- theory, a mode in a hard -walled waveguide may be con- lar to the
Propagation and switching of light in rectangular waveguiding structures
NASA Astrophysics Data System (ADS)
Sala, Anca L.
1998-10-01
In this dissertation, we investigate the conditions for the propagation and processing of temporal optical solitons in the rectangular geometry waveguides which are expected to play an important role as processing elements in optical communication systems. It is anticipated that the optical signals carrying information through optical fibers will be in the form of temporal soliton pulses, which can propagate undistorted for long distances under the condition that the dispersion is balanced by a nonlinearity in the optical fiber. An important parameter in the equation that governs temporal soliton propagation in a waveguide is the second derivative of the propagation vector with respect to the angular frequency, /omega, denoted by β/prime'. We evaluate β/prime' for rectangular waveguides using a channel model of the waveguide, which takes into account the two transverse dimensions of the rectangular channel. Significant differences are found in the values of β/prime' obtained from our model and those obtained from the more traditional, one dimensional slab model. A major additional effort in the present thesis relates to the development of a theory of temporal soliton switching in a planar geometry nonlinear directional coupler. The theory is formulated in terms of the supermodes of the total structure, and again accounts for the two transverse dimensions of the channels. To accurately determine the coupling length and switching power of the nonlinear coupler, we apply corrections to the propagation constants of the supermodes that account for the non-zero electromagnetic fields in the outer corner regions of the waveguide channels. It is shown for the case of a SiO2 based nonlinear directional coupler operating at the central wavelength of 1.55 μm, that these corrections have a significant effect on both the coupling length and the switching power. Finally, we develop the conditions under which single mode rectangular waveguides can have zero dispersion at the optical communications wavelengths 1.31 μm or 1.55 μm, and discuss the end-to-end coupling of rectangular waveguides to the standard optical fibers used in optical communications. Our results are expected to serve as a guide for the design of planar geometry based processing elements in a variety of optical communications devices.
User's Manual for FEMOM3DR. Version 1.0
NASA Technical Reports Server (NTRS)
Reddy, C. J.
1998-01-01
FEMoM3DR is a computer code written in FORTRAN 77 to compute radiation characteristics of antennas on 3D body using combined Finite Element Method (FEM)/Method of Moments (MoM) technique. The code is written to handle different feeding structures like coaxial line, rectangular waveguide, and circular waveguide. This code uses the tetrahedral elements, with vector edge basis functions for FEM and triangular elements with roof-top basis functions for MoM. By virtue of FEM, this code can handle any arbitrary shaped three dimensional bodies with inhomogeneous lossy materials; and due to MoM the computational domain can be terminated in any arbitrary shape. The User's Manual is written to make the user acquainted with the operation of the code. The user is assumed to be familiar with the FORTRAN 77 language and the operating environment of the computers on which the code is intended to run.
A Simple Optical Waveguide Experiment.
ERIC Educational Resources Information Center
Phelps, J.; Sambles, J. R.
1989-01-01
Describes a thin film rectangular dielectric waveguide and its laboratory use. Discusses the theory of uniaxial thin film waveguides with mathematical expressions and the laboratory procedures for a classroom experiment with diagrams. (Author/YP)
A V-band wafer probe using ridge-trough waveguide
NASA Astrophysics Data System (ADS)
Godshalk, Edward M.
1991-12-01
A V-band (50-75 GHz) wafer probe is presented. The probe features a type of waveguide developed to allow transition from rectangular waveguide to coplanar waveguide. The waveguide consists of a ridge extending from the upper waveguide wall into a trough in the lower waveguide wall, and is known as the ridge-trough waveguide. A mathematical model is presented that allows important properties of the ridge-trough waveguide, such as the cutoff frequency and characteristic impedance, to be calculated.
Push-pull radio frequency circuit with integral transistion to waveguide output
Bennett, Wilfred P.
1987-01-01
A radio frequency circuit for ICRF heating includes a resonant push-pull circuit, a double ridged rectangular waveguide, and a coupling transition which joins the waveguide to the resonant circuit. The resonant circuit includes two cylindrical conductors mounted side by side and two power vacuum tubes attached to respective ends of a cylindrical conductor. A conductive yoke is located at the other end of the cylindrical conductors to short circuit the two cylindrical conductors. The coupling transition includes two relatively flat rectangular conductors extending perpendicular to the longitudinal axes of a respective cylindrical conductor to which the flat conductor is attached intermediate the ends thereof. Conductive side covers and end covers are also provided for forming pockets in the waveguide into which the flat conductors extend when the waveguide is attached to a shielding enclosure surrounding the resonant circuit.
Aperture excited dielectric antennas
NASA Technical Reports Server (NTRS)
Crosswell, W. F.; Chatterjee, J. S.; Mason, V. B.; Tai, C. T.
1974-01-01
The results of a comprehensive experimental and theoretical study of the effect of placing dielectric objects over the aperture of waveguide antennas are presented. Experimental measurements of the radiation patterns, gain, impedance, near-field amplitude, and pattern and impedance coupling between pairs of antennas are given for various Plexiglas shapes, including the sphere and the cube, excited by rectangular, circular, and square waveguide feed apertures. The waveguide excitation of a dielectric sphere is modeled using the Huygens' source, and expressions for the resulting electric fields, directivity, and efficiency are derived. Calculations using this model show good overall agreement with experimental patterns and directivity measurements. The waveguide under an infinite dielectric slab is used as an impedance model. Calculations using this model agree qualitatively with the measured impedance data. It is concluded that dielectric loaded antennas such as the waveguide excited sphere, cube, or sphere-cylinder can produce directivities in excess of that obtained by a uniformly illuminated aperture of the same cross section, particularly for dielectric objects with dimensions of 2 wavelengths or less. It is also shown that for certain configurations coupling between two antennas of this type is less than that for the same antennas without dielectric loading.
Testing Born-Infeld electrodynamics in waveguides.
Ferraro, Rafael
2007-12-07
Waveguides can be employed to test nonlinear effects in electrodynamics. We solve Born-Infeld equations for TE waves in a rectangular waveguide. We show that the energy velocity acquires a dependence on the amplitude, and harmonic components appear as a consequence of the nonlinear behavior.
Analysis of the rectangular resonator with butterfly MMI coupler using SOI
NASA Astrophysics Data System (ADS)
Kim, Sun-Ho; Park, Jun-Hee; Kim, Eudum; Jeon, Su-Jin; Kim, Ji-Hoon; Choi, Young-Wan
2018-02-01
We propose a rectangular resonator sensor structure with butterfly MMI coupler using SOI. It consists of the rectangular resonator, total internal reflection (TIR) mirror, and the butterfly MMI coupler. The rectangular resonator is expected to be used as bio and chemical sensors because of the advantages of using MMI coupler and the absence of bending loss unlike ring resonators. The butterfly MMI coupler can miniaturize the device compared to conventional MMI by using a linear butterfly shape instead of a square in the MMI part. The width, height, and slab height of the rib type waveguide are designed to be 1.5 μm, 1.5 μm, and 0.9 μm, respectively. This structure is designed as a single mode. When designing a TIR mirror, we considered the Goos-Hänchen shift and critical angle. We designed 3:1 MMI coupler because rectangular resonator has no bending loss. The width of MMI is designed to be 4.5 μm and we optimize the length of the butterfly MMI coupler using finite-difference time-domain (FDTD) method for higher Q-factor. It has the equal performance with conventional MMI even though the length is reduced by 1/3. As a result of the simulation, Qfactor of rectangular resonator can be obtained as 7381.
Dispersion characteristics of plasmonic waveguides for THz waves
NASA Astrophysics Data System (ADS)
Markides, Christos; Viphavakit, Charusluk; Themistos, Christos; Komodromos, Michael; Kalli, Kyriacos; Quadir, Anita; Rahman, Azizur
2013-05-01
Today there is an increasing surge in Surface Plasmon based research and recent studies have shown that a wide range of plasmon-based optical elements and techniques have led to the development of a variety of active switches, passive waveguides, biosensors, lithography masks, to name just a few. The Terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, the metal-clad waveguides supporting surface plasmon modes waves and specifically hollow core structures, coated with insulating material are showing the greatest promise as low-loss waveguides for their use in active components and as well as passive waveguides. The H-field finite element method (FEM) based full-vector formulation is used to study the vectorial modal field properties and the complex propagation characteristics of Surface Plasmon modes of a hollow-core dielectric coated rectangular waveguide structure. Additionally, the finite difference time domain (FDTD) method is used to estimate the dispersion parameters and the propagation loss of the rectangular waveguide.
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.
1995-01-01
A combined finite element method (FEM) and method of moments (MoM) technique is presented to analyze the radiation characteristics of a cavity-fed aperture in three dimensions. Generalized feed modeling has been done using the modal expansion of fields in the feed structure. Numerical results for some feeding structures such as a rectangular waveguide, circular waveguide, and coaxial line are presented. The method also uses the geometrical theory of diffraction (GTD) to predict the effect of a finite ground plane on radiation characteristics. Input admittance calculations for open radiating structures such as a rectangular waveguide, a circular waveguide, and a coaxial line are shown. Numerical data for a coaxial-fed cavity with finite ground plane are verified with experimental data.
NASA Technical Reports Server (NTRS)
Noh, H. M.; Pathak, P. H.
1986-01-01
An approximate but sufficiently accurate high frequency solution which combines the uniform geometrical theory of diffraction (UTD) and the aperture integration (AI) method is developed for analyzing the problem of electromagnetic (EM) plane wave scattering by an open-ended, perfectly-conducting, semi-infinite hollow rectangular waveguide (or duct) with a thin, uniform layer of lossy or absorbing material on its inner wall, and with a planar termination inside. In addition, a high frequency solution for the EM scattering by a two dimensional (2-D), semi-infinite parallel plate waveguide with a absorber coating on the inner walls is also developed as a first step before analyzing the open-ended semi-infinite three dimensional (3-D) rectangular waveguide geometry. The total field scattered by the semi-infinite waveguide consists firstly of the fields scattered from the edges of the aperture at the open-end, and secondly of the fields which are coupled into the waveguide from the open-end and then reflected back from the interior termination to radiate out of the open-end. The first contribution to the scattered field can be found directly via the UTD ray method. The second contribution is found via the AI method which employs rays to describe the fields in the aperture that arrive there after reflecting from the interior termination. It is assumed that the direction of the incident plane wave and the direction of observation lie well inside the forward half space tht exists outside the half space containing the semi-infinite waveguide geometry. Also, the medium exterior to the waveguide is assumed to be free space.
NASA Technical Reports Server (NTRS)
Hersh, A. S.
1979-01-01
The influence of a mean vortical flow on the connection between the standing wave pattern in a rectangular three dimensional waveguide and the corresponding duct axial impedance was determined analytically. The solution was derived using a perturbation scheme valid for low mean flow Mach numbers and plane wave sound frequencies. The results show that deviations of the standing wave pattern due to refraction by the mean flow gradients are small.
Full Ka Band Waveguide-to-Microstrip Inline Transition Design
NASA Astrophysics Data System (ADS)
Li, Jianxing; Li, Lei; Qiao, Yu; Chen, Juan; Chen, Jianzhong; Zhang, Anxue
2018-05-01
In this paper, a compact and broadband inline waveguide-to-microstrip transition is proposed to cover the full Ka band. The transition can be segmented from the electric point of view into three building blocks, comprising a microstrip line to rectangular coaxial line, a wedged rectangular coaxial line to ridged waveguide, and a final tapered ridged waveguide impedance transformer to standard waveguide. Both good electrical performance and simple modular assembly without any soldering have been simultaneously obtained. The validation of the design concept has been conducted by numerical simulations and experimental measurements. The experimental results of a fabricated back-to-back transition prototype coincide with the simulated results. It shows that the proposed transition achieves good return loss of lower than 15.5 dB and low insertion loss with a fluctuation between 0.23 to 0.60 dB across the entire Ka band. Details of design considerations and operation mechanism as well as simulation and measurement results are presented.
Mazzotti, M; Bartoli, I; Castellazzi, G; Marzani, A
2014-09-01
The paper aims at validating a recently proposed Semi Analytical Finite Element (SAFE) formulation coupled with a 2.5D Boundary Element Method (2.5D BEM) for the extraction of dispersion data in immersed waveguides of generic cross-section. To this end, three-dimensional vibroacoustic analyses are carried out on two waveguides of square and rectangular cross-section immersed in water using the commercial Finite Element software Abaqus/Explicit. Real wavenumber and attenuation dispersive data are extracted by means of a modified Matrix Pencil Method. It is demonstrated that the results obtained using the two techniques are in very good agreement. Copyright © 2014 Elsevier B.V. All rights reserved.
24-ch microlens-integrated no-polish connector for optical interconnection with polymer waveguides
NASA Astrophysics Data System (ADS)
Shiraishi, Takashi; Yagisawa, Takatoshi; Ikeuchi, Tadashi; Daikuhara, Osamu; Tanaka, Kazuhiro
2013-02-01
We successfully developed a new 24-ch optical connector for polymer waveguides. The connector consists of a transparent thermoplastic resin that has two rectangular slits on one side for alignment of the waveguide films and integrated microlens arrays on the other side for coupling to the MT connector. Two 12-ch waveguide films were cut to a 3-mm width. The thickness of each waveguide film was controlled at 100 μm. The waveguide films were inserted into the slits until they touched the bottom face of the slit. Ultraviolet curing adhesive was used to achieve a short hardening process. The expanded beam in the transparent material is focused by the microlens arrays formed on the connector surface. This lens structure enables assembly without the need for a polishing process. We designed the lens for coupling between a step-index 40-μm rectangular waveguide and a graded-index 50-μm fiber. We achieved low-loss optical coupling by designing a method of providing asymmetric magnification between the horizontal and vertical directions in order to compensate for the asymmetric numerical aperture of the waveguide. The typical measured coupling losses from/to the waveguide to/from the fiber were 1.2 dB and 0.6 dB, respectively. The total coupling loss was as small as that of a physical contact connection.
NASA Technical Reports Server (NTRS)
Park, A.; Dominek, A. K.
1990-01-01
Constitutive parameter extraction from S parameter data using a rectangular waveguide whose cross section is partially filled with a material sample as opposed to being completely filled was examined. One reason for studying a partially filled geometry is to analyze the effect of air gaps between the sample and fixture for the extraction of constitutive parameters. Air gaps can occur in high temperature parameter measurements when the sample was prepared at room temperature. Single port and two port measurement approaches to parameter extraction are also discussed.
High-Reliability Waveguide Vacuum/Pressure Window
NASA Technical Reports Server (NTRS)
Britcliffe, Michael J.; Hanson, Theodore R.; Long, Ezra M.; Montanez, Steven
2013-01-01
The NASA Deep Space Network (DSN) uses commercial waveguide windows on the output waveguide of Ka-band (32 GHz) low-noise amplifiers. Mechanical failure of these windows resulted in an unacceptable loss in tracking time. To address this issue, a new Ka-band WR-28 waveguide window has been designed, fabricated, and tested. The window uses a slab of low-loss, low-dielectric constant foam that is bonded into a 1/2-wave-thick waveguide/flange. The foam is a commercially available, rigid, closed-cell polymethacrylimide. It has excellent electrical properties with a dielectric constant of 1.04, and a loss tangent of 0.01. It is relatively strong with a tensile strength of 1 MPa. The material is virtually impermeable to helium. The finished window exhibits a leak rate of less than 3x10(exp -3)cu cm/s with helium. The material is also chemically resistant and can be cleaned with acetone. The window is constructed by fabricating a window body by brazing a short length of WR-28 copper waveguide into a standard rectangular flange, and machining the resulting part to a thickness of 4.6 mm. The foam is machined to a rectangular shape with a dimension of 7.06x3.53 mm. The foam is bonded into the body with a two-part epoxy. After curing, the excess glue and foam are knife-trimmed by hand. The finished window has a loss of less than 0.08 dB (2%) and a return loss of greater than 25 dB at 32 GHz. This meets the requirements for the DSN application. The window is usable for most applications over the entire 26-to-40-GHz waveguide band. The window return loss can be tuned to a required frequency by var y in g the thickness of the window slightly. Most standard waveguide windows use a thin membrane of material bonded into a recess in a waveguide flange, or sandwiched between two flanges with a polymer seal. Designs using the recessed window are prone to mechanical failure over time due to constraints on the dimensions of the recess that allow the bond to fail. Designs using the sandwich method are often permeable to helium, which prohibits the use of helium leak detection. At the time of this reporting, 40 windows have been produced. Twelve are in operation with a combined operating time of over 30,000 hours without a failure.
NASA Astrophysics Data System (ADS)
Pan, Chien-Yuan; Su, Chum-Chieh; Yang, Wei-Lin
2018-04-01
A new circularly polarized (CP) slot antenna with a small gap and a stick-shaped shorted strip is presented. The proposed antenna has a sufficient bandwidth for ultrahigh frequency (UHF) radio-frequency identification (RFID) reader applications. The antenna structure consists of a rectangular slot with a small gap, a stick-shaped shorted strip and a 50 Ω coplanar waveguide (CPW) feedline with an asymmetrical ground plane. By using the stick -shaped shorted strip to disturb magnetic current distribution on the slot, the CP radiation can be generated. The measured results demonstrate that the proposed antenna can reach a 10 dB return loss impedance bandwidth of 14.1 % (894-1030 MHz) and a 3 dB axial ratio (AR) bandwidth of 6.4 % (910-970 MHz). The whole antenna size is 80 × 80 × 1.6 mm3.
NASA Astrophysics Data System (ADS)
Shimizu, Takashi; Kuwahara, Masashi
2014-05-01
We studied the optical properties of In-Ga-Zn-O (IGZO) films and found a very low extinction coefficient of the films. For the potential application of the films, we propose an optical waveguide device made of IGZO. We have succeeded in producing a submicron-scale rectangular-bar structure of IGZO using our newly developed dry etching process. Simulation results showed an ˜5 dB/cm propagation loss of a 400 × 400 nm2 square optical waveguide device of amorphous IGZO at a wavelength of 1.55 µm, when a standard deviation of ˜4 nm and a correlation length of ˜100 nm of sidewall roughness were achieved.
NASA Astrophysics Data System (ADS)
Sakli, Hedi; Benzina, Hafedh; Aguili, Taoufik; Tao, Jun Wu
2009-08-01
This paper is an analysis of rectangular waveguide completely full of ferrite magnetized longitudinally. The analysis is based on the formulation of the transverse operator method (TOM), followed by the application of the Galerkin method. We obtain an eigenvalue equation system. The propagation constant of some homogenous and anisotropic waveguide structures with ferrite has been obtained. The results presented here show that the transverse operator formulation is not only an elegant theoretical form, but also a powerful and efficient analysis method, it is useful to solve a number of the propagation problems in electromagnetic. One advantage of this method is that it presents a fast convergence. Numerical examples are given for different cases and compared with the published results. A good agreement is obtained.
NASA Astrophysics Data System (ADS)
Zav'yalov, A. S.
2018-04-01
A variant of the method of partial waveguide filling is considered in which a sample is put into a waveguide through holes in wide waveguide walls at the distance equal to a quarter of the wavelength in the waveguide from a short-circuiter, and the total input impedance of the sample in the waveguide is directly measured. The equivalent circuit of the sample is found both without and with account of the hole. It is demonstrated that consideration of the edge effect makes it possible to obtain more exact values of the dielectric permittivity.
NASA Astrophysics Data System (ADS)
Hughes, D.; Zoughi, R.; Austin, R.; Wood, N.; Engelbart, R.
2003-03-01
Detection of corrosion precursor pitting on metallic surfaces under various coatings and on bare metal is of keen interest in evaluation of aircraft fuselage. Near-field microwave nondestructive testing methods, utilizing open-ended rectangular waveguides and coaxial probes, have been used extensively for detection of surface flaws in metals, both on bare metal and under a dielectric coating. This paper presents the preliminary results of using microwave techniques to detect corrosion precursor pitting under paint and primer, applique and on bare metal. Machined pits of 500 μm diameter were detected using open-ended rectangular waveguides at V-Band under paint and primer and applique, and on bare metal. Using coaxial probes, machined pits with diameters down to 150 μm on bare metal were also detected. Relative pit size and density were shown on a corrosion-pitted sample using open-ended rectangular waveguides at frequencies of 35 GHz to 70 GHz. The use of Boeing's MAUS™ scanning systems provided improved results by alleviating standoff variation and scanning artifact. Typical results of this investigation are also presented.
Hakim, B M; Beard, B B; Davis, C C
2018-01-01
Specific absorption rate (SAR) measurements require accurate calculations of the dielectric properties of tissue-equivalent liquids and associated calibration of E-field probes. We developed a precise tissue-equivalent dielectric measurement and E-field probe calibration system. The system consists of a rectangular waveguide, electric field probe, and data control and acquisition system. Dielectric properties are calculated using the field attenuation factor inside the tissue-equivalent liquid and power reflectance inside the waveguide at the air/dielectric-slab interface. Calibration factors were calculated using isotropicity measurements of the E-field probe. The frequencies used are 900 MHz and 1800 MHz. The uncertainties of the measured values are within ±3%, at the 95% confidence level. Using the same waveguide for dielectric measurements as well as calibrating E-field probes used in SAR assessments eliminates a source of uncertainty. Moreover, we clearly identified the system parameters that affect the overall uncertainty of the measurement system. PMID:29520129
NASA Astrophysics Data System (ADS)
Porter, R.; Evans, D. V.
2017-11-01
The transmission of acoustic waves along a two-dimensional waveguide which is coupled through an opening in its wall to a rectangular cavity resonator is considered. The resonator acts as a classical band-stop filter, significantly reducing acoustic transmission across a range of frequencies. Assuming wave frequencies below the first waveguide cut-off, the solution for the reflected and transmitted wave amplitudes is formulated exactly within the framework of inviscid linear acoustics. The main aim of the paper is to develop an approximation in closed form for reflected and transmitted amplitudes when the gap in the thin wall separating the waveguide and the cavity resonator is assumed to be small. This approximation is shown to accurately capture the effect of all cavities resonances, not just the fundamental Helmholtz resonance. It is envisaged this formula (and more generally the mathematical approach adopted) could be used in the development of acoustic metamaterial devices containing resonator arrays.
NASA Astrophysics Data System (ADS)
Simonetto, A.; Platania, P.; Garavaglia, S.; Gittini, G.; Granucci, G.; Pallotta, F.
2018-02-01
Plasma position reflectometry for ITER requires interfaces between in-vessel and ex-vessel waveguides. An ultra broadband interface (15-75 GHz) was designed between moderately oversized rectangular waveguide (20 × 12 mm), operated in TE01 (i.e., tall waveguide mode), and circular corrugated waveguide, with 88.9-mm internal diameter, propagating HE11. The interface was designed both as a sequence of waveguide components and as a quasi-optical confocal telescope. The design and the simulated performance are described for both concepts. The latter one requires more space but has better performance, and shall be prototyped.
WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES
Robertson-Shersby-Harvie, R.B.; Dain, J.
1956-11-13
This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength does in wave-guides loaded by means of corrugations.
Advanced designs for non-imaging submillimeter-wave Winston cone concentrators
NASA Astrophysics Data System (ADS)
Nelson, A. O.; Grossman, E. N.
2014-05-01
We describe the design and simulation of several non-imaging concentrators designed to couple submillimeter wavelength radiation from free space into highly overmoded, rectangular, WR-10 waveguide. Previous designs are altered to improve the uniformity of efficiency rather than the efficiency itself. The concentrators are intended for use as adapters between instruments using overmoded WR-10 waveguide as input or output and sources propagating through free space. Previous simulation and measurement have shown that the angular response is primarily determined by the Winston cone and is well predicted by geometric optics theory while the efficiencies are primarily determined by the transition section. Additionally, previous work has shown insensitivity to polarization, orientation and beam size. Several separate concentrator designs are studied, all of which use a Winston cone (also known as a compound parabolic concentrator) with an input diameter ranging from 4 mm to 16 mm, and "throat" diameters of less than 0.5 mm to 4 mm as the initial interface. The use of various length adiabatic circular-to-rectangular transition sections is investigated, along with the effect of an additional, 25 mm waveguide section designed to model the internal waveguide of the power meter. Adapters without a transition section and a rectangular Winston cone throat aperture and double cone configurations are also studied. Adapters are analyzed in simulation for consistent efficiency across the opening aperture.
NASA Technical Reports Server (NTRS)
Yu, C.
1983-01-01
Flexible hollow metallic rectangular pipes and infrared fibers are proposed as alternate media for collection, guidance and manipulation of mid-infrared tunable diode laser (TDL) radiation. Certain features of such media are found to be useful for control of TDL far field patterns, polarization and possibly intensity fluctuations. Such improvement in dimension compatibility may eventually lead to laser heterodyne spectroscopy (LHS) and optical communication system compaction and integration. Infrared optical fiber and the compound parabolic coupling of light into a hollow pipe waveguide are discussed as well as the design of the waveguide.
NASA Astrophysics Data System (ADS)
Gevorkyan, E. A.
2015-08-01
We have considered transient radiation of a charged particle that moves at a constant velocity perpendicularly to the axis of a regular waveguide filled with an anisotropic magnetodielectric medium. Wave equations and analytical expressions for transverse electric (TE) and transverse magnetic (TM) fields in the waveguide have been found. Energies of transient radiation of the particle moving in a rectangular waveguide have been determined. We have obtained conditions of occurrence, the frequency, and the energy of Vavilov-Cherenkov radiation.
Biaxial Anisotropic Material Development and Characterization using Rectangular to Square Waveguide
2015-03-26
holder 68 Figure 29. Measurement Setup with Test port cables and Network Analyzer VNA and the waveguide adapters are torqued to specification with...calibrated torque wrenches and waveguide flanges are aligned using precision alignment pins. A TRL calibration is performed prior to measuring the sample as...set to 0.0001. This enables the Frequency domain solver to refine the mesh until the tolerance is achieved. Tightening the error tolerance results in
The waveguide laser - A review
NASA Technical Reports Server (NTRS)
Degnan, J. J.
1976-01-01
The present article reviews the fundamental physical principles essential to an understanding of waveguide gas and liquid lasers, and the current technological state of these devices. At the present time, waveguide laser transitions span the visible through submillimeter regions of the wavelength spectrum. The introduction discusses the many applications of waveguide lasers and the wide variety of laser configurations that are possible. Section 1 summarizes the properties of modes in hollow dielectric waveguides of circular, rectangular, and planar cross section. Section 2 considers various approaches to optical feedback including internal and external mirror Fabry-Perot type resonators, hollow waveguide distributed feedback structures, and ring-resonant configurations. Section 3 discusses those aspects of molecular kinetic and laser theory pertinent to the design and optimization of waveguide gas lasers.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
2002-01-01
The paper presents a novel on-wafer, antenna far field pattern measurement technique for microelectromechanical systems (MEMS) based reconfigurable patch antennas. The measurement technique significantly reduces the time and the cost associated with the characterization of printed antennas, fabricated on a semiconductor wafer or dielectric substrate. To measure the radiation patterns, the RF probe station is modified to accommodate an open-ended rectangular waveguide as the rotating linearly polarized sampling antenna. The open-ended waveguide is attached through a coaxial rotary joint to a Plexiglas(Trademark) arm and is driven along an arc by a stepper motor. Thus, the spinning open-ended waveguide can sample the relative field intensity of the patch as a function of the angle from bore sight. The experimental results include the measured linearly polarized and circularly polarized radiation patterns for MEMS-based frequency reconfigurable rectangular and polarization reconfigurable nearly square patch antennas, respectively.
WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson-Shersby-Harvie, R.B.; Dain, J.
1956-11-13
This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength doesmore » in wave-guides loaded by means of corrugations.« less
Four-Way Ka-Band Power Combiner
NASA Technical Reports Server (NTRS)
Perez, Raul; Li, Samuel
2007-01-01
A waveguide structure for combining the outputs of four amplifiers operating at 35 GHz (Ka band) is based on a similar prior structure used in the X band. The structure is designed to function with low combining loss and low total reflected power at a center frequency of 35 GHz with a 160 MHz bandwidth. The structure (see figure) comprises mainly a junction of five rectangular waveguides in a radial waveguide. The outputs of the four amplifiers can be coupled in through any four of the five waveguide ports. Provided that these four signals are properly phased, they combine and come out through the fifth waveguide port.
NASA Astrophysics Data System (ADS)
Belenguer, Angel; Cano, Juan Luis; Esteban, Héctor; Artal, Eduardo; Boria, Vicente E.
2017-01-01
Substrate integrated circuits (SIC) have attracted much attention in the last years because of their great potential of low cost, easy manufacturing, integration in a circuit board, and higher-quality factor than planar circuits. A first suite of SIC where the waves propagate through dielectric have been first developed, based on the well-known substrate integrated waveguide (SIW) and related technological implementations. One step further has been made with a new suite of empty substrate integrated waveguides, where the waves propagate through air, thus reducing the associated losses. This is the case of the empty substrate integrated waveguide (ESIW) or the air-filled substrate integrated waveguide (air-filled SIW). However, all these SIC are H plane structures, so classical H plane solutions in rectangular waveguides have already been mapped to most of these new SIC. In this paper a novel E plane empty substrate integrated waveguide (ESIW-E) is presented. This structure allows to easily map classical E plane solutions in rectangular waveguide to this new substrate integrated solution. It is similar to the ESIW, although more layers are needed to build the structure. A wideband transition (covering the frequency range between 33 GHz and 50 GHz) from microstrip to ESIW-E is designed and manufactured. Measurements are successfully compared with simulation, proving the validity of this new SIC. A broadband high-frequency phase shifter (for operation from 35 GHz to 47 GHz) is successfully implemented in ESIW-E, thus proving the good performance of this new SIC in a practical application.
A more accurate analysis and design of coaxial-to-rectangular waveguide end launcher
NASA Astrophysics Data System (ADS)
Saad, Saad Michael
1990-02-01
An electromagnetic model is developed for the analysis of the coaxial-to-rectangular waveguide transition of the end-launcher type. The model describes the coupling mechanism in terms of an excitation probe which is fed by a transmission line intermediate section. The model is compared with a coupling loop model. The two models have a few analytical steps in common, but expressions for the probe model are easier to derive and compute. The two models are presented together with numerical examples and experimental verification. The superiority of the probe model is illustrated, and a design method yielding a maximum voltage standing wave ratio of 1.035 over 13 percent bandwidth is outlined.
NASA Technical Reports Server (NTRS)
Deshpande, M. D.
1997-01-01
The dyadic Green's function for an electric current source placed in a rectangular waveguide is derived using a magnetic vector potential approach. A complete solution for the electric and magnetic fields including the source location is obtained by simple differentiation of the vector potential around the source location. The simple differentiation approach which gives electric and magnetic fields identical to an earlier derivation is overlooked by the earlier workers in the derivation of the dyadic Green's function particularly around the source location. Numerical results obtained using the Green's function approach are compared with the results obtained using the Finite Element Method (FEM).
Transient radiation in an anisotropic magnetodielectric plate in a waveguide
NASA Astrophysics Data System (ADS)
Gevorkyan, E. A.
2017-02-01
We have considered transient radiation of a charged particle in an anisotropic magnetodielectric plate placed into a regular waveguide. It is assumed that the charged particle passes through the plate moving at a constant velocity perpendicularly to the waveguide axis. Wave equations and analytical expressions for transverse electric (TE) and transverse magnetic (TM) fields in different regions of the waveguide have been obtained. Energies of transient radiation of the moving particle have been calculated. The properties of transient radiation and Vavilov-Cherenkov radiation have been analyzed for the case of a rectangular waveguide. Energies of transient radiation have been calculated for the case of a "thin" plate in the waveguide, when the wavelength in the plate is much greater than the length of the plate.
Microwave corrosion detection using open ended rectangular waveguide sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qaddoumi, N.; Handjojo, L.; Bigelow, T.
The use of microwave and millimeter wave nondestructive testing methods utilizing open ended rectangular waveguide sensors has shown great potential for detecting minute thickness variations in laminate structures, in particular those backed by a conducting plate. Slight variations in the dielectric properties of materials may also be detected using a set of optimal parameters which include the standoff distance and the frequency of operation. In a recent investigation, on detecting rust under paint, the dielectric properties of rust were assumed to be similar to those of Fe{sub 2}O{sub 3} powder. These values were used in an electromagnetic model that simulatesmore » the interaction of fields radiated by a rectangular waveguide aperture with layered structures to obtain optimal parameters. The dielectric properties of Fe{sub 2}O{sub 3} were measured to be very similar to the properties of paint. Nevertheless, the presence of a simulated Fe{sub 2}O{sub 3} layer under a paint layer was detected. In this paper the dielectric properties of several different rust samples from different environments are measured. The measurements indicate that the nature of real rust is quite diverse and is different from Fe{sub 2}O{sub 3} and paint, indicating that the presence of rust under paint can be easily detected. The same electromagnetic model is also used (with the newly measured dielectric properties of real rust) to obtain an optimal standoff distance at a frequency of 24 GHz. The results indicate that variations in the magnitude as well as the phase of the reflection coefficient can be used to obtain information about the presence of rust. An experimental investigation on detecting the presence of very thin rust layers (2.5--5 x 10{sup {minus}2} mm [09--2.0 x 10{sup {minus}3} in.]) using an open ended rectangular waveguide probe is also conducted. Microwave images of rusted specimens, obtained at 24 GHz, are also presented.« less
Realizable feed-element patterns for multibeam reflector antenna analysis
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.; Cramer, P., Jr.; Woo, K.; Lee, S. W.
1981-01-01
The radiation pattern of a feed element is approximately described by a simple function (cos theta) to the q power. For a given element spacing of the feed array, simple formulas for estimating the practical value of q when the element is an open-ended rectangular waveguide, an open-ended circular waveguide, a pyramidal horn, or a cigar antenna are given.
Microwave applicator for in-drum processing of radioactive waste slurry
White, Terry L.
1994-01-01
A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE.sub.10 rectangular mode to TE.sub.01 circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power.
Magnetically tunable unidirectional waveguide based on magnetic photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Weiwei; Wang, Jiafu, E-mail: wangjiafu1981@126.com, E-mail: qushaobo@mail.xjtu.edu.cn; Wang, Jun
2016-08-01
In this letter, we presented a magnetically tunable ferrite-loaded unidirectional waveguide based on magnetic photonic crystals. Two rows of ferrite rods are symmetrically arranged near the two lateral sides of the rectangular waveguide, where they are biased with static magnetic fields with the same amplitude and opposite directions along the rod axis. Since the magnetic one-way transmission is induced by the magnetic surface plasmon resonance, the operating band of the unidirectional waveguide can be tuned by changing the biased magnetic field intensity. To validate the design, a prototype was fabricated and measured. Both the simulation and experiment results verify themore » unidirectional transmission property.« less
Klehr, A; Wenzel, H; Brox, O; Schwertfeger, S; Staske, R; Erbert, G
2013-02-11
We present detailed experimental investigations of the temporal, spectral and spatial behavior of a gain-switched distributed feedback (DFB) laser emitting at a wavelength of 1064 nm. Gain-switching is achieved by injecting nearly rectangular shaped current pulses having a length of 50 ns and a very high amplitude up to 2.5 A. The repetition frequency is 200 kHz. The laser has a ridge waveguide (RW) for lateral waveguiding with a ridge width of 3 µm and a cavity length of 1.5 mm. Time resolved investigations show, depending on the amplitude of the current pulses, that the optical power exhibits different types of oscillatory behavior during the pulses, accompanied by changes in the lateral near field intensity profiles and optical spectra. Three different types of instabilities can be distinguished: mode beating with frequencies between 25 GHz and 30 GHz, switching between different lateral intensity profiles with a frequency of 0.4 GHz and self-sustained oscillations with a frequency of 4 GHz. The investigations are of great relevance for the utilization of gain-switched DFB-RW lasers as seed lasers for fiber laser systems and in other applications, which require a high optical power.
Conceptual design of X band waveguide dual circular polarizer
Xu, Chen; Tantawi, Sami; Wang, Juwen
2016-06-01
We present in this paper a new design of dual circular polarizer. This innovative design converts radiofrequency (rf) energy from TE10 mode in a rectangular waveguide to two polarized TE11 modes in a circular waveguide. A reflection less than ₋20 db is achieved and breakdown field is less than 42 MV/m at input of 1 MW. Meanwhile, this polarizer has a megahertz bandwidth, and the thermal stability is also discussed. This device can be used for broadcasting and receiving the circular polarized signals.
Mode propagation in optical nanowaveguides with dielectric cores and surrounding metal layers.
Lapchuk, Anatoly S; Shin, Dongho; Jeong, Ho-Seop; Kyong, Chun Su; Shin, Dong-Ik
2005-12-10
The mode spectrum in an optical nanowaveguide consisting of a dielectric-core layer surrounded by two identical metal layers is investigated. A simple model based on mode matching to predict the properties of mode propagation in such optical nanowaveguides is proposed. It is shown that quasi-TM00 and quasi-TM10 modes supported by an optical microstrip line do not have a cutoff frequency, regardless of the size of the metal strips, the thickness of the dielectric slab, and the cross-sectional shape. The transverse size of the TM00 mode supported by a nanosized microstrip line was found to be approximately equal to the transverse dimension of the microstrip line. In closed rectangular and elliptical nanowaveguides, i.e., in which all dielectric surfaces are covered with metal films, the cross-sectional shape of the waveguide should be stretched along one side to produce propagation conditions for the fundamental mode.
THz wavefront manipulation based on metal waveguides
NASA Astrophysics Data System (ADS)
Wu, Mengru; Lang, Tingting; Shen, Changyu; Shi, Guohua; Han, Zhanghua
2018-07-01
In this paper, two waveguiding structures for arbitrary wavefront manipulation in the terahertz spectral region were proposed, designed and characterized. The first structure consists of parallel stack copper plates forming an array of parallel-plate waveguides (PPWGs). The second structure is three-dimensional metal rectangular waveguides array. The phase delay of the input wave after passing through the waveguide array is mainly determined by the effective index of the waveguides. Therefore, the waveguide array can be engineered using different core width distribution to generate any desired light beam. Examples, working at the frequency of 0.3 THz show that good focusing phenomenon with different focus lengths and spot sizes were observed, as well as arbitrarily tilted propagation of incident plane waves. The structure introduces a new method to perform wavefront manipulation, and can be utilized in many important applications in terahertz imaging and communication systems.
Microwave applicator for in-drum processing of radioactive waste slurry
White, T.L.
1994-06-28
A microwave applicator for processing of radioactive waste slurry uses a waveguide network which splits an input microwave of TE[sub 10] rectangular mode to TE[sub 01] circular mode. A cylindrical body has four openings, each receiving 1/4 of the power input. The waveguide network includes a plurality of splitters to effect the 1/4 divisions of power. 4 figures.
Combline designs improve mm-wave filter performance
NASA Astrophysics Data System (ADS)
Hey-Shipton, Gregory L.
1990-10-01
Combline filters with 2- to 75-percent bandwidths and orders up to 19 are discussed. They are realized as coupled rectangular coaxial transmission lines, since this type of transmission line is characterized by machinability and the wide variation in coupling coefficients that can be realized with rectangular bars. A broadband combline filter designed as a 19th-order, 0.01-dB equal-ripple Chebyshev type is presented, along with a third-order 0.001-dB equal-ripple Chebyshev filter with a 200-MHz bandwidth centered at 8.0 GHz. Interfaces to standard 50-ohm coaxial lines, as well as structures for waveguide interfaces are described, and focus is placed on a two-step impedance transformer matching a 538-ohm waveguide characteristic impedance to a 95-ohm filter terminal impedance.
Screech Tones of Supersonic Jets from Bevelled Rectangular Nozzles
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Shen, Hao; Raman, Ganesh
1997-01-01
It is known experimentally that an imperfectly expanded rectangular jet from a thin-lip convergent nozzle emits only a single dominant screech tone. The frequency of the screech tone decreases continuously with increase in jet Mach number. However, for a supersonic jet issued from a bevelled nozzle or a convergent-divergent nozzle with straight side walls, the shock cell structure and the screech frequency pattern are fairly complicated and have not been predicted before. In this paper, it is shown that the shock cell structures of these jets can be decomposed into waveguide modes of the jet flow. The screech frequencies are related to the higher-order waveguide modes following the weakest-link screech tone theory. The measured screech frequencies are found to compare well with the predicted screech frequency curves.
Effective way of reducing coupling loss between rectangular microwaveguide and fiber.
Zhou, Hang; Chen, Zilun; Xi, Xiaoming; Hou, Jing; Chen, Jinbao
2012-01-20
We introduce an anamorphic photonic crystal fiber (PCF) produced by postprocessing techniques to improve the coupling loss between a conventional single-mode fiber and rectangular microwaveguide. One end of the round core is connected with the conventional fiber, and the other end of the rectangular core is connected with the rectangular microwaveguide, then the PCF is tapered pro rata. In this way, the loss of mode mismatch between the output of the conventional fiber and the input of the waveguide would be reduced, which results in enhanced coupling efficiency. The conclusion was confirmed by numerical simulation: the new method is better than straight coupling between the optical fiber and the rectangular microwaveguide, and more than 2.8 dB improvement of coupling efficiency is achieved. © 2012 Optical Society of America
NASA Technical Reports Server (NTRS)
Wood, V. E.; Busch, J. R.; Verber, C. M.
1982-01-01
Optical waveguide Luneburg lenses of arsenic trisulfide glass are described. The lenses are formed by thermal evaporation of As2S3 through suitably placed masks onto the surface of LiNbO3:Ti indiffused waveguides. The lenses are designed for input apertures up to 1 cm and for speeds of f/5 or better. They are designed to focus the TM sub 0 guided mode of a beam of wavelength, external to the guide, of 633 nm. The refractive index of the As2S3 films and the changes induced in the refractive index by exposure to short wavelength light were measured. Some correlation between film thickness and optical properties was noted. The short wavelength photosensitivity was used to shorten the lens focal length from the as deposited value. Lenses of rectangular shape, as viewed from above the guide, as well as conventional circular Luneburg lenses, were made. Measurements made on the lenses include thickness profile, general optical quality, focal length, quality of focal spot, and effect of ultraviolet irradiation on optical properties.
Tang, Yue; Zhang, Zhidong; Wang, Ruibing; Hai, Zhenyin; Xue, Chenyang; Zhang, Wendong; Yan, Shubin
2017-04-06
A surface plasmon polariton refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and ring resonators is proposed and numerically investigated using a finite element method. Fano resonances are observed in the transmission spectra, which result from the coupling between the narrow-band spectral response in the ring resonator and the broadband spectral response in the rectangular resonator. Results are analyzed using coupled-mode theory based on transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect, and the analytical result is in good agreement with the simulation result. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift, and the highest value of sensitivity (S) is 1125 nm/RIU, RIU means refractive index unit. Furthermore, the coupled MIM waveguide structure can be integrated with other photonic devices at the chip scale. The results can provide a guide for future applications of this structure.
A Novel, Real-Valued Genetic Algorithm for Optimizing Radar Absorbing Materials
NASA Technical Reports Server (NTRS)
Hall, John Michael
2004-01-01
A novel, real-valued Genetic Algorithm (GA) was designed and implemented to minimize the reflectivity and/or transmissivity of an arbitrary number of homogeneous, lossy dielectric or magnetic layers of arbitrary thickness positioned at either the center of an infinitely long rectangular waveguide, or adjacent to the perfectly conducting backplate of a semi-infinite, shorted-out rectangular waveguide. Evolutionary processes extract the optimal physioelectric constants falling within specified constraints which minimize reflection and/or transmission over the frequency band of interest. This GA extracted the unphysical dielectric and magnetic constants of three layers of fictitious material placed adjacent to the conducting backplate of a shorted-out waveguide such that the reflectivity of the configuration was 55 dB or less over the entire X-band. Examples of the optimization of realistic multi-layer absorbers are also presented. Although typical Genetic Algorithms require populations of many thousands in order to function properly and obtain correct results, verified correct results were obtained for all test cases using this GA with a population of only four.
Design and analysis of optical waveguide elements in planar geometry
NASA Astrophysics Data System (ADS)
Mirkov, Mirko Georgiev
1998-10-01
This dissertation presents the theoretical analysis and practical design considerations for planar optical waveguide devices. The analysis takes into account both transverse dimensions of the waveguides and is based on the supermode theory combined with the resonance method for determination of the propagation constants and field profiles of the supermodes. An improved accuracy has been achieved by including the corrections due to the fields in the corner regions of the waveguides using perturbation theory. The following two classes of devices have been analyzed in detail. Curved rectangular waveguides are a common element in an integrated optics circuit. The theoretical analysis in this work shows that some commonly used approximations for determination of the propagation constants of the quasi-modes of the bent waveguides are not necessary. Specifically the imaginary part of the mode propagation constant, which determines the power loss, is calculated exactly using the resonance method, combined with a two- dimensional optimization routine for determination of the real and the imaginary parts of the propagation constants. Subsequently, the results are corrected for the effects of the fields in the corner regions. The latter corrections have not been previously computed and are shown to be significant. Power splitters are another common element of an integrated optical circuit. A new 'bend-free' splitter is suggested and analyzed. The new splitter design consists of only straight parallel channels, which considerably simplify both the analysis and the fabrication of the device. It is shown that a single design parameter determines the power splitting ratio, which can take any given value. The intrinsic power loss in the proposed splitter is minimal, which makes it an attractive alternative to the conventional Y-splitters. The accurate methods of analysis of planar optical waveguides developed in the present work can easily be applied to other integrated optic devices consisting of rectangular waveguides.
Method And Apparatus For Launching Microwave Energy Into A Plasma Processing Chamber
DOUGHTY, FRANK C.; [et al
2001-05-01
A method and apparatus for launching microwave energy to a plasma processing chamber in which the required magnetic field is generated by a permanent magnet structure and the permanent magnet material effectively comprises one or more surfaces of the waveguide structure. The waveguide structure functions as an impedance matching device and controls the field pattern of the launched microwave field to create a uniform plasma. The waveguide launcher may comprise a rectangular waveguide, a circular waveguide, or a coaxial waveguide with permanent magnet material forming the sidewalls of the guide and a magnetization pattern which produces the required microwave electron cyclotron resonance magnetic field, a uniform field absorption pattern, and a rapid decay of the fields away from the resonance zone. In addition, the incorporation of permanent magnet material as a portion of the waveguide structure places the magnetic material in close proximity to the vacuum chamber, allowing for a precisely controlled magnetic field configuration, and a reduction of the amount of permanent magnet material required.
Propagation of Finite Amplitude Sound in Multiple Waveguide Modes.
NASA Astrophysics Data System (ADS)
van Doren, Thomas Walter
1993-01-01
This dissertation describes a theoretical and experimental investigation of the propagation of finite amplitude sound in multiple waveguide modes. Quasilinear analytical solutions of the full second order nonlinear wave equation, the Westervelt equation, and the KZK parabolic wave equation are obtained for the fundamental and second harmonic sound fields in a rectangular rigid-wall waveguide. It is shown that the Westervelt equation is an acceptable approximation of the full nonlinear wave equation for describing guided sound waves of finite amplitude. A system of first order equations based on both a modal and harmonic expansion of the Westervelt equation is developed for waveguides with locally reactive wall impedances. Fully nonlinear numerical solutions of the system of coupled equations are presented for waveguides formed by two parallel planes which are either both rigid, or one rigid and one pressure release. These numerical solutions are compared to finite -difference solutions of the KZK equation, and it is shown that solutions of the KZK equation are valid only at frequencies which are high compared to the cutoff frequencies of the most important modes of propagation (i.e., for which sound propagates at small grazing angles). Numerical solutions of both the Westervelt and KZK equations are compared to experiments performed in an air-filled, rigid-wall, rectangular waveguide. Solutions of the Westervelt equation are in good agreement with experiment for low source frequencies, at which sound propagates at large grazing angles, whereas solutions of the KZK equation are not valid for these cases. At higher frequencies, at which sound propagates at small grazing angles, agreement between numerical solutions of the Westervelt and KZK equations and experiment is only fair, because of problems in specifying the experimental source condition with sufficient accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Chen; Tantawi, Sami; Wang, Juwen
We present in this paper a new design of dual circular polarizer. This innovative design converts radiofrequency (rf) energy from TE10 mode in a rectangular waveguide to two polarized TE11 modes in a circular waveguide. A reflection less than ₋20 db is achieved and breakdown field is less than 42 MV/m at input of 1 MW. Meanwhile, this polarizer has a megahertz bandwidth, and the thermal stability is also discussed. This device can be used for broadcasting and receiving the circular polarized signals.
Method of manufacturing a large-area segmented photovoltaic module
Lenox, Carl
2013-11-05
One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.
Soleimani, Hassan; Abbas, Zulkifly; Yahya, Noorhana; Shameli, Kamyar; Soleimani, Hojjatollah; Shabanzadeh, Parvaneh
2012-01-01
The sol-gel method was carried out to synthesize nanosized Yttrium Iron Garnet (YIG). The nanomaterials with ferrite structure were heat-treated at different temperatures from 500 to 1000 °C. The phase identification, morphology and functional groups of the prepared samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The YIG ferrite nanopowder was composited with polyvinylidene fluoride (PVDF) by a solution casting method. The magnitudes of reflection and transmission coefficients of PVDF/YIG containing 6, 10 and 13% YIG, respectively, were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in X-band frequencies. The results indicate that the presence of YIG in polymer composites causes an increase in reflection coefficient and decrease in transmission coefficient of the polymer. PMID:22942718
Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration.
Ye, Longfang; Xiao, Yifan; Liu, Na; Song, Zhengyong; Zhang, Wei; Liu, Qing Huo
2017-01-23
We proposed a novel planar terahertz (THz) plasmonic waveguide with folded stub arrays to achieve excellent terahertz propagation performance with tight field confinement and compact size based on the concept of spoof surface plasmon polaritons (spoof SPPs). It is found that the waveguide propagation characteristics can be directly manipulated by increasing the length of the folded stubs without increasing its lateral dimension, which exhibits much lower asymptotic frequency of the dispersion relation and even tighter terahertz field confinement than conventional plasmonic waveguides with rectangular stub arrays. Based on this waveguiding scheme, a terahertz concentrator with gradual step-length folded stubs is proposed to achieve high terahertz field enhancement, and an enhancement factor greater than 20 is demonstrated. This work offers a new perspective on very confined terahertz propagation and concentration, which may have promising potential applications in various integrated terahertz plasmonic circuits and devices, terahertz sensing and terahertz nonlinear optics.
A Cryogenic Waveguide Mount for Microstrip Circuit and Material Characterization
NASA Technical Reports Server (NTRS)
U-yen, Kongpop; Brown, Ari D.; Moseley, Samuel H.; Noroozian, Omid; Wollack, Edward J.
2016-01-01
A waveguide split-block fixture used in the characterization of thin-film superconducting planar circuitry at millimeter wavelengths is described in detail. The test fixture is realized from a pair of mode converters, which transition from rectangular-waveguide to on-chip microstrip-line signal propagation via a stepped ridge-guide impedance transformer. The observed performance of the W-band package at 4.2K has a maximum in-band transmission ripple of 2dB between 1.53 and 1.89 times the waveguide cutoff frequency. This metrology approach enables the characterization of superconducting microstrip test structures as a function temperature and frequency. The limitations of the method are discussed and representative data for superconducting Nb and NbTiN thin film microstrip resonators on single-crystal Si dielectric substrates are presented.
Silicon waveguided components for the long-wave infrared region
NASA Astrophysics Data System (ADS)
Soref, Richard A.; Emelett, Stephen J.; Buchwald, Walter R.
2006-10-01
We propose that the operational wavelength of waveguided Si-based photonic integrated circuits and optoelectronic integrated circuits can be extended beyond the 1.55 µm telecom range into the wide infrared from 1.55 to 100 µm. The Si rib-membrane waveguide offers low-loss transmission from 1.2 to 6 µm and from 24 to 100 µm. This waveguide, which is compatible with Si microelectronics manufacturing, is constructed from silicon-on-insulator by etching away the oxide locally beneath the rib. Alternatively, low-loss waveguiding from 1.9 to 14.7 µm is assured by employing a crystal Ge rib grown directly upon the Si substrate. The Si-based hollow-core waveguide is an excellent device that minimizes loss due to silicon's 6-24 µm multi-phonon absorption. Here the rectangular air-filled core is surrounded by SiGe/Si multi-layer anti-resonant or Bragg claddings. The hollow channel offers less than 1.7 dB cm-1 loss from 1.2 to 100 µm. .
Yang, Rui; Hu, Bowei; Zhang, Aofang; Gao, Dongxing; Wang, Hui; Shi, Ayuan; Lei, Zhenya; Yang, Pei
2017-03-21
Transmission properties through sharp rectangular waveguide bends are investigated to determine the cut-off bending angles of the wave propagation. We show that a simple metallic diaphragm at the bending corner with properly devised sub-wavelength defect apertures of C-slits would be readily to turn on the transmissions with scarce reflections of the propagating modes, while preserving the integrity of the transmitting fields soon after the bends. In particularly, our design also demonstrates the capability of eliminating all the unwanted cavity resonant transmissions that exist in the three-dimensional cascade sharp waveguide bends, and solely let the desired signals travel along the whole passage of the waveguide. The present approach, using C-slit diaphragms to support the sharp bending behaviors of the guided waves with greatly enhanced transmissions, would be especially effective in constructing novel waveguides and pave the way for the development of more compact and miniaturized electromagnetic systems that exploit these waveguide bends.
Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations
NASA Astrophysics Data System (ADS)
Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.
2016-09-01
The mode-selective microwave reflector with periodic rectangular corrugations in the inner surface of a circular metallic waveguide is studied in this paper. The relations between the bandwidth and reflection coefficient for different numbers of corrugation sections were studied through a global optimization method. Two types of reflectors were investigated. One does not consider the phase response and the other does. Both types of broadband reflectors operating at W-band were machined and measured to verify the numerical simulations.
All-optical Integrated Switches Based on Azo-benzene Liquid Crystals on Silicon
2011-11-01
Glass D263 SU8 Polymer Polymer NLC n̂ n̂ Refractive index @1.55 µm Materials n// = 1.689 n⊥= 1.502 n = 1.575 n = 1.516 E7 Glass D263 SU8 ...In the other case we have a nonlinear LCW based on glass substrates. It consists in a rectangular hollow realized in SU8 photoresist two glass...and discussion 5. All optical polymeric waveguide: methods, assumptions and procedure 6. All optical polymeric waveguide: results and discussion 7
Distributed strain measurement in a rectangular plate using an array of optical fiber sensors
NASA Technical Reports Server (NTRS)
Claus, R. O.; Wade, J. C.
1984-01-01
Single mode optical fiber waveguide has been used to determine the two-dimensional strain distribution on a simply supported rectangular plate. Each of the fifty individual fibers in the rectangular grid array attached to one surface of the plate yields a measurement of the strain integrated along the length of that fiber on the specimen. By using similar sensor information from all of the fibers, both the functional form and the amplitude of the distribution may be determined. Limits on the dynamic range and spatial resolution are indicated. Applications in the measurement of internal strain and the monitoring of physically small critical-structural components are suggested.
NASA Astrophysics Data System (ADS)
Zoepfl, D.; Muppalla, P. R.; Schneider, C. M. F.; Kasemann, S.; Partel, S.; Kirchmair, G.
2017-08-01
Here we present the microwave characterization of microstrip resonators, made from aluminum and niobium, inside a 3D microwave waveguide. In the low temperature, low power limit internal quality factors of up to one million were reached. We found a good agreement to models predicting conductive losses and losses to two level systems for increasing temperature. The setup presented here is appealing for testing materials and structures, as it is free of wire bonds and offers a well controlled microwave environment. In combination with transmon qubits, these resonators serve as a building block for a novel circuit QED architecture inside a rectangular waveguide.
NASA Astrophysics Data System (ADS)
Hayata, K.; Tsuji, Y.; Koshiba, M.
1992-10-01
A theoretical formulation of electron pulse propagation in quantum wire structures with mesoscopic scale cross sections is presented, assuming quantum ballistic transport of electron wave packets over a certain characteristic length. As typical mesoscopic structures for realizing coherent electron transmission, two traveling-wave configurations are considered: straight quantum wire waveguides and quantum wire bend structures (quantum whispering galleries). To estimate temporal features of the pulse during propagation, the walk off, the dispersion, and the pulse coherence lengths are defined as useful characteristic lengths. Numerical results are shown for ultrashort pulse propagation through rectangular wire waveguides. Effects due to an external electric field are discussed as well.
Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability.
Tien, Ming-Chun; Bauters, Jared F; Heck, Martijn J R; Blumenthal, Daniel J; Bowers, John E
2010-11-08
We investigate the nonlinearity of ultra-low loss Si3N4-core and SiO2-cladding rectangular waveguides. The nonlinearity is modeled using Maxwell's wave equation with a small amount of refractive index perturbation. Effective n2 is used to describe the third-order nonlinearity, which is linearly proportional to the optical intensity. The effective n2 measured using continuous-wave self-phase modulation shows agreement with the theoretical calculation. The waveguide with 2.8-μm wide and 80-nm thick Si3N4 core has low loss and high power handling capability, with an effective n2 of about 9×10(-16) cm2/W.
Analysis and synthesis of (SAR) waveguide phased array antennas
NASA Astrophysics Data System (ADS)
Visser, H. J.
1994-02-01
This report describes work performed due to ESA contract No. 101 34/93/NL/PB. Started is with a literature study on dual polarized waveguide radiators, resulting in the choice for the open ended square waveguide. After a thorough description of the mode matching infinite waveguide array analysis method - including finiteness effects - that forms the basis for all further described analysis and synthesis methods, the accuracy of the analysis software is validated by comparison with measurements on two realized antennas. These antennas have centered irises in the waveguide apertures and a dielectric wide angle impedance matching sheet in front of the antenna. A synthesis method, using simulated annealing and downhill simplex, is described next and different antenna designs, based on the analysis of a single element in an infinite array environment, are presented. Next, designs of subarrays are presented. Shown is the paramount importance of including the array environment in the design of a subarray. A microstrip patch waveguide exciter and subarray feeding network are discussed and the depth of the waveguide radiator is estimated. Chosen is a rectangular grid array with waveguides of 2.5 cm depth without irises and without dielectric sheet, grouped in linear 8 elements subarrays.
FDTD simulation of amorphous silicon waveguides for microphotonics applications
NASA Astrophysics Data System (ADS)
Fantoni, A.; Lourenço, P.; Pinho, P.; Vieira, M.,
2017-05-01
In this work we correlate the dimension of the waveguide with small variations of the refractive index of the material used for the waveguide core. We calculate the effective modal refractive index for different dimensions of the waveguide and with slightly variation of the refractive index of the core material. These results are used as an input for a set of Finite Difference Time Domain simulation, directed to study the characteristics of amorphous silicon waveguides embedded in a SiO2 cladding. The study considers simple linear waveguides with rectangular section for studying the modal attenuation expected at different wavelengths. Transmission efficiency is determined analyzing the decay of the light power along the waveguides. As far as near infrared wavelengths are considered, a-Si:H shows a behavior highly dependent on the light wavelength and its extinction coefficient rapidly increases as operating frequency goes into visible spectrum range. The simulation results show that amorphous silicon can be considered a good candidate for waveguide material core whenever the waveguide length is as short as a few centimeters. The maximum transmission length is highly affected by the a-Si:H defect density, the mid-gap density of states and by the waveguide section area. The simulation results address a minimum requirement of 300nm×400nm waveguide section in order to keep attenuation below 1 dB cm-1.
Cross-guide Moreno directional coupler in empty substrate integrated waveguide
NASA Astrophysics Data System (ADS)
Miralles, E.; Belenguer, A.; Esteban, H.; Boria, V.
2017-05-01
Substrate integrated waveguides (SIWs) combine the advantages of rectangular waveguides (low losses) and planar circuits (low cost and low profile). Empty substrate integrated waveguide (ESIW) has been proposed as a novel configuration in SIWs recently. This technology significantly reduces the losses of conventional SIW by removing its inner dielectric. The cross-guide directional coupler is a well-known low-profile design for having a broadband waveguide coupler. In this paper a cross-guide coupler with ESIW technique is proposed. In such a manner, the device can be integrated with microwave circuits and other printed circuit board components. It is the first time that a cross-guide coupler is implemented in ESIW technology. The designed, fabricated, and measured device presents good results as a matter of insertion loss of 1 dB (including transitions), reflection under 20 dB, coupling between 19.5 and 21.5 dB, and directivity higher than 15 dB over targeted frequency range from 12.4 GHz to 18 GHz. The coupler implemented in ESIW improves the directivity when compared to similar solutions in other empty substrate integrated waveguide solutions.
NASA Astrophysics Data System (ADS)
Song, Hai-Xi; Sun, Xiao-Qi; Lu, Jing; Zhou, Lan
2018-01-01
We study a quantum electrodynamics (QED) system made of a two-level atom and a semi-infinite rectangular waveguide, which behaves as a perfect mirror in one end. The spatial dependence of the atomic spontaneous emission has been included in the coupling strength relevant to the eigenmodes of the waveguide. The role of retardation is studied for the atomic transition frequency far away from the cutoff frequencies. The atom-mirror distance introduces different phases and retardation times into the dynamics of the atom interacting resonantly with the corresponding transverse modes. It is found that the upper state population decreases from its initial as long as the atom-mirror distance does not vanish, and is lowered and lowered when more and more transverse modes are resonant with the atom. The atomic spontaneous emission can be either suppressed or enhanced by adjusting the atomic location for short retardation time. There are partial revivals and collapses due to the photon reabsorbed and re-emitted by the atom for long retardation time. Supported by National Natural Science Foundation of China under Grant Nos. 11374095, 11422540, 11434011, and 11575058, National Fundamental Research Program of China (the 973 Program) under Grant No. 2012CB922103, and Hunan Provincial Natural Science Foundation of China under Grant No. 11JJ7001
Design of Planar Leaky Wave Antenna Fed by Substrate Integrated Waveguide Horn
NASA Astrophysics Data System (ADS)
Cai, Yang; Zhang, Yingsong; Qian, Zuping
2017-12-01
A metal strip grating leaky wave antenna (MSG-LWA) fed by substrate integrated waveguide (SIW) horn is proposed. The planar horn shares the same substrate with the MSG-LWA, which leads to a compact structure of the proposed antenna. Furthermore, through introducing phase-corrected structure by embedding metallized vias into the SIW horn, a nearly uniform phase distribution at the horn aperture is obtained, which effectively enhances the radiating performance of the MSG-LWA. Results indicate that the proposed antenna scans from -50° to -25° in the frequency band ranging from 15.3 GHz to 17.3 GHz. Besides, effectiveness of the proposed design is validated by comparing with a same MSG-LWA fed by an ideal rectangular waveguide.
Electromagnetic characterization of layered biaxial media is a critical step in the design of modern low observable (LO) coatings, and with the...the flexibility they provide for control over magnitude, phase, and polarization of the material systems response to interrogating electromagnetic (EM
An Open Rectangular Waveguide Grating for Millimeter-Wave Traveling-Wave Tubes
NASA Astrophysics Data System (ADS)
Liao, Ming-Liang; Wei, Yan-Yu; Wang, Hai-Long; Huang, Yu; Xu, Jin; Liu, Yang; Guo, Guo; Niu, Xin-Jian; Gong, Yu-Bin; Park, Gun-Sik
2016-09-01
Not Available Supported by the National Natural Science Foundation of China under Grant No 61271029, the National Science Fund for Distinguished Young Scholars of China under Grant No 61125103, and the National Research Foundation of Korea under Grant No MSIP: NRF-2009-0083512.
Beckmann, Dennis; Schnitzler, Daniel; Schaefer, Dagmar; Gottmann, Jens; Kelbassa, Ingomar
2011-12-05
Waveguides with arbitrary cross sections are written in the volume of Al(2)O(3)-crystals using tightly focused femtosecond laser radiation. Utilizing a scanning system with large numerical aperture, complex cladding geometries are realized with a precision around 0.5 µm and a scanning speed up to 100 mm/s. Individual beam and mode shaping of laser diode radiation is demonstrated by varying the design of the waveguide cladding. The influence of the writing parameters on the waveguide properties are investigated resulting in a numerical aperture of the waveguides in the range of 0.1. This direct laser writing technique enables optical devices which could possibly replace bulky beam shaping setups with an integrated solution.
A Compact, Pi-Mode Extraction Scheme for the Axial B-Field Recirculating Planar Magnetron
2012-07-23
Figure 4). Thus, in a planar magnetron, the minimum phase velocity, vph , to stay above cutoff in the rectangular waveguide is ℎ = ...as magnetrons, electrons must be accelerated such that they are in synchronism with the phase velocity, vph , of the electromagnetic wave for an
Lapointe, Jerome; Ledemi, Yannick; Loranger, Sébastien; Iezzi, Victor Lambin; Soares de Lima Filho, Elton; Parent, Francois; Morency, Steeve; Messaddeq, Younes; Kashyap, Raman
2016-01-15
As2S3 glass has a unique combination of optical properties, such as wide transparency in the infrared region and a high nonlinear coefficient. Recently, intense research has been conducted to improve photonic devices using thin materials. In this Letter, highly uniform rectangular single-index and 2 dB/m loss step-index optical tapes have been drawn by the crucible technique. Low-loss (<0.15 dB/cm) single-mode waveguides in chalcogenide glass tapes have been fabricated using femtosecond laser writing. Optical backscatter reflectometry has been used to study the origin of the optical losses. A detailed study of the laser writing process in thin glass is also presented to facilitate a repeatable waveguide inscription recipe.
Phase 2: Array automated assembly task low cost silicon solar array project
NASA Technical Reports Server (NTRS)
Jones, G. T.
1979-01-01
Several microwave systems for use in solar cell fabrication were developed and experimentally tested. The first system used a standing wave rectangular waveguide horn applicator. Satisfactory results were achieved with this system for impedance matching and wafer surface heating uniformity. The second system utilized a resonant TM sub 011 mode cylindrical cavity but could not be employed due to its poor energy coupling efficiency. The third and fourth microwave systems utilized a circular waveguide operating in the TM sub 01 and TM sub 11 but had problems with impedance matching, efficiency, and field uniformity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, Viktor I; Panchenko, Vladislav Ya; Seminogov, V N
We report the fabrication of narrowband frequency-selective filters for the 1.5-{mu}m telecom window, which include a single-mode polymer waveguide with a submicron Bragg grating inscribed by a helium-cadmium laser. The filters have a reflectance R > 98 % and a nearly rectangular reflection band with a bandwidth {Delta}{lambda}{approx}0.4nm. They can be used as components of optical multiplexers/demultiplexers for combining and separating signals in high-speed dense wavelength-division multiplexed optical fibre communication systems. (laser components)
Mid-infrared supercontinuum in a Ge11:5As24Se64:5 chalcogenide waveguide
NASA Astrophysics Data System (ADS)
Sakunasinha, Panarit; Suwanarat, Suksan; Chiangga, Surasak
2015-07-01
We present results of numerical simulations of a supercontinuum generation (SCG) in a Ge11:5As24Se64:5 chalcogenide rectangular waveguide with air as an upper cladding and the lower cladding is magnesium fluoride. A broadband infrared 1.3-3.0 μm SCG could be achieved by pumping with femtosecond pulses in the two zero dispersion wavelengths. The effect of chirp on SCG spectrum has been also investigated. The simulation shows a significant SCG spectral flatness in the mid-infrared range with positive frequency chirp input pulses.
Terahertz particle-in-liquid sensing with spoof surface plasmon polariton waveguides
NASA Astrophysics Data System (ADS)
Ma, Zhijie; Hanham, Stephen M.; Arroyo Huidobro, Paloma; Gong, Yandong; Hong, Minghui; Klein, Norbert; Maier, Stefan A.
2017-11-01
We present a highly sensitive microfluidic sensing technique for the terahertz (THz) region of the electromagnetic spectrum based on spoof surface plasmon polaritons (SPPs). By integrating a microfluidic channel in a spoof SPP waveguide, we take advantage of these highly confined electromagnetic modes to create a platform for dielectric sensing of liquids. Our design consists of a domino waveguide, that is, a series of periodically arranged rectangular metal blocks on top of a metal surface that supports the propagation of spoof SPPs. Through numerical simulations, we demonstrate that the transmission of spoof SPPs along the waveguide is extremely sensitive to the refractive index of a liquid flowing through a microfluidic channel crossing the waveguide to give an interaction volume on the nanoliter scale. Furthermore, by taking advantage of the insensitivity of the domino waveguide's fundamental spoof SPP mode to the lateral width of the metal blocks, we design a tapered waveguide able to achieve further confinement of the electromagnetic field. Using this approach, we demonstrate the highly sensitive detection of individual subwavelength micro-particles flowing in the liquid. These results are promising for the creation of spoof SPP based THz lab-on-a-chip microfluidic devices that are suitable for the analysis of biological liquids such as proteins and circulating tumour cells in buffer solution.
Update on Waveguide-Embedded Differential MMIC Amplifiers
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka; Schleht, Erich
2010-01-01
There is an update on the subject matter of Differential InP HEMT MMIC Amplifiers Embedded in Waveguides (NPO-42857) NASA Tech Briefs, Vol. 33, No. 9 (September 2009), page 35. To recapitulate: Monolithic microwave integrated-circuit (MMIC) amplifiers of a type now being developed for operation at frequencies of hundreds of gigahertz contain InP high-electron-mobility transistors (HEMTs) in a differential configuration. The MMICs are designed integrally with, and embedded in, waveguide packages. The instant work does not mention InP HEMTs but otherwise reiterates part of the subject matter of the cited prior article, with emphasis on the following salient points: An MMIC is mounted in the electric-field plane ("E-plane") of a waveguide and includes a finline transition to each differential-amplifier stage. The differential configuration creates a virtual ground within each pair of transistor-gate fingers, eliminating the need for external radio-frequency grounding. This work concludes by describing a single-stage differential submillimeter-wave amplifier packaged in a rectangular waveguide and summarizing results of tests of this amplifier at frequencies of 220 and 305 GHz.
NASA Astrophysics Data System (ADS)
Sholiyi, Olusegun Samuel
As the demand for smaller size, lighter weight, lower loss and cost of communications transmit and receive (T/R) modules increases, there is an urgent need to focus investigation to the major subsystem or components that can improve these parameters. Phase shifters contribute greatly to the cost of T/R modules, and thus this research investigation examines a new way to reduce the weight and cost by miniaturizing the phaser design. Characterization of hexaferrite powders compatible with the sequential multilayer micro-fabrication technology and numerical simulations of a novel rectangular micro-coaxial phase shifter are investigated. This effort aims to integrate ferrite material into a rectangular micro-coaxial waveguide at Ka-band using electromagnetic finite element numerical tools. The proposed technique exploits rectangular coaxial waveguide with a symmetrically placed inner signal conductor inside an outer conductor connected to the ground. Strontium ferrite-SU8 composite is used as an anisotropic material of choice in the modelled design. Numerical modeling is employed using High Frequency Structure Simulator, HFSS, a 3-D full wave electromagnetic solver for analyzing the performance of the device. Two model structures were designed for reciprocal and non-reciprocal applications. The first model (Model A) produced a tunable phase shift of almost 60 degrees /cm across 0 to 400 kA/m applied field and at 1800 Gauss. In model B, a non-reciprocal phase shift performance of 20 degrees /cm from a reference phase of 24 degrees at 0 A/m was realized at the same saturation magnetization. A return loss better than 20 dB and an insertion loss less than 1.5 dB were obtained for both models.
NASA Astrophysics Data System (ADS)
Berdnik, S. L.; Katrich, V. A.; Nesterenko, M. V.; Penkin, Yu. M.
2016-09-01
Purpose: A problem of electromagnetic wave diffraction by a longitudinal slot cut in a waveguide wide wall is solved. The slot is cut in a wide wall of a rectangular waveguide and radiates in a half-space above a perfectly conducting plane where two vertical impedance monopoles with arbitrary lengths placed with their bases placed on the plane. The paper is aimed at studying the electrodynamic characteristics of vibratorwaveguide-slot structures which allow to form the emission fields as that in a Clavin element with two identical passive ideally conducting monopoles of a fixed length located on a set distance from a slot center on both sides of a narrow halfwave slot. Design/methodology/approach: The problem is solved by a generalized method of induced electromotive and magnetomotive forces in approximation of electric currents in the vibrators and equivalent magnetic current in the slot by the functions obtained by the asymptotic averaging method. Findings: The influence of geometric parameters of the structure on the directional characteristics of Clavin type element is analyzed on the assumption of simultaneous account for relative level of sidelobes in the E-plane and beamwidth differences at -3 dB level in the main planes. It is shown that the directional characteristics and energy characteristics of the radiators: radiation and reflection coefficients, antenna directivity and gain can be varied within wide limits by changing the electrical length and/or distributed surface impedances of the vibrators, providing at that a low level of radiation within a slot plane. Conclusions: The results obtained can be useful when designing both small-size and multi-element antenna arrays with Clavin elements.
Liao, Yang; Qi, Jia; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya
2016-01-01
We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension as small as ~4 μm. PMID:27346285
A C-band broadband ortho-mode transducer for radioastronomy polarimetry.
Ferreira, Ivan S; Tello, Camilo; Bergano, Miguel; Villela, Thyrso; Barbosa, Domingos; Smoot, George F
2016-01-01
We describe the design, the construction and performance of a narrow band ortho-mode transducer, currently used in the 5 GHz polarimetric receiver of the Galactic Emission Mapping project. The ortho-mode transducer was designed to achieve a high degree of transmission within the 400 MHz of the GEM band around the 5 GHz (4.8-5.2 GHz). It is composed of a circular-to-square waveguide transition, a septum polarizer, a thin waveguide coupler and a smooth square-to-rectangular waveguide transition with custom waveguide bends to the output ports. Our simulations and measurements show a very low level of cross-polarization of about -60 dB and a good impedance match for all three ports (S11; S22; S33 < -30 dB) with only 0:25 dB of insertion loss offset across the 400 MHz (4.8-5.2 GHz) of the reception bandwidth.
Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas
Alfaro-Mozaz, F. J.; Alonso-González, P.; Vélez, S.; Dolado, I.; Autore, M.; Mastel, S.; Casanova, F.; Hueso, L. E.; Li, P.; Nikitin, A. Y.; Hillenbrand, R.
2017-01-01
Polaritons in layered materials—including van der Waals materials—exhibit hyperbolic dispersion and strong field confinement, which makes them highly attractive for applications including optical nanofocusing, sensing and control of spontaneous emission. Here we report a near-field study of polaritonic Fabry–Perot resonances in linear antennas made of a hyperbolic material. Specifically, we study hyperbolic phonon–polaritons in rectangular waveguide antennas made of hexagonal boron nitride (h-BN, a prototypical van der Waals crystal). Infrared nanospectroscopy and nanoimaging experiments reveal sharp resonances with large quality factors around 100, exhibiting atypical modal near-field patterns that have no analogue in conventional linear antennas. By performing a detailed mode analysis, we can assign the antenna resonances to a single waveguide mode originating from the hybridization of hyperbolic surface phonon–polaritons (Dyakonov polaritons) that propagate along the edges of the h-BN waveguide. Our work establishes the basis for the understanding and design of linear waveguides, resonators, sensors and metasurface elements based on hyperbolic materials and metamaterials. PMID:28589941
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiaochuan; Chen, Ray T.
2017-02-07
A method for reducing loss in a subwavelength photonic crystal waveguide bend is disclosed. The method comprising: forming the subwavelength photonic crystal waveguide bend with a series of trapezoidal shaped dielectric pillars centered about a bend radius; wherein each of the trapezoidal shaped dielectric pillars comprise a top width, a bottom width, and a trapezoid height; wherein the length of the bottom width is greater than the length of the top width; and wherein the bottom width is closer to the center of the bend radius of the subwavelength photonic crystal waveguide bend than the top width. Other embodiments aremore » described and claimed.« less
Prediction of the acoustic pressure above periodically uneven facings in industrial workplaces
NASA Astrophysics Data System (ADS)
Ducourneau, J.; Bos, L.; Planeau, V.; Faiz, Adil; Skali Lami, Salah; Nejade, A.
2010-05-01
The aim of this work is to predict sound pressure in front of wall facings based on periodic sound scattering surface profiles. The method involves investigating plane wave reflections randomly incident upon an uneven surface. The waveguide approach is well suited to the geometries usually encountered in industrial workplaces. This method simplifies the profile geometry by using elementary rectangular volumes. The acoustic field in the profile interstices can then be expressed as the superposition of waveguide modes. In past work, walls considered are of infinite dimensions and are subjected to a periodic surface profile in only one direction. We therefore generalise this approach by extending its applicability to "double-periodic" wall facings. Free-field measurements have been taken and the observed agreement between numerical and experimental results supports the validity of the waveguide method.
Acoustic response of a rectangular levitator with orifices
NASA Technical Reports Server (NTRS)
El-Raheb, Michael; Wagner, Paul
1990-01-01
The acoustic response of a rectangular cavity to speaker-generated excitation through waveguides terminating at orifices in the cavity walls is analyzed. To find the effects of orifices, acoustic pressure is expressed by eigenfunctions satisfying Neumann boundary conditions as well as by those satisfying Dirichlet ones. Some of the excess unknowns can be eliminated by point constraints set over the boundary, by appeal to Lagrange undetermined multipliers. The resulting transfer matrix must be further reduced by partial condensation to the order of a matrix describing unmixed boundary conditions. If the cavity is subjected to an axial temperature dependence, the transfer matrix is determined numerically.
Ka-Band Waveguide Hybrid Combiner for MMIC Amplifiers With Unequal and Arbitrary Power Output Ratio
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Chevalier, Christine T.; Wintucky, Edwin G.; Freeman, Jon C.
2009-01-01
The design, simulation and characterization of a novel Ka-band (32.05 +/- 0.25 GHz) rectangular waveguide branch-line hybrid unequal power combiner is presented. The manufactured combiner was designed to combine input signals, which are in phase and with an amplitude ratio of two. The measured return loss and isolation of the branch-line hybrid are better than 22 and 27 dB, respectively. The application of the branch-line hybrid for combining two MMIC power amplifiers with output power ratio of two is demonstrated. The measured combining efficiency is approximately 93 percent over the above frequency band.
Mode Conversion Behavior of Guided Wave in a Pipe Inspection System Based on a Long Waveguide.
Sun, Feiran; Sun, Zhenguo; Chen, Qiang; Murayama, Riichi; Nishino, Hideo
2016-10-19
To make clear the mode conversion behavior of S0-mode lamb wave and SH0-plate wave converting to the longitudinal mode guided wave and torsional mode guided wave in a pipe, respectively, the experiments were performed based on a previous built pipe inspection system. The pipe was wound with an L-shaped plate or a T-shaped plate as the waveguide, and the S0-wave and SH0-wave were excited separately in the waveguide. To carry out the objective, a meander-line coil electromagnetic acoustic transducer (EMAT) for S0-wave and a periodic permanent magnet (PPM) EMAT for SH0-wave were developed and optimized. Then, several comparison experiments were conducted to compare the efficiency of mode conversion. Experimental results showed that the T(0,1) mode, L(0,1) mode, and L(0,2) mode guided waves can be successfully detected when converted from the S0-wave or SH0-wave with different shaped waveguides. It can also be inferred that the S0-wave has a better ability to convert to the T(0,1) mode, while the SH0-wave is easier to convert to the L(0,1) mode and L(0,2) mode, and the L-shaped waveguide has a better efficiency than T-shaped waveguide.
A Theoretical Investigation of the Input Characteristics of a Rectangular Cavity-Backed Slot Antenna
NASA Technical Reports Server (NTRS)
Cockrell, C. R.
1975-01-01
Equations which represent the magnetic and electric stored energies are derived for an infinite section of rectangular waveguide and a rectangular cavity. These representations which are referred to as being physically observable are obtained by considering the difference in the volume integrals appearing in the complex Poynting theorem. It is shown that the physically observable stored energies are determined by the field components that vanish in a reference plane outside the aperture. These physically observable representations are used to compute the input admittance of a rectangular cavity-backed slot antenna in which a single propagating wave is assumed to exist in the cavity. The slot is excited by a voltage source connected across its center; a sinusoidal distribution is assumed in the slot. Input-admittance calculations are compared with measured data. In addition, input-admittance curves as a function of electrical slot length are presented for several size cavities. For the rectangular cavity backed slot antenna, the quality factor and relative bandwidth were computed independently by using these energy relationships. It is shown that the asymptotic relationship which is usually assumed to exist between the quality bandwidth and the reciprocal of relative bandwidth is equally valid for the rectangular cavity backed slot antenna.
VIEW OF INTERIOR SPACE WITH RECTANGULAR SHAPE STRETCH PRESS CONTAINMENT ...
VIEW OF INTERIOR SPACE WITH RECTANGULAR SHAPE STRETCH PRESS CONTAINMENT PIT IN BACKGROUND, FACING NORTH. - Douglas Aircraft Company Long Beach Plant, Aircraft Parts Shipping & Receiving Building, 3855 Lakewood Boulevard, Long Beach, Los Angeles County, CA
Design of Three-Dimensional Hypersonic Inlets with Rectangular to Elliptical Shape Transition
NASA Technical Reports Server (NTRS)
Smart, M. K.
1998-01-01
A methodology has been devised for the design of three-dimensional hypersonic inlets which include a rectangular to elliptical shape transition. This methodology makes extensive use of inviscid streamtracing techniques to generate a smooth shape transition from a rectangular-like capture to an elliptical throat. Highly swept leading edges and a significantly notched cowl enable use of these inlets in fixed geometry configurations. The design procedure includes a three dimensional displacement thickness calculation and uses established correlations to check for boundary layer separation due to shock wave interactions. Complete details of the design procedure are presented and the characteristics of a modular inlet with rectangular to elliptical shape transition and a design point of Mach 7.1 are examined. Comparison with a classical two-dimensional inlet optimized for maximum total pressure recovery indicates that this three-dimensional inlet demonstrates good performance even well below its design point.
Bounded solutions in a T-shaped waveguide and the spectral properties of the Dirichlet ladder
NASA Astrophysics Data System (ADS)
Nazarov, S. A.
2014-08-01
The Dirichlet problem is considered on the junction of thin quantum waveguides (of thickness h ≪ 1) in the shape of an infinite two-dimensional ladder. Passage to the limit as h → +0 is discussed. It is shown that the asymptotically correct transmission conditions at nodes of the corresponding one-dimensional quantum graph are Dirichlet conditions rather than the conventional Kirchhoff transmission conditions. The result is obtained by analyzing bounded solutions of a problem in the T-shaped waveguide that the boundary layer phenomenon.
Low-loss multimode interference couplers for terahertz waves
NASA Astrophysics Data System (ADS)
Themistos, Christos; Kalli, Kyriacos; Komodromos, Michael; Markides, Christos; Quadir, Anita; Rahman, B. M. Azizur; Grattan, Kenneth T. V.
2012-04-01
The terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, metal-clad plasmonic waveguides and specifically hollow core structures, coated with insulating material are the most promising low-loss waveguides used in both active and passive devices. Optical power splitters are important components in the design of optoelectronic systems and optical communication networks such as Mach-Zehnder Interferometric switches, polarization splitter and polarization scramblers. Several designs for the implementation of the 3dB power splitters have been proposed in the past, such as the directional coupler-based approach, the Y-junction-based devices and the MMI-based approach. In the present paper a novel MMI-based 3dB THz wave splitter is implemented using Gold/polystyrene (PS) coated hollow glass rectangular waveguides. The H-field FEM based full-vector formulation is used here to calculate the complex propagation characteristics of the waveguide structure and the finite element beam propagation method (FE-BPM) and finite difference time domain (FDTD) approach to demonstrate the performance of the proposed 3dB splitter.
Cross-fiber Bragg grating transducer
NASA Technical Reports Server (NTRS)
Albin, Sacharia (Inventor); Zheng, Jianli (Inventor); Lavarias, Arnel (Inventor)
2000-01-01
A transducer has been invented that uses specially-oriented gratings in waveguide a manner that allows the simultaneous measurement of physical phenomena (such as shear force, strain and temperature) in a single sensing element. The invention has a highly sensitive, linear response and also has directional sensitivity with regard to strain. The transducer has a waveguide with a longitudinal axis as well as two Bragg gratings. The transducer has a first Bragg grating associated with the waveguide that has an angular orientation .theta..sub.a relative to a perpendicular to the longitudinal axis such that 0.degree.<.theta..sub.a <.theta..sub.max. The second Bragg grating is associated with the waveguide in such a way that the angular orientation .theta..sub.b of the grating relative to a perpendicular to the longitudinal axis is (360.degree.-.theta..sub.max)<.theta..sub.b <360.degree.. The first Bragg grating can have a periodicity .LAMBDA..sub.a and the second Bragg grating can have a periodicity .LAMBDA..sub.b such that the periodicity .LAMBDA..sub.a of the first Bragg grating does not equal the periodicity .LAMBDA..sub.b of the second Bragg grating. The angle of the gratings can be such that .theta..sub.a =360.degree.-.theta..sub.b. The waveguide can assume a variety of configurations, including an optical fiber, a rectangular waveguide and a planar waveguide. The waveguide can be fabricated of a variety of materials, including silica and polymer material.
Coupling system to a microsphere cavity
NASA Technical Reports Server (NTRS)
Iltchenko, Vladimir (Inventor)
2004-01-01
At technique for holding a resonator relative to an optical fiber at a specified distance. Structures including a rectangular indentation may be formed in the end of the optical fiber. The resonator may be placed against edges of the structures, to hold a different portion of the resonator spaced from an area where the waveguide modes will emanate.
Prabhakar, Amit; Mukherji, Soumyo
2010-12-21
In this study, a novel embedded optical waveguide based sensor which utilizes localized surface plasmon resonance of gold nanoparticles coated on a C-shaped polymer waveguide is being reported. The sensor, as designed, can be used as an analysis chip for detection of minor variations in the refractive index of its microenvironment, which makes it suitable for wide scale use as an affinity biosensor. The C-shaped waveguide coupled with microfluidic channel was fabricated by single step patterning of SU8 on an oxidized silicon wafer. The absorbance due to the localized surface plasmon resonance (LSPR) of SU8 waveguide bound gold nano particle (GNP) was found to be linear with refractive index changes between 1.33 and 1.37. A GNP coated C-bent waveguide of 200 μ width with a bend radius of 1 mm gave rise to a sensitivity of ~5 ΔA/RIU at 530 nm as compared to the ~2.5 ΔA/RIU (refractive index units) of the same dimension bare C-bend SU8 waveguide. The resolution of the sensor probe was ~2 × 10(-4) RIU.
Topology Optimisation of Wideband Coaxial-to-Waveguide Transitions
NASA Astrophysics Data System (ADS)
Hassan, Emadeldeen; Noreland, Daniel; Wadbro, Eddie; Berggren, Martin
2017-03-01
To maximize the matching between a coaxial cable and rectangular waveguides, we present a computational topology optimisation approach that decides for each point in a given domain whether to hold a good conductor or a good dielectric. The conductivity is determined by a gradient-based optimisation method that relies on finite-difference time-domain solutions to the 3D Maxwell’s equations. Unlike previously reported results in the literature for this kind of problems, our design algorithm can efficiently handle tens of thousands of design variables that can allow novel conceptual waveguide designs. We demonstrate the effectiveness of the approach by presenting optimised transitions with reflection coefficients lower than -15 dB over more than a 60% bandwidth, both for right-angle and end-launcher configurations. The performance of the proposed transitions is cross-verified with a commercial software, and one design case is validated experimentally.
Topology Optimisation of Wideband Coaxial-to-Waveguide Transitions.
Hassan, Emadeldeen; Noreland, Daniel; Wadbro, Eddie; Berggren, Martin
2017-03-23
To maximize the matching between a coaxial cable and rectangular waveguides, we present a computational topology optimisation approach that decides for each point in a given domain whether to hold a good conductor or a good dielectric. The conductivity is determined by a gradient-based optimisation method that relies on finite-difference time-domain solutions to the 3D Maxwell's equations. Unlike previously reported results in the literature for this kind of problems, our design algorithm can efficiently handle tens of thousands of design variables that can allow novel conceptual waveguide designs. We demonstrate the effectiveness of the approach by presenting optimised transitions with reflection coefficients lower than -15 dB over more than a 60% bandwidth, both for right-angle and end-launcher configurations. The performance of the proposed transitions is cross-verified with a commercial software, and one design case is validated experimentally.
Topology Optimisation of Wideband Coaxial-to-Waveguide Transitions
Hassan, Emadeldeen; Noreland, Daniel; Wadbro, Eddie; Berggren, Martin
2017-01-01
To maximize the matching between a coaxial cable and rectangular waveguides, we present a computational topology optimisation approach that decides for each point in a given domain whether to hold a good conductor or a good dielectric. The conductivity is determined by a gradient-based optimisation method that relies on finite-difference time-domain solutions to the 3D Maxwell’s equations. Unlike previously reported results in the literature for this kind of problems, our design algorithm can efficiently handle tens of thousands of design variables that can allow novel conceptual waveguide designs. We demonstrate the effectiveness of the approach by presenting optimised transitions with reflection coefficients lower than −15 dB over more than a 60% bandwidth, both for right-angle and end-launcher configurations. The performance of the proposed transitions is cross-verified with a commercial software, and one design case is validated experimentally. PMID:28332585
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg; Zhou, Yu
2016-07-15
Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonantmore » frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.« less
Ultra-wideband surface plasmonic Y-splitter.
Gao, Xi; Zhou, Liang; Yu, Xing Yang; Cao, Wei Ping; Li, Hai Ou; Ma, Hui Feng; Cui, Tie Jun
2015-09-07
We present an ultra-wideband Y-splitter based on planar THz plasmonic metamaterials, which consists of a straight waveguide with composite H-shaped structure and two branch waveguides with H-shaped structure. The spoof surface plasmonic polaritons (SSPPs) supported by the straight waveguide occupy the similar dispersion relation and mode characteristic to the ones confined by the branch waveguides. Attributing to these features, the two branch waveguides can equally separate the SSPPs wave propagating along the straight plasmonic waveguide to form a 3dB power divider in an ultra-wideband frequency range. To verify the functionality and performance of the proposed Y-splitter, we scaled down the working frequency to microwave and implemented microwave experiments. The tested device performances have clearly validated the functionality of our designs. It is believed to be applicable for future plasmonic circuit in microwave and THz ranges.
Zhang, Qian; Yang, Dong; Qi, Jia; Cheng, Ya; Gong, Qihuang; Li, Yan
2017-06-12
We report single scan transverse writing of depressed cladding waveguides inside ZBLAN glass with the longitudinally oriented annular ring-shaped focal intensity distribution of the femtosecond laser. The entire region of depressed cladding at the cross section, where a negative change of refraction index is induced, can be modified simultaneously with the ring-shaped focal intensity profile. The fabricated waveguides exhibit good single guided mode.
Detector shape in hexagonal sampling grids
NASA Astrophysics Data System (ADS)
Baronti, Stefano; Capanni, Annalisa; Romoli, Andrea; Santurri, Leonardo; Vitulli, Raffaele
2001-12-01
Recent improvements in CCD technology make hexagonal sampling attractive for practical applications and bring a new interest on this topic. In the following the performances of hexagonal sampling are analyzed under general assumptions and compared with the performances of conventional rectangular sampling. This analysis will take into account both the lattice form (squared, rectangular, hexagonal, and regular hexagonal), and the pixel shape. The analyzed hexagonal grid will not based a-priori on a regular hexagon tessellation, i.e., no constraints will be made on the ratio between the sampling frequencies in the two spatial directions. By assuming an elliptic support for the spectrum of the signal being sampled, sampling conditions will be expressed for a generic hexagonal sampling grid, and a comaprison with the well-known sampling conditions for a comparable rectangular lattice will be performed. Further, by considering for sake of clarity a spectrum with a circular support, the comparison will be performed under the assumption of same number of pixels for unity of surface, and the particular case of regular hexagonal sampling grid will also be considered. Regular hexagonal lattice with regular hexagonal sensitivity shape of the detector elements will result as the best trade-off between the proposed sampling requirement. Concerning the detector shape, the hexagonal is more advantageous than the rectangular. To show that a figure of merit is defined which takes into account that the MTF (modulation transfer function) of a hexagonal detector is not separable, conversely from that of a rectangular detector. As a final result, octagonal shape detectors are compared to those with rectangular and hexagonal shape in the two hypotheses of equal and ideal fill factor, respectively.
NASA Astrophysics Data System (ADS)
Nomura, Fumimasa; Kaneko, Tomoyuki; Hamada, Tomoyo; Hattori, Akihiro; Yasuda, Kenji
2013-06-01
To predict the risk of fatal arrhythmia induced by cardiotoxicity in the highly complex human heart system, we have developed a novel quasi-in vivo electrophysiological measurement assay, which combines a ring-shaped human cardiomyocyte network and a set of two electrodes that form a large single ring-shaped electrode for the direct measurement of irregular cell-to-cell conductance occurrence in a cardiomyocyte network, and a small rectangular microelectrode for forced pacing of cardiomyocyte beating and for acquiring the field potential waveforms of cardiomyocytes. The advantages of this assay are as follows. The electrophysiological signals of cardiomyocytes in the ring-shaped network are superimposed directly on a single loop-shaped electrode, in which the information of asynchronous behavior of cell-to-cell conductance are included, without requiring a set of huge numbers of microelectrode arrays, a set of fast data conversion circuits, or a complex analysis in a computer. Another advantage is that the small rectangular electrode can control the position and timing of forced beating in a ring-shaped human induced pluripotent stem cell (hiPS)-derived cardiomyocyte network and can also acquire the field potentials of cardiomyocytes. First, we constructed the human iPS-derived cardiomyocyte ring-shaped network on the set of two electrodes, and acquired the field potential signals of particular cardiomyocytes in the ring-shaped cardiomyocyte network during simultaneous acquisition of the superimposed signals of whole-cardiomyocyte networks representing cell-to-cell conduction. Using the small rectangular electrode, we have also evaluated the response of the cell network to electrical stimulation. The mean and SD of the minimum stimulation voltage required for pacing (VMin) at the small rectangular electrode was 166+/-74 mV, which is the same as the magnitude of amplitude for the pacing using the ring-shaped electrode (179+/-33 mV). The results showed that the addition of a small rectangular electrode into the ring-shaped electrode was effective for the simultaneous measurement of whole-cell-network signals and single-cell/small-cluster signals on a local site in the cell network, and for the pacing by electrical stimulation of cardiomyocyte networks.
Test facility for the evaluation of microwave transmission components
NASA Astrophysics Data System (ADS)
Fong, C. G.; Poole, B. R.
1985-10-01
A Low Power Test Facility (LPTF) was developed to evaluate the performance of Electron Cyclotron Resonance Heating (ECRH) microwave transmission components for the Mirror Fusion Test Facility (MFTF-B). The facility generates 26 to 60 GHz in modes of TE01, TE02, or TE03 launched at power levels of 1/2 milliwatt. The propagation of the RF as it radiates from either transmitting or secondary reflecting microwave transmission components is recorded by a discriminating crystal detector mechanically manipulated at constant radius in spherical coordinates. The facility is used to test, calibrate, and verify the design of overmoded, circular waveguide components, quasi-optical reflecting elements before high power use. The test facility consists of microwave sources and metering components, such as VSWR, power and frequency meters, a rectangular TE10 to circular TE01 mode transducer, mode filter, circular TE01 to 2.5 in. diameter overmoded waveguide with mode converters for combination of TE01 to TE03 modes. This assembly then connects to a circular waveguide launcher or the waveguide component under test.
Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti:Sapphire crystal
NASA Astrophysics Data System (ADS)
Ren, Yingying; Zhang, Limu; Xing, Hongguang; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng
2018-07-01
Highly-compact devices capable of beam splitting are intriguing for a broad range of photonic applications. In this work, we report on the fabrication of optical waveguide splitters with rectangular cladding geometry in a Ti:Sapphire crystal by femtosecond laser inscription. Y-splitters are fabricated with 30 μm × 15 μm and 50 μm × 25 μm input ends, corresponding to two 15 μm × 15 μm and 25 μm × 25 μm output ends, respectively. The full branching angle θ between the two output arms are changing from 0.5° to 2°. The performances of the splitters are characterized at 632.8 nm and 1064 nm, showing very good properties including symmetrical output ends, single-mode guidance, equalized splitting ratios, all-angle-polarization light transmission and intact luminescence features in the waveguide cores. The realization of these waveguide splitters with good performances demonstrates the potential of such promising devices in complex monolithic photonic circuits and active optical devices such as miniature tunable lasers.
Owens, Thomas L.
1988-03-01
A resonant cavity waveguide coupler for ICRH of a magnetically confined plasma. The coupler consists of a series of inter-leaved metallic vanes disposed withn an enclosure analogous to a very wide, simple rectangular waveguide that has been "folded" several times. At the mouth of the coupler, a polarizing plate is provided which has coupling apertures aligned with selected folds of the waveguide through which rf waves are launched with magnetic fields of the waves aligned in parallel with the magnetic fields confining the plasma being heated to provide coupling to the fast magnetosonic wave within the plasma in the frequency usage of from about 50-200 mHz. A shorting plate terminates the back of the cavity at a distance approximately equal to one-half the guide wavelength from the mouth of the coupler to ensure that the electric field of the waves launched through the polarizing plate apertures are small while the magnetic field is near a maximum. Power is fed into the coupler folded cavity by means of an input coaxial line feed arrangement at a point which provides an impedance match between the cavity and the coaxial input line.
RF Magnetic Field Uniformity of Rectangular Planar Coils for Resonance Imaging
2016-02-04
coil with square -shaped overlapping turns along the 135mm length of the coil. This paper compares these two coils to determine which has a more...in which, the coil arrays consist of a few square or circular coils side-by-side or overlapping. Mobile unilateral NMR/MRI scanners were...magnetic field along the length of a normal rectangular coil (NRC) and a rectangular coil with overlapping square -shaped turns (RCOS). The RCOS coil is
Yao, Yelei; Wang, Jianxun; Li, Hao; Liu, Guo; Luo, Yong
2017-07-01
A generic approach to excite TE n0 (n ≥ 1) modes in a rectangular waveguide for confocal gyro-devices is proposed. The exciter consists of a 3 dB H-plane power divider (n ≥ 3) and a mode-converting section. The injection power is split into two in-phase signals with equal amplitudes which simultaneously excite the secondary waveguide via two sets of multiple slots. Both the position and width of the slot are symmetrically distributed with respect to the center line for each set of slots. The slot width complies with a geometry sequence, with adjacent slots being spaced a quarter wavelength apart to cancel the backward wave out. A TE 40 mode exciter at 100 GHz is numerically simulated and optimized, achieving a 1 dB and a 3 dB transmission bandwidth of 18.2 and 21 GHz, respectively. The prototype is fabricated and measured. The cold test is carried out utilizing two identical back-to-back connected mode exciters, and the measured performances are in good agreement with the numerical simulation results when taking into account the wall loss and assembly tolerance.
Analysis of junior high school students' difficulty in resolving rectangular conceptual problems
NASA Astrophysics Data System (ADS)
Utami, Aliksia Kristiana Dwi; Mardiyana, Pramudya, Ikrar
2017-08-01
Geometry is one part of the mathematics that must be learned in school and it has important effects on the development of creative thinking skills of learners, but in fact, there are some difficulties experienced by the students. This research focuses on analysis difficulty in resolving rectangular conceptual problems among junior high school students in every creative thinking skills level. This research used a descriptive method aimed to identify the difficulties and cause of the difficulties experienced by five students. The difficulties are associated with rectangular shapes and related problems. Data collection was done based on students' work through test, interview, and observations. The result revealed that student' difficulties in understanding the rectangular concept can be found at every creative thinking skills level. The difficulties are identifying the objects rectangular in the daily life except for a rectangle and square, analyzing the properties of rectangular shapes, and seeing the interrelationships between figures.
Ka-Band Waveguide Hybrid Combiner for MMIC Amplifiers with Unequal and Arbitrary Power Output Ratio
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Chevalier, Christine T.; Wintucky, Edwin G.; Freeman, Jon C.
2009-01-01
The design, simulation and characterization of a novel Ka-band (32.05 +/- 0.25 GHz) rectangular waveguide branchline hybrid unequal power combiner is presented. The manufactured combiner was designed to combine input signals, which are nearly in phase and with an amplitude ratio of two. The measured return loss and isolation of the branch-line hybrid are better than 22 and 27 dB, respectively. The application of the branch-line hybrid for combining two monolithic microwave integrated circuit (MMIC) power amplifiers with output power ratio of two is demonstrated. The measured combining efficiency is 92.9% at the center frequency of 32.05 GHz.
Conformal mapping and bound states in bent waveguides
NASA Astrophysics Data System (ADS)
Sadurní, E.; Schleich, W. P.
2010-12-01
Is it possible to trap a quantum particle in an open geometry? In this work we deal with the boundary value problem of the stationary Schroedinger (or Helmholtz) equation within a waveguide with straight segments and a rectangular bending. The problem can be reduced to a one-dimensional matrix Schroedinger equation using two descriptions: oblique modes and conformal coordinates. We use a corner-corrected WKB formalism to find the energies of the one-dimensional problem. It is shown that the presence of bound states is an effect due to the boundary alone, with no classical counterpart for this geometry. The conformal description proves to be simpler, as the coupling of transversal modes is not essential in this case.
NASA Astrophysics Data System (ADS)
Sayar, M.; Ogawa, K.; Shoji, T.
2008-02-01
Thermal barrier coatings have been widely used in gas turbine engines in order to protect substrate metal alloy against high temperature and to enhance turbine efficiency. Currently, there are no reliable nondestructive techniques available to monitor TBC integrity over lifetime of the coating. Hence, to detect top coating (TC) and TGO thicknesses, a microwave nondestructive technique that utilizes a rectangular waveguide was developed. The phase of the reflection coefficient at the interface of TC and waveguide varies for different TGO and TC thicknesses. Therefore, measuring the phase of the reflection coefficient enables us to accurately calculate these thicknesses. Finally, a theoretical analysis was used to evaluate the reliability of the experimental results.
Microwave transmission efficiency and simulations of electron plasma in ELTRAP device
NASA Astrophysics Data System (ADS)
Ikram, M.; Mushtaq, A.; Ali, S.
2017-11-01
A Thomson backscattering experiment has been performed in a Penning-Malmberg device ELTRAP. To estimate the minimum sensitivity of diagnostics, we have computed the signal to noise ratio and found that the present bunch has a number density of 4.3 × 108 cm-3, which is three orders of magnitude less than the desired density of 1011 cm-3. To increase the signal level from the RF studies to the GHz range, the transmission efficiency from the rectangular waveguide orthogonally coupled to a prototype circular waveguide was experimentally analyzed on a test-bench. It is observed that the lengths of waveguides play an important role in the transmission efficiency and return loss. When the length of the optimum rectangular waveguide (>2 λg = 31 cm) is reduced to 7 cm, due to geometrical constraints of the ELTRAP device, consequently, the transmission efficiency is also reduced and shifts away from the maximum 3 GHz operating frequency. The useful frequency band is then reduced with the increasing length of the prototype circular waveguide (102 cm). Using the electromagnetic Particle-In-Cell simulations involving the electron cyclotron resonance heating (ECRH), we have utilized a magnetic field of 0.1 T resonating with 2.8 GHz RF drive during each time step (1 ps) having the power level of 0.04 V to the middle and to the end of the trap. A more efficient increase in the radial and azimuthal temperature profiles is observed as compared to the axial temperature profile. The reason is the use of ECRH to heat electrons in cyclotron motion, which is completely kinetic and magnetron motion which is almost entirely potential based. The axial motion interchanges in between the kinetic and potential with a slight enhancement in axial motion to maintain the total canonical angular momentum conserved. The temperature profile of the confined electron plasma increases with the variation of densities from 5 × 107 m-3 to 1012 m-3. The major heating effect occurs when the RF power is injected from the position close to one end with respect to the middle position of the trap.
Blewett, J.P.; Kiesling, J.D.
1963-06-11
A wave-guide resonator structure is designed for use in separating particles of equal momentum but differing in mass, having energies exceeding one billion eiectron volts. The particles referred to are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high energy accelerator. In the resonator a travelling electric wave is produced which travels at the same rate of speed as the unwanted particle which is thus deflected continuously over the length of the resonator. The wanted particle is slightly out of phase with the travelling wave so that over the whole length of the resonator it has a net deflection of substantially zero. The travelling wave is established in a wave guide of rectangular cross section in which stubs are provided to store magnetic wave energy leaving the electric wave energy in the main structure to obtain the desired travelling wave and deflection. The stubs are of such shape and spacing to establish a critical mathemitical relationship. (AEC)
TFSSRA - THICK FREQUENCY SELECTIVE SURFACE WITH RECTANGULAR APERTURES
NASA Technical Reports Server (NTRS)
Chen, J. C.
1994-01-01
Thick Frequency Selective Surface with Rectangular Apertures (TFSSRA) was developed to calculate the scattering parameters for a thick frequency selective surface with rectangular apertures on a skew grid at oblique angle of incidence. The method of moments is used to transform the integral equation into a matrix equation suitable for evaluation on a digital computer. TFSSRA predicts the reflection and transmission characteristics of a thick frequency selective surface for both TE and TM orthogonal linearly polarized plane waves. A model of a half-space infinite array is used in the analysis. A complete set of basis functions with unknown coefficients is developed for the waveguide region (waveguide modes) and for the free space region (Floquet modes) in order to represent the electromagnetic fields. To ensure the convergence of the solutions, the number of waveguide modes is adjustable. The method of moments is used to compute the unknown mode coefficients. Then, the scattering matrix of the half-space infinite array is calculated. Next, the reference plane of the scattering matrix is moved half a plate thickness in the negative z-direction, and a frequency selective surface of finite thickness is synthesized by positioning two plates of half-thickness back-to-back. The total scattering matrix is obtained by cascading the scattering matrices of the two half-space infinite arrays. TFSSRA is written in FORTRAN 77 with single precision. It has been successfully implemented on a Sun4 series computer running SunOS, an IBM PC compatible running MS-DOS, and a CRAY series computer running UNICOS, and should run on other systems with slight modifications. Double precision is recommended for running on a PC if many modes are used or if high accuracy is required. This package requires the LINPACK math library, which is included. TFSSRA requires 1Mb of RAM for execution. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. It is also available on a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. This program was developed in 1992 and is a copyrighted work with all copyright vested in NASA.
NASA Astrophysics Data System (ADS)
Chen, C. T.; Fu, Y. H.; Tang, W. H.; Lin, S. C.; Wu, W. J.
2018-03-01
MEMS piezoelectric energy harvester (PEH) has been widely designed in cantilever beam style because of ease of fabrication and effective to generate large strain and output power. There are already several studies on tapered beam shapes to improve the overall performance of energy harvested. In this paper, we investigate cantilever beam type PEH in rectangular, trapezoidal and triangle shapes, and the devices are limited to the area smaller than 1cm × 1 cm for better flexibility in applications. The power output and the life time of each shape of devices are fabricated and characterized. The output power are tested with optimal resistance loads, and the output power are 145.3 μW, 125.3 μW and 107.8 μW for triangle, trapezoidal and rectangular shapes of devices respectively under excitation of 0.5g acceleration vibration level in the resonant frequency of the transducer. The tip displacements of the 3 devices are 3.05 mm, 2.66 mm, and 2.44 mm for triangular, trapezoidal and rectangular shape devices, respectively. To study the lifetime and durability issue, triangular and rectangular devices are excited under 0.2g to 1g for 24 hours. The resonant frequency shifting, tip displacement and open circuit voltage changing are monitored will be detailed in the paper.
NASA Astrophysics Data System (ADS)
Dugar-Zhabon, V. D.; Orozco, E. A.; Herrera, A. M.
2016-02-01
The space cyclotron autoresonance interaction of an electron beam with microwaves of TE 102 rectangular mode is simulated. It is shown that in these conditions the beam electrons can achieve energies which are sufficient to generate hard x-rays. The physical model consists of a rectangular cavity fed by a magnetron oscillator through a waveguide with a ferrite isolator, an iris window and a system of dc current coils which generates an axially symmetric magnetic field. The 3D magnetic field profile is that which maintains the electron beam in the space autoresonance regime. To simulate the beam dynamics, a full self-consistent electromagnetic particle-in-cell code is developed. It is shown that the injected 12keV electron beam of 0.5A current is accelerated to energy of 225keV at a distance of an order of 17cm by 2.45GHz standing microwave field with amplitude of 14kV/cm.
High-performance 16-way Ku-band radial power combiner based on the TE01-circular waveguide mode
NASA Astrophysics Data System (ADS)
Montejo-Garai, José R.; Saracho-Pantoja, Irene O.; Ruiz-Cruz, Jorge A.; Rebollar, Jesús M.
2018-03-01
This work presents a 16-way Ku-band radial power combiner for high power and high frequency applications, using the very low loss TE01 circular waveguide mode. The accomplished design shows an excellent performance: the experimental prototype has a return loss better than 30 dB, with a balance for the amplitudes of (±0.15 dB) and (±2.5°) for the phases, in a 16.7% fractional bandwidth (2 GHz centered at 12 GHz). For obtaining these outstanding specifications, required, for instance, in high-frequency amplification or on plasma systems, a rigorous step-by-step procedure is presented. First, a high-purity mode transducer has been designed, from the TE10 mode in the rectangular waveguide to the TE01 mode in the circular waveguide, with very high attenuation (>50 dB) for the other propagating and evanescent modes in the circular waveguide. This transducer has been manufactured and measured in a back-to-back configuration, validating the design process. Second, an E-plane 16-way radial power divider has been designed, where the power is coupled from the 16 non-reduced-height radial standard waveguides into the TE01 circular waveguide mode, improving the insertion loss response and removing the usual tapered transformers of previous designs limiting the power handling. Finally, both the transducer and the divider have been assembled to make the final radial combiner. The prototype has been carefully manufactured, showing very good agreement between the measurements and the full-wave simulations.
A Waveguide Antenna with an Extended Angular Range for Remote Steering of Wave-Beam Direction
NASA Astrophysics Data System (ADS)
Sobolev, D. I.; Denisov, G. G.
2018-03-01
A new method for increasing the angular range of a waveguide antenna for remote steering of the wave-beam direction in thermonuclear-fusion experimental setups with plasma magnetic confinement is proposed. Characteristics for large beam inclination angles can be improved using the synthesized nonuniform waveguide profile. For small angles, the characteristics remain invariable, the waveguide profile differs only slightly from the regular shape, and can be fit to limited waveguide-channel sizes.
Generation of optical vortices in an integrated optical circuit
NASA Astrophysics Data System (ADS)
Tudor, Rebeca; Kusko, Mihai; Kusko, Cristian
2017-09-01
In this work, the generation of optical vortices in an optical integrated circuit is numerically demonstrated. The optical vortices with topological charge m = ±1 are obtained by the coherent superposition of the first order modes present in a waveguide with a rectangular cross section, where the phase delay between these two propagating modes is Δφ = ±π/2. The optical integrated circuit consists of an input waveguide continued with a y-splitter. The left and the right arms of the splitter form two coupling regions K1 and K2 with a multimode output waveguide. In each coupling region, the fundamental modes present in the arms of the splitter are selectively coupled into the output waveguide horizontal and vertical first order modes, respectively. We showed by employing the beam propagation method simulations that the fine tuning of the geometrical parameters of the optical circuit makes possible the generation of optical vortices in both transverse electric (TE) and transverse magnetic (TM) modes. Also, we demonstrated that by placing a thermo-optical element on one of the y-splitter arms, it is possible to switch the topological charge of the generated vortex from m = 1 to m = -1.
NASA Astrophysics Data System (ADS)
Ghatge, Mayur; Tabrizian, Roozbeh
2018-03-01
A matrix of aluminum-nitride (AlN) waveguides is acoustically engineered to realize electrically isolated phase-synchronous frequency references through nonlinear wave-mixing. AlN rectangular waveguides are cross-coupled through a periodically perforated plate that is engineered to have a wide acoustic bandgap around a desirable frequency ( f1≈509 MHz). While the coupling plate isolates the matrix from resonant vibrations of individual waveguide constituents at f1, it is transparent to the third-order harmonic waves (3f1) that are generated through nonlinear wave-mixing. Therefore, large-signal excitation of the f1 mode in a constituent waveguide generates acoustic waves at 3f1 with an efficiency defined by elastic anharmonicity of the AlN film. The phase-synchronous propagation of the third harmonic through the matrix is amplified by a high quality-factor resonance mode at f2≈1529 MHz, which is sufficiently close to 3f1 (f2 ≅ 3f1). Such an architecture enables realization of frequency-multiplied and phase-synchronous, yet electrically and spectrally isolated, references for multi-band/carrier and spread-spectrum wireless communication systems.
Trapped Atoms in One-Dimensional Photonic Crystals
2013-08-09
a single silicon -nitride nanobeam (refractive index n = 2) with a 1D array of filleted rectangular holes along the propagation direction; atoms are...trapped in the centers of the holes (figure 1( a )). The second waveguide consists of two parallel silicon nitride nanobeams, each with a periodic array...the refractive index of silicon nitride is approximately constant across the optical domain, we adopt the approximation based on a frequency
Short-wavelength InAlGaAs/AlGaAs quantum dot superluminescent diodes
NASA Astrophysics Data System (ADS)
Liang, De-Chun; An, Qi; Jin, Peng; Li, Xin-Kun; Wei, Heng; Wu, Ju; Wang, Zhan-Guo
2011-10-01
This paper reports the fabrication of J-shaped bent-waveguide superluminescent diodes utilizing an InAlGaAs/AlGaAs quantum dot active region. The emission spectrum of the device is centred at 884 nm with a full width at half maximum of 37 nm and an output power of 18 mW. By incorporating an Al composition into the quantum dot active region, short-wavelength superluminescent diode devices can be obtained. An intersection was found for the light power-injection current curves measured from the straight-waveguide facet and the bent-waveguide facet, respectively. The result is attributed to the conjunct effects of the gain and the additional loss of the bent waveguide. A numerical simulation is performed to verify the qualitative explanation. It is shown that bent waveguide loss is an important factor that affects the output power of J-shaped superluminescent diode devices.
Shaping ultrafast laser inscribed optical waveguides using a deformable mirror.
Thomson, R R; Bockelt, A S; Ramsay, E; Beecher, S; Greenaway, A H; Kar, A K; Reid, D T
2008-08-18
We use a two-dimensional deformable mirror to shape the spatial profile of an ultrafast laser beam that is then used to inscribe structures in a soda-lime silica glass slide. By doing so we demonstrate that it is possible to control the asymmetry of the cross section of ultrafast laser inscribed optical waveguides via the curvature of the deformable mirror. When tested using 1.55 mum light, the optimum waveguide exhibited coupling losses of approximately 0.2 dB/facet to Corning SMF-28 single mode fiber and propagation losses of approximately 1.5 dB.cm(-1). This technique promises the possibility of combining rapid processing speeds with the ability to vary the waveguide cross section along its length.
ERIC Educational Resources Information Center
Mou, Weimin; Nankoo, Jean-François; Zhou, Ruojing; Spetch, Marcia L.
2014-01-01
Five experiments investigated how human adults use landmark arrays in the immediate environment to reorient relative to the local environment and relative to remote cities. Participants learned targets' directions with the presence of a proximal 4 poles forming a rectangular shape and an array of more distal poles forming a rectangular shape. Then…
Experimental Modal Analysis of Rectangular and Circular Beams
ERIC Educational Resources Information Center
Emory, Benjamin H.; Zhu, Wei Dong
2006-01-01
Analytical and experimental methods are used to determine the natural frequencies and mode shapes of Aluminum 6061-T651 beams with rectangular and circular cross-sections. A unique test stand is developed to provide the rectangular beam with different boundary conditions including clamped-free, clamped-clamped, clamped-pinned, and pinned-pinned.…
ENDOR with band-selective shaped inversion pulses
NASA Astrophysics Data System (ADS)
Tait, Claudia E.; Stoll, Stefan
2017-04-01
Electron Nuclear DOuble Resonance (ENDOR) is based on the measurement of nuclear transition frequencies through detection of changes in the polarization of electron transitions. In Davies ENDOR, the initial polarization is generated by a selective microwave inversion pulse. The rectangular inversion pulses typically used are characterized by a relatively low selectivity, with full inversion achieved only for a limited number of spin packets with small resonance offsets. With the introduction of pulse shaping to EPR, the rectangular inversion pulses can be replaced with shaped pulses with increased selectivity. Band-selective inversion pulses are characterized by almost rectangular inversion profiles, leading to full inversion for spin packets with resonance offsets within the pulse excitation bandwidth and leaving spin packets outside the excitation bandwidth largely unaffected. Here, we explore the consequences of using different band-selective amplitude-modulated pulses designed for NMR as the inversion pulse in ENDOR. We find an increased sensitivity for small hyperfine couplings compared to rectangular pulses of the same bandwidth. In echo-detected Davies-type ENDOR, finite Fourier series inversion pulses combine the advantages of increased absolute ENDOR sensitivity of short rectangular inversion pulses and increased sensitivity for small hyperfine couplings of long rectangular inversion pulses. The use of pulses with an almost rectangular frequency-domain profile also allows for increased control of the hyperfine contrast selectivity. At X-band, acquisition of echo transients as a function of radiofrequency and appropriate selection of integration windows during data processing allows efficient separation of contributions from weakly and strongly coupled nuclei in overlapping ENDOR spectra within a single experiment.
Low Noise Amplifiers for 140 Ghz Wide-Band Cryogenic Receivers
NASA Technical Reports Server (NTRS)
Larkoski, Patricia V.; Kangaslahti, Pekka; Samoska, Lorene; Lai, Richard; Sarkozy, Stephen
2013-01-01
We report S-parameter and noise measurements for three different Indium Phosphide 35-nanometer-gate-length High Electron Mobility Transistor (HEMT) Low Noise Amplifier (LNA) designs operating in the frequency range centered on 140 gigahertz. When packaged in a Waveguide Rectangular-6.1 waveguide housing, the LNAs have an average measured noise figure of 3.0 decibels - 3.6 decibels over the 122-170 gigahertz band. One LNA was cooled to 20 degrees Kelvin and a record low noise temperature of 46 Kelvin, or 0.64 decibels noise figure, was measured at 152 gigahertz. These amplifiers can be used to develop receivers for instruments that operate in the 130-170 gigahertz atmospheric window, which is an important frequency band for ground-based astronomy and millimeter-wave imaging applications.
An analysis of stepped trapezoidal-shaped microcantilever beams for MEMS-based devices
NASA Astrophysics Data System (ADS)
Ashok, Akarapu; Gangele, Aparna; Pal, Prem; Pandey, Ashok Kumar
2018-07-01
Microcantilever beams are the most widely used mechanical elements in the design and fabrication of MEMS/NEMS-based sensors and actuators. In this work, we have proposed a new microcantilever beam design based on a stepped trapezoidal-shaped microcantilever. Single-, double-, triple- and quadruple-stepped trapezoidal-shaped microcantilever beams along with conventional rectangular-shaped microcantilever beams were analysed experimentally, numerically and analytically. The microcantilever beams were fabricated from silicon dioxide material using wet bulk micromachining in 25 wt% TMAH. The length, width and thickness of the microcantilever beams were fixed at 200, 40 and 0.96 µm, respectively. A laser vibrometer was utilized to measure the resonance frequency and Q-factor of the microcantilever beams in vacuum as well as in ambient conditions. Furthermore, finite element analysis software, ANSYS, was employed to numerically analyse the resonance frequency, maximum deflection and torsional end rotation of all the microcantilever beam designs. The analytical and numerical resonance frequencies are found to be in good agreement with the experimental resonance frequencies. In the stepped trapezoidal-shaped microcantilever beams with an increasing number of steps, the Q-factor, maximum deflection and torsional end rotation were improved, whereas the resonance frequency was slightly reduced. Nevertheless, the resonance frequency is higher than the basic rectangular-shaped microcantilever beam. The observed quality factor, maximum deflection and torsional end rotation for a quadruple-stepped trapezoidal-shaped microcantilever are 38%, 41% and 52%, respectively, which are higher than those of conventional rectangular-shaped microcantilever beams. Furthermore, for an applied concentrated mass of 1 picogram on the cantilever surface, a greater shift in frequency is obtained for all the stepped trapezoidal-shaped microcantilever beam designs compared to the conventional rectangular microcantilever beam.
NASA Astrophysics Data System (ADS)
Shams El-Din, M. A.
2018-04-01
The UV-laser lithographic method is used for the preparation of Polymeric integrated-optical waveguides in a planar polymer chip. The waveguide samples are irradiated by an excimer laser of wavelength 248 nm with different doses and with the same fluencies. The refractive index depth profile for the waveguides, in the first zone is found to have a parabolic shape and Gaussian shape in the second one that can be determined by Mach-Zehnder interferometer. Both the mode field distribution and the effective mode indices for the first zone only are determined by making use of the theoretical mode and the experimental data. It is found that the model field distribution is strongly dependent on the refractive indices for each zone.
Microwave Landing System. Phase II. Tracker Error Study.
1974-12-01
the runways and environs. The geographical locations of the four phototheodolite towers are indicated on Figure 1-1. A Contraves Model C phototheodolite...temperature 400 K above 500 elevation (dark sky) Side lobe location 1.720 (Ist) Type of scan Monopulse R-f transmission line Rectangular waveguide Line loss ...receiving 1.3 db Line loss transmitting 2.3 db System Facts Azimuth coverage 3600 Elevation coverage -10* to 190* (tracking -10* to 85*) Range accuracy
Body shape helps legged robots climb and turn in complex 3-D terrains
NASA Astrophysics Data System (ADS)
Han, Yuanfeng; Wang, Zheliang; Li, Chen
Analogous to streamlined shapes that reduce drag in fluids, insects' ellipsoid-like rounded body shapes were recently discovered to be ``terradynamically streamlined'' and enhance locomotion in cluttered terrain by facilitating body rolling. Here, we hypothesize that there exist more terradynamic shapes that facilitate other modes of locomotion like climbing and turning in complex 3-D terrains by facilitating body pitching and yawing. To test our hypothesis, we modified the body shape of a legged robot by adding an elliptical and a rectangular shell and tested how it negotiated with circular and square vertical pillars. With a rectangular shell the robot always pitched against square pillars in an attempt to climb, whereas with an elliptical shell it always yawed and turned away from circular pillars given a small initial lateral displacement. Square / circular pillars facilitated pitching / yawing, respectively. To begin to reveal the contact physics, we developed a locomotion energy landscape model. Our model revealed that potential energy barriers to transition from pitching to yawing are high for angular locomotor and obstacle shapes (rectangular / square) but vanish for rounded shapes (elliptical / circular). Our study supports the plausibility of locomotion energy landscapes for understanding the rich locomotor transitions in complex 3-D terrains.
NASA Astrophysics Data System (ADS)
Zeng, Zhengzhong; Ma, Lianying
2004-01-01
A simple and effective bridge-type feeding network consisting only of ordinary resistors and conductive wires is designed and tested which launches a 0.8 ns risetime, 40 ns width, and kV-level rectangular pulse from a coaxial cable onto a rod-shaped resistive high-voltage divider with risetime <2 ns with no significant distortion.
Loss of 3-D shape constancy in interior spaces: the basis of the Ames-room illusion.
Dorward, F M; Day, R H
1997-01-01
The apparently rectangular form of the irregularly shaped Ames room is explained in terms of a loss of interior 3-D shape constancy consequent on viewing the room with one eye through a small specifically positioned aperture. In the absence of retinal disparity and motion parallax the appearance of the room is held to shift markedly toward the rectangular dimensions of its retinal image. Three experiments designed to test this explanation with a miniature (one-tenth size) version of the Ames room No 1 with the matched 2-D shape of the back wall and as an index of interior 3-D shape are reported. The experiments showed that interior constancy was almost fully restored with binocular viewing of the room (experiment 1). The effect with a 'skeletal' version of the room was about the same as that with the conventional version and was clearly evident when the back wall or its frame version was presented alone (experiment 2), and it varied according to whether the interior perspective corresponded with that of the Ames or a rectangular room (experiment 3). Experiment 3 also showed that a rectangular room is significantly distorted when the interior perspective accords with that of the Ames room. These outcomes are construed as supporting the loss-of-constancy explanation and as showing that the Ames-room effect is one of a class of illusions attributable to the absence of stimulus correlates that normally sustain visual shape constancy.
NASA Astrophysics Data System (ADS)
Lee, Joong Seok; Lee, Il Kyu; Seung, Hong Min; Lee, Jun Kyu; Kim, Yoon Young
2017-03-01
Joints with slowly varying tapered shapes, such as linear or exponential profiles, are known to transmit incident wave power efficiently between two waveguides with dissimilar impedances. This statement is valid only when the considered joint length is longer than the wavelengths of the incident waves. When the joint length is shorter than the wavelengths, however, appropriate shapes of such subwavelength joints for efficient power transmission have not been explored much. In this work, considering one-dimensional torsional wave motion in a cylindrical elastic waveguide system, optimal shapes or radial profiles of a subwavelength joint maximizing the power transmission coefficient are designed by a gradient-based optimization formulation. The joint is divided into a number of thin disk elements using the transfer matrix approach and optimal radii of the disks are determined by iterative shape optimization processes for several single or bands of wavenumbers. Due to the subwavelength constraint, the optimized joint profiles were found to be considerably different from the slowly varying tapered shapes. Specifically, for bands of wavenumbers, peculiar gourd-like shapes were obtained as optimal shapes to maximize the power transmission coefficient. Numerical results from the proposed optimization formulation were also experimentally realized to verify the validity of the present designs.
Demonstration of submicron square-like silicon waveguide using optimized LOCOS process.
Desiatov, Boris; Goykhman, Ilya; Levy, Uriel
2010-08-30
We demonstrate the design, fabrication and experimental characterization of a submicron-scale silicon waveguide that is fabricated by local oxidation of silicon. The use of local oxidation process allows defining the waveguide geometry and obtaining smooth sidewalls. The process can be tuned to precisely control the shape and the dimensions of the waveguide. The fabricated waveguides are measured using near field scanning optical microscope at 1550 nm wavelength. These measurements show mode width of 0.4 µm and effective refractive index of 2.54. Finally, we demonstrate the low loss characteristics of our waveguide by imaging the light scattering using an infrared camera.
NASA Technical Reports Server (NTRS)
Cockrell, C. R.; Beck, Fred B.
1997-01-01
The electromagnetic scattering from an arbitrarily shaped aperture backed by a rectangular cavity recessed in an infinite ground plane is analyzed by the integral equation approach. In this approach, the problem is split into two parts: exterior and interior. The electromagnetic fields in the exterior part are obtained from an equivalent magnetic surface current density assumed to be flowing over the aperture and backed by an infinite ground plane. The electromagnetic fields in the interior part are obtained in terms of rectangular cavity modal expansion functions. The modal amplitudes of cavity modes are determined by enforcing the continuity of the electric field across the aperture. The integral equation with the aperture magnetic current density as an unknown is obtained by enforcing the continuity of magnetic fields across the aperture. The integral equation is then solved for the magnetic current density by the method of moments. The electromagnetic scattering properties of an aperture backed by a rectangular cavity are determined from the magnetic current density. Numerical results on the backscatter radar cross-section (RCS) patterns of rectangular apertures backed by rectangular cavities are compared with earlier published results. Also numerical results on the backscatter RCS patterns of a circular aperture backed by a rectangular cavity are presented.
Photonic Switching Devices Using Light Bullets
NASA Technical Reports Server (NTRS)
Goorjian, Peter M. (Inventor)
1997-01-01
The present invention is directed toward a unique ultra-fast, all-optical switching device or switch made with readily available, relatively inexpensive, highly nonlinear photonic glasses. These photonic glasses have a sufficiently negative group velocity dispersion and high nonlinear index of refraction to support stable light bullets. The light bullets counterpropagate through, and interact within the waveguide to selectively change each others' directions of propagation into predetermined channels. In one embodiment, the switch utilizes a rectangularly planar slab waveguide, and further includes two central channels and a plurality of lateral channels for guiding the light bullets into and out of the waveguide. One advantage presented by the present all-optical switching device lies in its practical use of light bullets, thus preventing the degeneration of the pulses due to dispersion and diffraction at the front and back of the pulses. Another feature of the switching device is the relative insensitivity of the collision process to the time difference in which the counter-propagating pulses enter the waveguide. since. contrary to conventional co-propagating spatial solitons, the relative phase of the colliding pulses does not affect the interaction of these pulses. Yet another feature of the present all-optical switching device is the selection of the light pulse parameters which enables the generation of light bullets in highly nonlinear glasses.
NASA Astrophysics Data System (ADS)
Fu, JiaHui; Raheem, Odai H.
2017-07-01
A novel IMSL tunable phase shifter for HMSIW-LWA-fed rectangular patches based on liquid crystal technology is proposed. Rectangular patches are used as radiators for the opening sidewall of the waveguide and matched section part for a unit cell. The transition structure is added for enhancing the efficiency of HMSIW-LWA due to converting most input power to the leaky mode. The novel IMSL phase shifter is used for investigating the tunable dielectric characteristics of N-LC by applying an electric field to the LC cell, which is controlled by the orientation angle of the LC molecules. Theoretically, the orientation angle is derived and solved numerically with the accurate method. As a result, the HMSIW-LWA can be tuned up to ± 25° for a fixed frequency by tuning the nematic LC with applied voltage from 0 to 20 V. In addition, the realized gain changed from 6 to 9.4 dB for a fixed tuned frequency, and 46° steerable for rest main beams range of the HMSIW-LWA in both forward and backward directions.
Micro-combustor for gas turbine engine
Martin, Scott M.
2010-11-30
An improved gas turbine combustor (20) including a basket (26) and a multiplicity of micro openings (29) arrayed across an inlet wall (27) for passage of a fuel/air mixture for ignition within the combustor. The openings preferably have a diameter on the order of the quenching diameter; i.e. the port diameter for which the flame is self-extinguishing, which is a function of the fuel mixture, temperature and pressure. The basket may have a curved rectangular shape that approximates the shape of the curved rectangular shape of the intake manifolds of the turbine.
NASA Technical Reports Server (NTRS)
Laub, G. H.; Kodani, H. M.
1972-01-01
Wind tunnel tests were conducted on scale models of three rectangular shaped cargo containers to determine the aerodynamic characteristics of these typical externally-suspended helicopter cargo configurations. Tests were made over a large range of pitch and yaw attitudes at a nominal Reynolds number per unit length of 1.8 x one million. The aerodynamic data obtained from the tests are presented.
Integrated Optical Interferometers with Micromachined Diaphragms for Pressure Sensing
NASA Technical Reports Server (NTRS)
DeBrabander, Gregory N.; Boyd, Joseph T.
1996-01-01
Optical pressure sensors have been fabricated which use an integrated optical channel waveguide that is part of an interferometer to measure the pressure-induced strain in a micromachined silicon diaphragm. A silicon substrate is etched from the back of the wafer leaving a rectangular diaphragm. On the opposite side of the wafer, ring resonator and Mach-Zehnder interferometers are formed with optical channel waveguides made from a low pressure chemical vapor deposited film of silicon oxynitride. The interferometer's phase is altered by pressure-induced stress in a channel segment positioned over the long edge of the diaphragm. The phase change in the ring resonator is monitored using a link-insensitive swept frequency laser diode, while in the Mach-Zehnder it is determined using a broad band super luminescent diode with subsequent wavelength separation. The ring resonator was found to be highly temperature sensitive, while the Mach-Zehnder, which had a smaller optical path length difference, was proportionally less so. The quasi-TM mode was more sensitive to pressure, in accord with calculations. Waveguide and sensor theory, sensitivity calculations, a fabrication sequence, and experimental results are presented.
Adaptive slit beam shaping for direct laser written waveguides.
Salter, P S; Jesacher, A; Spring, J B; Metcalf, B J; Thomas-Peter, N; Simmonds, R D; Langford, N K; Walmsley, I A; Booth, M J
2012-02-15
We demonstrate an improved method for fabricating optical waveguides in bulk materials by means of femtosecond laser writing. We use an LC spatial light modulator (SLM) to shape the beam focus by generating adaptive slit illumination in the pupil of the objective lens. A diffraction grating is applied in a strip across the SLM to simulate a slit, with the first diffracted order mapped onto the pupil plane of the objective lens while the zeroth order is blocked. This technique enables real-time control of the beam-shaping parameters during writing, facilitating the fabrication of more complicated structures than is possible using nonadaptive methods. Waveguides are demonstrated in fused silica with a coupling loss to single-mode fibers in the range of 0.2 to 0.5 dB and propagation loss <0.4 dB/cm.
Scattering from arbitrarily shaped microstrip patch antennas
NASA Technical Reports Server (NTRS)
Shively, David G.; Deshpande, Manohar D.; Cockrell, Capers R.
1992-01-01
The scattering properties of arbitrarily shaped microstrip patch antennas are examined. The electric field integral equation for a current element on a grounded dielectric slab is developed for a rectangular geometry based on Galerkin's technique with subdomain rooftop basis functions. A shape function is introduced that allows a rectangular grid approximation to the arbitrarily shaped patch. The incident field on the patch is expressed as a function of incidence angle theta(i), phi(i). The resulting system of equations is then solved for the unknown current modes on the patch, and the electromagnetic scattering is calculated for a given angle. Comparisons are made with other calculated results as well as with measurements.
Phase 2 SBIR Final Report: An Ultra-Sensitive Optical Biosensor for Flood Safety
2002-08-23
can be completed in 2 to 4 hours. Currently accepted tests using commercial test kits based on immunochemical techniques offer results in 22 to 24...tagging is imperfect, leading to a background of non-specific surface and molecular binding limiting the signal. The use of a reporter fluorochrome can ...Waveguide Patterning: Surface flow channels: The rectangular cuvettes (as shown in Section II, Figure 4-3) can be etched using standard techniques. The
Radiation of charged particle bunches in corrugated waveguides with small period
NASA Astrophysics Data System (ADS)
Tyukhtin, A. V.; Vorobev, V. V.; Akhmatova, E. R.; Antipov, S.
2018-04-01
Bunch radiation in periodical waveguides was mainly analyzed for situations when wavelengths are comparable to the structure period (Smith-Purcell emission). However, it is also interesting to study long wave radiation with wavelengths which are much greater than the structure period. In this paper, the electromagnetic field is analyzed using the method of equivalent boundary conditions. According to this approach, the exact boundary conditions on the complex periodic surface are replaced with certain equivalent conditions which must be fulfilled on the smooth surface. We consider a vacuum circular waveguide with a corrugated conductive wall (corrugation has rectangular form). The charge moves along the waveguide axis. The period and the depth of corrugation are much less than the waveguide radius and wavelengths under consideration. Expressions for the full field components and the wave field components are obtained. It is established that radiation consists of the only one TM waveguide mode which is excited if the charge velocity is more than certain limit value. Dependencies of the frequency and amplitude of the mode on the charge velocity and parameters of corrugation are analyzed. It is demonstrated that typical amplitude of waveguide mode from the ultra relativistic bunch has the same order as one in the ordinary regular waveguides with dielectric filling. In order to verify the method applied in this work we have simulated the electromagnetic field using the CST Particle Studio. For this purpose, we have considered the charged particle bunch with negligible thickness and Gaussian longitudinal distribution. It has been shown that the coincidence between theoretical and simulated results is good. This fact confirms that the theory based on the equivalent boundary conditions adequately describe the radiation process in the situation under consideration. The obtained results can be useful for development of methods of the electromagnetic radiation generation and technique of the wakefield acceleration of charged particles.
Photo-induced second-order nonlinearity in stoichiometric silicon nitride waveguides
NASA Astrophysics Data System (ADS)
Porcel, Marco A. G.; Mak, Jesse; Taballione, Caterina; Schermerhorn, Victoria K.; Epping, Jörn P.; van der Slot, Peter J. M.; Boller, Klaus-J.
2017-12-01
We report the observation of second-harmonic generation in stoichiometric silicon nitride waveguides grown via low-pressure chemical vapour deposition. Quasi-rectangular waveguides with a large cross section were used, with a height of 1 {\\mu}m and various different widths, from 0.6 to 1.2 {\\mu}m, and with various lengths from 22 to 74 mm. Using a mode-locked laser delivering 6-ps pulses at 1064 nm wavelength with a repetition rate of 20 MHz, 15% of the incoming power was coupled through the waveguide, making maximum average powers of up to 15 mW available in the waveguide. Second-harmonic output was observed with a delay of minutes to several hours after the initial turn-on of pump radiation, showing a fast growth rate between 10$^{-4}$ to 10$^{-2}$ s$^{-1}$, with the shortest delay and highest growth rate at the highest input power. After this first, initial build-up, the second-harmonic became generated instantly with each new turn-on of the pump laser power. Phase matching was found to be present independent of the used waveguide width, although the latter changes the fundamental and second-harmonic phase velocities. We address the presence of a second-order nonlinearity and phase matching, involving an initial, power-dependent build-up, to the coherent photogalvanic effect. The effect, via the third-order nonlinearity and multiphoton absorption leads to a spatially patterned charge separation, which generates a spatially periodic, semi-permanent, DC-field-induced second-order susceptibility with a period that is appropriate for quasi-phase matching. The maximum measured second-harmonic conversion efficiency amounts to 0.4% in a waveguide with 0.9 x 1 {\\mu}m$^2$ cross section and 36 mm length, corresponding to 53 {\\mu}W at 532 nm with 13 mW of IR input coupled into the waveguide. The according $\\chi^{(2)}$ amounts to 3.7 pm/V, as retrieved from the measured conversion efficiency.
Microminiature optical waveguide structure and method for fabrication
Strand, O.T.; Deri, R.J.; Pocha, M.D.
1998-12-08
A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat. 32 figs.
Microminiature optical waveguide structure and method for fabrication
Strand, Oliver T.; Deri, Robert J.; Pocha, Michael D.
1998-01-01
A method for manufacturing low-cost, nearly circular cross section waveguides comprises starting with a substrate material that a molten waveguide material can not wet or coat. A thin layer is deposited of an opposite material that the molten waveguide material will wet and is patterned to describe the desired surface-contact path pedestals for a waveguide. A waveguide material, e.g., polymer or doped silica, is deposited. A resist material is deposited and unwanted excess is removed to form pattern masks. The waveguide material is etched away to form waveguide precursors and the masks are removed. Heat is applied to reflow the waveguide precursors into near-circular cross-section waveguides that sit atop the pedestals. The waveguide material naturally forms nearly circular cross sections due to the surface tension effects. After cooling, the waveguides will maintain the round shape. If the width and length are the same, then spherical ball lenses are formed. Alternatively, the pedestals can be patterned to taper along their lengths on the surface of the substrate. This will cause the waveguides to assume a conical taper after reflowing by heat.
Tapered waveguides for guided wave optics.
Campbell, J C
1979-03-15
Strip waveguides having half-paraboloid shaped tapers that permit efficient fiber to waveguide coupling have been fabricated by Ag ion exchange in soda-lime glass. A reduction in the input coupling loss has been accomplished by tailoring the diffusion to provide a gradual transition from a single-mode waveguide to a multimode waveguide having cross-sectional dimensions comparable to the core diameter of a single-mode fiber. Waveguides without tapers exhibit an attenuation of 1.0 dB/cm and an input coupling loss of 0.6 dB. The additional loss introduced by the tapered region is 0.5 dB. By way of contrast, an input coupling loss of 2.4 dB is obtained by coupling directly to a single-mode waveguide, indicating a net improvement of 1.3 dB for the tapered waveguides.
2017-05-31
SUBJECT TERMS nonlinear finite element calculations, nuclear explosion monitoring, topography 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...3D North Korea calculations........ Figure 6. The CRAM 3D finite element outer grid (left) is rectangular......................... Figure 7. Stress...Figure 6. The CRAM 3D finite element outer grid (left) is rectangular. The inner grid (center) is shaped to match the shape of the explosion shock wave
NASA Technical Reports Server (NTRS)
Smart, Michael K.; Trexler, Carl A.
2003-01-01
Wind-tunnel testing of a hypersonic inlet with rectangular-to-elliptical shape transition has been conducted at Mach 4.0. These tests were performed to investigate the starting and back-pressure limits of this fixed-geometry inlet at conditions well below the Mach 5.7 design point. Results showed that the inlet required side spillage holes in order to self-start at Mach 4.0. Once started, the inlet generated a compression ratio of 12.6, captured almost 80% of available air and withstood a back-pressure ratio of 30.3 relative to tunnel static pressure. The spillage penalty for self-starting was estimated to be 4% of available air. These experimental results, along with previous experimental results at Mach 6.2 indicate that fixed-geometry inlets with rectangular-to-elliptical shape transition are a viable configuration for airframe- integrated scramjets that operate over a significant Mach number range.
Metamorphic InAs quantum well lasers on InP substrates with different well shapes and waveguides
NASA Astrophysics Data System (ADS)
Gu, Y.; Zhang, Y. G.; Chen, X. Y.; Ma, Y. J.; Ji, W. Y.; Xi, S. P.; Du, B.; Shi, Y. H.; Li, A. Z.
2017-11-01
The effects of well shapes and waveguide materials on InP-based InAs quantum well lasers have been investigated. The laser structures were grown on metamorphic In0.65Al0.35As buffers. A novel trapezoidal quantum well composed of InyGa1-yAs grading and InAs layer was used to improve the quality of quantum well. Quaternary In0.65Al0.2Ga0.15As waveguide was applied instead of ternary In0.65Ga0.35As to enhance the carrier injection. The material qualities have been characterized by X-ray diffraction, transmission electron microscopy and photoluminescence measurements, while the device properties of the lasers with various structures were investigated at different temperatures. Results show that the laser performances have been improved by the use of trapezoidal quantum wells and InAlGaAs waveguides.
Popenko, Oleksandr
2014-01-01
Temperature sensitivity of the fluorescence intensity of the organic dyes solutions was used for noncontact measurement of the electromagnetic millimeter wave absorption in water. By using two different dyes with opposite temperature effects, local temperature increase in the capillary that is placed inside a rectangular waveguide in which millimeter waves propagate was defined. The application of this noncontact temperature sensing is a simple and novel method to detect temperature change in small biological objects. PMID:25435859
Kuzkova, Nataliia; Popenko, Oleksandr; Yakunov, Andrey
2014-01-01
Temperature sensitivity of the fluorescence intensity of the organic dyes solutions was used for noncontact measurement of the electromagnetic millimeter wave absorption in water. By using two different dyes with opposite temperature effects, local temperature increase in the capillary that is placed inside a rectangular waveguide in which millimeter waves propagate was defined. The application of this noncontact temperature sensing is a simple and novel method to detect temperature change in small biological objects.
Theory of Gyrotron Traveling Wave Amplifiers at Harmonics of the Gyration Frequency
NASA Astrophysics Data System (ADS)
Li, Qiangfa
In developing gyrotrons at millimeter and submillimeter wavelengths, a means of operation at lower applied magnetic fields is desirable because of the size and weight of convetional magnets, and the expense and complexity of cryogenic magnets. This requirement can be met by operating the devices at higher harmonics of the electron gyration frequency. In the present work, a unified theory is developed for the gyrotron traveling wave amplifers (gyro-TWA) at harmonics of the gyration frequency, both in the nonlinear regime and in the linear regime. This theory can be applied to a wide class of waveguide cross sections, arbitrary harmonic number, any waveguide mode, and generalized electron beam model. The fields in the beam-field interaction region in the waveguide are expressed in the form of an infinite series of multipoles expanded around the guiding center of the electrons. A set of equations governing the nonlinear behavior of the gyro-TWA is derived. A general dispersion equation is derived both from that set of nonlinear equations by an iteration method and from plasma kinetic theory. The latter is employed to analyze gyro-TWA devices in a systematic and generalized manner. The Laplace transformation is introduced to allow inclusion of the initial values at the input end of the waveguide. From the linear theory it is found that for a gyrotron working at s-th gyration harmonic the electrons can interact only with the 2s-th order multipole field component. It is also found that a higher order waveguide mode is not always better than a lower order mode for the gyro-TWA working at higher harmonics. A novel out-ridged waveguide is proposed and analyzed for the use in gyrotrons. The prominent features of this new waveguide include simplicity of manufacture, freedom from local modes, good separation of lower order modes, high power handling ability, and high gain per unit length at higher gyration harmonics. A comparison of the gyro-TWAs with several different waveguide structures, such as the out-ridged, magnetron-type, rectangular and circular waveguides, is made through numerical examples of the gain-frequency curves computed from the linear kinetic theory.
Transverse single-mode edge-emitting lasers based on coupled waveguides.
Gordeev, Nikita Yu; Payusov, Alexey S; Shernyakov, Yuri M; Mintairov, Sergey A; Kalyuzhnyy, Nikolay A; Kulagina, Marina M; Maximov, Mikhail V
2015-05-01
We report on the transverse single-mode emission from InGaAs/GaAs quantum well edge-emitting lasers with broadened waveguide. The lasers are based on coupled large optical cavity (CLOC) structures where high-order vertical modes of the broad active waveguide are suppressed due to their resonant tunneling into a coupled single-mode passive waveguide. The CLOC lasers have shown stable Gaussian-shaped vertical far-field profiles with a reduced divergence of ∼22° FWHM (full width at half-maximum) in CW (continuous-wave) operation.
Suppression of Higher Order Modes in an Array of Cavities Using Waveguides
NASA Astrophysics Data System (ADS)
Shashkov, Ya. V.; Sobenin, N. P.; Bazyl, D. S.; Kaminskiy, V. I.; Mitrofanov, A. A.; Zobov, M. M.
An application of additional harmonic cavities operating at multiplies of the main RF system frequency of 400 MHz is currently under discussionin the framework of the High Luminosity LHC upgrade program [1,2]. A structure consisting of two 800 MHz single cell superconducting cavities with grooved beam pipes coupled by drift tubes has been suggested for implementation. However, it is desirable to increase the number of single cells installed in one cryomodule in order to decrease the number of transitions between "warm" and "cold" parts of the collider vacuum chamber. Unfortunately, it can lead to the appearance of higher order modes (HOM) trapped between the cavities. In order to solve this problem the methods of HOM damping with rectangular waveguides connected to the drift tubes were investigated and compared. We describe the results obtained for arrays of 2, 4 and 8 cavitiesin this paper.
Topics in the optimization of millimeter-wave mixers
NASA Technical Reports Server (NTRS)
Siegel, P. H.; Kerr, A. R.; Hwang, W.
1984-01-01
A user oriented computer program for the analysis of single-ended Schottky diode mixers is described. The program is used to compute the performance of a 140 to 220 GHz mixer and excellent agreement with measurements at 150 and 180 GHz is obtained. A sensitivity analysis indicates the importance of various diode and mount characteristics on the mixer performance. A computer program for the analysis of varactor diode multipliers is described. The diode operates in either the reverse biased varactor mode or with substantial forward current flow where the conversion mechanism is predominantly resistive. A description and analysis of a new H-plane rectangular waveguide transformer is reported. The transformer is made quickly and easily in split-block waveguide using a standard slitting saw. It is particularly suited for use in the millimeter-wave band, replacing conventional electroformed stepped transformers. A theoretical analysis of the transformer is given and good agreement is obtained with measurements made at X-band.
NASA Astrophysics Data System (ADS)
Zheng, Mingfei; Li, Hongjian; Chen, Zhiquan; He, Zhihui; Xu, Hui; Zhao, Mingzhuo
2017-11-01
We propose a compact plasmonic nanofilter in partitioned semicircle or semiring stub waveguide, and investigate the transmission characteristics of the two novel systems by using the finite-difference time-domain method. An ultra-broad stopband phenomenon is generated by partitioning a single stub into a double stub with a rectangular metal partition, which is caused by the destructive interference superposition of the reflected and transmitted waves from each stub. A tunable stopband is realized in the multiple plasmonic nanofilter by adjusting the width of the partition and the (outer) radius and inner radius of the stub, whose starting wavelength, ending wavelength, center wavelength, bandwidth and total tunable bandwidth are discussed, and specific filtering waveband and optimum structural parameter are obtained. The proposed structures realize asymmetrical stub and achieve ultra-broad stopband, and have potential applications in band-stop nanofilters and high-density plasmonic integrated optical circuits.
Manipulating the transmission through valve structure composed of zero-index metamaterial
NASA Astrophysics Data System (ADS)
Wang, Yongxing; Sun, Zhouzhou; Xu, Ping
2017-11-01
We propose a valve structure composed of zero-index metamaterial to manipulate the electromagnetic wave conveniently and effectively through regulating the phase of reflected waves. Both the structure and characteristics of zero-index metamaterial need not to be changed when manipulating the transmission, which maintains the stability of zero-index metamaterial. Moreover, the good performance of tuning the electromagnetic wave is not limited by the shape and size of our proposed structure. By using our proposed valve structure, we demonstrate the realization of the tunable curved anisotropic ɛ-near-zero material waveguide with irregular shape, arbitrarily sized isotropic ɛ-near-zero material waveguide with high transmittance and the curved isotropic impedance matched ɛ-near-zero material waveguide without polarization limitations.
2015-07-01
COMPUTING SHAPES AND STRESS DISTRIBUTIONS FOR QUASI-RECTANGULAR HOLES USING EXCEL VBA .......... 35 APPENDIX B: LISTING OF FADD2D INPUT DECK FOR STRESS...from which Kt values may be readily calculated, have been implemented in a Microsoft Excel spreadsheet using the Visual Basic for Applications ( VBA ...Professor Mark E Mear, University of Texas at Austin, and Professor James C Newman Jr, Mississippi State University, for providing access to the
All-fiber optical filter with an ultranarrow and rectangular spectral response.
Zou, Xihua; Li, Ming; Pan, Wei; Yan, Lianshan; Azaña, José; Yao, Jianping
2013-08-15
Optical filters with an ultranarrow and rectangular spectral response are highly desired for high-resolution optical/electrical signal processing. An all-fiber optical filter based on a fiber Bragg grating with a large number of phase shifts is designed and fabricated. The measured spectral response shows a 3 dB bandwidth of 650 MHz and a rectangular shape factor of 0.513 at the 25 dB bandwidth. This is the narrowest rectangular bandpass response ever reported for an all-fiber filter, to the best of our knowledge. The filter has also the intrinsic advantages of an all-fiber implementation.
Influence of surface rectangular defect winding layer on burst pressure of CNG-II composite cylinder
NASA Astrophysics Data System (ADS)
You, H. X.; Peng, L.; Zhao, C.; Ma, K.; Zhang, S.
2018-01-01
To study the influence of composite materials’ surface defect on the burst pressure of CNG-II composite cylinder, the surface defect was simplified as a rectangular slot of certain size on the basis of actually investigating the shape of cylinder’s surface defect. A CNG-II composite cylinder with a rectangular slot defect (2mm in depth) was used for burst test, and the numerical simulation software ANSYS was used to calculate its burst pressure. Through comparison between the burst pressure in the test and the numerical analysis result, the correctness of the numerical analysis method was verified. On this basis, the numerical analysis method was conducted for composite cylinders with surface defect in other depth. The result showed that surface defect in the form of rectangular slot had no significant effect on the liner stress of composite cylinder. Instead, it had a great influence on the stress of fiber-wrapped layer. The burst pressure of the composite cylinder decreased as the defect depth increasing. The hoop stress at the bottom of the defect in the shape of rectangular slot exceeded the maximum of the composite materials’ tensile strength, which could result in the burst pressure of composite cylinders decreasing.
Multimode Directional Coupler for Utilization of Harmonic Frequencies from TWTAs
NASA Technical Reports Server (NTRS)
Simmons, Rainee N.; Wintucky, Edwin G.
2013-01-01
A novel waveguide multimode directional coupler (MDC) intended for the measurement and potential utilization of the second and higher order harmonic frequencies from high-power traveling wave tube amplifiers (TWTAs) has been successfully designed, fabricated, and tested. The design is based on the characteristic multiple propagation modes of the electrical and magnetic field components of electromagnetic waves in a rectangular waveguide. The purpose was to create a rugged, easily constructed, more efficient waveguide- based MDC for extraction and exploitation of the second harmonic signal from the RF output of high-power TWTs used for space communications. The application would be a satellitebased beacon source needed for Qband and V/W-band atmospheric propagation studies. The MDC could function as a CW narrow-band source or as a wideband source for study of atmospheric group delay effects on highdata- rate links. The MDC is fabricated from two sections of waveguide - a primary one for the fundamental frequency and a secondary waveguide for the second harmonic - that are joined together such that the second harmonic higher order modes are selectively coupled via precision- machined slots for propagation in the secondary waveguide. In the TWTA output waveguide port, both the fundamental and the second harmonic signals are present. These signals propagate in the output waveguide as the dominant and higher order modes, respectively. By including an appropriate mode selective waveguide directional coupler, such as the MDC presented here at the output of the TWTA, the power at the second harmonic can be sampled and amplified to the power level needed for atmospheric propagation studies. The important conclusions from the preliminary test results for the multimode directional coupler are: (1) the second harmonic (Ka-band) can be measured and effectively separated from the fundamental (Ku-band) with no coupling of the latter, (2) power losses in the fundamental frequency are negligible, and (3) the power level of the extracted second harmonic is sufficient for further amplification to power levels needed for practical applications. It was also demonstrated that third order and potentially higher order harmonics are measurable with this device. The design is frequency agnostic, and with the appropriate choice of waveguides, is easily scaled to higher frequency TWTs. The MDC has the same function but with a number of important advantages over the conventional diplexer.
Analysis of a novel non-contacting waveguide backshort
NASA Technical Reports Server (NTRS)
Weller, T. M.; Katehi, L. P. B.; Mcgrath, William R.
1992-01-01
A new non-contacting waveguide backshort has been developed for millimeter and submillimeter wave frequencies. The design consists of a metal bar with rectangular or circular holes cut into it, which is covered with a dielectric (mylar) layer to form a snug fit with the walls of a waveguide. Hole geometries are adjusted to obtain a periodic variation of the guide impedance on the correct length scale, in order to produce efficient reflection of RF power. It is a mechanically rugged design which can be easily fabricated for frequencies from 1 to 1000 GHz and is thus a sound alternative to the miniaturization of conventional non-contacting shorts. To aid in high-frequency design, a rigorous full-wave analysis has been completed, which will allow variations of the size, number and spacing of the holes to be easily analyzed. This paper will review the backshort design and the method developed for theoretical characterization, followed by a comparison of the experimental and numerical results. Low frequency models operating from 4-6 GHz are shown to demonstrate return loss of greater than -0.2 dB over a 33 percent bandwidth. The theory is in good agreement with measured data.
Substrate Integrated Waveguide (SIW)-Based Wireless Temperature Sensor for Harsh Environments.
Tan, Qiulin; Guo, Yanjie; Zhang, Lei; Lu, Fei; Dong, Helei; Xiong, Jijun
2018-05-03
This paper presents a new wireless sensor structure based on a substrate integrated circular waveguide (SICW) for the temperature test in harsh environments. The sensor substrate material is 99% alumina ceramic, and the SICW structure is composed of upper and lower metal plates and a series of metal cylindrical sidewall vias. A rectangular aperture antenna integrated on the surface of the SICW resonator is used for electromagnetic wave transmission between the sensor and the external antenna. The resonant frequency of the temperature sensor decreases when the temperature increases, because the relative permittivity of the alumina ceramic increases with temperature. The temperature sensor presented in this paper was tested four times at a range of 30⁻1200 °C, and a broad band coplanar waveguide (CPW)-fed antenna was used as an interrogation antenna during the test process. The resonant frequency changed from 2.371 to 2.141 GHz as the temperature varied from 30 to 1200 °C, leading to a sensitivity of 0.197 MHz/°C. The quality factor of the sensor changed from 3444.6 to 35.028 when the temperature varied from 30 to 1000 °C.
Seo, Kyung Hye; Supangat; Kim, Hye Lim; Park, Young Shik; Jeon, Che Ok; Lee, Kon Ho
2008-02-01
6-Pyruvoyltetrahydropterin synthase from E. coli (ePTPS) has been crystallized using the hanging-drop vapour-diffusion method. Hexagonal- and rectangular-shaped crystals were obtained. Diffraction data were collected from the hexagonal and rectangular crystals to 3.0 and 2.3 A resolution, respectively. The hexagonal plate-shaped crystals belonged to space group P321, with unit-cell parameters a = b = 112.59, c = 68.82 A , and contained two molecules in the asymmetric unit. The rectangular crystals belonged to space group I222, with unit-cell parameters a = 112.76, b = 117.66, c = 153.57 A , and contained six molecules in the asymmetric unit. The structure of ePTPS in both crystal forms has been determined by molecular replacement.
Seo, Kyung Hye; Supangat; Kim, Hye Lim; Park, Young Shik; Jeon, Che Ok; Lee, Kon Ho
2008-01-01
6-Pyruvoyltetrahydropterin synthase from E. coli (ePTPS) has been crystallized using the hanging-drop vapour-diffusion method. Hexagonal- and rectangular-shaped crystals were obtained. Diffraction data were collected from the hexagonal and rectangular crystals to 3.0 and 2.3 Å resolution, respectively. The hexagonal plate-shaped crystals belonged to space group P321, with unit-cell parameters a = b = 112.59, c = 68.82 Å, and contained two molecules in the asymmetric unit. The rectangular crystals belonged to space group I222, with unit-cell parameters a = 112.76, b = 117.66, c = 153.57 Å, and contained six molecules in the asymmetric unit. The structure of ePTPS in both crystal forms has been determined by molecular replacement. PMID:18271114
Intrinsic polarization control in rectangular GaN nanowire lasers
Li, Changyi; Liu, Sheng; Luk, Ting S.; ...
2016-02-01
In this study, we demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444kW/cm 2 and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent controlmore » over the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates.« less
Plot shape effects on plant species diversity measurements
Keeley, Jon E.; Fotheringham, C.J.
2005-01-01
Abstract. Question: Do rectangular sample plots record more plant species than square plots as suggested by both empirical and theoretical studies?Location: Grasslands, shrublands and forests in the Mediterranean-climate region of California, USA.Methods: We compared three 0.1-ha sampling designs that differed in the shape and dispersion of 1-m2 and 100-m2 nested subplots. We duplicated an earlier study that compared the Whittaker sample design, which had square clustered subplots, with the modified Whittaker design, which had dispersed rectangular subplots. To sort out effects of dispersion from shape we used a third design that overlaid square subplots on the modified Whittaker design. Also, using data from published studies we extracted species richness values for 400-m2 subplots that were either square or 1:4 rectangles partially overlaid on each other from desert scrub in high and low rainfall years, chaparral, sage scrub, oak savanna and coniferous forests with and without fire.Results: We found that earlier empirical reports of more than 30% greater richness with rectangles were due to the confusion of shape effects with spatial effects, coupled with the use of cumulative number of species as the metric for comparison. Average species richness was not significantly different between square and 1:4 rectangular sample plots at either 1- or 100-m2. Pairwise comparisons showed no significant difference between square and rectangular samples in all but one vegetation type, and that one exhibited significantly greater richness with squares. Our three intensive study sites appear to exhibit some level of self-similarity at the scale of 400 m2, but, contrary to theoretical expectations, we could not detect plot shape effects on species richness at this scale.Conclusions: At the 0.1-ha scale or lower there is no evidence that plot shape has predictable effects on number of species recorded from sample plots. We hypothesize that for the mediterranean-climate vegetation types studied here, the primary reason that 1:4 rectangles do not sample greater species richness than squares is because species turnover varies along complex environmental gradients that are both parallel and perpendicular to the long axis of rectangular plots. Reports in the literature of much greater species richness recorded for highly elongated rectangular strips than for squares of the same area are not likely to be fair comparisons because of the dramatically different periphery/area ratio, which includes a much greater proportion of species that are using both above and below-ground niche space outside the sample area.
Design of the Cross Section Shape of AN Aluminum Crash Box for Crashworthiness Enhancement of a CAR
NASA Astrophysics Data System (ADS)
Kim, S. B.; Huh, H.; Lee, G. H.; Yoo, J. S.; Lee, M. Y.
This paper deals with the crashworthiness of an aluminum crash box for an auto-body with the various shapes of cross section such as a rectangle, a hexagon and an octagon. First, crash boxes with various cross sections were tested with numerical simulation to obtain the energy absorption capacity and the mean load. In case of the simple axial crush, the octagon shape shows higher mean load and energy absorption than the other two shapes. Secondly, the crash boxes were assembled to a simplified auto-body model for the overall crashworthiness. The model consists of a bumper, crash boxes, front side members and a sub-frame representing the behavior of a full car at the low speed impact. The analysis result shows that the rectangular cross section shows the best performance as a crash box which deforms prior to the front side member. The hexagonal and octagonal cross sections undergo torsion and local buckling as the width of cross section decreases while the rectangular cross section does not. The simulation result of the rectangular crash box was verified with the experimental result. The simulation result shows close tendency in the deformed shape and the load-displacement curve to the experimental result.
Efficient shortcut techniques in evanescently coupled waveguides
NASA Astrophysics Data System (ADS)
Paul, Koushik; Sarma, Amarendra K.
2016-10-01
Shortcut to Adiabatic Passage (SHAPE) technique, in the context of coherent control of atomic systems has gained considerable attention in last few years. It is primarily because of its ability to manipulate population among the quantum states infinitely fast compared to the adiabatic processes. Two methods in this regard have been explored rigorously, namely the transitionless quantum driving and the Lewis-Riesenfeld invariant approach. We have applied these two methods to realize SHAPE in adiabatic waveguide coupler. Waveguide couplers are integral components of photonic circuits, primarily used as switching devices. Our study shows that with appropriate engineering of the coupling coefficient and propagation constants of the coupler it is possible to achieve efficient and complete power switching. We also observed that the coupler length could be reduced significantly without affecting the coupling efficiency of the system.
46 CFR 72.05-20 - Stairways, ladders, and elevators.
Code of Federal Regulations, 2010 CFR
2010-10-01
... factor of safety of 4 based on the ultimate strength. (j) The stringers, treads, and all platforms and... means of an intermediate landing of rectangular or nearly rectangular shape based on the actual...) Except as further noted the provisions of this section apply to all vessels. (2) For small vessels...
46 CFR 72.05-20 - Stairways, ladders, and elevators.
Code of Federal Regulations, 2011 CFR
2011-10-01
... factor of safety of 4 based on the ultimate strength. (j) The stringers, treads, and all platforms and... means of an intermediate landing of rectangular or nearly rectangular shape based on the actual...) Except as further noted the provisions of this section apply to all vessels. (2) For small vessels...
Rectangularization of the survival curve in The Netherlands, 1950-1992.
Nusselder, W J; Mackenbach, J P
1996-12-01
In this article we determine whether rectangularization of the survival curve occurred in the Netherlands in the period 1950-1992. Rectangularization is defined as a trend toward a more rectangular shape of the survival curve due to increased survival and concentration of deaths around the mean age at death. We distinguish between absolute and relative rectangularization, depending on whether an increase in life expectancy is accompanied by concentration of deaths into a smaller age interval or into a smaller proportion of total life expectancy. We used measures of variability based on Keyfitz' H and the standard deviation, both life table-based. Our results show that absolute and relative rectangularization of the entire survival curve occurred in both sexes and over the complete period (except for the years 1955-1959 and 1965-1969 in men). At older ages, results differ between sexes, periods, and an absolute versus a relative definition of rectangularization. Above age 60 1/2, relative rectangularization occurred in women over the complete period and in men since 1975-1979 only, whereas absolute rectangularization occurred in both sexes since the period of 1980-1984. The implications of the recent rectangularization at older ages for achieving compression of morbidity are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sansonnens, L.; Schmidt, H.; Howling, A.A.
The electromagnetic standing wave effect can become the main source of nonuniformity limiting the use of very high frequency in large area reactors exceeding 1 m{sup 2} required for industrial applications. Recently, it has been proposed and shown experimentally in a cylindrical reactor that a shaped electrode in place of the conventional flat electrode can be used in order to suppress the electromagnetic standing wave nonuniformity. In this study, we show experimental measurements demonstrating that the shaped electrode technique can also be applied in large area rectangular reactors. We also present results of electromagnetic screening by a conducting substrate whichmore » has important consequences for industrial application of the shaped electrode technique.« less
Defects and nanocluster engineering in MgO
NASA Astrophysics Data System (ADS)
Fedorov, A. V.; van Veen, A.; van Huis, M. A.; Schut, H.; Kooi, B. J.; De Hosson, J. Th.; Zimmerman, R. L.
2001-07-01
The optical properties of MgO crystals are known to change after introduction of nanosize metal precipitates. In this work the formation of metallic nanoclusters in the presence of nanosize rectangular shaped cavities was studied. The rectangular cavities were formed by 30 keV He+ implantation followed by 1273 K annealing. The formation of cavities and their location was established by Positron Beam Analysis (PBA). The rectangular shape and their alignment in (100) direction was observed by X-TEM. Subsequently, the samples were implanted with 600 keV Ag and 1000 keV Au in order to introduce the metal ions in the vicinity of the cavities. The samples were then annealed to provide the formation of nanoclusters. The evolution of the implantation induced defects was monitored by PBA. The optical properties were studied by light absorption measurements.
Vertically-coupled Whispering Gallery Mode Resonator Optical Waveguide, and Methods
NASA Technical Reports Server (NTRS)
Matsko, Andrey B. (Inventor); Savchenkov, Anatolly A. (Inventor); Matleki, Lute (Inventor)
2007-01-01
A vertically-coupled whispering gallery mode (WGM) resonator optical waveguide, a method of reducing a group velocity of light, and a method of making a waveguide are provided. The vertically-coupled WGM waveguide comprises a cylindrical rod portion having a round cross-section and an outer surface. First and second ring-shaped resonators are formed on the outer surface of the cylindrical rod portion and are spaced from each other along a longitudinal direction of the cylindrical rod. The first and second ringshaped resonators are capable of being coupled to each other by way an evanescent field formed in an interior of the cylindrical rod portion.
Flexible polymeric rib waveguide with self-align couplers system
Huang, Cheng-Sheng; Wang, Wei-Chih
2011-01-01
The authors report a polymeric based rib waveguide with U shape self-align fiber couplers system using a simple micromolding process with SU8 as a molding material and polydimethysiloxane as a waveguide material. The material is used for its good optical transparency, low surface tension, biocompatibility, and durability. Furthermore, the material is highly formable. This unique fabrication molding technique provides a means of keeping the material and manufacturing costs to a minimum. The self-align fiber couplers system also proves a fast and simple means of light coupling. The flexible nature of the waveguide material makes this process ideal for a potential wearable optical sensor. PMID:22171151
Strut Shaping of 34m Beam Waveguide Antenna for Reductions in Near-Field RF and Noise Temperature
NASA Technical Reports Server (NTRS)
Khayatian, Behrouz; Hoppe, Daniel J.; Britcliffe, Michael J.; Gama, Eric
2012-01-01
Strut shaping of NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antenna has been implemented to reduce near-field RF exposure while improving the antenna noise temperature. Strut shaping was achieved by introducing an RF shield that does not compromise the structural integrity of the existing antenna. Reduction in the RF near-field level will compensate for the planned transmit power increase of the antenna from 20 kW to 80 kW while satisfying safety requirements for RF exposure. Measured antenna noise temperature was also improved by as much as 1.5 K for the low elevation angles and 0.5 K in other areas.
Design, fabrication and analysis of integrated optical waveguide devices
NASA Astrophysics Data System (ADS)
Sikorski, Yuri
Throughout the present dissertation, the main effort has been to develop the set of design rules for optical integrated circuits (OIC). At the present time, when planar optical integrated circuits seem to be the leading technology, and industry is heading towards much higher levels of integration, such design rules become necessary. It is known that analysis of light propagation in rectangular waveguides can not be carried out exactly. Various approximations become necessary, and their validity is discussed in this text. Various methods are used in the text for calculating the same problems, and results are compared. A few new concepts have been suggested to avoid approximations used elsewhere. The second part of this dissertation is directed to the development of a new technique for the fabrication of optical integrated circuits inside optical glass. This technique is based on the use of ultrafast laser pulses to alter the properties of glasses. Using this method we demonstrated the possibility of changing the refractive index of various passive and active optical glasses as well as ablating the material on the surface in a controlled fashion. A number of optical waveguide devices (e.g. waveguides, directional couplers, diffraction gratings, fiber Bragg gratings, V-grooves in dual-clad optical fibers, optical waveguide amplifiers) were fabricated and tested. Testing included measurements of loss/throughput, near-field mode profiles, efficiency and thermal stability. All of the experimental setup and test results are reported in the dissertation. We also demonstrated the possibility of using this technique to fabricate future bio-optical devices that will incorporate an OIC and a microfluidic circuit on a single substrate. Our results are expected to serve as a guide for the design and fabrication of a new generation of integrated optical and bio-optical devices.
An efficient self-collimating photonic crystal coupling technique in the RF regime
NASA Astrophysics Data System (ADS)
Sabas, Jerico N.; Mirza, Iftekhar O.; Shi, Shouyuan; Prather, Dennis W.
2010-02-01
In this paper, we present both numerical and experimental results for the waveguiding of light using a low-index-contrast (LIC) self-collimating photonic crystal (SCPhC) in the RF frequency regime. This waveguiding structure utilizes the unique interactions of light with the periodic structure of the photonic crystal (PhC) to propagate a beam of light without divergence. This design also employs materials with a low index contrast (LIC), which reduces the electromagnetic signature of the PhC. This SCPhC was designed by extracting its dispersion contours and numerically simulating it using HFSS, a commercial 3-D, full-wave FEM software. In particular, we addressed the issue of coupling the PhC to a coaxial medium by designing an input/output (I/O) coupler consisting of a coaxial-to-waveguide transition, a rectangular waveguide and a tapered dielectric transition. We fabricated the SCPhC with a rigid polyurethane foam slab and Rexolite polystyrene rods using an automated CNC router to drill the periodic lattice in the slab. We also fabricated the dielectric segments of the I/O couplers with Rexolite slabs using an automated milling machine. Using these I/O couplers and SCPhC slab, we simulated and subsequently measured experimentally an insertion loss, for the entire system, of -3.3 dB through a 24" PhC slab, and a coupling loss of -0.95 dB at each coupler-PhC interface.
Photonic Switching Devices Using Light Bullets
NASA Technical Reports Server (NTRS)
Goorjian, Peter M. (Inventor)
1999-01-01
A unique ultra-fast, all-optical switching device or switch is made with readily available, relatively inexpensive, highly nonlinear optical materials. which includes highly nonlinear optical glasses, semiconductor crystals and/or multiple quantum well semiconductor materials. At the specified wavelengths. these optical materials have a sufficiently negative group velocity dispersion and high nonlinear index of refraction to support stable light bullets. The light bullets counter-propagate through, and interact within the waveguide to selectively change each others' directions of propagation into predetermined channels. In one embodiment, the switch utilizes a rectangularly planar slab waveguide. and further includes two central channels and a plurality of lateral channels for guiding the light bullets into and out of the waveguide. An advantage of the present all-optical switching device lies in its practical use of light bullets, thus preventing the degeneration of the pulses due to dispersion and diffraction at the front and back of the pulses. Another advantage of the switching device is the relative insensitivity of the collision process to the time difference in which the counter-propagating pulses enter the waveguide. since. contrary to conventional co-propagating spatial solitons, the relative phase of the colliding pulses does not affect the interaction of these pulses. Yet another feature of the present all-optical switching device is the selection of the light pulse parameters which enables the generation of light bullets in nonlinear optical materials. including highly nonlinear optical glasses and semiconductor materials such as semiconductor crystals and/or multiple quantum well semiconductor materials.
Mathematical Explorations: Maximizing Volume with Solids and Nets
ERIC Educational Resources Information Center
Miles, Victoria L.
2014-01-01
One of the most common household polyhedra is a cereal box. For over 100 years, American companies like Kellogg's™ have packaged cereal in containers shaped like rectangular prisms. Why is a rectangular prism the most commonly used solid for holding cereal? Would another design work equally or more efficient? This article describes an…
Controlling soliton refraction in optical lattices.
Prilepsky, Jaroslaw E; Derevyanko, Stanislav A; Gredeskul, Sergey A
2011-08-19
We show in the framework of the 1D nonlinear Schrödinger equation that the value of the refraction angle of a fundamental soliton beam passing through an optical lattice can be controlled by adjusting either the shape of an individual waveguide or the relative positions of the waveguides. In the case of the shallow refractive index modulation, we develop a general approach for the calculation of the refraction angle change. The shape of a single waveguide crucially affects the refraction direction due to the appearance of a structural form factor in the expression for the density of emitted waves. For a lattice of scatterers, wave-soliton interference inside the lattice leads to the appearance of an additional geometric form factor. As a result, the soliton refraction is more pronounced for the disordered lattices than for the periodic ones. © 2011 American Physical Society
Optical device fabrication using femtosecond laser processing with glass-hologram
NASA Astrophysics Data System (ADS)
Suzuki, Jun'ichi; Arima, Yasunori; Tanaka, Shuhei
2011-03-01
Using femtosecond laser processing with glass-hologram, fabrication of 1cm-long straight waveguide and X-coupler is reported in this paper. We design and fabricate 4-level glass-hologram which generates 1cm-long straight line intensity. We fabricate 1cm-long waveguides inside fused silica at one shot exposure with the glass-hologram. We investigate the waveguide performance of near field pattern and propagation loss at wavelength of 1550nm. The near field pattern is almost circular shape. The propagation loss at 1550nm is estimated to be < 1.0 dB/cm. As an example of an optical device consisting of straight waveguides, we fabricate X-coupler or 2x2 coupler using straight line waveguides, and observe the output power ratio depending on crossing angle.
NASA Astrophysics Data System (ADS)
Qi, Yunping; Zhang, Xuewei; Hu, Yue; Nan, Xianghong; Wang, Xiangxian
2017-10-01
The non-resonantly enhanced optical transmission phenomenon of sub-wavelength metallic slits on a thin film is significant for broadband light integrated devices. In order to improve the EOT characteristics of sub-wavelength metallic slits further more, in this paper, wedge-shape metallic slits array embedded with rectangular cavities structure is proposed and its transmission properties are investigated using the finite element method. The results show that wedgeshape metallic slits array can achieve higher transmission compared with straight slits array embedded with rectangular cavities and the light is strongly localized and enhanced at the slit exits. We describe the phenomenon with a transmission line model. The width of entrance of the slit influences the transmission property: the transmittance can be 94%, after optimizing the structure parameters, with the widths 150nm and 30nm at the entrance and exit of the slit, respectively. The thickness of metal film influences the transmission peak position and transmission rate: when the increase of the thickness of the metal film, the transmittance increases and the transmission peak is red-shift, however, the law of long wavelength range is opposite. In addition, the effects of structural period of wedge-shaped slits embedded with rectangular cavities structure on the transmission property are also studied. These results would be helpful for optical signal transmission and the design of near field optical conductor devices with higher transmission capability.
Transducer Joint for Kidney-Stone Ultrasonics
NASA Technical Reports Server (NTRS)
Angulo, E. D.
1983-01-01
Ultrasonic therapy for kidney stones improved by new way of connecting wire-probe ultrasonic waveguide to transducer. Improved mounting allows joint to last long enough for effective treatment. Sheath and rubber dampers constrain lateral vibration of wire waveguide. Combination of V-shaped mounting groove, sheath, and rubber dampers increases life expectancy of wire 15 times or more.
Radiation pattern synthesis of planar antennas using the iterative sampling method
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Coffey, E. L.
1975-01-01
A synthesis method is presented for determining an excitation of an arbitrary (but fixed) planar source configuration. The desired radiation pattern is specified over all or part of the visible region. It may have multiple and/or shaped main beams with low sidelobes. The iterative sampling method is used to find an excitation of the source which yields a radiation pattern that approximates the desired pattern to within a specified tolerance. In this paper the method is used to calculate excitations for line sources, linear arrays (equally and unequally spaced), rectangular apertures, rectangular arrays (arbitrary spacing grid), and circular apertures. Examples using these sources to form patterns with shaped main beams, multiple main beams, shaped sidelobe levels, and combinations thereof are given.
NASA Astrophysics Data System (ADS)
Salhi, Mohammed Adnan; Kazemipour, Alireza; Gentille, Gennaro; Spirito, Marco; Kleine-Ostmann, Thomas; Schrader, Thorsten
2016-09-01
We present the design and characterization of planar mm-wave patch antenna arrays with waveguide-to-microstrip transition using both near- and far-field methods. The arrays were designed for metrological assessment of error sources in antenna measurement. One antenna was designed for the automotive radar frequency range at 77 GHz, while another was designed for the frequency of 94 GHz, which is used, e.g., for imaging radar applications. In addition to the antennas, a simple transition from rectangular waveguide WR-10 to planar microstrip line on Rogers 3003™ substrate has been designed based on probe coupling. For determination of the far-field radiation pattern of the antennas, we compare results from two different measurement methods to simulations. Both a far-field antenna measurement system and a planar near-field scanner with near-to-far-field transformation were used to determine the antenna diagrams. The fabricated antennas achieve a good matching and a good agreement between measured and simulated antenna diagrams. The results also show that the far-field scanner achieves more accurate measurement results with regard to simulations than the near-field scanner. The far-field antenna scanning system is built for metrological assessment and antenna calibration. The antennas are the first which were designed to be tested with the measurement system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabaeian, Mohammad, E-mail: sabaiean@scu.ac.ir; Heydari, Mehdi; Ajamgard, Narges
The effects of Ag nano-strips with triangle, rectangular and trapezoid cross sections on the optical absorption, generation rate, and short-circuit current density of ultra-thin solar cells were investigated. By putting the nano-strips as a grating structure on the top of the solar cells, the waveguide, surface plasmon polariton (SPP), and localized surface plasmon (LSP) modes, which are excited with the assistance of nano-strips, were evaluated in TE and TM polarizations. The results show, firstly, the TM modes are more influential than TE modes in optical and electrical properties enhancement of solar cell, because of plasmonic excitations in TM mode. Secondly,more » the trapezoid nano-strips reveal noticeable impact on the optical absorption, generation rate, and short-circuit current density enhancement than triangle and rectangular ones. In particular, the absorption of long wavelengths which is a challenge in ultra-thin solar cells is significantly improved by using Ag trapezoid nano-strips.« less
Geometric effect on second harmonic generation from gold grating
NASA Astrophysics Data System (ADS)
Lu, Jiao; Ding, Baoyong; Huo, Yanyan; Ning, Tingyin
2018-05-01
We numerically investigate second harmonic generation from gold gratings of an ideal rectangular and ladder-shaped cross-section. The SHG efficiency from the gold gratings of the ladder-shaped cross-section is significantly enhanced compared with that from the ideal rectangular cross-section with a maximum enhancement factor of around two. The enhancement is ascribe to the nanostructure dependent local fundamental electric field, the nonlinear sources and thus the far field radiation. Our results have a practical meaning in the explanation of experimental SHG measurement, and the modulation of SHG response in the metallic nanostructure.
A new metamaterial-based wideband rectangular invisibility cloak
NASA Astrophysics Data System (ADS)
Islam, S. S.; Hasan, M. M.; Faruque, M. R. I.
2018-02-01
A new metamaterial-based wideband electromagnetic rectangular cloak is being introduced in this study. The metamaterial unit cell shows sharp transmittances in the C- and X-bands and displays wideband negative effective permittivity region there. The metamaterial unit cell was then applied in designing a rectangular-shaped electromagnetic cloak. The scattering reduction technique was adopted for the cloaking operation. The cloak operates in the certain portion of C-and X-bands that covers more than 4 GHz bandwidth region. The experimental results were provided as well for the metamaterial and the cloak.
Factorization of differential expansion for non-rectangular representations
NASA Astrophysics Data System (ADS)
Morozov, A.
2018-04-01
Factorization of the differential expansion (DE) coefficients for colored HOMFLY-PT polynomials of antiparallel double braids, originally discovered for rectangular representations R, in the case of rectangular representations R, is extended to the first non-rectangular representations R = [2, 1] and R = [3, 1]. This increases chances that such factorization will take place for generic R, thus fixing the shape of the DE. We illustrate the power of the method by conjecturing the DE-induced expression for double-braid polynomials for all R = [r, 1]. In variance with the rectangular case, the knowledge for double braids is not fully sufficient to deduce the exclusive Racah matrix S¯ — the entries in the sectors with nontrivial multiplicities sum up and remain unseparated. Still, a considerable piece of the matrix is extracted directly and its other elements can be found by solving the unitarity constraints.
NASA Astrophysics Data System (ADS)
San-Blas, A. A.; Roca, J. M.; Cogollos, S.; Morro, J. V.; Boria, V. E.; Gimeno, B.
2016-06-01
In this work, a full-wave tool for the accurate analysis and design of compensated E-plane multiport junctions is proposed. The implemented tool is capable of evaluating the undesired effects related to the use of low-cost manufacturing techniques, which are mostly due to the introduction of rounded corners in the cross section of the rectangular waveguides of the device. The obtained results show that, although stringent mechanical effects are imposed, it is possible to compensate for the impact of the cited low-cost manufacturing techniques by redesigning the matching elements considered in the original device. Several new designs concerning a great variety of E-plane components (such as right-angled bends, T-junctions and magic-Ts) are presented, and useful design guidelines are provided. The implemented tool, which is mainly based on the boundary integral-resonant mode expansion technique, has been successfully validated by comparing the obtained results to simulated data provided by a commercial software based on the finite element method.
NASA Astrophysics Data System (ADS)
Tokman, Mikhail; Long, Zhongqu; AlMutairi, Sultan; Wang, Yongrui; Belkin, Mikhail; Belyanin, Alexey
2018-04-01
We consider a quantum-electrodynamic problem of the spontaneous emission from a two-dimensional (2D) emitter, such as a quantum well or a 2D semiconductor, placed in a quasi-2D waveguide or cavity with subwavelength confinement in one direction. We apply the Heisenberg-Langevin approach, which includes dissipation and fluctuations in the electron ensemble and in the electromagnetic field of a cavity on equal footing. The Langevin noise operators that we introduce do not depend on any particular model of dissipative reservoir and can be applied to any dissipation mechanism. Moreover, our approach is applicable to nonequilibrium electron systems, e.g., in the presence of pumping, beyond the applicability of the standard fluctuation-dissipation theorem. We derive analytic results for simple but practically important geometries: strip lines and rectangular cavities. Our results show that a significant enhancement of the spontaneous emission, by a factor of order 100 or higher, is possible for quantum wells and other 2D emitters in a subwavelength cavity.
NASA Astrophysics Data System (ADS)
Moorthy, P.; Oumer, A. N.; Ishak, M.
2018-03-01
The aim of this paper is to investigate the effect of fin shapes on the performance of compact finned flat tube heat exchangers. Three types of fin shapes namely plain, wavy, and rectangular grooved fins attached to three by three arrays of flat tube banks were considered. Moreover, the tubes were deployed in in-line and staggered arrangements. In addition to the fin shapes, the air velocity and the tube inclination angles were varied and the thermal-hydraulic performance was analysed. On the other hand, the temperatures at the tube surfaces were kept constant to produce constant heat flux throughout the study. The results showed that as flowrate increases, the heat transfer increases, however, the friction factor decreases. Staggered arrangement produces higher heat transfer and friction factor than inline fin. Moreover, the rectangular fin is the best in terms of high heat transfer however the drawback of high friction factor leads the fin to have the least efficiency of all. On the other hand, plain fin had the least heat transfer performance however the highest efficiency was achieved. Therefore, plain fin should be used when efficiency is prioritized and rectangular fin when high heat transfer is desired.
The effect of boundary shape and minima selection on single limb stance postural stability.
Cobb, Stephen C; Joshi, Mukta N; Bazett-Jones, David M; Earl-Boehm, Jennifer E
2012-11-01
The effect of time-to-boundary minima selection and stability limit definition was investigated during eyes open and eyes closed condition single-limb stance postural stability. Anteroposterior and mediolateral time-to-boundary were computed using the mean and standard deviation (SD) of all time-to-boundary minima during a trial, and the mean and SD of only the 10 absolute time-to-boundary minima. Time-to-boundary with rectangular, trapezoidal, and multisegmented polygon defined stability limits were also calculated. Spearman's rank correlation coefficient test results revealed significant medium-large correlations between anteroposterior and mediolateral time-to-boundary scores calculated using both the mean and SD of the 10 absolute time-to-boundary minima and of all the time-to-boundary minima. Friedman test results revealed significant mediolateral time-to-boundary differences between boundary shape definitions. Follow-up Wilcoxon signed rank test results revealed significant differences between the rectangular boundary shape and both the trapezoidal and multisegmented polygon shapes during the eyes open and eyes closed conditions when both the mean and the SD of the time-to-boundary minima were used to represent postural stability. Significant differences were also revealed between the trapezoidal and multisegmented polygon definitions during the eyes open condition when the SD of the time-to-boundary minima was used to represent postural stability. Based on these findings, the overall results (i.e., stable versus unstable participants or groups) of studies computing postural stability using different minima selection can be compared. With respect to boundary shape, the trapezoid or multisegmented polygon shapes may be more appropriate than the rectangular shape as they more closely represent the anatomical shape of the stance foot.
Round versus rectangular: Does the plot shape matter?
NASA Astrophysics Data System (ADS)
Iserloh, Thomas; Bäthke, Lars; Ries, Johannes B.
2016-04-01
Field rainfall simulators are designed to study soil erosion processes and provide urgently needed data for various geomorphological, hydrological and pedological issues. Due to the different conditions and technologies applied, there are several methodological aspects under review of the scientific community, particularly concerning design, procedures and conditions of measurement for infiltration, runoff and soil erosion. Extensive discussions at the Rainfall Simulator Workshop 2011 in Trier and the Splinter Meeting at EGU 2013 "Rainfall simulation: Big steps forward!" lead to the opinion that the rectangular shape is the more suitable plot shape compared to the round plot. A horizontally edging Gerlach trough is installed for sample collection without forming unnatural necks as is found at round or triangle plots. Since most research groups did and currently do work with round plots at the point scale (<1m²), a precise analysis of the differences between the output of round and square plots are necessary. Our hypotheses are: - Round plot shapes disturb surface runoff, unnatural fluvial dynamics for the given plot size such as pool development especially directly at the plot's outlet occur. - A square plot shape prevent these problems. A first comparison between round and rectangular plots (Iserloh et al., 2015) indicates that the rectangular plot could indeed be the more suitable, but the rather ambiguous results make a more elaborate test setup necessary. The laboratory test setup includes the two plot shapes (round, square), a standardised silty substrate and three inclinations (2°, 6°, 12°). The analysis of the laboratory test provide results on the best performance concerning undisturbed surface runoff and soil/water sampling at the plot's outlet. The analysis of the plot shape concerning its influence on runoff and erosion shows that clear methodological standards are necessary in order to make rainfall simulation experiments comparable. Reference: Iserloh, T., Pegoraro, D., Schlösser, A., Thesing, H., Seeger, M., Ries, J.B. (2015): Rainfall simulation experiments: Influence of water temperature, water quality and plot design on soil erosion and runoff. Geophysical Research Abstracts, Vol. 17, EGU2015-5817.
Single-Photon Routing for a L-Shaped Channel
NASA Astrophysics Data System (ADS)
Yang, Xiong; Hou, Jiao-Jiao; Wu, Chun
2018-02-01
We have investigated the transport properties of a single photon scattered by a two-level atom embedded in a L-shaped waveguide, which is made of two one-dimensional (1D) semi-infinite coupled-resonator waveguides (CRWs). Single photons can be directed from one CRW to the other due to spontaneous emission of the atom. The result shows that the spontaneous emission of the TLS still routes single photon from one CRW to the other; the boundary existing makes the probability of finding single photon in a CRW could reach one. Our the scheme is helpful to construct a ring quantum networks.
Compact Feeding Network for Array Radiations of Spoof Surface Plasmon Polaritons
NASA Astrophysics Data System (ADS)
Xu, Jun Jun; Yin, Jia Yuan; Zhang, Hao Chi; Cui, Tie Jun
2016-03-01
We propose a splitter feeding network for array radiations of spoof surface plasmon polaritons (SPPs), which are guided by ultrathin corrugated metallic strips. Based on the coupled mode theory, SPP fields along a single waveguide in a certain frequency range can be readily coupled into two adjacent branch waveguides with the same propagation constants. We propose to load U-shaped particles anti-symmetrically at the ends of such two branch waveguides, showing a high integration degree of the feeding network. By controlling linear phase modulations produced by the U-shaped particle chain, we demonstrate theoretically and experimentally that the SPP fields based on bound modes can be efficiently radiated to far fields in broadside direction. The proposed method shows that the symmetry of electromagnetic field modes can be exploited to the SPP transmission network, providing potential solutions to compact power dividers and combiners for microwave and optical devices and systems.
Hohimer, John P.; Craft, David C.
1994-01-01
Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction.
Growth and optical waveguide fabrication in spinel MgGa2O4 crystal
NASA Astrophysics Data System (ADS)
Wang, Liang-Ling; Cui, Xiao-Jun; Rensberg, Jura; Wu, Kui; Wesch, Werner; Wendler, Elke
2017-10-01
We report on optical waveguide fabrication in a spinel MgGa2O4 crystal by 6.0 MeV carbon ion implantation at a fluence of 2 × 1015 ions/cm2 for the first time to our knowledge. The MgGa2O4 crystal was grown by the floating zone method. The refractive index profile reconstructed by reflectivity calculation method showed that the MgGa2O4 waveguide is a typical barrier waveguide. The typical barrier-shaped refractive index profile is attributed mainly to the nuclear energy deposition of the incident carbon ions into the MgGa2O4 crystal. By performing end-coupling measurements and using the beam propagation method (BPM) for the analysis of the observed modes, it can be concluded that the modes can be confined inside the waveguide.
NASA Astrophysics Data System (ADS)
Kultavewuti, Pisek
Polarization-entangled photon pair states (PESs) are indispensable in several quantum protocols that should be implemented in an integrated photonic circuit for realizing a practical quantum technology. Preparing such states in integrated waveguides is in fact a challenge due to polarization mode dispersion. Unlike other conventional ways that are plagued with complications in fabrication or in state generation, in this thesis, the scheme based on parallel spontaneous four-wave mixing processes of two polarization waveguide modes is thoroughly studied in theory and experimentation for the polarization entanglement generation. The scheme in fact needs the modal dispersion, contradictory to the general perception, as revealed by a full quantum mechanical framework. The proper modal dispersion balances the effects of temporal walk-off and state factorizability. The study also shows that the popular standard platform such as a silicon-on-insulator wafer is far from suitable to implement the proposed simple generation technique. Proven by the quantum state tomography, the technique produces a highly-entangled state with a maximum concurrence of 0.97 +/- 0:01 from AlGaAs waveguides. In addition, the devices directly generated Bell states with an observed fidelity of 0.92 +/- 0:01 without any post-generation compensating steps. Novel suspended device structures, including their components, are then investigated numerically and experimentally characterized in pursuit of finding the geometry with the optimal dispersion property. The 700 nm x 1100 nm suspended rectangular waveguide is identified as the best geometry with a predicted maximum concurrence of 0.976 and a generation bandwidth of 3.3 THz. The suspended waveguide fabrication procedure adds about 15 dB/cm and 10 dB/cm of propagation loss to the TE and TM mode respectively, on top of the loss in corresponding full-cladding waveguides. Bridges, which structurally support the suspended waveguides, are optimized using the particle swarm algorithm to maximize the power transmission, and they were experimentally verified. This work greatly simplifies the generation of the PES and identifies a novel device structure suitable for such the PES generation. In combination with the reported promising advances in interferometric components and single photon detectors implemented in AlGaAs, the result of this thesis represents a step toward realizing a complete integrated quantum photonic circuit empowered by polarization-based protocols.
Malanoski, A P; van Swol, Frank
2002-10-01
A fully explicit in three dimensions lattice density functional theory is used to investigate adsorption in single nonperiodic pores. The effect of varying pore shape from the slits and cylinders that are normally simulated was our primary interest. A secondary concern was the results for pores with very large diameters. The shapes investigated were square pores with or without surface roughness, cylinders, right triangle pores, and trapezoidal pores. It was found that pores with very similar shape factors gave similar results but that the introduction of acute angled corners or very large side ratio lengths in rectangular pores gave results that were significantly different. Further, a rectangular pore going towards the limit of infinite side ratio does not approach the results of a slit pore. In all of these cases, the importance of features that are present for only a small portion of the pore is demonstrated.
Multiplexing of adjacent vortex modes with the forked grating coupler
NASA Astrophysics Data System (ADS)
Nadovich, Christopher T.; Kosciolek, Derek J.; Crouse, David T.; Jemison, William D.
2017-08-01
For vortex fiber multiplexing to reach practical commercial viability, simple silicon photonic interfaces with vortex fiber will be required. These interfaces must support multiplexing. Toward this goal, an efficient singlefed multimode Forked Grating Coupler (FGC) for coupling two different optical vortex OAM charges to or from the TE0 and TE1 rectangular waveguide modes has been developed. A simple, apodized device implemented with e-beam lithography and a conventional dual-etch processing on SOI wafer exhibits low crosstalk and reasonable mode match. Advanced designs using this concept are expected to further improve performance.
CPW-fed wearable antenna at 2.4 GHz ISM band
NASA Astrophysics Data System (ADS)
Muhammad, Zuraidah; Shah, S. M.; Abidin, Z. Z.; Asyhap, Adel Y. I.; Mustam, S. M.; Ma, Y.
2017-09-01
A wearable antenna working in 2.4 GHz for Industrial, Scientific and Medical (ISM) radio bands is presented in this work. The proposed antenna is a rectangular textile antenna with a coplanar waveguide (CPW) feeding on a cotton jeans as the substrate material. The antenna has a compact size with dimensions of 30 × 30 mm2 which makes it an attractive solution in a wearable antenna construction. The linear characteristics of the antenna are investigated to evaluate the performance of the antenna. The simulation and measurements results are compared and they agree well with each other.
Effects of Mass Flow Rate on the Thermal-Flow Characteristics of Microwave CO2 Plasma.
Hong, Chang-Ki; Na, Young-Ho; Uhm, Han-Sup; Kim, Youn-Jea
2015-03-01
In this study, the thermal-flow characteristics of atmospheric pressure microwave CO2 plasma were numerically investigated by simulation. The electric and gas flow fields in the reaction chamber with a microwave axial injection torch operated at 2.45 GHz were simulated. The microwave launcher had the standard rectangular waveguide WR340 geometry. The simulation was performed by using the COMSOL Multiphysics plasma model with various mass flow rates of CO2. The electric fields, temperature profiles and the density of electrons were graphically depicted for different CO2 inlet mass flow rates.
Spoof Surface Plasmon Polaritons Power Divider with large Isolation.
Zhou, Shiyan; Lin, Jing-Yu; Wong, Sai-Wai; Deng, Fei; Zhu, Lei; Yang, Yang; He, Yejun; Tu, Zhi-Hong
2018-04-13
Periodic corrugated metal structure is designed to support and propagate spoof surface plasmon polaritons (SSPPs) wave in the microwave frequencies. In this paper, firstly a plasmonic waveguide consisting of oval-ring shaped cells is proposed with the performance of high transmission efficiency in a wide frequency range. The coplanar waveguides (CPWs) with 50 Ω impedance are adopted to feed the energies or extract signals at both ends of the plasmonic waveguide. Then a well-isolated power divider is constructed based on the SSPPs waveguides aiming to equally split the energy of the SSPPs wave into two equal parts. The stepped-impedances are co-designed with the three input/output ports of the power divider to achieve the impedance-matching between the SSPPs waveguides and the coplanar waveguides. Besides, a single resistor is placed in the middle of two symmetrical half oval-rings to realize the isolation between the two output ports over the spectrum of 4.5-7.5 GHz. Finally, both plasmonic waveguide and the power divider are fabricated and tested to verify the predicted characteristics.
Haner, M; Warren, W S
1987-09-01
We have produced complex software adjustable laser pulse shapes with ~10-ps resolution, and pulse energies up to 100 microJ for spectroscopic applications. The key devices are a high damage threshold electrooptic directional coupler and a GaAs circuit for synthesizing arbitrarily shaped microwave pulses.
Kikugawa, Gota; Ando, Shotaro; Suzuki, Jo; Naruke, Yoichi; Nakano, Takeo; Ohara, Taku
2015-01-14
In the present study, molecular dynamics (MD) simulations on the monatomic Lennard-Jones liquid in a periodic boundary system were performed in order to elucidate the effect of the computational domain size and shape on the self-diffusion coefficient measured by the system. So far, the system size dependence in cubic computational domains has been intensively investigated and these studies showed that the diffusion coefficient depends linearly on the inverse of the system size, which is theoretically predicted based on the hydrodynamic interaction. We examined the system size effect not only in the cubic cell systems but also in rectangular cell systems which were created by changing one side length of the cubic cell with the system density kept constant. As a result, the diffusion coefficient in the direction perpendicular to the long side of the rectangular cell significantly increases more or less linearly with the side length. On the other hand, the diffusion coefficient in the direction along the long side is almost constant or slightly decreases. Consequently, anisotropy of the diffusion coefficient emerges in a rectangular cell with periodic boundary conditions even in a bulk liquid simulation. This unexpected result is of critical importance because rectangular fluid systems confined in nanospace, which are present in realistic nanoscale technologies, have been widely studied in recent MD simulations. In order to elucidate the underlying mechanism for this serious system shape effect on the diffusion property, the correlation structures of particle velocities were examined.
Aspect Ratio Model for Radiation-Tolerant Dummy Gate-Assisted n-MOSFET Layout.
Lee, Min Su; Lee, Hee Chul
2014-01-01
In order to acquire radiation-tolerant characteristics in integrated circuits, a dummy gate-assisted n-type metal oxide semiconductor field effect transistor (DGA n-MOSFET) layout was adopted. The DGA n-MOSFET has a different channel shape compared with the standard n-MOSFET. The standard n-MOSFET has a rectangular channel shape, whereas the DGA n-MOSFET has an extended rectangular shape at the edge of the source and drain, which affects its aspect ratio. In order to increase its practical use, a new aspect ratio model is proposed for the DGA n-MOSFET and this model is evaluated through three-dimensional simulations and measurements of the fabricated devices. The proposed aspect ratio model for the DGA n-MOSFET exhibits good agreement with the simulation and measurement results.
Aspect Ratio Model for Radiation-Tolerant Dummy Gate-Assisted n-MOSFET Layout
Lee, Min Su; Lee, Hee Chul
2014-01-01
In order to acquire radiation-tolerant characteristics in integrated circuits, a dummy gate-assisted n-type metal oxide semiconductor field effect transistor (DGA n-MOSFET) layout was adopted. The DGA n-MOSFET has a different channel shape compared with the standard n-MOSFET. The standard n-MOSFET has a rectangular channel shape, whereas the DGA n-MOSFET has an extended rectangular shape at the edge of the source and drain, which affects its aspect ratio. In order to increase its practical use, a new aspect ratio model is proposed for the DGA n-MOSFET and this model is evaluated through three-dimensional simulations and measurements of the fabricated devices. The proposed aspect ratio model for the DGA n-MOSFET exhibits good agreement with the simulation and measurement results. PMID:27350975
Optical biosensors for cell adhesion.
Ramsden, Jeremy J; Horvath, Robert
2009-01-01
Planar optical waveguides offer an ideal substratum for cells on which to reside. The materials from which the waveguides are made--high refractive index transparent dielectrics--correspond to the coatings of medical implants (e.g., the oxides of niobium, tantalum, and titanium) or the high molecular weight polymers used for culture flasks (e.g., polystyrene). The waveguides can furthermore be modified both chemically and morphologically while retaining their full capability for generating an evanescent optical field that has its greatest strength at the interface between the solid substratum and the liquid phase with which it is invariably in contact (i.e., the culture medium bathing the cells), decaying exponentially perpendicular to the interface at a rate controllable by varying the material parameters of the waveguide. Analysis of the perturbation of the evanescent field by the presence of living cells within it enables their size, number density, shape, refractive index (linked to their constitution) and so forth to be determined, the number of parameters depending on the number of waveguide lightmodes analyzed. No labeling of any kind is necessary, and convenient measurement setups are fully compatible with maintaining the cells in their usual environment. If the temporal evolution of the perturbation is analyzed, even more information can be obtained, such as the amount of material (microexudate) secreted by the cell while residing on the surface. Separation of parallel effects simultaneously contributing to the perturbation of the evanescent field can be accomplished by analysis of coupling peak shape when a grating coupler is used to measure the propagation constants of the waveguide lightmodes.
Quantification of the spatial strain distribution of scoliosis using a thin-plate spline method.
Kiriyama, Yoshimori; Watanabe, Kota; Matsumoto, Morio; Toyama, Yoshiaki; Nagura, Takeo
2014-01-03
The objective of this study was to quantify the three-dimensional spatial strain distribution of a scoliotic spine by nonhomogeneous transformation without using a statistically averaged reference spine. The shape of the scoliotic spine was determined from computed tomography images from a female patient with adolescent idiopathic scoliosis. The shape of the scoliotic spine was enclosed in a rectangular grid, and symmetrized using a thin-plate spline method according to the node positions of the grid. The node positions of the grid were determined by numerical optimization to satisfy symmetry. The obtained symmetric spinal shape was enclosed within a new rectangular grid and distorted back to the original scoliotic shape using a thin-plate spline method. The distorted grid was compared to the rectangular grid that surrounded the symmetrical spine. Cobb's angle was reduced from 35° in the scoliotic spine to 7° in the symmetrized spine, and the scoliotic shape was almost fully symmetrized. The scoliotic spine showed a complex Green-Lagrange strain distribution in three dimensions. The vertical and transverse compressive/tensile strains in the frontal plane were consistent with the major scoliotic deformation. The compressive, tensile and shear strains on the convex side of the apical vertebra were opposite to those on the concave side. These results indicate that the proposed method can be used to quantify the three-dimensional spatial strain distribution of a scoliotic spine, and may be useful in quantifying the deformity of scoliosis. © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Goncharenko, I. A.
1989-07-01
The method of shift formulas is applied to anisotropic dielectric waveguides capable of conserving a given state of polarization of the transmitted signal. Equations are derived for calculation of the propagation constants and of the dispersion of the fundamental modes in waveguides with an anisotropic permittivity and a noncircular shape of the transverse cross section. Distributions of electric and magnetic fields of these modes are obtained in a transverse cross section of the waveguide. It is shown that under the influence of the anisotropy of the dielectric an energy spot describing the distribution of the mode field becomes of an ellipse with its axes oriented along the coordinates coinciding with the principal axes of the permittivity tensor.
Cross-phase-modulation-induced temporal reflection and waveguiding of optical pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.
Cross-phase modulation (XPM) is commonly viewed as a nonlinear process that chirps a probe pulse and modifies its spectrum when an intense pump pulse overlaps with it. Here we present an alternative view of XPM in which the pump pulse creates a moving refractive-index boundary that splits the probe pulse into two parts with distinct optical spectra through temporal reflection and refraction inside a dispersive nonlinear medium. The probe even undergoes a temporal version of total internal reflection for sufficiently intense pump pulses, a phenomenon that can be exploited for making temporal waveguides. In this paper we investigate the practicalmore » conditions under which XPM can be exploited for temporal reflection and waveguiding. The width and shape of pump pulses as well as the nature of medium dispersion at the pump and probe wavelength (normal versus anomalous) play important roles. A super-Gaussian shape of pump pulses is particularly helpful because of its relatively sharp edges. When the pump wavelength lies in the anomalous-dispersion regime, the pump pulse can form a soliton,whose unique properties can be exploited to advantage. We also discuss a potential application of XPM-induced temporal waveguides for compensating timing jitter.« less
Cross-phase-modulation-induced temporal reflection and waveguiding of optical pulses
Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.
2018-01-31
Cross-phase modulation (XPM) is commonly viewed as a nonlinear process that chirps a probe pulse and modifies its spectrum when an intense pump pulse overlaps with it. Here we present an alternative view of XPM in which the pump pulse creates a moving refractive-index boundary that splits the probe pulse into two parts with distinct optical spectra through temporal reflection and refraction inside a dispersive nonlinear medium. The probe even undergoes a temporal version of total internal reflection for sufficiently intense pump pulses, a phenomenon that can be exploited for making temporal waveguides. In this paper we investigate the practicalmore » conditions under which XPM can be exploited for temporal reflection and waveguiding. The width and shape of pump pulses as well as the nature of medium dispersion at the pump and probe wavelength (normal versus anomalous) play important roles. A super-Gaussian shape of pump pulses is particularly helpful because of its relatively sharp edges. When the pump wavelength lies in the anomalous-dispersion regime, the pump pulse can form a soliton,whose unique properties can be exploited to advantage. We also discuss a potential application of XPM-induced temporal waveguides for compensating timing jitter.« less
Study of proton radiation effects among diamond and rectangular gate MOSFET layouts
NASA Astrophysics Data System (ADS)
Seixas, L. E., Jr.; Finco, S.; Silveira, M. A. G.; Medina, N. H.; Gimenez, S. P.
2017-01-01
This paper describes an experimental comparative study of proton ionizing radiation effects between the metal-oxide-semiconductor (MOS) Field Effect Transistors (MOSFETs) implemented with hexagonal gate shapes (diamond) and their respective counterparts designed with the classical rectangular ones, regarding the same gate areas, channel widths and geometrical ratios (W/L). The devices were manufactured by using the 350 nm bulk complementary MOS (CMOS) integrated circuits technology. The diamond MOSFET with α angles higher or equal to 90° tends to present a smaller vulnerability to the high doses ionizing radiation than those observed in the typical rectangular MOSFET counterparts.
Analysis of subsonic wind tunnel with variation shape rectangular and octagonal on test section
NASA Astrophysics Data System (ADS)
Rhakasywi, D.; Ismail; Suwandi, A.; Fadhli, A.
2018-02-01
The need for good design in the aerodynamics field required a wind tunnel design. The wind tunnel design required in this case is capable of generating laminar flow. In this research searched for wind tunnel models with rectangular and octagonal variations with objectives to generate laminar flow in the test section. The research method used numerical approach of CFD (Computational Fluid Dynamics) and manual analysis to analyze internal flow in test section. By CFD simulation results and manual analysis to generate laminar flow in the test section is a design that has an octagonal shape without filled for optimal design.
Vector rectangular-shape laser based on reduced graphene oxide interacting with a long fiber taper.
Gao, Lei; Zhu, Tao; Huang, Wei; Zeng, Jing
2014-10-01
A vector dual-wavelength rectangular-shape laser (RSL) based on a long fiber taper deposited with reduced graphene oxide is proposed, where nonlinearity is enhanced due to a large evanescent-field-interacting length and strong field confinement of an 8 mm fiber taper with a waist diameter of 4 μm. Graphene flakes are deposited uniformly on the taper waist with light pressure effect, so this structure guarantees both excellent saturable absorption and high nonlinearity. The RSL with a repetition rate of 7.9 MHz shows fast polarization switching in two orthogonal polarization directions, and temporal and spectral characteristics are investigated.
NASA Astrophysics Data System (ADS)
Ma, Chien-Ching; Lin, Hsien-Yang
2005-09-01
This study provides two non-contact optical techniques to investigate the transverse vibration characteristics of piezoceramic rectangular plates in resonance. These methods, including the amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) and laser Doppler vibrometer (LDV), are full-field measurement for AF-ESPI and point-wise displacement measurement for LDV, respectively. The edges of these piezoceramic rectangular plates may either be fixed or free. Both resonant frequencies and mode shapes of vibrating piezoceramic plates can be obtained simultaneously by AF-ESPI. Excellent quality of the interferometric fringe patterns for the mode shapes is obtained. In the LDV system, a built-in dynamic signal analyzer (DSA) composed of DSA software and a plug-in waveform generator board can provide the piezoceramic plates with the swept-sine excitation signal, whose gain at corresponding frequencies is analyzed by the DSA software. The peaks appeared in the frequency response curve are resonant frequencies. In addition to these optical methods, the numerical computation based on the finite element analysis is used to verify the experimental results. Good agreements of the mode shapes and resonant frequencies are obtained for experimental and numerical results.
A functional analysis of photo-object matching skills of severely retarded adolescents.
Dixon, L S
1981-01-01
Matching-to-sample procedures were used to assess picture representation skills of severely retarded, nonverbal adolescents. Identity matching within the classes of objects and life-size, full-color photos of the objects was first used to assess visual discrimination, a necessary condition for picture representation. Picture representation was then assessed through photo-object matching tasks. Five students demonstrated visual discrimination (identity matching) within the two classes of photos and the objects. Only one student demonstrated photo-object matching. The results of the four students who failed to demonstrate photo-object matching suggested that physical properties of photos (flat, rectangular) and depth dimensions of objects may exert more control over matching than the similarities of the objects and images within the photos. An analysis of figure-ground variables was conducted to provide an empirical basis for program development in the use of pictures. In one series of tests, rectangular shape and background were removed by cutting out the figures in the photos. The edge shape of the photo and the edge shape of the image were then identical. The results suggest that photo-object matching may be facilitated by using cut-out figures rather than the complete rectangular photo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weldon, Aimee Jean
2004-07-01
Description – Ph.D Dissertation. North Carolina State University. Raleigh, North Carolina. 135 pp. Abatract - Habitat fragmentation and its associated effects have been blamed for the recent population declines of many Neotropical migratory bird species. Increased predation and parasitism resulting from edge-related effects have been implicated for poor nesting success in many studies, mostly of forest interior species. However, little attention has been devoted to disturbance-dependent birds. In this study, I examine how patch shape and connectivity in fragmented landscapes affects the reproductive success of disturbance-dependent bird species, specifically the Indigo Bunting (Passerina cyanea). I conducted my study in amore » landscape-scale experimental system of similar-area habitat patches that differed in connectivity and in shape. Shapes differed between edgy and rectangular forms, where edgy patches contained 50% more edge than rectangular patches. I tested whether edgy patches function as ecological traps for species with strong edge preferences, by leading them to select dangerous habitats. Indigo Buntings preferentially selected edgy patches over rectangular patches, but experienced significantly lower reproductive success in edgy patches early in the season. Although predation pressure intensified in rectangular patches late in the season, seasonal fecundity was still significantly lower in edgy patches, providing the first empirical evidence that edges can function as ecological traps for Indigo Buntings. A second objective of my study was to evaluate the efficacy of conservation corridors for disturbance-dependent bird species. Conservation corridors have become a popular strategy to preserve biodiversity and promote gene flow in fragmented landscapes, but corridors may also have negative consequences. I tested the hypothesis that corridors can increase nest predation risk in connected patches relative to unconnected patches. Nest predation rates increased significantly in connected patches compared to unconnected rectangular patches, but were similar between connected patches and unconnected edgy patches. This suggests that the increase in predator activity in connected patches is largely attributable to edge effects incurred through the addition of a corridor. This is the first landscape-scale study to experimentally demonstrate the potential negative effects of conservation corridors.« less
Generation of Nonclassical Biphoton States through Cascaded Quantum Walks on a Nonlinear Chip
NASA Astrophysics Data System (ADS)
Solntsev, Alexander S.; Setzpfandt, Frank; Clark, Alex S.; Wu, Che Wen; Collins, Matthew J.; Xiong, Chunle; Schreiber, Andreas; Katzschmann, Fabian; Eilenberger, Falk; Schiek, Roland; Sohler, Wolfgang; Mitchell, Arnan; Silberhorn, Christine; Eggleton, Benjamin J.; Pertsch, Thomas; Sukhorukov, Andrey A.; Neshev, Dragomir N.; Kivshar, Yuri S.
2014-07-01
We demonstrate a nonlinear optical chip that generates photons with reconfigurable nonclassical spatial correlations. We employ a quadratic nonlinear waveguide array, where photon pairs are generated through spontaneous parametric down-conversion and simultaneously spread through quantum walks between the waveguides. Because of the quantum interference of these cascaded quantum walks, the emerging photons can become entangled over multiple waveguide positions. We experimentally observe highly nonclassical photon-pair correlations, confirming the high fidelity of on-chip quantum interference. Furthermore, we demonstrate biphoton-state tunability by spatial shaping and frequency tuning of the classical pump beam.
Hohimer, J.P.; Craft, D.C.
1994-09-20
Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity is disclosed. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction. 21 figs.
Wide band cryogenic ultra-high vacuum microwave absorber
Campisi, I.E.
1992-05-12
An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.
Remote detection of single emitters via optical waveguides
NASA Astrophysics Data System (ADS)
Then, Patrick; Razinskas, Gary; Feichtner, Thorsten; Haas, Philippe; Wild, Andreas; Bellini, Nicola; Osellame, Roberto; Cerullo, Giulio; Hecht, Bert
2014-05-01
The integration of lab-on-a-chip technologies with single-molecule detection techniques may enable new applications in analytical chemistry, biotechnology, and medicine. We describe a method based on the reciprocity theorem of electromagnetic theory to determine and optimize the detection efficiency of photons emitted by single quantum emitters through truncated dielectric waveguides of arbitrary shape positioned in their proximity. We demonstrate experimentally that detection of single quantum emitters via such waveguides is possible, confirming the predicted behavior of the detection efficiency. Our findings blaze the trail towards efficient lensless single-emitter detection compatible with large-scale optofluidic integration.
NASA Astrophysics Data System (ADS)
Krasnitckii, S. A.; Kolomoetc, D. R.; Smirnov, A. M.; Gutkin, M. Yu
2018-03-01
The misfit stress relaxation via generation of rectangular prismatic dislocation loops at the interface in core-shell nanowires is considered. The core has the shape of a long parallelepiped of a square cross-section. The energy change caused by loop generation in such nanowires is calculated. Critical conditions for the onset of such loops are calculated and analyzed.
Franks, Larry A.; Nelson, Melvin A.
1981-01-01
A method of producing optical and electrical pulses of desired shape. An optical pulse of arbitrary but defined shape illuminates one end of an array of optical fiber waveguides of differing lengths to time differentiate the input pulse. The optical outputs at the other end of the array are combined to form a synthesized pulse of desired shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslami, E., E-mail: eeslami@iust.ac.ir; Barjasteh, A.; Morshedian, N.
2015-06-15
In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown thatmore » applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap.« less
EIT-based fabric pressure sensing.
Yao, A; Yang, C L; Seo, J K; Soleimani, M
2013-01-01
This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results.
A comparative study of optimum and suboptimum direct-detection laser ranging receivers
NASA Technical Reports Server (NTRS)
Abshire, J. B.
1978-01-01
A summary of previously proposed receiver strategies for direct-detection laser ranging receivers is presented. Computer simulations are used to compare performance of candidate implementation strategies in the 1- to 100-photoelectron region. Under the condition of no background radiation, the maximum-likelihood and minimum mean-square error estimators were found to give the same performance for both bell-shaped and rectangular optical-pulse shapes. For signal energies greater than 100 photoelectrons, the root-mean-square range error is shown to decrease as Q to the -1/2 power for bell-shaped pulses and Q to the -1 power for rectangular pulses, where Q represents the average pulse energy. Of several receiver implementations presented, the matched-filter peak detector was found to be preferable. A similar configuration, using a constant-fraction discriminator, exhibited a signal-level dependent time bias.
Design and analysis of a conformal patch antenna for a wearable breast hyperthermia treatment system
NASA Astrophysics Data System (ADS)
Curto, Sergio; Ramasamy, Manoshika; Suh, Minyoung; Prakash, Punit
2015-03-01
To overcome the limitations of currently available clinical hyperthermia systems which are based on rigid waveguide antennas, a wearable microwave hyperthermia system is presented. A light wearable system can improve patient comfort and be located in close proximity to the breast, thereby enhancing energy deposition and reducing power requirements. The objective of this work was to design and assess the feasibility of a conformal patch antenna element of an array system to be integrated into a wearable hyperthermia bra. The feasibility of implementing antennas with silver printed ink technology on flexible substrates was evaluated. A coupled electromagnetic-bioheat transfer solver and a hemispheric heterogeneous numerical breast phantom were used to design and optimize a 915 MHz patch antenna. The optimization goals were device miniaturization, operating bandwidth, enhanced energy deposition pattern in targets, and reduced Efield back radiation. The antenna performance was evaluated for devices incorporating a hemispheric conformal groundplane and a rectangular groundplane configuration. Simulated results indicated a stable -10 dB return loss bandwidth of 88 MHz for both the conformal and rectangular groundplane configurations. Considering applied power levels restricted to 15 W, treatment volumes (T>410C) and depth from the skin surface were 11.32 cm3 and 27.94 mm, respectively, for the conformal groundplane configuration, and 2.79 cm3 and 19.72 mm, respectively, for the rectangular groundplane configuration. E-field back-radiation reduced by 85.06% for the conformal groundplane compared to the rectangular groundplane configuration. A prototype antenna with rectangular groundplane was fabricatd and experimentally evaluated. The groundplane was created by printing silver ink (Metalon JS-B25P) on polyethylene terephthalate (PET) film surface. Experiments revealed stable antenna performance for power levels up to 15.3 W. In conclusion, the proposed patch antenna with conformal groundplane and prined ink technology shows promising performance to be integrated in a clinical array system.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
1986-01-01
Three new Coplanar Waveguide (CPW) transmission lines, namely, Suspended CPW (SCPW), Stripline-like Suspended CPW (SSCPW) and Inverted CPW (ICPW), are proposed and also analyzed for their propagation characteristics. The substrate thickness, permittivity and dimensions of housing are assumed to be arbitrary. These structures have the following advantages over conventional CPW. Firstly, the ratio of guide wavelength to free space wavelength is closer to unity which results in larger dimensions and hence lower tolerances. Secondly, the effective dielectric constant is lower and hence the electromagnetic field energies are concentrated more in the air regions which should reduce attenuation. Thirdly, for a prescribed impedance level, the above structures have a wider slot width for identical strip width. Thus, low impedance lines can be achieved with reasonable slot dimensions. Fourthly, in an inverted CPW shunt mounting of active devices, such as Gunn and IMPATT diodes, between the strip and the metal trough is possible. This feature further enhances the attractiveness of the above structures. Lastly, an E-plane probe type transition from a rectangular waveguide to suspended CPW can also be easily realized. The computed results for GaAs at Ka-band illustrate the variation of normalized guide wavelength, effective dielectric constant and the characteristic impedance as a function of the: (1) frequency; (2) distance of separation between the trough side walls; (3) normalized strip and slot widths; and (4) normalized air gap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shlapakovski, A.; Gorev, S.; Krasik, Ya. E.
The influence of laser beam parameters on the output pulses of a resonant microwave compressor with a laser-triggered plasma switch was investigated. The S-band compressor, consisting of a rectangular waveguide-based cavity and H-plane waveguide tee with a shorted side arm, was filled with pressurized dry air and pumped by 1.8-μs-long microwave pulses of up to 450 kW power. A Nd:YAG laser was used to ignite the gas discharge in the tee side arm for output pulse extraction. The laser beam (at 213 nm or 532 nm) was directed along the RF electric field lines. It was found that the compressor operated most effectivelymore » when the laser beam was focused at the center of the switch waveguide cross-section. In this case, the power extraction efficiency reached ∼47% at an output power of ∼14 MW, while when the laser beam was not focused the maximal extraction efficiency was only ∼20% at ∼6 MW output power. Focusing the laser beam resulted also in a dramatic decrease (down to <1 ns) in the delay of the output pulses' appearance with respect to the time of the beam's entrance into the switch, and the jitter of the output pulses' appearance was minimized. In addition, the quality of the output pulses' waveform was significantly improved.« less
NASA Astrophysics Data System (ADS)
Belov, A. V.; Kurkov, Andrei S.; Musatov, A. G.; Semenov, V. A.
1990-12-01
Experimental and theoretical investigations were made of the influence of external thermal effects on the dispersive characteristics of single-mode fiber waveguides with different shapes and parameters of the refractive index profile. The temperature coefficients of the group delay were determined. The temperature dependences of the dispersion coefficient (dD/dT = 1.6 × 10-3 and 4.3 × 10-3 ps.nm-1 km-1 K-1, respectively) and of the zero-dispersion wavelength (dλ0/dT = 1.9 × 10-2 and 8.5 × 10-2 nm/K, respectively) were determined at two working wavelengths of 1.3 and 1.55 μm for single-mode fiber waveguides with typical parameters.
Modal, ray, and beam techniques for analyzing the EM scattering by open-ended waveguide cavities
NASA Technical Reports Server (NTRS)
Pathak, Prabhakar H.; Burkholder, Robert J.
1989-01-01
The problem of high-frequency electromagnetic (EM) scattering by open-ended waveguide cavities with an interior termination is analyzed via three different approaches. When cavities can be adequately modeled by joining together piecewise separable waveguide sections, a hybrid combination of asymptotic high-frequency and modal techniques is employed. In the case of more arbitrarily shaped waveguide cavities for which modes cannot even be defined in the conventional sense, the geometrical optics ray approach proves to be highly useful. However, at sufficiently high frequencies, both of these approaches tend to become inefficient. Hence, a paraxial Gaussian batch technique, which retains much of the simplicity of the ray approximation but is potentially more efficient, is investigated. Typical numerical results based on the different approaches are discussed.
Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhen; Gao, Fei; Zhang, Baile, E-mail: blzhang@ntu.edu.sg
2016-01-25
We experimentally demonstrate a type of waveguiding mechanism for coupled surface-wave defect modes in a surface-wave photonic crystal. Unlike conventional spoof surface plasmon waveguides, waveguiding of coupled surface-wave defect modes is achieved through weak coupling between tightly localized defect cavities in an otherwise gapped surface-wave photonic crystal, as a classical wave analogue of tight-binding electronic wavefunctions in solid state lattices. Wave patterns associated with the high transmission of coupled defect surface modes are directly mapped with a near-field microwave scanning probe for various structures including a straight waveguide, a sharp corner, and a T-shaped splitter. These results may find usemore » in the design of integrated surface-wave devices with suppressed crosstalk.« less
Methods and apparatus for vertical coupling from dielectric waveguides
Yaacobi, Ami; Cordova, Brad Gilbert
2014-06-17
A frequency-chirped nano-antenna provides efficient sub-wavelength vertical emission from a dielectric waveguide. In one example, this nano-antenna includes a set of plasmonic dipoles on the opposite side of a SiYV.sub.4 waveguide from a ground plane. The resulting structure, which is less than half a wavelength long, emits a broadband beam (e.g., >300 nm) that can be coupled into an optical fiber. In some embodiments, a diffractive optical element with unevenly shaped regions of high- and low-index dielectric material collimates the broadband beam for higher coupling efficiency. In some cases, a negative lens element between the nano-antenna and the diffractive optical element accelerates the emitted beam's divergence (and improves coupling efficiency), allowing for more compact packaging. Like the diffractive optical element, the negative lens element includes unevenly shaped regions of high- and low-index dielectric material that can be designed to compensate for aberrations in the beam emitted by the nano-antenna.
Campbell, Sean T; Reese, Keri A; Ross, Steven D; McGarry, Michelle H; Leba, Thu-Ba; Lee, Thay Q
2014-11-01
Lateral column lengthening (LCL) has been used for correction of flatfoot deformity. The purpose of this study was to determine the effect of LCL graft shape on tarsal bone position and talonavicular and subtalar joint pressure. A flatfoot model was created in 6 cadaveric specimens. Corrective LCL was performed using a rectangular graft or a trapezoidal graft with the broad surface oriented dorsally, laterally, or plantarly. Bony surface markers were digitized to calculate angular parameters used in the evaluation of flatfoot deformity. Contact pressure and area in the subtalar and talonavicular joints were also recorded. All measurements were carried out under multiple axial loads in the intact and flatfoot conditions, and following LCL with each graft shape. Flatfoot creation resulted in significant changes in arch collapse and forefoot abduction. LCL with a rectangular graft best corrected these parameters, while a laterally oriented trapezoidal graft provided some correction. Talonavicular contact pressure was unchanged after flatfoot creation, and was significantly less than intact after LCL. Subtalar contact pressure decreased in some conditions after flatfoot creation, and decreased further after LCL. LCL with a rectangular graft best restored tarsal bone orientation in a cadaveric flatfoot model. The decreases in talonavicular pressure likely represent redistribution of force from the medial to lateral foot. When performing LCL for flatfoot deformity, increased bone graft volume medially better restores tarsal bone position. One way of achieving this is through the use of a rectangular graft as opposed to a trapezoidal graft. © The Author(s) 2014.
Reversible wavefront shaping between Gaussian and Airy beams by mimicking gravitational field
NASA Astrophysics Data System (ADS)
Wang, Xiangyang; Liu, Hui; Sheng, Chong; Zhu, Shining
2018-02-01
In this paper, we experimentally demonstrate reversible wavefront shaping through mimicking gravitational field. A gradient-index micro-structured optical waveguide with special refractive index profile was constructed whose effective index satisfying a gravitational field profile. Inside the waveguide, an incident broad Gaussian beam is firstly transformed into an accelerating beam, and the generated accelerating beam is gradually changed back to a Gaussian beam afterwards. To validate our experiment, we performed full-wave continuum simulations that agree with the experimental results. Furthermore, a theoretical model was established to describe the evolution of the laser beam based on Landau’s method, showing that the accelerating beam behaves like the Airy beam in the small range in which the linear potential approaches zero. To our knowledge, such a reversible wavefront shaping technique has not been reported before.
Strut Shaping of 34m Beam Waveguide Antenna for Reductions in Near-Field RF and Noise Temeperature
NASA Technical Reports Server (NTRS)
Khayatian, Behrouz; Hoppe, Daniel J.; Britcliffe, Michael J.; Gama, Eric
2012-01-01
Struts shaping of the NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antenna has been implemented to reduce near-field RF exposure while improving the antenna noise temperature. Strut shaping was achieved by introducing an RF shield that does not compromise the structural integrity of the existing structure. Reduction in the RF near-field exposure will compensate for the planned transmit power increase of the antenna from 20 kW to 80 kW while satisfying safety requirements for RF exposure. Antenna noise temperature was also improved by as much as 1.5 K for the low elevation angles and 0.5 K in other areas. Both reductions of RF near-field exposure and antenna noise temperature were verified through measurements and agree very well with calculated results.
Nanoscale plasmonic waveguides for filtering and demultiplexing devices
NASA Astrophysics Data System (ADS)
Akjouj, A.; Noual, A.; Pennec, Y.; Bjafari-Rouhani, B.
2010-05-01
Numerical simulations, based on a FDTD (finite-difference-time-domain) method, of infrared light propagation for add/drop filtering in two-dimensional (2D) Ag-SiO2-Ag resonators are reported to design 2D Y-bent plasmonic waveguides with possible applications in telecommunication WDM (wavelength demultiplexing). First, we study optical transmission and reflection of a nanoscale SiO2 waveguide coupled to a nanocavity of the same insulator located either inside or on the side of a linear waveguide sandwiched between Ag. According to the inside or outside positioning of the nanocavity with respect to the waveguide, the transmission spectrum displays peaks or dips, respectively, which occur at the same central frequency. A fundamental study of the possible cavity modes in the near-infrared frequency band is also given. These filtering properties are then exploited to propose a nanoscale demultiplexer based on a Y-shaped plasmonic waveguide for separation of two different wavelengths, in selection or rejection, from an input broadband signal around 1550 nm. We detail coupling of the 2D add/drop Y connector to two cavities inserted on each of its branches.
A method for modeling discontinuities in a microwave coaxial transmission line
NASA Technical Reports Server (NTRS)
Otoshi, T. Y.
1992-01-01
A method for modeling discontinuities in a coaxial transmission line is presented. The methodology involves the use of a nonlinear least-squares fit program to optimize the fit between theoretical data (from the model) and experimental data. When this method was applied to modeling discontinuities in a slightly damaged Galileo spacecraft S-band (2.295-GHz) antenna cable, excellent agreement between theory and experiment was obtained over a frequency range of 1.70-2.85 GHz. The same technique can be applied for diagnostics and locating unknown discontinuities in other types of microwave transmission lines, such as rectangular, circular, and beam waveguides.
A method for modeling discontinuities in a microwave coaxial transmission line
NASA Astrophysics Data System (ADS)
Otoshi, T. Y.
1992-08-01
A method for modeling discontinuities in a coaxial transmission line is presented. The methodology involves the use of a nonlinear least-squares fit program to optimize the fit between theoretical data (from the model) and experimental data. When this method was applied to modeling discontinuities in a slightly damaged Galileo spacecraft S-band (2.295-GHz) antenna cable, excellent agreement between theory and experiment was obtained over a frequency range of 1.70-2.85 GHz. The same technique can be applied for diagnostics and locating unknown discontinuities in other types of microwave transmission lines, such as rectangular, circular, and beam waveguides.
Ogunlade, Olumide; Chen, Yifan; Kosmas, Panagiotis
2010-01-01
Measurements of the complex permittivity of various concentrations of microbubbles in ethylene glycol liquid phantom have been carried out. A cavity perturbation technique using custom rectangular waveguide cavities, which are sensitive to small changes in the permittivity of the perturber, has been employed. Three different frequencies within the ultra-wideband (UWB) frequency spectrum have been used for the experiments. The results show that the concentration of the air filled microbubbles required to achieve a dielectric contrast as little as 2% exceeds the recommended dosage used in clinical ultrasound applications, by more than two orders of magnitude.
Bistability in Josephson Junction array resonator
NASA Astrophysics Data System (ADS)
Muppalla, Phani Raja; Alexandre Blais Collaboration; Christian Kraglund Andersen Collaboration; Ioan Pop, Lukas Gruenhaupt Collaboration; Michel Devoret Collaboration; Oscar Garguilo, Gerhard Kirchmair Team
``We present an experimental analysis of the Kerr effect of extended plasma resonances in a 1000 Josephson junction (JJ) chain resonator inside a rectangular waveguide. The Kerr effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. We study the bistable behavior, using a pump probe scheme on two modes of the JJ array, exploiting the Cross-Kerr effect in our system. In order to understand the behavior of the bi-stability we perform continuous time measurements to observe the switching between the two metastable states. We observe a strong dependence of the switching rates on the photon number and the drive frequency.''
Novel types of surface acoustic wave microreflectors - Performance analysis and simulations
NASA Astrophysics Data System (ADS)
Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.
1990-06-01
Surface acoustic waves for micrograting reflectors have been characterized. Based on the perturbation theory, eight different types of structures on an acoustic waveguide were analyzed. Results of simulations of all eight types of corrugation structures were evaluated in order to find the least leaky waveguide, the most efficient reflector (with minimum necessary perturbations), and the optimal mode shape for improved performances. General design curves are presented in order to illustrate the behavior of the incident and reflected waves under a variety of structural conditions. Analytic expressions for the calculations of the mode amplitude and mode shape, and for general acoustic corrugations are derived and then the simulations results are presented.
Towards an integrated AlGaAs waveguide platform for phase and polarisation shaping
NASA Astrophysics Data System (ADS)
Maltese, G.; Halioua, Y.; Lemaître, A.; Gomez-Carbonell, C.; Karimi, E.; Banzer, P.; Ducci, S.
2018-05-01
We propose, design and fabricate an on-chip AlGaAs waveguide capable of generating a controlled phase delay of π/2 between the guided transverse electric and magnetic modes. These modes possess significantly strong longitudinal field components as a direct consequence of their strong lateral confinement in the waveguide. We demonstrate that the effect of the device on a linearly polarised input beam is the generation of a field, which is circularly polarised in its transverse components and carries a phase vortex in its longitudinal component. We believe that the discussed integrated platform enables the generation of light beams with tailored phase and polarisation distributions.
Islam, M T; Samsuzzaman, M
2014-01-01
This paper introduces a new configuration of compact, triangular- and diamond-slotted, microstrip-fed, low-profile antenna for C/X band applications on polytetrafluoroethylene glass microfiber reinforced material substrate. The antenna is composed of a rectangular-shaped patch containing eight triangles and two diamond-shaped slots and an elliptical-slotted ground plane. The rectangular-shaped patch is obtained by cutting two diamond slots in the middle of the rectangular patch, six triangular slots on the left and right side of the patch, and two triangular slots on the up and down side of the patch. The slotted radiating patch, the elliptical-slotted ground plane, and the microstrip feed enable the matching bandwidth to be widened. A prototype of the optimized antenna was fabricated on polytetrafluoroethylene glass microfiber reinforced material substrate using LPKF prototyping machine and investigated to validate the proposed design. The simulated results are compared with the measured data, and good agreement is achieved. The proposed antenna offers fractional bandwidths of 13.69% (7.78-8.91 GHz) and 10.35% (9.16-10.19 GHz) where S11 < -10 dB at center frequencies of 8.25 GHz and 9.95 GHz, respectively, and relatively stable gain, good radiation efficiency, and omnidirectional radiation patterns in the matching band.
Photonic crystal waveguide-based biosensor for detection of diseases
NASA Astrophysics Data System (ADS)
Chopra, Harshita; Kaler, Rajinder S.; Painam, Balveer
2016-07-01
A biosensor is a device that is used to detect the analytes or molecules of a sample by means of a binding mechanism. A two-dimensional photonic crystal waveguide-based biosensor is designed with a diamond-shaped ring resonator and two waveguides: a bus waveguide and a drop waveguide. The sensing mechanism is based on change in refractive index of the analytes, leading to a shift in the peak resonant wavelength. This mechanism can be used in the field of biomedical treatment where different body fluids such as blood, tears, saliva, or urine can be used as the analyte in which different components of the fluid can be detected. It can also be used to differentiate between the cell lines of a normal and an unhealthy human being. Average value of quality factor for this device comes out to be 1082.2063. For different analytes used, the device exhibits enhanced sensitivity and, hence, it is useful for the detection of diseases.
Fusion of Renewable Ring Resonator Lasers and Ultrafast Laser Inscribed Photonic Waveguides
Chandrahalim, Hengky; Rand, Stephen C.; Fan, Xudong
2016-01-01
We demonstrated the monolithic integration of reusable and wavelength reconfigurable ring resonator lasers and waveguides of arbitrary shapes to out-couple and guide laser emission on the same fused-silica chip. The ring resonator hosts were patterned by a single-mask standard lithography, whereas the waveguides were inscribed in the proximity of the ring resonator by using 3-dimensional femtosecond laser inscription technology. Reusability of the integrated ring resonator – waveguide system was examined by depositing, removing, and re-depositing dye-doped SU-8 solid polymer, SU-8 liquid polymer, and liquid solvent (toluene). The wavelength reconfigurability was validated by employing Rhodamine 6G (R6G) and 3,3′-Diethyloxacarbocyanine iodide (CY3) as exemplary gain media. In all above cases, the waveguide was able to couple out and guide the laser emission. This work opens a door to reconfigurable active and passive photonic devices for on-chip coherent light sources, optical signal processing, and the investigation of new optical phenomena. PMID:27600872
Fusion of Renewable Ring Resonator Lasers and Ultrafast Laser Inscribed Photonic Waveguides.
Chandrahalim, Hengky; Rand, Stephen C; Fan, Xudong
2016-09-07
We demonstrated the monolithic integration of reusable and wavelength reconfigurable ring resonator lasers and waveguides of arbitrary shapes to out-couple and guide laser emission on the same fused-silica chip. The ring resonator hosts were patterned by a single-mask standard lithography, whereas the waveguides were inscribed in the proximity of the ring resonator by using 3-dimensional femtosecond laser inscription technology. Reusability of the integrated ring resonator - waveguide system was examined by depositing, removing, and re-depositing dye-doped SU-8 solid polymer, SU-8 liquid polymer, and liquid solvent (toluene). The wavelength reconfigurability was validated by employing Rhodamine 6G (R6G) and 3,3'-Diethyloxacarbocyanine iodide (CY3) as exemplary gain media. In all above cases, the waveguide was able to couple out and guide the laser emission. This work opens a door to reconfigurable active and passive photonic devices for on-chip coherent light sources, optical signal processing, and the investigation of new optical phenomena.
Luo, Chan; Jiang, Dan; Ding, Chuan-Fan; Konenkov, Nikolai V
2009-09-01
Numeric experiments were performed to study the first and second stability regions and find the optimal configurations of a quadrupole mass filter constructed of circular quadrupole rods with a rectangular wave power supply. The ion transmission contours were calculated using ion trajectory simulations. For the first stability region, the optimal rod set configuration and the ratio r/r(0) is 1.110-1.115; for the second stability region, it is 1.128-1.130. Low-frequency direct current (DC) modulation with the parameters of m = 0.04-0.16 and nu = omega/Omega = 1/8-1/14 improves the mass peak shape of the circular rod quadrupole mass filter at the optimal r/r(0) ratio of 1.130. The amplitude modulation does not improve mass peak shape. Copyright (c) 2009 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Sancarlos-González, Abel; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Sapena-Bano, Angel; Riera-Guasp, Martin; Martinez-Roman, Javier; Perez-Cruz, Juan; Roger-Folch, Jose
2017-12-01
AC lines of industrial busbar systems are usually built using conductors with rectangular cross sections, where each phase can have several parallel conductors to carry high currents. The current density in a rectangular conductor, under sinusoidal conditions, is not uniform. It depends on the frequency, on the conductor shape, and on the distance between conductors, due to the skin effect and to proximity effects. Contrary to circular conductors, there are not closed analytical formulas for obtaining the frequency-dependent impedance of conductors with rectangular cross-section. It is necessary to resort to numerical simulations to obtain the resistance and the inductance of the phases, one for each desired frequency and also for each distance between the phases' conductors. On the contrary, the use of the parametric proper generalized decomposition (PGD) allows to obtain the frequency-dependent impedance of an AC line for a wide range of frequencies and distances between the phases' conductors by solving a single simulation in a 4D domain (spatial coordinates x and y, the frequency and the separation between conductors). In this way, a general "virtual chart" solution is obtained, which contains the solution for any frequency and for any separation of the conductors, and stores it in a compact separated representations form, which can be easily embedded on a more general software for the design of electrical installations. The approach presented in this work for rectangular conductors can be easily extended to conductors with an arbitrary shape.
Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics.
Cheng, Dewen; Wang, Yongtian; Xu, Chen; Song, Weitao; Jin, Guofan
2014-08-25
Small thickness and light weight are two important requirements for a see-through near-eye display which are achieved in this paper by using two advanced technologies: geometrical waveguide and freeform optics. A major problem associated with the geometrical waveguide is the stray light which can severely degrade the display quality. The causes and solutions to this problem are thoroughly studied. A mathematical model of the waveguide is established and a non-sequential ray tracing algorithm is developed, which enable us to carefully examine the stray light of the planar waveguide and explore a global searching method to find an optimum design with the least amount of stray light. A projection optics using freeform surfaces on a wedge shaped prism is also designed. The near-eye display integrating the projection optics and the waveguide has a field of view of 28°, an exit pupil diameter of 9.6mm and an exit pupil distance of 20mm. In our final design, the proportion of the stray light energy over the image output energy of the waveguide is reduced to 2%, the modulation transfer function values across the entire field of the eyepiece are above 0.5 at 30 line pairs/mm (lps/mm). A proof-of-concept prototype of the proposed geometrical waveguide near-eye display is developed and demonstrated.
Control of single-photon routing in a T-shaped waveguide by another atom
NASA Astrophysics Data System (ADS)
Huang, Jin-Song; Wang, Jing-Wen; Wang, Yan; Li, Yan-Ling; Huang, You-Wen
2018-04-01
Quantum routers with a high routing rate of much more than 0.5 are of great importance for quantum networks. We provide a scheme to perform bidirectional high routing-rate transfer in a T-shaped coupled-resonator waveguide (CRW), which extends a recent unidirectional scheme proposed by Lu et al. (Opt Express 23:22955, 2015). By locating an extra two-level atom in the infinite CRW channel of the T-shaped CRW with a three-level system, an effective potential is generated. Our numerical results show that high routing capability from the infinite CRW channel to the semi-infinite channel can be achieved, and routing capability from the semi-infinite CRW channel to the infinite channel can also be significantly enhanced, with the help of the effective potential. Therefore, the proposed double-atom configuration could be utilized as a bidirectional quantum routing controller to implement high transfer rate routing of single photons.
Turbulent slurry flow measurement using ultrasonic Doppler method in rectangular pipe
NASA Astrophysics Data System (ADS)
Bareš, V.; Krupička, J.; Picek, T.; Brabec, J.; Matoušek, V.
2014-03-01
Distribution of velocity and Reynolds stress was measured using ultrasonic velocimetry in flows of water and Newtonian water-ballotini slurries in a pressurized Plexiglas pipe. Profiles of the measured parameters were sensed in the vertical plane at the centreline of a rectangular cross section of the pipe. Reference measurements in clear water produced expected symmetrical velocity profiles the shape of which was affected by secondary currents developed in the rectangular pipe. Slurry-flow experiments provided information on an effect of the concentration of solid grains on the internal structure of the flow. Strong attenuation of velocity fluctuations caused by a presence of grains was identified. The attenuation increased with the increasing local concentration of the grains.
Analysis and numerical simulation research of the heating process in the oven
NASA Astrophysics Data System (ADS)
Chen, Yawei; Lei, Dingyou
2016-10-01
How to use the oven to bake delicious food is the most concerned problem of the designers and users of the oven. For this intent, this paper analyzed the heat distribution in the oven based on the basic operation principles and proceeded the data simulation of the temperature distribution on the rack section. Constructing the differential equation model of the temperature distribution changes in the pan when the oven works based on the heat radiation and heat transmission, based on the idea of utilizing cellular automation to simulate heat transfer process, used ANSYS software to proceed the numerical simulation analysis to the rectangular, round-cornered rectangular, elliptical and circular pans and giving out the instantaneous temperature distribution of the corresponding shapes of the pans. The temperature distribution of the rectangular and circular pans proves that the product gets overcooked easily at the corners and edges of rectangular pans but not of a round pan.
Transverse Injection into Subsonic Crossflow with Various Injector Orifice Geometries
NASA Technical Reports Server (NTRS)
Foster, Lancert E.; Zaman, Khairul B.
2010-01-01
Computational and experimental results are presented for a case study of single injectors employed in 90 deg transverse injection into a non-reacting subsonic flow. Different injector orifice shapes are used (including circular, square, diamond-shaped, and wide rectangular slot), all with constant cross-sectional area, to observe the effects of this variation on injector penetration and mixing. Whereas the circle, square, and diamond injector produce similar jet plumes, the wide rectangular slot produces a plume with less vertical penetration than the others. There is also some evidence that the diamond injector produces slightly faster penetration with less mixing of the injected fluid. In addition, a variety of rectangular injectors were analyzed, with varying length/width ratios. Both experimental and computational data show improved plume penetration with increased streamwise orifice length. 3-D Reynolds-Averaged Navier-Stokes (RANS) results are obtained for the various injector geometries using NCC (National Combustion Code) with the kappa-epsilon turbulence model in multi-species modes on an unstructured grid. Grid sensitivity results are also presented which indicate consistent qualitative trends in the injector performance comparisons with increasing grid refinement.
EIT-Based Fabric Pressure Sensing
Yao, A.; Yang, C. L.; Seo, J. K.; Soleimani, M.
2013-01-01
This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results. PMID:23533538
Analysis of a Waveguide-Fed Metasurface Antenna
NASA Astrophysics Data System (ADS)
Smith, David R.; Yurduseven, Okan; Mancera, Laura Pulido; Bowen, Patrick; Kundtz, Nathan B.
2017-11-01
The metasurface concept has emerged as an advantageous reconfigurable antenna architecture for beam forming and wave-front shaping, with applications that include satellite and terrestrial communications, radar, imaging, and wireless power transfer. The metasurface antenna consists of an array of metamaterial elements distributed over an electrically large structure, each subwavelength in dimension and with subwavelength separation between elements. In the antenna configuration we consider, the metasurface is excited by the fields from an attached waveguide. Each metamaterial element can be modeled as a polarizable dipole that couples the waveguide mode to radiation modes. Distinct from the phased array and electronically-scanned-antenna architectures, a dynamic metasurface antenna does not require active phase shifters and amplifiers but rather achieves reconfigurability by shifting the resonance frequency of each individual metamaterial element. We derive the basic properties of a one-dimensional waveguide-fed metasurface antenna in the approximation in which the metamaterial elements do not perturb the waveguide mode and are noninteracting. We derive analytical approximations for the array factors of the one-dimensional antenna, including the effective polarizabilities needed for amplitude-only, phase-only, and binary constraints. Using full-wave numerical simulations, we confirm the analysis, modeling waveguides with slots or complementary metamaterial elements patterned into one of the surfaces.
Design considerations for the beam-waveguide retrofit of a ground antenna station
NASA Technical Reports Server (NTRS)
Veruttipong, T.; Withington, J.; Galindo-Israel, V.; Imbriale, W.; Bathker, D.
1986-01-01
Retrofitting an antenna that was originally designed without a beam waveguide introduces special difficulties because it is desirable to minimize alteration of the original mechanical truss work and to image the actual feed without distortion at the focal point of the dual-shaped reflector. To obtain an acceptable image, certain Geometrical Optics (GO) design criteria are followed as closely as possible. The problems associated with applying these design criteria to a 34-meter dual-shaped DSN (Deep Space Network) antenna are discussed. The use of various diffraction analysis techniques in the design process is also discussed. GTD and FFT algorithms are particularly necessary at the higher frequencies, while Physical Optics and Spherical Wave Expansions proved necessary at the lower frequencies.
Martin, Bruno; Morand, Alain; Benech, Pierre; Leblond, Gregory; Blaize, Sylvain; Lerondel, Gilles; Royer, Pascal; Kern, Pierre; Le Coarer, Etienne
2009-01-15
A compact static Fourier transform spectrometer for integrated optics is proposed. It is based on a plane leaky loop structure combined with a plane waveguide. The interference pattern produced in the loop structure leaks outside of it and is guided in the plane waveguide to the photodetector array. This configuration allows one to control the shape of the field pattern at the end of the plane waveguide. A large fringe pattern with a high interference fringe contrast is obtained. A two-dimensional model based on an aperiodic Fourier modal method is used to modelize the coupling between the bent and the plane waveguides, completed with the Helmholtz-Kirchhoff propagation. This concept gives access to plan and compact spectrometers requiring only a single low-cost realization process step. The simulation has been done to realize a spectrometer in glass integrated optics (Deltalambda=6.1 nm at 1500 nm).
Liu, Hongliang; Tan, Yang; Vázquez de Aldana, Javier R; Chen, Feng
2014-08-01
We report on the fabrication of depressed cladding waveguides in Nd:GdVO(4) laser crystal by using femtosecond laser inscription. The cross section of the structure is a circular shape with a diameter of 150 μm. Under the optical pump at 808 nm, the continuous wave (cw) as well as pulsed (Q-switched by graphene saturable absorber) waveguide lasing at 1064 nm has been realized, supporting guidance of both TE and TM polarizations. The maximum output power of 0.57 W was obtained in the cw regime, while the maximum pulse energy of the pulsed laser emissions was up to 19 nJ (corresponding to a maximum average output power of 0.33 W, at a resonant frequency of 18 MHz). The slope efficiencies achieved for the cw and pulsed Nd:GdVO(4) waveguide lasers were as high as 68% and 52%, respectively.
Benedikovic, Daniel; Alonso-Ramos, Carlos; Pérez-Galacho, Diego; Guerber, Sylvain; Vakarin, Vladyslav; Marcaud, Guillaume; Le Roux, Xavier; Cassan, Eric; Marris-Morini, Delphine; Cheben, Pavel; Boeuf, Frédéric; Baudot, Charles; Vivien, Laurent
2017-09-01
Grating couplers enable position-friendly interfacing of silicon chips by optical fibers. The conventional coupler designs call upon comparatively complex architectures to afford efficient light coupling to sub-micron silicon-on-insulator (SOI) waveguides. Conversely, the blazing effect in double-etched gratings provides high coupling efficiency with reduced fabrication intricacy. In this Letter, we demonstrate for the first time, to the best of our knowledge, the realization of an ultra-directional L-shaped grating coupler, seamlessly fabricated by using 193 nm deep-ultraviolet (deep-UV) lithography. We also include a subwavelength index engineered waveguide-to-grating transition that provides an eight-fold reduction of the grating reflectivity, down to 1% (-20 dB). A measured coupling efficiency of -2.7 dB (54%) is achieved, with a bandwidth of 62 nm. These results open promising prospects for the implementation of efficient, robust, and cost-effective coupling interfaces for sub-micrometric SOI waveguides, as desired for large-volume applications in silicon photonics.
Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides.
Nguyen, Huu-Dat; Ródenas, Airán; Vázquez de Aldana, Javier R; Martínez, Javier; Chen, Feng; Aguiló, Magdalena; Pujol, Maria Cinta; Díaz, Francesc
2016-04-04
Mid-infrared lithium niobate cladding waveguides have great potential in low-loss on-chip non-linear optical instruments such as mid-infrared spectrometers and frequency converters, but their three-dimensional femtosecond-laser fabrication is currently not well understood due to the complex interplay between achievable depressed index values and the stress-optic refractive index changes arising as a function of both laser fabrication parameters, and cladding arrangement. Moreover, both the stress-field anisotropy and the asymmetric shape of low-index tracks yield highly birefringent waveguides not useful for most applications where controlling and manipulating the polarization state of a light beam is crucial. To achieve true high performance devices a fundamental understanding on how these waveguides behave and how they can be ultimately optimized is required. In this work we employ a heuristic modelling approach based on the use of standard optical characterization data along with standard computational numerical methods to obtain a satisfactory approximate solution to the problem of designing realistic laser-written circuit building-blocks, such as straight waveguides, bends and evanescent splitters. We infer basic waveguide design parameters such as the complex index of refraction of laser-written tracks at 3.68 µm mid-infrared wavelengths, as well as the cross-sectional stress-optic index maps, obtaining an overall waveguide simulation that closely matches the measured mid-infrared waveguide properties in terms of anisotropy, mode field distributions and propagation losses. We then explore experimentally feasible waveguide designs in the search of a single-mode low-loss behaviour for both ordinary and extraordinary polarizations. We evaluate the overall losses of s-bend components unveiling the expected radiation bend losses of this type of waveguides, and finally showcase a prototype design of a low-loss evanescent splitter. Developing a realistic waveguide model with which robust waveguide designs can be developed will be key for exploiting the potential of the technology.
Li, Mingzhong; Xue, Jianquan; Li, Yanchao; Tang, Shukai
2014-01-01
Considering the influence of particle shape and the rheological properties of fluid, two artificial intelligence methods (Artificial Neural Network and Support Vector Machine) were used to predict the wall factor which is widely introduced to deduce the net hydrodynamic drag force of confining boundaries on settling particles. 513 data points were culled from the experimental data of previous studies, which were divided into training set and test set. Particles with various shapes were divided into three kinds: sphere, cylinder, and rectangular prism; feature parameters of each kind of particle were extracted; prediction models of sphere and cylinder using artificial neural network were established. Due to the little number of rectangular prism sample, support vector machine was used to predict the wall factor, which is more suitable for addressing the problem of small samples. The characteristic dimension was presented to describe the shape and size of the diverse particles and a comprehensive prediction model of particles with arbitrary shapes was established to cover all types of conditions. Comparisons were conducted between the predicted values and the experimental results. PMID:24772024
Li, Mingzhong; Zhang, Guodong; Xue, Jianquan; Li, Yanchao; Tang, Shukai
2014-01-01
Considering the influence of particle shape and the rheological properties of fluid, two artificial intelligence methods (Artificial Neural Network and Support Vector Machine) were used to predict the wall factor which is widely introduced to deduce the net hydrodynamic drag force of confining boundaries on settling particles. 513 data points were culled from the experimental data of previous studies, which were divided into training set and test set. Particles with various shapes were divided into three kinds: sphere, cylinder, and rectangular prism; feature parameters of each kind of particle were extracted; prediction models of sphere and cylinder using artificial neural network were established. Due to the little number of rectangular prism sample, support vector machine was used to predict the wall factor, which is more suitable for addressing the problem of small samples. The characteristic dimension was presented to describe the shape and size of the diverse particles and a comprehensive prediction model of particles with arbitrary shapes was established to cover all types of conditions. Comparisons were conducted between the predicted values and the experimental results.
A new arrangement with nonlinear sidewalls for tanker ship storage panels
NASA Astrophysics Data System (ADS)
Ketabdari, M. J.; Saghi, H.
2013-03-01
Sloshing phenomenon in a moving container is a complicated free surface flow problem. It has a wide range of engineering applications, especially in tanker ships and Liquefied Natural Gas (LNG) carriers. When the tank in these vehicles is partially filled, it is essential to be able to evaluate the fluid dynamic loads on tank perimeter. Different geometric shapes such as rectangular, cylindrical, elliptical, spherical and circular conical have been suggested for ship storage tanks by previous researchers. In this paper a numerical model is developed based on incompressible and inviscid fluid motion for the liquid sloshing phenomenon. The coupled BEM-FEM is used to solve the governing equations and nonlinear free surface boundary conditions. The results are validated for rectangular container using data obtained for a horizontal periodic sway motion. Using the results of this model a new arrangement of trapezoidal shapes with quadratic sidewalls is suggested for tanker ship storage panels. The suggested geometric shape not only has a maximum surrounded tank volume to the constant available volume, but also reduces the sloshing effects more efficiently than the existing geometric shapes.
Baird, Mark E
2003-10-01
The size, shape, and absorption coefficient of a microalgal cell determines, to a first order approximation, the rate at which light is absorbed by the cell. The rate of absorption determines the maximum amount of energy available for photosynthesis, and can be used to calculate the attenuation of light through the water column, including the effect of packaging pigments within discrete particles. In this paper, numerical approximations are made of the mean absorption cross-section of randomly oriented cells, aA. The shapes investigated are spheroids, rectangular prisms with a square base, cylinders, cones and double cones with aspect ratios of 0.25, 0.5, 1, 2, and 4. The results of the numerical simulations are fitted to a modified sigmoid curve, and take advantage of three analytical solutions. The results are presented in a non-dimensionalised format and are independent of size. A simple approximation using a rectangular hyperbolic curve is also given, and an approach for obtaining the upper and lower bounds of aA for more complex shapes is outlined.
Islam, M. T.; Samsuzzaman, M.
2014-01-01
This paper introduces a new configuration of compact, triangular- and diamond-slotted, microstrip-fed, low-profile antenna for C/X band applications on polytetrafluoroethylene glass microfiber reinforced material substrate. The antenna is composed of a rectangular-shaped patch containing eight triangles and two diamond-shaped slots and an elliptical-slotted ground plane. The rectangular-shaped patch is obtained by cutting two diamond slots in the middle of the rectangular patch, six triangular slots on the left and right side of the patch, and two triangular slots on the up and down side of the patch. The slotted radiating patch, the elliptical-slotted ground plane, and the microstrip feed enable the matching bandwidth to be widened. A prototype of the optimized antenna was fabricated on polytetrafluoroethylene glass microfiber reinforced material substrate using LPKF prototyping machine and investigated to validate the proposed design. The simulated results are compared with the measured data, and good agreement is achieved. The proposed antenna offers fractional bandwidths of 13.69% (7.78–8.91 GHz) and 10.35% (9.16–10.19 GHz) where S11 < −10 dB at center frequencies of 8.25 GHz and 9.95 GHz, respectively, and relatively stable gain, good radiation efficiency, and omnidirectional radiation patterns in the matching band. PMID:24987742
Monolithic microwave integrated circuit devices for active array antennas
NASA Technical Reports Server (NTRS)
Mittra, R.
1984-01-01
Two different aspects of active antenna array design were investigated. The transition between monolithic microwave integrated circuits and rectangular waveguides was studied along with crosstalk in multiconductor transmission lines. The boundary value problem associated with a discontinuity in a microstrip line is formulated. This entailed, as a first step, the derivation of the propagating as well as evanescent modes of a microstrip line. The solution is derived to a simple discontinuity problem: change in width of the center strip. As for the multiconductor transmission line problem. A computer algorithm was developed for computing the crosstalk noise from the signal to the sense lines. The computation is based on the assumption that these lines are terminated in passive loads.
Ling, Kenyu; Kim, Hyung Ki; Yoo, Minyeong; Lim, Sungjoon
2015-01-01
In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn), a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA) to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%. PMID:26561815
Characterization of spin pumping effect in Permalloy/Cu/Pt microfabricated lateral devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Tatsuya, E-mail: tyamamoto@imr.tohoku.ac.jp; Seki, Takeshi; Takanashi, Koki
2014-05-07
We studied ferromagnetic resonance (FMR) for microfabricated lateral devices consisting of a Permalloy (Py) rectangular element and a Pt nano-element bridged by a Cu wire, which were located on a coplanar waveguide. A change in the resonance linewidth (Δf) was observed in the FMR spectra when the distance between Py and Pt (d) was varied. For devices with d < 400 nm, Δf definitely increased, suggesting the enhancement of the Gilbert damping constant (α). We discussed a possible reason for the this enhancement taking into account the increase in the efficiency of spin pumping into Cu due to the spin absorption of themore » attached Pt.« less
NASA Technical Reports Server (NTRS)
Pesch, W. A.
1970-01-01
Portable universal router can cut holes of large diameter and irregular shapes, machine recesses, and drill holes with certain edge-distance limitations. Rectangular and round holes may be cut without a template.
NASA Astrophysics Data System (ADS)
Zhou, Quanlin; Oldenburg, Curtis M.; Rutqvist, Jonny; Birkholzer, Jens T.
2017-11-01
There are two types of analytical solutions of temperature/concentration in and heat/mass transfer through boundaries of regularly shaped 1-D, 2-D, and 3-D blocks. These infinite-series solutions with either error functions or exponentials exhibit highly irregular but complementary convergence at different dimensionless times, td. In this paper, approximate solutions were developed by combining the error-function-series solutions for early times and the exponential-series solutions for late times and by using time partitioning at the switchover time, td0. The combined solutions contain either the leading term of both series for normal-accuracy approximations (with less than 0.003 relative error) or the first two terms for high-accuracy approximations (with less than 10-7 relative error) for 1-D isotropic (spheres, cylinders, slabs) and 2-D/3-D rectangular blocks (squares, cubes, rectangles, and rectangular parallelepipeds). This rapid and uniform convergence for rectangular blocks was achieved by employing the same time partitioning with individual dimensionless times for different directions and the product of their combined 1-D slab solutions. The switchover dimensionless time was determined to minimize the maximum approximation errors. Furthermore, the analytical solutions of first-order heat/mass flux for 2-D/3-D rectangular blocks were derived for normal-accuracy approximations. These flux equations contain the early-time solution with a three-term polynomial in √td and the late-time solution with the limited-term exponentials for rectangular blocks. The heat/mass flux equations and the combined temperature/concentration solutions form the ultimate kernel for fast simulations of multirate and multidimensional heat/mass transfer in porous/fractured media with millions of low-permeability blocks of varying shapes and sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Quanlin; Oldenburg, Curtis M.; Rutqvist, Jonny
There are two types of analytical solutions of temperature/concentration in and heat/mass transfer through boundaries of regularly shaped 1D, 2D, and 3D blocks. These infinite-series solutions with either error functions or exponentials exhibit highly irregular but complementary convergence at different dimensionless times, t d0. In this paper, approximate solutions were developed by combining the error-function-series solutions for early times and the exponential-series solutions for late times and by using time partitioning at the switchover time, t d0. The combined solutions contain either the leading term of both series for normal-accuracy approximations (with less than 0.003 relative error) or the firstmore » two terms for high-accuracy approximations (with less than 10-7 relative error) for 1D isotropic (spheres, cylinders, slabs) and 2D/3D rectangular blocks (squares, cubes, rectangles, and rectangular parallelepipeds). This rapid and uniform convergence for rectangular blocks was achieved by employing the same time partitioning with individual dimensionless times for different directions and the product of their combined 1D slab solutions. The switchover dimensionless time was determined to minimize the maximum approximation errors. Furthermore, the analytical solutions of first-order heat/mass flux for 2D/3D rectangular blocks were derived for normal-accuracy approximations. These flux equations contain the early-time solution with a three-term polynomial in √td and the late-time solution with the limited-term exponentials for rectangular blocks. The heat/mass flux equations and the combined temperature/concentration solutions form the ultimate kernel for fast simulations of multirate and multidimensional heat/mass transfer in porous/fractured media with millions of low-permeability blocks of varying shapes and sizes.« less
Zhou, Quanlin; Oldenburg, Curtis M.; Rutqvist, Jonny; ...
2017-10-24
There are two types of analytical solutions of temperature/concentration in and heat/mass transfer through boundaries of regularly shaped 1D, 2D, and 3D blocks. These infinite-series solutions with either error functions or exponentials exhibit highly irregular but complementary convergence at different dimensionless times, t d0. In this paper, approximate solutions were developed by combining the error-function-series solutions for early times and the exponential-series solutions for late times and by using time partitioning at the switchover time, t d0. The combined solutions contain either the leading term of both series for normal-accuracy approximations (with less than 0.003 relative error) or the firstmore » two terms for high-accuracy approximations (with less than 10-7 relative error) for 1D isotropic (spheres, cylinders, slabs) and 2D/3D rectangular blocks (squares, cubes, rectangles, and rectangular parallelepipeds). This rapid and uniform convergence for rectangular blocks was achieved by employing the same time partitioning with individual dimensionless times for different directions and the product of their combined 1D slab solutions. The switchover dimensionless time was determined to minimize the maximum approximation errors. Furthermore, the analytical solutions of first-order heat/mass flux for 2D/3D rectangular blocks were derived for normal-accuracy approximations. These flux equations contain the early-time solution with a three-term polynomial in √td and the late-time solution with the limited-term exponentials for rectangular blocks. The heat/mass flux equations and the combined temperature/concentration solutions form the ultimate kernel for fast simulations of multirate and multidimensional heat/mass transfer in porous/fractured media with millions of low-permeability blocks of varying shapes and sizes.« less
Integrated waveguide and nanostructured sensor platform for surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Pearce, Stuart J.; Pollard, Michael E.; Oo, SweZin; Chen, Ruiqi; Kalsi, Sumit; Charlton, Martin D. B.
2014-01-01
Limitations of current sensors include large dimensions, sometimes limited sensitivity and inherent single-parameter measurement capability. Surface-enhanced Raman spectroscopy can be utilized for environment and pharmaceutical applications with the intensity of the Raman scattering enhanced by a factor of 10. By fabricating and characterizing an integrated optical waveguide beneath a nanostructured precious metal coated surface a new surface-enhanced Raman spectroscopy sensing arrangement can be achieved. Nanostructured sensors can provide both multiparameter and high-resolution sensing. Using the slab waveguide core to interrogate the nanostructures at the base allows for the emission to reach discrete sensing areas effectively and should provide ideal parameters for maximum Raman interactions. Thin slab waveguide films of silicon oxynitride were etched and gold coated to create localized nanostructured sensing areas of various pitch, diameter, and shape. These were interrogated using a Ti:Sapphire laser tuned to 785-nm end coupled into the slab waveguide. The nanostructured sensors vertically projected a Raman signal, which was used to actively detect a thin layer of benzyl mercaptan attached to the sensors.
Lewandowski, Edward F.; Anderson, Petrus A.
1978-01-01
A portable punch and die jig includes a U-shaped jig of predetermined width having a slot of predetermined width in the base thereof extending completely across the width of the jig adapted to fit over the walls of rectangular tubes and a punch and die assembly disposed in a hole extending through the base of the jig communicating with the slot in the base of the jig for punching a hole in the walls of the rectangular tubes at precisely determined locations.
NASA Technical Reports Server (NTRS)
Malin, Michael C.
1990-01-01
One of the major problems in the series of ice runs was that the subsurface temperature probes did not function. AIC re-evaluated the design and, after testing several suitable sensors, installed 50 type T thermocouples, each 2 m long. In this design, each thermocouple was soldered to a rectangular copper foil spreader 0.3 com wide by 2.8 cm long to ensure an acute reading. The long rectangular shape was used because it had a large area for good thermal connection to the test material.
Fabrication of a negative PMMA master mold for soft-lithography by MeV ion beam lithography
NASA Astrophysics Data System (ADS)
Puttaraksa, Nitipon; Unai, Somrit; Rhodes, Michael W.; Singkarat, Kanda; Whitlow, Harry J.; Singkarat, Somsorn
2012-02-01
In this study, poly(methyl methacrylate) (PMMA) was investigated as a negative resist by irradiation with a high-fluence 2 MeV proton beam. The beam from a 1.7 MV Tandetron accelerator at the Plasma and Beam Physics Research Facility (PBP) of Chiang Mai University is shaped by a pair of computer-controlled L-shaped apertures which are used to expose rectangular pattern elements with 1-1000 μm side length. Repeated exposure of rectangular pattern elements allows a complex pattern to be built up. After subsequent development, the negative PMMA microstructure was used as a master mold for casting poly(dimethylsiloxane) (PDMS) following a standard soft-lithography process. The PDMS chip fabricated by this technique was demonstrated to be a microfluidic device.
Study on induced strain in direct nanoimprint lithography
NASA Astrophysics Data System (ADS)
Watanabe, Kenta; Iida, Tatsuya; Yasuda, Masaaki; Kawata, Hiroaki; Hirai, Yoshihiko
2018-06-01
The induced shear strain distribution in a polymer film is investigated by computational study in a direct nanoimprint process. The effects of the polymer thickness, mold pattern shape such as rectangular, triangular or overcut pattern shape, and the coefficient of friction between the mold and the polymer are studied by computational work. As the coefficient of friction increases, the induced shear strain increases along the mold surface. Depending on the polymer thickness, the shear strain is induced in the residual and/or pattern area. In the triangular pattern, the strain is induced in the pattern central area. The results suggest that shear stress remains in the triangular pattern area in the direct nanoimprint process. On the other hand, the rectangular pattern is suitable for suppressing the induced strain inside the pattern.
A modal approach to piano soundboard vibroacoustic behavior.
Trévisan, Benjamin; Ege, Kerem; Laulagnet, Bernard
2017-02-01
This paper presents an analytical method for modeling the vibro-acoustic behavior of ribbed non-rectangular orthotropic clamped plates. To do this, the non-rectangular plate is embedded in an extended rectangular simply supported plate on which a spring distribution is added, blocking the extended part of the surface, and allowing the description of any inner surface shapes. The acoustical radiation of the embedded plate is ensured using the radiation impedances of the extended rectangular simply supported plate. This method is applied to an upright piano soundboard: a non-rectangular orthotropic plate ribbed in both directions by several straight stiffeners. A modal decomposition is adopted on the basis of the rectangular extended simply supported plate modes, making it possible to calculate the modes of a piano soundboard in the frequency range [0;3000] Hz, showing the different associated mode families. Likewise, the acoustical radiation is calculated using the radiation impedances of a simply supported baffled plate, demonstrating the influence of the string coupling point positions on the acoustic radiated power. The paper ends with the introduction of indicators taking into account spatial and spectral variations of the excitation depending on the notes, which add to the accuracy of the study from the musical standpoint. A parametrical study, which includes several variations of soundboard design, highlights the complexity of rendering high-pitched notes homogeneous.
2011-06-01
of a flat-top (thin lines) and a kink (thick lines) soliton . Here = 0.25,Q = 1.786 553 604 650 208 for the dark soliton (Q = 1.786 553 7 for the flat...localization and transport in different physical settings, ranging from metal-dielectric (i.e. plasmonic) to photonic crystal waveguides. The solitons ...settings, ranging from metal--dielectric (i.e. plasmonic) to photonic crystal waveguides. The solitons exist for focusing, defocusing and even for
Propagation of spiral waves pinned to circular and rectangular obstacles.
Sutthiopad, Malee; Luengviriya, Jiraporn; Porjai, Porramain; Phantu, Metinee; Kanchanawarin, Jarin; Müller, Stefan C; Luengviriya, Chaiya
2015-05-01
We present an investigation of spiral waves pinned to circular and rectangular obstacles with different circumferences in both thin layers of the Belousov-Zhabotinsky reaction and numerical simulations with the Oregonator model. For circular objects, the area always increases with the circumference. In contrast, we varied the circumference of rectangles with equal areas by adjusting their width w and height h. For both obstacle forms, the propagating parameters (i.e., wavelength, wave period, and velocity of pinned spiral waves) increase with the circumference, regardless of the obstacle area. Despite these common features of the parameters, the forms of pinned spiral waves depend on the obstacle shapes. The structures of spiral waves pinned to circles as well as rectangles with the ratio w/h∼1 are similar to Archimedean spirals. When w/h increases, deformations of the spiral shapes are observed. For extremely thin rectangles with w/h≫1, these shapes can be constructed by employing semicircles with different radii which relate to the obstacle width and the core diameter of free spirals.
The effect of nozzle-exit-channel shape on resultant fiber diameter in melt-electrospinning
NASA Astrophysics Data System (ADS)
Esmaeilirad, Ahmad; Ko, Junghyuk; Rukosuyev, Maxym V.; Lee, Jason K.; Lee, Patrick C.; Jun, Martin B. G.
2017-01-01
In recent decades, electrospinning using a molten poly (ε-caprolactone) resin has gained attention for creating fibrous tissue scaffolds. The topography and diameter control of such electrospun microfibers is an important issue for their different applications in tissue engineering. Charge density, initial nozzle-exit-channel cross-sectional area, nozzle to collector distance, viscosity, and processing temperature are the most important input parameters that affect the final electrospun fiber diameters. In this paper we will show that the effect of nozzle-exit-channel shape is as important as the other effective parameters in a resultant fiber diameter. However, to the best of our knowledge, the effect of nozzle-exit-channel shapes on a resultant fiber diameter have not been studied before. Comparing rectangular and circular nozzles with almost the same exit-channel cross-sectional areas in a similar processing condition showed that using a rectangular nozzle resulted in decreasing final fiber diameter up to 50%. Furthermore, the effect of processing temperature on the final fiber topography was investigated.
NASA Astrophysics Data System (ADS)
Charcosset, G.; Tixier, M.
1981-12-01
During sudden ionospheric disturbances (SIDs), vertical electric field amplitude variations of waves emitted at 10.2 and 13.6 kHz in Norway and Liberia and observed in France were found to result in a regular decrease at the former wavelength and more complex behavior at the latter, where amplitude behavior depends on the importance of the SID. A theoretical interpretation employing a waveguide mode hypothesis of long distance wave propagation is presented, in which it is assumed that the D-region ionization enhancement produced by the solar X-ray flux during SID can be represented by a decrease of the waveguide height in which the shape of the density profile remains unchanged.
Fabrication of optical waveguides using laser direct writing method
NASA Astrophysics Data System (ADS)
Cho, Sung H.; Kim, Jung Min; Kim, Jae G.; Chang, Won S.; Lee, Eung S.
2004-09-01
Laser direct writing (LDW) process is developed using 3-rd harmonic Diode Pumped Solid State Laser (DPSSL) with the near UV wavelength of 355 nm. Photo-sensitive curable polymer is irradiated by UV laser and developed using polymer solvent to obtain quasi-3D patterns. We performed basic experiments for the various process conditions such as laser power, writing speed, laser focus, and optical polymer property to get the optimal conditions. This process could be applied to fabricate a single-mode waveguide without expensive mask projection method. Experimentally, the patterns of trapezoidal shape were manufactured into dimension of 8.4μm width and 7.5μm height. Propagation loss of planar waveguide was 1.42 dB/cm at wavelength of 1,550 nm.
Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure.
Wang, Hongqing; Yang, Junbo; Zhang, Jingjing; Huang, Jie; Wu, Wenjun; Chen, Dingbo; Xiao, Gongli
2016-03-15
A nanometeric plasmonic filter with a symmetrical multiple-teeth-shaped structure is investigated theoretically and numerically. A tunable wide bandgap is achievable by adjusting the depth and number of teeth. This phenomenon can be attributed to the interference superposition of the reflected and transmitted waves from each tooth. Moreover, the effects of varying the number of identical teeth are also discussed. It is found that the bandgap width increases continuously with the increasing number of teeth. The finite difference time domain method is used to simulate and compute the coupling of surface plasmon polariton waves with different structures in this Letter. The plasmonic waveguide filter that we propose here may have meaningful applications in ultra-fine spectrum analysis and high-density nanoplasmonic integration circuits.
Terahertz microfluidic sensing using a parallel-plate waveguide sensor.
Astley, Victoria; Reichel, Kimberly; Mendis, Rajind; Mittleman, Daniel M
2012-08-30
Refractive index (RI) sensing is a powerful noninvasive and label-free sensing technique for the identification, detection and monitoring of microfluidic samples with a wide range of possible sensor designs such as interferometers and resonators. Most of the existing RI sensing applications focus on biological materials in aqueous solutions in visible and IR frequencies, such as DNA hybridization and genome sequencing. At terahertz frequencies, applications include quality control, monitoring of industrial processes and sensing and detection applications involving nonpolar materials. Several potential designs for refractive index sensors in the terahertz regime exist, including photonic crystal waveguides, asymmetric split-ring resonators, and photonic band gap structures integrated into parallel-plate waveguides. Many of these designs are based on optical resonators such as rings or cavities. The resonant frequencies of these structures are dependent on the refractive index of the material in or around the resonator. By monitoring the shifts in resonant frequency the refractive index of a sample can be accurately measured and this in turn can be used to identify a material, monitor contamination or dilution, etc. The sensor design we use here is based on a simple parallel-plate waveguide. A rectangular groove machined into one face acts as a resonant cavity (Figures 1 and 2). When terahertz radiation is coupled into the waveguide and propagates in the lowest-order transverse-electric (TE1) mode, the result is a single strong resonant feature with a tunable resonant frequency that is dependent on the geometry of the groove. This groove can be filled with nonpolar liquid microfluidic samples which cause a shift in the observed resonant frequency that depends on the amount of liquid in the groove and its refractive index. Our technique has an advantage over other terahertz techniques in its simplicity, both in fabrication and implementation, since the procedure can be accomplished with standard laboratory equipment without the need for a clean room or any special fabrication or experimental techniques. It can also be easily expanded to multichannel operation by the incorporation of multiple grooves. In this video we will describe our complete experimental procedure, from the design of the sensor to the data analysis and determination of the sample refractive index.
Curved Waveguide Based Nuclear Fission for Small, Lightweight Reactors
NASA Technical Reports Server (NTRS)
Coker, Robert; Putnam, Gabriel
2012-01-01
The focus of the presented work is on the creation of a system of grazing incidence, supermirror waveguides for the capture and reuse of fission sourced neutrons. Within research reactors, neutron guides are a well known tool for directing neutrons from the confined and hazardous central core to a more accessible testing or measurement location. Typical neutron guides have rectangular, hollow cross sections, which are crafted as thin, mirrored waveguides plated with metal (commonly nickel). Under glancing angles with incoming neutrons, these waveguides can achieve nearly lossless transport of neutrons to distant instruments. Furthermore, recent developments have created supermirror surfaces which can accommodate neutron grazing angles up to four times as steep as nickel. A completed system will form an enclosing ring or spherical resonator system to a coupled neutron source for the purpose of capturing and reusing free neutrons to sustain and/or accelerate fission. While grazing incidence mirrors are a known method of directing and safely using neutrons, no method has been disclosed for capture and reuse of neutrons or sustainment of fission using a circular waveguide structure. The presented work is in the process of fabricating a functional, highly curved, neutron supermirror using known methods of Ni-Ti layering capable of achieving incident reflection angles up to four times steeper than nickel alone. Parallel work is analytically investigating future geometries, mirror compositions, and sources for enabling sustained fission with applicability to the propulsion and energy goals of NASA and other agencies. Should research into this concept prove feasible, it would lead to development of a high energy density, low mass power source potentially capable of sustaining fission with a fraction of the standard critical mass for a given material and a broadening of feasible materials due to reduced rates of release, absorption, and non-fission for neutrons. This advance could be applied to direct propulsion through guided fission products or as a secondary energy source for high impulse electric propulsion. It would help meet national needs for highly efficient energy sources with limited dependence on fossil fuels or conflict materials, and it would improve the use of low grade fissile materials which would help reduce national stockpiles and waste.
Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate
NASA Technical Reports Server (NTRS)
Himmer, Phillip; Battle, Philip; Suckow, William; Switzer, Greg
2011-01-01
This work proposes to establish the feasibility of fabricating isolated ridge waveguides in 5% MgO:LN. Ridge waveguides in MgO:LN will significantly improve power handling and conversion efficiency, increase photonic component integration, and be well suited to spacebased applications. The key innovation in this effort is to combine recently available large, high-photorefractive-damage-threshold, z-cut 5% MgO:LN with novel ridge fabrication techniques to achieve high-optical power, low-cost, high-volume manufacturing of frequency conversion structures. The proposed ridge waveguide structure should maintain the characteristics of the periodically poled bulk substrate, allowing for the efficient frequency conversion typical of waveguides and the high optical damage threshold and long lifetimes typical of the 5% doped bulk substrate. The low cost and large area of 5% MgO:LN wafers, and the improved performance of the proposed ridge waveguide structure, will enhance existing measurement capabilities as well as reduce the resources required to achieve high-performance specifications. The purpose of the ridge waveguides in MgO:LN is to provide platform technology that will improve optical power handling and conversion efficiency compared to existing waveguide technology. The proposed ridge waveguide is produced using standard microfabrication techniques. The approach is enabled by recent advances in inductively coupled plasma etchers and chemical mechanical planarization techniques. In conjunction with wafer bonding, this fabrication methodology can be used to create arbitrarily shaped waveguides allowing complex optical circuits to be engineered in nonlinear optical materials such as magnesium doped lithium niobate. Researchers here have identified NLO (nonlinear optical) ridge waveguide structures as having suitable value to be the leading frequency conversion structures. Its value is based on having the low-cost fabrication necessary to satisfy the challenging pricing requirements as well as achieve the power handling and other specifications in a suitably compact package.
Klehr, A; Wenzel, H; Fricke, J; Bugge, F; Erbert, G
2014-10-06
We have developed a diode-laser based master oscillator power amplifier (MOPA) light source which emits high-power spectrally stabilized and nearly-diffraction limited optical pulses in the nanoseconds range as required by many applications. The MOPA consists of a distributed Bragg reflector (DBR) laser as master oscillator driven by a constant current and a ridge waveguide power amplifier (PA) which can be driven by a constant current (DC) or by rectangular current pulses with a width of 5 ns at a repetition frequency of 200 kHz. Under pulsed operation the amplifier acts as an optical gate, converting the CW input beam emitted by the DBR laser into a train of short amplified optical pulses. With this experimental MOPA arrangement no relaxation oscillations occur. A continuous wave power of 1 W under DC injection and a pulse power of 4 W under pulsed operation are reached. For both operational modes the optical spectrum of the emission of the amplifier exhibits a peak at a constant wavelength of 973.5 nm with a spectral width < 10 pm.
Tantawi, Sami G.; Vlieks, Arnold E.
1998-09-01
A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.
New receiving line for the remote-steering antenna of the 140 GHz CTS diagnostics in the FTU Tokamak
NASA Astrophysics Data System (ADS)
D'Arcangelo, O.; Bin, W.; Bruschi, A.; Cappelli, M.; Fanale, F.; Gittini, G.; Pallotta, F.; Rocchi, G.; Tudisco, O.; Garavaglia, S.; Granucci, G.; Moro, A.; Tuccillo, A. A.
2018-01-01
A new receiving antenna for collecting signals of the Collective Thomson Scattering (CTS) diagnostics in FTU Tokamak has been recently installed. The squared corrugated section and the precisely defined length make it possible to receive from different directions by remotely steering the receiving mirrors. This type of Remote-Steering (RS) antennas, being studied on FTU for the DEMO Electron Cyclotron Heating (ECH) system launch, is already installed on the W7- X stellarator and will be tested in the next campaign. The transmission of the signal from the antenna in the tokamak hall to the CTS diagnostics hall will be mainly realized by means of oversized circular corrugated waveguides carrying the hybrid HE11 (quasi-gaussian) waveguide mode, with inclusion of a special smooth-waveguide section and a short run of reduced-size square-corrugated waveguide through the tokamak bio-shield. The coupling between different waveguide types is made with ellipsoidal focusing mirrors, using quasi-optical matching formulas between the gaussian-shaped beams in input and output to the waveguides. In this work, after a complete study of feasibility of the overall line, a design for the receiving line will be proposed, in order to realize an executive layout to be used as a guideline for the commissioning phase.
Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics
Bian, Yusheng; Guo, Feng; Yang, Shujie; Mao, Zhangming; Bachman, Hunter; Tang, Shi-Yang; Ren, Liqiang; Zhang, Bin; Gong, Jianying; Guo, Xiasheng
2017-01-01
The precise manipulation of acoustic fields in microfluidics is of critical importance for the realization of many biomedical applications. Despite the tremendous efforts devoted to the field of acoustofluidics during recent years, dexterous control, with an arbitrary and complex acoustic wavefront, in a prescribed, microscale region is still out of reach. Here, we introduce the concept of acoustofluidic waveguide, a three-dimensional compact configuration that is capable of locally guiding acoustic waves into a fluidic environment. Through comprehensive numerical simulations, we revealed the possibility of forming complex field patterns with defined pressure nodes within a highly localized, pre-determined region inside the microfluidic chamber. We also demonstrated the tunability of the acoustic field profile through controlling the size and shape of the waveguide geometry, as well as the operational frequency of the acoustic wave. The feasibility of the waveguide concept was experimentally verified via microparticle trapping and patterning. Our acoustofluidic waveguiding structures can be readily integrated with other microfluidic configurations and can be further designed into more complex types of passive acoustofluidic devices. The waveguide platform provides a promising alternative to current acoustic manipulation techniques and is useful in many applications such as single-cell analysis, point-of-care diagnostics, and studies of cell–cell interactions. PMID:29358901
Generalization in Place Learning and Geometry Knowledge in Rats
ERIC Educational Resources Information Center
Tommasi, Luca; Thinus-Blanc, Catherine
2004-01-01
Rats were trained to search for a food reward hidden under sawdust in the center of a square-shaped enclosure designed to force orientation on the basis of the overall geometry of the environment. They were then tested in a number of enclosures differing in shape and in size (rectangular-, double-side square-, and equilateral triangle-shaped…
NASA Astrophysics Data System (ADS)
Ahmadivand, Arash; Golmohammadi, Saeed
2014-01-01
With the purpose of guiding and splitting of optical power at C-band spectrum, we studied Y-shape splitters based on various shapes of nanoparticles as a plasmon waveguide. We applied different configurations of Gold (Au) and Silver (Ag) nanoparticles including spheres, rods and rings, to optimize the efficiency and losses of two and four-branch splitters. The best performance in light transportation specifically at telecom wavelength (λ≈1550 nm) is achieved by nanorings, due to an extra degree of freedom in their geometrical components. In addition, comparisons of several values for offset distance (doffset) of examined structures shows that Au nanoring splitters with feasible lower doffset have high quality in guiding and splitting of light through the structure. Finally, we studied four-branch Y-splitters based on Au and Ag nanorings with least possible offset distances to optimize the splitter performance. The power transmission as a key element is calculated for examined structures.
Free vibration of rectangular plates with a small initial curvature
NASA Technical Reports Server (NTRS)
Adeniji-Fashola, A. A.; Oyediran, A. A.
1988-01-01
The method of matched asymptotic expansions is used to solve the transverse free vibration of a slightly curved, thin rectangular plate. Analytical results for natural frequencies and mode shapes are presented in the limit when the dimensionless bending rigidity, epsilon, is small compared with in-plane forces. Results for different boundary conditions are obtained when the initial deflection is: (1) a polynomial in both directions, and (2) the product of a polynomial and a trigonometric function, and arbitrary. For the arbitrary initial deflection case, the Fourier series technique is used to define the initial deflection. The results obtained show that the natural frequencies of vibration of slightly curved plates are coincident with those of perfectly flat, prestressed rectangular plates. However, the eigenmodes are very different from those of initially flat prestressed rectangular plates. The total deflection is found to be the sum of the initial deflection, the deflection resulting from the solution of the flat plate problem, and the deflection resulting from the static problem.
Flexible multimode polymer waveguides for high-speed short-reach communication links
NASA Astrophysics Data System (ADS)
Bamiedakis, N.; Shi, F.; Chu, D.; Penty, R. V.; White, I. H.
2018-02-01
Multimode polymer waveguides have attracted great interest for use in high-speed short-reach communication links as they can be cost-effectively integrated onto standard PCBs using conventional methods of the electronics industry and provide low loss (<0.04 dB/cm at 850 nm) and high bandwidth (>30 GHz×m) interconnection. The formation of such waveguides on flexible substrates can further provide flexible low-weight low-thickness interconnects and offer additional freedom in the implementation of high-speed short-reach optical links. These attributes make these flexible waveguides particularly attractive for use in low-cost detachable chip-to-chip links and in environments where weight and shape conformity become important, such as in cars and aircraft. However, the highly-multimoded nature of these waveguides raises important questions about their performance under severe flex due to mode loss and mode coupling. In this work therefore, we investigate the loss, crosstalk and bandwidth performance of such waveguides under out-of plane bending and in-plane twisting under different launch conditions and carry out data transmission tests at 40 Gb/s on a 1 m long spiral flexible waveguide under flexure. Excellent optical transmission characteristics are obtained while robust loss, crosstalk and bandwidth performance are demonstrated under flexure. Error-free (BER<10-12) 40 Gb/s data transmission is achieved over the 1 m long spiral waveguide for a 180° bend with a 4 mm radius. The obtained results demonstrate the excellent optical and mechanical properties of this technology and highlight its potential for use in real-world systems.
Relativistic electron beam generator
Mooney, L.J.; Hyatt, H.M.
1975-11-11
A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.
NASA Astrophysics Data System (ADS)
Adeyeye, Adekunle
In the last few years, interest in propagating-spin-wave based devices has grown largely due to advances in nanotechnology which allows shapes of geometrically confined magnonic elements to be fabricated, the development of new advanced experimental techniques for studying high-frequency magnetization dynamics and the potential use of spin waves as information carriers in spintronic applications. The first part of this talk will focus on design and fabrication strategies for synthesizing nanomagnetic networks with deterministic magnetic ground states. Reliable reconfiguration between ferromagnetic (FM), antiferromagnetic (AFM) and ferrimagnetic ground magnetic states will be shown in rhomboid nanomagnets which stabilize to unique ground states upon field initialized along their short axis. In the second part, a new waveguide consisting of dipolar coupled rhombic shaped nanomagnetic chain that eliminate the requirement of a stand-by power during operation will be presented. The sizes of the nanomagnets are small enough to retain their correct magnetic states once initialized. It will be shown that our waveguide could be used to send spin wave signal around a corner without any stand-by power. Another important parameter for device operation is the manipulation of the output signal, which is similar to a gating operation in a transistor. In our design, gating operation is demonstrated by switching the magnetization of single/multiple nanomagnets in the waveguides in order to manipulate the spin wave amplitude at the output. This work is supported by the National Research Foundation, Prime Minister's Office, under CRP 10-2012-03.
NASA Astrophysics Data System (ADS)
Vidal, A.; San-Blas, A. A.; Quesada-Pereira, F. D.; Pérez-Soler, J.; Gil, J.; Vicente, C.; Gimeno, B.; Boria, V. E.
2015-07-01
A novel technique for the full-wave analysis of 3-D complex waveguide devices is presented. This new formulation, based on the Boundary Integral-Resonant Mode Expansion (BI-RME) method, allows the rigorous full-wave electromagnetic characterization of 3-D arbitrarily shaped metallic structures making use of extremely low CPU resources (both time and memory). The unknown electric current density on the surface of the metallic elements is represented by means of Rao-Wilton-Glisson basis functions, and an algebraic procedure based on a singular value decomposition is applied to transform such functions into the classical solenoidal and nonsolenoidal basis functions needed by the original BI-RME technique. The developed tool also provides an accurate computation of the electromagnetic fields at an arbitrary observation point of the considered device, so it can be used for predicting high-power breakdown phenomena. In order to validate the accuracy and efficiency of this novel approach, several new designs of band-pass waveguides filters are presented. The obtained results (S-parameters and electromagnetic fields) are successfully compared both to experimental data and to numerical simulations provided by a commercial software based on the finite element technique. The results obtained show that the new technique is specially suitable for the efficient full-wave analysis of complex waveguide devices considering an integrated coaxial excitation, where the coaxial probes may be in contact with the metallic insets of the component.
Arbitrary temporal shape pulsed fiber laser based on SPGD algorithm
NASA Astrophysics Data System (ADS)
Jiang, Min; Su, Rongtao; Zhang, Pengfei; Zhou, Pu
2018-06-01
A novel adaptive pulse shaping method for a pulsed master oscillator power amplifier fiber laser to deliver an arbitrary pulse shape is demonstrated. Numerical simulation has been performed to validate the feasibility of the scheme and provide meaningful guidance for the design of the algorithm control parameters. In the proof-of-concept experiment, information on the temporal property of the laser is exchanged and evaluated through a local area network, and the laser adjusted the parameters of the seed laser according to the monitored output of the system automatically. Various pulse shapes, including a rectangular shape, ‘M’ shape, and elliptical shape are achieved through experimental iterations.
Rectangular pulsed LD pumped saturable output coupler (SOC) Q-switched microchip laser
NASA Astrophysics Data System (ADS)
Wang, Yan-biao; Wang, Sha; Feng, Guo-ying; Zhou, Shou-huan
2017-02-01
We studied the cw LD and rectangular pulsed LD pumped saturable output coupler (SOC) passively Q-switched Nd:YVO4 transmission microchip laser experimentally. We demonstrated that the SOC passively Q-switched Nd:YVO4 transmission microchip laser pumped by a highly stabilized narrow bandwidth pulsed LD has a much lower timing jitter than pumped by a continuous wave (CW) LD, especially at low output frequency regime. By changing the pump beam size in the rectangular shape pulsed pump scheme, the output frequency can be achieved from 333.3 kHz to 71.4 kHz, while the relative timing jitter decreased from 0.09865% to 0.03115% accordingly. Additionally, the microchip laser has a good stability of output power, the power fluctuation below 2%.
Independent control of beam astigmatism and ellipticity using a SLM for fs-laser waveguide writing.
Ruiz de la Cruz, A; Ferrer, A; Gawelda, W; Puerto, D; Sosa, M Galván; Siegel, J; Solis, J
2009-11-09
We have used a low repetition rate (1 kHz), femtosecond laser amplifier in combination with a spatial light modulator (SLM) to write optical waveguides with controllable cross-section inside a phosphate glass sample. The SLM is used to induce a controllable amount of astigmatism in the beam wavefront while the beam ellipticity is controlled through the propagation distance from the SLM to the focusing optics of the writing set-up. The beam astigmatism leads to the formation of two separate disk-shaped foci lying in orthogonal planes. Additionally, the ellipticity has the effect of enabling control over the relative peak irradiances of the two foci, making it possible to bring the peak irradiance of one of them below the material transformation threshold. This allows producing a single waveguide with controllable cross-section. Numerical simulations of the irradiance distribution at the focal region under different beam shaping conditions are compared to in situ obtained experimental plasma emission images and structures produced inside the glass, leading to a very satisfactory agreement. Finally, guiding structures with controllable cross-section are successfully produced in the phosphate glass using this approach.
NASA Astrophysics Data System (ADS)
Rukhadze, Anri A.; Tarakanov, V. P.
2006-09-01
Two related problems are studied by numerical simulations using the KARAT code: the reflection of the TM01 mode of an electromagnetic pulse from the subcritical taper of the section of a circular waveguide and the reflection of the same pulse from a 'cold' collisionless plasma with a density increasing up to a supercritical value along the waveguide axis. It is shown that in the former case the pulse is totally reflected with an insignificant distortion of its shape, in accordance with the linear theory. In the latter case, the character of reflection depends substantially on the plasma density increase length, the pulse duration, and the wave field amplitude, a significant field deceleration and amplitude growth occurring near the critical point; the pulse absorption in the plasma far exceeds the absorption due to the linear transformation of the incident transverse wave to the longitudinal plasma oscillations.
Numerical and experimental determination of weld pool shape during high-power diode laser welding
NASA Astrophysics Data System (ADS)
Klimpel, Andrzej; Lisiecki, Aleksander; Szymanski, Andrzej; Hoult, Anthony P.
2003-10-01
In this paper, results of investigations on the shape of weld pool during High Power Diode Laser (HPDL) welding are presented. The results of tests showed that the shape of weld pool and mechanism of laser welding with a rectangular pattern of 808 nm laser radiation differs distinctly from previous laser welding mechanisms. For all power densities the conduction mode welds were observed and weld pool geometry depends significantly on the welding parameters.
ERIC Educational Resources Information Center
Cole, Mark R.; Gibson, Laura; Pollack, Adam; Yates, Lynsey
2011-01-01
The interaction between redundant geometric and featural cues in open field search tasks has been examined widely with results that are not always consistent. Cheng (1986) found evidence that when searching for food in rectangular environments, rats used the geometrical characteristics of the environment rather than local featural cues, suggesting…
46 CFR 69.209 - Calculation of tonnages.
Code of Federal Regulations, 2010 CFR
2010-10-01
....67 LBD/100. (2) The gross tonnage of a vessel with a hull that approximates in shape a rectangular geometric solid (barge-shape) is 0.84 LBD/100. (3) The gross tonnage of a multi-hull vessel is the sum of... structure in tons of 100 cubic feet is added to the tonnage of the hull to establish the vessel's gross...
Xu, Ding; Li, Zhiping; Chen, Xianzhong; Wang, Zhengpeng; Wu, Jianhua
2016-08-22
Three-dimensional information of the burden surface in high temperature and excessive dust industrial conditions has been previously hard to obtain. This paper presents a novel microstrip-fed dielectric-filled waveguide antenna element which is resistant to dust and high temperatures. A novel microstrip-to-dielectric-loaded waveguide transition was developed. A cylinder and cuboid composite structure was employed at the terminal of the antenna element, which improved the return loss performance and reduced the size. The proposed antenna element was easily integrated into a T-shape multiple-input multiple-output (MIMO) imaging radar system and tested in both the laboratory environment and real blast furnace environment. The measurement results show that the proposed antenna element works very well in industrial 3D imaging radar.
Integration of GaN/AlN all-optical switch with SiN/AlN waveguide utilizing spot-size conversion.
Iizuka, Norio; Yoshida, Haruhiko; Managaki, Nobuto; Shimizu, Toshimasa; Hassanet, Sodabanlu; Cumtornkittikul, Chiyasit; Sugiyama, Masakazu; Nakano, Yoshiaki
2009-12-07
Spot-size converters for an all-optical switch utilizing the intersubband transition in GaN/AlN multiple quantum wells are studied with the purpose of reducing operation power by improving the coupling efficiency between the input fiber and the switch. With a stair-like spot-size converter, the absorption saturation of 5 dB is achieved with a pulse energy of 25 pJ. The switch is integrated with a SiN/AlN waveguide and spot-size converters, and the structure provides the possibility of an integration of the switch with other functional devices. To further improve the coupling loss between the waveguide and the switch, triangular-shaped converters are investigated, demonstrating losses as low as 2 dB/facet.
George, M C; Lombardi, L D; Hessels, E A
2001-10-22
The 2(3)P(1)-to- 2(3)P(0) interval in atomic helium is measured using a thermal beam of metastable helium atoms excited to the 2(3)P state using a 1.08-microm diode laser. The 2(3)P(1)-to- 2(3)P(0) transition is driven by 29.6-GHz microwaves in a rectangular waveguide cavity. Our result of 29,616,950.9+/-0.9 kHz is the most precise measurement of helium 2(3)P fine structure. When compared to precise theory for this interval, this measurement leads to a determination of the fine-structure constant of 1/137.0359864(31).
Poletto, S; Gambetta, Jay M; Merkel, Seth T; Smolin, John A; Chow, Jerry M; Córcoles, A D; Keefe, George A; Rothwell, Mary B; Rozen, J R; Abraham, D W; Rigetti, Chad; Steffen, M
2012-12-14
We report a system where fixed interactions between noncomputational levels make bright the otherwise forbidden two-photon |00}→|11} transition. The system is formed by hand selection and assembly of two discrete component transmon-style superconducting qubits inside a rectangular microwave cavity. The application of a monochromatic drive tuned to this transition induces two-photon Rabi-like oscillations between the ground and doubly excited states via the Bell basis. The system therefore allows all-microwave two-qubit universal control with the same techniques and hardware required for single qubit control. We report Ramsey-like and spin echo sequences with the generated Bell states, and measure a two-qubit gate fidelity of F(g)=90% (unconstrained) and 86% (maximum likelihood estimator).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakhtiari, M; Schmitt, J
2014-06-01
Purpose: Cylindrical and rectangular scanning water tanks are examined with different scanning speeds to investigate the TG-106 criteria and the errors induced in the measurements. Methods: Beam profiles were measured in a depth of R50 for a low-energy electron beam (6 MeV) using rectangular and cylindrical tanks. The speeds of the measurements (arm movement) were varied in different profile measurements. Each profile was measured with a certain speed to obtain the average and standard deviation as a parameter for investigating the reproducibility and errors. Results: At arm speeds of ∼0.8 mm/s the errors were as large as 2% and 1%more » with rectangular and cylindrical tanks, respectively. The errors for electron beams and for photon beams in other depths were within the TG-106 criteria of 1% for both tank shapes. Conclusion: The measurements of low-energy electron beams in a depth of R50, as an extreme case scenario, are sensitive to the speed of the measurement arms for both rectangular and cylindrical tanks. The measurements in other depths, for electron beams and photon beams, with arm speeds of less than 1 cm/s are within the TG-106 criteria. An arm speed of 5 mm/s appeared to be optimal for fast and accurate measurements for both cylindrical and rectangular tanks.« less
A Deformable Generic 3D Model of Haptoral Anchor of Monogenean
Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan
2013-01-01
In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation. PMID:24204903
A deformable generic 3D model of haptoral anchor of Monogenean.
Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan
2013-01-01
In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation.
Reduction of the radar cross section of arbitrarily shaped cavity structures
NASA Technical Reports Server (NTRS)
Chou, R.; Ling, H.; Lee, S. W.
1987-01-01
The problem of the reduction of the radar cross section (RCS) of open-ended cavities was studied. The issues investigated were reduction through lossy coating materials on the inner cavity wall and reduction through shaping of the cavity. A method was presented to calculate the RCS of any arbitrarily shaped structure in order to study the shaping problem. The limitations of this method were also addressed. The modal attenuation was studied in a multilayered coated waveguide. It was shown that by employing two layers of coating, it was possible to achieve an increase in both the magnitude of attenuation and the frequency band of effectiveness. The numerical method used in finding the roots of the characteristic equation breaks down when the coating thickness is very lossy and large in terms of wavelength. A new method of computing the RCS of an arbitrary cavity was applied to study the effects of longitudinal bending on RCS reduction. The ray and modal descriptions for the fields in a parallel plate waveguide were compared. To extend the range of validity of the Shooting and Bouncing Ray (SBR) method, the simple ray picture must be modified to account for the beam blurring.
Slot-Antenna/Permanent-Magnet Device for Generating Plasma
NASA Technical Reports Server (NTRS)
Foster, John E.
2007-01-01
A device that includes a rectangular-waveguide/slot-antenna structure and permanent magnets has been devised as a means of generating a substantially uniform plasma over a relatively large area, using relatively low input power and a low gas flow rate. The device utilizes electron cyclotron resonance (ECR) excited by microwave power to efficiently generate plasma in a manner that is completely electrodeless in the sense that, in principle, there is no electrical contact between the plasma and the antenna. Plasmas generated by devices like this one are suitable for use as sources of ions and/or electrons for diverse material-processing applications (e.g., etching or deposition) and for ion thrusters. The absence of plasma/electrode contact essentially prevents plasma-induced erosion of the antenna, thereby also helping to minimize contamination of the plasma and of objects exposed to the plasma. Consequently, the operational lifetime of the rectangular-waveguide/ slot-antenna structure is long and the lifetime of the plasma source is limited by the lifetime of the associated charged-particle-extraction grid (if used) or the lifetime of the microwave power source. The device includes a series of matched radiating slot pairs that are distributed along the length of a plasma-source discharge chamber (see figure). This arrangement enables the production of plasma in a distributed fashion, thereby giving rise to a uniform plasma profile. A uniform plasma profile is necessary for uniformity in any electron- or ion-extraction electrostatic optics. The slotted configuration of the waveguide/ antenna structure makes the device scalable to larger areas and higher powers. All that is needed for scaling up is the attachment of additional matched radiating slots along the length of the discharge chamber. If it is desired to make the power per slot remain constant in scaling up, then the input microwave power must be increased accordingly. Unlike in prior ECR microwave plasma-generating devices, there is no need for an insulating window on the antenna. Such windows are sources of contamination and gradually become ineffective as they become coated with erosion products over time. These characteristics relegate prior ECR microwave plasma-generating devices to non-ion beam, non-deposition plasma applications. In contrast, the lack of need for an insulating window in the present device makes it possible to use the device in both ion-beam (including deposition) and electron-beam applications. The device is designed so that ECR takes place above each slot and the gradient of the magnetic field at each slot is enough to prevent backflow of plasma.
NASA Astrophysics Data System (ADS)
Noual, A.; Akjouj, A.; Pennec, Y.; Gillet, J.-N.; Djafari-Rouhani, B.
2009-10-01
Numerical simulations, based on a finite-difference-time-domain (FDTD) method, of infrared light propagation for add/drop filtering in two-dimensional (2D) metal-insulator-metal (Ag-SiO2-Ag) resonators are reported to design 2D Y-bent plasmonic waveguides with possible applications in telecommunication wavelength demultiplexing (WDM). First, we study optical transmission and reflection of a nanoscale SiO2 waveguide coupled to a nanocavity of the same insulator located either inside or on the side of a linear waveguide sandwiched between Ag. According to the inside or outside positioning of the nanocavity with respect to the waveguide, the transmission spectrum displays peaks or dips, respectively, which occur at the same central frequency. A fundamental study of the possible cavity modes in the near-infrared frequency band is also given. These filtering properties are then exploited to propose a nanoscale demultiplexer based on a Y-shaped plasmonic waveguide for separation of two different wavelengths, in selection or rejection, from an input broadband signal around 1550 nm. We detail coupling of the 2D add/drop Y connector to two cavities inserted on each of its branches. Selection or rejection of a pair of different wavelengths depends on the inside or outside locations (respectively) of each cavity in the Y plasmonic device.
NASA Astrophysics Data System (ADS)
Imai, Ryo; Konishi, Kuniaki; Yumoto, Junji; Gonokami, Makoto K.
2017-03-01
Laser direct writing of optical devices and circuits is attracted attention because of its ability of three-dimensional fabrication without any mask[1]. Recently, Yb-fiber or solid-state laser has been commonly used for fabrication in addition to traditional Ti:S laser. However, it is reported that waveguide cannot be fabricated in fused silica by using the fundamental light from Yb-based femtosecond laser[2]. Some groups reported on waveguide fabrication by using second-harmonic beam of such lasers[3], but wavelength conversion using nonlinear process has drawbacks such as destabilization of laser power and beam deformation by walk off. In this study, we investigated fabrication of low-loss waveguide in fused silica by using the fundamental beam (1030nm) from an Yb solid-state femtosecond laser with a pulse duration of 250 fs. The NA of focusing objective lens was 0.42. The fabricated waveguide was made to have a circular cross-section by shaping laser beam with a slit[4]. We fixed repetition rate to 150 kHz, and identified appropriate scan speed and pulse energy for fabrication of low loss waveguide. Waveguide fabricated with appropriate condition had a propagation loss of 0.2 dB/cm, and this is the first report on optical waveguides in a fused silica fabricated by femto-second laser pulses at a wavelength of 1030nm. [1]K. M. Davis, et. al., Opt. Lett 21, 1729(1996) [2]J. Canning, et. al., Opt. Mater. Express 1, 998(2011) [3]L. Shah, et. al., Opt. Express 13, 1999(2005) [4]M. Ams, et. al., Opt. Express 13, 5676(2005)
Carmona, Jesús; Climent, Miguel-Ángel; Antón, Carlos; de Vera, Guillem; Garcés, Pedro
2015-01-01
This article shows the research carried out by the authors focused on how the shape of structural reinforced concrete elements treated with electrochemical chloride extraction can affect the efficiency of this process. Assuming the current use of different anode systems, the present study considers the comparison of results between conventional anodes based on Ti-RuO2 wire mesh and a cement-based anodic system such as a paste of graphite-cement. Reinforced concrete elements of a meter length were molded to serve as laboratory specimens, to closely represent authentic structural supports, with circular and rectangular sections. Results confirm almost equal performances for both types of anode systems when electrochemical chloride extraction is applied to isotropic structural elements. In the case of anisotropic ones, such as rectangular sections with no uniformly distributed rebar, differences in electrical flow density were detected during the treatment. Those differences were more extreme for Ti-RuO2 mesh anode system. This particular shape effect is evidenced by obtaining the efficiencies of electrochemical chloride extraction in different points of specimens.
Fabrication of unique 3D microparticles in non-rectangular microchannels with flow lithography
NASA Astrophysics Data System (ADS)
Nam, Sung Min; Kim, Kibeom; Park, Wook; Lee, Wonhee
Invention of flow lithography has offered a simple yet effective method of fabricating micro-particles. However particles produced with conventional techniques were largely limited to 2-dimensional shapes projected to form a column. We proposed inexpensive and simple soft-lithography techniques to fabricate micro-channels with various cross-sectional shapes. The non-rectangular channels are then used to fabricate micro-particles using flow lithography resulting in interesting 3D shapes such as tetrahedrals or half-pyramids. In addition, a microfluidic device capable of fabricating multi-layered micro-particles was developed. On-chip PDMS valves are used to trap and position the particle at the precise location in microchannel with varying cross-section. Multilayer particles are generated by sequential monomer exchange and polymerization along the channel. While conventional multi-layered particles made with droplet generators require their layer materials be dissolved in immiscible fluids, the new method allows diverse choice of materials, not limited to their diffusibility. The multilayer 3D particles can be applied in areas such as drug delivery and tissue engineering.
Quasi-D-shaped optical fiber plasmonic refractive index sensor
NASA Astrophysics Data System (ADS)
An, Guowen; Li, Shuguang; Wang, Haiyang; Zhang, Xuenan; Yan, Xin
2018-03-01
A quasi-D-shaped photonic crystal fiber plasmonic sensor with a rectangular lattice is proposed by using Au as a plasmonic layer and graphene to enhance the sensing performance. By moving the core to the edge of the fiber, a shorter polishing depth is achieved, which makes the fiber proposed have a greater mechanical strength than other common D-shaped fibers. Benefiting from the natural advantage of the rectangular lattice, the dual sensing channels make the proposed sensor show a maximum wavelength interrogation sensitivity of 3877 nm/RIU with the dynamic refractive index range from 1.33 to 1.42 and a maximum amplitude sensitivity of 1236 RIU-1 with the analyte RI = 1.41 in the visible region. The corresponding resolutions are 2.58 × 10-5 and 8.1 × 10-6 with the methods of the wavelength interrogation method and amplitude- or phase-based method. These advantages make the proposed sensor a competitive candidate for biosensing in the field of refractive index detection, such as water quality analysis, clinical medicine detection, and pharmaceutical testing.
Conservative boundary conditions for 3D gas dynamics problems
NASA Technical Reports Server (NTRS)
Gerasimov, B. P.; Karagichev, A. B.; Semushin, S. A.
1986-01-01
A method is described for 3D-gas dynamics computer simulation in regions of complicated shape by means of nonadjusted rectangular grids providing unified treatment of various problems. Some test problem computation results are given.
Some problems in applications of the linear variational method
NASA Astrophysics Data System (ADS)
Pupyshev, Vladimir I.; Montgomery, H. E.
2015-09-01
The linear variational method is a standard computational method in quantum mechanics and quantum chemistry. As taught in most classes, the general guidance is to include as many basis functions as practical in the variational wave function. However, if it is desired to study the patterns of energy change accompanying the change of system parameters such as the shape and strength of the potential energy, the problem becomes more complicated. We use one-dimensional systems with a particle in a rectangular or in a harmonic potential confined in an infinite rectangular box to illustrate situations where a variational calculation can give incorrect results. These situations result when the energy of the lowest eigenvalue is strongly dependent on the parameters that describe the shape and strength of the potential. The numerical examples described in this work are provided as cautionary notes for practitioners of numerical variational calculations.
Micro thermal energy harvester design optimization
NASA Astrophysics Data System (ADS)
Trioux, E.; Monfray, S.; Basrour, S.
2017-11-01
This paper reports the recent progress of a new technology to scavenge thermal energy, implying a double-step transduction through the thermal buckling of a bilayer aluminum nitride/aluminum bridge and piezoelectric transduction. A completely new scavenger design is presented, with improved performance. The butterfly shape reduces the overall device mechanical rigidity, which leads to a decrease in buckling temperatures compared to previously studied rectangular plates. Firstly, an analytical model exposes the basic principle of the presented device. Then a numerical model completes the explanations by introducing a butterfly shaped structure. Finally the fabrication process is briefly described and both the rectangular and butterfly harvesters are characterized. We compare their performances with an equal thickness of Al and AlN. Secondly, with a thicker Al layer than AlN layer, we will characterize only the butterfly structure in terms of output power and buckling temperatures, and compare it to the previous stack.
Dispersion analysis of leaky guided waves in fluid-loaded waveguides of generic shape.
Mazzotti, M; Marzani, A; Bartoli, I
2014-01-01
A fully coupled 2.5D formulation is proposed to compute the dispersive parameters of waveguides with arbitrary cross-section immersed in infinite inviscid fluids. The discretization of the waveguide is performed by means of a Semi-Analytical Finite Element (SAFE) approach, whereas a 2.5D BEM formulation is used to model the impedance of the surrounding infinite fluid. The kernels of the boundary integrals contain the fundamental solutions of the space Fourier-transformed Helmholtz equation, which governs the wave propagation process in the fluid domain. Numerical difficulties related to the evaluation of singular integrals are avoided by using a regularization procedure. To improve the numerical stability of the discretized boundary integral equations for the external Helmholtz problem, the so called CHIEF method is used. The discrete wave equation results in a nonlinear eigenvalue problem in the complex axial wavenumbers that is solved at the frequencies of interest by means of a contour integral algorithm. In order to separate physical from non-physical solutions and to fulfill the requirement of holomorphicity of the dynamic stiffness matrix inside the complex wavenumber contour, the phase of the radial bulk wavenumber is uniquely defined by enforcing the Snell-Descartes law at the fluid-waveguide interface. Three numerical applications are presented. The computed dispersion curves for a circular bar immersed in oil are in agreement with those extracted using the Global Matrix Method. Novel results are presented for viscoelastic steel bars of square and L-shaped cross-section immersed in water. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhong, Rui; Wang, Qingshan; Tang, Jinyuan; Shuai, Cijun; Liang, Qian
2018-02-01
This paper presents the first known vibration characteristics of moderately thick functionally graded carbon nanotube reinforced composite rectangular plates on Pasternak foundation with arbitrary boundary conditions and internal line supports on the basis of the firstorder shear deformation theory. Different distributions of single walled carbon nanotubes (SWCNTs) along the thickness are considered. Uniform and other three kinds of functionally graded distributions of carbon nanotubes along the thickness direction of plates are studied. The solutions carried out using an enhanced Ritz method mainly include the following three points: Firstly, create the Lagrange energy function by the energy principle; Secondly, as the main innovation point, the modified Fourier series are chosen as the basic functions of the admissible functions of the plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges; Lastly, solve the natural frequencies as well as the associated mode shapes by means of the Ritz-variational energy method. In this study, the influences of the volume fraction of CNTs, distribution type of CNTs, boundary restrain parameters, location of the internal line supports, foundation coefficients on the natural frequencies and mode shapes of the FG-CNT reinforced composite rectangular plates are presented.
NASA Astrophysics Data System (ADS)
Ali, Sajid; Kamran, Muhammad Ali; Khan, Sikandar
2017-11-01
The fluid sloshing in partially filled road tankers has significantly increased the number of road accidents for the last few decades. Significant research is needed to investigate and to come up with optimum baffles designs that can help to increase the rollover stability of the partially filled tankers. In this investigation, a detailed analysis of the anti-slosh effectiveness of different baffle configurations is presented. This investigation extends the already available studies in the literature by introducing new modified rectangular tank's shapes that correspond to maximum rollover stability as compared to the already available standard tank designs. The various baffles configurations that are analysed in this study are horizontal, vertical, vertical-horizontal and diagonal. In the current study, numerical investigations are performed for rectangular, elliptical and circular tank shapes. Lateral sloshing, caused by constant radius turn manoeuvre, was simulated numerically using the volume-of-fluid method, and effect of the different baffle configurations was analysed. The effect of tank fill levels on sloshing measured in terms of horizontal force and pressure moments is also reported for with and without baffles configurations. Vertical baffles were the most effective at reducing sloshing in modified rectangular tanks, whereas a combination of horizontal and vertical baffles gave better results for the circular and elliptical tanks geometries.
NASA Astrophysics Data System (ADS)
Seddon, Angela B.; Abdel-Moneim, Nabil S.; Zhang, Lian; Pan, Wei J.; Furniss, David; Mellor, Christopher J.; Kohoutek, Tomas; Orava, Jiri; Wagner, Tomas; Benson, Trevor M.
2014-07-01
The versatility of hot embossing for shaping photonic components on-chip for mid-infrared (IR) integrated optics, using a hard mold, is demonstrated. Hot embossing via fiber-on-glass (FOG), thermally evaporated films, and radio frequency (RF)-sputtered films on glass are described. Mixed approaches of combined plasma etching and hot embossing increase the versatility still further for engineering optical circuits on a single platform. Application of these methodologies for fabricating molecular-sensing devices on-chip is discussed with a view to biomedical sensing. Future prospects for using photonic integration for the new field of mid-IR molecular sensing are appraised. Also, common methods of measuring waveguide optical loss are critically compared, regarding their susceptibility to artifacts which tend artificially to depress, or enhance, the waveguide optical loss.
Xu, Ding; Li, Zhiping; Chen, Xianzhong; Wang, Zhengpeng; Wu, Jianhua
2016-01-01
Three-dimensional information of the burden surface in high temperature and excessive dust industrial conditions has been previously hard to obtain. This paper presents a novel microstrip-fed dielectric-filled waveguide antenna element which is resistant to dust and high temperatures. A novel microstrip-to-dielectric-loaded waveguide transition was developed. A cylinder and cuboid composite structure was employed at the terminal of the antenna element, which improved the return loss performance and reduced the size. The proposed antenna element was easily integrated into a T-shape multiple-input multiple-output (MIMO) imaging radar system and tested in both the laboratory environment and real blast furnace environment. The measurement results show that the proposed antenna element works very well in industrial 3D imaging radar. PMID:27556469
NASA Astrophysics Data System (ADS)
Sultana, Jakeya; Islam, Md. Saiful; Atai, Javid; Islam, Muhammad Rakibul; Abbott, Derek
2017-07-01
We demonstrate a photonic crystal fiber with near-zero flattened dispersion, ultralower effective material loss (EML), and negligible confinement loss for a broad spectrum range. The use of cyclic olefin copolymer Topas with improved core confinement significantly reduces the loss characteristics and the use of higher air filling fraction results in flat dispersion characteristics. The properties such as dispersion, EML, confinement loss, modal effective area, and single-mode operation of the fiber have been investigated using the full-vector finite element method with the perfectly matched layer absorbing boundary conditions. The practical implementation of the proposed fiber is achievable with existing fabrication techniques as only circular-shaped air holes have been used to design the waveguide. Thus, it is expected that the proposed terahertz waveguide can potentially be used for flexible and efficient transmission of terahertz waves.
Optical Isolators With Transverse Magnets
NASA Technical Reports Server (NTRS)
Fan, Yuan X.; Byer, Robert L.
1991-01-01
New design for isolator includes zigzag, forward-and-backward-pass beam path and use of transverse rather than longitudinal magnetic field. Design choices produce isolator with as large an aperture as desired using low-Verdet-constant glass rather than more expensive crystals. Uses commercially available permanent magnets in Faraday rotator. More compact and less expensive. Designed to transmit rectangular beam. Square cross section of beam extended to rectangular shape by increasing one dimension of glass without having to increase magnetic field. Potentially useful in laser systems involving slab lasers and amplifiers. Has applications to study of very-high-power lasers for fusion research.
Two Years Later, Greensburg is Officially Green - with NREL's Help | News
Question - what will become of Greensburg? Photo of a modern looking rectangular-shaped building with glass meet the community's goal of being powered entirely by renewable sources. Drawing of a modern-looking
Multi-layer topological transmissions of spoof surface plasmon polaritons.
Pan, Bai Cao; Zhao, Jie; Liao, Zhen; Zhang, Hao Chi; Cui, Tie Jun
2016-03-04
Spoof surface plasmon polaritons (SPPs) in microwave frequency provide a high field confinement in subwavelength scale and low-loss and flexible transmissions, which have been widely used in novel transmission waveguides and functional devices. To play more important roles in modern integrated circuits and systems, it is necessary and helpful for the SPP modes to propagate among different layers of devices and chips. Owing to the highly confined property and organized near-field distribution, we show that the spoof SPPs could be easily transmitted from one layer into another layer via metallic holes and arc-shaped transitions. Such designs are suitable for both the ultrathin and flexible single-strip SPP waveguide and double-strip SPP waveguide for active SPP devices. Numerical simulations and experimental results demonstrate the broadband and high-efficiency multi-layer topological transmissions with controllable absorption that is related to the superposition area of corrugated metallic strips. The transmission coefficient of single-strip SPP waveguide is no worse than -0.8 dB within frequency band from 2.67 GHz to 10.2 GHz while the transmission of double-strip SPP waveguide keeps above -1 dB within frequency band from 2.26 GHz to 11.8 GHz. The proposed method will enhance the realizations of highly complicated plasmonic integrated circuits.
Reciprocity principle for scattered fields from discontinuities in waveguides.
Pau, Annamaria; Capecchi, Danilo; Vestroni, Fabrizio
2015-01-01
This study investigates the scattering of guided waves from a discontinuity exploiting the principle of reciprocity in elastodynamics, written in a form that applies to waveguides. The coefficients of reflection and transmission for an arbitrary mode can be derived as long as the principle of reciprocity is satisfied at the discontinuity. Two elastodynamic states are related by the reciprocity. One is the response of the waveguide in the presence of the discontinuity, with the scattered fields expressed as a superposition of wave modes. The other state is the response of the waveguide in the absence of the discontinuity oscillating according to an arbitrary mode. The semi-analytical finite element method is applied to derive the needed dispersion relation and wave mode shapes. An application to a solid cylinder with a symmetric double change of cross-section is presented. This model is assumed to be representative of a damaged rod. The coefficients of reflection and transmission of longitudinal waves are investigated for selected values of notch length and varying depth. Copyright © 2014 Elsevier B.V. All rights reserved.
Tan, Kang; Marpaung, David; Pant, Ravi; Gao, Feng; Li, Enbang; Wang, Jian; Choi, Duk-Yong; Madden, Steve; Luther-Davies, Barry; Sun, Junqiang; Eggleton, Benjamin J
2013-01-28
We report a photonic-chip-based scheme for all-optical ultra-wideband (UWB) pulse generation using a novel all-optical differentiator that exploits cross-phase modulation and birefringence in an As₂S₃ chalcogenide rib waveguide. Polarity-switchable UWB monocycles and doublets were simultaneously obtained with single optical carrier operation. Moreover, transmission over 40-km fiber of the generated UWB doublets is demonstrated with good dispersion tolerance. These results indicate that the proposed approach has potential applications in multi-shape, multi-modulation and long-distance UWB-over-fiber communication systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochuli, U.; McGuire, D.
1982-10-01
The properties of a compact, transversely excited, pulsed CO/sub 2/ waveguide laser are studied experimentally with the application of such a laser for an optical fuze transmitter in mind. Such parameters as peak power, pulse width, pulse shape, pulse jitter, repetition rate, beam profile, polarization, laser life, and optimum as mixture are investigated both for 10.6 and 9.6 micron output wavelengths, and for both sealed-off and flowing-gas operation of the laser. A computer simulation of the laser's operation is compared with the experimental results.
NASA Astrophysics Data System (ADS)
Kaźmierczak, Andrzej; Bogaerts, Wim; Van Thourhout, Dries; Drouard, Emmanuel; Rojo-Romeo, Pedro; Giannone, Domenico; Gaffiot, Frederic
2008-04-01
We present a compact passive optical add-drop filter which incorporates two microring resonators and a waveguide intersection in silicon-on-insulator (SOI) technology. Such a filter is a key element for designing simple layouts of highly integrated complex optical networks-on-chip. The filter occupies an area smaller than 10μm×10μm and exhibits relatively high quality factors (up to 4000) and efficient signal dropping capabilities. In the present work, the influence of filter parameters such as the microring-resonators radii and the coupling section shape are analyzed theoretically and experimentally
Beach, R.J.; Benett, W.J.
1994-04-26
A lensing duct to condense (intensify) light using a combination of front surface lensing and reflective waveguiding is described. The duct tapers down from a wide input side to a narrow output side, with the input side being lens-shaped and coated with an antireflective coating for more efficient transmission into the duct. The four side surfaces are uncoated, preventing light from escaping by total internal reflection as it travels along the duct (reflective waveguiding). The duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials, and can be fabricated from inexpensive glass and plastic. 3 figures.
Terahertz Microfluidic Sensing Using a Parallel-plate Waveguide Sensor
Astley, Victoria; Reichel, Kimberly; Mendis, Rajind; Mittleman, Daniel M.
2012-01-01
Refractive index (RI) sensing is a powerful noninvasive and label-free sensing technique for the identification, detection and monitoring of microfluidic samples with a wide range of possible sensor designs such as interferometers and resonators 1,2. Most of the existing RI sensing applications focus on biological materials in aqueous solutions in visible and IR frequencies, such as DNA hybridization and genome sequencing. At terahertz frequencies, applications include quality control, monitoring of industrial processes and sensing and detection applications involving nonpolar materials. Several potential designs for refractive index sensors in the terahertz regime exist, including photonic crystal waveguides 3, asymmetric split-ring resonators 4, and photonic band gap structures integrated into parallel-plate waveguides 5. Many of these designs are based on optical resonators such as rings or cavities. The resonant frequencies of these structures are dependent on the refractive index of the material in or around the resonator. By monitoring the shifts in resonant frequency the refractive index of a sample can be accurately measured and this in turn can be used to identify a material, monitor contamination or dilution, etc. The sensor design we use here is based on a simple parallel-plate waveguide 6,7. A rectangular groove machined into one face acts as a resonant cavity (Figures 1 and 2). When terahertz radiation is coupled into the waveguide and propagates in the lowest-order transverse-electric (TE1) mode, the result is a single strong resonant feature with a tunable resonant frequency that is dependent on the geometry of the groove 6,8. This groove can be filled with nonpolar liquid microfluidic samples which cause a shift in the observed resonant frequency that depends on the amount of liquid in the groove and its refractive index 9. Our technique has an advantage over other terahertz techniques in its simplicity, both in fabrication and implementation, since the procedure can be accomplished with standard laboratory equipment without the need for a clean room or any special fabrication or experimental techniques. It can also be easily expanded to multichannel operation by the incorporation of multiple grooves 10. In this video we will describe our complete experimental procedure, from the design of the sensor to the data analysis and determination of the sample refractive index. PMID:22951593
Micron-scale pattern formation in prestressed polygonal films
NASA Astrophysics Data System (ADS)
Annabattula, R. K.; Onck, P. R.
2011-02-01
In this paper we explore the spontaneous formation of micropatterns in thin prestressed polygonal films using finite element simulations. We study films with different size, thickness, and shape, including square, rectangular, pentagonal, and hexagonal films. Patterns form when the films release the internal eigenstrain by buckling-up, after which the films bond-back to the substrate. After an initial symmetric evolution of the buckling profile, the symmetry of the deflection pattern breaks when the wavelength of wriggles near the film edges decreases. During bond back the deflection morphology converges to a fourfold, fivefold, and sixfold ridging pattern for the square, pentagonal and hexagonal films, respectively, showing a close resemblance with experimental film systems of similar size and shape. Rectangular films of large length to width ratio go through a transition in buckling shapes from the initial Euler mode, through the varicose mode into the antisymmetric telephone-cord mode. For all the film shapes, the ratio of the film height to the effective film width scales with the square root of eigenstrain and is independent of thickness. The bond-back mechanism determines the final wrinkle morphology and is governed by the eigenstrain value at the end of the buckling-up stage and the dimensionless parameter (Γ /EWeq)(Weq/t)3, relating the interface energy to the strain energy in the film.
A coupler for parasitic mode diagnosis in an X-band triaxial klystron amplifier
NASA Astrophysics Data System (ADS)
Zhang, Wei; Ju, Jin-chuan; Zhang, Jun; Qi, Zu-min; Zhong, Hui-huang
2017-10-01
The traditional methods of parasitic mode excitation diagnosis in an X-band triaxial klystron amplifier (TKA) meet two difficulties: limited installation space and vacuum sealing. In order to solve these issues, a simple and compact coupler with good sealing performance, which can prevent air flow between the main and the auxiliary waveguides, is proposed and investigated experimentally. The coupler is designed with the aperture diffraction theory and the finite-different time-domain (FDTD) method. The designed coupler consists of a main coaxial waveguide (for microwave transmission) and a rectangular auxiliary waveguide (for parasitic mode diagnosis). The entire coupler structure has been fabricated by macromolecule polymer which is transparent to microwave signal in frequency range of X-band. The metal coating of about 200 microns has been performed through electroplating technique to ensure that the device operates well at high power. A small aperture is made in the metal coating. Hence, microwave can couple through the hole and the wave-transparent medium, whereas air flow is blocked by the wave-transparent medium. The coupling coefficient is analyzed and simulated with CST software. The coupler model is also included in particle-in-cell (PIC) simulation with CHIPIC software and the associated parasitic mode excitation is studied. A frequency component of 11.46 GHz is observed in the FFT of the electric field of the drift tube and its corresponding competition mode appears as TE61 mode according to the electric field distribution. Besides, a frequency component of 10.8 GHz is also observed in the FFT of the electric field. After optimization of TE61 mode suppression, an experiment of the TKA with the designed coupler is carried out and the parasitic mode excitation at 10.8 GHz is observed through the designed coupler.
Open Resonator for Summation of Powers in Sub-Terahertz and Terahertz Frequencies
NASA Astrophysics Data System (ADS)
Kuz'michev, I. K.; Yeryomka, V. D.; May, A. V.; Troshchilo, A. S.
2017-03-01
Purpose: Study of excitation features for the first higher axialasymmetric type oscillations in an open resonator connected into the waveguide transmission line. Design/methodology/approach: To determine the efficiency of higher oscillation excitation in the resonator by using the highest wave of a rectangular waveguide, the coefficient of the antenna surface utilization is used. The coefficient of reflection from the open resonator is determined by the known method of summation of the partial coefficients of reflection from the resonant system. Findings: The excitation efficiency of the first higher axial asymmetric type TEM10q oscillations in an open resonator connected into the waveguide transmission line, using the TE20 type wave, is considered. The research efforts were made with accounting for the electromagnetic field vector nature. It is shown that for certain sizes of exciting coupler the excitation efficiency of the working excitation is equal to 0.867. Besides, this resonant system has a single frequency response within a wide band of frequencies. Due to this, it can be applied for summation of powers for individual sources of oscillations. Since this resonant system allows separating the matching functions as to the field and coupling, it is possible to provide any prescribed coupling of sources with a resonant volume. For this purpose, one- dimensional diffraction gratings (E-polarization) are used. Conclusions: With the matched excitation of axially asymmetric modes of oscillations the resonant system has an angular and frequency spectrum selection that is of great practical importance for powers summation. By application of one- dimensional diffraction gratings (E-polarization), located in apertures of coupling elements, the active elements can be matched with the resonant volume.
NASA Astrophysics Data System (ADS)
Beltran Madrigal, Josslyn; Berthel, Martin; Gardillou, Florent; Tellez Limon, Ricardo; Couteau, Christophe; Barbier, Denis; Drezet, Aurelien; Salas-Montiel, Rafael; Huant, Serge; Blaize, Sylvain
2015-09-01
Several works have already shown that the excitation of plasmonic structures through waveguides enables a strong light confinement and low propagation losses [1]. This kind of excitation is currently exploited in areas such as biosensing [2], nanocircuits[3] and spectroscopy[4]. Efficient excitation of surface plasmon modes (SPP) with guided modes supported by high-index-contrast waveguides, such as silicon-on-insulator waveguides, had already been shown [1,5], however, the use of weak-confined guided modes of an ion exchanged waveguide on glass as a source of excitation of SPP represents a scientific and technological breakthrough. This is because the integration of plasmonic structures into low-index-contrast waveguide increases the bandwidth of operation and compatibility with conventional optical fibers. In this work, we describe how an adiabatic tapered coupler formed by an intermediate high-index-contrast layer placed between a plasmonic structure and an ion-exchanged waveguide decreases the mismatch between effective indices, size, and shape of the guided modes. This hybrid structure concentrates the electromagnetic energy from the micrometer to the nanometer scale with low coupling losses to radiative modes. The electromagnetic mode confined to the high-index-contrast waveguide then works as an efficient source of SPP supported by metallic nanostructures placed on its surface. We theoretically studied the modal properties and field distribution along the adiabatic coupler structure. In addition, we fabricated a high-index-contrast waveguide by electron beam lithography and thermal evaporation on top of an ion-exchanged waveguide on glass. This structure was characterized with the use of near field scanning optical microscopy (NSOM). Numerical simulations were compared with the experimental results. [1] N. Djaker, R. Hostein, E. Devaux, T. W. Ebbesen, and H. Rigneault, and J. Wenger, J. Phys. Chem. C 114, 16250 (2010). [2] P. Debackere, S. Scheerlinck, P. Bienstman, R. Baets, Opt. Express 14, 7063 (2006).] [3] A. A. Reiserer, J.-S. Huang, B. Hecht, and T. Brixner. Opt. Express 18(11), 11810-11820 (2010). [4] R. Salas-Montiel, A. Apuzzo, C. Delacour, Z. Sedaghat, A. Bruyant et al. Appl. Phys Lett 100, 231109 (2012) [5] A. Apuzzo M. Févier, M. Salas-Montiel et al. Nano letters, 13, 1000-1006
Broadband notch filter design for millimeter-wave plasma diagnostics.
Furtula, V; Michelsen, P K; Leipold, F; Salewski, M; Korsholm, S B; Meo, F; Nielsen, S K; Stejner, M; Moseev, D; Johansen, T
2010-10-01
Notch filters are integrated in plasma diagnostic systems to protect millimeter-wave receivers from intensive stray radiation. Here we present a design of a notch filter with a center frequency of 140 GHz, a rejection bandwidth of ∼900 MHz, and a typical insertion loss below 2 dB in the passband of ±9 GHz. The design is based on a fundamental rectangular waveguide with eight cylindrical cavities coupled by T-junction apertures formed as thin slits. Parameters that affect the notch performance such as physical lengths and conductor materials are discussed. The excited resonance mode in the cylindrical cavities is the fundamental TE(11). The performance of the constructed filter is measured using a vector network analyzer monitoring a total bandwidth of 30 GHz. We compare the measurements with numerical simulations.
NASA Astrophysics Data System (ADS)
Poletto, S.; Gambetta, Jay M.; Merkel, Seth T.; Smolin, John A.; Chow, Jerry M.; Córcoles, A. D.; Keefe, George A.; Rothwell, Mary B.; Rozen, J. R.; Abraham, D. W.; Rigetti, Chad; Steffen, M.
2012-12-01
We report a system where fixed interactions between noncomputational levels make bright the otherwise forbidden two-photon |00⟩→|11⟩ transition. The system is formed by hand selection and assembly of two discrete component transmon-style superconducting qubits inside a rectangular microwave cavity. The application of a monochromatic drive tuned to this transition induces two-photon Rabi-like oscillations between the ground and doubly excited states via the Bell basis. The system therefore allows all-microwave two-qubit universal control with the same techniques and hardware required for single qubit control. We report Ramsey-like and spin echo sequences with the generated Bell states, and measure a two-qubit gate fidelity of Fg=90% (unconstrained) and 86% (maximum likelihood estimator).
Jalinous, Reza; Lisanby, Sarah H.
2013-01-01
A novel transcranial magnetic stimulation (TMS) device with controllable pulse width (PW) and near rectangular pulse shape (cTMS) is described. The cTMS device uses an insulated gate bipolar transistor (IGBT) with appropriate snubbers to switch coil currents up to 7 kA, enabling PW control from 5 μs to over 100 μs. The near-rectangular induced electric field pulses use 22–34% less energy and generate 67–72% less coil heating compared to matched conventional cosine pulses. CTMS is used to stimulate rhesus monkey motor cortex in vivo with PWs of 20 to 100 μs, demonstrating the expected decrease of threshold pulse amplitude with increasing PW. The technological solutions used in the cTMS prototype can expand functionality, and reduce power consumption and coil heating in TMS, enhancing its research and therapeutic applications. PMID:18232369
Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.
Wang, Ji; Yang, Lijun; Pan, Qiaoqiao; Chao, Min-Chiang; Du, Jianke
2011-05-01
The resonant frequencies of thickness-shear vibrations of quartz crystal plates in rectangular and circular shapes are always required in the design and manufacturing of quartz crystal resonators. As the size of quartz crystal resonators shrinks, for rectangular plates we must consider effects of both length and width for the precise calculation of resonant frequency. Starting from the three-dimensional equations of wave propagation in finite crystal plates and the general expression of vibration modes, we obtained the relations between frequency and wavenumbers. By satisfying the major boundary conditions of the dominant thickness-shear mode, three wavenumber solutions are obtained and the frequency equation is constructed. It is shown the resonant frequency of thickness-shear mode is a second-order polynomial of aspect ratios. This conforms to known results in the simplest form and is applicable to further analytical and experimental studies of the frequency equation of quartz crystal resonators.
NASA Astrophysics Data System (ADS)
Geddes, Earl Russell
The details of the low frequency sound field for a rectangular room can be studied by the use of an established analytic technique--separation of variables. The solution is straightforward and the results are well-known. A non -rectangular room has boundary conditions which are not separable and therefore other solution techniques must be used. This study shows that the finite element method can be adapted for use in the study of sound fields in arbitrary shaped enclosures. The finite element acoustics problem is formulated and the modification of a standard program, which is necessary for solving acoustic field problems, is examined. The solution of the semi-non-rectangular room problem (one where the floor and ceiling remain parallel) is carried out by a combined finite element/separation of variables approach. The solution results are used to construct the Green's function for the low frequency sound field in five rooms (or data cases): (1) a rectangular (Louden) room; (2) The smallest wall of the Louden room canted 20 degrees from normal; (3) The largest wall of the Louden room canted 20 degrees from normal; (4) both the largest and the smallest walls are canted 20 degrees; and (5) a five-sided room variation of Case 4. Case 1, the rectangular room was calculated using both the finite element method and the separation of variables technique. The results for the two methods are compared in order to access the accuracy of the finite element method models. The modal damping coefficient are calculated and the results examined. The statistics of the source and receiver average normalized RMS P('2) responses in the 80 Hz, 100 Hz, and 125 Hz one-third octave bands are developed. The receiver averaged pressure response is developed to determine the effect of the source locations on the response. Twelve source locations are examined and the results tabulated for comparison. The effect of a finite sized source is looked at briefly. Finally, the standard deviation of the spatial pressure response is studied. The results for this characteristic show that it not significantly different in any of the rooms. The conclusions of the study are that only the frequency variations of the pressure response are affected by a room's shape. Further, in general, the simplest modification of a rectangular room (i.e., changing the angle of only one of the smallest walls), produces the most pronounced decrease of the pressure response variations in the low frequency region.
Nonlinear ball chain waveguides for acoustic emission and ultrasound sensing of ablation
NASA Astrophysics Data System (ADS)
Pearson, Stephen H.
Harsh environment acoustic emission and ultrasonic wave sensing applications often benefit from placing the sensor in a remote and more benign physical location by using waveguides to transmit elastic waves between the structural location under test and the transducer. Waveguides are normally designed to have high fidelity over broad frequency ranges to minimize distortion -- often difficult to achieve in practice. This thesis reports on an examination of using nonlinear ball chain waveguides for the transmission of acoustic emission and ultrasonic waves for the monitoring of thermal protection systems undergoing severe heat loading, leading to ablation and similar processes. Experiments test the nonlinear propagation of solitary, harmonic and mixed harmonic elastic waves through a copper tube filled with steel and elastomer balls and various other waveguides. Triangulation of pencil lead breaks occurs on a steel plate. Data are collected concerning the usage of linear waveguides and a water-cooled linear waveguide. Data are collected from a second water-cooled waveguide monitoring Atmospheric Reentry Materials in UVM's Inductively-Coupled Plasma Torch Facility. The motion of the particles in the dimer waveguides is linearly modeled with a three ball and spring chain model and the results are compared per particle. A theoretical nonlinear model is presented which is capable of exactly modeling the motion of the dimer chains. The shape of the waveform propagating through the dimer chain is modeled in a sonic vacuum. Mechanical pulses of varying time widths and amplitudes are launched into one end of the ball chain waveguide and observed at the other end in both time and frequency domains. Similarly, harmonic and mixed harmonic mechanical loads are applied to one end of the waveguide. Balls of different materials are analyzed and discriminated into categories. A copper tube packed with six steel particles, nine steel or marble particles and a longer copper tube packed with 17 steel particles are studied with a frequency sweep. The deformation experienced by a single steel particle in the dimer chain is approximated. Steel ball waveguides and steel rods are fitted with piezoelectric sensors to monitor the force at different points inside the waveguide during testing. The corresponding frequency responses, including intermodulation products, are compared based on amplitude and preloads. A nonlinear mechanical model describes the motion of the dimer chains in a vacuum. Based on the results of these studies it is anticipated that a nonlinear waveguide will be designed, built, and tested as a possible replacement for the high-fidelity waveguides presently being used in an Inductively Coupled Plasma Torch facility for high heat flux thermal protection system testing. The design is intended to accentuate acoustic emission signals of interest, while suppressing other forms of elastic wave noise.
TRIANGLE-SHAPED DC CORONA DISCHARGE DEVICE FOR MOLECULAR DECOMPOSITION
The paper discusses the evaluation of electrostatic DC corona discharge devices for the application of molecular decomposition. A point-to-plane geometry corona device with a rectangular cross section demonstrated low decomposition efficiencies in earlier experimental work. The n...
Vortices Bump into a Hot Spot in Jupiter Atmosphere
2013-03-14
In this series of images from NASA Cassini spacecraft, a dark, rectangular hot spot interacts with a line of vortices that approaches from on the upper-right side. The interaction distorts the shape of the hot spot, leaving it diminished.
The cross-sectional shape of the fourfold semitendinosus tendon is oval, not round.
Oshima, Takeshi; Nakase, Junsuke; Numata, Hitoaki; Takata, Yasushi; Tsuchiya, Hiroyuki
2016-12-01
The looped side of the semitendinosus tendon (ST) graft (i.e., the side inserted into the femoral tunnel during anterior cruciate ligament reconstruction) appears to be oval rather than round. The purpose of this study was to investigate the cross section of the fourfold semitendinosus tendon graft and, more specifically, the differences in pressure exerted by a rounded rectangular tunnel versus a round femoral tunnel. Seven STs were harvested from cadaveric knees and a fourfold ST graft was made. Aluminum cubes with round or rectangular tunnels containing four-way pressure-sensitive conductive sensors (vertically and bilaterally) were used. The area of both cubes was the same. The graft was inserted into the tunnels 15 mm from the looped edge. After measuring pressure, the graft was fixed using ultraviolet-curing acrylic resin and was cut at 7.5 mm and 15 mm from the lapel edge. The area, axes for the best fitting ellipse of the cross-section, and ellipticity of the axes were measured. In the round tunnel, the mean contact pressure was 287.0 ± 136.7 gf at the bilateral sensor; there was no contact pressure detected by the vertical sensor. In the rounded rectangular tunnel, the mean contact pressure was 260.9 ± 186.4 gf at the bilateral sensor and 352.9 ± 49.5 gf at the vertical sensor. Ellipticity was 1.25 ± 0.13 at 7.5 mm, and 1.17 ± 0.07 at 15 mm from the lapel edge of the graft. The cross-sectional shape of the fourfold ST graft was not round, but oval. Moreover, the rounded rectangular tunnel was more fitted to the graft than the round tunnel.
Hwang, Jihong; Park, Taezoon; Hwang, Wonil
2013-05-01
The affective interaction between human and robots could be influenced by various aspects of robots, which are appearance, countenance, gesture, voice, etc. Among these, the overall shape of robot could play a key role in invoking desired emotions to the users and bestowing preferred personalities to robots. In this regard, the present study experimentally investigates the effects of overall robot shape on the emotions invoked in users and the perceived personalities of robot with an objective of deriving guidelines for the affective design of service robots. In so doing, 27 different shapes of robot were selected, modeled and fabricated, which were combinations of three different shapes of head, trunk and limb (legs and arms) - rectangular-parallelepiped, cylindrical and human-like shapes. For the experiment, visual images and real prototypes of these robot shapes were presented to participants, and emotions invoked and personalities perceived from the presented robots were measured. The results showed that the overall shape of robot arouses any of three emotions named 'concerned', 'enjoyable' and 'favorable', among which 'concerned' emotion is negatively correlated with the 'big five personality factors' while 'enjoyable' and 'favorable' emotions are positively correlated. It was found that the 'big five personality factors', and 'enjoyable' and 'favorable' emotions are more strongly perceived through the real prototypes than through the visual images. It was also found that the robot shape consisting of cylindrical head, human-like trunk and cylindrical head is the best for 'conscientious' personality and 'favorable' emotion, the robot shape consisting of cylindrical head, human-like trunk and human-like limb for 'extroverted' personality, the robot shape consisting of cylindrical head, cylindrical trunk and cylindrical limb for 'anti-neurotic' personality, and the robot shape consisting of rectangular-parallelepiped head, human-like trunk and human-like limb for 'enjoyable' emotion. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Broadband arrayed waveguide grating multiplexers on indium phosphide
NASA Astrophysics Data System (ADS)
Rausch, Kameron
2005-11-01
Coarse Wavelength Division Multiplexing (CWDM) is becoming a popular way to increase the optical throughput of fibers for short to medium haul networks at a reduced cost. The International Telecommunications Union (ITU) has defined the CWDM network to consist of eighteen channels with channel spacings of 20 nm starting at 1270 nm and ending at 1610 nm. Four and eight channel AWGs suitable for CWDM were fabricated using a versatile S-shape design novel to InP. The standard horseshoe layout will not work on semiconductor for AWGs with a free spectral range (FSR) larger than 30 nm. The AWG design provides operation insensitive to thermal and polarization fluctuations; which is key for low cost operation and packaging. It will be shown that, refractive index changes over the large operating wavelength band produced negligible effects in the transmission spectrum. Standard AWG design assumes refractive index is a constant over the operating wavelength band. As a result, the output waveguide separations are held constant on the second star coupler. As the channel number increases, secondary focal dispersion caused from a changing refractive index can have detrimental effects on performance. A new design method will be introduced which includes refractive index dispersion by allowing the output waveguide separations to vary. The new design is consistent with standard design but is applicable in materials with a linear index dispersion over an arbitrarily large wavelength band. Lastly, a method for increasing the transmission using multimode waveguides is discussed. Traditionally, single mode waveguides are required in order to prevent higher order waveguide modes creating ghost images in the output spectrum. Using bend loss and waveguide junction offsets, higher order modes can be filtered from the output, thereby eliminating ghost images and at the same time, increase transmission.
S/Ka Dichroic Plate with Rounded Corners for NASA's 34-m Beam-Waveguide Antenna
NASA Astrophysics Data System (ADS)
Veruttipong, W.; Khayatian, B.; Imbriale, W.
2016-02-01
An S-/Ka-band frequency selective surface (FSS) or a dichroic plate is designed, manufactured, and tested for use in NASA's Deep Space Network (DSN) 34-m beam-waveguide (BWG) antennas. Due to its large size, the proposed dichroic incorporates a new design feature: waveguides with rounded corners to cut cost and allow ease of manufacturing the plate. The dichroic is designed using an analysis that combines the finite-element method (FEM) for arbitrarily shaped guides with the method of moments and Floquet mode theory for periodic structures. The software was verified by comparison with previously measured and computed dichroic plates. The large plate was manufactured with end-mill machining. The RF performance was measured and is in excellent agreement with the analytical results. The dichroic has been successfully installed and is operational at DSS-24, DSS-34, and DSS-54.
Cross-phase modulation-induced spectral broadening in silicon waveguides.
Zhang, Yanbing; Husko, Chad; Lefrancois, Simon; Rey, Isabella H; Krauss, Thomas F; Schröder, Jochen; Eggleton, Benjamin J
2016-01-11
We analytically and experimentally investigate cross-phase modulation (XPM) in silicon waveguides. In contrast to the well known result in pure Kerr media, the spectral broadening ratio of XPM to self-phase modulation is not two in the presence of either two-photon absorption (TPA) or free carriers. The physical origin of this change is different for each effect. In the case of TPA, this nonlinear absorption attenuates and slightly modifies the pulse shape due to differential absorption in the pulse peak and wings. When free carriers are present two different mechanisms modify the dynamics. First, free-carrier absorption performs a similar role to TPA, but is additionally asymmetric due to the delayed free-carrier response. Second, free-carrier dispersion induces an asymmetric blue phase shift which competes directly with the symmetric Kerr-induced XPM red shift. We confirm this analysis with pump-probe experiments in a silicon photonic crystal waveguide.
NASA Astrophysics Data System (ADS)
Fujita, Shigetaka; Harima, Takashi
2016-03-01
The mean flowfield of a linear array of multiple rectangular jets run through transversely with a two-dimensional jet, has been investigated, experimentally. The object of this experiment is to operate both the velocity scale and the length scale of the multiple rectangular jets using a two-dimensional jet. The reason of the adoption of this nozzle exit shape was caused by the reports of authors in which the cruciform nozzle promoted the inward secondary flows strongly on both the two jet axes. Aspect ratio of the rectangular nozzle used in this experiment was 12.5. Reynolds number based on the nozzle width d and the exit mean velocity Ue (≅ 39 m / s) was kept constant 25000. Longitudinal mean velocity was measured using an X-array Hot-Wire Probe (lh = 3.1 μm in diameter, dh = 0.6 mm effective length : dh / lh = 194) operated by the linearized constant temperature anemometers (DANTEC), and the spanwise and the lateral mean velocities were measured using a yaw meter. The signals from the anemometers were passed through the low-pass filters and sampled using A.D. converter. The processing of the signals was made by a personal computer. Acquisition time of the signals was usually 60 seconds. From this experiment, it was revealed that the magnitude of the inward secondary flows on both the y and z axes in the upstream region of the present jet was promoted by a two-dimensional jet which run through transversely perpendicular to the multiple rectangular jets, therefore the potential core length on the x axis of the present jet extended 2.3 times longer than that of the multiple rectangular jets, and the half-velocity width on the rectangular jet axis of the present jet was suppressed 41% shorter compared with that of the multiple rectangular jets.
Application of finite element approach to transonic flow problems
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.; Wellford, L. C., Jr.
1976-01-01
A variational finite element model for transonic small disturbance calculations is described. Different strategy is adopted in subsonic and supersonic regions, and blending elements are introduced between different regions. In the supersonic region, no upstream effect is allowed. If rectangular elements with linear shape functions are used, the model is similar to Murman's finite difference operators. Higher order shape functions, nonrectangular elements, and discontinuous approximation of shock waves are also discussed.
The effects of patch shape on indigo buntings. Evidence for an ecological trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weldon, Aimee J.; Haddad, Nick M.
2005-01-01
Weldon, Aimee, J., and Nick M. Haddad. 2005. The effect of patch shape on indigo buntings: Evidence for an ecological trap. Ecology 86(6):1422-1431. Abstract. Habitat loss and fragmentation have led to a widespread increase in the proportion of edge habitat in the landscape. Disturbance-dependent bird species are widely assumed to benefit from these edges. However, anthropogenic edges may concentrate nest predators while retaining habitat cues that birds use to select breeding habitat. This may lead birds to mistakenly select dangerous habitat a phenomenon known as an ecological trap. We experimentally demonstrated how habitat shape, and thus amount of edge, canmore » adversely affect nest site selection and reproductive success of a disturbance-dependent bird species, the Indigo Bunting (Passerina cyanea). We did so within a landscape-scale experiment composed of equal-area habitat patches that differed in their amount of edge. Indigo Buntings preferentially selected edgy patches, which contained 50% more edge than more compact rectangular patches. Further, buntings fledged significantly fewer young per pair in edgy patches than in rectangular patches. These results provide the first experimental evidence that edges can function as ecological traps.« less
NASA Astrophysics Data System (ADS)
Jiang, Feng; Liu, Shulin
2018-03-01
In this paper, we present a feasibility study for detecting cracks with different hidden depths and shapes using information contained in the magnetic field excited by a rectangular coil with a rectangular cross section. First, we solve for the eigenvalues and the unknown coefficients of the magnetic vector potential by imposing artificial and natural boundary conditions. Thus, a semi-analytical solution for the magnetic field distribution around the surface of a conducting plate that contains a long hidden crack is formulated. Next, based on the proposed modelling, the influences of the different hidden depth cracks on the surface magnetic field are analysed. The results show that the horizontal and vertical components of the magnetic field near the crack are becoming weaker and that the phase information of the magnetic field can be used to qualitatively determine the hidden depth of the crack. In addition, the model is optimised to improve its accuracy in classifying crack types. The relationship between signal features and crack shapes is subsequently established. The modified model is validated by using finite element simulations, visually indicating the change in the magnetic field near the crack.
NASA Astrophysics Data System (ADS)
Su, Jinghong; Chen, Xiaodong; Hu, Guoqing
2018-03-01
Inertial migration has emerged as an efficient tool for manipulating both biological and engineered particles that commonly exist with non-spherical shapes in microfluidic devices. There have been numerous studies on the inertial migration of spherical particles, whereas the non-spherical particles are still largely unexplored. Here, we conduct three-dimensional direct numerical simulations to study the inertial migration of rigid cylindrical particles in rectangular microchannels with different width/height ratios under the channel Reynolds numbers (Re) varying from 50 to 400. Cylindrical particles with different length/diameter ratios and blockage ratios are also concerned. Distributions of surface force with the change of rotation angle show that surface stresses acting on the particle end near the wall are the major contributors to the particle rotation. We obtain lift forces experienced by cylindrical particles at different lateral positions on cross sections of two types of microchannels at various Re. It is found that there are always four stable equilibrium positions on the cross section of a square channel, while the stable positions are two or four in a rectangular channel, depending on Re. By comparing the equilibrium positions of cylindrical particles and spherical particles, we demonstrate that the equivalent diameter of cylindrical particles monotonously increases with Re. Our work indicates the influence of a non-spherical shape on the inertial migration and can be useful for the precise manipulation of non-spherical particles.
Structural design, analysis, and code evaluation of an odd-shaped pressure vessel
NASA Astrophysics Data System (ADS)
Rezvani, M. A.; Ziada, H. H.
1992-12-01
An effort to design, analyze, and evaluate a rectangular pressure vessel is described. Normally pressure vessels are designed in circular or spherical shapes to prevent stress concentrations. In this case, because of operational limitations, the choice of vessels was limited to a rectangular pressure box with a removable cover plate. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code is used as a guideline for pressure containments whose width or depth exceeds 15.24 cm (6.0 in.) and where pressures will exceed 103.4 KPa (15.0 lbf/in(sup 2)). This evaluation used Section 8 of this Code, hereafter referred to as the Code. The dimensions and working pressure of the subject vessel fall within the pressure vessel category of the Code. The Code design guidelines and rules do not directly apply to this vessel. Therefore, finite-element methodology was used to analyze the pressure vessel, and the Code then was used in qualifying the vessel to be stamped to the Code. Section 8, Division 1 of the Code was used for evaluation. This action was justified by selecting a material for which fatigue damage would not be a concern. The stress analysis results were then checked against the Code, and the thicknesses adjusted to satisfy Code requirements. Although not directly applicable, the Code design formulas for rectangular vessels were also considered and presented.
NASA Astrophysics Data System (ADS)
Chandan, Bharti, Gagandeep; Srivastava, Toolika; Rai, B. S.
2018-04-01
A novel truncated ground plane monopole antenna is proposed for wide band wireless local area network (WLAN) applications. The antenna contains a rectangular patch with a rectangular ring, a circular slot and a truncated ground plane printed on opposite sides of a low cost substrate FR4. The operating frequency bands for the antenna are band1 (2.4-2.88 GHz) and band 2 (4.8-6.3 GHz) with ≤ - 10 dB return loss which covers 2.4/5.2/5.5/5.8 GHz WLAN bands. The antenna is compact with overall dimension 26×40×0.8 mmł and with the dimension of patch 16×16×0.8 mm3. The two bands of antenna is obtained by cutting a rectangular ring and a circular slot in the patch and return loss is improved by cutting two rectangular slot in the ground plane. Performance measures of the antenna are shown in terms of return loss, current distribution, radiation pattern and gain. To verify the simulated results, the antenna is also fabricated and tested. The simulated and fabricated results have been found in good agreement.
Interfacing 3D micro/nanochannels with a branch-shaped reservoir enhances fluid and mass transport
NASA Astrophysics Data System (ADS)
Kumar, Prasoon; Gandhi, Prasanna S.; Majumder, Mainak
2017-01-01
Three-dimensional (3D) micro/nanofluidic devices can accelerate progress in numerous fields such as tissue engineering, drug delivery, self-healing and cooling devices. However, efficient connections between networks of micro/nanochannels and external fluidic ports are key to successful applications of 3D micro/nanofluidic devices. Therefore, in this work, the extent of the role of reservoir geometry in interfacing with vascular (micro/nanochannel) networks, and in the enabling of connections with external fluidic ports while maintaining the compactness of devices, has been experimentally and theoretically investigated. A statistical modelling suggested that a branch-shaped reservoir demonstrates enhanced interfacing with vascular networks when compared to other regular geometries of reservoirs. Time-lapse dye flow experiments by capillary action through fabricated 3D micro/nanofluidic devices confirmed the connectivity of branch-shaped reservoirs with micro/nanochannel networks in fluidic devices. This demonstrated a ~2.2-fold enhancement of the volumetric flow rate in micro/nanofluidic networks when interfaced to branch-shaped reservoirs over rectangular reservoirs. The enhancement is due to a ~2.8-fold increase in the perimeter of the reservoirs. In addition, the mass transfer experiments exhibited a ~1.7-fold enhancement in solute flux across 3D micro/nanofluidic devices that interfaced with branch-shaped reservoirs when compared to rectangular reservoirs. The fabrication of 3D micro/nanofluidic devices and their efficient interfacing through branch-shaped reservoirs to an external fluidic port can potentially enable their use in complex applications, in which enhanced surface-to-volume interactions are desirable.
Xu, Yin; Xiao, Jinbiao
2016-01-20
A compact and integrated TM-rotated/TE-through polarization beam splitter for silicon-based slot waveguides is proposed and characterized. For the input TM mode, it is first transferred into the cross strip waveguide using a tapered directional coupler (DC), and then efficiently rotated to the corresponding TE mode using an L-shaped bending polarization rotator (PR). Finally, the TE mode for slot waveguide at the output end is obtained with the help of a strip-to-slot mode converter. By contrast, for the input TE mode, it almost passes through the slot waveguide directly and outputs at the bar end with nearly neglected coupling due to a large mode mismatch. Moreover, an additional S-bend connecting the tapered DC and bending PR is used to enhance the performance. Results show that a total device length of 19.6 μm is achieved, where the crosstalk (CT) and polarization conversion loss are, respectively -26.09 and 0.54 dB, for the TM mode, and the CT and insertion loss are, respectively, -22.21 and 0.41 dB, for the TE mode, both at 1.55 μm. The optical bandwidth is approximately 50 nm with a CT<-20 dB. In addition, fabrication tolerances and field evolution are also presented.
TriPleX: a versatile dielectric photonic platform
NASA Astrophysics Data System (ADS)
Wörhoff, Kerstin; Heideman, René G.; Leinse, Arne; Hoekman, Marcel
2015-04-01
Photonic applications based on planar waveguide technology impose stringent requirements on properties such as optical propagation losses, light coupling to optical fibers, integration density, as well as on reliability and reproducibility. The latter is correlated to a high level of control of the refractive index and waveguide geometry. In this paper, we review a versatile dielectric waveguide platform, called TriPleX, which is based on alternating silicon nitride and silicon dioxide films. Fabrication with CMOS-compatible equipment based on low-pressure chemical vapor deposition enables the realization of stable material compositions being a prerequisite to the control of waveguide properties and modal shape. The transparency window of both materials allows for the realization of low-loss waveguides over a wide wavelength range (400 nm-2.35 μm). Propagation losses as low as 5×10-4 dB/cm are reported. Three basic geometries (box shell, double stripe, and filled box) can be distinguished. A specific tapering technology is developed for on-chip, low-loss (<0.1 dB) spotsize convertors, allowing for combining efficient fiber to chip coupling with high-contrast waveguides required for increased functional complexity as well as for hybrid integration with other photonic platforms such as InP and SOI. The functionality of the TriPleX platform is captured by verified basic building blocks. The corresponding library and associated design kit is available for multi-project wafer (MPW) runs. Several applications of this platform technology in communications, biomedicine, sensing, as well as a few special fields of photonics are treated in more detail.
Fluid-solid contact vessel having fluid distributors therein
Jones, Jr., John B.
1980-09-09
Rectangularly-shaped fluid distributors for large diameter, vertical vessels include reinforcers for high heat operation, vertical sides with gas distributing orifices and overhanging, sloped roofs. Devices are provided for cleaning the orifices from a buildup of solid deposits resulting from the reactions in the vessel.
Techniques For Focusing In Zone Electrophoresis
NASA Technical Reports Server (NTRS)
Sharnez, Rizwan; Twitty, Garland E.; Sammons, David W.
1994-01-01
In two techniques for focusing in zone electrophoresis, force of applied electrical field in each charged particle balanced by restoring force of electro-osmosis. Two techniques: velocity-gradient focusing (VGF), suitable for rectangular electrophoresis chambers; and field-gradient focusing (FGF), suitable for step-shaped electrophoresis chambers.
Characterization of elliptic dark hollow beams
NASA Astrophysics Data System (ADS)
Gutiérrez-Vega, Julio C.
2008-08-01
A dark hollow beam (DHB) is designed in general as a ringed shaped light beam with a null intensity center on the beam axis. DHBs have interesting physical properties such as a helical wavefront, a center vortex singularity, doughnut-shaped transverse intensity distribution, they may carry and transfer orbital and spin angular momentum, and may also exhibit a nondiffracting behavior upon propagation. Most of the known theoretical models to describe DHBs consider axially symmetric transverse intensity distributions. However, in recent years there has been an increasing interest in developing models to describe DHBs with elliptic symmetry. DHBs with elliptic symmetry can be regarded as transition beams between circular and rectangular DHBs. For example, the high-order modes emitted from resonators with neither completely rectangular nor completely circular symmetry, but in between them, cannot be described by the known HermiteGaussian or LaguerreGaussian beams. In this work, we review the current state of research on elliptic DHBs, with particular emphasis in Mathieu and Ince-Gauss beams.
The serpentine optical waveguide: engineering the dispersion relations and the stopped light points.
Scheuer, Jacob; Weiss, Ori
2011-06-06
We present a study a new type of optical slow-light structure comprising a serpentine shaped waveguide were the loops are coupled. The dispersion relation, group velocity and GVD are studied analytically using a transfer matrix method and numerically using finite difference time domain simulations. The structure exhibits zero group velocity points at the ends of the Brillouin zone, but also within the zone. The position of mid-zone zero group velocity point can be tuned by modifying the coupling coefficient between adjacent loops. Closed-form analytic expressions for the dispersion relations, group velocity and the mid-zone zero v(g) points are found and presented.
Xu, Fang; Poon, Andrew W
2008-06-09
We report silicon cross-connect filters using microring resonator coupled multimode-interference (MMI) based waveguide crossings. Our experiments reveal that the MMI-based cross-connect filters impose lower crosstalk at the crossing than the conventional cross-connect filters using plain crossings, while offering a nearly symmetric resonance line shape in the drop-port transmission. As a proof-of-concept for cross-connection applications, we demonstrate on a silicon-on-insulator substrate (i) a 4-channel 1 x 4 linear-cascaded MMI-based cross-connect filter, and (ii) a 2-channel 2 x 2 array-cascaded MMI-based cross-connect filter.
A tapered dielectric waveguide solar concentrator for a compound semiconductor photovoltaic cell.
Park, Minkyu; Oh, Kyunghwan; Kim, Jeong; Shin, Hyun Woo; Oh, Byung Du
2010-01-18
A novel tapered dielectric waveguide solar concentrator is proposed for compound semiconductor solar cells utilizing optical fiber preform. Its light collecting capability is numerically simulated and experimentally demonstrated for feasibility and potential assessments. Utilizing tapered shape of an optical fiber preform with a step-index profile, low loss guidance was enhanced and the limitation in the acceptance angle of solar radiation was alleviated by an order of magnitude. Using a solar simulator the device performances were experimentally investigated and discussed in terms of the photocurrent improvements. Total acceptance angle exceeding +/- 6 degrees was experimentally achieved sustaining a high solar flux.
Sheppard, Colin J R; Kou, Shan S; Lin, Jiao
2014-12-01
Highly convergent beam modes in two dimensions are considered based on rigorous solutions of the scalar wave (Helmholtz) equation, using the complex source point formalism. The modes are applicable to planar waveguide or surface plasmonic structures and nearly concentric microcavity resonator modes in two dimensions. A novel solution is that of a vortex beam, where the direction of propagation is in the plane of the vortex. The modes also can be used as a basis for the cross section of propagationally invariant beams in three dimensions and bow-tie-shaped optical fiber modes.
A reciprocity formulation for the EM scattering by an obstacle within a large open cavity
NASA Technical Reports Server (NTRS)
Pathak, Prabhakar H.; Burkholder, Robert J.
1993-01-01
A formulation based on a generalized reciprocity theorem is developed for analyzing the external high frequency EM scattering by a complex obstacle inside a relatively arbitrary open-ended waveguide cavity when it is illuminated by an external source. This formulation is also extended to include EM fields whose time dependence may be nonperiodic. A significant advantage of this formulation is that it allows one to break up the analysis into two independent parts; one deals with the waveguide cavity shape alone and the other with the obstacle alone. The external scattered field produced by the obstacle (in the presence of the waveguide cavity structure) is given in terms of a generalized reciprocity integral over a surface S(T) corresponding to the interior waveguide cavity cross section located conveniently but sufficiently close to the obstacle. Furthermore, the fields coupled into the cavity from the source in the exterior region generally need to propagate only one-way via the open front end (which is directly illuminated) to the interior surface S(T) in this approach, and not back, in order to find the external field scattered by the obstacle.
Polymer planar waveguide Bragg gratings: fabrication, characterization, and sensing applications
NASA Astrophysics Data System (ADS)
Rosenberger, M.; Hessler, S.; Pauer, H.; Girschikofsky, M.; Roth, G. L.; Adelmann, B.; Woern, H.; Schmauss, B.; Hellmann, R.
2017-02-01
In this contribution, we give a comprehensive overview of the fabrication, characterization, and application of integrated planar waveguide Bragg gratings (PPBGs) in cyclo-olefin copolymers (COC). Starting with the measurement of the refractive index depth profile of integrated UV-written structures in COC by phase shifting Mach-Zehnder- Interferometry, we analyze the light propagation using numerical simulations. Furthermore, we show the rapid fabrication of humidity insensitive polymer waveguide Bragg gratings in cyclo-olefin copolymers and discuss the influence of the UV-dosage onto the spectral characteristics and the transmission behavior of the waveguide. Based on these measurements we exemplify that our Bragg gratings exhibit a reflectivity of over 99 % and are highly suitable for sensing applications. With regard to a negligible affinity to absorb water and in conjunction with high temperature stability these polymer devices are ideal for mechanical deformation sensing. Since planar structures are not limited to tensile but can also be applied for measuring compressive strain, we manufacture different functional devices and corroborate their applicability as optical sensors. Exemplarily, we highlight a temperature referenced PPBG sensor written into a femtosecond-laser cut tensile test geometry for tensile and compressive strain sensing. Furthermore, a flexible polymer planar shape sensor is presented.
Kuo, Yu-Zheng; Wu, Jui-Pin; Wu, Tsu-Hsiu; Chiu, Yi-Jen
2012-10-22
We proposed and demonstrated a novel scheme of photonic ultra-wide-band (UWB) doublet pulse based on monolithic integration of tapered optical-direction coupler (TODC) and multiple-quantum-well (MQW) waveguide. TODC is formed by a top tapered MQW waveguide vertically integrating with an underneath passive waveguide. Through simultaneous field-driven optical index- and absorption- change in MQW, the partial optical coupling in TODC can be used to get a valley-shaped of optical transmission against voltage. Therefore, doublet-enveloped optical pulse can be realized by high-speed and high-efficient conversion of input electrical pulse. By just adjusting bias through MQW, 1530 nm photonic UWB doublet optical pulse with 75-ps pulse width, below -41.3 dBm power, 125% fractional bandwidth, and 7.5 GHz of -10 dB bandwidth has been demonstrated, fitted into FCC requirement (3.1 GHz~10.6 GHz). Doublet-pulse data transmission generated in optical fiber is also performed for further characterization, exhibiting a successful 1.25 Gb/s error-free transmission. It suggests such optoelectronic integration template can be applied for photonic UWB generation in fiber-based communications.
Analysis of LH Launcher Arrays (Like the ITER One) Using the TOPLHA Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maggiora, R.; Milanesio, D.; Vecchi, G.
2009-11-26
TOPLHA (Torino Polytechnic Lower Hybrid Antenna) code is an innovative tool for the 3D/1D simulation of Lower Hybrid (LH) antennas, i.e. accounting for realistic 3D waveguides geometry and for accurate 1D plasma models, and without restrictions on waveguide shape, including curvature. This tool provides a detailed performances prediction of any LH launcher, by computing the antenna scattering parameters, the current distribution, electric field maps and power spectra for any user-specified waveguide excitation. In addition, a fully parallelized and multi-cavity version of TOPLHA permits the analysis of large and complex waveguide arrays in a reasonable simulation time. A detailed analysis ofmore » the performances of the proposed ITER LH antenna geometry has been carried out, underlining the strong dependence of the antenna input parameters with respect to plasma conditions. A preliminary optimization of the antenna dimensions has also been accomplished. Electric current distribution on conductors, electric field distribution at the interface with plasma, and power spectra have been calculated as well. The analysis shows the strong capabilities of the TOPLHA code as a predictive tool and its usefulness to LH launcher arrays detailed design.« less
An assessment of a conical horn waveguide to represent the human eardrum
NASA Astrophysics Data System (ADS)
Fields, Taylor N.; Schnetzer, Lucia; Brister, Eileen; Yates, Charles W.; Withnell, Robert H.
2018-05-01
This study examined a model of the acoustic input impedance of the ear that includes a waveguide model of the eardrum. The eardrum was modeled as a lossless conical-horn with rigid walls. The ear canal was modeled as a one-dimensional lossy transmission line. The output impedance of the eardrum, the middle ear, and the cochlea, was modeled as a circuit analog. The model was fit to acoustic input impedance data from human ears using a nonlinear least-squares fit. The impact of a conical-horn shape for the eardrum was quantified by comparison with the eardrum modeled as a near-flat surface. The model provided a good match to the data over the frequency range examined. A conical-horn model of the human eardrum provided gain at high frequencies, most notably above 1–2 kHz, with a broader middle-ear frequency response. This finding may suggest that eardrum shape plays an important role in sound transmission to the cochlea.
NASA Astrophysics Data System (ADS)
kebci, Zahia; Belkhir, Abderrahmane; Mezeghrane, Abdelaziz; Lamrous, Omar; Baida, Fadi Issam
2018-03-01
The objective of this work is to develop a code based on the finite difference time domain method in cylindrical coordinates (CC-FDTD) that integrates the Drude Critical Points model (DCP) and to apply it in the study of a metallic C-shaped waveguide (CSWG). The integrated dispersion model allows an accurate description of noble metals in the optical range and working in cylindrical coordinates is necessary to bypass the staircase effect induced by a Cartesian mesh especially in the case of curved geometrical forms. The CC-FDTD code developed as a part of this work is more general than the Body-Of-Revolution-FDTD algorithm that can only handle structures exhibiting a complete cylindrical symmetry. A N-order CC-FDTD code is then derived and used to perform a parametric study of an infinitly-long CSWG for nano-optic applications. Propagation losses and dispersion diagrams are given for different geometrical parameters.
Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds
NASA Technical Reports Server (NTRS)
Pozar, D. M.; Schaubert, D. H.
1984-01-01
A solution is presented to the problem of an infinite array of microstrip patches fed by idealized current probes. The input reflection coefficient is calculated versus scan angle in an arbitrary scan plane, and the effects of substrate parameters and grid spacing are considered. It is pointed out that even when a Galerkin method is used the impedance matrix is not symmetric due to phasing through a unit cell, as required for scanning. The mechanism by which scan blindness can occur is discussed. Measurement results are presented for the reflection coefficient magnitude variation with angle for E-plane, H-plane, and D-plane scans, for various substrate parameters. Measured results from waveguide simulators are also presented, and the scan blindness phenomenon is observed and discussed in terms of forced surface waves and a modified grating lobe diagram.
Linear theory of plasma Čerenkov masers
NASA Astrophysics Data System (ADS)
Birau, M.
1996-11-01
A different theoretical model of Čerenkov instability in the linear amplification regime of plasma Čerenkov masers is developed. The model assumes a cold relativistic annular electron beam propagating through a column of cold dense plasma, the two bodies being immersed in an infinite magnetic guiding field inside a perfect cylindrical waveguide. In order to simplify the calculations, a radial rectangular distribution of plasma and beam density is assumed and only azimuthal symmetric modes are under investigation. The model's difference consists of taking into account the whole plasma and beam electromagnetic structures in the interpretation of the Čerenkov instability. This model leads to alternative results such as the possibility of emission at several frequencies. In addition, the electric field is calculated taking into account its radial phase dependence, so that a map of the field in the interaction region can be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, V I; Marusin, N V; Molchanova, S I
2014-11-30
The problem of reflection of a TE-polarised Gaussian light beam from a layered structure under conditions of resonance excitation of waveguide modes using a total internal reflection prism is considered. Using the spectral approach we have derived the analytic expressions for the mode propagation lengths, widths and depths of m-lines (sharp and narrow dips in the angular dependence of the specular reflection coefficient), depending on the structure parameters. It is shown that in the case of weak coupling, when the propagation lengths l{sub m} of the waveguide modes are mainly determined by the extinction coefficient in the film, the depthmore » of m-lines grows with the mode number m. In the case of strong coupling, when l{sub m} is determined mainly by the radiation of modes into the prism, the depth of m-lines decreases with increasing m. The change in the TE-polarised Gaussian beam shape after its reflection from the layered structure is studied, which is determined by the energy transfer from the incident beam into waveguide modes that propagate along the structure by the distance l{sub m}, are radiated in the direction of specular reflection and interfere with a part of the beam reflected from the working face of the prism. It is shown that this interference can lead to the field intensity oscillations near m-lines. The analysis of different methods for determining the parameters of thin-film structures is presented, including the measurement of mode angles θ{sub m} and the reflected beam shape. The methods are based on simultaneous excitation of a few waveguide modes in the film with a strongly focused monochromatic Gaussian beam, the waist width of which is much smaller than the propagation length of the modes. As an example of using these methods, the refractive index and the thickness of silicon monoxide film on silica substrate at the wavelength 633 nm are determined. (fibre and integrated-optical structures)« less
Applications of Space-Time Duality
NASA Astrophysics Data System (ADS)
Plansinis, Brent W.
The concept of space-time duality is based on a mathematical analogy between paraxial diffraction and narrowband dispersion, and has led to the development of temporal imaging systems. The first part of this thesis focuses on the development of a temporal imaging system for the Laboratory for Laser Energetics. Using an electro-optic phase modulator as a time lens, a time-to-frequency converter is constructed capable of imaging pulses between 3 and 12 ps. Numerical simulations show how this system can be improved to image the 1-30 ps range used in OMEGA-EP. By adjusting the timing between the pulse and the sinusoidal clock of the phase modulator, the pulse spectrum can be selectively narrowed, broadened, or shifted. An experimental demonstration of this effect achieved spectral narrowing and broadening by a factor of 2. Numerical simulations show narrowing by a factor of 8 is possible with modern phase modulators. The second part of this thesis explores the space-time analog of reflection and refraction from a moving refractive index boundary. From a physics perspective, a temporal boundary breaks translational symmetry in time, requiring the momentum of the photon to remain unchanged while its energy may change. This leads to a shifting and splitting of the pulse spectrum as the boundary is crossed. Equations for the reflected and transmitted frequencies and a condition for total internal reflection are found. Two of these boundaries form a temporal waveguide, which confines the pulse to a narrow temporal window. These waveguides have a finite number of modes, which do not change during propagation. A single-mode waveguide can be created, allowing only a single pulse shape to form within the waveguide. Temporal reflection and refraction produce a frequency dependent phase shift on the incident pulse, leading to interference fringes between the incident light and the reflected light. In a waveguide, this leads to self-imaging, where the pulse shape reforms periodically at finite propagation lengths. Numerical simulations are performed for the specific case where the moving boundary is produced through cross-phase modulation. In this case, the Kerr nonlinearity causes the boundary to change during propagation, leading to unique temporal and spectral behavior.
NASA Astrophysics Data System (ADS)
Mett, Richard R.; Froncisz, Wojciech; Hyde, James S.
2001-11-01
This article is concerned with cylindrical transverse electric TE011 and rectangular TE102 microwave cavity resonators commonly used in electron paramagnetic resonance (EPR) spectroscopy. In the cylindrical mode geometry considered here, the sample is along the z axis of the cylinder, dielectric disks of 1/4 wavelength thickness are placed at each end wall, and the diameter of the cylinder is set at the cutoff condition for propagation of microwave energy in a cylindrical waveguide at the desired microwave frequency. The microwave magnetic field is exactly uniform along the sample in the region between the dielectric disks and the resonant frequency is independent of the length of the cylinder without limit. The rectangular TE102 geometry is analogous, but here the microwave magnetic field is exactly uniform in a plane. A uniform microwave field along a line sample is highly advantageous in EPR spectroscopy compared with the usual sinusoidal variation, and these geometries are called "uniform field" modes. Extensive theoretical analysis as well as finite element calculation of field patterns are presented. The perturbation of field patterns caused by sample insertion as functions of the overall length of the resonator and diameter of the sample is analyzed. The article is intended to provide a basis for design of practical structures in the range of 10 to 100 GHz.
A microwave FEL (free electron laser) code using waveguide modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byers, J.A.; Cohen, R.H.
1987-08-01
A free electron laser code, GFEL, is being developed for application to the LLNL tokamak current drive experiment, MTX. This single frequency code solves for the slowly varying complex field amplitude using the usual wiggler-averaged equations of existing codes, in particular FRED, except that it describes the fields by a 2D expansion in the rectangular waveguide modes, using coupling coefficients similar to those developed by Wurtele, which include effects of spatial variations in the fields seen by the wiggler motion of the particles. Our coefficients differ from those of Wurtele in two respects. First, we have found a missing ..sqrt..2..gamma../a/submore » w/ factor in his C/sub z/; when corrected this increases the effect of the E/sub z/ field component and this in turn reduces the amplitude of the TM mode. Second, we have consistently retained all terms of second order in the wiggle amplitude. Both corrections are necessary for accurate computation. GFEL has the capability of following the TE/sub 0n/ and TE(M)/sub m1/ modes simultaneously. GFEL produces results nearly identical to those from FRED if the coupling coefficients are adjusted to equal those implied by the algorithm in FRED. Normally, the two codes produce results that are similar but different in detail due to the different treatment of modes higher than TE/sub 01/. 5 refs., 2 figs., 1 tab.« less
Compact rf polarizer and its application to pulse compression systems
Franzi, Matthew; Wang, Juwen; Dolgashev, Valery; ...
2016-06-01
We present a novel method of reducing the footprint and increasing the efficiency of the modern multi-MW rf pulse compressor. This system utilizes a high power rf polarizer to couple two circular waveguide modes in quadrature to a single resonant cavity in order to replicate the response of a traditional two cavity configuration using a 4-port hybrid. The 11.424 GHz, high-Q, spherical cavity has a 5.875 cm radius and is fed by the circularly polarized signal to simultaneously excite the degenerate TE 114 modes. The overcoupled spherical cavity has a Q 0 of 9.4×10 4 and coupling factor (β) ofmore » 7.69 thus providing a loaded quality factor Q L of 1.06×10 4 with a fill time of 150 ns. Cold tests of the polarizer demonstrated good agreement with the numerical design, showing transmission of -0.05 dB and reflection back to the input rectangular WR 90 waveguide less than -40 dB over a 100 MHz bandwidth. This novel rf pulse compressor was tested at SLAC using XL-4 Klystron that provided rf power up to 32 MW and generated peak output power of 205 MW and an average of 135 MW over the discharged signal. A general network analysis of the polarizer is discussed as well as the design and high power test of the rf pulse compressor.« less
Nanoklystron: A Monolithic Tube Approach to THz Power Generation
NASA Technical Reports Server (NTRS)
Siegel, Peter H.; Fung, Andy; Manohara, Harish; Xu, Jimmy; Chang, Baohe
2001-01-01
The authors propose a new approach to THz power generation: the nanoklystron. Utilizing silicon micromachining techniques, the design and fabrication concept of a monolithic THz vacuum-tube reflex-klystron source is described. The nanoklystron employs a separately fabricated cathode structure composed of densely packed carbon nanotube field emitters and an add-in repeller. The nanotube cathode is expected to increase the current density, extend the cathode life and decrease the required oscillation voltage to values below 100 V. The excitation cavity is based on ridged-waveguide and differs from the conventional cylindrical re-entrant structures found in lower frequency klystrons. A quasi-static field analysis of the cavity and output coupling structure show excellent control of the quality factor and desired field distribution. Output power is expected to occur through an iris coupled matched rectangular waveguide and integrated pyramidal feed horn. The entire circuit is designed so as to be formed monolithically from two thermocompression bonded silicon wafers processed using deep reactive ion etching (DRIE) techniques. To expedite prototyping, a 600 GHz mechanically machined structure has been designed and is in fabrication. A complete numeric analysis of the nanoklystron circuit, including the electron beam dynamics has just gotten underway. Separate evaluation of the nanotube cathodes is also ongoing. The authors will describe the progress to date as well as plans for the immediate implementation and testing of nanoklystron prototypes at 640 and 1250 GHz.
NASA Tech Briefs, September 2011
NASA Technical Reports Server (NTRS)
2011-01-01
Topics covered include: Fused Reality for Enhanced Flight Test Capabilities; Thermography to Inspect Insulation of Large Cryogenic Tanks; Crush Test Abuse Stand; Test Generator for MATLAB Simulations; Dynamic Monitoring of Cleanroom Fallout Using an Air Particle Counter; Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency; Positively Verifying Mating of Previously Unverifiable Flight Connectors; Radiation-Tolerant Intelligent Memory Stack - RTIMS; Ultra-Low-Dropout Linear Regulator; Excitation of a Parallel Plate Waveguide by an Array of Rectangular Waveguides; FPGA for Power Control of MSL Avionics; UAVSAR Active Electronically Scanned Array; Lockout/Tagout (LOTO) Simulator; Silicon Carbide Mounts for Fabry-Perot Interferometers; Measuring the In-Process Figure, Final Prescription, and System Alignment of Large; Optics and Segmented Mirrors Using Lidar Metrology; Fiber-Reinforced Reactive Nano-Epoxy Composites; Polymerization Initiated at the Sidewalls of Carbon Nanotubes; Metal-Matrix/Hollow-Ceramic-Sphere Composites; Piezoelectrically Enhanced Photocathodes; Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution; Improved Mo-Re VPS Alloys for High-Temperature Uses; Data Service Provider Cost Estimation Tool; Hybrid Power Management-Based Vehicle Architecture; Force Limit System; Levitated Duct Fan (LDF) Aircraft Auxiliary Generator; Compact, Two-Sided Structural Cold Plate Configuration; AN Fitting Reconditioning Tool; Active Response Gravity Offload System; Method and Apparatus for Forming Nanodroplets; Rapid Detection of the Varicella Zoster Virus in Saliva; Improved Devices for Collecting Sweat for Chemical Analysis; Phase-Controlled Magnetic Mirror for Wavefront Correction; and Frame-Transfer Gating Raman Spectroscopy for Time-Resolved Multiscalar Combustion Diagnostics.
NASA Astrophysics Data System (ADS)
Zhang, Yan-Feng; Zhu, Na; Komeda, T.
The fabrication of Mn-based coordination networks on a Au(1 1 1) substrate with 4-4 '-biphenyl dicarboxylic acid (BDA) as the linker molecule was investigated by scanning tunneling microscopy. Intriguing structures of ladder and rectangular-shaped networks were obtained by controlling the ratios of deposited amount of BDA molecules and Mn atoms. These structures are well explained by models in which BDA molecules occupy the perimeter of the rectangles and a pair of two Mn atoms are placed at the lattice points. For the rectangular structure, further two phases of a rectangular and a square networks were identified in which the paired Mn atoms were directing an identical direction and 90° rotated in an alternate manner, respectively. In addition, it was revealed that the open space surrounded by rectangle BDA molecules could capture a dimer of C60 molecules which were deposited on the Mn-based BDA networks.
Multistrand superconductor cable
Borden, Albert R.
1985-01-01
Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easily over one another, so as to facilitate flexing and bending of the cable, while also minimizing the possibility of causing damage to the strands by such flexing or bending. Moreover, the improved cable substantially maintains its compactness and cross-sectional shape when the cable is flexed or bent.
Textile antenna integrated with compact AMC and parasitic elements for WLAN/WBAN applications
NASA Astrophysics Data System (ADS)
Lago, Herwansyah; Soh, Ping Jack; Jamlos, Mohd Faizal; Shohaimi, Nursuriati; Yan, Sen; Vandenbosch, Guy A. E.
2016-12-01
A wearable antenna fully designed and fabricated using textile is presented. Both antenna and artificial magnetic conductor plane are designed for operation in the wireless local area network (WLAN)/wireless body area network (WBAN) band from 2.4 to 2.5 GHz. The AMC unit element is designed based on the rectangular patch structure, which is then integrated using slots and slits for bandwidth broadening. Meanwhile, the combination of the slits and L-shaped parasitic elements applied at four edges of the rectangular antenna structure enabled unidirectional radiation outwards from the body. The structure is coaxially fed using a rectangular ring slot centered on the radiating element. Simulated and measured reflection and radiation performance indicate a satisfactory agreement, fulfilling the requirements for WLAN/WBAN applications both in free space and on body. The shielding effectiveness provided by the AMC plane is also evaluated numerically in terms of specific absorption rate, indicating levels below the European regulatory limit of 2 W/kg.
Methods for discrete solitons in nonlinear lattices.
Ablowitz, Mark J; Musslimani, Ziad H; Biondini, Gino
2002-02-01
A method to find discrete solitons in nonlinear lattices is introduced. Using nonlinear optical waveguide arrays as a prototype application, both stationary and traveling-wave solitons are investigated. In the limit of small wave velocity, a fully discrete perturbative analysis yields formulas for the mode shapes and velocity.
Gao, Mingzhong; Yu, Bin; Qiu, Zhiqiang; Yin, Xiangang; Li, Shengwei; Liu, Qiang
2017-01-01
Rectangular caverns are increasingly used in underground engineering projects, the failure mechanism of rectangular cavern wall rock is significantly different as a result of the cross-sectional shape and variations in wall stress distributions. However, the conventional computational method always results in a long-winded computational process and multiple displacement solutions of internal rectangular wall rock. This paper uses a Laurent series complex method to obtain a mapping function expression based on complex variable function theory and conformal transformation. This method is combined with the Schwarz-Christoffel method to calculate the mapping function coefficient and to determine the rectangular cavern wall rock deformation. With regard to the inverse mapping concept, the mapping relation between the polar coordinate system within plane ς and a corresponding unique plane coordinate point inside the cavern wall rock is discussed. The disadvantage of multiple solutions when mapping from the plane to the polar coordinate system is addressed. This theoretical formula is used to calculate wall rock boundary deformation and displacement field nephograms inside the wall rock for a given cavern height and width. A comparison with ANSYS numerical software results suggests that the theoretical solution and numerical solution exhibit identical trends, thereby demonstrating the method's validity. This method greatly improves the computing accuracy and reduces the difficulty in solving for cavern boundary and internal wall rock displacements. The proposed method provides a theoretical guide for controlling cavern wall rock deformation failure.
Gao, Mingzhong; Qiu, Zhiqiang; Yin, Xiangang; Li, Shengwei; Liu, Qiang
2017-01-01
Rectangular caverns are increasingly used in underground engineering projects, the failure mechanism of rectangular cavern wall rock is significantly different as a result of the cross-sectional shape and variations in wall stress distributions. However, the conventional computational method always results in a long-winded computational process and multiple displacement solutions of internal rectangular wall rock. This paper uses a Laurent series complex method to obtain a mapping function expression based on complex variable function theory and conformal transformation. This method is combined with the Schwarz-Christoffel method to calculate the mapping function coefficient and to determine the rectangular cavern wall rock deformation. With regard to the inverse mapping concept, the mapping relation between the polar coordinate system within plane ς and a corresponding unique plane coordinate point inside the cavern wall rock is discussed. The disadvantage of multiple solutions when mapping from the plane to the polar coordinate system is addressed. This theoretical formula is used to calculate wall rock boundary deformation and displacement field nephograms inside the wall rock for a given cavern height and width. A comparison with ANSYS numerical software results suggests that the theoretical solution and numerical solution exhibit identical trends, thereby demonstrating the method’s validity. This method greatly improves the computing accuracy and reduces the difficulty in solving for cavern boundary and internal wall rock displacements. The proposed method provides a theoretical guide for controlling cavern wall rock deformation failure. PMID:29155892
NASA Technical Reports Server (NTRS)
Lindsey, R. S., Jr. (Inventor)
1975-01-01
An exemplary embodiment of the present invention provides a source of random width and random spaced rectangular voltage pulses whose mean or average frequency of operation is controllable within prescribed limits of about 10 hertz to 1 megahertz. A pair of thin-film metal resistors are used to provide a differential white noise voltage pulse source. Pulse shaping and amplification circuitry provide relatively short duration pulses of constant amplitude which are applied to anti-bounce logic circuitry to prevent ringing effects. The pulse outputs from the anti-bounce circuits are then used to control two one-shot multivibrators whose output comprises the random length and random spaced rectangular pulses. Means are provided for monitoring, calibrating and evaluating the relative randomness of the generator.
Cooperative and noncooperative magnetization reversal in alnicos
Skomski, Ralph; Ke, Liqin; Kramer, Matthew J.; ...
2017-02-08
Here, we investigate how magnetostatic interactions affect the coercivity of alnico-type magnets. Starting from exact micromagnetic relations, we also analyze two limits, namely cooperative reversal processes operative on short lengths scales and noncooperative reversal processes on long length scales. Furthermore, in alnicos, intrawire interactions are predominantly cooperative, whereas interwire effects are typically noncooperative. However, the transition between the regimes depends on feature size and hysteresis-loop shape, and interwire cooperative effects are largest for nearly rectangular loops. Our analysis revises the common shape-anisotropy interpretation of alnicos.
Hierarchical image coding with diamond-shaped sub-bands
NASA Technical Reports Server (NTRS)
Li, Xiaohui; Wang, Jie; Bauer, Peter; Sauer, Ken
1992-01-01
We present a sub-band image coding/decoding system using a diamond-shaped pyramid frequency decomposition to more closely match visual sensitivities than conventional rectangular bands. Filter banks are composed of simple, low order IIR components. The coder is especially designed to function in a multiple resolution reconstruction setting, in situations such as variable capacity channels or receivers, where images must be reconstructed without the entire pyramid of sub-bands. We use a nonlinear interpolation technique for lost subbands to compensate for loss of aliasing cancellation.
Slow wave structures using twisted waveguides for charged particle applications
Kang, Yoon W.; Fathy, Aly E.; Wilson, Joshua L.
2012-12-11
A rapidly twisted electromagnetic accelerating structure includes a waveguide body having a central axis, one or more helical channels defined by the body and disposed around a substantially linear central axial channel, with central portions of the helical channels merging with the linear central axial channel. The structure propagates electromagnetic waves in the helical channels which support particle beam acceleration in the central axial channel at a phase velocity equal to or slower than the speed of light in free space. Since there is no variation in the shape of the transversal cross-section along the axis of the structure, inexpensive mechanical fabrication processes can be used to form the structure, such as extrusion, casting or injection molding. Also, because the field and frequency of the resonant mode depend on the whole structure rather than on dimensional tolerances of individual cells, no tuning of individual cells is needed. Accordingly, the overall operating frequency may be varied with a tuning/phase shifting device located outside the resonant waveguide structure.
Light Stops at Exceptional Points
NASA Astrophysics Data System (ADS)
Goldzak, Tamar; Mailybaev, Alexei A.; Moiseyev, Nimrod
2018-01-01
Almost twenty years ago, light was slowed down to less than 10-7 of its vacuum speed in a cloud of ultracold atoms of sodium. Upon a sudden turn-off of the coupling laser, a slow light pulse can be imprinted on cold atoms such that it can be read out and converted into a photon again. In this process, the light is stopped by absorbing it and storing its shape within the atomic ensemble. Alternatively, the light can be stopped at the band edge in photonic-crystal waveguides, where the group speed vanishes. Here, we extend the phenomenon of stopped light to the new field of parity-time (P T ) symmetric systems. We show that zero group speed in P T symmetric optical waveguides can be achieved if the system is prepared at an exceptional point, where two optical modes coalesce. This effect can be tuned for optical pulses in a wide range of frequencies and bandwidths, as we demonstrate in a system of coupled waveguides with gain and loss.
Xu, Xingsheng; Li, Xingyun
2015-01-01
We investigate the photoluminescence (PL) spectra and the time-resolved PL decay process from colloidal quantum dots on SiN/SiO2 wet etched via BOE (HF:NH4F:H2O). The spectrum displays multi-peak shapes that vary with irradiation time. The evolution of the spectral peaks with irradiation time and collection angle demonstrates that the strong coupling of the charged-exciton emission to the leaky modes of the SiN/SiO2 slab waveguide predominantly produces short-wavelength spectral peaks, resulting in multi-peak spectra. We conclude that BOE etching enhances the charged-exciton emission efficiency and its contribution to the total emission compared with the unetched case. BOE etching smoothes the electron confinement potential, thus decreasing the Auger recombination rate. Therefore, the charged-exciton emission efficiency is high, and the charged-exciton-polariton emission can be further enhanced through strong coupling to the leaky mode of the slab waveguide. PMID:25988709
Mrozek, Piotr
2011-08-01
A numerical model explicitly considering the space-charge density evolved both under the mask and in the region of optical structure formation was used to predict the profiles of Ag concentration during field-assisted Ag(+)-Na(+) ion exchange channel waveguide fabrication. The influence of the unequal values of diffusion constants and mobilities of incoming and outgoing ions, the value of a correlation factor (Haven ratio), and particularly space-charge density induced during the ion exchange, on the resulting profiles of Ag concentration was analyzed and discussed. It was shown that the incorporation into the numerical model of a small quantity of highly mobile ions other than exclusively Ag(+) and Na(+) may considerably affect the range and shape of calculated Ag profiles in the multicomponent glass. The Poisson equation was used to predict the electric field spread evolution in the glass substrate. The results of the numerical analysis were verified by the experimental data of Ag concentration in a channel waveguide fabricated using a field-assisted process.
Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R; Castillo, Gabriel R; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng
2014-08-07
Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips.
Novel spot size converter for coupling standard single mode fibers to SOI waveguides
NASA Astrophysics Data System (ADS)
Sisto, Marco Michele; Fisette, Bruno; Paultre, Jacques-Edmond; Paquet, Alex; Desroches, Yan
2016-03-01
We have designed and numerically simulated a novel spot size converter for coupling standard single mode fibers with 10.4μm mode field diameter to 500nm × 220nm SOI waveguides. Simulations based on the eigenmode expansion method show a coupling loss of 0.4dB at 1550nm for the TE mode at perfect alignment. The alignment tolerance on the plane normal to the fiber axis is evaluated at +/-2.2μm for <=1dB excess loss, which is comparable to the alignment tolerance between two butt-coupled standard single mode fibers. The converter is based on a cross-like arrangement of SiOxNy waveguides immersed in a 12μm-thick SiO2 cladding region deposited on top of the SOI chip. The waveguides are designed to collectively support a single degenerate mode for TE and TM polarizations. This guided mode features a large overlap to the LP01 mode of standard telecom fibers. Along the spot size converter length (450μm), the mode is first gradually confined in a single SiOxNy waveguide by tapering its width. Then, the mode is adiabatically coupled to a SOI waveguide underneath the structure through a SOI inverted taper. The shapes of SiOxNy and SOI tapers are optimized to minimize coupling loss and structure length, and to ensure adiabatic mode evolution along the structure, thus improving the design robustness to fabrication process errors. A tolerance analysis based on conservative microfabrication capabilities suggests that coupling loss penalty from fabrication errors can be maintained below 0.3dB. The proposed spot size converter is fully compliant to industry standard microfabrication processes available at INO.
Tsukamoto, Yoshinari; Akagi, Takami; Shima, Fumiaki; Akashi, Mitsuru
2017-06-01
Herein, we report the fabrication of orientation-controlled tissues similar to heart and nerve tissues using a cell accumulation and three-dimensional (3D) printing technique. We first evaluated the 3D shaping ability of hydroxybutyl chitosan (HBC), a thermoresponsive polymer, by using a robotic dispensing 3D printer. HBC polymer could be laminated to a height of 1124 ± 14 μm. Based on this result, we fabricated 3D gel frames of various shapes, such as square, triangular, rectangular, and circular, for shape control of 3D tissue and then normal human cardiac fibroblasts (NHCFs) coated with extracellular matrix nanofilms were seeded in the frames. Observation of shape-controlled tissues after 1 day of cultivation showed that the orientation of fibroblasts was in one direction when a short-sided, thin, rectangular-shaped frame was used. Next, we tried to fabricate orientation-controlled tissue with a vascular network by coculturing NHCF and normal human cardiac microvascular endothelial cells. As a consequence of cultivation for 4 days, observation of cocultured tissue confirmed aligned cells and blood capillaries in orientation-controlled tissue. Our results clearly demonstrated that it would be possible to control the cell orientation by controlling the shape of the tissues by combining a cell accumulation technique and a 3D printing system. The results of this study suggest promising strategies for the fabrication of oriented 3D tissues in vitro. These tissues, mimicking native organ structures, such as muscle and nerve tissue with a cell alignment structure, would be useful for tissue engineering, regenerative medicine, and pharmaceutical applications.
Deterministic quantum state transfer between remote qubits in cavities
NASA Astrophysics Data System (ADS)
Vogell, B.; Vermersch, B.; Northup, T. E.; Lanyon, B. P.; Muschik, C. A.
2017-12-01
Performing a faithful transfer of an unknown quantum state is a key challenge for enabling quantum networks. The realization of networks with a small number of quantum links is now actively pursued, which calls for an assessment of different state transfer methods to guide future design decisions. Here, we theoretically investigate quantum state transfer between two distant qubits, each in a cavity, connected by a waveguide, e.g., an optical fiber. We evaluate the achievable success probabilities of state transfer for two different protocols: standard wave packet shaping and adiabatic passage. The main loss sources are transmission losses in the waveguide and absorption losses in the cavities. While special cases studied in the literature indicate that adiabatic passages may be beneficial in this context, it remained an open question under which conditions this is the case and whether their use will be advantageous in practice. We answer these questions by providing a full analysis, showing that state transfer by adiabatic passage—in contrast to wave packet shaping—can mitigate the effects of undesired cavity losses, far beyond the regime of coupling to a single waveguide mode and the regime of lossless waveguides, as was proposed so far. Furthermore, we show that the photon arrival probability is in fact bounded in a trade-off between losses due to non-adiabaticity and due to coupling to off-resonant waveguide modes. We clarify that neither protocol can avoid transmission losses and discuss how the cavity parameters should be chosen to achieve an optimal state transfer.
NASA Astrophysics Data System (ADS)
Prakash, Shashi; Kumar, Subrata
2017-09-01
CO2 lasers are commonly used for fabricating polymer based microfluidic devices. Despite several key advantages like low cost, time effectiveness, easy to operate and no requirement of clean room facility, CO2 lasers suffer from few disadvantages like thermal bulging, improper dimensional control, difficulty to produce microchannels of other than Gaussian cross sectional shapes and inclined surface walls. Many microfluidic devices require square or rectangular cross-sections which are difficult to produce using normal CO2 laser procedures. In this work, a thin copper sheet of 40 μm was used as a mask above the PMMA (Polymethyl-methacrylate) substrate while fabricating the microchannels utilizing the raster scanning feature of the CO2 lasers. Microchannels with different width dimensions were fabricated utilizing a CO2 laser in with mask and without-mask conditions. A comparison of both the fabricating process has been made. It was found that microchannels with U shape cross section and rectangular cross-section can efficiently be produced using the with mask technique. In addition to this, this technique can provide perfect dimensional control and better surface quality of the microchannel walls. Such a microchannel fabrication process do not require any post-processing. The fabrication of mask using a nanosecond fiber laser has been discussed in details. An underwater laser fabrication method was adopted to overcome heat related defects in mask preparation. Overall, the technique was found to be easy to adopt and significant improvements were observed in microchannel fabrication.
BUCKO- A BUCKLING ANALYSIS FOR RECTANGULAR PLATES WITH CENTRALLY LOCATED CUTOUTS
NASA Technical Reports Server (NTRS)
Nemeth, M. P.
1994-01-01
BUCKO is a computer program developed to predict the buckling load of a rectangular compression-loaded orthotropic plate with a centrally located cutout. The plate is assumed to be a balanced, symmetric laminate of uniform thickness. The cutout shape can be elliptical, circular, rectangular, or square. The BUCKO package includes sample data that demonstrates the essence of the program and its ease of usage. BUCKO uses an approximate one-dimensional formulation of the classical two-dimensional buckling problem following the Kantorovich method. The boundary conditions are considered to be simply supported unloaded edges and either clamped or simply supported loaded edges. The plate is loaded in uniaxial compression by either uniformly displacing or uniformly stressing two opposite edges of the plate. The BUCKO analysis consists of two parts: calculation of the inplane stress distribution prior to buckling, and calculation of the plate axial load and displacement at buckling. User input includes plate planform and cutout geometry, plate membrane and bending stiffnesses, finite difference parameters, boundary condition data, and loading data. Results generated by BUCKO are the prebuckling strain energy, inplane stress resultants, buckling mode shape, critical end shortening, and average axial and transverse strains at buckling. BUCKO is written in FORTRAN V for batch execution and has been implemented on a CDC CYBER 170 series computer operating under NOS with a central memory requirement of approximately 343K of 60 bit words. This program was developed in 1984 and was last updated in 1990.
Flutter of a Low-Aspect-Ratio Rectangular Wing
NASA Technical Reports Server (NTRS)
Cole, Stanley R.
1989-01-01
A flutter test of a low-aspect-ratio rectangular wing was conducted in the Langley Transonic Dynamics Tunnel (TDT). The model used in this flutter test consisted of a rigid wing mounted to the wind-tunnel wall by a flexible, rectangular beam. The flexible support shaft was connected to the wing root and was cantilever mounted to the wind-tunnel wall. The wing had an aspect ratio of 1.5 based on the wing semispan and an NACA 64A010 airfoil shape. The flutter boundary of the model was determined for a Mach number range of 0.5 to 0.97. The shape of the transonic flutter boundary was determined. Actual flutter points were obtained on both the subsonic and supersonic sides of the flutter bucket. The model exhibited a deep transonic flutter bucket over a narrow range of Mach number. At some Mach numbers, the flutter conditions were extrapolated using a subcritical response technique. In addition to the basic configuration, modifications were made to the model structure such that the first bending frequency was changed without significantly affecting the first torsion frequency. The experiment showed that increasing the bending stiffness of the model support shaft through these modifications lowered the flutter dynamic pressure. Flutter analysis was conducted for the basic model as a comparison with the experimental results. This flutter analysis was conducted with subsonic lifting-surface (kernel function) aerodynamics using the k method for the flutter solution.
Design and optimization of LTE 1800 MIMO antenna.
Wong, Huey Shin; Islam, Mohammad Tariqul; Kibria, Salehin
2014-01-01
A multiple input and multiple output (MIMO) antenna that comprises a printed microstrip antenna and a printed double-L sleeve monopole antenna for LTE 1800 wireless application is presented. The printed double-L sleeve monopole antenna is fed by a 50 ohm coplanar waveguide (CPW). A novel T-shaped microstrip feedline printed on the other side of the PCB is used to excite the waveguide's outer shell. Isolation characteristics better than -15 dB can be obtained for the proposed MIMO antenna. The proposed antenna can operate in LTE 1800 (1710 MHz-1880 MHz). This antenna exhibits omnidirectional characteristics. The efficiency of the antenna is greater than 70% and has high gain of 2.18 dBi.
Attenuation, dispersion and nonlinearity effects in graphene-based waveguides
Mota, João Cesar Moura; Sombra, Antonio Sergio Bezerra
2015-01-01
Summary We simulated and analyzed in detail the behavior of ultrashort optical pulses, which are typically used in telecommunications, propagating through graphene-based nanoribbon waveguides. In this work, we showed the changes that occur in the Gaussian and hyperbolic secant input pulses due to the attenuation, high-order dispersive effects and nonlinear effects. We concluded that it is possible to control the shape of the output pulses with the value of the input signal power and the chemical potential of the graphene nanoribbon. We believe that the obtained results will be highly relevant since they can be applied to other nanophotonic devices, for example, filters, modulators, antennas, switches and other devices. PMID:26171299
OLED with improved light outcoupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Stephen; Sun, Yiru
2016-11-29
An OLED may include regions of a material having a refractive index less than that of the substrate, or of the organic region, allowing for emitted light in a waveguide mode to be extracted into air. These regions can be placed adjacent to the emissive regions of an OLED in a direction parallel to the electrodes. The substrate may also be given a nonstandard shape to further improve the conversion of waveguide mode and/or glass mode light to air mode. The outcoupling efficiency of such a device may be up to two to three times the efficiency of a standardmore » OLED. Methods for fabricating such a transparent or top-emitting OLED is also provided.« less
Evaluation of approximate methods for the prediction of noise shielding by airframe components
NASA Technical Reports Server (NTRS)
Ahtye, W. F.; Mcculley, G.
1980-01-01
An evaluation of some approximate methods for the prediction of shielding of monochromatic sound and broadband noise by aircraft components is reported. Anechoic-chamber measurements of the shielding of a point source by various simple geometric shapes were made and the measured values compared with those calculated by the superposition of asymptotic closed-form solutions for the shielding by a semi-infinite plane barrier. The shields used in the measurements consisted of rectangular plates, a circular cylinder, and a rectangular plate attached to the cylinder to simulate a wing-body combination. The normalized frequency, defined as a product of the acoustic wave number and either the plate width or cylinder diameter, ranged from 4.6 to 114. Microphone traverses in front of the rectangular plates and cylinders generally showed a series of diffraction bands that matched those predicted by the approximate methods, except for differences in the magnitudes of the attenuation minima which can be attributed to experimental inaccuracies. The shielding of wing-body combinations was predicted by modifications of the approximations used for rectangular and cylindrical shielding. Although the approximations failed to predict diffraction patterns in certain regions, they did predict the average level of wing-body shielding with an average deviation of less than 3 dB.
Characterization of pulsed flow attenuation on a regulated montane river
NASA Astrophysics Data System (ADS)
Fong, C. S.; Yarnell, S. M.; Fleenor, W. E.; Viers, J. H.
2013-12-01
A major benefit of hydropower is its ability to respond quickly to fluctuating electrical loads. However, the sharp changes in discharge caused by this practice have detrimental environmental effects downstream. This study investigated the effects of hydrograph shape on attenuation of regulated pulsed flow events by first categorizing, then modeling the downstream movement of representative pulses on the upper Tuolumne River below Holm Powerhouse in the Sierra Nevada mountains of California. This system was managed by a public utility and produced flow pulses primarily for hydroelectricity generation and/or whitewater recreation. Operations were highly influenced by a system-wide "Water First" policy, which prioritized drinking water supply and quality over other beneficial uses. Pulses were therefore associated with a spectrum of time scales, from predetermined schedules decided far in advance to hydropeaking operations responding to real-time demands. We extracted underlying hydrograph shape patterns using principal component analysis on individual pulsed flow events released from 1988-2012 (n=4439). From principal component loadings, six shape categories were determined: rectangular, front-step, back-step, goalpost, centered tower, and other. The rectangular and stepped shapes were the most frequent, composing 62% and 24% of total events, respectively. The rectangular shape was often produced by 'standard' hydropeaking or recreational releases, while the stepped shapes were often used for water conservation or were recreational flows bordered by periods of electricity generation. The stepped shape increased in occurrence after the "Water First" policy took effect in 1993 and dominated two drier years (2007 and 2009). After categorization by shape, magnitude and durational indices were used to fabricate representative pulsed flow events. Attenuation of these representative pulses was then modeled using a 1D hydraulic model of 42 river km prepared in HEC-RAS. As no operational measures or physical structures existed within the system to counter the adverse effects of pulsed flow events, natural attenuation was the only potential major mitigation agent. However, model results demonstrated a clear durational threshold for representative pulses (~ 3-5 hrs) over which the degree of attenuation of ramping rates and peak discharge approached a limit. These thresholds were unique to the study reach and were dependent upon river morphology, bed characteristics, and flow rates. Increasing baseflows did not necessarily increase attenuation of pulses, most likely due to minimal increases in bed friction forces in this fairly steep and confined channel. Simulations of front and back-step representative pulses showed trade-offs between attenuation of peak magnitudes and steepness of ramping rates. Finally, a range of rising ramping rates were shown to steepen downstream above initial rates due to the study reach's channel morphology. Reshaping pulses to be more ecologically benign at all points downstream was infeasible if the system was required to maintain current electricity production and recreational service levels.
Shape-dependent electronic properties of blue phosphorene nano-flakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatia, Pradeep; Swaroop, Ram; Kumar, Ashok, E-mail: ashok@cup.ac.in
In recent year’s considerable attention has been given to the first principles method for modifying and controlling electronic properties of nano-materials. We performed DFT-based calculations on the electronic properties of zigzag-edged nano-flakes of blue phosphorene with three possible shapes namely rectangular, triangular and hexagonal. We observed that HOMO-LUMO gap of zigzag phosphorene nano-flakes with different shapes is ∼2.9 eV with H-passivations and ∼0.7 – 1.2 eV in pristine cases. Electronic properties of blue phosphorene nano-flakes show the strong dependence on their shape. We observed that distributions of molecular orbitals were strongly affected by the different shapes. Zigzag edged considered nanostructuresmore » are non-magnetic and semiconducting in nature. The shape dependent electronic properties may find applications in tunable nano-electronics.« less
3D vortex formation of drag-based propulsors
NASA Astrophysics Data System (ADS)
Kim, Daegyoum; Gharib, Morteza
2008-11-01
Three dimensional vortex formation mechanism of impulsively rotating plates is studied experimentally using defocusing digital particle image velocimetry. The plate face is normal to the moving direction to simulate drag-based propulsion and only one power stroke is considered. In order to compare the effect of shape on vortex generation, three different shapes of plate (rectangular, triangular and duck's webbed-foot shapes) are used. These three cases show striking differences in vortex formation process during power stroke. Axial flow is shown to play an important role in the tip vortex formation. Correlation between hydrodynamic forces acting on the plate and vortex formation processes is described.
Controlling the switching field in nanomagnets by means of domain-engineered antiferromagnets
Folven, Eric; Linder, J.; Gomonay, O. V.; ...
2015-09-14
Using soft x-ray spectromicroscopy, we investigate the magnetic domain structure in embedded nanomagnets defined in La 0.7Sr 0.3MnO 3 thin films and LaFeO 3/La 0.7Sr 0.3MnO 3 bilayers. We find that shape-controlled antiferromagnetic domain states give rise to a significant reduction of the switching field of the rectangular nanomagnets. This is discussed within the framework of competition between an intrinsic spin-flop coupling and shape anisotropy. In conclusion, the data demonstrates that shape effects in antiferromagnets may be used to control the magnetic properties in nanomagnets.
Controlling the switching field in nanomagnets by means of domain-engineered antiferromagnets
NASA Astrophysics Data System (ADS)
Folven, E.; Linder, J.; Gomonay, O. V.; Scholl, A.; Doran, A.; Young, A. T.; Retterer, S. T.; Malik, V. K.; Tybell, T.; Takamura, Y.; Grepstad, J. K.
2015-09-01
Using soft x-ray spectromicroscopy, we investigate the magnetic domain structure in embedded nanomagnets defined in L a0.7S r0.3Mn O3 thin films and LaFe O3/L a0.7S r0.3Mn O3 bilayers. We find that shape-controlled antiferromagnetic domain states give rise to a significant reduction of the switching field of the rectangular nanomagnets. This is discussed within the framework of competition between an intrinsic spin-flop coupling and shape anisotropy. The data demonstrates that shape effects in antiferromagnets may be used to control the magnetic properties in nanomagnets.
NASA Astrophysics Data System (ADS)
Lee, Joonsik; Jung, Byung Mun; Lee, Sang Bok; Lee, Sang Kwan; Kim, Ki Hyeon
2017-09-01
To evaluate the electromagnetic (EM) absorption and shield of magnetic composite sheet, we prepared the FeCoNi coated glass fibers filled in composite sheet. The FeCoNi was coated by electroless plating on glass fiber as a filler. The coated FeCoNi found that consist of mixtures of bcc and fcc phase. The magnetization and coercivity of coated FeCoNi are about 110 emu/g and 57 Oe, respectively. The permittivity and permeability of the FeCoNi composite sheet were about 21 and 1, respectively. Power absorption increased 95% with the increment of frequency up to 10 GHz. Inter-decoupling of this composite sheet showed maximum 30 dB at around 5.3 GHz, which is comparable to that of a conductive Cu foil. Shielding effectiveness (SE) was measured by using rectangular waveguide method. SE of composite obtained about 37 dB at X-band frequency region.
Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator
NASA Astrophysics Data System (ADS)
Setayesh, Amir; Mirnaziry, S. Reza; Sadegh Abrishamian, Mohammad
2011-03-01
In this study, a compact nanoscale plasmonic filter which consists of two metal-insulator-metal (MIM) waveguides coupled to each other by a rectangular ring resonator is presented and investigated numerically. The propagating modes of surface plasmon polaritons (SPPs) are studied in this structure. By replacing a portion of the ring core with air, while the outer dimensions of the structure are kept constant, we illustrate the possibility of the redshift of resonant wavelengths in order to tune the resonance modes. This feature is useful for integrated circuits in which we have limitations on the outer dimensions of the filter structure and it is not possible to enlarge the dimension of the ring resonator to reach longer resonant wavelengths. The corresponding results are illustrated by the 2D finite-difference time-domain (FDTD) method. The proposed structure has potential applications in plasmonic integrated circuits and can be simply fabricated.
Test-Wave Measurements of Microwave Absorption Efficiency in a Planar Surface-Wave Plasma Reactor
NASA Astrophysics Data System (ADS)
Ghanashev, Ivan; Morita, Shin; \\scToyoda, Naoki; Nagatsu, Masaaki; Sugai, Hideo
1999-07-01
A major obstacle for experimental surface-wave (SW) excitationand propagation studies in SW plasma is the self-consistentbehaviour of the latter, which does not permit continuousvariation of the electron density ne. In the presentstudy, we demonstrate how this obstacle can be overcome by anindependent plasma source, in our case, an inductively coupledplasma (ICP) created by a high-power RF (13.56 MHz) generator.Through a rectangular waveguide short-circuited at its end by amovable plunger, we introduced into the ICP a weak (powerless than 20 W) nonionising 2.4 GHz microwave.This permitted us to highlight important SW excitation andpropagation phenomena. In particular, we confirmed the existenceof the predicted [Jpn. J. Appl. Phys. 36 (1997) 4704]resonance minima in the ne dependence of the powerreflection coefficient. The influence of the plunger positionon the chamber matching was studied systematically and fourdifferent coupling aperture geometries were compared.
A low noise 230 GHz heterodyne receiver employing .25 sq micron area Nb/AlO(x)/Nb tunnel junctions
NASA Technical Reports Server (NTRS)
Kooi, Jacob W.; Chan, M.; Phillips, T. G.; Bumble, B.; Leduc, H. G.
1992-01-01
Recent results for a full height rectangular waveguide mixer with an integrated IF matching network are reported. Two 0.25 sq micron Nb/AlO(x)/Nb superconducting insulating superconducting (SIS) tunnel junctions with a current density of about 8500 A/sq cm and omega RC of about 2.5 at 230 GHz have been tested. Detailed measurements of the receiver noise have been made from 200-290 GHz for both junctions at 4.2 K. The lowest receiver noise temperatures were recorded at 239 GHz, measuring 48 K DSB at 4.2 K and 40 K DSB at 2.1 K. The 230 GHz receiver incorporates a one octave wide integrated low pass filter and matching network which transforms the pumped IF junction impedance to 50 ohms over a wide range of impedances.
Electromagnetic characterization of strontium ferrite powders in series 2000, SU8 polymer
NASA Astrophysics Data System (ADS)
Sholiyi, Olusegun; Williams, John
2014-12-01
In this article, electromagnetic characterization of strontium hexaferrite powders and composites with SU8 was carried out to determine their compatibility with micro and millimeter wave fabrications. The structures of both powders and their composites were scanned with electron microscope to produce the SEM images. Two powder sizes (0.8-1.0 μm and 3-6 μm), were mixed with SU8, spin cast and patterned on wafer, and then characterized using energy dispersive x-ray spectrometry, ferromagnetic resonance (FMR) and vibrating sample magnetometry. In this investigation, FMRs of the samples were determined at 60 GHz while their complex permittivity and permeability were determined using rectangular waveguide method of characterization between 26.5 and 40 GHz frequency range. The results obtained show no adverse effects on the electromagnetic properties of the composites except some slight shift in the resonant frequencies due to anisotropic field of the samples.
Is There a Geometric Module for Spatial Orientation? Insights from a Rodent Navigation Model
ERIC Educational Resources Information Center
Sheynikhovich, Denis; Chavarriaga, Ricardo; Strosslin, Thomas; Arleo, Angelo; Gerstner, Wulfram
2009-01-01
Modern psychological theories of spatial cognition postulate the existence of a geometric module for reorientation. This concept is derived from experimental data showing that in rectangular arenas with distinct landmarks in the corners, disoriented rats often make diagonal errors, suggesting their preference for the geometric (arena shape) over…
Chapter 2: Manufacturing Cross-laminated timber manufacturing
Borjen Yeh; Dave Kretschmann; Brad (Jianhe) Wang
2013-01-01
Cross-laminated timber ( CLT) is defined as a prefabricated solid engineered wood product made of at least three orthogonally bonded layers of solid-sawn lumber or structural composite lumber (SCL) that are laminated by gluing oflongitudinal and transverse layers with structural adhesives to form a solid rectangular-shaped, straight, and plane timber intended for roof...
ERIC Educational Resources Information Center
Scott, Paul
2006-01-01
A lattice is a (rectangular) grid of points, usually pictured as occurring at the intersections of two orthogonal sets of parallel, equally spaced lines. Polygons that have lattice points as vertices are called lattice polygons. It is clear that lattice polygons come in various shapes and sizes. A very small lattice triangle may cover just 3…
A Stack of Cards Rebuilt with Calculus
ERIC Educational Resources Information Center
Kazachkov, Alexander; Kireš, Marián
2017-01-01
Previous work covers building a tower from a stack of homogeneous rectangular plates, each with a maximum shift in displacement. We suggest using plates shaped as curvilinear triangles bounded by segments of power-law functions. The masses of the plates and the position of their center of mass are calculated and measured experimentally after…
Fractal Simulations of African Design in Pre-College Computing Education
ERIC Educational Resources Information Center
Eglash, Ron; Krishnamoorthy, Mukkai; Sanchez, Jason; Woodbridge, Andrew
2011-01-01
This article describes the use of fractal simulations of African design in a high school computing class. Fractal patterns--repetitions of shape at multiple scales--are a common feature in many aspects of African design. In African architecture we often see circular houses grouped in circular complexes, or rectangular houses in rectangular…
The Buoyancy Approach to U-Tube Problems
ERIC Educational Resources Information Center
Binder, P.-M.; Magowan, M. A.
2016-01-01
In this note we unify two physical situations treatable with hydrostatics: an object floating on a denser fluid and an open U-shaped tube with two immiscible fluids. We begin by reviewing the problem of a partially floating uniform, rectangular prism of horizontal area "A" immersed in a denser fluid, with respective densities ?[subscript…
Additivity of nonsimultaneous masking for short Gaussian-shaped sinusoids.
Laback, Bernhard; Balazs, Peter; Necciari, Thibaud; Savel, Sophie; Ystad, Solvi; Meunier, Sabine; Kronland-Martinet, Richard
2011-02-01
The additivity of nonsimultaneous masking was studied using Gaussian-shaped tone pulses (referred to as Gaussians) as masker and target stimuli. Combinations of up to four temporally separated Gaussian maskers with an equivalent rectangular bandwidth of 600 Hz and an equivalent rectangular duration of 1.7 ms were tested. Each masker was level-adjusted to produce approximately 8 dB of masking. Excess masking (exceeding linear additivity) was generally stronger than reported in the literature for longer maskers and comparable target levels. A model incorporating a compressive input/output function, followed by a linear summation stage, underestimated excess masking when using an input/output function derived from literature data for longer maskers and comparable target levels. The data could be predicted with a more compressive input/output function. Stronger compression may be explained by assuming that the Gaussian stimuli were too short to evoke the medial olivocochlear reflex (MOCR), whereas for longer maskers tested previously the MOCR caused reduced compression. Overall, the interpretation of the data suggests strong basilar membrane compression for very short stimuli.
Velocity-based analysis of sediment incipient deposition in rigid boundary open channels.
Aksoy, Hafzullah; Safari, Mir Jafar Sadegh; Unal, Necati Erdem; Mohammadi, Mirali
2017-11-01
Drainage systems must be designed in a way to minimize undesired problems such as decrease in hydraulic capacity of the channel, blockage and transport of pollutants due to deposition of sediment. Channel design considering self-cleansing criteria are used to solve the sedimentation problem. Incipient deposition is one of the non-deposition self-cleansing design criteria that can be used as a conservative method for channel design. Experimental studies have been carried out in five different cross-section channels, namely trapezoidal, rectangular, circular, U-shape and V-bottom. Experiments were performed in a tilting flume using four different sizes of sands as sediment in nine different channel bed slopes. Two well-known methods, namely the Novak & Nalluri and Yang methods are considered for the analysis of sediment motion. Equations developed using experimental data are found to be in agreement with the literature. It is concluded that the design velocity depends on the shape of the channel cross-section. Rectangular and V-bottom channels need lower and higher incipient deposition velocities, respectively, in comparison with other channels.
NASA Astrophysics Data System (ADS)
Ashoka, E.; Sharanaprabhu, C. M.; Krishnaraja, G. Kodancha; Kudari, S. K.
2018-04-01
In this paper, stir casting technique was utilized to fabricate the hybrid Aluminium alloy (Al 6061) metal matrix reinforced with silicon carbide (SiC) and cenosphere particulates. An Al6061-SiC-Cenosphere hybrid composite is selected with 3wt% of silicon carbide and 3wt%, 6wt% and 9wt% proportions of cenosphere particulates. The uniform distribution of these two reinforcement particulates in Al6061matrix was achieved by stirring and pouring the hybrid composite mixture into the steel mould to accomplish the rectangular shaped casting. These various hybrid composites were studied with respect to its microstructure and some mechanical properties. The rectangular shaped casting of various hybrid composites was machined according to ASTM tensile specimens standards to estimate some mechanical properties. For various cast hybrid composites a comparative study is done with respect to modulus of elasticity, yield stress, percentage elongation and microhardness. Finally, the distribution of particulates and the nature of the tensile specimen fractured surface of various hybrid composites were understood using scanning electron microscope.
Harris, Chad T; Haw, Dustin W; Handler, William B; Chronik, Blaine A
2013-09-01
Eddy currents are generated in MR by the use of rapidly switched electromagnets, resulting in time varying and spatially varying magnetic fields that must be either minimized or corrected. This problem is further complicated when non-cylindrical insert magnets are used for specialized applications. Interruption of the coupling between an insert coil and the MR system is typically accomplished using active magnetic shielding. A new method of actively shielding insert gradient and shim coils of any surface geometry by use of the boundary element method for coil design with a minimum energy constraint is presented. This method was applied to shield x- and z-gradient coils for two separate cases: a traditional cylindrical primary gradient with cylindrical shield and, to demonstrate its versatility in surface geometry, the same cylindrical primary gradients with a rectangular box-shaped shield. For the cylindrical case this method produced shields that agreed with analytic solutions. For the second case, the rectangular box-shaped shields demonstrated very good shielding characteristics despite having a different geometry than the primary coils. Copyright © 2013 Elsevier Inc. All rights reserved.
Synthesis of multiple shaped beam antenna patterns
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Coffey, E. L.
1973-01-01
Results are presented of research into the problem of finding an excitation of a given antenna such that the desired radiation pattern is approximated to within acceptable limits. This is to be done in such a fashion that boundary conditions involving hardware limitations may be inserted into the problem. The intended application is synthesis of multiple shaped beam antennas. Since this is perhaps the most difficult synthesis problem an antenna engineer is likely to encounter, the approach taken was to include as a by-product capability for synthesizing simpler patterns. The synthesis technique has been almost totally computerized. The class of antennas which may be synthesized with the computer program are those which may be represented as planar (continuous or discrete) current distributions. The technique is not limited in this sense and could indeed by extended to include, for example, the synthesis of conformal arrays or current distributions on the surface of reflectors. The antenna types which the program is set up to synthesize are: line source, rectangular aperture, circular aperture, linear array, rectangular array, and arbitrary planar array.
Proper Analytic Point Spread Function for Lateral Modulation
NASA Astrophysics Data System (ADS)
Chikayoshi Sumi,; Kunio Shimizu,; Norihiko Matsui,
2010-07-01
For ultrasonic lateral modulation for the imaging and measurement of tissue motion, better envelope shapes of the point spread function (PSF) than of a parabolic function are searched for within analytic functions or windows on the basis of the knowledge of the ideal shape of PSF previously obtained, i.e., having a large full width at half maximum and short feet. Through simulation of displacement vector measurement, better shapes are determined. As a better shape, a new window is obtained from a Turkey window by changing Hanning windows by power functions with an order larger than the second order. The order of measurement accuracies obtained is as follows, the new window > rectangular window > power function with a higher order > parabolic function > Akaike window.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lauermann, M.; Weimann, C.; Palmer, R.
2014-05-27
We demonstrate a waveguide-based frequency shifter on the silicon photonic platform, enabling frequency shifts up to 10 GHz. The device is realized by silicon-organic hybrid (SOH) integration. Temporal shaping of the drive signal allows the suppression of spurious side-modes by more than 23 dB.
Leung, Wai Y.; Park, Joong-Mok; Gan, Zhengqing; Constant, Kristen P.; Shinar, Joseph; Shinar, Ruth; ho, Kai-Ming
2014-06-03
Provided are microlens arrays for use on the substrate of OLEDs to extract more light that is trapped in waveguided modes inside the devices and methods of manufacturing same. Light extraction with microlens arrays is not limited to the light emitting area, but is also efficient in extracting light from the whole microlens patterned area where waveguiding occurs. Large microlens array, compared to the size of the light emitting area, extract more light and result in over 100% enhancement. Such a microlens array is not limited to (O)LEDs of specific emission, configuration, pixel size, or pixel shape. It is suitable for all colors, including white, for microcavity OLEDs, and OLEDs fabricated directly on the (modified) microlens array.
Some calculable contributions to entanglement entropy.
Hertzberg, Mark P; Wilczek, Frank
2011-02-04
Entanglement entropy appears as a central property of quantum systems in broad areas of physics. However, its precise value is often sensitive to unknown microphysics, rendering it incalculable. By considering parametric dependence on correlation length, we extract finite, calculable contributions to the entanglement entropy for a scalar field between the interior and exterior of a spatial domain of arbitrary shape. The leading term is proportional to the area of the dividing boundary; we also extract finite subleading contributions for a field defined in the bulk interior of a waveguide in 3+1 dimensions, including terms proportional to the waveguide's cross-sectional geometry: its area, perimeter length, and integrated curvature. We also consider related quantities at criticality and suggest a class of systems for which these contributions might be measurable.
Shi, Peng; Zhou, Guangya; Deng, Jie; Tian, Feng; Chau, Fook Siong
2015-09-29
We report the observations of all-optical electromagnetically induced transparency in nanostructures using waveguide side-coupled with photonic crystal nanobeam cavities, which has measured linewidths much narrower than individual resonances. The quality factor of transparency resonance can be 30 times larger than those of measured individual resonances. When the gap between cavity and waveguide is reduced to 10 nm, the bandwidth of destructive interference region can reach 10 nm while the width of transparency resonance is 0.3 nm. Subsequently, a comb-drive actuator is introduced to tune the line shape of the transparency resonance. The width of the peak is reduced to 15 pm and the resulting quality factor exceeds 10(5).
Design and simulation of a ~390 GHz seventh harmonic gyrotron using a large orbit electron beam
NASA Astrophysics Data System (ADS)
Li, Fengping; He, Wenlong; Cross, Adrian W.; Donaldson, Craig R.; Zhang, Liang; Phelps, Alan D. R.; Ronald, Kevin
2010-04-01
A ~390 GHz harmonic gyrotron based on a cusp electron gun has been designed and numerically modelled. The gyrotron operates at the seventh harmonic of the electron cyclotron frequency with the beam interacting with a TE71 waveguide mode. Theoretical as well as numerical simulation results using the 3D particle-in-cell code MAGIC are presented. The cusp gun generated an axis-encircling, annular shaped electron beam of energy 40 keV, current 1.5 A with a velocity ratio α of 3. Smooth cylindrical waveguides have been studied as the interaction cavities and their cavity Q optimized for 390 GHz operation. In the simulations ~600 W of output power at the design frequency has been demonstrated.
Hot-Electron Bolometer Mixers on Silicon-on-Insulator Substrates for Terahertz Frequencies
NASA Technical Reports Server (NTRS)
Skalare, Anders; Stern, Jeffrey; Bumble, Bruce; Maiwald, Frank
2005-01-01
A terahertz Hot-Electron Bolometer (HEB) mixer design using device substrates based on Silicon-On-Insulator (SOI) technology is described. This substrate technology allows very thin chips (6 pm) with almost arbitrary shape to be manufactured, so that they can be tightly fitted into a waveguide structure and operated at very high frequencies with only low risk for power leakages and resonance modes. The NbTiN-based bolometers are contacted by gold beam-leads, while other beamleads are used to hold the chip in place in the waveguide test fixture. The initial tests yielded an equivalent receiver noise temperature of 3460 K double-sideband at a local oscillator frequency of 1.462 THz and an intermediate frequency of 1.4 GHz.
Acoustic solitons in waveguides with Helmholtz resonators: transmission line approach.
Achilleos, V; Richoux, O; Theocharis, G; Frantzeskakis, D J
2015-02-01
We report experimental results and study theoretically soliton formation and propagation in an air-filled acoustic waveguide side loaded with Helmholtz resonators. We propose a theoretical modeling of the system, which relies on a transmission-line approach, leading to a nonlinear dynamical lattice model. The latter allows for an analytical description of the various soliton solutions for the pressure, which are found by means of dynamical systems and multiscale expansion techniques. These solutions include Boussinesq-like and Korteweg-de Vries pulse-shaped solitons that are observed in the experiment, as well as nonlinear Schrödinger envelope solitons, that are predicted theoretically. The analytical predictions are in excellent agreement with direct numerical simulations and in qualitative agreement with the experimental observations.
Design and Optimization of LTE 1800 MIMO Antenna
Wong, Huey Shin; Islam, Mohammad Tariqul
2014-01-01
A multiple input and multiple output (MIMO) antenna that comprises a printed microstrip antenna and a printed double-L sleeve monopole antenna for LTE 1800 wireless application is presented. The printed double-L sleeve monopole antenna is fed by a 50 ohm coplanar waveguide (CPW). A novel T-shaped microstrip feedline printed on the other side of the PCB is used to excite the waveguide's outer shell. Isolation characteristics better than −15 dB can be obtained for the proposed MIMO antenna. The proposed antenna can operate in LTE 1800 (1710 MHz–1880 MHz). This antenna exhibits omnidirectional characteristics. The efficiency of the antenna is greater than 70% and has high gain of 2.18 dBi. PMID:24967440
Nano-structured wild moth cocoon fibers as radiative cooling and waveguiding optical materials
NASA Astrophysics Data System (ADS)
Shi, Norman Nan; Tsai, Cheng-Chia; Bernard, Gary D.; Craig, Catherine; Yu, Nanfang
2017-09-01
The study shows that comet moth cocoon fibers exhibit radiative cooing properties with enhanced solar reflectivity and thermal emissivity. Nanostructured voids inside the cocoon fiber enables the cocoons to exhibit strong scattering in the visible and near-infrared. These structures also allow the fibers to exhibit strong shape birefringence and directional reflectivity. Optical waveguiding due to transverse Anderson localization is observed in these natural fibers, where the invariance and large concentration of the voids in the longitudinal direction allow the fiber to confine light in the transverse direction. To mimic the optical effects generated by these natural silk fibers, nanostructured voids are introduced into regenerated silk fibers through wet spinning to enhance reflectivity in the solar spectrum.
Radiation Losses Due to Tapering of a Double-Core Optical Waveguide
NASA Technical Reports Server (NTRS)
Lyons, Donald R.; Khet, Myat; Pencil, Eric (Technical Monitor)
2001-01-01
The theoretical model we designed parameterizes the power losses as a function of .the profile shape for a tapered, single mode, optical dielectric coupler. The focus of this project is to produce a working model that determines the power losses experienced by the fibers when light crosses a taper region. This phenomenon can be examined using coupled mode theory. The optical directional coupler consists of a parallel, dual-channel, waveguide with minimal spacing between the channels to permit energy exchange. Thus, power transfer is essentially a function of the taper profile. To find the fields in the fibers, the approach used was that of solving the Helmholtz equation in cylindrical coordinates involving Bessel and modified Bessel functions depending on the location.
Compound focusing mirror and X-ray waveguide optics for coherent imaging and nano-diffraction.
Salditt, Tim; Osterhoff, Markus; Krenkel, Martin; Wilke, Robin N; Priebe, Marius; Bartels, Matthias; Kalbfleisch, Sebastian; Sprung, Michael
2015-07-01
A compound optical system for coherent focusing and imaging at the nanoscale is reported, realised by high-gain fixed-curvature elliptical mirrors in combination with X-ray waveguide optics or different cleaning apertures. The key optical concepts are illustrated, as implemented at the Göttingen Instrument for Nano-Imaging with X-rays (GINIX), installed at the P10 coherence beamline of the PETRA III storage ring at DESY, Hamburg, and examples for typical applications in biological imaging are given. Characteristic beam configurations with the recently achieved values are also described, meeting the different requirements of the applications, such as spot size, coherence or bandwidth. The emphasis of this work is on the different beam shaping, filtering and characterization methods.
Dimensional effects on the magnetic domains in planar magnetophotonic crystal waveguides
NASA Astrophysics Data System (ADS)
Huang, Xiaoyue
2007-05-01
The application of photonic crystal technology in magneto-optic media can yield significant improvements in polarization rotation efficiency and optical switching capability and an overall reduction in magneto-optic device dimensions. Resonant photonic crystal structures in planar ferrimagnetic film waveguides are of interest because they may lead to the development of on-chip magneto-optical switches and isolators for photonic device integration. In the present work, two different methods for the fabrication of on-chip waveguide magnetophotonic crystals, through electron beam lithography and focused ion beam milling, are discussed and demonstrated. A high precision photonic measurement system was set up for testing and analysis of the waveguide devices. The results obtained show photonic band gaps with resonant transmission in the gap, and enhanced magneto-optic rotation efficiency. The character of waveguide modes therein, birefringence effects, and structural variation effects were studied extensively and are presented in this thesis. Planar magnetization control produced by manipulation of the magnetic shape anisotropy in the photonic crystal micro-cavity was demonstrated in this work. By introducing strip structures into the resonant cavity formed on magnetic garnet films with in-plane anisotropy, a bi-stable magnetic state and an enhanced magnetic field reversal mechanism were demonstrated. This effect was extensively studied through experimental and micromagnetic simulation analysis of the polarization rotation hysteresis. The results discussed herein show that domain closure loops between the strips limit the magnification of the coercivity in the resonant cavity and that these limitations can be overcome by the formation of isolated single-domain magnetic microstrips in the cavity.
Processing soft materials for integrated photonic and macroelectronic components and devices
NASA Astrophysics Data System (ADS)
Tsay, Candice Ruth
Incorporating soft materials into micro-fabrication processes opens up new functionalities for fabricated devices, but requires unique processing routes. This thesis presents our development of integrated photonic and macroelectronic structures through processing innovations that unite disparate inorganic/organic, and soft/rigid materials systems. For the integrated photonic system, we focus our efforts on chalcogenide glasses, dielectric materials that exhibit a variety of optical properties that make them desirable for near- and mid-infrared communications and sensing applications. However, processing limitations for these relatively fragile materials have made the direct integration of waveguides with sources or detectors challenging. Here we demonstrate the viability of several additive methods for patterning chalcogenide glass waveguides from solution. In particular, we focus on two complementary soft lithography methods. The first, micro-molding in capillaries (MIMIC), is shown to fabricate multi-mode As2S 3 waveguides which are directly integrated with quantum cascade lasers (QCLs). In a second method, we demonstrate the ability of micro-transfer molding (muTM), to produce arrays of single mode rib waveguides over large areas while maintaining low surface and edge roughness. These methods form a suite of processes that can be applied to chalcogenide solutions to create a diverse array of mid-IR photonic structures ranging from less than 5 to 10's of mum in cross-sectional dimension. Optical characterization, including measurement of waveguide loss by cut-back, is carried out in the mid-IR using QCLs. In addition, materials characterization of the chalcogenide glass structures is carried out to determine loss mechanisms and optimize processing. While we use soft polymeric materials as molds to pattern chalcogenide glasses, we also employ them as substrate material for stretchable electronic systems, which comprise a new class of flexible macroelectronics. These devices must undergo elastic deformation to large strain (>10%), for applications in which electronics are conformally shaped around surfaces of arbitrary shape, like many biological surfaces. We develop strategies for processing stretchable metallic electrodes and study the mechanism of their stretchability via careful observation of thin film micro-structures. Our macroelectronic work culminates in fabrication of stretchable microelectrode arrays that interface with brain tissue, laying the groundwork for future development of advanced bio-electronic interfaces.
NASA Technical Reports Server (NTRS)
Bamber, M J
1935-01-01
General methods of theoretical analysis of airplane spinning characteristics have been available for some time. Some of these methods of analysis might be used by designers to predict the spinning characteristics of proposed airplane designs if the necessary aerodynamic data were known. The present investigation, to determine the spinning characteristics of wings, is planned to include variations in airfoil sections, plan forms, and tip shapes of monoplane wings and variations in stagger, gap, and decalage for biplane cellules. The first series of tests, made on a rectangular Clark Y monoplane wing, are reported in reference 1. That report also gives an analysis of the data for predicting the probable effects of various important parameters on the spin for normal airplanes using such a wing. The present report is the second of the series. It gives the aerodynamic characteristics of a rectangular Clark Y biplane cellule in spinning attitudes and includes a discussion of the data, using the method of analysis given in reference 1.
An analytical solution for Dean flow in curved ducts with rectangular cross section
NASA Astrophysics Data System (ADS)
Norouzi, M.; Biglari, N.
2013-05-01
In this paper, a full analytical solution for incompressible flow inside the curved ducts with rectangular cross-section is presented for the first time. The perturbation method is applied to solve the governing equations and curvature ratio is considered as the perturbation parameter. The previous perturbation solutions are usually restricted to the flow in curved circular or annular pipes related to the overly complex form of solutions or singularity situation for flow in curved ducts with non-circular shapes of cross section. This issue specifies the importance of analytical studies in the field of Dean flow inside the non-circular ducts. In this study, the main flow velocity, stream function of lateral velocities (secondary flows), and flow resistance ratio in rectangular curved ducts are obtained analytically. The effect of duct curvature and aspect ratio on flow field is investigated as well. Moreover, it is important to mention that the current analytical solution is able to simulate the Taylor-Görtler and Dean vortices (vortices in stable and unstable situations) in curved channels.
Glue detection based on teaching points constraint and tracking model of pixel convolution
NASA Astrophysics Data System (ADS)
Geng, Lei; Ma, Xiao; Xiao, Zhitao; Wang, Wen
2018-01-01
On-line glue detection based on machine version is significant for rust protection and strengthening in car production. Shadow stripes caused by reflect light and unevenness of inside front cover of car reduce the accuracy of glue detection. In this paper, we propose an effective algorithm to distinguish the edges of the glue and shadow stripes. Teaching points are utilized to calculate slope between the two adjacent points. Then a tracking model based on pixel convolution along motion direction is designed to segment several local rectangular regions using distance. The distance is the height of rectangular region. The pixel convolution along the motion direction is proposed to extract edges of gules in local rectangular region. A dataset with different illumination and complexity shape stripes are used to evaluate proposed method, which include 500 thousand images captured from the camera of glue gun machine. Experimental results demonstrate that the proposed method can detect the edges of glue accurately. The shadow stripes are distinguished and removed effectively. Our method achieves the 99.9% accuracies for the image dataset.
Uncertainty-enabled design of electromagnetic reflectors with integrated shape control
NASA Astrophysics Data System (ADS)
Haque, Samiul; Kindrat, Laszlo P.; Zhang, Li; Mikheev, Vikenty; Kim, Daewa; Liu, Sijing; Chung, Jooyeon; Kuian, Mykhailo; Massad, Jordan E.; Smith, Ralph C.
2018-03-01
We implemented a computationally efficient model for a corner-supported, thin, rectangular, orthotropic polyvinylidene fluoride (PVDF) laminate membrane, actuated by a two-dimensional array of segmented electrodes. The laminate can be used as shape-controlled electromagnetic reflector and the model estimates the reflector's shape given an array of control voltages. In this paper, we describe a model to determine the shape of the laminate for a given distribution of control voltages. Then, we investigate the surface shape error and its sensitivity to the model parameters. Subsequently, we analyze the simulated deflection of the actuated bimorph using a Zernike polynomial decomposition. Finally, we provide a probabilistic description of reflector performance using statistical methods to quantify uncertainty. We make design recommendations for nominal parameter values and their tolerances based on optimization under uncertainty using multiple methods.
Kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator.
Ye, Zhibin; Liu, Chong; Tu, Bo; Wang, Ke; Gao, Qingsong; Tang, Chun; Cai, Zhen
2016-01-25
A direct-liquid-cooled Nd:YLF thin disk laser resonator is presented, which features the use of refractive index matching liquid (RIML) as coolant. Highly uniform pump intensity distribution with rectangular shape is realized by using metallic planar waveguides. Much attention has been paid on the design of the gain module, including how to achieve excellent cooling ability with multi-channel coolers and how to choose the doping levels of the crystals for realizing well-distributed pump absorption. The flow velocity of the coolant is found to be a key parameter for laser performance and optimized to keep it in laminar flow status for dissipating unwanted heat load. A single channel device is used to measure the convective heat transfer coefficient (CHTC) at different flow velocities. Accordingly, the thermal stress in the disk is analyzed numerically and the maximum permissible thermal load is estimated. Experimentally, with ten pieces of a-cut Nd:YLF thin disks of different doping levels, a linear polarized laser with an average output power of 1120 W is achieved at the pump power of 5202 W, corresponding to an optical-optical efficiency of 21.5%, and a slope efficiency of 30.8%. Furthermore, the wavefront aberration of the gain module is measured to be quite weak, with a peak to valley (PV) value of 4.0 μm when it is pumped at 5202 W, which enables the feasibility of its application in an unstable resonator. To the best of our knowledge, this is the first demonstration of kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator.