Sample records for recurrent multilayer perception

  1. Melphalan, Carboplatin, Mannitol, and Sodium Thiosulfate in Treating Patients With Recurrent or Progressive CNS Embryonal or Germ Cell Tumors

    ClinicalTrials.gov

    2018-05-02

    Adult Central Nervous System Germ Cell Tumor; Adult Embryonal Tumor With Multilayered Rosettes, C19MC-Altered; Adult Medulloblastoma; Adult Pineoblastoma; Adult Supratentorial Embryonal Tumor, Not Otherwise Specified; Atypical Teratoid/Rhabdoid Tumor; Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Embryonal Tumor With Multilayered Rosettes, C19MC-Altered; Medulloepithelioma; Ototoxicity; Recurrent Adult Brain Neoplasm; Recurrent Childhood Central Nervous System Embryonal Neoplasm; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Supratentorial Embryonal Tumor, Not Otherwise Specified

  2. Training trajectories by continuous recurrent multilayer networks.

    PubMed

    Leistritz, L; Galicki, M; Witte, H; Kochs, E

    2002-01-01

    This paper addresses the problem of training trajectories by means of continuous recurrent neural networks whose feedforward parts are multilayer perceptrons. Such networks can approximate a general nonlinear dynamic system with arbitrary accuracy. The learning process is transformed into an optimal control framework where the weights are the controls to be determined. A training algorithm based upon a variational formulation of Pontryagin's maximum principle is proposed for such networks. Computer examples demonstrating the efficiency of the given approach are also presented.

  3. Illness perceptions or recurrence risk perceptions: What comes first? A longitudinal cross-lagged examination among cardiac patients.

    PubMed

    Peleg, Shira; Drori, Erga; Banai, Shmuel; Finkelstein, Ariel; Shiloh, Shoshana

    2016-05-01

    Previous research suggested that illness perceptions provide the basis for illness risk perceptions through an inductive reasoning process. This study aimed to assess the direction of relationships between illness and recurrence risk perceptions over time, among cardiac patients. A longitudinal study was conducted among 138 patients undergoing coronary angioplasty. Self-report questionnaires measured perceived recurrence risk and illness perceptions one day and one month after catheterisation. Cross-lagged Panel Model Analyses revealed that higher perceptions of timeline, consequences and emotional representations of illness at hospitalisation were associated with higher recurrence risk perceptions one month later. Perceived personal control was the only illness perception with bi-directional associations: higher perceived personal control at hospitalisation was associated with higher recurrence risk perceptions one month later; and higher recurrence risk perceptions at hospitalisation was associated with lower personal control one month later. The findings suggest that the associations between recurrence risk and illness perceptions can only partly be explained by inductive reasoning. Halo effects and defensive processes are suggested as complementary explanations for the observed associations between risk and illness perceptions.

  4. Partnering with Youth to Map Their Neighborhood Environments: A Multi-Layered GIS Approach

    PubMed Central

    Topmiller, Michael; Jacquez, Farrah; Vissman, Aaron T.; Raleigh, Kevin; Miller-Francis, Jenni

    2014-01-01

    Mapping approaches offer great potential for community-based participatory researchers interested in displaying youth perceptions and advocating for change. We describe a multi-layered approach for gaining local knowledge of neighborhood environments that engages youth as co-researchers and active knowledge producers. By integrating geographic information systems (GIS) with environmental audits, an interactive focus group, and sketch mapping, the approach provides a place-based understanding of physical activity resources from the situated experience of youth. Youth report safety and a lack of recreational resources as inhibiting physical activity. Maps reflecting youth perceptions aid policy-makers in making place-based improvements for youth neighborhood environments. PMID:25423245

  5. Beliefs about medicine and illness are associated with fear of cancer recurrence in women taking adjuvant endocrine therapy for breast cancer.

    PubMed

    Corter, Arden L; Findlay, Michael; Broom, Reuben; Porter, David; Petrie, Keith J

    2013-02-01

    Adjuvant endocrine therapy for early-stage breast cancer has greatly reduced the morbidity and mortality associated with breast cancer recurrence. Despite this, a significant proportion of women report fears of cancer recurrence. This study examined the associations between fear of cancer recurrence (FoR) and illness perceptions, medication beliefs, and treatment side effects in women taking adjuvant endocrine therapy following breast cancer. A total of 153 post-menopausal women with early-stage breast cancer completed a postal survey. Analyses were conducted to examine the association between FoR and illness perceptions, medication beliefs, treatment side effects, demographic factors, and emotional distress and to identify which of these factors would be most strongly associated with FoR in a regression model. All illness perceptions (apart from personal control) were associated with FoR, as were patient beliefs about endocrine therapy. Although treatment side effects, being unemployed, and higher levels of anxiety and depression were associated with FoR, only illness perceptions (identity, treatment control, timeline, and emotional representation) and medication necessity beliefs were significantly correlated with FoR in the final model. It appears that, in addition to directly targeting FoR, it may be worthwhile to address the illness and medication beliefs supporting the fear. Additionally, helping women to differentiate everyday symptoms from those indicative of breast cancer may help to reduce fear of recurrence. What is already known on this subject? A significant proportion of women report fear of cancer recurrence following breast cancer. The literature shows that illness perceptions, side effects of treatment, and beliefs about medicines are related to fear of recurrence among cancer patients. However, because these variables have often been looked at in isolation, it is not clear whether some perceptions or cues are more likely to relate to fear of recurrence than others. What does this study add? This study shows illness perceptions and medication beliefs are strongly related to fears of cancer recurrence. The results point to ways in which the self-regulatory model of illness may be used to reduce patients' fear of recurrence. The study results show that women with higher fear of recurrence may be balancing a tension between believing that they need to take the medication to protect their future health alongside concerns that the treatment may not be working. © 2012 The British Psychological Society.

  6. Function Prediction Using Recurrent Neural Networks

    DTIC Science & Technology

    1991-12-01

    of Neurodynamics : Perceptrons and the Theory of Brain Mechanisms. Washington: Spartan Books, 1959. 16. Ruck, Dennis W. Characterization of Multilayer...Computing, 2(2) (Fall 1990). 18. Rumelhart, David E., et al. Parallel Distributed Processing: Explorations in the Microstructure of Cognition , Volume 1

  7. Algorithm for Training a Recurrent Multilayer Perceptron

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Rais, Omar T.; Menon, Sunil K.; Atiya, Amir F.

    2004-01-01

    An improved algorithm has been devised for training a recurrent multilayer perceptron (RMLP) for optimal performance in predicting the behavior of a complex, dynamic, and noisy system multiple time steps into the future. [An RMLP is a computational neural network with self-feedback and cross-talk (both delayed by one time step) among neurons in hidden layers]. Like other neural-network-training algorithms, this algorithm adjusts network biases and synaptic-connection weights according to a gradient-descent rule. The distinguishing feature of this algorithm is a combination of global feedback (the use of predictions as well as the current output value in computing the gradient at each time step) and recursiveness. The recursive aspect of the algorithm lies in the inclusion of the gradient of predictions at each time step with respect to the predictions at the preceding time step; this recursion enables the RMLP to learn the dynamics. It has been conjectured that carrying the recursion to even earlier time steps would enable the RMLP to represent a noisier, more complex system.

  8. Parents' perceptions of autism spectrum disorder etiology and recurrence risk and effects of their perceptions on family planning: Recommendations for genetic counselors.

    PubMed

    Selkirk, Christina G; McCarthy Veach, Patricia; Lian, Fengqin; Schimmenti, Lisa; LeRoy, Bonnie S

    2009-10-01

    Knowledge about the etiology of Autism Spectrum Disorders (ASDs) is increasing, but causes remain elusive for most cases. Genetic counselors are positioned to help families that have children with ASDs despite uncertainty regarding etiology. To determine how genetic counselors might best provide services, an anonymous survey was conducted with 255 parents whose children were diagnosed on the autism spectrum. Questions concerned: 1) their perceptions of ASD cause(s) and 2) recurrence risk, 3) whether perceived risk affected family planning decisions, 4) whether parents had received genetic services, and 5) how genetic counselors might assist families. The most prevalent perceived cause was genetic influences (72.6%). Most parents' recurrence risk perceptions were inaccurately high and significantly affected family planning. Only 10% had seen a genetic professional related to an ASD. Parents provided several suggestions for genetic counselor best practices. Findings indicate the importance of genetic counselor awareness of parent perceptions in order to best help families who have children with ASDs.

  9. Protein secondary structure prediction using modular reciprocal bidirectional recurrent neural networks.

    PubMed

    Babaei, Sepideh; Geranmayeh, Amir; Seyyedsalehi, Seyyed Ali

    2010-12-01

    The supervised learning of recurrent neural networks well-suited for prediction of protein secondary structures from the underlying amino acids sequence is studied. Modular reciprocal recurrent neural networks (MRR-NN) are proposed to model the strong correlations between adjacent secondary structure elements. Besides, a multilayer bidirectional recurrent neural network (MBR-NN) is introduced to capture the long-range intramolecular interactions between amino acids in formation of the secondary structure. The final modular prediction system is devised based on the interactive integration of the MRR-NN and the MBR-NN structures to arbitrarily engage the neighboring effects of the secondary structure types concurrent with memorizing the sequential dependencies of amino acids along the protein chain. The advanced combined network augments the percentage accuracy (Q₃) to 79.36% and boosts the segment overlap (SOV) up to 70.09% when tested on the PSIPRED dataset in three-fold cross-validation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Recurrent Otitis Media and Attachment Security: A Path Model.

    ERIC Educational Resources Information Center

    McCallum, Michelle S.; McKim, Margaret K.

    1999-01-01

    Used regular telephone interviews over six months to examine processes through which recurrent episodes of otitis media influence children's attachment security. Found that recurrent otitis media negatively affected attachment security by increasing mothers' perceptions of their children as behaving more negatively. Parenting stress was not…

  11. Core reactivity estimation in space reactors using recurrent dynamic networks

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Tsai, Wei K.

    1991-01-01

    A recurrent multilayer perceptron network topology is used in the identification of nonlinear dynamic systems from only the input/output measurements. The identification is performed in the discrete time domain, with the learning algorithm being a modified form of the back propagation (BP) rule. The recurrent dynamic network (RDN) developed is applied for the total core reactivity prediction of a spacecraft reactor from only neutronic power level measurements. Results indicate that the RDN can reproduce the nonlinear response of the reactor while keeping the number of nodes roughly equal to the relative order of the system. As accuracy requirements are increased, the number of required nodes also increases, however, the order of the RDN necessary to obtain such results is still in the same order of magnitude as the order of the mathematical model of the system. It is believed that use of the recurrent MLP structure with a variety of different learning algorithms may prove useful in utilizing artificial neural networks for recognition, classification, and prediction of dynamic systems.

  12. Sustaining K-12 professional development in geology: Recurrent participation in Rockcamp

    USGS Publications Warehouse

    Repine, T.E.; Hemler, D.A.; Behling, R.E.

    2004-01-01

    A reconnaissance study of the geology professional development program known as RockCamp was initiated to examine the sustained, or recurrent, participation of K-12 science teachers. Open-ended interviews, concept mapping, and creative writing assignments were used to explore the perceptions of six teachers possessing an exceptional record of participation. Efficacy, fun, right time of life, and support emerged as unanimous reasons for recurrent participation. Content, friendship, and methodology were very important. College credit was not critical. These teachers' perceptions suggest their sustained involvement in the RockCamp Program is stimulated by situated learning experiences stressing a compare, contrast, connect, and construct pedagogy within a supportive learning community.

  13. Hallucinogen persisting perception disorder after psilocybin consumption: a case study.

    PubMed

    Espiard, Marie-Laure; Lecardeur, Laurent; Abadie, Pascale; Halbecq, Isabelle; Dollfus, Sonia

    2005-08-01

    The recurrence of flashbacks without acute or chronic hallucinogen consumption has been recognized in the DSM IV criteria as the hallucinogen persisting perception disorder (HPPD). Perceptual disturbances may last for 5 years or more and represent a real psychosocial distress. We reported here a case of a 18-year-old young man presenting HPPD after a mixed intoxication with psylocibin and cannabis. This report shows symptomatic recurrences persisting more than 8 months. Various differential diagnoses were evoked and our therapeutic strategies were described.

  14. Hierarchical singleton-type recurrent neural fuzzy networks for noisy speech recognition.

    PubMed

    Juang, Chia-Feng; Chiou, Chyi-Tian; Lai, Chun-Lung

    2007-05-01

    This paper proposes noisy speech recognition using hierarchical singleton-type recurrent neural fuzzy networks (HSRNFNs). The proposed HSRNFN is a hierarchical connection of two singleton-type recurrent neural fuzzy networks (SRNFNs), where one is used for noise filtering and the other for recognition. The SRNFN is constructed by recurrent fuzzy if-then rules with fuzzy singletons in the consequences, and their recurrent properties make them suitable for processing speech patterns with temporal characteristics. In n words recognition, n SRNFNs are created for modeling n words, where each SRNFN receives the current frame feature and predicts the next one of its modeling word. The prediction error of each SRNFN is used as recognition criterion. In filtering, one SRNFN is created, and each SRNFN recognizer is connected to the same SRNFN filter, which filters noisy speech patterns in the feature domain before feeding them to the SRNFN recognizer. Experiments with Mandarin word recognition under different types of noise are performed. Other recognizers, including multilayer perceptron (MLP), time-delay neural networks (TDNNs), and hidden Markov models (HMMs), are also tested and compared. These experiments and comparisons demonstrate good results with HSRNFN for noisy speech recognition tasks.

  15. Recurrence risk perception and quality of life following treatment of breast cancer.

    PubMed

    Hawley, Sarah T; Janz, Nancy K; Griffith, Kent A; Jagsi, Reshma; Friese, Christopher R; Kurian, Allison W; Hamilton, Ann S; Ward, Kevin C; Morrow, Monica; Wallner, Lauren P; Katz, Steven J

    2017-02-01

    Little is known about different ways of assessing risk of distant recurrence following cancer treatment (e.g., numeric or descriptive). We sought to evaluate the association between overestimation of risk of distant recurrence of breast cancer and key patient-reported outcomes, including quality of life and worry. We surveyed a weighted random sample of newly diagnosed patients with early-stage breast cancer identified through SEER registries of Los Angeles County & Georgia (2013-14) ~2 months after surgery (N = 2578, RR = 71%). Actual 10-year risk of distant recurrence after treatment was based on clinical factors for women with DCIS & low-risk invasive cancer (Stg 1A, ER+, HER2-, Gr 1-2). Women reported perceptions of their risk numerically (0-100%), with values ≥10% for DCIS & ≥20% for invasive considered overestimates. Perceptions of "moderate, high or very high" risk were considered descriptive overestimates. In our analytic sample (N = 927), we assessed factors correlated with both types of overestimation and report multivariable associations between overestimation and QoL (PROMIS physical & mental health) and frequent worry. 30.4% of women substantially overestimated their risk of distant recurrence numerically and 14.7% descriptively. Few factors other than family history were significantly associated with either type of overestimation. Both types of overestimation were significantly associated with frequent worry, and lower QoL. Ensuring understanding of systemic recurrence risk, particularly among patients with favorable prognosis, is important. Better risk communication by clinicians may translate to better risk comprehension among patients and to improvements in QoL.

  16. Towards representation of a perceptual color manifold using associative memory for color constancy.

    PubMed

    Seow, Ming-Jung; Asari, Vijayan K

    2009-01-01

    In this paper, we propose the concept of a manifold of color perception through empirical observation that the center-surround properties of images in a perceptually similar environment define a manifold in the high dimensional space. Such a manifold representation can be learned using a novel recurrent neural network based learning algorithm. Unlike the conventional recurrent neural network model in which the memory is stored in an attractive fixed point at discrete locations in the state space, the dynamics of the proposed learning algorithm represent memory as a nonlinear line of attraction. The region of convergence around the nonlinear line is defined by the statistical characteristics of the training data. This learned manifold can then be used as a basis for color correction of the images having different color perception to the learned color perception. Experimental results show that the proposed recurrent neural network learning algorithm is capable of color balance the lighting variations in images captured in different environments successfully.

  17. Mistreatment in an academic setting and medical students' perceptions about their course in São Paulo, Brazil: a cross-sectional study.

    PubMed

    Peres, Maria Fernanda Tourinho; Babler, Fernanda; Arakaki, Juliana Naomy Lacerda; Quaresma, Irene Yamamoto do Vale; Barreto, Abraão Deyvid Alves de Lima; Silva, Andréa Tenório Correia da; Eluf-Neto, José

    2016-04-01

    High prevalence of mistreatment among medical students has been described in the worldwide literature since the 1980s. However, studies addressing the severity and recurrence of victimization and its effects on students' perceptions of their medical course are scarce. This study had the aim of estimating the prevalence of exposure to mistreatment that was considered to be severe and recurrent and its association with medical students' perceptions about their medical course. A cross-sectional study was conducted in a medical school in São Paulo, Brazil. Three hundred and seventeen students from the first to the sixth year answered the online questionnaire. High prevalence of mistreatment during the course was found. Two thirds of the students considered the episodes to be severe, and around one third reported experiencing recurrent victimization. Occurences of mistreatment that the students considered to be severe were correlated with feeling overloaded and wanting to abandon the medical course. Occurrences of mistreatment within the academic environment are frequent in Brazil. The results suggest that mistreatment that was considered to be severe might negatively affect students' perceptions about their course.

  18. Diagonal recurrent neural network based adaptive control of nonlinear dynamical systems using lyapunov stability criterion.

    PubMed

    Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P

    2017-03-01

    In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Perception of recurrent stroke risk among black, white and Hispanic ischemic stroke and transient ischemic attack survivors: the SWIFT study.

    PubMed

    Boden-Albala, Bernadette; Carman, Heather; Moran, Megan; Doyle, Margaret; Paik, Myunghee C

    2011-01-01

    Risk modification through behavior change is critical for primary and secondary stroke prevention. Theories of health behavior identify perceived risk as an important component to facilitate behavior change; however, little is known about perceived risk of vascular events among stroke survivors. The SWIFT (Stroke Warning Information and Faster Treatment) study includes a prospective population-based ethnically diverse cohort of ischemic stroke and transient ischemic attack survivors. We investigate the baseline relationship between demographics, health beliefs, and knowledge on risk perception. Regression models examined predictors of inaccurate perception. Only 20% accurately estimated risk, 10% of the participants underestimated risk, and 70% of the 817 study participants significantly overestimated their risk for a recurrent stroke. The mean perceived likelihood of recurrent ischemic stroke in the next 10 years was 51 ± 7%. We found no significant differences by race-ethnicity with regard to accurate estimation of risk. Inaccurate estimation of risk was associated with attitudes and beliefs [worry (p < 0.04), fatalism (p < 0.07)] and memory problems (p < 0.01), but not history or knowledge of vascular risk factors. This paper provides a unique perspective on how factors such as belief systems influence risk perception in a diverse population at high stroke risk. There is a need for future research on how risk perception can inform primary and secondary stroke prevention. Copyright © 2011 S. Karger AG, Basel.

  20. Optimizing ITO for incorporation into multilayer thin film stacks for visible and NIR applications

    NASA Astrophysics Data System (ADS)

    Roschuk, Tyler; Taddeo, David; Levita, Zachary; Morrish, Alan; Brown, Douglas

    2017-05-01

    Indium Tin Oxide, ITO, is the industry standard for transparent conductive coatings. As such, the common metrics for characterizing ITO performance are its transmission and conductivity/resistivity (or sheet resistance). In spite of its recurrent use in a broad range of technological applications, the performance of ITO itself is highly variable, depending on the method of deposition and chamber conditions, and a single well defined set of properties does not exist. This poses particular challenges for the incorporation of ITO in complex optical multilayer stacks while trying to maintain electronic performance. Complicating matters further, ITO suffers increased absorption losses in the NIR - making the ability to incorporate ITO into anti-reflective stacks crucial to optimizing overall optical performance when ITO is used in real world applications. In this work, we discuss the use of ITO in multilayer thin film stacks for applications from the visible to the NIR. In the NIR, we discuss methods to analyze and fine tune the film properties to account for, and minimize, losses due to absorption and to optimize the overall transmission of the multilayer stacks. The ability to obtain high transmission while maintaining good electrical properties, specifically low resistivity, is demonstrated. Trade-offs between transmission and conductivity with variation of process parameters are discussed in light of optimizing the performance of the final optical stack and not just with consideration to the ITO film itself.

  1. Single Cell Mathematical Model Successfully Replicates Key Features of GBM: Go-Or-Grow Is Not Necessary.

    PubMed

    Scribner, Elizabeth; Fathallah-Shaykh, Hassan M

    2017-01-01

    Glioblastoma (GBM) is a malignant brain tumor that continues to be associated with neurological morbidity and poor survival times. Brain invasion is a fundamental property of malignant glioma cells. The Go-or-Grow (GoG) phenotype proposes that cancer cell motility and proliferation are mutually exclusive. Here, we construct and apply a single glioma cell mathematical model that includes motility and angiogenesis and lacks the GoG phenotype. Simulations replicate key features of GBM including its multilayer structure (i.e.edema, enhancement, and necrosis), its progression patterns associated with bevacizumab treatment, and replicate the survival times of GBM treated or untreated with bevacizumab. These results suggest that the GoG phenotype is not a necessary property for the formation of the multilayer structure, recurrence patterns, and the poor survival times of patients diagnosed with GBM.

  2. Developing Recognition Programs for Units within Student Affairs.

    ERIC Educational Resources Information Center

    Avery, Cynthia M.

    2001-01-01

    According to many psychologists, the connections between motivation and rewards and recognition are crucial to employee satisfaction. A plan for developing a multi-layered recognition program within a division of student affairs is described. These recognitions programs are designed taking into account the differences in perceptions of awards by…

  3. Synchronized and mixed outbreaks of coupled recurrent epidemics.

    PubMed

    Zheng, Muhua; Zhao, Ming; Min, Byungjoon; Liu, Zonghua

    2017-05-25

    Epidemic spreading has been studied for a long time and most of them are focused on the growing aspect of a single epidemic outbreak. Recently, we extended the study to the case of recurrent epidemics (Sci. Rep. 5, 16010 (2015)) but limited only to a single network. We here report from the real data of coupled regions or cities that the recurrent epidemics in two coupled networks are closely related to each other and can show either synchronized outbreak pattern where outbreaks occur simultaneously in both networks or mixed outbreak pattern where outbreaks occur in one network but do not in another one. To reveal the underlying mechanism, we present a two-layered network model of coupled recurrent epidemics to reproduce the synchronized and mixed outbreak patterns. We show that the synchronized outbreak pattern is preferred to be triggered in two coupled networks with the same average degree while the mixed outbreak pattern is likely to show for the case with different average degrees. Further, we show that the coupling between the two layers tends to suppress the mixed outbreak pattern but enhance the synchronized outbreak pattern. A theoretical analysis based on microscopic Markov-chain approach is presented to explain the numerical results. This finding opens a new window for studying the recurrent epidemics in multi-layered networks.

  4. SJDAWN: St. Jude Children's Research Hospital Phase 1 Study Evaluating Molecularly-Driven Doublet Therapies for Children and Young Adults With Recurrent Brain Tumors

    ClinicalTrials.gov

    2018-04-09

    Anaplastic Astrocytoma; Anaplastic Ependymoma; Anaplastic Ganglioglioma; Anaplastic Meningioma; Anaplastic Oligodendroglioma; Pleomorphic Xanthoastrocytoma, Anaplastic; Atypical Teratoid/Rhabdoid Tumor; Brain Cancer; Brain Tumor; Central Nervous System Neoplasms; Choroid Plexus Carcinoma; CNS Embryonal Tumor With Rhabdoid Features; Ganglioneuroblastoma of Central Nervous System; CNS Tumor; Embryonal Tumor of CNS; Ependymoma; Glioblastoma; Glioma; Glioma, Malignant; Medulloblastoma; Medulloblastoma; Unspecified Site; Medulloepithelioma; Neuroepithelial Tumor; Neoplasms; Neoplasms, Neuroepithelial; Papillary Tumor of the Pineal Region (High-grade Only); Pediatric Brain Tumor; Pineal Parenchymal Tumor of Intermediate Differentiation (High-grade Only); Pineoblastoma; Primitive Neuroectodermal Tumor; Recurrent Medulloblastoma; Refractory Brain Tumor; Neuroblastoma. CNS; Glioblastoma, IDH-mutant; Glioblastoma, IDH-wildtype; Medulloblastoma, Group 3; Medulloblastoma, Group 4; Glioma, High Grade; Neuroepithelial Tumor, High Grade; Medulloblastoma, SHH-activated and TP53 Mutant; Medulloblastoma, SHH-activated and TP53 Wildtype; Medulloblastoma, Chromosome 9q Loss; Medulloblastoma, Non-WNT Non-SHH, NOS; Medulloblastoma, Non-WNT/Non-SHH; Medulloblastoma, PTCH1 Mutation; Medulloblastoma, WNT-activated; Ependymoma, Recurrent; Glioma, Recurrent High Grade; Glioma, Recurrent Malignant; Embryonal Tumor, NOS; Glioma, Diffuse Midline, H3K27M-mutant; Embryonal Tumor With Multilayered Rosettes (ETMR); Ependymoma, NOS, WHO Grade III; Ependymoma, NOS, WHO Grade II; Medulloblastoma, G3/G4; Ependymoma, RELA Fusion Positive

  5. Multilayered and digitally structured presentation formats of trustworthy recommendations: a combined survey and randomised trial

    PubMed Central

    Vandvik, Per Olav; Alonso-Coello, Pablo; Akl, Elie A; Thornton, Judith; Rigau, David; Adams, Katie; O'Connor, Paul; Guyatt, Gordon; Kristiansen, Annette

    2017-01-01

    Objectives To investigate practicing physicians' preferences, perceived usefulness and understanding of a new multilayered guideline presentation format—compared to a standard format—as well as conceptual understanding of trustworthy guideline concepts. Design Participants attended a standardised lecture in which they were presented with a clinical scenario and randomised to view a guideline recommendation in a multilayered format or standard format after which they answered multiple-choice questions using clickers. Both groups were also presented and asked about guideline concepts. Setting Mandatory educational lectures in 7 non-academic and academic hospitals, and 2 settings involving primary care in Lebanon, Norway, Spain and the UK. Participants 181 practicing physicians in internal medicine (156) and general practice (25). Interventions A new digitally structured, multilayered guideline presentation format and a standard narrative presentation format currently in widespread use. Primary and secondary outcome measures Our primary outcome was preference for presentation format. Understanding, perceived usefulness and perception of absolute effects were secondary outcomes. Results 72% (95% CI 65 to 79) of participants preferred the multilayered format and 16% (95% CI 10 to 22) preferred the standard format. A majority agreed that recommendations (multilayered 86% vs standard 91%, p value=0.31) and evidence summaries (79% vs 77%, p value=0.76) were useful in the context of the clinical scenario. 72% of participants randomised to the multilayered format vs 58% for standard formats reported correct understanding of the recommendations (p value=0.06). Most participants elected an appropriate clinical action after viewing the recommendations (98% vs 92%, p value=0.10). 82% of the participants considered absolute effect estimates in evidence summaries helpful or crucial. Conclusions Clinicians clearly preferred a novel multilayered presentation format to the standard format. Whether the preferred format improves decision-making and has an impact on patient important outcomes merits further investigation. PMID:28188149

  6. Perception of Recurrent Stroke Risk among Black, White and Hispanic Ischemic Stroke and Transient Ischemic Attack Survivors: The SWIFT Study

    PubMed Central

    Boden-Albala, Bernadette; Carman, Heather; Moran, Megan; Doyle, Margaret; Paik, Myunghee C.

    2011-01-01

    Objectives Risk modification through behavior change is critical for primary and secondary stroke prevention. Theories of health behavior identify perceived risk as an important component to facilitate behavior change; however, little is known about perceived risk of vascular events among stroke survivors. Methods The SWIFT (Stroke Warning Information and Faster Treatment) study includes a prospective population-based ethnically diverse cohort of ischemic stroke and transient ischemic attack survivors. We investigate the baseline relationship between demographics, health beliefs, and knowledge on risk perception. Regression models examined predictors of inaccurate perception. Results Only 20% accurately estimated risk, 10% of the participants underestimated risk, and 70% of the 817 study participants significantly overestimated their risk for a recurrent stroke. The mean perceived likelihood of recurrent ischemic stroke in the next 10 years was 51 ± 7%. We found no significant differences by race-ethnicity with regard to accurate estimation of risk. Inaccurate estimation of risk was associated with attitudes and beliefs [worry (p < 0.04), fatalism (p < 0.07)] and memory problems (p < 0.01), but not history or knowledge of vascular risk factors. Conclusion This paper provides a unique perspective on how factors such as belief systems influence risk perception in a diverse population at high stroke risk. There is a need for future research on how risk perception can inform primary and secondary stroke prevention. Copyright © 2011 S. Karger AG, Basel PMID:21894045

  7. Competitive Dynamics in MSTd: A Mechanism for Robust Heading Perception Based on Optic Flow

    PubMed Central

    Layton, Oliver W.; Fajen, Brett R.

    2016-01-01

    Human heading perception based on optic flow is not only accurate, it is also remarkably robust and stable. These qualities are especially apparent when observers move through environments containing other moving objects, which introduce optic flow that is inconsistent with observer self-motion and therefore uninformative about heading direction. Moving objects may also occupy large portions of the visual field and occlude regions of the background optic flow that are most informative about heading perception. The fact that heading perception is biased by no more than a few degrees under such conditions attests to the robustness of the visual system and warrants further investigation. The aim of the present study was to investigate whether recurrent, competitive dynamics among MSTd neurons that serve to reduce uncertainty about heading over time offer a plausible mechanism for capturing the robustness of human heading perception. Simulations of existing heading models that do not contain competitive dynamics yield heading estimates that are far more erratic and unstable than human judgments. We present a dynamical model of primate visual areas V1, MT, and MSTd based on that of Layton, Mingolla, and Browning that is similar to the other models, except that the model includes recurrent interactions among model MSTd neurons. Competitive dynamics stabilize the model’s heading estimate over time, even when a moving object crosses the future path. Soft winner-take-all dynamics enhance units that code a heading direction consistent with the time history and suppress responses to transient changes to the optic flow field. Our findings support recurrent competitive temporal dynamics as a crucial mechanism underlying the robustness and stability of perception of heading. PMID:27341686

  8. Trade-off analysis of discharge-desiltation-turbidity and ANN analysis on sedimentation of a combined reservoir-reach system under multi-phase and multi-layer conjunctive releasing operation

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Lin; Hsu, Nien-Sheng; Wei, Chih-Chiang; Yao, Chun-Hao

    2017-10-01

    Multi-objective reservoir operation considering the trade-off of discharge-desiltation-turbidity during typhoons and sediment concentration (SC) simulation modeling are the vital components for sustainable reservoir management. The purposes of this study were (1) to analyze the multi-layer release trade-offs between reservoir desiltation and intake turbidity of downstream purification plants and thus propose a superior conjunctive operation strategy and (2) to develop ANFIS-based (adaptive network-based fuzzy inference system) and RTRLNN-based (real-time recurrent learning neural networks) substitute SC simulation models. To this end, this study proposed a methodology to develop (1) a series of multi-phase and multi-layer sediment-flood conjunctive release modes and (2) a specialized SC numerical model for a combined reservoir-reach system. The conjunctive release modes involve (1) an optimization model where the decision variables are multi-phase reduction/scaling ratios and the timings to generate a superior total release hydrograph for flood control (Phase I: phase prior to flood arrival, Phase II/III: phase prior to/subsequent to peak flow) and (2) a combination method with physical limitations regarding separation of the singular hydrograph into multi-layer release hydrographs for sediment control. This study employed the featured signals obtained from statistical quartiles/sediment duration curve in mesh segmentation, and an iterative optimization model with a sediment unit response matrix and corresponding geophysical-based acceleration factors, for efficient parameter calibration. This research applied the developed methodology to the Shihmen Reservoir basin in Taiwan. The trade-off analytical results using Typhoons Sinlaku and Jangmi as case examples revealed that owing to gravity current and re-suspension effects, Phase I + II can de-silt safely without violating the intake's turbidity limitation before reservoir discharge reaches 2238 m3/s; however, Phase III can only de-silt after the release at spillway reaches 827 m3/s, and before reservoir discharge reaches 1924 m3/s, with corresponding maximum desiltation ratio being 0.221 and 0.323, respectively. Moreover, the model construction results demonstrated that the self-adaption/fuzzy inference of ANFIS can effectively simulate the SC hydrograph in an unsteady state for suspended load-dominated water bodies, and that the real-time recurrent deterministic routing of RTRLNN can accurately simulate that of a bedload-dominated flow regime.

  9. Research on intelligent machine self-perception method based on LSTM

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Cheng, Tao

    2018-05-01

    In this paper, we use the advantages of LSTM in feature extraction and processing high-dimensional and complex nonlinear data, and apply it to the autonomous perception of intelligent machines. Compared with the traditional multi-layer neural network, this model has memory, can handle time series information of any length. Since the multi-physical domain signals of processing machines have a certain timing relationship, and there is a contextual relationship between states and states, using this deep learning method to realize the self-perception of intelligent processing machines has strong versatility and adaptability. The experiment results show that the method proposed in this paper can obviously improve the sensing accuracy under various working conditions of the intelligent machine, and also shows that the algorithm can well support the intelligent processing machine to realize self-perception.

  10. Extrasensory Perception Experiences and Childhood Trauma: A Rorschach Investigation.

    PubMed

    Scimeca, Giuseppe; Bruno, Antonio; Pandolfo, Gianluca; La Ciura, Giulia; Zoccali, Rocco A; Muscatello, Maria R A

    2015-11-01

    This study investigated whether people who report recurrent extrasensory perception (ESP) experiences (telepathy, clairvoyance, and precognition) have suffered more traumatic experiences and traumatic intrusions. Thirty-one nonclinical participants reporting recurrent ESP experiences were compared with a nonclinical sample of 31 individuals who did not report recurrent ESP phenomena. Past traumatic experiences were assessed via a self-report measure of trauma history (Childhood Trauma Questionnaire); traumatic intrusions were assessed via a performance-based personality measure (Rorschach Traumatic Content Index). Participants also completed the Anomalous Experience Inventory, the Minnesota Multiphasic Personality Inventory-2, the Dissociative Experience Scale, and the Revised Paranormal Belief Scale. The ESP group reported higher levels of emotional abuse, sexual abuse, emotional neglect, physical neglect, and traumatic intrusions. The association between ESP experiences and trauma was partly mediated by the effects of dissociation and emotional distress. Implications for health professionals are discussed. Results also showed the reliability of the twofold method of assessment of trauma.

  11. Psychosocial distress affecting patients with ductal carcinoma in situ compared to patients with early invasive breast cancer.

    PubMed

    Sanders, Judith Brown; Loftin, Adam; Seda, Julia S; Ehlenbeck, Chris

    2014-12-01

    Psychological distress in patients with a diagnosis of ductal carcinoma in situ (DCIS) or early invasive breast cancer (EIBC) can emanate from perceived risk of recurrence and is accompanied by perceived risk of death from the diseases. These factors can impart a lower quality of life that can result in poorer health outcomes. In addition, inaccurate risk perceptions can have an effect on decision making, psychosocial outcomes, and subsequent health behaviors. The purpose of this study is to assess patients with DCIS and EIBC and their perceived risk of recurrence and perceived risk of dying, and evaluate their outlook for the future, the degree of social support from spouses and significant others of patients who have been diagnosed with DCIS and EIBC, and the relationship to the patient's perceived risk perception of recurrence and dying from the diseases.

  12. Environmental security as related to scale mismatches of disturbance patterns in a panarchy of social-ecological landscapes

    Treesearch

    Giovanni Zurlini; Irene Petrosillo; Nicola Zaccarelli; Kurt Riitters

    2008-01-01

    Environmental security, as the opposite of environmental fragility (vulnerability), is multilayered, multi-scale and complex, existing in both the objective realm of biophysics and society, and the subjective realm of individual human perception. For ecological risk assessments (ERAs), the relevant objects of environmental security are social-ecological landscapes (...

  13. Recurrent job loss and mental health among women.

    PubMed

    Nuttman-Shwartz, Orit; Gadot, Limor; Kacen, Lea

    2009-06-01

    Growing instability in the labor market has led to an increase in recurrent job loss, which primarily affects women (Tamir, 2007). Numerous studies have shown that job loss is a stressful, traumatic experience that has consequences for the individuals who are laid off. However, few studies have examined how recurrent job loss affects individuals. The present study of 134 Israeli women aged 30-45 years aimed to examine how recurrent job loss affected individual women's perceptions of the event and the extent to which it generated emotional stress and psychiatric symptoms. Most of the women perceived job loss as a challenging event and their assessments of job loss had a stronger impact on the development of mental health consequences than did the number of times they had actually been laid off. The more the women perceived job loss as threatening, the more they reported emotional stress and psychiatric symptoms. Conversely, the more they perceived job loss as challenging, the lower their levels of emotional stress. Never-married women were laid-off more, and they reported more mental health symptoms following recurrent job loss than did married women. The findings suggest that perception of job loss as a threatening event might cause mental health problems as results of lay-off.

  14. A statistical framework for evaluating neural networks to predict recurrent events in breast cancer

    NASA Astrophysics Data System (ADS)

    Gorunescu, Florin; Gorunescu, Marina; El-Darzi, Elia; Gorunescu, Smaranda

    2010-07-01

    Breast cancer is the second leading cause of cancer deaths in women today. Sometimes, breast cancer can return after primary treatment. A medical diagnosis of recurrent cancer is often a more challenging task than the initial one. In this paper, we investigate the potential contribution of neural networks (NNs) to support health professionals in diagnosing such events. The NN algorithms are tested and applied to two different datasets. An extensive statistical analysis has been performed to verify our experiments. The results show that a simple network structure for both the multi-layer perceptron and radial basis function can produce equally good results, not all attributes are needed to train these algorithms and, finally, the classification performances of all algorithms are statistically robust. Moreover, we have shown that the best performing algorithm will strongly depend on the features of the datasets, and hence, there is not necessarily a single best classifier.

  15. The impact of doctor-patient communication on patients' perceptions of their risk of breast cancer recurrence.

    PubMed

    Janz, Nancy K; Li, Yun; Zikmund-Fisher, Brian J; Jagsi, Reshma; Kurian, Allison W; An, Lawrence C; McLeod, M Chandler; Lee, Kamaria L; Katz, Steven J; Hawley, Sarah T

    2017-02-01

    Doctor-patient communication is the primary way for women diagnosed with breast cancer to learn about their risk of distant recurrence. Yet little is known about how doctors approach these discussions. A weighted random sample of newly diagnosed early-stage breast cancer patients identified through SEER registries of Los Angeles and Georgia (2013-2015) was sent surveys about ~2 months after surgery (Phase 2, N = 3930, RR 68%). We assessed patient perceptions of doctor communication of risk of recurrence (i.e., amount, approach, inquiry about worry). Clinically determined 10-year risk of distant recurrence was established for low and intermediate invasive cancer patients. Women's perceived risk of distant recurrence (0-100%) was categorized into subgroups: overestimation, reasonably accurate, and zero risk. Understanding of risk and patient factors (e.g. health literacy, numeracy, and anxiety/worry) on physician communication outcomes was evaluated in multivariable regression models (analytic sample for substudy = 1295). About 33% of women reported that doctors discussed risk of recurrence as "quite a bit" or "a lot," while 14% said "not at all." Over half of women reported that doctors used words and numbers to describe risk, while 24% used only words. Overestimators (OR .50, CI 0.31-0.81) or those who perceived zero risk (OR .46, CI 0.29-0.72) more often said that their doctor did not discuss risk. Patients with low numeracy reported less discussion. Over 60% reported that their doctor almost never inquired about worry. Effective doctor-patient communication is critical to patient understanding of risk of recurrence. Efforts to enhance physicians' ability to engage in individualized communication around risk are needed.

  16. The Impact of Doctor-Patient Communication on Patients’ Perceptions of their Risk of Breast Cancer Recurrence

    PubMed Central

    Janz, Nancy K.; Li, Yun; Zikmund-Fisher, Brian J.; Jagsi, Reshma; Kurian, Allison W.; An, Lawrence C.; McLeod, M. Chandler; Lee, Kamaria L.; Katz, Steven J.; Hawley, Sarah T.

    2017-01-01

    Purpose Doctor-patient communication is the primary way women diagnosed with breast cancer learn about their risk of distant recurrence. Yet little is known about how doctors approach these discussions. Methods A weighted random sample of newly diagnosed early stage breast cancer patients identified through SEER registries of Los Angeles and Georgia (2013–2015) were sent surveys ~about 2 months after surgery (Phase 2, N=3930, RR 68%). We assessed patient perceptions of doctor communication of risk of recurrence (i.e., amount, approach, inquiry about worry). Clinically-determined 10-year risk of distant recurrence was established for low and intermediate invasive cancer patients. Women’s perceived risk of distant recurrence (0–100%) was categorized into subgroups: overestimation, reasonably accurate, zero risk. Understanding of risk and patient factors (e.g., health literacy, numeracy and anxiety/worry) on physician communication outcomes was evaluated in multivariable regression models (analytic sample for substudy = 1295). Results About 33% of women reported doctors discussed risk of recurrence “quite a bit” or “a lot” while 14% said “not at all.” Over half of women reported doctors used words and numbers to describe risk, while 24% used only words. Overestimators (OR =.50, CI 0.31, 0.81) or those who perceived zero risk (OR =.46, CI 0.29,0.72) more often said their doctor did not discuss risk. Patients with low numeracy reported less discussion. Over 60% reported their doctor almost never inquired about worry. Conclusions Effective doctor-patient communication is critical to patient understanding of risk of recurrence. Efforts to enhance physicians’ ability to engage in individualized communication around risk are needed. PMID:27943007

  17. Risk perception of future cardiovascular disease in women diagnosed with a hypertensive disorder of pregnancy.

    PubMed

    Traylor, Jessica; Chandrasekaran, Suchitra; Limaye, Meghana; Srinivas, Sindhu; Durnwald, Celeste P

    2016-01-01

    The objective of this study is to evaluate a woman's risk perception for future cardiovascular disease (CVD) after being diagnosed with a hypertensive disorder of pregnancy. A prospective cohort of women diagnosed with a hypertensive disorder of pregnancy (HDP) was studied. Each woman completed two surveys, one prior to hospital discharge and one 2 weeks later, designed to assess knowledge of and risk perception for future CVD based on their recent diagnosis of a HDP. Rates of postpartum depression were also assessed. Of the 146 subjects included, 28% were diagnosed with preeclampsia with severe features, 52.1% with preeclampsia with mild features, and 19.9% had chronic hypertension. Women with severe features and those delivering preterm were more likely to report a perception of increased risk of both recurrent HDP in a future pregnancy (p = 0.004 and 0.005, respectively) and hypertension later in life (p = 0.01 and 0.03, respectively). Women delivering preterm were more likely to report an accurate perception of increased risk of myocardial infarction and stroke compared to those delivering at term (p = 0.006 and 0.002, respectively). Disease severity and preterm delivery were associated with a higher likelihood of the perception of an increased risk for both recurrent HDP and hypertension in the future. Only preterm delivery was associated with a higher risk perception for stroke and myocardial infarction. Interventions targeted at improved health awareness in women diagnosed with HDP are warranted.

  18. Problems in transition and quality of care: perspectives of breast cancer survivors

    PubMed Central

    Roundtree, Aimee Kendall; Giordano, Sharon H.; Price, Andrea; Suarez-Almazor, Maria E.

    2011-01-01

    Purpose We conducted a qualitative study to explore breast cancer survivors’ perceptions and attitudes about their current healthcare utilization, screening, and information needs. Methods We completed eight focus groups of breast cancer survivors. We included women, adult survivors, with an initial diagnosis of breast cancer in the year 2000, treated, and without a recurrence as per medical record. To analyze transcripts, we used grounded theory methods, wherein unexpected themes and direct answers emerged from consensus between co-coders. Results Focus groups included 33 participants, the majority of whom were white (84.8%), college-educated (66.7%), and covered by private medical insurance (75.7%) or Medicare (27.3%). Participants’ perceptions and attitudes about care were framed in terms of personal experiences (including facing barriers to screening, feeling in limbo in the healthcare system, having problems with communication with and between physicians, confusion about symptoms, and using self-prescribe remedies), personal attitudes (including strong opinions about what survivorship means, concerns about recurrence, and changes in self-perception and agency), and social influences (including modeling others’ behaviors, changes in social life, and listening to family). Conclusion Survivorship attitudes, recurrence fears, memories, and self-perceptions were influential personal factors in addition to self-efficacy. Solutions such as providing a cancer treatment summary might resolve many of the problems by consolidating and making readily available the numerous medical history and recommendations that survivors accrue over time, switching from provider to provider. Clinicians must also implement communication changes in their interactions with patients to enhance positive attitudes and behaviors, and leverage social influences. PMID:21140173

  19. Automatic telangiectasia analysis in dermoscopy images using adaptive critic design.

    PubMed

    Cheng, B; Stanley, R J; Stoecker, W V; Hinton, K

    2012-11-01

    Telangiectasia, tiny skin vessels, are important dermoscopy structures used to discriminate basal cell carcinoma (BCC) from benign skin lesions. This research builds off of previously developed image analysis techniques to identify vessels automatically to discriminate benign lesions from BCCs. A biologically inspired reinforcement learning approach is investigated in an adaptive critic design framework to apply action-dependent heuristic dynamic programming (ADHDP) for discrimination based on computed features using different skin lesion contrast variations to promote the discrimination process. Lesion discrimination results for ADHDP are compared with multilayer perception backpropagation artificial neural networks. This study uses a data set of 498 dermoscopy skin lesion images of 263 BCCs and 226 competitive benign images as the input sets. This data set is extended from previous research [Cheng et al., Skin Research and Technology, 2011, 17: 278]. Experimental results yielded a diagnostic accuracy as high as 84.6% using the ADHDP approach, providing an 8.03% improvement over a standard multilayer perception method. We have chosen BCC detection rather than vessel detection as the endpoint. Although vessel detection is inherently easier, BCC detection has potential direct clinical applications. Small BCCs are detectable early by dermoscopy and potentially detectable by the automated methods described in this research. © 2011 John Wiley & Sons A/S.

  20. Various meteor scenes II: Cygnid-Draconid Complex (κ-Cygnids)

    NASA Astrophysics Data System (ADS)

    Koseki, Masahiro

    2014-10-01

    Japanese video observers caught a rich `κ-Cygnid' recurrent event in 2007 after an outburst observed by DMS in 1993. Classic `κ-Cygnids' were observed photographically in 1950 and 1957. The shower might be recurrent with a 7 year period. This led to a call for 2014 observations in WGN (42:3, p. 89). The author showed in Paper I (Koseki, 2014) that the perception and the conception of a meteor shower are so different that there are many confused results. `κ-Cygnids' are a good such example and give different impressions from different observational techniques and from different years. It is suggested modern so-called `κ-Cygnids' now are not a single shower but a part of the Cygnids-Draconids Complex (CDC). CDC consists of several minor showers: the classic (photographic) one KCG1, the modern recurrent one KCG2, the one in average years KCG3, and three other activities. `κ-Cygnids' in average years are different from classic `&kappa-Cygnids' and ;DC looks different based on the different conception and the different perception (observing methods) of a meteor shower.

  1. A recurrent self-organizing neural fuzzy inference network.

    PubMed

    Juang, C F; Lin, C T

    1999-01-01

    A recurrent self-organizing neural fuzzy inference network (RSONFIN) is proposed in this paper. The RSONFIN is inherently a recurrent multilayered connectionist network for realizing the basic elements and functions of dynamic fuzzy inference, and may be considered to be constructed from a series of dynamic fuzzy rules. The temporal relations embedded in the network are built by adding some feedback connections representing the memory elements to a feedforward neural fuzzy network. Each weight as well as node in the RSONFIN has its own meaning and represents a special element in a fuzzy rule. There are no hidden nodes (i.e., no membership functions and fuzzy rules) initially in the RSONFIN. They are created on-line via concurrent structure identification (the construction of dynamic fuzzy if-then rules) and parameter identification (the tuning of the free parameters of membership functions). The structure learning together with the parameter learning forms a fast learning algorithm for building a small, yet powerful, dynamic neural fuzzy network. Two major characteristics of the RSONFIN can thus be seen: 1) the recurrent property of the RSONFIN makes it suitable for dealing with temporal problems and 2) no predetermination, like the number of hidden nodes, must be given, since the RSONFIN can find its optimal structure and parameters automatically and quickly. Moreover, to reduce the number of fuzzy rules generated, a flexible input partition method, the aligned clustering-based algorithm, is proposed. Various simulations on temporal problems are done and performance comparisons with some existing recurrent networks are also made. Efficiency of the RSONFIN is verified from these results.

  2. Food and Personal Hygiene Perceptions and Practices among Caregivers Whose Children Have Diarrhea: A Qualitative Study of Urban Mothers in Tangerang, Indonesia

    ERIC Educational Resources Information Center

    Usfar, Avita A.; Iswarawanti, Dwi N.; Davelyna, Devy; Dillon, Drupadi

    2010-01-01

    Objective: To examine caregivers' perceptions and practices related to food and personal hygiene and its association with diarrhea in children 6 to 36 months of age who suffered recurrent diarrhea. Design: This qualitative study, conducted in March and April 2006, used both in-depth interviews and direct observation data. Setting: Urban Tangerang,…

  3. Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors.

    PubMed

    Godino-Llorente, J I; Gómez-Vilda, P

    2004-02-01

    It is well known that vocal and voice diseases do not necessarily cause perceptible changes in the acoustic voice signal. Acoustic analysis is a useful tool to diagnose voice diseases being a complementary technique to other methods based on direct observation of the vocal folds by laryngoscopy. Through the present paper two neural-network based classification approaches applied to the automatic detection of voice disorders will be studied. Structures studied are multilayer perceptron and learning vector quantization fed using short-term vectors calculated accordingly to the well-known Mel Frequency Coefficient cepstral parameterization. The paper shows that these architectures allow the detection of voice disorders--including glottic cancer--under highly reliable conditions. Within this context, the Learning Vector quantization methodology demonstrated to be more reliable than the multilayer perceptron architecture yielding 96% frame accuracy under similar working conditions.

  4. Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation

    PubMed Central

    Scellier, Benjamin; Bengio, Yoshua

    2017-01-01

    We introduce Equilibrium Propagation, a learning framework for energy-based models. It involves only one kind of neural computation, performed in both the first phase (when the prediction is made) and the second phase of training (after the target or prediction error is revealed). Although this algorithm computes the gradient of an objective function just like Backpropagation, it does not need a special computation or circuit for the second phase, where errors are implicitly propagated. Equilibrium Propagation shares similarities with Contrastive Hebbian Learning and Contrastive Divergence while solving the theoretical issues of both algorithms: our algorithm computes the gradient of a well-defined objective function. Because the objective function is defined in terms of local perturbations, the second phase of Equilibrium Propagation corresponds to only nudging the prediction (fixed point or stationary distribution) toward a configuration that reduces prediction error. In the case of a recurrent multi-layer supervised network, the output units are slightly nudged toward their target in the second phase, and the perturbation introduced at the output layer propagates backward in the hidden layers. We show that the signal “back-propagated” during this second phase corresponds to the propagation of error derivatives and encodes the gradient of the objective function, when the synaptic update corresponds to a standard form of spike-timing dependent plasticity. This work makes it more plausible that a mechanism similar to Backpropagation could be implemented by brains, since leaky integrator neural computation performs both inference and error back-propagation in our model. The only local difference between the two phases is whether synaptic changes are allowed or not. We also show experimentally that multi-layer recurrently connected networks with 1, 2, and 3 hidden layers can be trained by Equilibrium Propagation on the permutation-invariant MNIST task. PMID:28522969

  5. Stroke survivors' endorsement of a "stress belief model" of stroke prevention predicts control of risk factors for recurrent stroke.

    PubMed

    Phillips, L Alison; Tuhrim, Stanley; Kronish, Ian M; Horowitz, Carol R

    2014-01-01

    Perceptions that stress causes and stress-reduction controls hypertension have been associated with poorer blood pressure (BP) control in hypertension populations. The current study investigated these "stress-model perceptions" in stroke survivors regarding prevention of recurrent stroke and the influence of these perceptions on patients' stroke risk factor control. Stroke and transient ischemic attack survivors (N=600) participated in an in-person interview in which they were asked about their beliefs regarding control of future stroke; BP and cholesterol were measured directly after the interview. Counter to expectations, patients who endorsed a "stress-model" but not a "medication-model" of stroke prevention were in better control of their stroke risk factors (BP and cholesterol) than those who endorsed a medication-model but not a stress-model of stroke prevention (OR for poor control=.54, Wald statistic=6.07, p=.01). This result was not explained by between group differences in patients' reported medication adherence. The results have implications for theory and practice, regarding the role of stress belief models and acute cardiac events, compared to chronic hypertension.

  6. Speed of feedforward and recurrent processing in multilayer networks of integrate-and-fire neurons.

    PubMed

    Panzeri, S; Rolls, E T; Battaglia, F; Lavis, R

    2001-11-01

    The speed of processing in the visual cortical areas can be fast, with for example the latency of neuronal responses increasing by only approximately 10 ms per area in the ventral visual system sequence V1 to V2 to V4 to inferior temporal visual cortex. This has led to the suggestion that rapid visual processing can only be based on the feedforward connections between cortical areas. To test this idea, we investigated the dynamics of information retrieval in multiple layer networks using a four-stage feedforward network modelled with continuous dynamics with integrate-and-fire neurons, and associative synaptic connections between stages with a synaptic time constant of 10 ms. Through the implementation of continuous dynamics, we found latency differences in information retrieval of only 5 ms per layer when local excitation was absent and processing was purely feedforward. However, information latency differences increased significantly when non-associative local excitation was included. We also found that local recurrent excitation through associatively modified synapses can contribute significantly to processing in as little as 15 ms per layer, including the feedforward and local feedback processing. Moreover, and in contrast to purely feed-forward processing, the contribution of local recurrent feedback was useful and approximately this rapid even when retrieval was made difficult by noise. These findings suggest that cortical information processing can benefit from recurrent circuits when the allowed processing time per cortical area is at least 15 ms long.

  7. [Effects of fire recurrence on fire behaviour in cork oak woodlands (Quercus suber L.) and Mediterranean shrublands over the last fifty years].

    PubMed

    Schaffhauser, Alice; Pimont, François; Curt, Thomas; Cassagne, Nathalie; Dupuy, Jean-Luc; Tatoni, Thierry

    2015-12-01

    Past fire recurrence impacts the vegetation structure, and it is consequently hypothesized to alter its future fire behaviour. We examined the fire behaviour in shrubland-forest mosaics of southeastern France, which were organized along a range of fire frequency (0 to 3-4 fires along the past 50 years) and had different time intervals between fires. The mosaic was dominated by Quercus suber L. and Erica-Cistus shrubland communities. We described the vegetation structure through measurements of tree height, base of tree crown or shrub layer, mean diameter, cover, plant water content and bulk density. We used the physical model Firetec to simulate the fire behaviour. Fire intensity, fire spread, plant water content and biomass loss varied significantly according to fire recurrence and vegetation structure, mainly linked to the time since the last fire, then the number of fires. These results confirm that past fire recurrence affects future fire behaviour, with multi-layered vegetation (particularly high shrublands) producing more intense fires, contrary to submature Quercus woodlands that have not burnt since 1959 and that are unlikely to reburn. Further simulations, with more vegetation scenes according to shrub and canopy covers, will complete this study in order to discuss the fire propagation risk in heterogeneous vegetation, particularly in the Mediterranean area, with a view to a local management of these ecosystems. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  8. Defense Small Business Innovation Research Program (SBIR). Volume 3. Air Force Abstracts of Phase 1 Awards 1992

    DTIC Science & Technology

    1992-01-01

    boost plenum which houses the camshaft . The compressed mixture is metered by a throttle to intake valves of the engine. The engine is constructed from...difficulties associated with a time-tagged fault tree . In particular, recent work indicates that the multi-layer perception architecture can give good fdi...Abstract: In the past decade, wastepaper recycling has gained a wider acceptance. Depletion of tree stocks, waste water treatment demands and

  9. Altered figure-ground perception in monkeys with an extra-striate lesion.

    PubMed

    Supèr, Hans; Lamme, Victor A F

    2007-11-05

    The visual system binds and segments the elements of an image into coherent objects and their surroundings. Recent findings demonstrate that primary visual cortex is involved in this process of figure-ground organization. In the primary visual cortex the late part of a neural response to a stimulus correlates with figure-ground segregation and perception. Such a late onset indicates an involvement of feedback projections from higher visual areas. To investigate the possible role of feedback in figure-ground perception we removed dorsal extra-striate areas of the monkey visual cortex. The findings show that figure-ground perception is reduced when the figure is presented in the lesioned hemifield and perception is normal when the figure appeared in the intact hemifield. In conclusion, our observations show the importance for recurrent processing in visual perception.

  10. Membrane Assisted Palatal Fistula Closure in a Cleft Palate Patient: A Novel Technique.

    PubMed

    Reddy, G Siva Prasad; Reddy, G Venkateshwara; Sree, P Karuna; Reddy, K Sravan Kumar; Reddy, P Amarnath

    2016-03-01

    Palatal fistula following cleft palate repair, is one of the considerable complications and remains a challenging problem to the surgeons. The reported recurrence rate of the fistula is between 33% to 37%. Due to fibrosis and poor vascularity of adjacent tissues, high recurrence rates are typical. Closure of palatal fistulas can be achieved by different surgical techniques like local, regional and distant flaps, local turnover flaps, pedicled flaps from oral mucosa, buccal fat pad flaps, inter-positional cartilage grafts can be utilized for management of small fistulas. For larger fistualas, tongue flaps, temporalis muscle flaps, musculomucosal flaps, nasal septal flaps and free flaps can be used. These procedures are often cumbersome and leave a raw nasal or oral surface, which may increase the incidence of postoperative problems or some flaps can be bulky and may require a second-stage procedure. Different synthetic materials such as alloderm, Poly-D and L-Lactic Acid or "PdLLA" and collagen membrane are used in multilayer repair represented by the nasal mucosa, the inter-positional graft and oral mucosa. These interpositional grafts provide a scaffold for in growth of tissues, revascularization and mucosal epithelialization. We present a case of closure of an oronasal fistula, using resorbable collagen membrane in three layered repair to avoid recurrence.

  11. Framewise phoneme classification with bidirectional LSTM and other neural network architectures.

    PubMed

    Graves, Alex; Schmidhuber, Jürgen

    2005-01-01

    In this paper, we present bidirectional Long Short Term Memory (LSTM) networks, and a modified, full gradient version of the LSTM learning algorithm. We evaluate Bidirectional LSTM (BLSTM) and several other network architectures on the benchmark task of framewise phoneme classification, using the TIMIT database. Our main findings are that bidirectional networks outperform unidirectional ones, and Long Short Term Memory (LSTM) is much faster and also more accurate than both standard Recurrent Neural Nets (RNNs) and time-windowed Multilayer Perceptrons (MLPs). Our results support the view that contextual information is crucial to speech processing, and suggest that BLSTM is an effective architecture with which to exploit it.

  12. AMPKα Modulation in Cancer Progression: Multilayer Integrative Analysis of the Whole Transcriptome in Asian Gastric Cancer

    PubMed Central

    Cho, Jae Yong; Cheong, Jae-Ho; Kim, Hoguen; Li, Min; Downey, Thomas J.; Dyer, Matthew D.; Sun, Yongming; Sun, Jingtao; Beasley, Ellen M.; Chung, Hyun Cheol; Noh, Sung Hoon; Weinstein, John N.; Liu, Chang-Gong; Powis, Garth

    2013-01-01

    Gastric cancer is the most common cancer in Asia and most developing countries. Despite the use of multimodality therapeutics, it remains the second leading cause of cancer death in the world. To identify the molecular underpinnings of gastric cancer in the Asian population, we applied an RNA-sequencing approach to gastric tumor and noncancerous specimens, generating 680 million informative short reads to quantitatively characterize the entire transcriptome of gastric cancer (including mRNAs and microRNAs). A multi-layer analysis was then developed to identify multiple types of transcriptional aberrations associated with different stages of gastric cancer, including differentially expressed mRNAs, recurrent somatic mutations and key differentially expressed microRNAs. Through this approach, we identified the central metabolic regulator AMPK-α as a potential functional target in Asian gastric cancer. Further, we experimentally demonstrated the translational relevance of this gene as a potential therapeutic target for early-stage gastric cancer in Asian patients. Together, our findings not only provide a valuable information resource for identifying and elucidating the molecular mechanisms of Asian gastric cancer, but also represent a general integrative framework to develop more effective therapeutic targets. PMID:22434430

  13. Predicting termination of atrial fibrillation based on the structure and quantification of the recurrence plot.

    PubMed

    Sun, Rongrong; Wang, Yuanyuan

    2008-11-01

    Predicting the spontaneous termination of the atrial fibrillation (AF) leads to not only better understanding of mechanisms of the arrhythmia but also the improved treatment of the sustained AF. A novel method is proposed to characterize the AF based on structure and the quantification of the recurrence plot (RP) to predict the termination of the AF. The RP of the electrocardiogram (ECG) signal is firstly obtained and eleven features are extracted to characterize its three basic patterns. Then the sequential forward search (SFS) algorithm and Davies-Bouldin criterion are utilized to select the feature subset which can predict the AF termination effectively. Finally, the multilayer perceptron (MLP) neural network is applied to predict the AF termination. An AF database which includes one training set and two testing sets (A and B) of Holter ECG recordings is studied. Experiment results show that 97% of testing set A and 95% of testing set B are correctly classified. It demonstrates that this algorithm has the ability to predict the spontaneous termination of the AF effectively.

  14. Recurrent pain and discomfort in relation to fitness and physical activity among young school children.

    PubMed

    Sollerhed, Ann-Christin; Andersson, Ingemar; Ejlertsson, Göran

    2013-01-01

    As an increase in pain symptoms among children has been shown in the last decades, the aim of this study was to describe perceptions of recurrent pain, measured physical fitness and levels of reported physical activity (PA) in children, and to investigate if any associations between PA, fitness and recurrent pain could be identified. A school-based study comprised 206 Swedish children 8-12 years old, 114 boys, 92 girls. A questionnaire with questions about perceived pain, self-reported PA and lifestyle factors was used. Health-related fitness was assessed by 11 physical tests. A physical index was calculated from these tests as a z score. High physical index indicated high fitness and low physical index indicated low fitness. ANOVA test, chi-square test and logistic regression analysis were used to compare active and inactive children. The prevalence of one pain location (head, abdomen or back) was 26%, two 11% and three 4% (n=206). Female gender, living in single-parent families, low PA and low subjective health were associated with reported recurrent pain. Children reporting high levels of PA had high physical index and reported low prevalence of pain symptoms. The physical index and level of self-reported PA decreased gradually the more pain locations. Physically active children had higher fitness levels and reported less pain symptoms than inactive peers. Coping with pain is an integral part of PA, and active children learn to cope with unpleasant body sensations which together with high fitness may reduce the perception of pain.

  15. Stochastic Packet Loss Model to Evaluate QoE Impairments

    NASA Astrophysics Data System (ADS)

    Hohlfeld, Oliver

    With provisioning of broadband access for mass market—even in wireless and mobile networks—multimedia content, especially real-time streaming of high-quality audio and video, is extensively viewed and exchanged over the Internet. Quality of Experience (QoE) aspects, describing the service quality perceived by the user, is a vital factor in ensuring customer satisfaction in today's communication networks. Frameworks for accessing quality degradations in streamed video currently are investigated as a complex multi-layered research topic, involving network traffic load, codec functions and measures of user perception of video quality.

  16. Emotional dysfunction in schizophrenia spectrum psychosis: the role of illness perceptions.

    PubMed

    Watson, P W B; Garety, P A; Weinman, J; Dunn, G; Bebbington, P E; Fowler, D; Freeman, D; Kuipers, E

    2006-06-01

    Assessing illness perceptions has been useful in a range of medical disorders. This study of people with a recent relapse of their psychosis examines the relationship between illness perception, their emotional responses and their attitudes to medication. One hundred patients diagnosed with a non-affective psychotic disorder were assessed within 3 months of relapse. Measures included insight, self-reported illness perceptions, medication adherence, depression, self-esteem and anxiety. Illness perceptions about psychosis explained 46, 36 and 34% of the variance in depression, anxiety and self-esteem respectively. However, self-reported medication adherence was more strongly associated with a measure of insight. Negative illness perceptions in psychosis are clearly related to depression, anxiety and self-esteem. These in turn have been linked to symptom maintenance and recurrence. Clinical interventions that foster appraisals of recovery rather than of chronicity and severity may therefore improve emotional well-being in people with psychosis. It might be better to address adherence to medication through direct attempts at helping them understand their need for treatment.

  17. Catheter ablation of asymptomatic longstanding persistent atrial fibrillation: impact on quality of life, exercise performance, arrhythmia perception, and arrhythmia-free survival.

    PubMed

    Mohanty, Sanghamitra; Santangeli, Pasquale; Mohanty, Prasant; Di Biase, Luigi; Holcomb, Shawna; Trivedi, Chintan; Bai, Rong; Burkhardt, David; Hongo, Richard; Hao, Steven; Beheiry, Salwa; Santoro, Francesco; Forleo, Giovanni; Gallinghouse, Joseph G; Horton, Rodney; Sanchez, Javier E; Bailey, Shane; Hranitzky, Patrick M; Zagrodzky, Jason; Natale, Andrea

    2014-10-01

    Impact of catheter ablation on exercise performance, quality of life (QoL) and symptom perception in asymptomatic longstanding persistent AF (LSP-AF) patients has not been reported yet. Sixty-one consecutive patients (mean age 62 ±13 years, 71% males) with asymptomatic LSP-AF undergoing first catheter ablation were enrolled. Extended pulmonary vein antrum isolation plus ablation of complex fractionated atrial electrograms and nonpulmonary vein triggers was performed in all. QoL survey was taken at baseline and 12-months postablation, using Short Form-36 (SF-36). Information on arrhythmia perception was obtained using a standard questionnaire and corroborating symptoms with documented evidence of arrhythmia. Exercise tests were performed on 38 patients at baseline and 5 months after procedure. Recurrence was assessed using event recorder, cardiology evaluation, electrocardiogram, and 7-day holter monitoring. After 20 ± 5 months follow-up, 36 (57%) patients remained recurrence-free off-AAD. Of the 25 patients experiencing recurrence, 21 (84%) were symptomatic. Compared to baseline, follow-up SF-36 scores improved significantly in many measures. For patients with successful ablation, physical component summary (PCS) and mental component summary (MCS) demonstrated substantial improvement ( 64.2 ± 22.3 to 70.1 ± 18.6 [P = 0.041]; PCS: 62.6 ± 18.4 to 70.0 ± 14.4 [P = 0.032]). Postablation exercise study in recurrence-free patients showed significant reduction in resting and peak heart rate (75 ± 11 vs. 90 ± 17 and 132 ± 20 vs. 154.5 ± 36, respectively, P < 0.001), increase in peak oxygen pulse (13.4 ± 3 vs. 18.9 ± 16 mL/beat, Δ5.5 ± 15, P = 0.001), peak VO2 /kg (19.7 ± 5 to 23.4 ± 13 mL/kg/min [Δ 3.7 ± 10, P = 0.043]), and corresponding MET (5.6 ± 1 to 6.7 ± 4 [Δ1.1 ± 3, P = 0.03]). No improvement was observed in patients with failed procedures. Successful ablation improves exercise performance and QoL in asymptomatic LSP-AF patients. © 2014 Wiley Periodicals, Inc.

  18. A novel prosodic-information synthesizer based on recurrent fuzzy neural network for the Chinese TTS system.

    PubMed

    Lin, Chin-Teng; Wu, Rui-Cheng; Chang, Jyh-Yeong; Liang, Sheng-Fu

    2004-02-01

    In this paper, a new technique for the Chinese text-to-speech (TTS) system is proposed. Our major effort focuses on the prosodic information generation. New methodologies for constructing fuzzy rules in a prosodic model simulating human's pronouncing rules are developed. The proposed Recurrent Fuzzy Neural Network (RFNN) is a multilayer recurrent neural network (RNN) which integrates a Self-cOnstructing Neural Fuzzy Inference Network (SONFIN) into a recurrent connectionist structure. The RFNN can be functionally divided into two parts. The first part adopts the SONFIN as a prosodic model to explore the relationship between high-level linguistic features and prosodic information based on fuzzy inference rules. As compared to conventional neural networks, the SONFIN can always construct itself with an economic network size in high learning speed. The second part employs a five-layer network to generate all prosodic parameters by directly using the prosodic fuzzy rules inferred from the first part as well as other important features of syllables. The TTS system combined with the proposed method can behave not only sandhi rules but also the other prosodic phenomena existing in the traditional TTS systems. Moreover, the proposed scheme can even find out some new rules about prosodic phrase structure. The performance of the proposed RFNN-based prosodic model is verified by imbedding it into a Chinese TTS system with a Chinese monosyllable database based on the time-domain pitch synchronous overlap add (TD-PSOLA) method. Our experimental results show that the proposed RFNN can generate proper prosodic parameters including pitch means, pitch shapes, maximum energy levels, syllable duration, and pause duration. Some synthetic sounds are online available for demonstration.

  19. Differences in personal and lifestyle characteristics among Zimbabwean high school adolescents with and without recurrent non-specific low back pain: a two part cross-sectional study.

    PubMed

    Chiwaridzo, Matthew; Naidoo, Nirmala

    2015-01-01

    Recurrent non-specific low back pain (NSLBP) is increasingly becoming common among adolescents worldwide. A recent study in Zimbabwe showed a relatively high prevalence (28.8 %) among high school students. Influential associated factors, however, remain unclear. This is a significant shortcoming. The aim was to determine personal or lifestyle-related factors associated with recurrent NSLBP among high school adolescents in Harare, Zimbabwe. This study was part of a large epidemiological study conducted in two continuous parts. Part one sought to determine self-reported associated factors among 532 participants (mean age =16 ± 1.72 years) drawn randomly from selected government schools using a reliable and content-validated questionnaire (Kappa coefficient, k = 0.32-1). Part two purposively identified adolescents ( N  = 64, median age =17 years, interquartile range, IQR = 15-18 years) with a history of 'severe' recurrent NSLBP from part one based on a specific eligibility criteria and compared body mass index, relative school bag weight and hamstring flexibility with matched adolescents without NSLBP. Data was analysed using Statistica version 11. Independent t -tests or χ 2 tests of association were used for continuous and categorical data, respectively. The statistical significance was set at p  < .05. Recurrent NSLBP was associated with self-reported factors such as perceptions of a heavy school bag [χ 2 (1) = 85.9, p  < 0.001]. A significant proportion of adolescents with recurrent NSLBP spent over 30 min carrying the school bag to and from school [χ 2 (1) =32.2, p  < 0.001]. It was also associated with prolonged sitting ( p  < 0.001), not playing sports [χ 2 (1) =5.85, p  = 0.02] and tight hamstrings [χ 2 (1) =7.6, p  = 0.006]. Although conclusions from this study are hesitant because of the cross-sectional nature of the study and the relatively small sample size in follow-up study, recurrent NSLBP is associated with perceptions of a heavy school bag, duration of school bag carriage, no sports participation, prolonged sitting on entertainment activities, and tight hamstrings. These findings add to the importance of promoting physical activity at school or home especially aimed at improving muscle flexibility.

  20. Factors associated with occasional and recurrent falls in Mexican community-dwelling older people.

    PubMed

    Agudelo-Botero, Marcela; Giraldo-Rodríguez, Liliana; Murillo-González, Juana Catalina; Mino-León, Dolores; Cruz-Arenas, Esteban

    2018-01-01

    Falls are a frequent event among older adults that can cause wounds, disability, psychological disorders, and premature death. Although the large number of existing studies on the issue, few have been conducted in middle- and low-income countries. The objective of the present study is to identify the sociodemographic, medical, and functional performance factors associated with occasional and recurrent falls in Mexican older adults dwelling in community. Cross-sectional analysis of 9 598 adults ≥60 years old who participated in the fourth round (2015) of the Mexican Health and Aging Study. Bivariate tests were performed to evaluate the differences between covariates by distinct fall groups (no falls, occasional falls, and recurrent falls). Multiple logistic regressions with unadjusted and adjusted models were estimated. Approximately 46% of older adults had had at least one fall during the previous two years (one fall 16% and recurrent falls 30%). Occasional falls were only associated with being a woman; in addition to the sex, recurrent falls were strongly associated with advanced age, rural residence, bad and very bad self-perception of health status, activity-limiting pain, urinary incontinence, depression, arthritis, limitations in basic activities of daily living, and limitations in advanced activities of daily living. Falls, primarily recurrent falls, deserve to be addressed through multifactorial strategies that include different areas of intervention.

  1. Plasmon dispersion in a multilayer solid torus in terms of three-term vector recurrence relations and matrix continued fractions

    DOE PAGES

    Garapati, K. V.; Bagherian, M.; Passian, A.; ...

    2018-01-03

    Toroidal confinement, which has played a crucial role in magnetized plasmas and Tokamak physics, is emerging as an effective means to obtain useful electronic and optical response in solids. In particular, excitation of surface plasmons in metal nanorings by photons or electrons finds important applications due to the engendered field distribution and electromagnetic energy confinement. However, in contrast to the case of a plasma, often the solid nanorings are multilayered and/or embedded in a medium. The non-simply connected geometry of the torus results in surface modes that are not linearly independent. A three-term difference equation was recently shown to arisemore » when seeking the nonretarded plasmon dispersion relations for a stratified solid torus (Garapati et al 2017 Phys. Rev. B 95 165422). The reported generalized plasmon dispersion relations are here investigated in terms of the involved matrix continued fractions and their convergence properties including the determinant forms of the dispersion relations obtained for computing the plasmon eigenmodes. We also present the intricacies of the derivation and properties of the Green's function employed to solve the three term amplitude equation that determines the response of the toroidal structure to arbitrary external excitations.« less

  2. Plasmon dispersion in a multilayer solid torus in terms of three-term vector recurrence relations and matrix continued fractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garapati, K. V.; Bagherian, M.; Passian, A.

    Toroidal confinement, which has played a crucial role in magnetized plasmas and Tokamak physics, is emerging as an effective means to obtain useful electronic and optical response in solids. In particular, excitation of surface plasmons in metal nanorings by photons or electrons finds important applications due to the engendered field distribution and electromagnetic energy confinement. However, in contrast to the case of a plasma, often the solid nanorings are multilayered and/or embedded in a medium. The non-simply connected geometry of the torus results in surface modes that are not linearly independent. A three-term difference equation was recently shown to arisemore » when seeking the nonretarded plasmon dispersion relations for a stratified solid torus (Garapati et al 2017 Phys. Rev. B 95 165422). The reported generalized plasmon dispersion relations are here investigated in terms of the involved matrix continued fractions and their convergence properties including the determinant forms of the dispersion relations obtained for computing the plasmon eigenmodes. We also present the intricacies of the derivation and properties of the Green's function employed to solve the three term amplitude equation that determines the response of the toroidal structure to arbitrary external excitations.« less

  3. Cancer Recurrence Worry, Risk Perception, and Informational-Coping Styles among Appalachian Cancer Survivors

    PubMed Central

    Shedlosky-Shoemaker, Randi; Porter, Kyle; DeSimone, Philip; Andrykowski, Michael

    2012-01-01

    Despite a growing literature on the psychosocial impact of the threat of cancer recurrence, underserved populations, such as those from the Appalachian region, have been understudied. To examine worry and perceived risk in cancer survivors, cancer patients at an ambulatory oncology clinic in a university hospital were surveyed. Appalachians had significantly higher worry than non-Appalachians. Cancer type and lower need for cognition were associated with greater worry. Those with missing perceived risk data were generally older, less educated, and lower in monitoring, blunting, and health literacy. Additional resources are needed to assist Appalachians and those with cancers with poor prognoses to cope with worry associated with cancer recurrence. More attention to prevention of cancer is critical to improve quality of life in underserved populations where risk of cancer is greater. PMID:21240722

  4. Factors in Perception of Tornado Hazard: An Exploratory Study.

    ERIC Educational Resources Information Center

    de Man, Anton; Simpson-Housley, Paul

    1987-01-01

    Administered questionnaire on tornado hazard to 142 adults. Results indicated that subject's gender and education level were best predictors of perceived probability of tornado recurrence; that ratings of severity of potential damage were related to education level; and that gender accounted for significant percentage of variance in anxiety…

  5. Multivariate Time Series Forecasting of Crude Palm Oil Price Using Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Kanchymalay, Kasturi; Salim, N.; Sukprasert, Anupong; Krishnan, Ramesh; Raba'ah Hashim, Ummi

    2017-08-01

    The aim of this paper was to study the correlation between crude palm oil (CPO) price, selected vegetable oil prices (such as soybean oil, coconut oil, and olive oil, rapeseed oil and sunflower oil), crude oil and the monthly exchange rate. Comparative analysis was then performed on CPO price forecasting results using the machine learning techniques. Monthly CPO prices, selected vegetable oil prices, crude oil prices and monthly exchange rate data from January 1987 to February 2017 were utilized. Preliminary analysis showed a positive and high correlation between the CPO price and soy bean oil price and also between CPO price and crude oil price. Experiments were conducted using multi-layer perception, support vector regression and Holt Winter exponential smoothing techniques. The results were assessed by using criteria of root mean square error (RMSE), means absolute error (MAE), means absolute percentage error (MAPE) and Direction of accuracy (DA). Among these three techniques, support vector regression(SVR) with Sequential minimal optimization (SMO) algorithm showed relatively better results compared to multi-layer perceptron and Holt Winters exponential smoothing method.

  6. Why people see things that are not there: a novel Perception and Attention Deficit model for recurrent complex visual hallucinations.

    PubMed

    Collerton, Daniel; Perry, Elaine; McKeith, Ian

    2005-12-01

    As many as two million people in the United Kingdom repeatedly see people, animals, and objects that have no objective reality. Hallucinations on the border of sleep, dementing illnesses, delirium, eye disease, and schizophrenia account for 90% of these. The remainder have rarer disorders. We review existing models of recurrent complex visual hallucinations (RCVH) in the awake person, including cortical irritation, cortical hyperexcitability and cortical release, top-down activation, misperception, dream intrusion, and interactive models. We provide evidence that these can neither fully account for the phenomenology of RCVH, nor for variations in the frequency of RCVH in different disorders. We propose a novel Perception and Attention Deficit (PAD) model for RCVH. A combination of impaired attentional binding and poor sensory activation of a correct proto-object, in conjunction with a relatively intact scene representation, bias perception to allow the intrusion of a hallucinatory proto-object into a scene perception. Incorporation of this image into a context-specific hallucinatory scene representation accounts for repetitive hallucinations. We suggest that these impairments are underpinned by disturbances in a lateral frontal cortex-ventral visual stream system. We show how the frequency of RCVH in different diseases is related to the coexistence of attentional and visual perceptual impairments; how attentional and perceptual processes can account for their phenomenology; and that diseases and other states with high rates of RCVH have cholinergic dysfunction in both frontal cortex and the ventral visual stream. Several tests of the model are indicated, together with a number of treatment options that it generates.

  7. Ambiguous Figures – What Happens in the Brain When Perception Changes But Not the Stimulus

    PubMed Central

    Kornmeier, Jürgen; Bach, Michael

    2011-01-01

    During observation of ambiguous figures our perception reverses spontaneously although the visual information stays unchanged. Research on this phenomenon so far suffered from the difficulty to determine the instant of the endogenous reversals with sufficient temporal precision. A novel experimental paradigm with discontinuous stimulus presentation improved on previous temporal estimates of the reversal event by a factor of three. It revealed that disambiguation of ambiguous visual information takes roughly 50 ms or two loops of recurrent neural activity. Further, the decision about the perceptual outcome has taken place at least 340 ms before the observer is able to indicate the consciously perceived reversal manually. We provide a short review about physiological studies on multistable perception with a focus on electrophysiological data. We further present a new perspective on multistable perception that can easily integrate previous apparently contradicting explanatory approaches. Finally we propose possible extensions toward other research fields where ambiguous figure perception may be useful as an investigative tool. PMID:22461773

  8. Using recurrent neural networks for adaptive communication channel equalization.

    PubMed

    Kechriotis, G; Zervas, E; Manolakos, E S

    1994-01-01

    Nonlinear adaptive filters based on a variety of neural network models have been used successfully for system identification and noise-cancellation in a wide class of applications. An important problem in data communications is that of channel equalization, i.e., the removal of interferences introduced by linear or nonlinear message corrupting mechanisms, so that the originally transmitted symbols can be recovered correctly at the receiver. In this paper we introduce an adaptive recurrent neural network (RNN) based equalizer whose small size and high performance makes it suitable for high-speed channel equalization. We propose RNN based structures for both trained adaptation and blind equalization, and we evaluate their performance via extensive simulations for a variety of signal modulations and communication channel models. It is shown that the RNN equalizers have comparable performance with traditional linear filter based equalizers when the channel interferences are relatively mild, and that they outperform them by several orders of magnitude when either the channel's transfer function has spectral nulls or severe nonlinear distortion is present. In addition, the small-size RNN equalizers, being essentially generalized IIR filters, are shown to outperform multilayer perceptron equalizers of larger computational complexity in linear and nonlinear channel equalization cases.

  9. The 3-D image recognition based on fuzzy neural network technology

    NASA Technical Reports Server (NTRS)

    Hirota, Kaoru; Yamauchi, Kenichi; Murakami, Jun; Tanaka, Kei

    1993-01-01

    Three dimensional stereoscopic image recognition system based on fuzzy-neural network technology was developed. The system consists of three parts; preprocessing part, feature extraction part, and matching part. Two CCD color camera image are fed to the preprocessing part, where several operations including RGB-HSV transformation are done. A multi-layer perception is used for the line detection in the feature extraction part. Then fuzzy matching technique is introduced in the matching part. The system is realized on SUN spark station and special image input hardware system. An experimental result on bottle images is also presented.

  10. Motion direction discrimination training reduces perceived motion repulsion.

    PubMed

    Jia, Ke; Li, Sheng

    2017-04-01

    Participants often exaggerate the perceived angular separation between two simultaneously presented motion stimuli, which is referred to as motion repulsion. The overestimation helps participants differentiate between the two superimposed motion directions, yet it causes the impairment of direction perception. Since direction perception can be refined through perceptual training, we here attempted to investigate whether the training of a direction discrimination task changes the amount of motion repulsion. Our results showed a direction-specific learning effect, which was accompanied by a reduced amount of motion repulsion both for the trained and the untrained directions. The reduction of the motion repulsion disappeared when the participants were trained on a luminance discrimination task (control experiment 1) or a speed discrimination task (control experiment 2), ruling out any possible interpretation in terms of adaptation or training-induced attentional bias. Furthermore, training with a direction discrimination task along a direction 150° away from both directions in the transparent stimulus (control experiment 3) also had little effect on the amount of motion repulsion, ruling out the contribution of task learning. The changed motion repulsion observed in the main experiment was consistent with the prediction of the recurrent model of perceptual learning. Therefore, our findings demonstrate that training in direction discrimination can benefit the precise direction perception of the transparent stimulus and provide new evidence for the recurrent model of perceptual learning.

  11. Effects of Recurrent Otitis Media on Language, Speech, and Educational Achievement in Menominee Indian Children.

    ERIC Educational Resources Information Center

    Thielke, Helen M.; Shriberg, Lawrence D.

    1990-01-01

    Among 28 monolingual English-speaking Menominee Indian children, a history of otitis media was associated with significantly lower scores on measures of language comprehension and speech perception and production at ages 3-5, and on school standardized tests 2 years later. Contains 38 references. (SV)

  12. 'Here There Be Monsters': the public's perception of paedophiles with particular reference to Belfast and Leicester.

    PubMed

    McCartan, Kieran

    2004-10-01

    This research study sought to investigate the public perception of paedophiles. It was undertaken in Belfast (Northern Ireland) and Leicester (England) in an attempt to determine whether or not regional variations existed in relation to the public's perception of paedophiles. In doing this, the study sought to test four hypotheses; (1) That the press affects the public's perception of paedophiles; (2) that the public's perception of paedophiles is not congruent with legal and clinical definitions; (3) that the Sarah Payne case has helped to reinforce the public's perception of a predatory paedophile; and (4) that the public's perception is based on fear and irrationality. These hypotheses were tested via the distribution of a questionnaire to an opportunistic sample on the streets of Belfast and Leicester. Although the results did not support the hypotheses, they did yield some very interesting information. The study indicated that the public is quite well-informed about paedophilia; its recurrence rates, practices and in particular the influence of the media. Furthermore, the study indicated quite significant differences between the cities of Belfast and Leicester. In conclusion, the results indicated that a moral panic connected to paedophilia is very present in our contemporary society.

  13. Factors associated with occasional and recurrent falls in Mexican community-dwelling older people

    PubMed Central

    Mino-León, Dolores; Cruz-Arenas, Esteban

    2018-01-01

    Falls are a frequent event among older adults that can cause wounds, disability, psychological disorders, and premature death. Although the large number of existing studies on the issue, few have been conducted in middle- and low-income countries. The objective of the present study is to identify the sociodemographic, medical, and functional performance factors associated with occasional and recurrent falls in Mexican older adults dwelling in community. Cross-sectional analysis of 9 598 adults ≥60 years old who participated in the fourth round (2015) of the Mexican Health and Aging Study. Bivariate tests were performed to evaluate the differences between covariates by distinct fall groups (no falls, occasional falls, and recurrent falls). Multiple logistic regressions with unadjusted and adjusted models were estimated. Approximately 46% of older adults had had at least one fall during the previous two years (one fall 16% and recurrent falls 30%). Occasional falls were only associated with being a woman; in addition to the sex, recurrent falls were strongly associated with advanced age, rural residence, bad and very bad self-perception of health status, activity-limiting pain, urinary incontinence, depression, arthritis, limitations in basic activities of daily living, and limitations in advanced activities of daily living. Falls, primarily recurrent falls, deserve to be addressed through multifactorial strategies that include different areas of intervention. PMID:29462159

  14. Computational Approach to Musical Consonance and Dissonance

    PubMed Central

    Trulla, Lluis L.; Di Stefano, Nicola; Giuliani, Alessandro

    2018-01-01

    In sixth century BC, Pythagoras discovered the mathematical foundation of musical consonance and dissonance. When auditory frequencies in small-integer ratios are combined, the result is a harmonious perception. In contrast, most frequency combinations result in audible, off-centered by-products labeled “beating” or “roughness;” these are reported by most listeners to sound dissonant. In this paper, we consider second-order beats, a kind of beating recognized as a product of neural processing, and demonstrate that the data-driven approach of Recurrence Quantification Analysis (RQA) allows for the reconstruction of the order in which interval ratios are ranked in music theory and harmony. We take advantage of computer-generated sounds containing all intervals over the span of an octave. To visualize second-order beats, we use a glissando from the unison to the octave. This procedure produces a profile of recurrence values that correspond to subsequent epochs along the original signal. We find that the higher recurrence peaks exactly match the epochs corresponding to just intonation frequency ratios. This result indicates a link between consonance and the dynamical features of the signal. Our findings integrate a new element into the existing theoretical models of consonance, thus providing a computational account of consonance in terms of dynamical systems theory. Finally, as it considers general features of acoustic signals, the present approach demonstrates a universal aspect of consonance and dissonance perception and provides a simple mathematical tool that could serve as a common framework for further neuro-psychological and music theory research. PMID:29670552

  15. Use long short-term memory to enhance Internet of Things for combined sewer overflow monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Duo; Lindholm, Geir; Ratnaweera, Harsha

    2018-01-01

    Combined sewer overflow causes severe water pollution, urban flooding and reduced treatment plant efficiency. Understanding the behavior of CSO structures is vital for urban flooding prevention and overflow control. Neural networks have been extensively applied in water resource related fields. In this study, we collect data from an Internet of Things monitoring CSO structure and build different neural network models for simulating and predicting the water level of the CSO structure. Through a comparison of four different neural networks, namely multilayer perceptron (MLP), wavelet neural network (WNN), long short-term memory (LSTM) and gated recurrent unit (GRU), the LSTM and GRU present superior capabilities for multi-step-ahead time series prediction. Furthermore, GRU achieves prediction performances similar to LSTM with a quicker learning curve.

  16. Semitransparent inverted organic solar cell with improved absorption and reasonable transparency perception based on the nanopatterned MoO3/Ag/MoO3 anode

    NASA Astrophysics Data System (ADS)

    Tian, Ximin; Zhang, Ye; Hao, Yuying; Cui, Yanxia; Wang, Wenyan; Shi, Fang; Wang, Hua; Wei, Bin; Huang, Wei

    2015-01-01

    We demonstrate an inverted low bandgap semitransparent organic solar cell with improved absorption as well as reasonable transparency perception based on a nanopatterned MoO3/Ag/MoO3 (MAM) multilayer film as the transparent anode under illumination from the MAM side. The integrated absorption efficiency of the active layer at normal hybrid-polarized incidence considering an AM 1.5G solar spectrum is up to 51.69%, increased by 18.53% as compared to that of the equivalent planar device (43.61%) and reaching 77.3% of that of the corresponding opaque nanopatterned device (66.90%). Detailed investigations reveal that the excitation of plasmonic waveguide modes (at transverse magnetic polarization) and photonic modes (at transverse electric polarization) are responsible for the observed enhancement in absorption. Importantly, the proposed device exhibits an average transmittance of up to 28.4% and an average transparency perception of 26.3% for the human eyes under hybrid-polarized light illumination along with a good color rendering property. Additionally, our proposal works very well over a fairly wide angular range.

  17. Everybody's Scared--But Life Goes On: Coping, Defense and Action in the Face of Nuclear Threat.

    ERIC Educational Resources Information Center

    Haste, Helen

    1989-01-01

    Presents model of sequence of processes by which people deal with recurrent fears about nuclear war, drawing on risk perception and stress paradigms. Shows activism to be but one coping mechanism rather than the logical outcome of effective coping. Discusses implications for psychologists concerned about nuclear threat. (Author/NB)

  18. Provision of Genetic Services for Autism and Its Impact on Spanish Families

    ERIC Educational Resources Information Center

    Codina-Solà, Marta; Pérez-Jurado, Luis A.; Cuscó, Ivon; Serra-Juhé, Clara

    2017-01-01

    Although a genetic evaluation can identify the etiology in 15-30% of individuals with autism spectrum disorder, several studies show an underuse of genetic services by affected families. We have explored the access to genetic services and perception of genetics and recurrence risk in parents of autistic children in Spain. Despite the high interest…

  19. Does Illness Perception Predict Posttraumatic Stress Disorder in Patients with Myocardial Infarction?

    PubMed

    Oflaz, Serap; Yüksel, Şahika; Şen, Fatma; Özdemiroğlu, Filiz; Kurt, Ramazan; Oflaz, Hüseyin; Kaşikcioğlu, Erdem

    2014-06-01

    Myocardial infarction (MI) as a life-threatening event, carrying high risk of recurrence and chronic disabling complications, increases the risk of developing acute stress disorder (ASD), posttraumatic stress disorder (PTSD), or both. The aim of this study was to investigate the relationship between illness perceptions and having ASD, PTSD, or both in patients after MI. Seventy-six patients diagnosed with acute MI were enrolled into our prospective study. We evaluated patients during the first week and six months after MI. Patients were assessed by using the Clinician Administered PTSD Scale (CAPS), the Hamilton Depression Rating Scale (HDRS), the Hamilton Anxiety Rating Scale (HARS), the Brief Illness Perception Questionnaire (BIPQ), and a semi-structured interview for socio-demographic characteristics during both the first and second evaluations. Acute stress disorder (ASD) developed in 9.2% of patients and PTSD developed in 11.9% of patients with MI. Illness perception factors of 'consequences, identity and concern' predicted the occurrence of both ASD and PTSD, whereas 'emotion' predicted only PTSD. The factors of illness perceptions predicted the induction of ASD and PTSD in patients who had acute MI.

  20. Recruitment and Consolidation of Cell Assemblies for Words by Way of Hebbian Learning and Competition in a Multi-Layer Neural Network

    PubMed Central

    Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann

    2009-01-01

    Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly’s halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support. PMID:20396612

  1. Recruitment and Consolidation of Cell Assemblies for Words by Way of Hebbian Learning and Competition in a Multi-Layer Neural Network.

    PubMed

    Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann

    2009-06-01

    Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly's halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support.

  2. [Risk of contamination from exposure to Rio Doce water: a case study on the population's perceptions in Tumiritinga, Minas Gerais State, Brazil].

    PubMed

    Guedes, Gilvan Ramalho; Simão, Andréa Branco; Dias, Carlos Alberto; Braga, Eliza de Oliveira

    2015-06-01

    The close relationship between local residents and the Rio Doce and the river's recurrent flooding lead to continuous exposure of the population to waterborne diseases. Given the epidemiological importance of such diseases in the region, this study analyzes the association between risk perception of contamination and river water use, as well as the heuristic mechanisms used by individuals to shape their personal perception of risk. Regression models coupled with thematic network analysis were applied to primary data from 352 households in 2012. The data are representative of urban residents of Tumiritinga, Minas Gerais State, Brazil. The results show that while 92.6% of respondents perceived high risk of waterborne diseases, only 11.4% reported not making direct use of the river. This apparent paradox is explained by the lack of information on transmission mechanisms, underestimating the perception of contamination. Public campaigns to promote preventive behavior should stress how waterborne diseases are transmitted, using simple examples to reach a wider local audience.

  3. Spectral tailoring of nanoscale EUV and soft x-ray multilayer optics

    NASA Astrophysics Data System (ADS)

    Huang, Qiushi; Medvedev, Viacheslav; van de Kruijs, Robbert; Yakshin, Andrey; Louis, Eric; Bijkerk, Fred

    2017-03-01

    Extreme ultraviolet and soft X-ray (XUV) multilayer optics have experienced significant development over the past few years, particularly on controlling the spectral characteristics of light for advanced applications like EUV photolithography, space observation, and accelerator- or lab-based XUV experiments. Both planar and three dimensional multilayer structures have been developed to tailor the spectral response in a wide wavelength range. For the planar multilayer optics, different layered schemes are explored. Stacks of periodic multilayers and capping layers are demonstrated to achieve multi-channel reflection or suppression of the reflective properties. Aperiodic multilayer structures enable broadband reflection both in angles and wavelengths, with the possibility of polarization control. The broad wavelength band multilayer is also used to shape attosecond pulses for the study of ultrafast phenomena. Narrowband multilayer monochromators are delivered to bridge the resolution gap between crystals and regular multilayers. High spectral purity multilayers with innovated anti-reflection structures are shown to select spectrally clean XUV radiation from broadband X-ray sources, especially the plasma sources for EUV lithography. Significant progress is also made in the three dimensional multilayer optics, i.e., combining micro- and nanostructures with multilayers, in order to provide new freedom to tune the spectral response. Several kinds of multilayer gratings, including multilayer coated gratings, sliced multilayer gratings, and lamellar multilayer gratings are being pursued for high resolution and high efficiency XUV spectrometers/monochromators, with their advantages and disadvantages, respectively. Multilayer diffraction optics are also developed for spectral purity enhancement. New structures like gratings, zone plates, and pyramids that obtain full suppression of the unwanted radiation and high XUV reflectance are reviewed. Based on the present achievement of the spectral tailoring multilayer optics, the remaining challenges and opportunities for future researches are discussed.

  4. Jordan recurrent neural network versus IHACRES in modelling daily streamflows

    NASA Astrophysics Data System (ADS)

    Carcano, Elena Carla; Bartolini, Paolo; Muselli, Marco; Piroddi, Luigi

    2008-12-01

    SummaryA study of possible scenarios for modelling streamflow data from daily time series, using artificial neural networks (ANNs), is presented. Particular emphasis is devoted to the reconstruction of drought periods where water resource management and control are most critical. This paper considers two connectionist models: a feedforward multilayer perceptron (MLP) and a Jordan recurrent neural network (JNN), comparing network performance on real world data from two small catchments (192 and 69 km 2 in size) with irregular and torrential regimes. Several network configurations are tested to ensure a good combination of input features (rainfall and previous streamflow data) that capture the variability of the physical processes at work. Tapped delayed line (TDL) and memory effect techniques are introduced to recognize and reproduce temporal dependence. Results show a poor agreement when using TDL only, but a remarkable improvement can be obtained with JNN and its memory effect procedures, which are able to reproduce the system memory over a catchment in a more effective way. Furthermore, the IHACRES conceptual model, which relies on both rainfall and temperature input data, is introduced for comparative study. The results suggest that when good input data is unavailable, metric models perform better than conceptual ones and, in general, it is difficult to justify substantial conceptualization of complex processes.

  5. Primary iris stromal cyst with rapid growth.

    PubMed

    Xiao, Yang; Wang, Yu-Hong; Niu, Gai-Ling; Gao, Min

    2009-11-01

    To describe the clinical features and the surgical management of primary iris stromal cyst with rapid growth. A 14-year-old Chinese-Mongolian girl was referred to us with a 1-month history of obstructed vision and photophobia. On an examination, a semitransparent cyst with a densely pigmented posterior wall was revealed in the anterior chamber of the left eye. The information regarding the location and extent of the cyst was further analyzed by anterior segment optical coherence tomography and ultrasound biomicroscopy. It arose within the iris stroma, measuring 7.52 x 3.60 mm. Blood vessels on the surface of the lesion were revealed by iris angiography. There was no history of amniocentesis, birth trauma, antecedent ocular injury, or maternal illness during gestation. The diagnosis of primary iris stromal cyst was made. A combination of needle aspiration, piecemeal resection of cyst wall, cryotherapy, and argon laser photocoagulation with overlapped spots was used. Histopathology of the cyst wall revealed nonkeratinized, multilayered, stratified squamous epithelium with clusters of goblet cells. Complete resolution of the cyst was successfully achieved. The visual acuity improved to 20/25 from counting fingers. At 6 months of follow-up, there was no recurrence. Complete eradication and devitalization of any remaining epithelial cells are the key factors for preventing recurrence and diffuse epithelialization of the anterior chamber.

  6. What Factors Influence Women's Perceptions of their Systemic Recurrence Risk after Breast Cancer Treatment?

    PubMed

    Lee, Kamaria L; Janz, Nancy K; Zikmund-Fisher, Brian J; Jagsi, Reshma; Wallner, Lauren P; Kurian, Allison W; Katz, Steven J; Abrahamse, Paul; Hawley, Sarah T

    2018-01-01

    Breast cancer patients' misunderstanding of their systemic cancer recurrence risk has consequences on decision-making and quality of life. Little is known about how women derive their risk estimates. Using Los Angeles and Georgia's SEER registries (2014-2015), a random sample of early-stage breast cancer patients was sent surveys about 2 to 3 months after surgery ( N = 3930; RR, 68%). We conducted an inductive thematic analysis of open-ended responses about why women chose their risk estimates in a uniquely large sub-sample ( N = 1,754). Clinician estimates of systemic recurrence risk were provided for patient sub-groups with DCIS and with low-, intermediate-, and high-risk invasive disease. Women's perceived risk of systemic recurrence (0% to 100%) was categorized as overestimation, reasonably accurate estimation, or underestimation (0% for invasive disease) and was compared across identified factors and by clinical presentation. Women identified 9 main factors related to their clinical experience (e.g., diagnosis and testing; treatment) and non-clinical beliefs (e.g., uncertainty; spirituality). Women who mentioned at least one clinical experience factor were significantly less likely to overestimate their risk (12% v. 43%, P < 0.001). Most women who were influenced by "communication with a clinician" had reasonably accurate recurrence estimates (68%). "Uncertainty" and "family and personal history" were associated with overestimation, particularly for women with DCIS (75%; 84%). "Spirituality, religion, and faith" was associated with an underestimation of risk (63% v. 20%, P < 0.001). The quantification of our qualitative results is subject to any biases that may have occurred during the coding process despite rigorous methodology. Patient-clinician communication is important for breast cancer patients' understanding of their numeric risk of systemic recurrence. Clinician discussions about recurrence risk should address uncertainty and relevance of family and personal history.

  7. Preserved feedforward but impaired top-down processes in the vegetative state.

    PubMed

    Boly, Melanie; Garrido, Marta Isabel; Gosseries, Olivia; Bruno, Marie-Aurélie; Boveroux, Pierre; Schnakers, Caroline; Massimini, Marcello; Litvak, Vladimir; Laureys, Steven; Friston, Karl

    2011-05-13

    Frontoparietal cortex is involved in the explicit processing (awareness) of stimuli. Frontoparietal activation has also been found in studies of subliminal stimulus processing. We hypothesized that an impairment of top-down processes, involved in recurrent neuronal message-passing and the generation of long-latency electrophysiological responses, might provide a more reliable correlate of consciousness in severely brain-damaged patients, than frontoparietal responses. We measured effective connectivity during a mismatch negativity paradigm and found that the only significant difference between patients in a vegetative state and controls was an impairment of backward connectivity from frontal to temporal cortices. This result emphasizes the importance of top-down projections in recurrent processing that involve high-order associative cortices for conscious perception.

  8. Arthroscopic Bankart Repair Versus Open Bristow-Latarjet for Shoulder Instability: A Matched-Pair Multicenter Study Focused on Return to Sport.

    PubMed

    Blonna, Davide; Bellato, Enrico; Caranzano, Francesco; Assom, Marco; Rossi, Roberto; Castoldi, Filippo

    2016-12-01

    The arthroscopic Bankart repair and open Bristow-Latarjet procedure are the 2 most commonly used techniques to treat recurrent shoulder instability. To compare in a case control-matched manner the 2 techniques, with particular emphasis on return to sport after surgery. Cohort study; Level of evidence, 3. A study was conducted in 2 hospitals matching 60 patients with posttraumatic recurrent anterior shoulder instability with a minimum follow-up of 2 years (30 patients treated with arthroscopic Bankart procedure and 30 treated with open Bristow-Latarjet procedure). Patients with severe glenoid bone loss and revision surgeries were excluded. In one hospital, patients were treated with arthroscopic Bankart repair using anchors; in the other, patients underwent the Bristow-Latarjet procedure. Patients were matched according to age at surgery, type and level of sport practiced before shoulder instability (Degree of Shoulder Involvement in Sports [DOSIS] scale), and number of dislocations. The primary outcomes were return to sport (Subjective Patient Outcome for Return to Sports [SPORTS] score), rate of recurrent instability, Oxford Shoulder Instability Score (OSIS), Subjective Shoulder Value (SSV), Western Ontario Shoulder Instability Index (WOSI), and range of motion (ROM). After a mean follow-up of 5.3 years (range, 2-9 years), patients who underwent arthroscopic Bankart repair obtained better results in terms of return to sport (SPORTS score: 8 vs 6; P = .02) and ROM in the throwing position (86° vs 79°; P = .01), and they reported better subjective perception of the shoulder (SSV: 86% vs 75%; P = .02). No differences were detectable using the OSIS or WOSI. The rate of recurrent instability was not statistically different between the 2 groups (Bankart repair 10% vs Bristow-Latarjet 0%; P = .25), although the study may have been underpowered to detect a clinically important difference in this parameter. The multiple regression analysis showed that the independent variables associated with return to sport were preoperative DOSIS scale, type of surgery, and recurrent dislocations after surgery. Patients who played sports with high upper extremity involvement (eg, swimming, rugby, martial arts) at a competitive level (DOSIS scale 9 or 10) had a lower level of return to sport with both repair techniques. Arthroscopic stabilization using anchors provided better return to sport and subjective perception of the shoulder compared with the open Bristow-Latarjet procedure in the population studied. Recurrence may be higher in the arthroscopic Bankart group; further study is needed on this point. © 2016 The Author(s).

  9. Chondromyxoid Fibroma of the Ethmoid Sinus

    DTIC Science & Technology

    2011-06-01

    and its perceptible recurrence rate. It is for these reasons that CMF should be distinguished from a myxoid variant of chondrosarcoma (which usually...cartilage of the type seen in chondroma or chondrosarcoma and is a focal finding in less than 20% of CMF cases [5]. Mitotic figures are sparse, accounting...CMF from chondrosarcoma [5]. The histologic differential diagnosis of CMF includes, most importantly, myxoid chondrosarcoma and chondro- blastoma [7

  10. Zone compensated multilayer laue lens and apparatus and method of fabricating the same

    DOEpatents

    Conley, Raymond P.; Liu, Chian Qian; Macrander, Albert T.; Yan, Hanfei; Maser, Jorg; Kang, Hyon Chol; Stephenson, Gregory Brian

    2015-07-14

    A multilayer Laue Lens includes a compensation layer formed in between a first multilayer section and a second multilayer section. Each of the first and second multilayer sections includes a plurality of alternating layers made of a pair of different materials. Also, the thickness of layers of the first multilayer section is monotonically increased so that a layer adjacent the substrate has a minimum thickness, and the thickness of layers of the second multilayer section is monotonically decreased so that a layer adjacent the compensation layer has a maximum thickness. In particular, the compensation layer of the multilayer Laue lens has an in-plane thickness gradient laterally offset by 90.degree. as compared to other layers in the first and second multilayer sections, thereby eliminating the strict requirement of the placement error.

  11. Post interaural neural net-based vowel recognition

    NASA Astrophysics Data System (ADS)

    Jouny, Ismail I.

    2001-10-01

    Interaural head related transfer functions are used to process speech signatures prior to neural net based recognition. Data representing the head related transfer function of a dummy has been collected at MIT and made available on the Internet. This data is used to pre-process vowel signatures to mimic the effects of human ear on speech perception. Signatures representing various vowels of the English language are then presented to a multi-layer perceptron trained using the back propagation algorithm for recognition purposes. The focus in this paper is to assess the effects of human interaural system on vowel recognition performance particularly when using a classification system that mimics the human brain such as a neural net.

  12. Micromechanical Properties of Nanostructured Clay-Oxide Multilayers Synthesized by Layer-by-Layer Self-Assembly.

    PubMed

    Hou, Dongwei; Zhang, Guoping; Pant, Rohit Raj; Wei, Zhongxin; Shen, Shuilong

    2016-11-08

    Clay-based nanostructured multilayers, such as clay-polymer multilayers and clay-oxide multilayers, have attracted growing attention owing to their remarkable mechanical properties and promising application in various fields. In this paper, synthesis of a new kind of nanostructured clay-oxide multilayers by layer-by-layer self-assembly was explored. Nano-mechanical characterization of 18 clay-based multilayer samples, prepared under as-deposited (i.e., air-dried) and annealing conditions at 400 °C/600 °C with different precursor cations and multilayer structure, were carried out using nanoindentation testing, atomic force microscopy (AFM), and X-ray diffraction (XRD). The influencing factors, including as-deposited and annealing conditions and clay concentrations on the mechanical properties were analyzed. Results show that all of the multilayers exhibit high bonding strength between interlayers. Higher modulus and hardness of clay-based multilayers were obtained with lower clay concentrations than that with higher clay concentrations. Different relationships between the modulus and hardness and the annealing temperature exist for a specific type of clay-oxide multilayer. This work offers the basic and essential knowledge on design of clay-based nanostructured multilayers by layer-by-layer self-assembly.

  13. A software tool for determination of breast cancer treatment methods using data mining approach.

    PubMed

    Cakır, Abdülkadir; Demirel, Burçin

    2011-12-01

    In this work, breast cancer treatment methods are determined using data mining. For this purpose, software is developed to help to oncology doctor for the suggestion of application of the treatment methods about breast cancer patients. 462 breast cancer patient data, obtained from Ankara Oncology Hospital, are used to determine treatment methods for new patients. This dataset is processed with Weka data mining tool. Classification algorithms are applied one by one for this dataset and results are compared to find proper treatment method. Developed software program called as "Treatment Assistant" uses different algorithms (IB1, Multilayer Perception and Decision Table) to find out which one is giving better result for each attribute to predict and by using Java Net beans interface. Treatment methods are determined for the post surgical operation of breast cancer patients using this developed software tool. At modeling step of data mining process, different Weka algorithms are used for output attributes. For hormonotherapy output IB1, for tamoxifen and radiotherapy outputs Multilayer Perceptron and for the chemotherapy output decision table algorithm shows best accuracy performance compare to each other. In conclusion, this work shows that data mining approach can be a useful tool for medical applications particularly at the treatment decision step. Data mining helps to the doctor to decide in a short time.

  14. Acquisition and visualization techniques for narrow spectral color imaging.

    PubMed

    Neumann, László; García, Rafael; Basa, János; Hegedüs, Ramón

    2013-06-01

    This paper introduces a new approach in narrow-band imaging (NBI). Existing NBI techniques generate images by selecting discrete bands over the full visible spectrum or an even wider spectral range. In contrast, here we perform the sampling with filters covering a tight spectral window. This image acquisition method, named narrow spectral imaging, can be particularly useful when optical information is only available within a narrow spectral window, such as in the case of deep-water transmittance, which constitutes the principal motivation of this work. In this study we demonstrate the potential of the proposed photographic technique on nonunderwater scenes recorded under controlled conditions. To this end three multilayer narrow bandpass filters were employed, which transmit at 440, 456, and 470 nm bluish wavelengths, respectively. Since the differences among the images captured in such a narrow spectral window can be extremely small, both image acquisition and visualization require a novel approach. First, high-bit-depth images were acquired with multilayer narrow-band filters either placed in front of the illumination or mounted on the camera lens. Second, a color-mapping method is proposed, using which the input data can be transformed onto the entire display color gamut with a continuous and perceptually nearly uniform mapping, while ensuring optimally high information content for human perception.

  15. Ultrasound-guided percutaneous needle electrolysis in chronic lateral epicondylitis: short-term and long-term results

    PubMed Central

    Valera-Garrido, Fermín; Minaya-Muñoz, Francisco; Medina-Mirapeix, Francesc

    2014-01-01

    Background Ultrasound (US)-guided percutaneous needle electrolysis (PNE) is a novel minimally invasive approach which consists of the application of a galvanic current through an acupuncture needle. Objective To evaluate the clinical and ultrasonographic effectiveness of a multimodal programme (PNE, eccentric exercise (EccEx) and stretching) in the short term for patients with chronic lateral epicondylitis, and to determine whether the clinical outcomes achieved decline over time. Methods A one-way repeated measures study was performed in a clinical setting in 36 patients presenting with lateral epicondylitis. The patients received one session of US-guided PNE per week over 4–6 weeks, associated with a home programme of EccEx and stretching. The main outcome measures were severity of pain, disability (Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire), structural tendon changes (US), hypervascularity and patients’ perceptions of overall outcome. Measurements at 6, 26 and 52 weeks follow-up included recurrence rates (increase in severity of pain or disability compared with discharge), perception of overall outcome and success rates. Results All outcome measures registered significant improvements between pre-intervention and discharge. Most patients (n=30, 83.3%) rated the overall outcome as ‘successful’ at 6 weeks. The ultrasonographic findings showed that the hypoechoic regions and hypervascularity of the extensor carpi radialis brevis changed significantly. At 26 and 52 weeks, all participants (n=32) perceived a ‘successful’ outcome. Recurrence rates were null after discharge and at follow-up at 6, 26 and 52 weeks. Conclusions Symptoms and degenerative structural changes of chronic lateral epicondylitis are reduced after US-guided PNE associated with EccEx and stretching, with encouragingly low recurrences in the mid to long term. Trial registration number ClinicalTrials.gov identifier: NCT02085928. PMID:25122629

  16. Radiation-induced optic neuropathy: A magnetic resonance imaging study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy, J.; Mancuso, A.; Beck, R.

    1991-03-01

    Optic neuropathy induced by radiation is an infrequent cause of delayed visual loss that may at times be difficult to differentiate from compression of the visual pathways by recurrent neoplasm. The authors describe six patients with this disorder who experienced loss of vision 6 to 36 months after neurological surgery and radiation therapy. Of the six patients in the series, two had a pituitary adenoma and one each had a metastatic melanoma, multiple myeloma, craniopharyngioma, and lymphoepithelioma. Visual acuity in the affected eyes ranged from 20/25 to no light perception. Magnetic resonance (MR) imaging showed sellar and parasellar recurrence ofmore » both pituitary adenomas, but the intrinsic lesions of the optic nerves and optic chiasm induced by radiation were enhanced after gadolinium-diethylenetriaminepenta-acetic acid (DTPA) administration and were clearly distinguishable from the suprasellar compression of tumor. Repeated MR imaging showed spontaneous resolution of gadolinium-DTPA enhancement of the optic nerve in a patient who was initially suspected of harboring recurrence of a metastatic malignant melanoma as the cause of visual loss. The authors found the presumptive diagnosis of radiation-induced optic neuropathy facilitated by MR imaging with gadolinium-DTPA. This neuro-imaging procedure may help avert exploratory surgery in some patients with recurrent neoplasm in whom the etiology of visual loss is uncertain.« less

  17. Method to adjust multilayer film stress induced deformation of optics

    DOEpatents

    Spiller, Eberhard A.; Mirkarimi, Paul B.; Montcalm, Claude; Bajt, Sasa; Folta, James A.

    2000-01-01

    Stress compensating systems that reduces/compensates stress in a multilayer without loss in reflectivity, while reducing total film thickness compared to the earlier buffer-layer approach. The stress free multilayer systems contain multilayer systems with two different material combinations of opposite stress, where both systems give good reflectivity at the design wavelengths. The main advantage of the multilayer system design is that stress reduction does not require the deposition of any additional layers, as in the buffer layer approach. If the optical performance of the two systems at the design wavelength differ, the system with the poorer performance is deposited first, and then the system with better performance last, thus forming the top of the multilayer system. The components for the stress reducing layer are chosen among materials that have opposite stress to that of the preferred multilayer reflecting stack and simultaneously have optical constants that allow one to get good reflectivity at the design wavelength. For a wavelength of 13.4 nm, the wavelength presently used for extreme ultraviolet (EUV) lithography, Si and Be have practically the same optical constants, but the Mo/Si multilayer has opposite stress than the Mo/Be multilayer. Multilayer systems of these materials have practically identical reflectivity curves. For example, stress free multilayers can be formed on a substrate using Mo/Be multilayers in the bottom of the stack and Mo/Si multilayers at the top of the stack, with the switch-over point selected to obtain zero stress. In this multilayer system, the switch-over point is at about the half point of the total thickness of the stack, and for the Mo/Be--Mo/Si system, there may be 25 deposition periods Mo/Be to 20 deposition periods Mo/Si.

  18. Magnetic multilayer structure

    DOEpatents

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  19. Magnetic multilayer structure

    DOEpatents

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2017-03-21

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  20. Numerical simulation and experiment on multilayer stagger-split die.

    PubMed

    Liu, Zhiwei; Li, Mingzhe; Han, Qigang; Yang, Yunfei; Wang, Bolong; Sui, Zhou

    2013-05-01

    A novel ultra-high pressure device, multilayer stagger-split die, has been constructed based on the principle of "dividing dies before cracking." Multilayer stagger-split die includes an encircling ring and multilayer assemblages, and the mating surfaces of the multilayer assemblages are mutually staggered between adjacent layers. In this paper, we investigated the stressing features of this structure through finite element techniques, and the results were compared with those of the belt type die and single split die. The contrast experiments were also carried out to test the bearing pressure performance of multilayer stagger-split die. It is concluded that the stress distributions are reasonable and the materials are utilized effectively for multilayer stagger-split die. And experiments indicate that the multilayer stagger-split die can bear the greatest pressure.

  1. Spin wave propagation spectra in Octonacci one-dimensional magnonic quasicrystals

    NASA Astrophysics Data System (ADS)

    Valeriano, Analine P.; Costa, Carlos H.; Bezerra, Claudionor G.

    2018-06-01

    In this paper, we study spin wave propagation in quasiperiodic magnonic superlattices that follow the so-called Octonacci quasiperiodic sequence, where the N-th stage can be obtained through the recurrence rule SN =SN-1SN-2SN-1 , for N ⩾ 3 , and starting with S1 = A and S2 = B . The multilayered magnonic nanostructure is composed of two simple cubic ferromagnetic materials, labeled A and B, which interact through bilinear and biquadratic exchange couplings at their interfaces. The ferromagnetic materials are described by the Heisenberg model, and a transfer matrix treatment is employed, with the calculations performed for the exchange-dominated regime, taking the random phase approximation (RPA) into account. The obtained numerical results show the effects of both (i) the Octonacci quasiperiodic sequence and (ii) the biquadratic exchange coupling on the band structure and transmission spectra of spin waves. Comparisons are also performed with the spectra found in other periodic and quasiperiodic structures.

  2. MoRu/Be multilayers for extreme ultraviolet applications

    DOEpatents

    Bajt, Sasa C.; Wall, Mark A.

    2001-01-01

    High reflectance, low intrinsic roughness and low stress multilayer systems for extreme ultraviolet (EUV) lithography comprise amorphous layers MoRu and crystalline Be layers. Reflectance greater than 70% has been demonstrated for MoRu/Be multilayers with 50 bilayer pairs. Optical throughput of MoRu/Be multilayers can be 30-40% higher than that of Mo/Be multilayer coatings. The throughput can be improved using a diffusion barrier to make sharper interfaces. A capping layer on the top surface of the multilayer improves the long-term reflectance and EUV radiation stability of the multilayer by forming a very thin native oxide that is water resistant.

  3. Piezoelectric polymer multilayer on flexible substrate for energy harvesting.

    PubMed

    Zhang, Lei; Oh, Sharon Roslyn; Wong, Ting Chong; Tan, Chin Yaw; Yao, Kui

    2013-09-01

    A piezoelectric polymer multilayer structure formed on a flexible substrate is investigated for mechanical energy harvesting under bending mode. Analytical and numerical models are developed to clarify the effect of material parameters critical to the energy harvesting performance of the bending multilayer structure. It is shown that the maximum power is proportional to the square of the piezoelectric stress coefficient and the inverse of dielectric permittivity of the piezoelectric polymer. It is further found that a piezoelectric multilayer with thinner electrodes can generate more electric energy in bending mode. The effect of improved impedance matching in the multilayer polymer on energy output is remarkable. Comparisons between piezoelectric ceramic multilayers and polymer multilayers on flexible substrate are discussed. The fabrication of a P(VDF-TrFE) multilayer structure with a thin Al electrode layer is experimentally demonstrated by a scalable dip-coating process on a flexible aluminum substrate. The results indicate that it is feasible to produce a piezoelectric polymer multilayer structure on flexible substrate for harvesting mechanical energy applicable for many low-power electronics.

  4. A stochastic vision-based model inspired by zebrafish collective behaviour in heterogeneous environments

    PubMed Central

    Collignon, Bertrand; Séguret, Axel; Halloy, José

    2016-01-01

    Collective motion is one of the most ubiquitous behaviours displayed by social organisms and has led to the development of numerous models. Recent advances in the understanding of sensory system and information processing by animals impels one to revise classical assumptions made in decisional algorithms. In this context, we present a model describing the three-dimensional visual sensory system of fish that adjust their trajectory according to their perception field. Furthermore, we introduce a stochastic process based on a probability distribution function to move in targeted directions rather than on a summation of influential vectors as is classically assumed by most models. In parallel, we present experimental results of zebrafish (alone or in group of 10) swimming in both homogeneous and heterogeneous environments. We use these experimental data to set the parameter values of our model and show that this perception-based approach can simulate the collective motion of species showing cohesive behaviour in heterogeneous environments. Finally, we discuss the advances of this multilayer model and its possible outcomes in biological, physical and robotic sciences. PMID:26909173

  5. Classifying the Perceptual Interpretations of a Bistable Image Using EEG and Artificial Neural Networks

    PubMed Central

    Hramov, Alexander E.; Maksimenko, Vladimir A.; Pchelintseva, Svetlana V.; Runnova, Anastasiya E.; Grubov, Vadim V.; Musatov, Vyacheslav Yu.; Zhuravlev, Maksim O.; Koronovskii, Alexey A.; Pisarchik, Alexander N.

    2017-01-01

    In order to classify different human brain states related to visual perception of ambiguous images, we use an artificial neural network (ANN) to analyze multichannel EEG. The classifier built on the basis of a multilayer perceptron achieves up to 95% accuracy in classifying EEG patterns corresponding to two different interpretations of the Necker cube. The important feature of our classifier is that trained on one subject it can be used for the classification of EEG traces of other subjects. This result suggests the existence of common features in the EEG structure associated with distinct interpretations of bistable objects. We firmly believe that the significance of our results is not limited to visual perception of the Necker cube images; the proposed experimental approach and developed computational technique based on ANN can also be applied to study and classify different brain states using neurophysiological data recordings. This may give new directions for future research in the field of cognitive and pathological brain activity, and for the development of brain-computer interfaces. PMID:29255403

  6. Use of a polysulfone hemodialysis membrane may prevent recurrent posterior reversible encephalopathy syndrome in a patient undergoing hemodialysis.

    PubMed

    Mima, Akira; Matsubara, Takeshi; Endo, Shuichiro; Murakami, Taichi; Hashimoto, Yasuki

    2014-01-01

    A 71-year-old woman underwent hemodialysis (HD) treatment for chronic kidney disease. During HD, she developed headache, abnormalities in visual perception, and generalized convulsion. Brain magnetic resonance imaging (MRI) showed T2-hyperintensity lesions in the posterior lobe, and an electroencephalogram showed slow waves in all areas. Twenty days later, the T2-hyperintensity lesions had vanished. Furthermore, perfusion computed tomography (CT) and single-photon emission CT with N-isopropyl[(123)I]-p-iodoamphetamine (IMP-SPECT) showed no significant abnormalities. The patient was diagnosed with posterior reversible encephalopathy syndrome (PRES) because she displayed typical clinical symptoms and MRI findings. Although several antihypertensive and antiseizure medications were administered, the patient experienced recurrent PRES. Therefore, we used a polysulfone dialyzer to reduce the oxidative stress and inflammation while preserving vascular endothelial function. After use of a polysulfone dialyzer membrane, the patient had no PRES episodes during the clinical course. This is the first study to demonstrate that use of a polysulfone dialyzer membrane instead of a cellulose membrane may prevent recurrent PRES.

  7. Stress Compensating Multilayers

    NASA Technical Reports Server (NTRS)

    Broadway, David M.; Ramsey, Brian D.; O'dell, Stephen; Gurgew, Danielle

    2017-01-01

    We present in-situ stress measurement results for single and multilayer thin-films deposited by magnetron sputtering. In particular, we report on the influence of the material interfaces on the ensuing stress in both the transient and steady-state regimes of film growth. This behavior is used to determine the appropriate thicknesses of the constituent layers that will result in a net tensile stress in multilayers composed of various material combinations. These multilayers can then be used to compensate the compressive integrated stress in single and multilayer EUV and x-ray optical coatings. The use of multilayers to compensate the integrated stress might be advantageous because, unlike single layers of chromium, the roughness is not expected to increase with the total thickness of the multilayer. In this paper, we demonstrate the technique for W/Si and Mo/Si multilayers and discuss its application to other material combinations.

  8. Process for fabricating high reflectance-low stress Mo--Si multilayer reflective coatings

    DOEpatents

    Montcalm, Claude; Mirkarimi, Paul B.

    2001-01-01

    A high reflectance-low stress Mo--Si multilayer reflective coating particularly useful for the extreme ultraviolet (EUV) wavelength region. While the multilayer reflective coating has particular application for EUV lithography, it has numerous other applications where high reflectance and low stress multilayer coatings are utilized. Multilayer coatings having high near-normal incidence reflectance (R.gtoreq.65%) and low residual stress (.ltoreq.100 MPa) have been produced using thermal and non-thermal approaches. The thermal approach involves heating the multilayer coating to a given temperature for a given time after deposition in order to induce structural changes in the multilayer coating that will have an overall "relaxation" effect without reducing the reflectance significantly.

  9. High reflectance-low stress Mo-Si multilayer reflective coatings

    DOEpatents

    Montcalm, Claude; Mirkarimi, Paul B.

    2000-01-01

    A high reflectance-low stress Mo-Si multilayer reflective coating particularly useful for the extreme ultraviolet (EUV) wavelength region. While the multilayer reflective coating has particular application for EUV lithography, it has numerous other applications where high reflectance and low stress multilayer coatings are utilized. Multilayer coatings having high near-normal incidence reflectance (R.gtoreq.65%) and low residual stress (.ltoreq.100 MPa) have been produced using thermal and non-thermal approaches. The thermal approach involves heating the multilayer coating to a given temperature for a given time after deposition in order to induce structural changes in the multilayer coating that will have an overall "relaxation" effect without reducing the reflectance significantly.

  10. Repair of high performance multilayer coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaines, D.P.; Ceglio, N.M.; Vernon, S.P.

    1991-07-01

    Fabrication and environmental damage issues may require that the multilayer x-ray reflection coatings used in soft x-ray projection lithography be replaced or repaired. Two repair strategies were investigated. The first was to overcoat defective multilayers with a new multilayer. The feasibility of this approach was demonstrated by depositing high reflectivity (61% at 130 {Angstrom}) molybdenum silicon (Mo/Si) multilayers onto fused silica figured optics that had already been coated with a Mo/Si multilayer. Because some types of damage mechanisms and fabrication errors are not repairable by this method, a second method of repair was investigated. The multilayer was stripped from themore » optical substrate by etching a release layer which was deposited onto the substrate beneath the multilayer. The release layer consisted of a 1000 {Angstrom} aluminum film deposited by ion beam sputtering or by electron beam evaporation, with a 300 {Angstrom} SiO{sub 2} protective overcoat. The substrates were superpolished zerodur optical flats. The normal incidence x-ray reflectivity of multilayers deposited on these aluminized substrates was degraded, presumably due to the roughness of the aluminum films. Multilayers, and the underlying release layers, have been removed without damaging the substrates.« less

  11. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquila, Andrew Lee

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses This thesis describes themore » design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig- Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs described in this thesis can be extended to higher photon energies, and such designs can be used with those sources to enable new scientific studies, such as molecular bonding, phonon, and spin dynamics.« less

  12. In-situ stress measurement of single and multilayer thin-films used in x-ray astronomy optics applications

    NASA Astrophysics Data System (ADS)

    Broadway, David M.; Ramsey, Brian D.; O'Dell, Stephen L.; Gurgew, Danielle

    2017-09-01

    We present in-situ stress measurement results for single and multilayer thin-films deposited by magnetron sputtering. In particular, we report on the influence of the material interfaces on the ensuing stress in both the transient and steady-state regimes of film growth. This behavior is used to determine the appropriate thicknesses of the constituent layers that will result in a net tensile stress in multilayers composed of various material combinations. These multilayers can then be used to compensate the compressive integrated stress in single and multilayer EUV and x-ray optical coatings. The use of multilayers to compensate the integrated stress might be advantageous because, unlike single layers of chromium, the roughness is not expected to increase with the total thickness of the multilayer. In this paper, we demonstrate the technique for W/Si and Mo/Si multilayers and discuss its application to other material combinations.

  13. Topological interface modes in graphene multilayer arrays

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Ke, Shaolin; Qin, Chengzhi; Wang, Bing; Long, Hua; Wang, Kai; Lu, Peixiang

    2018-07-01

    We investigate the topological interface modes of surface plasmon polaritons in a multilayer system composed of graphene waveguide arrays. The topological interface modes emerge when two topologically distinct graphene multilayer arrays are connected. In such multilayer system, the non-trivial topological interface modes and trivial modes coexist. By tuning the configuration of the graphene multilayer arrays, the associated non-trivial interface modes present robust against structural disorder. The total number of topological modes is related to that of graphene layers in a unit cell of the graphene multilayer array. The results provide a new paradigm for topologically protected plasmonics in the graphene multilayer arrays. The study suggests a promising approach to realize light transport and optical switching on a deep-subwavelength scale.

  14. A computational investigation of feedforward and feedback processing in metacontrast backward masking

    PubMed Central

    Silverstein, David N.

    2015-01-01

    In human perception studies, visual backward masking has been used to understand the temporal dynamics of subliminal vs. conscious perception. When a brief target stimulus is followed by a masking stimulus after a short interval of <100 ms, performance on the target is impaired when the target and mask are in close spatial proximity. While the psychophysical properties of backward masking have been studied extensively, there is still debate on the underlying cortical dynamics. One prevailing theory suggests that the impairment of target performance due to the mask is the result of lateral inhibition between the target and mask in feedforward processing. Another prevailing theory suggests that this impairment is due to the interruption of feedback processing of the target by the mask. This computational study demonstrates that both aspects of these theories may be correct. Using a biophysical model of V1 and V2, visual processing was modeled as interacting neocortical attractors, which must propagate up the visual stream. If an activating target attractor in V1 is quiesced enough with lateral inhibition from a mask, or not reinforced by recurrent feedback, it is more likely to burn out before becoming fully active and progressing through V2 and beyond. Results are presented which simulate metacontrast backward masking with an increasing stimulus interval and with the presence and absence of feedback activity. This showed that recurrent feedback diminishes backward masking effects and can make conscious perception more likely. One model configuration presented a metacontrast noise mask in the same hypercolumns as the target, and produced type-A masking. A second model configuration presented a target line with two parallel adjacent masking lines, and produced type-B masking. Future work should examine how the model extends to more complex spatial mask configurations. PMID:25759672

  15. Family functioning and illness perception of parents of children with atopic dermatitis, living without skin symptoms, but with psychosomatic symptoms.

    PubMed

    Rodríguez-Orozco, Alain R; Kanán-Cedeño, E G; Guillén Martínez, E; Campos Garibay, M J

    2011-03-01

    Emotional factors and a recurrent psychosomatic environment, have been implicated in the evolution of atopic dermatitis. These, in turn, affect the disease. This study was under taken to evaluate the functioning of families with a child that has atopic dermatitis without skin symptoms and the parents' perceptions of their child's disease.Semi-quantitative and cross-sectional study in which questionnaires were applied: one to study family functioning (Espejel et al. scale) and the second to determine aspects of parental perception of their child's atopic dermatitis. Pearson's correlation was used to analyze the correlation between the categories of the Family Function Scale.The most affected categories of family functioning were authority, handling of disruptive conduct, communication, and negative affect. The most significant positive correlations between the categories of family functioning were: authority and support, r=0.867, p<.001; disruptive conduct and communication, r=0.798, p<.001; and support and communication, r=0.731, p<.001. Of the parents, 66.4% thought that the pharmacotherapy used for their child's atopic dermatitis was not effective, and 33.3% of parents stated that the disease had affected their child's daily activities.In families of children with atopic dermatitis, various family environment factors facilitate the recurrence of symptoms even when no cutaneous lesions have been found on the child. The identification and use of family resources to face this disease are aspects that should be taken into consideration during the psychotherapeutic management of these families, putting emphasis on the most affected functional categories of these families in a strategy that should be implanted in a multi-disciplinary context.

  16. The multilayer nanoparticles formed by layer by layer approach for cancer-targeting therapy.

    PubMed

    Oh, Keun Sang; Lee, Hwanbum; Kim, Jae Yeon; Koo, Eun Jin; Lee, Eun Hee; Park, Jae Hyung; Kim, Sang Yoon; Kim, Kwangmeyung; Kwon, Ick Chan; Yuk, Soon Hong

    2013-01-10

    The multilayer nanoparticles (NPs) were prepared for cancer-targeting therapy using the layer by layer approach. When drug-loaded Pluronic NPs were mixed with vesicles (liposomes) in the aqueous medium, Pluronic NPs were incorporated into the vesicles to form the vesicle NPs. Then, the multilayer NPs were formed by freeze-drying the vesicle NPs in a Pluronic aqueous solution. The morphology and size distribution of the multilayer NPs were observed using a TEM and a particle size analyzer. In order to apply the multilayer NPs as a delivery system for docetaxel (DTX), which is a model anticancer drug, the release pattern of the DTX was observed and the tumor growth was monitored by injecting the multilayer NPs into the tail veins of tumor (squamous cell carcinoma)-bearing mice. The cytotoxicity of free DTX (commercial DTX formulation (Taxotere®)) and the multilayer NPs was evaluated using MTT assay. We also evaluated the tumor targeting ability of the multilayer NPs using magnetic resonance imaging. The multilayer NPs showed excellent tumor targetability and antitumor efficacy in tumor-bearing mice, caused by the enhanced permeation and retention (EPR) effect. These results suggest that the multilayer NPs could be a potential drug delivery system for cancer-targeting therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Biomimicry of optical microstructures of Papilio palinurus

    NASA Astrophysics Data System (ADS)

    Crne, Matija; Sharma, Vivek; Blair, John; Park, Jung Ok; Summers, Christopher J.; Srinivasarao, Mohan

    2011-01-01

    The brilliant coloration of animals in nature is sometimes based on their structure rather than on pigments. The green colour on the wings of a butterfly Papilio palinurus originates from the hierarchical microstructure of individual wing scales that are tiled on the wing. The hierarchical structure gives rise to two coloured reflections of visible light, blue and yellow which when additively mixed, produce the perception of green colour on the wing scales. We used breath figure templated assembly as the starting point for the structure and, combining it with atomic layer deposition for the multilayers necessary for the production of interference colors, we have faithfully mimicked the structure and the optical effects found on the wing scale of the butterfly Papilio palinurus.

  18. An intercomparison of artificial intelligence approaches for polar scene identification

    NASA Technical Reports Server (NTRS)

    Tovinkere, V. R.; Penaloza, M.; Logar, A.; Lee, J.; Weger, R. C.; Berendes, T. A.; Welch, R. M.

    1993-01-01

    The following six different artificial-intelligence (AI) approaches to polar scene identification are examined: (1) a feed forward back propagation neural network, (2) a probabilistic neural network, (3) a hybrid neural network, (4) a 'don't care' feed forward perception model, (5) a 'don't care' feed forward back propagation neural network, and (6) a fuzzy logic based expert system. The ten classes into which six AVHRR local-coverage arctic scenes were classified were: water, solid sea ice, broken sea ice, snow-covered mountains, land, stratus over ice, stratus over water, cirrus over water, cumulus over water, and multilayer cloudiness. It was found that 'don't care' back propagation neural network produced the highest accuracies. This approach has also low CPU requirement.

  19. Multireference adaptive noise canceling applied to the EEG.

    PubMed

    James, C J; Hagan, M T; Jones, R D; Bones, P J; Carroll, G J

    1997-08-01

    The technique of multireference adaptive noise canceling (MRANC) is applied to enhance transient nonstationarities in the electroeancephalogram (EEG), with the adaptation implemented by means of a multilayer-perception artificial neural network (ANN). The method was applied to recorded EEG segments and the performance on documented nonstationarities recorded. The results show that the neural network (nonlinear) gives an improvement in performance (i.e., signal-to-noise ratio (SNR) of the nonstationarities) compared to a linear implementation of MRANC. In both cases an improvement in the SNR was obtained. The advantage of the spatial filtering aspect of MRANC is highlighted when the performance of MRANC is compared to that of the inverse auto-regressive filtering of the EEG, a purely temporal filter.

  20. 75 FR 66126 - Multilayered Wood Flooring From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ...)] Multilayered Wood Flooring From China AGENCY: United States International Trade Commission. ACTION: Institution... the United States is materially retarded, by reason of imports from China of multilayered wood... multilayered wood flooring. The following companies are members of the CAHP: Anderson Hardwood Floors, LLC...

  1. Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems

    PubMed Central

    Jiang, Bingbing; Barnett, John B; Li, Bingyun

    2009-01-01

    There has been considerable interest in polyelectrolyte multilayer nanofilms, which have a variety of applications ranging from optical and electrochemical materials to biomedical devices. Polyelectrolyte multilayer nanofilms are constructed from aqueous solutions using electrostatic layer-by-layer self-assembly of oppositely-charged polyelectrolytes on a solid substrate. Multifunctional polyelectrolyte multilayer nanofilms have been studied using charged dyes, metal and inorganic nanoparticles, DNA, proteins, and viruses. In the past few years, there has been increasing attention to developing polyelectrolyte multilayer nanofilms as drug delivery vehicles. In this mini-review, we present recent developments in polyelectrolyte multilayer nanofilms with tunable drug delivery properties, with particular emphasis on the strategies in tuning the loading and release of drugs in polyelectrolyte multilayer nanofilms as well as their applications. PMID:24198464

  2. Preparation and properties of the multi-layer aerogel thermal insulation composites

    NASA Astrophysics Data System (ADS)

    Wang, Miao; Feng, Junzong; Jiang, Yonggang; Zhang, Zhongming; Feng, Jian

    2018-03-01

    Multi-layer insulation materials possess low radiation thermal conductivity, and excellent thermal insulation property in a vacuum environment. However, the spacers of the traditional multi-layer insulation materials are mostly loose fibers, which lead to more sensitive to the vacuum environmental of serviced. With the vacuum degree declining, gas phases thermal convection increase obviously, and the reflective screen will be severe oxidation, all of these make the thermal insulation property of traditional multi-layer insulation deteriorate, thus limits its application scope. In this paper, traditional multi-layer insulation material is combined with aerogel and obtain a new multi-layer aerogel thermal insulation composite, and the effects of the number, thickness and type of the reflective screens on the thermal insulation properties of the multi-layer composites are also studied. The result is that the thermal insulation property of the new type multi-layer aerogel composites is better than the pure aerogel composites and the traditional multi-layer insulation composites. When the 0.01 mm stainless steel foil as the reflective screen, and the aluminum silicate fiber and silica aerogel as the spacer layer, the layer density of composite with the best thermal insulation property is one layer per millimeter at 1000 °C.

  3. Controlled synthesis of MnOOH multilayer nanowires as anode materials for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yue; Yue, Kaiqiang; Wang, Yuanxin

    MnOOH multilayer nanowires have been successfully synthesized by a hydrothermal method. It is found that the uniform multilayer structure of nanowires ran through the entire nanowire, which is formed via a layer by layer. The electrochemical properties of MnOOH multilayer nanowires as an anode material for Li-ion batteries (LIB) were investigated, and excellent capacity retention, superior cycling performance, and high rate capability were achieved. Specifically, the reversible capacity of MnOOH multilayer nanowires is 521 mAh/g after 500 cycles at 0.1 C, with excellent electrochemical stability. The multilayer nanowire electrodes exhibit short electron path lengths, high internal dislocation densities and largemore » surface to volume ratio, resulting in increased specific capacity, cycling stability and rate performance in the energy storage devices, which serves as an indication of their potential application in LIBs. - Highlights: •MnOOH multilayer nanowires were synthesized by a hydrothermal method. •The uniform multilayer structure of nanowires was formed via layer by layer. •The reversible capacity of product shows 521 mAh/g after 500 cycles at 0.1 C. •MnOOH multilayer nanowires showed higher property as anode material in LIB.« less

  4. 76 FR 92 - Multilayered Wood Flooring From the People's Republic of China: Postponement of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-971] Multilayered Wood Flooring... Department'') initiated an investigation of multilayered wood flooring from the People's Republic of China (``PRC''). See Multilayered Wood Flooring From the People's Republic of China: Initiation of...

  5. 76 FR 76693 - Multilayered Wood Flooring From the People's Republic of China: Countervailing Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-971] Multilayered Wood Flooring...''), the Department is issuing a countervailing duty (``CVD'') order on multilayered wood flooring from the... that countervailable subsidies are being provided to producers and exporters of multilayered wood...

  6. The influence of age on perceptions of anticipated financial inadequacy by palliative radiation outpatients.

    PubMed

    Francoeur, Richard B

    2007-12-01

    A consistent body of knowledge suggests that with advancing age, adults tend to report lower financial strain from their current economic condition. But are more negative perceptions shifted onto their expectations about their future economic condition? This study of seriously ill outpatients investigates whether advancing age is related to more negative expectations of future health-related financial strain, in which illness progression would necessitate greater health care consumption. Ordinal probit multivariate regression was conducted on survey findings from 268 outpatients initiating palliative radiation for recurrent cancer. Half were retirees age>/=65. Age comparisons are reported when there was no recent work transition. As age advances (from 40 to 84), outpatients incurring low objective financial stress were more likely to reveal that their health insurance and finances would be less adequate to meet future health needs. Previously, these outpatients were reported to minimize perceptions of current financial strain as age advances. Therefore, older outpatients may cope with current circumstances by displacing perceptions of financial inadequacy onto plausible future situations of cancer progression demanding greater healthcare consumption. Financial strain may be hidden in older outpatients initiating palliative radiation. These outpatients appear at risk of foregoing appropriate healthcare. Targeted screening and advocacy are warranted.

  7. Negative affect, interpersonal perception, and binge eating behavior: An experience sampling study.

    PubMed

    Ambwani, Suman; Roche, Michael J; Minnick, Alyssa M; Pincus, Aaron L

    2015-09-01

    Etiological and maintenance models for disordered eating highlight the salience of negative affect and interpersonal dysfunction. This study employed a 14-day experience sampling procedure to assess the impact of negative affect and interpersonal perceptions on binge eating behavior. Young adult women (N = 40) with recurrent binge eating and significant clinical impairment recorded their mood, interpersonal behavior, and eating behaviors at six stratified semirandom intervals daily through the use of personal digital assistants. Although momentary negative affect was associated with binge eating behavior, average levels of negative affect over the experience sampling period were not, and interpersonal problems moderated the relationship between negative affect and binge eating. Interpersonal problems also intensified the association between momentary interpersonal perceptions and binge eating behavior. Lagged analyses indicated that previous levels of negative affect and interpersonal style also influence binge eating. The study findings suggest there may be important differences in how dispositional versus momentary experiences of negative affect are associated with binge eating. Results also highlight the importance of interpersonal problems for understanding relationships among negative affect, interpersonal perception, and binge eating behavior. These results offer several possibilities for attending to affective and interpersonal functioning in clinical practice. © 2015 Wiley Periodicals, Inc.

  8. Food and personal hygiene perceptions and practices among caregivers whose children have diarrhea: a qualitative study of urban mothers in Tangerang, Indonesia.

    PubMed

    Usfar, Avita A; Iswarawanti, Dwi N; Davelyna, Devy; Dillon, Drupadi

    2010-01-01

    To examine caregivers' perceptions and practices related to food and personal hygiene and its association with diarrhea in children 6 to 36 months of age who suffered recurrent diarrhea. This qualitative study, conducted in March and April 2006, used both in-depth interviews and direct observation data. Urban Tangerang, near Jakarta, Indonesia. Twenty-four mothers whose monthly household income was less than $160 US and had latrines in their homes. To examine the relationship between mothers' perceptions and behaviors related to diarrhea, food hygiene, and personal hygiene. Interview transcripts were analyzed based on the phenomenon of interest and coded for common themes. Mothers differentiated diarrhea episodes as either disease or nondisease. Most mothers associated the importance of food hygiene with disease prevention, contaminating agents, and health. Mothers commonly wiped cutting boards with a kitchen towel after slicing vegetables, whereas they washed the board with soap and water after cutting raw meat. Mothers perceived that the importance of personal hygiene was for maintaining health and cleanliness. The majority of mothers washed their hands without soap after performing housework and cooking. Improving mothers' knowledge while incorporating existing perceptions might lead to positive changes.

  9. 76 FR 76435 - Multilayered Wood Flooring From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ...)] Multilayered Wood Flooring From China Determinations On the basis of the record \\1\\ developed in the subject... multilayered wood flooring, provided for in subheadings 4409.10, 4409.29, 4412.31, 4412.32, 4412.39, 4412.94... American Hardwood Parity (``CAHP''), an ad hoc association of U.S. manufacturers of multilayered wood...

  10. 75 FR 79019 - Multilayered Wood Flooring From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ...)] Multilayered Wood Flooring From China Determinations On the basis of the record \\1\\ developed in the subject... imports from China of multilayered wood flooring, provided for in subheadings 4409.10, 4409.29, 4412.31... multilayered wood flooring. The following companies are members of the CAHP: Anderson Hardwood Floors, LLC...

  11. 75 FR 70714 - Multilayered Wood Flooring From the People's Republic of China: Initiation of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-970] Multilayered Wood Flooring... Commerce (``Department'') received a petition concerning imports of multilayered wood flooring from the...: Multilayered Wood Flooring from the People's Republic of China dated October 21, 2010 (``Petition''). On...

  12. 76 FR 76690 - Multilayered Wood Flooring From the People's Republic of China: Amended Final Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-970] Multilayered Wood Flooring... is issuing an antidumping duty order on multilayered wood flooring (``wood flooring'') from the... antidumping duty investigation of wood flooring from the PRC. See Multilayered Wood Flooring From the People's...

  13. 78 FR 32367 - Multilayered Wood Flooring From the People's Republic of China; Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-970] Multilayered Wood Flooring... duty order on multilayered wood flooring (``MLWF'') from the People's Republic of China (``PRC''). The... Memorandum for Preliminary Results of Antidumping Duty New Shipper Review: Multilayered Wood Flooring from...

  14. 78 FR 52502 - Multilayered Wood Flooring From the People's Republic of China: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-970] Multilayered Wood Flooring... an antidumping duty new shipper review of multilayered wood flooring (``MLWF'') from the People's... of subject merchandise at less than normal value. \\1\\ See Multilayered Wood Flooring From the People...

  15. 77 FR 5484 - Multilayered Wood Flooring From the People's Republic of China: Amended Antidumping and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-970, C-570-971] Multilayered Wood... (``CVD'') orders on multilayered wood flooring from the People's Republic of China (``PRC'') to remove an... the International Trade Commission, the Department published AD and CVD orders on multilayered wood...

  16. 76 FR 13357 - Multilayered Wood Flooring from the People's Republic of China: Postponement of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... DEPARTMENT OF COMMERCE. International Trade Administration [A-570-970] Multilayered Wood Flooring... multilayered wood flooring from the People's Republic of China.\\1\\ The notice of initiation stated that, unless... Multilayered Wood Flooring from the People's Republic of China: Initiation of Antidumping Duty Investigation...

  17. Diverse 2D structures obtained by adsorption of charged ABA triblock copolymer on different surfaces

    NASA Astrophysics Data System (ADS)

    Kontturi, Katri S.; Vesterinen, Arja-Helena; Seppälä, Jukka; Laine, Janne

    2012-11-01

    In the larger context of 2D polymeric structures, the morphologies obtained by adsorption and subsequent drying of charged, ABA type amphiphilic triblock copolymer of poly[2-(dimethylamino)ethyl metacrylate] (PDMAEMA) and poly(propylene oxide) (PPO) were investigated with atomic force microscopy and X-ray photoelectron spectroscopy as well as in situ adsorption analysis with quartz crystal microbalance with dissipation monitoring. Hydrophilic silica and hydrophobic polystyrene (PS) were used as substrates for adsorption. The structures emerging from the self-assembly of adsorbing polymer were profoundly influenced by composition of the aqueous solution and the choice of substrate. When adsorbed from dilute polymer solution where the concentration is so low that the polymer does not yet show surface-active behavior, the triblock copolymer unimers associated on hydrophilic silica surface forming large, irregular clustered aggregates, with sizes increasing with electrolyte concentration of the solution. On a hydrophobic PS substrate, on the other hand, unimers spread much more evenly, forming clear surface patterns. The roughness of these patterned structures was tuned with the electrolyte concentration of the solution. Adsorption from a more concentrated polymer solution, where the surface-activity of the polymer is perceptible, resulted in the formation of a smooth film with complete coverage over the hydrophilic silica substrate when the electrolyte concentration was high. On PS, on the other hand, nucleation of evenly scattered globular, disk-like micelles was induced. Besides the dry film morphology, the even distribution of the irreversibly adsorbed polymer over the PS surface was likely to serve as an optimal platform for the build-up of reversible hydrophobically bound multilayers at high electrolyte concentration. The multilayer formation was reversible because a decrease in the electrolyte concentration of the solution re-introduces strong electrostatic repulsion between the multilayered polymer coils which results in breakdown of the layer.

  18. Recurrent jellyfish blooms are a consequence of global oscillations.

    PubMed

    Condon, Robert H; Duarte, Carlos M; Pitt, Kylie A; Robinson, Kelly L; Lucas, Cathy H; Sutherland, Kelly R; Mianzan, Hermes W; Bogeberg, Molly; Purcell, Jennifer E; Decker, Mary Beth; Uye, Shin-ichi; Madin, Laurence P; Brodeur, Richard D; Haddock, Steven H D; Malej, Alenka; Parry, Gregory D; Eriksen, Elena; Quiñones, Javier; Acha, Marcelo; Harvey, Michel; Arthur, James M; Graham, William M

    2013-01-15

    A perceived recent increase in global jellyfish abundance has been portrayed as a symptom of degraded oceans. This perception is based primarily on a few case studies and anecdotal evidence, but a formal analysis of global temporal trends in jellyfish populations has been missing. Here, we analyze all available long-term datasets on changes in jellyfish abundance across multiple coastal stations, using linear and logistic mixed models and effect-size analysis to show that there is no robust evidence for a global increase in jellyfish. Although there has been a small linear increase in jellyfish since the 1970s, this trend was unsubstantiated by effect-size analysis that showed no difference in the proportion of increasing vs. decreasing jellyfish populations over all time periods examined. Rather, the strongest nonrandom trend indicated jellyfish populations undergo larger, worldwide oscillations with an approximate 20-y periodicity, including a rising phase during the 1990s that contributed to the perception of a global increase in jellyfish abundance. Sustained monitoring is required over the next decade to elucidate with statistical confidence whether the weak increasing linear trend in jellyfish after 1970 is an actual shift in the baseline or part of an oscillation. Irrespective of the nature of increase, given the potential damage posed by jellyfish blooms to fisheries, tourism, and other human industries, our findings foretell recurrent phases of rise and fall in jellyfish populations that society should be prepared to face.

  19. Multivalent-Counterion-Induced Surfactant Multilayer Formation at Hydrophobic and Hydrophilic Solid-Solution Interfaces.

    PubMed

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun; Xu, Hui; Tucker, Ian M; Petkov, Jordan T; Sivia, Devinderjit S

    2015-06-23

    Surface multilayer formation from the anionic-nonionic surfactant mixture of sodium dodecyl dioxyethylene sulfate, SLES, and monododecyl dodecaethylene glycol, C12E12, by the addition of multivalent Al(3+) counterions at the solid-solution interface is observed and characterized by neutron reflectivity, NR. The ability to form surface multilayer structures on hydrophobic and hydrophilic silica and cellulose surfaces is demonstrated. The surface multilayer formation is more pronounced and more well developed on the hydrophilic and hydrophobic silica surfaces than on the hydrophilic and hydrophobic cellulose surfaces. The less well developed multilayer formation on the cellulose surfaces is attributed to the greater surface inhomogeneities of the cellulose surface which partially inhibit lateral coherence and growth of the multilayer domains at the surface. The surface multilayer formation is associated with extreme wetting properties and offers the potential for the manipulation of the solid surfaces for enhanced adsorption and control of the wetting behavior.

  20. A novel multilayer model with controllable mechanical properties for magnesium-based bone plates.

    PubMed

    Zhou, Juncen; Huang, Wanru; Li, Qing; She, Zuxin; Chen, Funan; Li, Longqin

    2015-04-01

    Proper mechanical properties are essential for the clinical application of magnesium-based implants. In the present work, a novel multilayer model composed of three layers with desirable features was developed. The modulus of the multilayer model can be adjusted by changing the thickness of each layer. To combine three layers and improve the corrosion resistance of the whole multilayer model, the polycaprolactone coating was employed. In the immersion test, pH values, the concentration of released magnesium ions, and weight loss indicate that the corrosion rate of multilayer models is considerable lower than that of the one-layer bare substrate. The three-point bending test, which is used to examine models' mechanical properties, shows that the flexural modulus of multilayer models is reduced effectively. In addition, the mechanical degradation of multilayer models is more stable, compared to the one-layer substrate.

  1. 77 FR 45336 - Multilayered Wood Flooring From the People's Republic of China: Initiation of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-970] Multilayered Wood Flooring... on multilayered wood flooring from the People's Republic of China (``PRC'') meets the statutory and... announcing the antidumping duty order on multilayered wood flooring from the PRC was published in the Federal...

  2. 78 FR 46318 - Multilayered Wood Flooring From the People's Republic of China: Initiation of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-970] Multilayered Wood Flooring... antidumping duty order on multilayered wood flooring from the People's Republic of China (``PRC'') meet the...: Background The Department published the antidumping duty order on multilayered wood flooring from the PRC on...

  3. 76 FR 37316 - Multilayered Wood Flooring From the People's Republic of China: Notice of Amended Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-970] Multilayered Wood Flooring... less than fair value in the antidumping duty investigation of multilayered wood flooring from the... in this proceeding that multilayered wood flooring from the PRC is being, or is likely to be, sold in...

  4. Strain and mechanical properties of the VCM multilayer sheet and their composites using the digital speckle correlation method.

    PubMed

    Zhang, Dehai; Xie, Guizhong; Li, Yanqin; Liu, Jianxiu

    2015-09-01

    The digital speckle correlation method (DSCM) is introduced to solve the challenging problems in the related geometric measurement. Theoretical calculations of strain are deduced using the DSCM. Corresponding strains along x and y directions are obtained from uniaxial tension experiments and digital speckle measurements, using the VCM nondeep drawing multilayer sheet, the VCM deep-drawing multilayer sheet, clad films, nondeep drawing substrate, and deep-drawing substrate sheet as the targeted experimental objects. The results show that the maximum strains along the x direction of the VCM nondeep drawing multilayer sheet, the VCM deep-drawing multilayer sheet, clad film, nondeep drawing substrate, and deep-drawing substrate sheet are 68.473%, 48.632%, 91.632%, 50.784% and 40.068%, respectively, while the maximum strains along the y direction are -2.657%, -15.381%, 2.826%, -9.780% and -7.783%, respectively. The mechanical properties of the VCM multilayer sheet are between those of the substrate and clad film, while mechanical properties of the VCM deep-drawing multilayer sheet are superior to those of the VCM nondeep drawing multi-layer sheet.

  5. Flexible IZO/Ag/IZO/Ag multilayer electrode grown on a polyethylene terephthalate substrate using roll-to-roll sputtering

    PubMed Central

    2012-01-01

    We investigated the optical, electrical, structural, and surface properties of roll-to-roll [R2R] sputter-grown flexible IZO/Ag/IZO/Ag [IAIA] multilayer films on polyethylene terephthalate substrates as a function of the top indium zinc oxide [IZO] thickness. It was found that the optical transmittance of the IAIA multilayer was significantly influenced by the top IZO layer thickness, which was grown on identical AIA multilayers. However, the sheet resistance of the IAIA multilayer was maintained between the range 5.01 to 5.1 Ω/square regardless of the top IZO thickness because the sheet resistance of the IAIA multilayer was mainly dependent on the thickness of the Ag layers. Notably, the optimized IAIA multilayer had a constant resistance change (ΔR/R0) under repeated outer bending tests with a radius of 10 mm. The mechanical integrity of the R2R-sputtered IAIA multilayer indicated that hybridization of an IZO and Ag metal layer is a promising flexible electrode scheme for the next-generation flexible optoelectronics. PMID:22222144

  6. Multilayer Brain Networks

    NASA Astrophysics Data System (ADS)

    Vaiana, Michael; Muldoon, Sarah Feldt

    2018-01-01

    The field of neuroscience is facing an unprecedented expanse in the volume and diversity of available data. Traditionally, network models have provided key insights into the structure and function of the brain. With the advent of big data in neuroscience, both more sophisticated models capable of characterizing the increasing complexity of the data and novel methods of quantitative analysis are needed. Recently, multilayer networks, a mathematical extension of traditional networks, have gained increasing popularity in neuroscience due to their ability to capture the full information of multi-model, multi-scale, spatiotemporal data sets. Here, we review multilayer networks and their applications in neuroscience, showing how incorporating the multilayer framework into network neuroscience analysis has uncovered previously hidden features of brain networks. We specifically highlight the use of multilayer networks to model disease, structure-function relationships, network evolution, and link multi-scale data. Finally, we close with a discussion of promising new directions of multilayer network neuroscience research and propose a modified definition of multilayer networks designed to unite and clarify the use of the multilayer formalism in describing real-world systems.

  7. Characterization of stable, electroactive protein cage/synthetic polymer multilayer thin films prepared by layer-by-layer assembly

    NASA Astrophysics Data System (ADS)

    Uto, Koichiro; Yamamoto, Kazuya; Kishimoto, Naoko; Muraoka, Masahiro; Aoyagi, Takao; Yamashita, Ichiro

    2013-04-01

    We have fabricated electroactive multilayer thin films containing ferritin protein cages. The multilayer thin films were prepared on a solid substrate by the alternate electrostatic adsorption of (apo)ferritin and poly( N-isopropylacrylamide- co-2-carboxyisopropylacrylamide) (NIPAAm- co-CIPAAm) in pH 3.5 acetate buffer solution. The assembly process was monitored using a quartz crystal microbalance. The (apo)ferritin/poly(NIPAAm- co-CIPAAm) multilayer thin films were then cross-linked using a water-soluble carbodiimide, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide. The cross-linked films were stable under a variety of conditions. The surface morphology and thickness of the multilayer thin films were characterized by atomic force microscopy, and the ferritin iron cores were observed by scanning electron microscopy to confirm the assembly mechanism. Cyclic voltammetry measurements showed different electrochemical properties for the cross-linked ferritin and apoferritin multilayer thin films, and the effect of stability of the multilayer film on its electrochemical properties was also examined. Our method for constructing multilayer films containing protein cages is expected to be useful in building more complex functional inorganic nanostructures.

  8. Fabrication, characterization, and biological assessment of multilayer laminin γ2 DNA coatings on titanium surfaces.

    PubMed

    Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming

    2016-03-21

    The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces.

  9. Effect of multilayer substrate configuration in horizontal subsurface flow constructed wetlands: assessment of treatment performance, biofilm development, and solids accumulation.

    PubMed

    Ding, Yanli; Lyu, Tao; Bai, Shaoyuan; Li, Zhenling; Ding, Haijing; You, Shaohong; Xie, Qinglin

    2018-01-01

    This study investigates the influence of multilayer substrate configuration in horizontal subsurface flow constructed wetlands (HSCWs) on their treatment performance, biofilm development, and solids accumulation. Three pilot-scale HSCWs were built to treat campus sewage and have been operational for 3 years. The HSCWs included monolayer (CW1), three-layer (CW3), and six-layer (CW6) substrate configurations with hydraulic conductivity of the substrate increasing from the surface to bottom in the multilayer CWs. It was demonstrated the pollutant removal performance after a 3-year operation improved in the multilayer HSCWs (49-80%) compared to the monolayer HSCW (29-41%). Simultaneously, the multilayer HSCWs exhibited significant features that prevented clogging compared to the monolayer configuration. The amount of accumulated solids was notably higher in the monolayer CW compared to multilayer CWs. Further, multilayer HSCWs could delay clogging by providing higher biofilm development for organics removal and consequently, lesser solids accumulations. Principal component analysis strongly supported the visualization of the performance patterns in the present study and showed that multilayer substrate configuration, season, and sampling locations significantly influenced biofilm growth and solids accumulation. Finally, the present study provided important information to support the improved multilayer configured HSCW implication in the future.

  10. Fabrication, characterization, and biological assessment of multilayer laminin γ2 DNA coatings on titanium surfaces

    PubMed Central

    Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming

    2016-01-01

    The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces. PMID:26996815

  11. Fabrication, characterization, and biological assessment of multilayer laminin γ2 DNA coatings on titanium surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming

    2016-03-01

    The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces.

  12. Polypeptide multilayer film co-delivers oppositely-charged drug molecules in sustained manners.

    PubMed

    Jiang, Bingbing; Defusco, Elizabeth; Li, Bingyun

    2010-12-13

    The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intended for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO(3)) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO(3) templates. Two oppositely charged drugs were loaded into capsules within polypeptide multilayer films postpreparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g., opposite charges) any time postpreparation (e.g., minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved.

  13. Polypeptide Multilayer Film Co-Delivers Oppositely-Charged Drug Molecules in Sustained Manners

    PubMed Central

    Jiang, Bingbing; DeFusco, Elizabeth; Li, Bingyun

    2010-01-01

    The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intending for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely-charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO3) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO3 templates. Two oppositely-charged drugs were loaded into capsules within polypeptide multilayer films post-preparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g. opposite charges) any time post-preparation (e.g. minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely-charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved. PMID:21058719

  14. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.

    2009-01-01

    Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases

  15. Mo/Si multilayers with enhanced TiO II- and RuO II-capping layers

    NASA Astrophysics Data System (ADS)

    Yulin, Sergiy; Benoit, Nicolas; Feigl, Torsten; Kaiser, Norbert; Fang, Ming; Chandhok, Manish

    2008-03-01

    The lifetime of Mo/Si multilayer-coated projection optics is one of the outstanding issues on the road of commercialization of extreme-ultraviolet lithography (EUVL). The application of Mo/Si multilayer optics in EUVL requires both sufficient radiation stability and also the highest possible normal-incidence reflectivity. A serious problem of conventional high-reflective Mo/Si multilayers capped by silicon is the considerable degradation of reflective properties due to carbonization and oxidation of the silicon surface layer under exposure by EUV radiation. In this study, we focus on titanium dioxide (TiO II) and ruthenium dioxide (RuO II) as promising capping layer materials for EUVL multilayer coatings. The multilayer designs as well as the deposition parameters of the Mo/Si systems with different capping layers were optimized in terms of maximum peak reflectivity at the wavelength of 13.5 nm and longterm stability under high-intensive irradiation. Optimized TiO II-capped Mo/Si multilayer mirrors with an initial reflectivity of 67.0% presented a reflectivity drop of 0.6% after an irradiation dose of 760 J/mm2. The reflectivity drop was explained by the partial oxidation of the silicon sub-layer. No reflectivity loss after similar irradiation dose was found for RuO II-capped Mo/Si multilayer mirrors having initial peak reflectivity of 66%. In this paper we present data on improved reflectivity of interface-engineered TiO II- and RuO II-capped Mo/Si multilayer mirrors due to the minimization of both interdiffusion processes inside the multilayer stack and absorption loss in the oxide layer. Reflectivities of 68.5% at the wavelength of 13.4 nm were achieved for both TiO II- and RuO II-capped Mo/Si multilayer mirrors.

  16. Reflectance, Optical Properties, and Stability of Molybdenum/Strontium and Molybdenum/Yttrium Multilayer Mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kjornrattanawanich, Benjawan

    2002-09-01

    The motivation of this work is to develop high reflectance normal-incidence multilayer mirrors in the 8-12 nm wavelength region for applications in astronomy and extreme ultraviolet lithography. To achieve this goal, Mo/Sr and Mo/Y multilayers were studied. These multilayers were deposited with a UHV magnetron sputtering system and their reflectances were measured with synchrotron radiation. High normal-incidence reflectances of 23% at 8.8 nm, 40.8% at 9.4 nm, and 48.3% at 10.5 nm were achieved. However, the reflectance of Mo/Sr multilayers decreased rapidly after exposure to air. Attempts to use thin layers of carbon to passivate the surface of Mo/Sr multilayers were unsuccessful. Experimental results on the refractive indexmore » $$\\tilde{n}$$ = 1-δ + iβ of yttrium and molybdenum in the 50-1300 eV energy region are reported in this work. This is the first time ever that values on the refractive index of yttrium are measured in this energy range. The absorption part β was determined through transmittance measurements. The dispersive part δ was calculated by means of the Kramers-Kronig formalism. The newly determined values of the refractive index of molybdenum are in excellent agreement with the published data. Those of yttrium are more accurate and contain fine structures around the yttrium M-absorption edges where Mo/Y multilayers operate. These improved sets of optical data lead to better design and modeling of the optical properties of Mo/Y multilayers. The reflectance quality of Mo/Y multilayers is dependent on their optical and structural properties. To correlate these properties with the multilayer reflectance, x-ray diffraction, Rutherford backscattering spectrometry, and transmission electron microscopy were used to analyze samples. Normal-incidence reflectances of 32.6% at 9.27 nm, 38.4% at 9.48 nm, and 29.6% at 9.46 nm were obtained from three representative Mo/Y multilayers which had about 0%, 25%, and 39% atomic oxygen assimilated in their yttrium layers, respectively. Based on the optical properties, multilayers with higher oxygen content should have higher absorption. However, the 25%-oxygen multilayer had less interface roughness and thus had higher reflectance than the 0%-oxygen sample. The 39%-oxygen multilayer had the highest absorption and roughness, thus had the lowest reflectance among three samples. The optical and structural properties of the multilayers are competing in the reflectance results.« less

  17. Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.

    PubMed

    Shi, Junxing; Wen, Haiguang; Zhang, Yizhen; Han, Kuan; Liu, Zhongming

    2018-05-01

    The human visual cortex extracts both spatial and temporal visual features to support perception and guide behavior. Deep convolutional neural networks (CNNs) provide a computational framework to model cortical representation and organization for spatial visual processing, but unable to explain how the brain processes temporal information. To overcome this limitation, we extended a CNN by adding recurrent connections to different layers of the CNN to allow spatial representations to be remembered and accumulated over time. The extended model, or the recurrent neural network (RNN), embodied a hierarchical and distributed model of process memory as an integral part of visual processing. Unlike the CNN, the RNN learned spatiotemporal features from videos to enable action recognition. The RNN better predicted cortical responses to natural movie stimuli than the CNN, at all visual areas, especially those along the dorsal stream. As a fully observable model of visual processing, the RNN also revealed a cortical hierarchy of temporal receptive window, dynamics of process memory, and spatiotemporal representations. These results support the hypothesis of process memory, and demonstrate the potential of using the RNN for in-depth computational understanding of dynamic natural vision. © 2018 Wiley Periodicals, Inc.

  18. 76 FR 30656 - Multilayered Wood Flooring From the People's Republic of China: Preliminary Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-970] Multilayered Wood Flooring... multilayered wood flooring from the People's Republic of China (``PRC'') is being, or is likely to be, sold in... multilayered wood flooring from the PRC filed in proper form by the Coalition for American Hardwood Parity \\1...

  19. Multilayer films with sharp, stable interfaces for use in EUV and soft X-ray application

    DOEpatents

    Barbee, Jr., Troy W.; Bajt, Sasa

    2002-01-01

    The reflectivity and thermal stability of Mo/Si (molybdenum/silicon) multilayer films, used in soft x-ray and extreme ultraviolet region, is enhanced by deposition of a thin layer of boron carbide (e.g., B.sub.4 C) between alternating layers of Mo and Si. The invention is useful for reflective coatings for soft X-ray and extreme ultraviolet optics, multilayer for masks, coatings for other wavelengths and multilayers for masks that are more thermally stable than pure Mo/Si multilayers

  20. Multilayer Nanoporous Graphene Membranes for Water Desalination.

    PubMed

    Cohen-Tanugi, David; Lin, Li-Chiang; Grossman, Jeffrey C

    2016-02-10

    While single-layer nanoporous graphene (NPG) has shown promise as a reverse osmosis (RO) desalination membrane, multilayer graphene membranes can be synthesized more economically than the single-layer material. In this work, we build upon the knowledge gained to date toward single-layer graphene to explore how multilayer NPG might serve as a RO membrane in water desalination using classical molecular dynamic simulations. We show that, while multilayer NPG exhibits similarly promising desalination properties to single-layer membranes, their separation performance can be designed by manipulating various configurational variables in the multilayer case. This work establishes an atomic-level understanding of the effects of additional NPG layers, layer separation, and pore alignment on desalination performance, providing useful guidelines for the design of multilayer NPG membranes.

  1. Comparison of Mg-based multilayers for solar He II radiation at 30.4 nm wavelength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Jingtao; Zhou Sika; Li Haochuan

    2010-07-10

    Mg-based multilayers, including SiC/Mg, Co/Mg, B4C/Mg, and Si/Mg, are investigated for solar imaging and a He II calibration lamp at a 30.4 nm wavelength. These multilayers were fabricated by a magnetron sputtering method and characterized by x-ray reflection. The reflectivities of these multilayers were measured by synchrotron radiation. Near-normal-incidence reflectivities of Co/Mg and SiC/Mg multilayer mirrors are as high as 40.3% and 44.6%, respectively, while those of B4C/Mg and Si/Mg mirrors are too low for application. The measured results suggest that SiC/Mg, Co/Mg multilayers are promising for a 30.4 nm wavelength.

  2. Figure correction of multilayer coated optics

    DOEpatents

    Chapman; Henry N. , Taylor; John S.

    2010-02-16

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  3. Swift heavy ion irradiation effects in Pt/C and Ni/C multilayers

    NASA Astrophysics Data System (ADS)

    Gupta, Ajay; Pandita, Suneel; Avasthi, D. K.; Lodha, G. S.; Nandedkar, R. V.

    1998-12-01

    Irradiation effects of 100 MeV Ag ion irradiation on Ni/C and Pt/C multilayers have been studied using X-ray reflectivity measurements. Modifications are observed in both the multilayers at (dE/dx)e values much below the threshold values for Ni and Pt. This effect is attributed to the discontinuous nature of the metal layers. In both the multilayers interfacial roughness increases with irradiation dose. While Ni/C multilayers exhibit large ion-beam induced intermixing, no observable intermixing is observed in the case of Pt/C multilayer. This difference in the behavior of the two systems suggests a significant role for chemically guided defect motion in the mixing process associated with swift heavy ion irradiation.

  4. Sharpening of Hierarchical Visual Feature Representations of Blurred Images.

    PubMed

    Abdelhack, Mohamed; Kamitani, Yukiyasu

    2018-01-01

    The robustness of the visual system lies in its ability to perceive degraded images. This is achieved through interacting bottom-up, recurrent, and top-down pathways that process the visual input in concordance with stored prior information. The interaction mechanism by which they integrate visual input and prior information is still enigmatic. We present a new approach using deep neural network (DNN) representation to reveal the effects of such integration on degraded visual inputs. We transformed measured human brain activity resulting from viewing blurred images to the hierarchical representation space derived from a feedforward DNN. Transformed representations were found to veer toward the original nonblurred image and away from the blurred stimulus image. This indicated deblurring or sharpening in the neural representation, and possibly in our perception. We anticipate these results will help unravel the interplay mechanism between bottom-up, recurrent, and top-down pathways, leading to more comprehensive models of vision.

  5. Primary Enlarged Craniotomy in Organized Chronic Subdural Hematomas

    PubMed Central

    CALLOVINI, Giorgio Maria; BOLOGNINI, Andrea; CALLOVINI, Gemma; GAMMONE, Vincenzo

    2014-01-01

    The aim of the study is to evaluate the efficacy of craniotomy and membranectomy as initial treatment of organized chronic subdural hematoma (OCSH). We retrospectively reviewed a series of 34 consecutive patients suffering from OCSH, diagnosed by magnetic resonance imaging (MRI) or contrast computer tomography (CCT) in order to establish the degree of organization and determine the intrahematomal architecture. The indication to perform a primary enlarged craniotomy as initial treatment for non-liquefied chronic subdural hematoma (CSDH) with multilayer loculations was based on the hematoma MRI appearance—mostly hyperintense in both T1- and T2-weighted images with a hypointense web- or net-like structure within the hematoma cavity. The reason why some hematomas evolve towards a complex and organized architecture remains unclear; the most common aspect to come to light was the “long standing” of the CSDHs which, in our series, had an average interval of 10 weeks between head injury and initial scan. Recurrence was found to have occurred in 2 patients (6% of cases) in the form of acute subdural hematoma. One patient died as the result of an intraventricular and subarachnoid haemorrhage, while 2 patients (6%) suffered an haemorrhagic stroke ipsilateral to the OCSH. Eighty-nine percent of cases had a good recovery, while 11% remained unchanged or worsened. In select cases, based on the MRI appearance, primary enlarged craniotomy seems to be the treatment of choice for achieving a complete recovery and a reduced recurrence rate in OCSH. PMID:24305027

  6. Intraoperative Ultrasonography during Drainage for Chronic Subdural Hematomas: A Technique to Release Isolated Deep-seated Hematomas—Technical Note

    PubMed Central

    SHIMIZU, Satoru; MOCHIZUKI, Takahiro; OSAWA, Shigeyuki; KUMABE, Toshihiro

    2015-01-01

    After the drainage of chronic subdural hematomas (CSDHs), residual isolated deep-seated hematomas (IDHs) may recur. We introduce intraoperative ultrasonography to detect and remove such IDHs. Intra-operative ultrasonography is performed with fine transducers introduced via burr holes. Images obtained before dural opening show the CSDHs, hyper- and/or hypoechoic content, and mono- or multilayers. Images are also acquired after irrigation of the hematoma under the dura. Floating hyperechoic spots (cavitations) on the brain cortex created by irrigation confirm the release of all hematoma layers; areas without spots represent IDHs. Their overlying thin membranes are fenestrated with a dural hook for irrigation. Ultrasonographs were evaluated in 43 CSDHs (37 patients); 9 (21%) required IDH fenestration. On computed tomography scans, 17 were homogeneous-, 6 were laminar-, 16 were separated-, and 4 were trabecular type lesions. Of these, 2 (11.8%), 3 (50%), 4 (25%), and 0, respectively, manifested IDHs requiring fenestration. There were no technique-related complications. Patients subjected to IDH fenestration had lower recurrence rates (11.1% vs. 50%, p = 0.095) and required significantly less time for brain re-expansion (mean 3.78 ± 1.62 vs. 18 ± 5.54 weeks, p = 0.0009) than did 6 patients whose IDHs remained after 48 conventional irrigation and drainage procedures. Intraoperative ultrasonography in patients with CSDHs facilitates the safe release of hidden IDHs. It can be expected to reduce the risk of postoperative hematoma recurrence and to shorten the brain re-expansion time. PMID:26345671

  7. Integrating public risk perception into formal natural hazard risk assessment

    NASA Astrophysics Data System (ADS)

    Plattner, Th.; Plapp, T.; Hebel, B.

    2006-06-01

    An urgent need to take perception into account for risk assessment has been pointed out by relevant literature, its impact in terms of risk-related behaviour by individuals is obvious. This study represents an effort to overcome the broadly discussed question of whether risk perception is quantifiable or not by proposing a still simple but applicable methodology. A novel approach is elaborated to obtain a more accurate and comprehensive quantification of risk in comparison to present formal risk evaluation practice. A consideration of relevant factors enables a explicit quantification of individual risk perception and evaluation. The model approach integrates the effective individual risk reff and a weighted mean of relevant perception affecting factors PAF. The relevant PAF cover voluntariness of risk-taking, individual reducibility of risk, knowledge and experience, endangerment, subjective damage rating and subjective recurrence frequency perception. The approach assigns an individual weight to each PAF to represent its impact magnitude. The quantification of these weights is target-group-dependent (e.g. experts, laypersons) and may be effected by psychometric methods. The novel approach is subject to a plausibility check using data from an expert-workshop. A first model application is conducted by means of data of an empirical risk perception study in Western Germany to deduce PAF and weight quantification as well as to confirm and evaluate model applicbility and flexibility. Main fields of application will be a quantification of risk perception by individual persons in a formal and technical way e.g. for the purpose of risk communication issues in illustrating differing perspectives of experts and non-experts. For decision making processes this model will have to be applied with caution, since it is by definition not designed to quantify risk acceptance or risk evaluation. The approach may well explain how risk perception differs, but not why it differs. The formal model generates only "snap shots" and considers neither the socio-cultural nor the historical context of risk perception, since it is a highly individualistic and non-contextual approach.

  8. Return to Work After Lumbar Microdiscectomy - Personalizing Approach Through Predictive Modeling.

    PubMed

    Papić, Monika; Brdar, Sanja; Papić, Vladimir; Lončar-Turukalo, Tatjana

    2016-01-01

    Lumbar disc herniation (LDH) is the most common disease among working population requiring surgical intervention. This study aims to predict the return to work after operative treatment of LDH based on the observational study including 153 patients. The classification problem was approached using decision trees (DT), support vector machines (SVM) and multilayer perception (MLP) combined with RELIEF algorithm for feature selection. MLP provided best recall of 0.86 for the class of patients not returning to work, which combined with the selected features enables early identification and personalized targeted interventions towards subjects at risk of prolonged disability. The predictive modeling indicated at the most decisive risk factors in prolongation of work absence: psychosocial factors, mobility of the spine and structural changes of facet joints and professional factors including standing, sitting and microclimate.

  9. A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain

    NASA Technical Reports Server (NTRS)

    Hall, Lawrence O.; Bensaid, Amine M.; Clarke, Laurence P.; Velthuizen, Robert P.; Silbiger, Martin S.; Bezdek, James C.

    1992-01-01

    Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms and a supervised computational neural network, a dynamic multilayered perception trained with the cascade correlation learning algorithm. Initial clinical results are presented on both normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. However, for a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed.

  10. Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance

    NASA Astrophysics Data System (ADS)

    Sui, Xudong; Liu, Jinyu; Zhang, Shuaituo; Yang, Jun; Hao, Junying

    2018-05-01

    Adhesive wear is one of the major reasons for the failure of components during various tribological application, especially for rubbing with viscous materials. This study presents CrN/DLC/Cr-DLC multilayer composite coatings prepared on a plasma enhanced chemical vapor deposition (PECVD) device with the close field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique. SEM, XRD and Raman spectroscopy were used to determine the structure of multilayer coatings. It was found that the multilayer coatings are composed by the alternating CrN and DLC layers. Compared with the single CrN coatings, the friction coefficient of the CrN/DLC/Cr-DLC multilayer coating decreases about more than seven times after sliding a distance of 500 m. This helps to reduce the adhesive wear of multilayer coatings. Compared with the single CrN and DLC coating, the wear rate of the CrN/DLC/Cr-DLC multilayer coating is reduced by an order of magnitude to 7.10 × 10-17 (sliding with AISI 440C) and 2.64 × 10-17 (sliding with TC4) m3/(N m). The improved tribological performance of multilayer coatings mainly attributes to the introduction of lubricant DLC and hard support CrN layers, the enhancement of crack propagation inhibition, and the increment of elastic recovery value We (71.49%) by multilayer design method.

  11. High reflectance and low stress Mo2C/Be multilayers

    DOEpatents

    Bajt, Sasa; Barbee, Jr., Troy W.

    2001-01-01

    A material for extreme ultraviolet (EUV) multilayers that will reflect at about 11.3 nm, have a high reflectance, low stress, and high thermal and radiation stability. The material consists of alternating layers of Mo.sub.2 C and Be deposited by DC magnetron sputtering on a substrate, such as silicon. In one example a Mo.sub.2 C/Be multilayer gave 65.2% reflectance at 11.25 nm measured at 5 degrees off normal incidence angle, and consisted of 70 bilayers with a deposition period of 5.78 nm, and was deposited at 0.83 mTorr argon (Ar) sputtering pressure, with the first and last layers being Be. The stress of the multilayer is tensile and only +88 MPa, compared to +330 MPa of a Mo/Be multilayers of the same thickness. The Mo.sub.2 C/Be multilayer was capped with carbon which produced an increase in reflectivity of about 7% over a similar multilayer with no carbon capping material, thus raising the reflectivity from 58.3% to over 65%. The multilayers were formed using either Mo.sub.2 C or Be as the first and last layers, and initial testing has shown the formation of beryllium carbide at the interfaces between the layers which both stabilizes and has a smoothing effect, and appear to be smoother than the interfaces in Mo/Be multilayers.

  12. Tactile Evaluation Feedback System for Multi-Layered Structure Inspired by Human Tactile Perception Mechanism.

    PubMed

    Hashim, Iza Husna Mohamad; Kumamoto, Shogo; Takemura, Kenjiro; Maeno, Takashi; Okuda, Shin; Mori, Yukio

    2017-11-11

    Tactile sensation is one type of valuable feedback in evaluating a product. Conventionally, sensory evaluation is used to get direct subjective responses from the consumers, in order to improve the product's quality. However, this method is a time-consuming and costly process. Therefore, this paper proposes a novel tactile evaluation system that can give tactile feedback from a sensor's output. The main concept of this system is hierarchically layering the tactile sensation, which is inspired by the flow of human perception. The tactile sensation is classified from low-order of tactile sensation (LTS) to high-order of tactile sensation (HTS), and also to preference. Here, LTS will be correlated with physical measures. Furthermore, the physical measures that are used to correlate with LTS are selected based on four main aspects of haptic information (roughness, compliance, coldness, and slipperiness), which are perceived through human tactile sensors. By using statistical analysis, the correlation between each hierarchy was obtained, and the preference was derived in terms of physical measures. A verification test was conducted by using unknown samples to determine the reliability of the system. The results showed that the system developed was capable of estimating preference with an accuracy of approximately 80%.

  13. Localization of multilayer networks by optimized single-layer rewiring.

    PubMed

    Jalan, Sarika; Pradhan, Priodyuti

    2018-04-01

    We study localization properties of principal eigenvectors (PEVs) of multilayer networks (MNs). Starting with a multilayer network corresponding to a delocalized PEV, we rewire the network edges using an optimization technique such that the PEV of the rewired multilayer network becomes more localized. The framework allows us to scrutinize structural and spectral properties of the networks at various localization points during the rewiring process. We show that rewiring only one layer is enough to attain a MN having a highly localized PEV. Our investigation reveals that a single edge rewiring of the optimized MN can lead to the complete delocalization of a highly localized PEV. This sensitivity in the localization behavior of PEVs is accompanied with the second largest eigenvalue lying very close to the largest one. This observation opens an avenue to gain a deeper insight into the origin of PEV localization of networks. Furthermore, analysis of multilayer networks constructed using real-world social and biological data shows that the localization properties of these real-world multilayer networks are in good agreement with the simulation results for the model multilayer network. This paper is relevant to applications that require understanding propagation of perturbation in multilayer networks.

  14. Localization of multilayer networks by optimized single-layer rewiring

    NASA Astrophysics Data System (ADS)

    Jalan, Sarika; Pradhan, Priodyuti

    2018-04-01

    We study localization properties of principal eigenvectors (PEVs) of multilayer networks (MNs). Starting with a multilayer network corresponding to a delocalized PEV, we rewire the network edges using an optimization technique such that the PEV of the rewired multilayer network becomes more localized. The framework allows us to scrutinize structural and spectral properties of the networks at various localization points during the rewiring process. We show that rewiring only one layer is enough to attain a MN having a highly localized PEV. Our investigation reveals that a single edge rewiring of the optimized MN can lead to the complete delocalization of a highly localized PEV. This sensitivity in the localization behavior of PEVs is accompanied with the second largest eigenvalue lying very close to the largest one. This observation opens an avenue to gain a deeper insight into the origin of PEV localization of networks. Furthermore, analysis of multilayer networks constructed using real-world social and biological data shows that the localization properties of these real-world multilayer networks are in good agreement with the simulation results for the model multilayer network. This paper is relevant to applications that require understanding propagation of perturbation in multilayer networks.

  15. Ultrasound-guided percutaneous needle electrolysis in chronic lateral epicondylitis: short-term and long-term results.

    PubMed

    Valera-Garrido, Fermín; Minaya-Muñoz, Francisco; Medina-Mirapeix, Francesc

    2014-12-01

    Ultrasound (US)-guided percutaneous needle electrolysis (PNE) is a novel minimally invasive approach which consists of the application of a galvanic current through an acupuncture needle. To evaluate the clinical and ultrasonographic effectiveness of a multimodal programme (PNE, eccentric exercise (EccEx) and stretching) in the short term for patients with chronic lateral epicondylitis, and to determine whether the clinical outcomes achieved decline over time. A one-way repeated measures study was performed in a clinical setting in 36 patients presenting with lateral epicondylitis. The patients received one session of US-guided PNE per week over 4-6 weeks, associated with a home programme of EccEx and stretching. The main outcome measures were severity of pain, disability (Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire), structural tendon changes (US), hypervascularity and patients' perceptions of overall outcome. Measurements at 6, 26 and 52 weeks follow-up included recurrence rates (increase in severity of pain or disability compared with discharge), perception of overall outcome and success rates. All outcome measures registered significant improvements between pre-intervention and discharge. Most patients (n=30, 83.3%) rated the overall outcome as 'successful' at 6 weeks. The ultrasonographic findings showed that the hypoechoic regions and hypervascularity of the extensor carpi radialis brevis changed significantly. At 26 and 52 weeks, all participants (n=32) perceived a 'successful' outcome. Recurrence rates were null after discharge and at follow-up at 6, 26 and 52 weeks. Symptoms and degenerative structural changes of chronic lateral epicondylitis are reduced after US-guided PNE associated with EccEx and stretching, with encouragingly low recurrences in the mid to long term. ClinicalTrials.gov identifier: NCT02085928. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Tuning cell adhesive properties via layer-by-layer assembly of chitosan and alginate

    PubMed Central

    Silva, Joana M.; García, José R.; Reis, Rui L.; García, Andrés J.; Mano, João F.

    2017-01-01

    Understanding the mechanisms controlling cell-multilayer film interactions is crucial to the successful engineering of these coatings for biotechnological and biomedical applications. Herein, we present a strategy to tune the cell adhesive properties of multilayers based on marine polysaccharides with and without cross-linking and/or coating with extracellular matrix proteins. Chemical cross-linking of multilayers improved mechanical properties of the coatings but also elicited changes in surface chemistry that alter the adhesion of human umbilical vein endothelial cells. We evaluated a strategy to decouple the mechanical and chemical properties of these films, enabling the transition from cell-adhesive to cell-resistant multilayers. Addition of chitosan/alginate multilayers on top of cross-linked films decreased endothelial cell adhesion, spreading, and proliferation to similar levels as uncross-linked films. Our findings highlight the key role of surface chemistry in cell-multilayer film interactions, and these engineered nanocoatings represent a tunable model of cell adhesive and non-adhesive multilayered films. PMID:28126597

  17. POLYELECTROLYTE MULTILAYER STAMPING IN AQUEOUS PHASE AND NON-CONTACT MODE

    PubMed Central

    Mehrotra, Sumit; Lee, Ilsoon; Liu, Chun; Chan, Christina

    2011-01-01

    Polyelectrolyte multilayer (PEM) transfer printing has been previously achieved by stamping under dry conditions. Here, we show for the first time, that PEM can be transferred from a stamp to the base substrate under aqueous conditions whereby the two surfaces are in a non-contact mode. Degradable multilayers of (PAA/PEG)10.5 followed by non-degradable multilayers of (PDAC/SPS)80.5 were fabricated under acidic pH conditions on either PDMS or glass (stamp), and subsequently transferred over top of another multilayer prepared on a different substrate (base substrate), with a spacing of ~ 200 μm between the stamping surface and the base substrate. This multilayer transfer was performed under physiological pH conditions. This process is referred to herein as non-contact, aqueous-phase multilayer (NAM) transfer. NAM transfer can be useful for applications such as fabricating three-dimensional (3-D) cellular scaffolds. We attempted to create a 3-D cellular scaffold using NAM transfer, and characterized the scaffolds with conventional and fluorescence microscopy. PMID:21860540

  18. Highly efficient blazed grating with multilayer coating for tender X-ray energies.

    PubMed

    Senf, F; Bijkerk, F; Eggenstein, F; Gwalt, G; Huang, Q; Kruijs, R; Kutz, O; Lemke, S; Louis, E; Mertin, M; Packe, I; Rudolph, I; Schäfers, F; Siewert, F; Sokolov, A; Sturm, J M; Waberski, Ch; Wang, Z; Wolf, J; Zeschke, T; Erko, A

    2016-06-13

    For photon energies of 1 - 5 keV, blazed gratings with multilayer coating are ideally suited for the suppression of stray and higher orders light in grating monochromators. We developed and characterized a blazed 2000 lines/mm grating coated with a 20 period Cr/C- multilayer. The multilayer d-spacing of 7.3 nm has been adapted to the line distance of 500 nm and the blaze angle of 0.84° in order to provide highest efficiency in the photon energy range between 1.5 keV and 3 keV. Efficiency of the multilayer grating as well as the reflectance of a witness multilayer which were coated simultaneously have been measured. An efficiency of 35% was measured at 2 keV while a maximum efficiency of 55% was achieved at 4 keV. In addition, a strong suppression of higher orders was observed which makes blazed multilayer gratings a favorable dispersing element also for the low X-ray energy range.

  19. Artificial multilayers and nanomagnetic materials.

    PubMed

    Shinjo, Teruya

    2013-01-01

    The author has been actively engaged in research on nanomagnetic materials for about 50 years. Nanomagnetic materials are comprised of ferromagnetic systems for which the size and shape are controlled on a nanometer scale. Typical examples are ultrafine particles, ultrathin films, multilayered films and nano-patterned films. In this article, the following four areas of the author's studies are described.(1) Mössbauer spectroscopic studies of nanomagnetic materials and interface magnetism.(2) Preparation and characterization of metallic multilayers with artificial superstructures.(3) Giant magnetoresistance (GMR) effect in magnetic multilayers.(4) Novel properties of nanostructured ferromagnetic thin films (dots and wires).A subject of particular interest in the author's research was the artificially prepared multilayers consisting of metallic elements. The motivation to initiate the multilayer investigation is described and the physical properties observed in the artificial multilayers are introduced. The author's research was initially in the field of pure physical science and gradually extended into applied science. His achievements are highly regarded not only from the fundamental point of view but also from the technological viewpoint.

  20. Infrared metamaterial by RF magnetron sputtered ZnO/Al:ZnO multilayers

    NASA Astrophysics Data System (ADS)

    Santiago, Kevin C.; Mundle, Rajeh; White, Curtis; Bahoura, Messaoud; Pradhan, Aswini K.

    2018-03-01

    Hyperbolic metamaterials create artificial anisotropy using metallic wires suspended in dielectric media or alternating layers of a metal and dielectric (Type I or Type II). In this study we fabricated ZnO/Al:ZnO (AZO) multilayers by the RF magnetron sputtering deposition technique. Our fabricated multilayers satisfy the requirements for a type II hyperbolic metamaterial. The optical response of individual AZO and ZnO films, as well as the multilayered film were investigated via UV-vis-IR transmittance and spectroscopic ellipsometry. The optical response of the multilayered system is calculated using the nonlocal-corrected Effective Medium Approximation (EMA). The spectroscopic ellipsometry data of the multilayered system was modeled using a uniaxial material model and EMA model. Both theoretical and experimental studies validate the fabricated multilayers undergo a hyperbolic transition at a wavelength of 2.2 μm. To our knowledge this is the first AZO/ZnO type II hyperbolic metamaterial system fabricated by magnetron sputtering deposition method.

  1. Influences of layer thickness on the compatibility and physical properties of polycarbonate/polystyrene multilayered film via nanolayer coextrusion

    NASA Astrophysics Data System (ADS)

    Cheng, Junfeng; Chen, Zhiru; Zhou, Jiaqi; Cao, Zheng; Wu, Dun; Liu, Chunlin; Pu, Hongting

    2018-05-01

    The effects of layer thickness on the compatibility between polycarbonate (PC) and polystyrene (PS) and physical properties of PC/PS multilayered film via nanolayer coextrusion are studied. The morphology of multilayered structure is observed using a scanning electron microscope. This multilayered structure may have a negative impact on the transparency, but it can improve the water resistance and heat resistance of film. To characterize the compatibility between PC and PS, differential scanning calorimetry is used to measure the glass transition temperature. The compatibility is found to be improved with the decrease of layer thickness. Therefore, the viscosity of multilayered film is also reduced with the decrease of layer thickness. In addition, the multilayered structure can improve the tensile strength with the increase of layer numbers. Because of the complete and continuous layer structure of PC, the PC/PS multilayered film can retain its mechanical strength at the temperature above Tg of PS.

  2. Immobilization in External Rotation Versus Internal Rotation After Primary Anterior Shoulder Dislocation: A Meta-analysis of Randomized Controlled Trials.

    PubMed

    Whelan, Daniel B; Kletke, Stephanie N; Schemitsch, Geoffrey; Chahal, Jaskarndip

    2016-02-01

    The recurrence rate after primary anterior shoulder dislocation is high, especially in young, active individuals. Recent studies have suggested external rotation immobilization as a method to reduce the rate of recurrent shoulder dislocation in comparison to traditional sling immobilization. To assess and summarize evidence from randomized controlled trials on the effect of internal rotation versus external rotation immobilization on the rate of recurrence after primary anterior shoulder dislocation. Meta-analysis. PubMed, MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, and abstracts from recent proceedings were searched for eligible studies. Two reviewers selected studies for inclusion, assessed methodological quality, and extracted data. Six randomized controlled trials (632 patients) were included in this review. Demographic and prognostic variables measured at baseline were similar in the pooled groups. The average age was 30.1 years in the pooled external rotation group and 30.3 years in the pooled internal rotation group. Two studies found that external rotation immobilization reduced the rate of recurrence after initial anterior shoulder dislocation compared with conventional internal rotation immobilization, whereas 4 studies failed to find a significant difference between the 2 groups. This meta-analysis suggested no overall significant difference in the rate of recurrence among patients treated with internal rotation versus external rotation immobilization (risk ratio, 0.69; 95% CI, 0.42-1.14; P = .15). There was no significant difference in the rate of compliance between internal and external rotation immobilization (P = .43). The Western Ontario Shoulder Instability Index scores were pooled across 3 studies, and there was no significant difference between the 2 groups (P = .54). Immobilization in external rotation is not significantly more effective in reducing the recurrence rate after primary anterior shoulder dislocation than immobilization in internal rotation. Additionally, this review suggests that there is minimal difference in patients' perceptions of their health-related quality of life after immobilization in internal versus external rotation. © 2015 The Author(s).

  3. Multi-layer assemblies with predetermined stress profile and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor); Phillips, Stephen M. (Inventor)

    2003-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin films may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films. Multi-layer assemblies exhibiting selectively determinable overall bending moments are also disclosed. Selective production of overall bending moments in microstructures enables manufacture of such structures with a wide array of geometrical configurations.

  4. Design of a normal incidence multilayer imaging X-ray microscope

    NASA Astrophysics Data System (ADS)

    Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  5. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources.

    PubMed

    Loch, R A; Sobierajski, R; Louis, E; Bosgra, J; Bijkerk, F

    2012-12-17

    The single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly used multilayer optics and propose new material combinations selected for a high damage threshold. Our study demonstrates that the damage thresholds of multilayer optics can vary over a large range of incidence fluences and can be as high as several hundreds of mJ/cm(2). This strongly suggests that multilayer mirrors are serious candidates for damage resistant optics. Especially, multilayer optics based on Li(2)O spacers are very promising for use in current and future short-wavelength radiation sources.

  6. Disintegration-controllable stimuli-responsive polyelectrolyte multilayer microcapsules via covalent layer-by-layer assembly.

    PubMed

    Mu, Bin; Lu, Chunyin; Liu, Peng

    2011-02-01

    The disintegration-controllable stimuli-responsive polyelectrolyte multilayer microcapsules have been fabricated via the covalent layer-by-layer assembly between the amino groups of chitosan (CS) and the aldehyde groups of the oxidized sodium alginate (OSA) onto the sacrificial templates (polystyrene sulfonate, PSS) which was removed by dialysis subsequently. The covalent crosslinking bonds of the multilayer microcapsules were confirmed by FTIR analysis. The TEM analysis showed that the diameter of the multilayer microcapsules was <200nm. The diameter of the multilayer microcapsules decreased with the increasing of the pH values or the ionic strength. The pH and ionic strength dual-responsive multilayer microcapsules were stable in acidic and neutral media while they could disintegrate only at strong basic media. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Material optimization of multi-layered enhanced nanostructures

    NASA Astrophysics Data System (ADS)

    Strobbia, Pietro

    The employment of surface enhanced Raman scattering (SERS)-based sensing in real-world scenarios will offer numerous advantages over current optical sensors. Examples of these advantages are the intrinsic and simultaneous detection of multiple analytes, among many others. To achieve such a goal, SERS substrates with throughput and reproducibility comparable to commonly used fluorescence sensors have to be developed. To this end, our lab has discovered a multi-layer geometry, based on alternating films of a metal and a dielectric, that amplifies the SERS signal (multi-layer enhancement). The advantage of these multi-layered structures is to amplify the SERS signal exploiting layer-to-layer interactions in the volume of the structures, rather than on its surface. This strategy permits an amplification of the signal without modifying the surface characteristics of a substrate, and therefore conserving its reproducibility. Multi-layered structures can therefore be used to amplify the sensitivity and throughput of potentially any previously developed SERS sensor. In this thesis, these multi-layered structures were optimized and applied to different SERS substrates. The role of the dielectric spacer layer in the multi-layer enhancement was elucidated by fabricating spacers with different characteristics and studying their effect on the overall enhancement. Thickness, surface coverage and physical properties of the spacer were studied. Additionally, the multi-layered structures were applied to commercial SERS substrates and to isolated SERS probes. Studies on the dependence of the multi-layer enhancement on the thickness of the spacer demonstrated that the enhancement increases as a function of surface coverage at sub-monolayer thicknesses, due to the increasing multi-layer nature of the substrates. For fully coalescent spacers the enhancement decreases as a function of thickness, due to the loss of interaction between proximal metallic films. The influence of the physical properties of the spacer on the multi-layer enhancement were also studied. The trends in Schottky barrier height, interfacial potential and dielectric constant were isolated by using different materials as spacers (i.e., TiO2, HfO2, Ag 2O and Al2O3). The results show that the bulk dielectric constant of the material can be used to predict the relative magnitude of the multi-layer enhancement, with low dielectric constant materials performing more efficiently as spacers. Optimal spacer layers were found to be ultrathin coalescent films (ideally a monolayer) of low dielectric constant materials. Finally, multi-layered structures were observed to be employable to amplify SERS in drastically different substrate geometries. The multi-layered structures were applied to disposable commercial SERS substrates (i.e., Klarite). This project involved the regeneration of the used substrates, by stripping and redepositing the gold coating layer, and their amplification, by using the multi-layer geometry. The latter was observed to amplify the sensitivity of the substrates. Additionally, the multi-layered structures were applied to probes dispersed in solution. Such probes were observed to yield stronger SERS signal when optically trapped and to reduce the background signal. The application of the multi-layered structures on trapped probes, not only further amplified the SERS signal, but also increased the maximum number of applicable layers for the structures.

  8. Energetic composite and system with enhanced mechanical sensitivity to initiation of self-sustained reaction

    DOEpatents

    Gash, Alexander E [Brentwood, CA; Barbee, Jr., Troy W.

    2012-05-29

    An energetic composition and system using amassed energetic multilayer pieces which are formed from the division, such as for example by cutting, scoring, breaking, crushing, shearing, etc., of a mechanically activatable monolithic energetic multilayer(s) (e.g. macro-scale sheets of multilayer films), for enhancing the sensitivity of the energetic composite and system to mechanical initiation of self-sustained reaction. In particular, mechanical initiation of the energetic composition may be achieved with significantly lower mechanical energy inputs than that typically required for initiating the monolithic energetic multilayers from which it is derived.

  9. Analytic theory of alternate multilayer gratings operating in single-order regime.

    PubMed

    Yang, Xiaowei; Kozhevnikov, Igor V; Huang, Qiushi; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Wang, Zhanshan

    2017-07-10

    Using the coupled wave approach (CWA), we introduce the analytical theory for alternate multilayer grating (AMG) operating in the single-order regime, in which only one diffraction order is excited. Differing from previous study analogizing AMG to crystals, we conclude that symmetrical structure, or equal thickness of the two multilayer materials, is not the optimal design for AMG and may result in significant reduction in diffraction efficiency. The peculiarities of AMG compared with other multilayer gratings are analyzed. An influence of multilayer structure materials on diffraction efficiency is considered. The validity conditions of analytical theory are also discussed.

  10. Yield stress and scaling of polyelectrolyte multilayer modified suspensions: effect of polyelectrolyte conformation during multilayer assembly.

    PubMed

    Hess, Andreas; Aksel, Nuri

    2013-09-10

    The yield stress of polyelectrolyte multilayer modified suspensions exhibits a surprising dependence on the polyelectrolyte conformation of multilayer films. The rheological data scale onto a universal master curve for each polyelectrolyte conformation as the particle volume fraction, φ, and the ionic strength of the background fluid, I, are varied. It is shown that rough films with highly coiled, brushy polyelectrolytes significantly enhance the yield stress. Moreover, via the ionic strength I of the background fluid, the dynamic yield stress of brushy polyelectrolyte multilayers can be finely adjusted over 2 decades.

  11. Multilayer Insulation Material Guidelines

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Dooling, D.

    1999-01-01

    Multilayer Insulation Material Guidelines provides data on multilayer insulation materials used by previous spacecraft such as Spacelab and the Long-Duration Exposure Facility and outlines other concerns. The data presented in the document are presented for information only. They can be used as guidelines for multilayer insulation design for future spacecraft provided the thermal requirements of each new design and the environmental effects on these materials are taken into account.

  12. Multi-layer seal for electrochemical devices

    DOEpatents

    Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-16

    Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.

  13. Multi-layer seal for electrochemical devices

    DOEpatents

    Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA

    2010-09-14

    Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.

  14. Artificial neural networks applied to forecasting time series.

    PubMed

    Montaño Moreno, Juan J; Palmer Pol, Alfonso; Muñoz Gracia, Pilar

    2011-04-01

    This study offers a description and comparison of the main models of Artificial Neural Networks (ANN) which have proved to be useful in time series forecasting, and also a standard procedure for the practical application of ANN in this type of task. The Multilayer Perceptron (MLP), Radial Base Function (RBF), Generalized Regression Neural Network (GRNN), and Recurrent Neural Network (RNN) models are analyzed. With this aim in mind, we use a time series made up of 244 time points. A comparative study establishes that the error made by the four neural network models analyzed is less than 10%. In accordance with the interpretation criteria of this performance, it can be concluded that the neural network models show a close fit regarding their forecasting capacity. The model with the best performance is the RBF, followed by the RNN and MLP. The GRNN model is the one with the worst performance. Finally, we analyze the advantages and limitations of ANN, the possible solutions to these limitations, and provide an orientation towards future research.

  15. A neural-network-based model for the dynamic simulation of the tire/suspension system while traversing road irregularities.

    PubMed

    Guarneri, Paolo; Rocca, Gianpiero; Gobbi, Massimiliano

    2008-09-01

    This paper deals with the simulation of the tire/suspension dynamics by using recurrent neural networks (RNNs). RNNs are derived from the multilayer feedforward neural networks, by adding feedback connections between output and input layers. The optimal network architecture derives from a parametric analysis based on the optimal tradeoff between network accuracy and size. The neural network can be trained with experimental data obtained in the laboratory from simulated road profiles (cleats). The results obtained from the neural network demonstrate good agreement with the experimental results over a wide range of operation conditions. The NN model can be effectively applied as a part of vehicle system model to accurately predict elastic bushings and tire dynamics behavior. Although the neural network model, as a black-box model, does not provide a good insight of the physical behavior of the tire/suspension system, it is a useful tool for assessing vehicle ride and noise, vibration, harshness (NVH) performance due to its good computational efficiency and accuracy.

  16. Optimal exponential synchronization of general chaotic delayed neural networks: an LMI approach.

    PubMed

    Liu, Meiqin

    2009-09-01

    This paper investigates the optimal exponential synchronization problem of general chaotic neural networks with or without time delays by virtue of Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) technique. This general model, which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator, covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) networks, and recurrent multilayer perceptrons (RMLPs) with or without delays. Using the drive-response concept, time-delay feedback controllers are designed to synchronize two identical chaotic neural networks as quickly as possible. The control design equations are shown to be a generalized eigenvalue problem (GEVP) which can be easily solved by various convex optimization algorithms to determine the optimal control law and the optimal exponential synchronization rate. Detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.

  17. Delay selection by spike-timing-dependent plasticity in recurrent networks of spiking neurons receiving oscillatory inputs.

    PubMed

    Kerr, Robert R; Burkitt, Anthony N; Thomas, Doreen A; Gilson, Matthieu; Grayden, David B

    2013-01-01

    Learning rules, such as spike-timing-dependent plasticity (STDP), change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem.

  18. Delay Selection by Spike-Timing-Dependent Plasticity in Recurrent Networks of Spiking Neurons Receiving Oscillatory Inputs

    PubMed Central

    Kerr, Robert R.; Burkitt, Anthony N.; Thomas, Doreen A.; Gilson, Matthieu; Grayden, David B.

    2013-01-01

    Learning rules, such as spike-timing-dependent plasticity (STDP), change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem. PMID:23408878

  19. Women's Educational Needs and Perceptions About Survivorship Following Bilateral Mastectomy.

    PubMed

    Suplee, Patricia D; Jerome-D'Emilia, Bonnie; Boiler, Jennifer L K

    2016-08-01

    More women are choosing to have a bilateral mastectomy to treat unilateral breast cancer despite it not being considered the standard of care. Women are making this choice for various reasons, including anxiety of follow-up screening of the other breast, risk of cancer recurrence for the rest of their lives, and desire to maintain control over the localized cancer. Currently, evidence-based information is lacking regarding this treatment choice. In addition, the concept of survivorship has yet to be examined in this population of women. This study aimed to explore women's educational needs and perceptions about survivorship following bilateral mastectomy as a treatment for unilateral breast cancer. In-depth interviews were conducted with 23 women using a semistructured interview guide. Data were elicited, coded, and analyzed using thematic analysis. Two themes were identified that addressed education and survivorship.

  20. Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Voronov, D. L.; Gawlitza, P.; Cambie, R.; Dhuey, S.; Gullikson, E. M.; Warwick, T.; Braun, S.; Yashchuk, V. V.; Padmore, H. A.

    2012-05-01

    Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. To minimize the shadowing effects, we used an ion-beam sputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in order to minimize degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr+ ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the linear continuous model of film growth.

  1. Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronov, D. L.; Cambie, R.; Dhuey, S.

    2012-05-01

    Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. To minimize the shadowing effects, we used an ion-beam sputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in order to minimizemore » degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr{sup +} ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the linear continuous model of film growth.« less

  2. Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronov, D. L.; Gawlitza, Peter; Cambie, Rossana

    2012-05-07

    Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. In this study, to minimize the shadowing effects, we used an ion-beamsputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in ordermore » to minimize degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr + ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Lastly, details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the linear continuous model of film growth.« less

  3. Magnetisation reversal in anisotropy graded Co/Pd multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, C. W., E-mail: craig.barton-2@postgrad.manchester.ac.uk; Thomson, T.

    2015-08-14

    We demonstrate high precision controllability of the magnetization reversal nucleation process in [Co/Pd]{sub 8} multilayer films consisting of two sets of bilayers with high and low perpendicular anisotropy, respectively. The anisotropy of the entire film is set by the degree of Co/Pd interfacial mixing during deposition which provides fine control of the anisotropy of an individual bilayer in the multilayer stack. The relative number of each type of bilayer is used to select the magnetisation reversal behavior such that changing one bilayer changes the properties of the entire multilayer through anisotropy averaging. A simple extension to the sputtering protocol wouldmore » provide multilayer films with fully graded anisotropy, while maintaining a constant saturation magnetization opening new possibilities for the creation of highly engineered multilayer structures for spin torque devices and future magnetic recording media.« less

  4. Identifying key nodes in multilayer networks based on tensor decomposition.

    PubMed

    Wang, Dingjie; Wang, Haitao; Zou, Xiufen

    2017-06-01

    The identification of essential agents in multilayer networks characterized by different types of interactions is a crucial and challenging topic, one that is essential for understanding the topological structure and dynamic processes of multilayer networks. In this paper, we use the fourth-order tensor to represent multilayer networks and propose a novel method to identify essential nodes based on CANDECOMP/PARAFAC (CP) tensor decomposition, referred to as the EDCPTD centrality. This method is based on the perspective of multilayer networked structures, which integrate the information of edges among nodes and links between different layers to quantify the importance of nodes in multilayer networks. Three real-world multilayer biological networks are used to evaluate the performance of the EDCPTD centrality. The bar chart and ROC curves of these multilayer networks indicate that the proposed approach is a good alternative index to identify real important nodes. Meanwhile, by comparing the behavior of both the proposed method and the aggregated single-layer methods, we demonstrate that neglecting the multiple relationships between nodes may lead to incorrect identification of the most versatile nodes. Furthermore, the Gene Ontology functional annotation demonstrates that the identified top nodes based on the proposed approach play a significant role in many vital biological processes. Finally, we have implemented many centrality methods of multilayer networks (including our method and the published methods) and created a visual software based on the MATLAB GUI, called ENMNFinder, which can be used by other researchers.

  5. Advanced materials for multilayer mirrors for extreme ultraviolet solar astronomy.

    PubMed

    Bogachev, S A; Chkhalo, N I; Kuzin, S V; Pariev, D E; Polkovnikov, V N; Salashchenko, N N; Shestov, S V; Zuev, S Y

    2016-03-20

    We provide an analysis of contemporary multilayer optics for extreme ultraviolet (EUV) solar astronomy in the wavelength ranges: λ=12.9-13.3  nm, λ=17-21  nm, λ=28-33  nm, and λ=58.4  nm. We found new material pairs, which will make new spaceborne experiments possible due to the high reflection efficiencies, spectral resolution, and long-term stabilities of the proposed multilayer coatings. In the spectral range λ=13  nm, Mo/Be multilayer mirrors were shown to demonstrate a better ratio of reflection efficiency and spectral resolution compared with the commonly used Mo/Si. In the spectral range λ=17-21  nm, a new multilayer structure Al/Si was proposed, which had higher spectral resolution along with comparable reflection efficiency compared with the commonly used Al/Zr multilayer structures. In the spectral range λ=30  nm, the Si/B4C/Mg/Cr multilayer structure turned out to best obey reflection efficiency and long-term stability. The B4C and Cr layers prevented mutual diffusion of the Si and Mg layers. For the spectral range λ=58  nm, a new multilayer Mo/Mg-based structure was developed; its reflection efficiency and long-term stability have been analyzed. We also investigated intrinsic stresses inherent for most of the multilayer structures and proposed possibilities for stress elimination.

  6. Finite-element modelling of multilayer X-ray optics.

    PubMed

    Cheng, Xianchao; Zhang, Lin

    2017-05-01

    Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100-300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10 7 ) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10 16 elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10 6 ), which causes low solution accuracy; and the number of elements is still very large (10 6 ). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.

  7. Identifying key nodes in multilayer networks based on tensor decomposition

    NASA Astrophysics Data System (ADS)

    Wang, Dingjie; Wang, Haitao; Zou, Xiufen

    2017-06-01

    The identification of essential agents in multilayer networks characterized by different types of interactions is a crucial and challenging topic, one that is essential for understanding the topological structure and dynamic processes of multilayer networks. In this paper, we use the fourth-order tensor to represent multilayer networks and propose a novel method to identify essential nodes based on CANDECOMP/PARAFAC (CP) tensor decomposition, referred to as the EDCPTD centrality. This method is based on the perspective of multilayer networked structures, which integrate the information of edges among nodes and links between different layers to quantify the importance of nodes in multilayer networks. Three real-world multilayer biological networks are used to evaluate the performance of the EDCPTD centrality. The bar chart and ROC curves of these multilayer networks indicate that the proposed approach is a good alternative index to identify real important nodes. Meanwhile, by comparing the behavior of both the proposed method and the aggregated single-layer methods, we demonstrate that neglecting the multiple relationships between nodes may lead to incorrect identification of the most versatile nodes. Furthermore, the Gene Ontology functional annotation demonstrates that the identified top nodes based on the proposed approach play a significant role in many vital biological processes. Finally, we have implemented many centrality methods of multilayer networks (including our method and the published methods) and created a visual software based on the MATLAB GUI, called ENMNFinder, which can be used by other researchers.

  8. Finite-element modelling of multilayer X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Xianchao; Zhang, Lin

    Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical sizemore » 60 mm × 60 mm × 100–300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10 7) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10 16elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10 6), which causes low solution accuracy; and the number of elements is still very large (10 6). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.« less

  9. Etched-multilayer phase shifting masks for EUV lithography

    DOEpatents

    Chapman, Henry N.; Taylor, John S.

    2005-04-05

    A method is disclosed for the implementation of phase shifting masks for EUV lithography. The method involves directly etching material away from the multilayer coating of the mask, to cause a refractive phase shift in the mask. By etching into the multilayer (for example, by reactive ion etching), rather than depositing extra material on the top of the multilayer, there will be minimal absorption loss associated with the phase shift.

  10. Methods for making a multi-layer seal for electrochemical devices

    DOEpatents

    Chou, Yeong-Shyung [Richland, WA; Meinhardt, Kerry D [Kennewick, WA; Stevenson, Jeffry W [Richland, WA

    2007-05-29

    Multi-layer seals are provided that find advantageous use for reducing leakage of gases between adjacent components of electrochemical devices. Multi-layer seals of the invention include a gasket body defining first and second opposing surfaces and a compliant interlayer positioned adjacent each of the first and second surfaces. Also provided are methods for making and using the multi-layer seals, and electrochemical devices including said seals.

  11. Direct Loading and Tunable Release of Antibiotics from Polyelectrolyte Multilayers To Reduce Bacterial Adhesion and Biofilm Formation.

    PubMed

    Wang, Bailiang; Jin, Tingwei; Xu, Qingwen; Liu, Huihua; Ye, Zi; Chen, Hao

    2016-05-18

    Bacteria adhesion on the surface of biomaterials and following biofilm formation are important problems in biomedical applications. The charged antibiotics with small molar mass can hardly deposit alternately with polymers into multilayered films to load the drug. Herein, the (poly(acrylic acid)-gentamicin/poly(ethylenimine))n ((PAA-GS/PEI)n) multilayer film was designed and constructed via a layer-by-layer self-assembly method. Low molar mass GS cations were first combined with polyanion PAA and self-assembled with PEI to form multilayer films showing exponential growth behavior. The GS dosage could be adjusted by changing the layer number of films. Furthermore, the thermal cross-linking method was used to control the release rate of GS in PBS buffer. Owing to the diffusion of GS, a zone of inhibition of about 7.0 mm showed the efficient disinfection activity of the multilayer film. It could also be seen from the biofilm inhibition assay that the multilayer film effectively inhibited bacterial adhesion and biofilm formation. As the drug loading dosage was 160 μg/cm(2), the multilayer films showed very low cytotoxicity against human lens epithelial cells. The present work provides an easy way to load GS into multilayer films which can be applied to surface modification of implants and biomedical devices.

  12. High proton conductivity in the molecular interlayer of a polymer nanosheet multilayer film.

    PubMed

    Sato, Takuma; Hayasaka, Yuta; Mitsuishi, Masaya; Miyashita, Tokuji; Nagano, Shusaku; Matsui, Jun

    2015-05-12

    High proton conductivity was achieved in a polymer multilayer film with a well-defined two-dimensional lamella structure. The multilayer film was prepared by deposition of poly(N-dodecylacryamide-co-acrylic acid) (p(DDA/AA)) monolayers onto a solid substrate using the Langmuir-Blodgett technique. Grazing-angle incidence X-ray diffraction measurement of a 30-layer film of p(DDA/AA) showed strong diffraction peaks in the out-of-plane direction at 2θ = 2.26° and 4.50°, revealing that the multilayer film had a highly uniform layered structure with a monolayer thickness of 2.0 nm. The proton conductivity of the p(DDA/AA) multilayer film parallel to the layer plane direction was 0.051 S/cm at 60 °C and 98% relative humidity with a low activation energy of 0.35 eV, which is comparable to perfluorosulfonic acid membranes. The high conductivity and low activation energy resulted from the formation of uniform two-dimensional proton-conductive nanochannels in the hydrophilic regions of the multilayer film. The proton conductivity of the multilayer film perpendicular to the layer plane was determined to be 2.1 × 10(-13) S/cm. Therefore, the multilayer film showed large anisotropic conductivity with an anisotropic ratio of 2.4 × 10(11).

  13. The multilayer nanoparticles for deep penetration of docetaxel into tumor parenchyma to overcome tumor microenvironment.

    PubMed

    Khaliq, Nisar Ul; Park, Dal Yong; Lee, Jae Young; Joo, Yeonhee; Oh, Keun Sang; Kim, Jung Seok; Kim, Jin-Seok; Kim, In-San; Kwon, Ick Chan; Yuk, Soon Hong

    2016-10-01

    Deep penetration of the anticancer drug, docetaxel (DTX), into tumor parenchyma was demonstrated to achieve improved chemotherapy. For this purpose, a multistage nanostructure was designed and characterized using the multilayer nanoparticles (NPs). The multilayer NPs had a core/shell structure. The core was composed of the DTX-loaded Pluronic NPs (diameter: 12nm) that were transferred into the inner side of vesicles to form the vesicle NPs. Förster resonance energy transfer (FRET) in the NPs was observed to verify the incorporation of the DTX-loaded Pluronic NPs into the inner side of the vesicles during the formation of the vesicle NPs. Subsequently, the vesicle NPs were stabilized through Pluronic-lipid bilayer interaction to form the multilayer NPs. To examine the morphology and size distribution of the multilayer NPs, transmittance electron microscopy and dynamic light scattering were used. In vitro release behavior and toxicity were observed to verify the functionality of the multilayer NPs as nanocarriers for cancer therapy. Multistage functionality was evaluated by cellular uptake and tissue distribution behaviors of the multilayer NPs. The biodistribution of the multilayer NPs and their antitumor efficacy were also observed to understand the role of multistage functionality for improved chemotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Extended asymmetric-cut multilayer X-ray gratings.

    PubMed

    Prasciolu, Mauro; Haase, Anton; Scholze, Frank; Chapman, Henry N; Bajt, Saša

    2015-06-15

    The fabrication and characterization of a large-area high-dispersion blazed grating for soft X-rays based on an asymmetric-cut multilayer structure is reported. An asymmetric-cut multilayer structure acts as a perfect blazed grating of high efficiency that exhibits a single diffracted order, as described by dynamical diffraction throughout the depth of the layered structure. The maximum number of grating periods created by cutting a multilayer deposited on a flat substrate is equal to the number of layers deposited, which limits the size of the grating. The size limitation was overcome by depositing the multilayer onto a substrate which itself is a coarse blazed grating and then polish it flat to reveal the uniformly spaced layers of the multilayer. The number of deposited layers required is such that the multilayer thickness exceeds the step height of the substrate structure. The method is demonstrated by fabricating a 27,060 line pairs per mm blazed grating (36.95 nm period) that is repeated every 3,200 periods by the 120-μm period substrate structure. This preparation technique also relaxes the requirements on stress control and interface roughness of the multilayer film. The dispersion and efficiency of the grating is demonstrated for soft X-rays of 13.2 nm wavelength.

  15. Direct Magnetic Relief Recording Using As40S60: Mn-Se Nanocomposite Multilayer Structures.

    PubMed

    Stronski, A; Achimova, E; Paiuk, O; Meshalkin, A; Prisacar, A; Triduh, G; Oleksenko, P; Lytvyn, P

    2017-12-01

    Processes of holographic recording of surface relief structures using As 2 S 3 :Mn-Se multilayer nanostructures as registering media were studied in this paper. Optical properties of As 2 S 3 :Mn, Se layers, and As 2 S 3 :Mn-Se multilayer nanostructures were investigated. Values of optical bandgaps were obtained from Tauc dependencies. Surface relief diffraction gratings were recorded. Direct one-stage formation of surface relief using multilayer nanostructures is considered. For the first time, possibility of direct formation of magnetic relief simultaneous with surface relief formation under optical recording using As 2 S 3 :Mn-Se multilayer nanostructures is shown.

  16. Self-assembled metal nano-multilayered film prepared by co-sputtering method

    NASA Astrophysics Data System (ADS)

    Xie, Tianle; Fu, Licai; Qin, Wen; Zhu, Jiajun; Yang, Wulin; Li, Deyi; Zhou, Lingping

    2018-03-01

    Nano-multilayered film is usually prepared by the arrangement deposition of different materials. In this paper, a self-assembled nano-multilayered film was deposited by simultaneous sputtering of Cu and W. The Cu/W nano-multilayered film was accumulated by W-rich layer and Cu-rich layer. Smooth interfaces with consecutive composition variation and semi-coherent even coherent relationship were identified, indicating that a spinodal-like structure with a modulation wavelength of about 20 nm formed during co-deposition process. The participation of diffusion barrier element, such as W, is believed the essential to obtain the nano-multilayered structure besides the technological parameters.

  17. Artificial multilayers and nanomagnetic materials

    PubMed Central

    SHINJO, Teruya

    2013-01-01

    The author has been actively engaged in research on nanomagnetic materials for about 50 years. Nanomagnetic materials are comprised of ferromagnetic systems for which the size and shape are controlled on a nanometer scale. Typical examples are ultrafine particles, ultrathin films, multilayered films and nano-patterned films. In this article, the following four areas of the author’s studies are described. (1) Mössbauer spectroscopic studies of nanomagnetic materials and interface magnetism. (2) Preparation and characterization of metallic multilayers with artificial superstructures. (3) Giant magnetoresistance (GMR) effect in magnetic multilayers. (4) Novel properties of nanostructured ferromagnetic thin films (dots and wires). A subject of particular interest in the author’s research was the artificially prepared multilayers consisting of metallic elements. The motivation to initiate the multilayer investigation is described and the physical properties observed in the artificial multilayers are introduced. The author’s research was initially in the field of pure physical science and gradually extended into applied science. His achievements are highly regarded not only from the fundamental point of view but also from the technological viewpoint. PMID:23391605

  18. Tuning the electronic properties of gated multilayer phosphorene: A self-consistent tight-binding study

    NASA Astrophysics Data System (ADS)

    Li, L. L.; Partoens, B.; Peeters, F. M.

    2018-04-01

    By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.

  19. X-ray/EUV optics for astronomy, microscopy, polarimetry, and projection lithography; Proceedings of the Meeting, San Diego, CA, July 9-13, 1990

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Editor); Walker, Arthur B. C., Jr. (Editor)

    1991-01-01

    Topics discussed in this issue include the fabrication of multilayer X-ray/EUV coatings; the design, characterization, and test of multilayer X-ray/EUV coatings; multilayer X-ray/EUV monochromators and imaging microscopes; X-ray/EUV telescopes; the test and calibration performance of X-ray/EUV instruments; XUV/soft X-ray projection lithography; X-ray/EUV space observatories and missions; X-ray/EUV telescopes for solar research; X-ray/EUV polarimetry; X-ray/EUV spectrographs; and X-ray/EUV filters and gratings. Papers are presented on the deposition-controlled uniformity of multilayer mirrors, interfaces in Mo/Si multilayers, the design and analysis of an aspherical multilayer imaging X-ray microscope, recent developments in the production of thin X-ray reflecting foils, and the ultraprecise scanning technology. Consideration is also given to an active sun telescope array, the fabrication and performance at 1.33 nm of a 0.24-micron-period multilayer grating, a cylindrical proportional counter for X-ray polarimetry, and the design and analysis of the reflection grating arrays for the X-Ray Multi-Mirror Mission.

  20. Effect of frequency on fretting wear behavior of Ti/TiN multilayer film on depleted uranium

    PubMed Central

    Zhu, Sheng-Fa; Lu, Lei; Cai, Zhen-Bing

    2017-01-01

    The Ti/TiN multi-layer film was prepared on the depleted uranium (DU) substrate by cathodic arc ion plating equipment. The character of multi-layer film was studied by SEM, XRD and AES, revealed that the surface was composed of small compact particle and the cross-section had a multi-layer structure. The fretting wear performance under different frequencies was performed by a MFT-6000 machine with a ball-on-plate configuration. The wear morphology was analyzed by white light interferometer, OM and SEM with an EDX. The result shows the Ti/TiN multi-layer film could greatly improve the fretting wear performance compared to the DU substrate. The fretting wear running and damaged behavior are strongly dependent on the film and test frequency. The fretting region of DU substrate and Ti/TiN multi-layer under low test frequency is gross slip. With the increase of test frequency, the fretting region of Ti/TiN multi-layer change from gross slip to mixed fretting, then to partial slip. PMID:28384200

  1. Effect of frequency on fretting wear behavior of Ti/TiN multilayer film on depleted uranium.

    PubMed

    Wu, Yan-Ping; Li, Zheng-Yang; Zhu, Sheng-Fa; Lu, Lei; Cai, Zhen-Bing

    2017-01-01

    The Ti/TiN multi-layer film was prepared on the depleted uranium (DU) substrate by cathodic arc ion plating equipment. The character of multi-layer film was studied by SEM, XRD and AES, revealed that the surface was composed of small compact particle and the cross-section had a multi-layer structure. The fretting wear performance under different frequencies was performed by a MFT-6000 machine with a ball-on-plate configuration. The wear morphology was analyzed by white light interferometer, OM and SEM with an EDX. The result shows the Ti/TiN multi-layer film could greatly improve the fretting wear performance compared to the DU substrate. The fretting wear running and damaged behavior are strongly dependent on the film and test frequency. The fretting region of DU substrate and Ti/TiN multi-layer under low test frequency is gross slip. With the increase of test frequency, the fretting region of Ti/TiN multi-layer change from gross slip to mixed fretting, then to partial slip.

  2. Multilayer manipulated diffraction in flower beetles Torynorrhina flammea: intraspecific structural colouration variation

    NASA Astrophysics Data System (ADS)

    Song, C. X.; Liu, F.; Hao, Y. H.; Hu, X. H.; Zhang, Y. F.; Liu, X. H.

    2014-10-01

    We report that the intraspecific structural colouration variation of the beetle Torynorrhina flammea is a result of diffraction shifting manipulated by a multilayer sub-structure contained in a three-dimensional (3D) photonic architecture. With a perpendicularly 2D quasiperiodic diffraction grating inserted into the multilayer, the 3D photonic structure gives rise to anticrossing bandgaps of diffraction from the coupling of grating and multilayer bands. The angular dispersion of diffraction induced by the multilayer band shift behaves normally, in contrast to the ‘ultranegative’ behaviour controlled by the quasiperiodic grating. In addition, the diffraction wavelength is more sensitive to the multilayer periodicity than the diffraction grating constant, which explains the ‘smart’ biological selection of T. flammea in its intraspecific colouration variation from red to green to blue. The elucidated mechanism could be advantageous for the potential exploration of novel dispersive optical elements.

  3. The role of symmetry-breaking-induced interface anisotropy in [Fe/Pt]{sub n} multilayer films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zhenghua; Center for Geo-environment Science, Faculty of Engineering and Resource Science, Akita University, Tegatagakuen-machi 1-1, Akita 010-8502; Xie Hailong

    2011-04-01

    The FePt films were deposited with [Fe/Pt]{sub n} multilayer structure on preheated Corning 1737F glass substrate using pure Fe and Pt target in a CMS-18 sputtering system. The dependence of FePt's texture and magnetic properties on the multilayer structure was investigated. The XRD patterns indicate that (111) texture is dominant for all [Fe/Pt]{sub n} (n = 8, 16, 20, 32) multilayer films. However, the measured M-H loops show that the perpendicular anisotropy is greatly enhanced in samples with n = 16, 20, and 32. The origin of the increased perpendicular anisotropy of [Fe/Pt]{sub n} multilayer films is related to themore » contributions of the interfaces, which will be analyzed using the micromagnetic models, with careful discussions of the crystalline and interface anisotropies. Finally, it is confirmed that the Fe/Pt interfaces favor the perpendicular orientation in the multilayer structure.« less

  4. Advanced coatings for next generation lithography

    NASA Astrophysics Data System (ADS)

    Naujok, P.; Yulin, S.; Kaiser, N.; Tünnermann, A.

    2015-03-01

    Beyond EUV lithography at 6.X nm wavelength has a potential to extend EUVL beyond the 11 nm node. To implement B-based mirrors and to enable their industrial application in lithography tools, a reflectivity level of > 70% has to be reached in near future. The authors will prove that transition from conventional La/B4C to promising LaN/B4C multilayer coatings leads to enhanced optical properties. Currently a near normal-incidence reflectivity of 58.1% @ 6.65 nm is achieved by LaN/B4C multilayer mirrors. The introduction of ultrathin diffusion barriers into the multilayer design to reach the targeted reflectivity of 70% was also tested. The optimization of multilayer design and deposition process for interface-engineered La/C/B4C multilayer mirrors resulted in peak reflectivity of 56.8% at the wavelength of 6.66 nm. In addition, the thermal stability of several selected multilayers was investigated and will be discussed.

  5. Recurrent jellyfish blooms are a consequence of global oscillations

    PubMed Central

    Condon, Robert H.; Duarte, Carlos M.; Pitt, Kylie A.; Robinson, Kelly L.; Lucas, Cathy H.; Sutherland, Kelly R.; Mianzan, Hermes W.; Bogeberg, Molly; Purcell, Jennifer E.; Decker, Mary Beth; Uye, Shin-ichi; Madin, Laurence P.; Brodeur, Richard D.; Haddock, Steven H. D.; Malej, Alenka; Parry, Gregory D.; Eriksen, Elena; Quiñones, Javier; Acha, Marcelo; Harvey, Michel; Arthur, James M.; Graham, William M.

    2013-01-01

    A perceived recent increase in global jellyfish abundance has been portrayed as a symptom of degraded oceans. This perception is based primarily on a few case studies and anecdotal evidence, but a formal analysis of global temporal trends in jellyfish populations has been missing. Here, we analyze all available long-term datasets on changes in jellyfish abundance across multiple coastal stations, using linear and logistic mixed models and effect-size analysis to show that there is no robust evidence for a global increase in jellyfish. Although there has been a small linear increase in jellyfish since the 1970s, this trend was unsubstantiated by effect-size analysis that showed no difference in the proportion of increasing vs. decreasing jellyfish populations over all time periods examined. Rather, the strongest nonrandom trend indicated jellyfish populations undergo larger, worldwide oscillations with an approximate 20-y periodicity, including a rising phase during the 1990s that contributed to the perception of a global increase in jellyfish abundance. Sustained monitoring is required over the next decade to elucidate with statistical confidence whether the weak increasing linear trend in jellyfish after 1970 is an actual shift in the baseline or part of an oscillation. Irrespective of the nature of increase, given the potential damage posed by jellyfish blooms to fisheries, tourism, and other human industries, our findings foretell recurrent phases of rise and fall in jellyfish populations that society should be prepared to face. PMID:23277544

  6. Fabrication and characterization of WO3/Ag/WO3 multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes

    PubMed Central

    2012-01-01

    The dielectric/metal/dielectric multilayer is suitable for a transparent electrode because of its high-optical and high-electrical properties; however, it is fabricated by an expensive and inefficient multistep vacuum process. We present a WO3/Ag/WO3 (WAW) multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes (PLEDs). This WAW multilayer not only has high transmittance and low resistance but also can be easily and rapidly fabricated. We devised a novel method to deposit a thin WO3 layer by a solution process in an air environment. A tungstic acid solution was prepared from an aqueous solution of Na2WO4 and then converted to WO3 nanoparticles (NPs) by a thermal treatment. Thin WO3 NP layers form WAW multilayer with a thermal-evaporated Ag layer, and they improve the transmittance of the WAW multilayer because of its high transmittance and refractive index. Moreover, the surface of the WO3 layer is homogeneous and flat with low roughness because of the WO3 NP generation from the tungstic acid solution without aggregation. We performed optical simulation and experiments, and the optimized WAW multilayer had a high transmittance of 85% with a sheet resistance of 4 Ω/sq. Finally, PLEDs based on the WAW multilayer anode achieved a maximum luminance of 35,550 cd/m2 at 8 V, and this result implies that the solution-processed WAW multilayer is appropriate for use as a transparent anode in PLEDs. PMID:22587669

  7. Fabrication and characterization of WO3/Ag/WO3 multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes.

    PubMed

    Jeon, Kangmin; Youn, Hongseok; Kim, Seongbeom; Shin, Seongbeom; Yang, Minyang

    2012-05-15

    The dielectric/metal/dielectric multilayer is suitable for a transparent electrode because of its high-optical and high-electrical properties; however, it is fabricated by an expensive and inefficient multistep vacuum process. We present a WO3/Ag/WO3 (WAW) multilayer transparent anode with solution-processed WO3 for polymer light-emitting diodes (PLEDs). This WAW multilayer not only has high transmittance and low resistance but also can be easily and rapidly fabricated. We devised a novel method to deposit a thin WO3 layer by a solution process in an air environment. A tungstic acid solution was prepared from an aqueous solution of Na2WO4 and then converted to WO3 nanoparticles (NPs) by a thermal treatment. Thin WO3 NP layers form WAW multilayer with a thermal-evaporated Ag layer, and they improve the transmittance of the WAW multilayer because of its high transmittance and refractive index. Moreover, the surface of the WO3 layer is homogeneous and flat with low roughness because of the WO3 NP generation from the tungstic acid solution without aggregation. We performed optical simulation and experiments, and the optimized WAW multilayer had a high transmittance of 85% with a sheet resistance of 4 Ω/sq. Finally, PLEDs based on the WAW multilayer anode achieved a maximum luminance of 35,550 cd/m2 at 8 V, and this result implies that the solution-processed WAW multilayer is appropriate for use as a transparent anode in PLEDs.

  8. Ag-Pd-Cu alloy inserted transparent indium tin oxide electrodes for organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyo-Joong; Seo, Ki-Won; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr

    2014-09-01

    The authors report on the characteristics of Ag-Pd-Cu (APC) alloy-inserted indium tin oxide (ITO) films sputtered on a glass substrate at room temperature for application as transparent anodes in organic solar cells (OSCs). The effect of the APC interlayer thickness on the electrical, optical, structural, and morphological properties of the ITO/APC/ITO multilayer were investigated and compared to those of ITO/Ag/ITO multilayer electrodes. At the optimized APC thickness of 8 nm, the ITO/APC/ITO multilayer exhibited a resistivity of 8.55 × 10{sup −5} Ω cm, an optical transmittance of 82.63%, and a figure-of-merit value of 13.54 × 10{sup −3} Ω{sup −1}, comparable to those of the ITO/Ag/ITOmore » multilayer. Unlike the ITO/Ag/ITO multilayer, agglomeration of the metal interlayer was effectively relieved with APC interlayer due to existence of Pd and Cu elements in the thin region of the APC interlayer. The OSCs fabricated on the ITO/APC/ITO multilayer showed higher power conversion efficiency than that of OSCs prepared on the ITO/Ag/ITO multilayer below 10 nm due to the flatness of the APC layer. The improved performance of the OSCs with ITO/APC/ITO multilayer electrodes indicates that the APC alloy interlayer prevents the agglomeration of the Ag-based metal interlayer and can decrease the thickness of the metal interlayer in the oxide-metal-oxide multilayer of high-performance OSCs.« less

  9. Reactive multilayers fabricated by vapor deposition. A critical review

    DOE PAGES

    Adams, D. P.

    2014-10-02

    The reactive multilayer thin films are a class of energetic materials that continue to attract attention for use in joining applications and as igniters. Generally composed of two reactants, these heterogeneous solids can be stimulated by an external source to promptly release stored chemical energy in a sudden emission of light and heat. In our critical review article, results from recent investigations of these materials are discussed. Discussion begins with a brief description of the vapor deposition techniques that provide accurate control of layer thickness and film composition. More than 50 reactive film compositions have been reported to date, withmore » most multilayers fabricated by magnetron sputter deposition or electron-beam evaporation. In later sections, we review how multilayer ignition threshold, reaction rate, and total heat are tailored via thin film design. For example, planar multilayers with nanometer-scale periodicity exhibit rapid, self-sustained reactions with wavefront velocities up to 100 m/s. Numeric and analytical models have elucidated many of the fundamental processes that underlie propagating exothermic reactions while demonstrating how reaction rates vary with multilayer design. Recent, time-resolved diffraction and imaging studies have further revealed the phase transformations and the wavefront dynamics associated with propagating chemical reactions. Many reactive multilayers (e.g., Co/Al) form product phases that are consistent with published equilibrium phase diagrams, yet a few systems, such as Pt/Al, develop metastable products. The final section highlights current and emerging applications of reactive multilayers. Examples include reactive Ni(V)/Al and Pd/Al multilayers which have been developed for localized soldering of heat-sensitive components.« less

  10. Adsorption of IgG on/in a PAH/PSS multilayer film: Layer structure and cell response.

    PubMed

    Feldötö, Zsombor; Lundin, Maria; Braesch-Andersen, Sten; Blomberg, Eva

    2011-02-01

    The binding of immunogloblulins (IgG) (mouse monoclonal recognizing IFNγ) on precoated polystyrene or silica surfaces by the layer-by-layer technique has been investigated with QCM-D and DPI. The aim of the work was to increase the sensitivity of the conventional enzyme-linked immunosorbent spot (ELISpot) assay. The polyelectrolytes used to build the multilayers were poly(allylamine hydrochloride) (PAH)/poly(sodium 4-styrenesulfonate) (PSS) alternately adsorbed from 150mM NaCl. The multilayer build up is linear and the internal structure of the PAH/PSS multilayer is compact and rigid as observed by low relative water content (20-25%) and high layer refractive index (n∼1.5) after the formation of five bilayers. Incorporation of IgG within the PAH/PSS multilayer did not give rise to overcharging and did not affect the linear build up. ELISpot test on PAH/PSS multilayer modified polystyrene wells showed that the cytokine response was significantly smaller than on the regular PVDF backed polystyrene wells. This may be due to the compact and rigid nature of the PAH/PSS multilayer, which does not allow formation of the kind of three dimensional support needed to achieve bioactive IgG binding to the surface. Immunological tests of the polyelectrolyte multilayers in the absence of IgG showed that PSS terminated PAH/PSS multilayer did not induce any cytokine response whereas PAH terminated did, which suggests that PSS totally covers the surface from the cells point of view. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Multi-layer laminate structure and manufacturing method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenihan, James R; Cleereman, Robert J; Eurich, Gerald

    2012-04-24

    The present invention is premised upon a multi-layer laminate structure and method of manufacture, more particularly to a method of constructing the multi-layer laminate structure utilizing a laminate frame and at least one energy activated flowable polymer.

  12. Multi-layer laminate structure and manufacturing method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenihan, James R.; Cleereman, Robert J.; Eurich, Gerald

    2013-01-29

    The present invention is premised upon a multi-layer laminate structure and method of manufacture, more particularly to a method of constructing the multi-layer laminate structure utilizing a laminate frame and at least one energy activated flowable polymer.

  13. Multi-Layer E-Textile Circuits

    NASA Technical Reports Server (NTRS)

    Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory

    2012-01-01

    Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.

  14. Use of information technologies when designing multilayered plates and covers with filler of various types

    NASA Astrophysics Data System (ADS)

    Golova, T. A.; Magerramova, I. A.; Ivanov, S. A.

    2018-05-01

    Calculation of multilayered plates and covers does not consider anisotropic properties of a construction. Calculation comes down to uniform isotropic covers and definition of one of intense and deformation conditions of constructions. The existing techniques consider work of multilayered designs by means of various coefficients. The article describes the optimized algorithm of operations when designing multilayered plates and covers with filler of various types on the basis of the conducted researches. It is dealt with a development engineering algorithm of calculation of multi-layer constructions of walls. Software is created which allows one to carry out assessment of intense and deformation conditions of constructions of walls.

  15. Magneto-optical properties of PdCo based multilayered films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, K.; Tsunashima, S.; Iwata, S.

    1989-09-01

    Magneto-optical and magnetic properties of multilayered films composed of PdCo alloy and other noble metal (Pd, Pt or Cu) layers are investigated. Multilayered films were prepared by RF magnetron sputtering method. Kerr rotation spectra (275nm-800nm) of Pd/Co multilayered films resemble those of PdCo alloys. In the films composed of PdCo alloy and Pt bilayers, the Kerr rotation increases with increasing Pt content while the perpendicular anisotropy decreases.

  16. EUV multilayer defect compensation (MDC) by absorber pattern modification: from theory to wafer validation

    NASA Astrophysics Data System (ADS)

    Pang, Linyong; Hu, Peter; Satake, Masaki; Tolani, Vikram; Peng, Danping; Li, Ying; Chen, Dongxue

    2011-11-01

    According to the ITRS roadmap, mask defects are among the top technical challenges to introduce extreme ultraviolet (EUV) lithography into production. Making a multilayer defect-free extreme ultraviolet (EUV) blank is not possible today, and is unlikely to happen in the next few years. This means that EUV must work with multilayer defects present on the mask. The method proposed by Luminescent is to compensate effects of multilayer defects on images by modifying the absorber patterns. The effect of a multilayer defect is to distort the images of adjacent absorber patterns. Although the defect cannot be repaired, the images may be restored to their desired targets by changing the absorber patterns. This method was first introduced in our paper at BACUS 2010, which described a simple pixel-based compensation algorithm using a fast multilayer model. The fast model made it possible to complete the compensation calculations in seconds, instead of days or weeks required for rigorous Finite Domain Time Difference (FDTD) simulations. Our SPIE 2011 paper introduced an advanced compensation algorithm using the Level Set Method for 2D absorber patterns. In this paper the method is extended to consider process window, and allow repair tool constraints, such as permitting etching but not deposition. The multilayer defect growth model is also enhanced so that the multilayer defect can be "inverted", or recovered from the top layer profile using a calibrated model.

  17. Layer-by-layer strippable Ag multilayer films fabricated by modular assembly.

    PubMed

    Li, Yan; Chen, Xiaoyan; Li, Qianqian; Song, Kai; Wang, Shihui; Chen, Xiaoyan; Zhang, Kai; Fu, Yu; Jiao, Yong-Hua; Sun, Ting; Liu, Fu-Chun; Han, En-Hou

    2014-01-21

    We have developed a new method to fabricate multilayer films, which uses prepared thin films as modular blocks and transfer as operation mode to build up multilayer structures. In order to distinguish it from the in situ fabrication manner, this method is called modular assembly in this study. On the basis of such concept, we have fabricated a multilayer film using the silver mirror film as the modular block and poly(lactic acid) as the transfer tool. Due to the special double-layer structure of the silver mirror film, the resulting multilayer film had a well-defined stratified architecture with alternate porous/compact layers. As a consequence of the distinct structure, the interaction between the adjacent layers was so weak that the multilayer film could be layer-by-layer stripped. In addition, the top layer in the film could provide an effective protection on the morphology and surface property of the underlying layers. This suggests that if the surface of the film was deteriorated, the top layer could be peeled off and the freshly exposed surface would still maintain the original function. The successful preparation of the layer-by-layer strippable silver multilayer demonstrates that modular assembly is a feasible and effective method to build up multilayer films capable of creating novel and attractive micro/nanostructures, having great potential in the fabrication of nanodevices and coatings.

  18. The metaphor-gestalt synergy underlying the self-organisation of perception as a semiotic process.

    PubMed

    Rail, David

    2013-04-01

    Recently the basis of concept and language formation has been redefined by the proposal that they both stem from perception and embodiment. The experiential revolution has lead to a far more integrated and dynamic understanding of perception as a semiotic system. The emergence of meaning in the perceptual process stems from the interaction between two key mechanisms. These are first, the generation of schemata through recurrent sensorimotor activity (SM) that underlies category and language formation (L). The second is the interaction between metaphor (M) and gestalt mechanisms (G) that generate invariant mappings beyond the SM domain that both conserve and diversify our understanding and meaning potential. We propose an important advance in our understanding of perception as a semiotic system through exploring the affect of self-organising to criticality where hierarchical behaviour becomes widely integrated through 1/f process and isomorphisms. Our proposal leads to several important implications. First, that SM and L form a functional isomorphism depicted as SM <=> L. We contend that SM <=> L is emergent, corresponding to the phenomenal self. Second, meaning structures the isomorphism SM <=>L through the synergy between M and G (M-G). M-G synergy is based on a combination of structuring and imagination. We contend that the interaction between M-G and SM <=> L functions as a macro-micro comutation that governs perception as semiosis. We discuss how our model relates to current research in fractal time and verb formation.

  19. Perceptions of low-income African-American mothers about excessive gestational weight gain.

    PubMed

    Herring, Sharon J; Henry, Tasmia Q; Klotz, Alicia A; Foster, Gary D; Whitaker, Robert C

    2012-12-01

    A rising number of low-income African-American mothers gain more weight in pregnancy than is recommended, placing them at risk for poor maternal and fetal health outcomes. Little is known about the perceptions of mothers in this population that may influence excessive gestational weight gain. In 2010-2011, we conducted 4 focus groups with 31 low-income, pregnant African-Americans in Philadelphia. Two readers independently coded the focus group transcripts to identify recurrent themes. We identified 9 themes around perceptions that encouraged or discouraged high gestational weight gain. Mothers attributed high weight gain to eating more in pregnancy, which was the result of being hungrier and the belief that consuming more calories while pregnant was essential for babies' health. Family members, especially participants own mothers, strongly reinforced the need to "eat for two" to make a healthy baby. Mothers and their families recognized the link between poor fetal outcomes and low weight gains but not higher gains, and thus, most had a greater pre-occupation with too little food intake and weight gain rather than too much. Having physical symptoms from overeating and weight retention after previous pregnancies were factors that discouraged higher gains. Overall, low-income African-American mothers had more perceptions encouraging high gestational weight gain than discouraging it. Interventions to prevent excessive weight gain need to be sensitive to these perceptions. Messages that link guideline recommended weight gain to optimal infant outcomes and mothers' physical symptoms may be most effective for weight control.

  20. Desktop aligner for fabrication of multilayer microfluidic devices.

    PubMed

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-07-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm(-1). To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.

  1. Oromucosal multilayer films for tailor-made, controlled drug delivery.

    PubMed

    Lindert, Sandra; Breitkreutz, Jörg

    2017-11-01

    The oral mucosa has recently become increasingly important as an alternative administration route for tailor-made, controlled drug delivery. Oromucosal multilayer films, assigned to the monograph oromucosal preparations in the Ph.Eur. may be a promising dosage form to overcome the requirements related to this drug delivery site. Areas covered: We provide an overview of multilayer films as drug delivery tools, and discuss manufacturing processes and characterization methods. We focus on the suitability of characterization methods for particular requirements of multilayer films. A classification was performed covering indication areas and APIs incorporated in multilayer film systems for oromucosal use in order to provide a summary of data published in this field. Expert opinion: The shift in drug development to high molecular weight drugs will influence the field of pharmaceutical development and delivery technologies. For a high number of indication areas, such as hormonal disorders, cardiovascular diseases or local treatment of infections, the flexible layer design of oromucosal multilayer films provides a promising option for tailor-made, controlled delivery of APIs to or through defined surfaces in the oral cavity. However, there is a lack of discriminating or standardized testing methods to assess the quality of multilayer films in a reliable way.

  2. Asynchronous cracking with dissimilar paths in multilayer graphene.

    PubMed

    Jang, Bongkyun; Kim, Byungwoon; Kim, Jae-Hyun; Lee, Hak-Joo; Sumigawa, Takashi; Kitamura, Takayuki

    2017-11-16

    Multilayer graphene consists of a stack of single-atomic-thick monolayer graphene sheets bound with π-π interactions and is a fascinating model material opening up a new field of fracture mechanics. In this study, fracture behavior of single-crystalline multilayer graphene was investigated using an in situ mode I fracture test under a scanning electron microscope, and abnormal crack propagation in multilayer graphene was identified for the first time. The fracture toughness of graphene was determined from the measured load-displacement curves and the realistic finite element modelling of specimen geometries. Nonlinear fracture behavior of the multilayer graphene is discussed based on nonlinear elastic fracture mechanics. In situ scanning electron microscope images obtained during the fracture test showed asynchronous crack propagation along independent paths, causing interlayer shear stress and slippages. We also found that energy dissipation by interlayer slippages between the graphene layers is the reason for the enhanced fracture toughness of multilayer graphene. The asynchronous cracking with independent paths is a unique cracking and toughening mechanism for single-crystalline multilayer graphene, which is not observed for the monolayer graphene. This could provide a useful insight for the design and development of graphene-based composite materials for structural applications.

  3. Finding overlapping communities in multilayer networks

    PubMed Central

    Liu, Weiyi; Suzumura, Toyotaro; Ji, Hongyu; Hu, Guangmin

    2018-01-01

    Finding communities in multilayer networks is a vital step in understanding the structure and dynamics of these layers, where each layer represents a particular type of relationship between nodes in the natural world. However, most community discovery methods for multilayer networks may ignore the interplay between layers or the unique topological structure in a layer. Moreover, most of them can only detect non-overlapping communities. In this paper, we propose a new community discovery method for multilayer networks, which leverages the interplay between layers and the unique topology in a layer to reveal overlapping communities. Through a comprehensive analysis of edge behaviors within and across layers, we first calculate the similarities for edges from the same layer and the cross layers. Then, by leveraging these similarities, we can construct a dendrogram for the multilayer networks that takes both the unique topological structure and the important interplay into consideration. Finally, by introducing a new community density metric for multilayer networks, we can cut the dendrogram to get the overlapping communities for these layers. By applying our method on both synthetic and real-world datasets, we demonstrate that our method has an accurate performance in discovering overlapping communities in multilayer networks. PMID:29694387

  4. Finding overlapping communities in multilayer networks.

    PubMed

    Liu, Weiyi; Suzumura, Toyotaro; Ji, Hongyu; Hu, Guangmin

    2018-01-01

    Finding communities in multilayer networks is a vital step in understanding the structure and dynamics of these layers, where each layer represents a particular type of relationship between nodes in the natural world. However, most community discovery methods for multilayer networks may ignore the interplay between layers or the unique topological structure in a layer. Moreover, most of them can only detect non-overlapping communities. In this paper, we propose a new community discovery method for multilayer networks, which leverages the interplay between layers and the unique topology in a layer to reveal overlapping communities. Through a comprehensive analysis of edge behaviors within and across layers, we first calculate the similarities for edges from the same layer and the cross layers. Then, by leveraging these similarities, we can construct a dendrogram for the multilayer networks that takes both the unique topological structure and the important interplay into consideration. Finally, by introducing a new community density metric for multilayer networks, we can cut the dendrogram to get the overlapping communities for these layers. By applying our method on both synthetic and real-world datasets, we demonstrate that our method has an accurate performance in discovering overlapping communities in multilayer networks.

  5. Structural, mechanical and tribocorrosion behaviour in artificial seawater of CrN/AlN nano-multilayer coatings on F690 steel substrates

    NASA Astrophysics Data System (ADS)

    Ma, Fuliang; Li, Jinlong; Zeng, Zhixiang; Gao, Yimin

    2018-01-01

    The CrN monolayer and CrN/AlN nano-multilayer coating were successfully fabricated by reactive magnetron sputtering on F690 steel. The results show that CrN monolayer exhibits a face centered cubic crystalline structure with (111) preferred orientation and CrN/AlN nano-multilayer coating has a (200) preferred orientation. This design of the nano-multilayer can interrupt the continuous growth of columnar crystals making the coating denser. The CrN/AlN nano-multilayer coating has a better wear resistance and corrosion resistance compared with the CrN monolayer coating. The tribocorrosion tests reveal that the evolution of potential and current density of F690 steel and CrN monolayer or CrN/AlN nano-multilayer coating see an opposite trend under the simultaneous action of wear and corrosion, which is attributed to that F690 steel is a non-passive material and PVD coatings is a passive material. The nano-multilayer structure has a good ;Pore Sealing Effect;, and the corrosive solution is difficult to pass through the coating to corrode the substrate.

  6. Desktop aligner for fabrication of multilayer microfluidic devices

    PubMed Central

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-01-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm−1. To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices. PMID:26233409

  7. Cognitive processing in the primary visual cortex: from perception to memory.

    PubMed

    Supèr, Hans

    2002-01-01

    The primary visual cortex is the first cortical area of the visual system that receives information from the external visual world. Based on the receptive field characteristics of the neurons in this area, it has been assumed that the primary visual cortex is a pure sensory area extracting basic elements of the visual scene. This information is then subsequently further processed upstream in the higher-order visual areas and provides us with perception and storage of the visual environment. However, recent findings show that such neural implementations are observed in the primary visual cortex. These neural correlates are expressed by the modulated activity of the late response of a neuron to a stimulus, and most likely depend on recurrent interactions between several areas of the visual system. This favors the concept of a distributed nature of visual processing in perceptual organization.

  8. A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 1. MODEL FORMULATION

    EPA Science Inventory

    A multilayer biochemical dry deposition model has been developed based on the NOAA Multilayer Model (MLM) to study gaseous exchanges between the soil, plants, and the atmosphere. Most of the parameterizations and submodels have been updated or replaced. The numerical integration ...

  9. 78 FR 30329 - Multilayered Wood Flooring from China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ...)] Multilayered Wood Flooring from China AGENCY: United States International Trade Commission. ACTION: Notice of...-1179 (Final) concerning multilayered wood flooring (``MLWF'') from China. For further information... Hardwood Floors, Inc.; BR Custom Surface; Real Wood Floors, LLC; Galleher Corp.; and DPR International, LLC...

  10. Optical multilayers with an amorphous fluoropolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, R.; Loomis, G.E.; Lindsey, E.F.

    1994-07-01

    Multilayered coatings were made by physical vapor deposition (PVD) of a perfluorinated amorphous polymer, Teflon AF2400, together with other optical materials. A high reflector at 1064 run was made with ZnS and AF2400. An all-organic 1064-nm reflector was made from AF2400 and polyethylene. Oxide (HfO{sub 2}, SiO{sub 2}) compatibility was also tested. Each multilayer system adhered to itself. The multilayers were influenced by coating stress and unintentional temperature rises during PVD deposition.

  11. A Magnetron Sputter Deposition System for the Development of Multilayer X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Broadway, David; Ramsey, Brian; Gubarev, Mikhail

    2014-01-01

    The proposal objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and EUV optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance the MSFC's position as a world leader in the design of innovative X-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures is absolutely necessary in order to advance the field of X-ray astronomy by pushing the limit for observing the universe to ever increasing photon energies (i. e. up to 200 keV or higher); well beyond Chandra (approx. 10 keV) and NuStar's (approx. 75 keV) capability. The addition of multilayer technology would significantly enhance the X-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication and design of innovative X-ray instrumentation which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments.To this aim, a magnetron vacum sputter deposition system for the deposition of novel multilayer thin film X-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and X-ray optics for a broad range of applications including medical imaging.

  12. A Magnetron Sputter Deposition System for the Development of X-Ray Multilayer Optics

    NASA Technical Reports Server (NTRS)

    Broadway, David

    2015-01-01

    The project objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and extreme ultraviolet (EUV) optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance NASA Marshall Space Flight Center's (MSFC's) position as a world leader in the design of innovative x-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures are absolutely necessary in order to advance the field of x-ray astronomy by pushing the limit for observing the universe to ever-increasing photon energies (i.e., up to 200 keV or higher), well beyond Chandra's (approx.10 keV) and NuStar's (approx.75 keV) capability. The addition of multilayer technology would significantly enhance the x-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication, and design of innovative x-ray instrumentation, which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments. To this aim, a magnetron vacuum sputter deposition system for the deposition of novel multilayer thin film x-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and x-ray optics for a broad range of applications including medical imaging.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyaya, Mihir; Jindal, Vibhu; Basavalingappa, Adarsh

    The availability of defect-free masks is considered to be a critical issue for enabling extreme ultraviolet lithography (EUVL) as the next generation technology. Since completely defect-free masks will be hard to achieve, it is essential to have a good understanding of the printability of the native EUV mask defects. In this work, we performed a systematic study of native mask defects to understand the defect printability caused by them. The multilayer growth over native substrate mask blank defects was correlated to the multilayer growth over regular-shaped defects having similar profiles in terms of their width and height. To model themore » multilayer growth over the defects, a novel level-set multilayer growth model was used that took into account the tool deposition conditions of the Veeco Nexus ion beam deposition tool. The same tool was used for performing the actual deposition of the multilayer stack over the characterized native defects, thus ensuring a fair comparison between the actual multilayer growth over native defects, and modeled multilayer growth over regular-shaped defects. Further, the printability of the characterized native defects was studied with the SEMATECH-Berkeley Actinic Inspection Tool (AIT), an EUV mask-imaging microscope at Lawrence Berkeley National Laboratory (LBNL). Printability of the modeled regular-shaped defects, which were propagated up the multilayer stack using level-set growth model was studied using defect printability simulations implementing the waveguide algorithm. Good comparison was observed between AIT and the simulation results, thus demonstrating that multilayer growth over a defect is primarily a function of a defect’s width and height, irrespective of its shape. This would allow us to predict printability of the arbitrarily-shaped native EUV mask defects in a systematic and robust manner.« less

  14. Formation of He-Rich Layers Observed by Neutron Reflectometry in the He-Ion-Irradiated Cr/W Multilayers: Effects of Cr/W Interfaces on the He-Trapping Behavior.

    PubMed

    Chen, Feida; Tang, Xiaobin; Huang, Hai; Li, Xinxi; Wang, Yan; Huang, Chaoqiang; Liu, Jian; Li, Huan; Chen, Da

    2016-09-21

    Cr/W multilayer nanocomposites were presented in the paper as potential candidate materials for the plasma facing components in fusion reactors. We used neutron reflectometry to measure the depth profile of helium in the multienergy He ions irradiated [Cr/W (50 nm)]3 multilayers. Results showed that He-rich layers with low neutron scattering potential energy form at the Cr/W interfaces, which is in great agreement with previous modeling results of other multilayers. This phenomenon provided a strong evidence for the He trapping effects of Cr/W interfaces and implied the possibility of using the Cr/W multilayer nanocomposites as great He-tolerant plasma facing materials.

  15. An in vivo study on the effect of coating stability on osteointegration performance of collagen/hyaluronic acid multilayer modified titanium implants.

    PubMed

    Ao, Haiyong; Zong, Jiajia; Nie, Yanjiao; Wan, Yizao; Zheng, Xiebin

    2018-03-01

    Aseptic loosening of implant is one of the main causes of Ti-based implant failure. In our previous work, a novel stable collagen/hyaluronic acid (Col/HA) multilayer modified titanium coatings (TCs) was developed by layer-by-layer (LBL) covalent immobilization technique, which showed enhanced biological properties compared with TCs that were physically absorbed with Col/HA multilayer in vitro . In this study, a rabbit model with femur condyle defect was employed to compare the osteointegration performance of them. Results indicated that Col/HA multilayer with favourable stability could better facilitate osteogenesis around implants and bone-implant contact. The Col/HA multilayer covalent-immobilized TC may reduce aseptic loosening of implant.

  16. RBS Depth Profiling Analysis of (Ti, Al)N/MoN and CrN/MoN Multilayers.

    PubMed

    Han, Bin; Wang, Zesong; Devi, Neena; Kondamareddy, K K; Wang, Zhenguo; Li, Na; Zuo, Wenbin; Fu, Dejun; Liu, Chuansheng

    2017-12-01

    (Ti, Al)N/MoN and CrN/MoN multilayered films were synthesized on Si (100) surface by multi-cathodic arc ion plating system with various bilayer periods. The elemental composition and depth profiling of the films were investigated by Rutherford backscattering spectroscopy (RBS) using 2.42 and 1.52 MeV Li 2+ ion beams and different incident angles (0°, 15°, 37°, and 53°). The microstructures of (Ti, Al)N/MoN multilayered films were evaluated by X-ray diffraction. The multilayer periods and thickness of the multilayered films were characterized by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) and then compared with RBS results.

  17. Preparation for B4C/Mo2C multilayer deposition of alternate multilayer gratings with high efficiency in the 0.5-2.5 keV energy range

    NASA Astrophysics Data System (ADS)

    Choueikani, Fadi; Delmotte, Franck; Bridou, Françoise; Lagarde, Bruno; Mercere, Pascal; Otero, Edwige; Ohresser, Philippe; Polack, François

    2013-03-01

    This paper presents a study of B4C/Mo2C multilayers mirrors with the aim of using it in the achievement of Alternate MultiLayer (AML) grating. Such component allows a high efficiency in the 500-2500 eV energy range for the DEIMOS beamline. Multilayers were deposited on silicon substrate. They are characterized by reflectometry under grazing incidence. Numerical adjustments were performed with a model of two layers in the period without any interfacial. A prototype of AML grating was fabricated and characterized. The efficiency of the first order of diffraction was worth 15% at 1700 eV.

  18. Tunable drug loading and release from polypeptide multilayer nanofilms

    PubMed Central

    Jiang, Bingbing; Li, Bingyun

    2009-01-01

    Polypeptide multilayer nanofilms were prepared using electrostatic layer-by-layer self-assembly nanotechnology. Small charged drug molecules (eg, cefazolin, gentamicin, and methylene blue) were loaded in polypeptide multilayer nanofilms. Their loading and release were found to be pH-dependent and could also be controlled by changing the number of film layers and drug incubation time, and applying heat-treatment after film formation. Antibioticloaded polypeptide multilayer nanofilms showed controllable antibacterial properties against Staphylococcus aureus. The developed biodegradable polypeptide multilayer nanofilms are capable of loading both positively- and negatively-charged drug molecules and promise to serve as drug delivery systems on biomedical devices for preventing biomedical device-associated infection, which is a significant clinical complication for both civilian and military patients. PMID:19421369

  19. Using deep recurrent neural network for direct beam solar irradiance cloud screening

    NASA Astrophysics Data System (ADS)

    Chen, Maosi; Davis, John M.; Liu, Chaoshun; Sun, Zhibin; Zempila, Melina Maria; Gao, Wei

    2017-09-01

    Cloud screening is an essential procedure for in-situ calibration and atmospheric properties retrieval on (UV-)MultiFilter Rotating Shadowband Radiometer [(UV-)MFRSR]. Previous study has explored a cloud screening algorithm for direct-beam (UV-)MFRSR voltage measurements based on the stability assumption on a long time period (typically a half day or a whole day). To design such an algorithm requires in-depth understanding of radiative transfer and delicate data manipulation. Recent rapid developments on deep neural network and computation hardware have opened a window for modeling complicated End-to-End systems with a standardized strategy. In this study, a multi-layer dynamic bidirectional recurrent neural network is built for determining the cloudiness on each time point with a 17-year training dataset and tested with another 1-year dataset. The dataset is the daily 3-minute cosine corrected voltages, airmasses, and the corresponding cloud/clear-sky labels at two stations of the USDA UV-B Monitoring and Research Program. The results show that the optimized neural network model (3-layer, 250 hidden units, and 80 epochs of training) has an overall test accuracy of 97.87% (97.56% for the Oklahoma site and 98.16% for the Hawaii site). Generally, the neural network model grasps the key concept of the original model to use data in the entire day rather than short nearby measurements to perform cloud screening. A scrutiny of the logits layer suggests that the neural network model automatically learns a way to calculate a quantity similar to total optical depth and finds an appropriate threshold for cloud screening.

  20. Method to adjust multilayer film stress induced deformation of optics

    DOEpatents

    Mirkarimi, Paul B.; Montcalm, Claude

    2000-01-01

    A buffer-layer located between a substrate and a multilayer for counteracting stress in the multilayer. Depositing a buffer-layer having a stress of sufficient magnitude and opposite in sign reduces or cancels out deformation in the substrate due to the stress in the multilayer. By providing a buffer-layer between the substrate and the multilayer, a tunable, near-zero net stress results, and hence results in little or no deformation of the substrate, such as an optic for an extreme ultraviolet (EUV) lithography tool. Buffer-layers have been deposited, for example, between Mo/Si and Mo/Be multilayer films and their associated substrate reducing significantly the stress, wherein the magnitude of the stress is less than 100 MPa and respectively near-normal incidence (5.degree.) reflectance of over 60% is obtained at 13.4 nm and 11.4 nm. The present invention is applicable to crystalline and non-crystalline materials, and can be used at ambient temperatures.

  1. Rocket flight of a multilayer coated high-density EUV toroidal grating

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A. M.; Thomas, Roger J.; Davila, Joseph M.

    1992-01-01

    A multilayer coated high density toroidal grating was flown on a sounding rocket experiment in the Solar EUV Rocket Telescope and Spectrograph (SERTS) instrument. To our knowledge this is the first space flight of a multilayer coated grating. Pre-flight performance evaluation showed that the application of a 10-layer Ir/Si multilayer coating to the 3600 l/mm blazed toroidal replica grating produced a factor of 9 enhancement in peak efficiency near the design wavelength around 30 nm in first order over the standard gold coating, with a measured EUV efficiency that peaked at 3.3 percent. In addition, the grating's spectral resolution of better than 5000 was maintained. The region of enhanced grating efficiency due to the multilayer coating is clearly evident in the flight data. Within the bandpass of the multilayer coating, the recorded film densities were roughly equivalent to those obtained with a factor of six longer exposure on the previous flight of the SERTS instrument.

  2. Drug Loading and Release Behavior Depending on the Induced Porosity of Chitosan/Cellulose Multilayer Nanofilms.

    PubMed

    Park, Sohyeon; Choi, Daheui; Jeong, Hyejoong; Heo, Jiwoong; Hong, Jinkee

    2017-10-02

    The ability to control drug loading and release is the most important feature in the development of medical devices. In this research, we prepared a functional nanocoating technology to incorporate a drug-release layer onto a desired substrate. The multilayer films were prepared using chitosan (CHI) and carboxymethyl cellulose (CMC) polysaccharides by the layer-by-layer (LbL) method. By using chemical cross-linking to change the inner structure of the assembled multilayer, we could control the extent of drug loading and release. The cross-linked multilayer film had a porous structure and enhanced water wettability. Interestingly, more of the small-molecule drug was loaded into and released from the non-cross-linked multilayer film, whereas more of the macromolecular drug was loaded into and released from the cross-linked multilayer film. These results indicate that drug loading and release can be easily controlled according to the molecular weight of the desired drug by changing the structure of the film.

  3. Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method.

    PubMed

    Jo, Seo-Hyeon; Lee, Sung-Gap; Lee, Young-Hie

    2012-01-05

    In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2.

  4. Beam profile and coherence properties of synchrotron beams after reflection on modified multilayer mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rack, Alexander, E-mail: alexander.rack@esrf.fr; Vivo, Amparo; Morawe, Christian

    2016-07-27

    Multilayer mirrors present an attractive alternative for reflective hard X-ray monochromators due to their increased bandwidth compared with crystal-based systems. An issue remains the strong modulations in the reflected beam profile, i.e. an irregular stripe pattern. This is a major problem for micro-imaging applications, where multilayer-based monochromators are frequently employed to deliver higher photon flux density. A subject of particular interest is how to overcome beam profile modifications, namely the stripe patterns, induced by the reflection on a multilayer. For multilayer coatings in general it is known that the substrate and its surface quality significantly influence the performance of suchmore » kind of mirrors as the coating reproduces to a certain degree roughness and shape of the substrate. Our studies have shown that modified coatings can significantly change the impact of the multilayer reflection on the beam profile. We will present recent results as well as a critical review.« less

  5. The study on the electrical resistivity of Cu/V multilayer films subjected to helium (He) ion irradiation

    NASA Astrophysics Data System (ADS)

    Wang, P. P.; Xu, C.; Fu, E. G.; Du, J. L.; Gao, Y.; Wang, X. J.; Qiu, Y. H.

    2018-05-01

    Sputtering-deposited Cu/V multilayer films with the individual layer thickness varying from 2.5 nm to 100 nm were irradiated by 1 MeV helium (He) ion at the fluence of 6 ×1016 ions ·cm-2 at room temperature. The resistivity of Cu/V multilayer films after ion irradiation was evaluated as a function of individual layer thickness at 300 K and compared with their resistivity before ion irradiation. The results show that the resistivity change before and after ion irradiation is largely determined by the interface structure, grain boundary and radiation induced defects. A model amended based on the model used in describing the resistivity of as-deposited Cu/V multilayer films was proposed to describe the resistivity of ion irradiated Cu/V multilayer films by considering the point defects induced by ion irradiation, the effect of interface absorption on defects and the effect of interface microstructure in the multilayer films.

  6. Indentation-derived elastic modulus of multilayer thin films: Effect of unloading induced plasticity

    DOE PAGES

    Jamison, Ryan Dale; Shen, Yu -Lin

    2015-08-13

    Nanoindentation is useful for evaluating the mechanical properties, such as elastic modulus, of multilayer thin film materials. A fundamental assumption in the derivation of the elastic modulus from nanoindentation is that the unloading process is purely elastic. In this work, the validity of elastic assumption as it applies to multilayer thin films is studied using the finite element method. The elastic modulus and hardness from the model system are compared to experimental results to show validity of the model. Plastic strain is shown to increase in the multilayer system during the unloading process. Additionally, the indentation-derived modulus of a monolayermore » material shows no dependence on unloading plasticity while the modulus of the multilayer system is dependent on unloading-induced plasticity. Lastly, the cyclic behavior of the multilayer thin film is studied in relation to the influence of unloading-induced plasticity. Furthermore, it is found that several cycles are required to minimize unloading-induced plasticity.« less

  7. pH-responsiveness of multilayered films and membranes made of polysaccharides

    PubMed Central

    Silva, Joana M.; Caridade, Sofia G.; Costa, Rui R.; Alves, Natália M.; Groth, Thomas; Picart, Catherine; Reis, Rui L.; Mano, João F.

    2016-01-01

    We investigated the pH-dependent properties of multilayered films made of chitosan (CHI) and alginate (ALG) and focused on their post-assembly response to different pH environments using quartz crystal microbalance with dissipation monitoring (QCM-D), swelling studies, zeta potential measurements and dynamic mechanical analysis (DMA). In an acidic environment, the multilayers presented lower dissipation values and, consequently, higher moduli when compared with the values obtained for the pH used during the assembly (5.5). When the multilayers were exposed to alkaline environments the opposite behavior occurred. These results were further corroborated with the ability of this multilayered system to exhibit a reversible swelling-deswelling behavior within the pH range from 3 to 9. The changes of the physicochemical properties of the multilayer system were gradual and different from the ones of individual solubilized polyelectrolytes. This behavior is related to electrostatic interactions between the ionizable groups combined with hydrogen-bonding and hydrophobic interactions. Beyond the pH range of 3-9 the multilayers were stabilized by genipin cross-linking. The multilayered films also became more rigid while preserving the pH-responsiveness conferred by the ionizable moieties of the polyelectrolytes. This work demonstrates the versatility and feasibility of LbL methodology to generate inherently pH stimuli-responsive nanostructured films. Surface functionalization using pH-repsonsiveness endows abilities for several biomedical applications such as drug delivery, diagnostics, microfluidics, biosensing or biomimetic implantable membranes. PMID:26421873

  8. 76 FR 26685 - Multilayered Wood Flooring From the People's Republic of China: Alignment of Final Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-971] Multilayered Wood Flooring... determination in this countervailing duty investigation of multilayered wood flooring (``wood flooring'') from... simultaneously initiated antidumping and countervailing duty investigations of wood flooring from the PRC. See...

  9. 78 FR 70267 - Multilayered Wood Flooring From the People's Republic of China: Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-970] Multilayered Wood Flooring... administrative review of the antidumping duty order on multilayered wood flooring (``MLWF'') from the People's... have preliminarily found that three respondents, Armstrong Wood Products (Kunshan) Co., Ltd...

  10. Regulation of the NADPH Oxidase RBOHD During Plant Immunity.

    PubMed

    Kadota, Yasuhiro; Shirasu, Ken; Zipfel, Cyril

    2015-08-01

    Pathogen recognition induces the production of reactive oxygen species (ROS) by NADPH oxidases in both plants and animals. ROS have direct antimicrobial properties, but also serve as signaling molecules to activate further immune outputs. However, ROS production has to be tightly controlled to avoid detrimental effects on host cells, but yet must be produced in the right amount, at the right place and at the right time upon pathogen perception. Plant NADPH oxidases belong to the respiratory burst oxidase homolog (RBOH) family, which contains 10 members in the model plant Arabidopsis thaliana. The perception of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs) leads to a rapid, specific and strong production of ROS, which is dependent on RBOHD. RBOHD is mainly controlled by Ca(2+) via direct binding to EF-hand motifs and phosphorylation by Ca(2+)-dependent protein kinases. Recent studies have, however, revealed a critical role for a Ca(2+)-independent regulation of RBOHD. The plasma membrane-associated cytoplasmic kinase BIK1 (BOTRYTIS-INDUCED KINASE1), which is a direct substrate of the PRR complex, directly interacts with and phosphorylates RBOHD upon PAMP perception. Impairment of these phosphorylation events completely abolishes the function of RBOHD in immunity. These results suggest that RBOHD activity is tightly controlled by multilayered regulations. In this review, we summarize recent advances in our understanding of the regulatory mechanisms controlling RBOHD activation. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Representing inequities in the distribution of socio-economic benefits and environmental risk.

    PubMed

    Louis, Garric E; Magpili, Luna M

    2002-10-01

    There is currently no standard method for analyzing claims of environmental inequity. Neither is there a database of statistics on the extent of relationship between regional indicators of environmental quality, likely sources of pollution, and the demographic characteristics of affected populations. The resolution of environmental disputes is often hampered by inadequate communication between stakeholder groups about their perceptions and prioritization of the issues in dispute and by differential access to information about the issues by each stakeholder group. This paper describes a web-based tool, ICEP, that uses multi-layered GIS maps to establish a standard method for analyzing claims of environmental inequity and establish a database of correlation coefficients between environmental indicators, industry type by SIC code, and demographic characteristics of the population in proximity to noxious facilities. The maps are generated from stakeholder reports of environmental quality and are designed to be accessible via the Internet. This provides stakeholders with direct access to graphical displays of the perceptions of their co-stakeholders and provides all groups with links to relevant information sources about the issues in dispute. ICEP enhances existing community environmental websites like Scorecard and Envirofacts by providing displays of median household income as a measure of the distribution of benefits accrued within an area.

  12. Development of Multilayer Coatings for Hard X-Ray Optics at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gurgew, Danielle N.; Broadway, David M.; Ramsey, Brian; Gregory, Don

    2017-01-01

    Broadband X-ray multilayer coatings are under development at NASA MSFC for use on future astronomical X-ray telescopes. Multilayer coatings deposited onto the reflecting surfaces of X-ray optics can provide a large bandpass enabling observations of higher energy astrophysical objects and phenomena.

  13. Effect of Surface Preparation on Residual Stresses in Multilayer Coatings and the Consequences for Disbondment Following Construction Damage and Exposure to In-Service Stress

    DOT National Transportation Integrated Search

    2009-01-01

    Underground pipelines are protected by a combination of cathodic protection and a protective coating. Multi-layer coatings offer protection against corrosion and from mechanical damage during construction or during service. Multi-layer coatings are w...

  14. 75 FR 70719 - Multilayered Wood Flooring From the People's Republic of China: Initiation of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-971] Multilayered Wood Flooring...''), whose members (Anderson Hardwood Floors, LLC; Award Hardwood Floors; Baker's Creek Wood Floors, Inc... Group, Inc.) are domestic producers of multilayered wood flooring.\\1\\ In response to the Department's...

  15. Investigation of a broadband coherent perfect absorber in a multi-layer structure by using the transfer matrix method

    NASA Astrophysics Data System (ADS)

    Na, Jihoon; Noh, Heeso

    2018-01-01

    We investigated a multi-layer structure for a broadband coherent perfect absorber (CPA). The transfer matrix method (TMM) is useful for analyzing the optical properties of structures and optimizing multi-layer structures. The broadband CPA strongly depends on the phase of the light traveling in one direction and the light reflected within the structure. The TMM simulation shows that the absorption bandwidth is increased by 95% in a multi-layer CPA compared to that in a single-layer CPA.

  16. Low stress polysilicon film and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)

    2001-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.

  17. Low stress polysilicon film and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)

    2002-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.

  18. Developing Multilayer Thin Film Strain Sensors With High Thermal Stability

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M., III

    2006-01-01

    A multilayer thin film strain sensor for large temperature range use is under development using a reactively-sputtered process. The sensor is capable of being fabricated in fine line widths utilizing the sacrificial-layer lift-off process that is used for micro-fabricated noble-metal sensors. Tantalum nitride films were optimized using reactive sputtering with an unbalanced magnetron source. A first approximation model of multilayer resistance and temperature coefficient of resistance was used to set the film thicknesses in the multilayer film sensor. Two multifunctional sensors were fabricated using multilayered films of tantalum nitride and palladium chromium, and tested for low temperature resistivity, TCR and strain response. The low temperature coefficient of resistance of the films will result in improved stability in thin film sensors for low to high temperature use.

  19. A fabrication and characterictics of microbolometer detectors using VOx/ZnO/VOx multilayer thin film processing

    NASA Astrophysics Data System (ADS)

    Han, Myung-Soo; Kim, Dae Hyeon; Ko, Hang Ju; Shin, Jae Chul; Kim, Hyo Jin; Kim, Do Gun

    2014-06-01

    In this work, a novel fabrication method for VOx-ZnO multilayers with mixed phase of the VO2 and V2O3 through the diffusion of oxygen by annealing at low temperature is presented. A stable sandwich structure of a VOx/ZnO/VOx multilayer was deposited at room temperature, through the oxygen gas flow rate, by RF sputtering system, and the mixed phase was formed through oxygen diffusion by annealing at O2 atmosphere. The results show that the single phase like multilayer formed by this process has a high TCR of more than -2.5%/K and low resistance of about 100 kohm at room temperature. XRD results for the as-deposited VOx/ZnO/VOx multilayer.

  20. Plated lamination structures for integrated magnetic devices

    DOEpatents

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  1. Structural characterization and low-temperature properties of Ru/C multilayer monochromators with different periodic thicknesses.

    PubMed

    Jiang, Hui; He, Yan; He, Yumei; Li, Aiguo; Wang, Hua; Zheng, Yi; Dong, Zhaohui

    2015-11-01

    Ru/C multilayer monochromators with different periodic thicknesses were investigated using X-ray grazing-incidence reflectivity, diffuse scattering, Bragg imaging, morphology testing, etc. before and after cryogenic cooling. Quantitative analyses enabled the determination of the key multilayer structural parameters for samples with different periodic thicknesses, especially the influence from the ruthenium crystallization. The results also reveal that the basic structures and reflection performance keep stable after cryogenic cooling. The low-temperature treatment smoothed the surfaces and interfaces and changed the growth characteristic to a low-frequency surface figure. This study helps with the understanding of the structure evolution of multilayer monochromators during cryogenic cooling and presents sufficient experimental proof for using cryogenically cooled multilayer monochromators in a high-thermal-load undulator beamline.

  2. Enhancement of the electrical characteristics of thin-film transistors with indium-zinc-tin oxide/Ag/indium-zinc-tin oxide multilayer electrodes

    NASA Astrophysics Data System (ADS)

    Oh, Dohyun; Yun, Dong Yeol; Cho, Woon-Jo; Kim, Tae Whan

    2014-08-01

    Transparent indium-zinc-tin oxide (IZTO)-based thin-film transistors (TFTs) with IZTO/Ag/IZTO multilayer electrodes were fabricated on glass substrates using a tilted dual-target radio-frequency magnetron sputtering system. The IZTO TFTs with IZTO/Ag/IZTO multilayer electrodes exhibited a high optical transmittance in a visible region. The threshold voltage, the mobility, and the on/off-current ratio of the TFTs with IZTO/Ag/IZTO multilayer electrodes were enhanced in comparison with those of the TFTs with ITO electrodes. The source/drain contact resistance of the IZTO TFTs with IZTO/Ag/IZTO multilayer electrodes was smaller than that of the IZTO TFTs with ITO electrodes, resulting in enhancement of their electrical characteristics.

  3. Characterization of ion beam sputtered deposited W/Si multilayers by grazing incidence x-ray diffraction and x-ray reflectivity technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhawan, Rajnish, E-mail: rajnish@rrcat.gov.in; Rai, Sanjay

    2016-05-23

    W/Si multilayers four samples have been deposited on silicon substrate using ion beam sputtering system. Thickness of tungsten (W) varies from around 10 Å to 40 Å while the silicon (Si) thickness remains constant at around 30 Å in multilayers [W-Si]{sub x4}. The samples have been characterized by grazing incidence X-ray diffraction (GIXRD) and X-ray reflectivity technique (XRR). GIXRD study shows the crystalline behaviour of W/Si multilayer by varying W thickness and it is found that above 20 Å the W film transform from amorphous to crystalline phase and X-ray reflectivity data shows that the roughnesses of W increases onmore » increasing the W thicknesses in W/Si multilayers.« less

  4. Fabrication and Characteristics of Al/PTFE Multilayers and Application in Micro-initiator

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxin; Jiang, Hongchuan; Zhao, Xiaohui; Zhang, Wanli; Li, Yanrong

    2017-12-01

    In this paper, a micro-initiator was designed and fabricated by integrating Al/PTFE multilayers with a Cu film bridge. The regularity layer structure and interface composition of Al/PTFE multilayers was analysed by transmission electron microscope and X-ray photoelectron spectroscopy, respectively. The heat release reaction in Al/PTFE multilayers can be triggered with reaction temperature of 430 °C, and the overall heat of reaction is 3192 J/g. Al/PTFE multilayers with bilayer thickness of 200 nm was alternately deposited on a Cu film bridge to improve the electric explosion performances. Compared to Cu film bridge, the Al/PTFE/Cu integrated film bridge exhibits improved performances with longer explosion duration time, more violent explosion phenomenon and larger quantities of ejected product particles.

  5. SiC/Mg multilayer coatings for SCORE coronagraph: long term stability analysis

    NASA Astrophysics Data System (ADS)

    Pelizzo, Maria Guglielmina; Fineschi, Silvano; Zuppella, Paola; Corso, Alain Jody; Windt, David L.; Nicolosi, Piergiorgio

    2011-10-01

    SiC/Mg multilayers have been used as coatings of the Sounding-rocket CORonagraphic Experiment (SCORE) telescope mirrors launched during the NASA HERSCHEL program. This materials couple has been largely studied by researchers since it provides higher performances than a standard Mo/Si multilayer; the SCORE mirrors show in fact a peak reflectance of around 40% at HeII 30.4 nm. Nevertheless, long term stability of this coating is an open problem. A study on the aging and stability of this multilayer has been carried on. SiC/Mg multilayer samples characterized by different structural parameters have been deposited. They have been measured just after deposition and four years later to verify degradation based on natural aging. Experimental results and analysis are presented.

  6. A fully dynamic model of a multi-layer piezoelectric actuator incorporating the power amplifier

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Yang, Fufeng; Rui, Xiaoting

    2017-12-01

    The dynamic input-output characteristics of the multi-layer piezoelectric actuator (PA) are intrinsically rate-dependent and hysteresis. Meanwhile, aiming at the strong capacitive impedance of multi-layer PA, the power amplifier of the actuator can greatly affect the dynamic performances of the actuator. In this paper, a novel dynamic model that includes a model of the electric circuit providing voltage to the actuator, an inverse piezoelectric effect model describing the hysteresis and creep behavior of the actuator, and a mechanical model, in which the vibration characteristics of the multi-layer PA is described, is put forward. Validation experimental tests are conducted. Experimental results show that the proposed dynamic model can accurately predict the fully dynamic behavior of the multi-layer PA with different driving power.

  7. Large area polysilicon films with predetermined stress characteristics and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor); Phillips, Stephen M. (Inventor)

    2002-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin films may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films. Multi-layer assemblies exhibiting selectively determinable overall bending moments are also disclosed. Selective production of overall bending moments in microstructures enables manufacture of such structures with a wide array of geometrical configurations.

  8. Range and stability of structural colors generated by Morpho-inspired color reflectors.

    PubMed

    Chung, Kyungjae; Shin, Jung H

    2013-05-01

    The range and stability of structural colors generated by Morpho-inspired color reflectors are investigated. We find that despite the internal randomness of such structures that gives rise to their Morpho-like angle-independent iridescence, their colors under ambient lighting condition can be predicted by simple transfer-matrix calculations of corresponding planar multilayer structures. By calculating the possible range of colors generated by multilayers of different structures and material combinations using such transfer-matrix methods, we find that low-refractive index multilayers with intrastructure absorption, such as the melanin-containing chitin/air multilayer structure from the Morpho butterflies, can provide not only the most pure structural colors with the largest color gamut, but also the highest stability of color against variations in multilayer structure.

  9. Research on cascading failure in multilayer network with different coupling preference

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Jin, Lei; Wang, Xiao Juan

    This paper is aimed at constructing robust multilayer networks against cascading failure. Considering link protection strategies in reality, we design a cascading failure model based on load distribution and extend it to multilayer. We use the cascading failure model to deduce the scale of the largest connected component after cascading failure, from which we can find that the performance of four kinds of load distribution strategies associates with the load ratio of the current edge to its adjacent edge. Coupling preference is a typical characteristic in multilayer networks which corresponds to the network robustness. The coupling preference of multilayer networks is divided into two forms: the coupling preference in layers and the coupling preference between layers. To analyze the relationship between the coupling preference and the multilayer network robustness, we design a construction algorithm to generate multilayer networks with different coupling preferences. Simulation results show that the load distribution based on the node betweenness performs the best. When the coupling coefficient in layers is zero, the scale-free network is the most robust. In the random network, the assortative coupling in layers is more robust than the disassortative coupling. For the coupling preference between layers, the assortative coupling between layers is more robust than the disassortative coupling both in the scale free network and the random network.

  10. A novel route to prepare a multilayer system via the combination of interface-mediated catalytic chain transfer polymerization and thiol-ene click chemistry.

    PubMed

    Zengin, Adem; Caykara, Tuncer

    2017-05-01

    Herein, we have designed a novel multilayer system composed of poly(methyl methacrylate) [poly(MMA)] brush, biotin, streptavidin and protein-A on a silicon substrate to attach onanti-immunoglobulin G (anti-IgG). poly(MMA) brush with vinyl end-group was first synthesized by the interface-mediated catalytic chain transfer polymerization. The brush was then modified with cysteamine molecules to generate the polymer chains with amine end-group via a thiol-ene click chemistry. The amine end-groups of poly(MMA) chains were also modified with biotin units to ensure selective connection points for streptavidin molecules. Finally, a multilayer system on the silicon substrate was formed by using streptavidin and protein-A molecules, respectively. This multilayer system was employed to attach anti-IgG molecules in a highly oriented manner and provide anti-IgG molecular functional configuration on the multilayer. High reproducibility of the amount of anti-IgG adsorption and homogeneous anti-IgG adsorption layer on the silicon surface could be provided by this multilayer system. The multilayer system with protein A may be opened the door for designing an efficient immunoassay protein chip. Copyright © 2017. Published by Elsevier B.V.

  11. A multicenter, randomized, controlled clinical trial evaluating the use of dehydrated human amnion/chorion membrane allografts and multilayer compression therapy vs. multilayer compression therapy alone in the treatment of venous leg ulcers.

    PubMed

    Serena, Thomas E; Carter, Marissa J; Le, Lam T; Sabo, Matthew J; DiMarco, Daniel T

    2014-01-01

    Venous leg ulcers produce significant clinical and economic burdens on society and often require advanced wound therapy. The purpose of this multicenter, randomized, controlled study is to evaluate the safety and efficacy of one or two applications of dehydrated human amnion/chorion membrane allograft and multilayer compression therapy vs. multilayer compression therapy alone in the treatment of venous leg ulcers. The primary study outcome was the proportion of patients achieving 40% wound closure at 4 weeks. Of the 84 participants enrolled, 53 were randomized to receive allograft and 31 were randomized to the control group of multilayer compression therapy alone. At 4 weeks, 62% in the allograft group and 32% in the control group showed a greater than 40% wound closure (p = 0.005), thus showing a significant difference between the allograft-treated groups and the multilayer compression therapy alone group at the 4-week surrogate endpoint. After 4 weeks, wounds treated with allograft had reduced in size a mean of 48.1% compared with 19.0% for controls. Venous leg ulcers treated with allograft had a significant improvement in healing at 4 weeks compared with multilayer compression therapy alone. © 2014 by the Wound Healing Society.

  12. Piezoelectric Motion of Multilayer Film with Alternate Rows of Optical Isomers of Chiral Polymer Film

    NASA Astrophysics Data System (ADS)

    Yoshida, Tetsuo; Imoto, Kenji; Nakai, Takaaki; Uwami, Ryouta; Kataoka, Takuya; Inoue, Masataka; Fukumoto, Takahiro; Kamimura, Yuuki; Kato, Atsuko; Tajitsu, Yoshiro

    2011-09-01

    We realized a multilayer film laminated alternately with poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA) films in order to improve the piezoelectric performance of the PLLA film. In the fabrication processes, the thicknesses of PLLA and PDLA films were reduced to improve the effective electric field, and a multilayer composed of more than 100 layers (PDLA/PLLA multilayer film) was realized to improve the piezoelectric performance. In general, a single PLLA film has a piezoelectric constant of about 5 pC/N, and it is difficult to observe the piezoelectric resonance in this film of centimeter-order size using a commercial impedance analyzer because of its small Q-value. In contrast, the PDLA/PLLA multilayer film of centimeter-order size has a piezoelectric performance equivalent to that of the piezoelectric material with a piezoelectric constant of 100 pC/N, and also, the piezoelectric resonance can be observed in this film. On the basis of these results, we confirmed that even an object of 259 g mass is made to vibrate under the piezoelectric resonance vibration of this PDLA/PLLA multilayer film. In other words, necessary quantities for actual work as an actuator could be obtained in the PDLA/PLLA multilayer film.

  13. Multilayer composition coatings for cutting tools: formation and performance properties

    NASA Astrophysics Data System (ADS)

    Tabakov, Vladimir P.; Vereschaka, Anatoly S.; Vereschaka, Alexey A.

    2018-03-01

    The paper considers the concept of a multi-layer architecture of the coating in which each layer has a predetermined functionality. Latest generation of coatings with multi-layered architecture for cutting tools secure a dual nature of the coating, in which coatings should not only improve the mechanical and physical characteristics of the cutting tool material, but also reduce the thermo-mechanical effect on the cutting tool determining wear intensity. Here are presented the results of the development of combined methods of forming multi-layer coatings with improved properties. Combined method of forming coatings using a pulsed laser allowed reducing excessively high levels of compressive residual stress and increasing micro hardness of the multilayered coatings. The results in testing coated HSS tools showed that the use of additional pulse of laser processing increases tool life up to 3 times. Using filtered cathodic vacuum arc deposition for the generation of multilayer coatings based on TiAlN compound has increased the wear-resistance of carbide tools by 2 fold compared with tool life of cutting tool with commercial TiN coatings. The aim of this study was to develop an innovative methodological approach to the deposition of multilayer coatings for cutting tools with functional architectural selection, properties and parameters of the coating based on sound knowledge of coating failure in machining process.

  14. Magnetic damping phenomena in ferromagnetic thin-films and multilayers

    NASA Astrophysics Data System (ADS)

    Azzawi, S.; Hindmarch, A. T.; Atkinson, D.

    2017-11-01

    Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.

  15. Effect of periodic number of [Si/Sb80Te20]x multilayer film on its laser-induced crystallization studied by coherent phonon spectroscopy

    PubMed Central

    2012-01-01

    The periodic number dependence of the femtosecond laser-induced crystallization threshold of [Si(5nm)/Sb80Te20(5nm)]x nanocomposite multilayer films has been investigated by coherent phonon spectroscopy. Coherent optical phonon spectra show that femtosecond laser-irradiated crystallization threshold of the multilayer films relies obviously on the periodic number of the multilayer films and decreases with the increasing periodic number. The mechanism of the periodic number dependence is also studied. Possible mechanisms of reflectivity and thermal conductivity losses as well as the effect of the glass substrate are ruled out, while the remaining superlattice structure effect is ascribed to be responsible for the periodic number dependence. The sheet resistance of multilayer films versus a lattice temperature is measured and shows a similar periodic number dependence with one of the laser irradiation crystallization power threshold. In addition, the periodic number dependence of the crystallization temperature can be fitted well with an experiential formula obtained by considering coupling exchange interactions between adjacent layers in a superlattice. Those results provide us with the evidence to support our viewpoint. Our results show that the periodic number of multilayer films may become another controllable parameter in the design and parameter optimization of multilayer phase change films. PMID:23173850

  16. Neuromechanistic Model of Auditory Bistability

    PubMed Central

    Rankin, James; Sussman, Elyse; Rinzel, John

    2015-01-01

    Sequences of higher frequency A and lower frequency B tones repeating in an ABA- triplet pattern are widely used to study auditory streaming. One may experience either an integrated percept, a single ABA-ABA- stream, or a segregated percept, separate but simultaneous streams A-A-A-A- and -B---B--. During minutes-long presentations, subjects may report irregular alternations between these interpretations. We combine neuromechanistic modeling and psychoacoustic experiments to study these persistent alternations and to characterize the effects of manipulating stimulus parameters. Unlike many phenomenological models with abstract, percept-specific competition and fixed inputs, our network model comprises neuronal units with sensory feature dependent inputs that mimic the pulsatile-like A1 responses to tones in the ABA- triplets. It embodies a neuronal computation for percept competition thought to occur beyond primary auditory cortex (A1). Mutual inhibition, adaptation and noise are implemented. We include slow NDMA recurrent excitation for local temporal memory that enables linkage across sound gaps from one triplet to the next. Percepts in our model are identified in the firing patterns of the neuronal units. We predict with the model that manipulations of the frequency difference between tones A and B should affect the dominance durations of the stronger percept, the one dominant a larger fraction of time, more than those of the weaker percept—a property that has been previously established and generalized across several visual bistable paradigms. We confirm the qualitative prediction with our psychoacoustic experiments and use the behavioral data to further constrain and improve the model, achieving quantitative agreement between experimental and modeling results. Our work and model provide a platform that can be extended to consider other stimulus conditions, including the effects of context and volition. PMID:26562507

  17. A neuronal network model for context-dependence of pitch change perception.

    PubMed

    Huang, Chengcheng; Englitz, Bernhard; Shamma, Shihab; Rinzel, John

    2015-01-01

    Many natural stimuli have perceptual ambiguities that can be cognitively resolved by the surrounding context. In audition, preceding context can bias the perception of speech and non-speech stimuli. Here, we develop a neuronal network model that can account for how context affects the perception of pitch change between a pair of successive complex tones. We focus especially on an ambiguous comparison-listeners experience opposite percepts (either ascending or descending) for an ambiguous tone pair depending on the spectral location of preceding context tones. We developed a recurrent, firing-rate network model, which detects frequency-change-direction of successively played stimuli and successfully accounts for the context-dependent perception demonstrated in behavioral experiments. The model consists of two tonotopically organized, excitatory populations, E up and E down, that respond preferentially to ascending or descending stimuli in pitch, respectively. These preferences are generated by an inhibitory population that provides inhibition asymmetric in frequency to the two populations; context dependence arises from slow facilitation of inhibition. We show that contextual influence depends on the spectral distribution of preceding tones and the tuning width of inhibitory neurons. Further, we demonstrate, using phase-space analysis, how the facilitated inhibition from previous stimuli and the waning inhibition from the just-preceding tone shape the competition between the E up and E down populations. In sum, our model accounts for contextual influences on the pitch change perception of an ambiguous tone pair by introducing a novel decoding strategy based on direction-selective units. The model's network architecture and slow facilitating inhibition emerge as predictions of neuronal mechanisms for these perceptual dynamics. Since the model structure does not depend on the specific stimuli, we show that it generalizes to other contextual effects and stimulus types.

  18. Illness perception of dropout patients followed up at bipolar outpatient clinic, Turkey.

    PubMed

    Oflaz, Serap; Guveli, Hulya; Kalelioglu, Tevfik; Akyazı, Senem; Yıldızhan, Eren; Kılıc, Kasım Candas; Basyigit, Sehnaz; Ozdemiroglu, Filiz; Akyuz, Fatma; Gokce, Esra; Bag, Sevda; Kurt, Erhan; Oral, Esat Timucin

    2015-06-01

    Dropout is a common problem in the treatment of psychiatric illnesses including bipolar disorders (BD). The aim of the present study is to investigate illness perceptions of dropout patients with BD. A cross sectional study was done on the participants who attended the Mood Disorder Outpatient Clinic at least 3 times from January 2003 through June 2008, and then failed to attend clinic till to the last one year, 2009, determined as dropout. Thirty-nine dropout patients and 39 attendent patients with BD were recruited for this study. A sociodemographic form and brief illness perception questionnaire were used to capture data. The main reasons of patients with BD for dropout were difficulties of transport (31%), to visit another doctor (26%), giving up drugs (13%) and low education level (59%) is significant for dropout patients. The dropout patients reported that their illness did not critically influence their lives, their treatment had failed to control their illnesses, they had no symptoms, and that their illness did not emotionally affect them. In conclusion, the nonattendance of patients with serious mental illness can result in non-compliance of therapeutic drug regimens, and a recurrence of the appearance symptoms. The perception of illness in dropout patients with BD may be important for understanding and preventing nonattendance. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Giant magnetoresistance (GMR) behavior of electrodeposited NiFe/Cu multilayers: Dependence of non-magnetic and magnetic layer thicknesses

    NASA Astrophysics Data System (ADS)

    Kuru, Hilal; Kockar, Hakan; Alper, Mursel

    2017-12-01

    Giant magnetoresistance (GMR) behavior in electrodeposited NiFe/Cu multilayers was investigated as a function of non-magnetic (Cu) and ferromagnetic (NiFe) layer thicknesses, respectively. Prior to the GMR analysis, structural and magnetic analyses of the multilayers were also studied. The elemental analysis of the multilayers indicated that the Cu and Ni content in the multilayers increase with increasing Cu and NiFe layer thickness, respectively. The structural studies by X-ray diffraction revealed that all multilayers have face centred cubic structure with preferred (1 1 0) crystal orientation as their substrates. The magnetic properties studied with the vibrating sample magnetometer showed that the magnetizations of the samples are significantly affected by the layer thicknesses. Saturation magnetisation, Ms increases from 45 to 225 emu/cm3 with increasing NiFe layer thickness. The increase in the Ni content of the multilayers with a small Fe content causes an increase in the Ms. And, the coercivities ranging from 2 to 24 Oe are between the soft and hard magnetic properties. Also, the magnetic easy axis of the multilayers was found to be in the film plane. Magnetoresistance measurements showed that all multilayers exhibited the GMR behavior. The GMR magnitude increases with increasing Cu layer thickness and reaches its maximum value of 10% at the Cu layer thickness of 1 nm, then it decreases. And similarly, the GMR magnitude increases and reaches highest value of pure GMR (10%) for the NiFe layer thickness of 3 nm, and beyond this point GMR decreases with increasing NiFe layer thickness. Some small component of the anisotropic magnetoresistance was also observed at thin Cu and thick NiFe layer thicknesses. It is seen that the highest GMR values up to 10% were obtained in electrodeposited NiFe/Cu multilayers up to now. The structural, magnetic and magnetoresistance properties of the NiFe/Cu were reported via the variations of the thicknesses of Cu and NiFe layers with stressing the role of layer thicknesses on the high GMR behavior.

  20. Risky feelings: Why a 6% risk of cancer doesn’t always feel like 6%

    PubMed Central

    Zikmund-Fisher, Brian J.; Fagerlin, Angela; Ubel, Peter A.

    2010-01-01

    Objective Emotion plays a strong role in the perception of risk information but is frequently underemphasized in the decision-making and communication literature. We sought to discuss and put into context several lines of research that have explored the links between emotion and risk perceptions, Methods In this article, we provide a focused, “state of the science” review of research revealing the ways that emotion, or affect, influences people’s cancer-related decisions. We identify illustrative experimental research studies that demonstrate the role of affect in people’s estimates of cancer risk, their decisions between different cancer treatments, their perceptions of the chance of cancer recurrence, and their reactions to different methods of presenting risk information. Results These studies show that people have strong affective reactions to cancer risk information and that the way risk information is presented often determines the emotional gist people take away from such communications. Conclusion Cancer researchers, educators and oncologists need to be aware that emotions are often more influential in decision making about cancer treatments and prevention behaviors than factual knowledge is. Practice Implications Anticipating and assessing affective reactions is an essential step in the evaluation and improvement of cancer risk communications. PMID:20739135

  1. Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception.

    PubMed

    Kutschireiter, Anna; Surace, Simone Carlo; Sprekeler, Henning; Pfister, Jean-Pascal

    2017-08-18

    The robust estimation of dynamical hidden features, such as the position of prey, based on sensory inputs is one of the hallmarks of perception. This dynamical estimation can be rigorously formulated by nonlinear Bayesian filtering theory. Recent experimental and behavioral studies have shown that animals' performance in many tasks is consistent with such a Bayesian statistical interpretation. However, it is presently unclear how a nonlinear Bayesian filter can be efficiently implemented in a network of neurons that satisfies some minimum constraints of biological plausibility. Here, we propose the Neural Particle Filter (NPF), a sampling-based nonlinear Bayesian filter, which does not rely on importance weights. We show that this filter can be interpreted as the neuronal dynamics of a recurrently connected rate-based neural network receiving feed-forward input from sensory neurons. Further, it captures properties of temporal and multi-sensory integration that are crucial for perception, and it allows for online parameter learning with a maximum likelihood approach. The NPF holds the promise to avoid the 'curse of dimensionality', and we demonstrate numerically its capability to outperform weighted particle filters in higher dimensions and when the number of particles is limited.

  2. Risky feelings: why a 6% risk of cancer does not always feel like 6%.

    PubMed

    Zikmund-Fisher, Brian J; Fagerlin, Angela; Ubel, Peter A

    2010-12-01

    Emotion plays a strong role in the perception of risk information but is frequently underemphasized in the decision-making and communication literature. We sought to discuss and put into context several lines of research that have explored the links between emotion and risk perceptions. In this article, we provide a focused, "state of the science" review of research revealing the ways that emotion, or affect, influences people's cancer-related decisions. We identify illustrative experimental research studies that demonstrate the role of affect in people's estimates of cancer risk, their decisions between different cancer treatments, their perceptions of the chance of cancer recurrence, and their reactions to different methods of presenting risk information. These studies show that people have strong affective reactions to cancer risk information and that the way risk information is presented often determines the emotional gist people take away from such communications. Cancer researchers, educators and oncologists need to be aware that emotions are often more influential in decision making about cancer treatments and prevention behaviors than factual knowledge is. Anticipating and assessing affective reactions is an essential step in the evaluation and improvement of cancer risk communications. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. A unified computational model of the development of object unity, object permanence, and occluded object trajectory perception.

    PubMed

    Franz, A; Triesch, J

    2010-12-01

    The perception of the unity of objects, their permanence when out of sight, and the ability to perceive continuous object trajectories even during occlusion belong to the first and most important capacities that infants have to acquire. Despite much research a unified model of the development of these abilities is still missing. Here we make an attempt to provide such a unified model. We present a recurrent artificial neural network that learns to predict the motion of stimuli occluding each other and that develops representations of occluded object parts. It represents completely occluded, moving objects for several time steps and successfully predicts their reappearance after occlusion. This framework allows us to account for a broad range of experimental data. Specifically, the model explains how the perception of object unity develops, the role of the width of the occluders, and it also accounts for differences between data for moving and stationary stimuli. We demonstrate that these abilities can be acquired by learning to predict the sensory input. The model makes specific predictions and provides a unifying framework that has the potential to be extended to other visual event categories. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu

    2016-07-01

    The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds.

  5. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  6. 77 FR 71167 - Multilayered Wood Flooring From the People's Republic of China: Notice of Court Decision Not in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-971] Multilayered Wood Flooring... public that the final judgment in this case is not in harmony with the Department's Wood Flooring Final... multilayered wood flooring (``wood flooring'') from the People's Republic of China (``PRC'') covering the...

  7. 18O-tracer diffusion along nanoscaled Sc2O3/yttria stabilized zirconia (YSZ) multilayers: on the influence of strain.

    PubMed

    Aydin, Halit; Korte, Carsten; Janek, Jürgen

    2013-06-01

    The oxygen tracer diffusion coefficient describing transport along nano-/microscaled YSZ/Sc 2 O 3 multilayers as a function of the thick-ness of the ion-conducting YSZ layers has been measured by isotope exchange depth profiling (IEDP), using secondary ion mass spec-trometry (SIMS). The multilayer samples were prepared by pulsed laser deposition (PLD) on (0001) Al 2 O 3 single crystalline substrates. The values for the oxygen tracer diffusion coefficient were analyzed as a combination of contributions from bulk and interface contributions and compared with results from YSZ/Y 2 O 3 -multilayers with similar microstructure. Using the Nernst-Einstein equation as the relation between diffusivity and electrical conductivity we find very good agreement between conductivity and diffusion data, and we exclude substantial electronic conductivity in the multilayers. The effect of hetero-interface transport can be well explained by a simple interface strain model. As the multilayer samples consist of columnar film crystallites with a defined inter-face structure and texture, we also discuss the influence of this particular microstructure on the interfacial strain.

  8. Contemporary ultrasonic signal processing approaches for nondestructive evaluation of multilayered structures

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Ming; Harvey, David M.

    2012-03-01

    Various signal processing techniques have been used for the enhancement of defect detection and defect characterisation. Cross-correlation, filtering, autoregressive analysis, deconvolution, neural network, wavelet transform and sparse signal representations have all been applied in attempts to analyse ultrasonic signals. In ultrasonic nondestructive evaluation (NDE) applications, a large number of materials have multilayered structures. NDE of multilayered structures leads to some specific problems, such as penetration, echo overlap, high attenuation and low signal-to-noise ratio. The signals recorded from a multilayered structure are a class of very special signals comprised of limited echoes. Such signals can be assumed to have a sparse representation in a proper signal dictionary. Recently, a number of digital signal processing techniques have been developed by exploiting the sparse constraint. This paper presents a review of research to date, showing the up-to-date developments of signal processing techniques made in ultrasonic NDE. A few typical ultrasonic signal processing techniques used for NDE of multilayered structures are elaborated. The practical applications and limitations of different signal processing methods in ultrasonic NDE of multilayered structures are analysed.

  9. Photothermoelectric and photovoltaic effects both present in MoS2

    PubMed Central

    Zhang, Youwei; Li, Hui; Wang, Lu; Wang, Haomin; Xie, Xiaomin; Zhang, Shi-Li; Liu, Ran; Qiu, Zhi-Jun

    2015-01-01

    As a finite-energy-bandgap alternative to graphene, semiconducting molybdenum disulfide (MoS2) has recently attracted extensive interest for energy and sensor applications. In particular for broad-spectral photodetectors, multilayer MoS2 is more appealing than its monolayer counterpart. However, little is understood regarding the physics underlying the photoresponse of multilayer MoS2. Here, we employ scanning photocurrent microscopy to identify the nature of photocurrent generated in multilayer MoS2 transistors. The generation and transport of photocurrent in multilayer MoS2 are found to differ from those in other low-dimensional materials that only contribute with either photovoltaic effect (PVE) or photothermoelectric effect (PTE). In multilayer MoS2, the PVE at the MoS2-metal interface dominates in the accumulation regime whereas the hot-carrier-assisted PTE prevails in the depletion regime. Besides, the anomalously large Seebeck coefficient observed in multilayer MoS2, which has also been reported by others, is caused by hot photo-excited carriers that are not in thermal equilibrium with the MoS2 lattice. PMID:25605348

  10. Tuning cell adhesion and growth on biomimetic polyelectrolyte multilayers by variation of pH during layer-by-layer assembly.

    PubMed

    Aggarwal, Neha; Altgärde, Noomi; Svedhem, Sofia; Michanetzis, Georgios; Missirlis, Yannis; Groth, Thomas

    2013-10-01

    Polyelectrolyte multilayers of chitosan and heparin are assembled on glass where heparin is applied at pH = 4, 9 and 4 during the formation of the first layers followed by pH = 9 at the last steps (denoted pH 4 + 9). Measurements of wetting properties, layer mass, and topography show that multilayers formed at pH = 4 are thicker, contain more water and have a smoother surface compared to those prepared at pH = 9 while the pH = 4 + 9 multilayers expressed intermediate properties. pH = 9 multilayers are more cell adhesive and support growth of C2C12 cells better than pH = 4 ones. However, pH 4 + 9 conditions improve the bioactivity to a similar level of pH = 9 layers. Multilayers prepared using pH 4 + 9 conditions form thick enough layers that may allow efficient loading of bioactive molecules. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Multilayer Choline Phosphate Molecule Modified Surface with Enhanced Cell Adhesion but Resistance to Protein Adsorption.

    PubMed

    Chen, Xingyu; Yang, Ming; Liu, Botao; Li, Zhiqiang; Tan, Hong; Li, Jianshu

    2017-08-22

    Choline phosphate (CP), which is a new zwitterionic molecule, and has the reverse order of phosphate choline (PC) and could bind to the cell membrane though the unique CP-PC interaction. Here we modified a glass surface with multilayer CP molecules using surface-initiated atom-transfer radical polymerization (SI-ATRP) and the ring-opening method. Polymeric brushes of (dimethylamino)ethyl methacrylate (DMAEMA) were synthesized by SI-ATRP from the glass surface. Then the grafted PDMAEMA brushes were used to introduce CP groups to fabricate the multilayer CP molecule modified surface. The protein adsorption experiment and cell culture test were used to evaluate the biocompatibility of the modified surfaces by using human umbilical veinendothelial cells (HUVECs). The protein adsorption results demonstrated that the multilayer CP molecule decorated surface could prevent the adsorption of fibrinogen and serum protein. The adhesion and proliferation of cells were improved significantly on the multilayer CP molecule modified surface. Therefore, the biocompatibility of the material surface could be improved by the modified multilayer CP molecule, which exhibits great potential for biomedical applications, e.g., scaffolds in tissue engineering.

  12. Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method

    PubMed Central

    2012-01-01

    In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2. PMID:22221519

  13. Multilayer Mg-Stainless Steel Sheets, Microstructure, and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Inoue, Junya; Sadeghi, Alireza; Kyokuta, Nobuhiko; Ohmori, Toshinori; Koseki, Toshihiko

    2017-05-01

    Different multilayer Mg AZ31 and SS304L steel sheet combinations were prepared with different volume fractions of Mg. Isolated stress-strain curves of the Mg layers showed significant improvements in the strength and elongation of multilayer samples. Results indicated that in the most extreme situation with the lowest Mg volume fraction ( V f = 0.39), the ultimate strength was increased by 25 pct to 370 MPa and the elongation was improved by 70 pct to 0.34. Investigation of the fracture surface showed that failure occurs by the coalescence of cracks close to the interface region. The improved strength of the multilayer samples was due to the combined effect of surface crack prevention by the steel layer and the higher work-hardening rate caused by the possible increased activity of non-basal systems. It is suggested that the stronger work-hardening behavior and the enhanced activity of non-basal systems in the multilayer samples were due to the formation of new stress components in the transverse direction. The larger the volume fraction of steel in the multilayer, the longer the distance remaining unstrained before the UTS.

  14. Atomic Scale Studies of Magnetic Multilayers

    NASA Astrophysics Data System (ADS)

    Plisch, M. J.; Muller, D. A.; Katine, J. A.; Silcox, J.; Buhrman, R. A.

    1998-03-01

    The structure of interfaces in magnetic multilayers plays a crucial role in determining their transport properties(S.S.P. Parkin, Phys. Rev. Lett. 71), 1641 (1993).. A scanning transmission electron microscope (STEM) which can focus a 100 kV electron beam down to 2Åis used to make spatially resolved measurements across magnetic multilayers. Previous x-ray absorption measurements suggest that the Cu d electrons play a large role in coupling the Co layers(M.G. Samant, et. al., Phys. Rev. Lett. 72), 1112 (1994).. With electon energy loss spectroscopy (EELS), information on the spatial variation of Cu d states can be obtained. Interfacial structure and bonding have been examined in multilayers with 80 ÅCu/50 ÅCo periods (with no GMR) and 9 ÅCu/13 ÅCo periods (with greater than 50% GMR). A heteroepitaxial grain structure persisting across many multilayer periods has been seen in the short period structure, but not in the long period structure. There is mixing at the Cu/Co interface and the Cu d states near the interface are significantly modified by the Co. Fe/Cr multilayers have also been examined.

  15. Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1-xFex)2O3 multilayer thin films.

    PubMed

    Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua

    2016-04-28

    Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe(2+) and Fe(3+) are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What's more, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3.

  16. Decomposition of multilayer benzene and n-hexane films on vanadium.

    PubMed

    Souda, Ryutaro

    2015-09-21

    Reactions of multilayer hydrocarbon films with a polycrystalline V substrate have been investigated using temperature-programmed desorption and time-of-flight secondary ion mass spectrometry. Most of the benzene molecules were dissociated on V, as evidenced by the strong depression in the thermal desorption yields of physisorbed species at 150 K. The reaction products dehydrogenated gradually after the multilayer film disappeared from the surface. Large amount of oxygen was needed to passivate the benzene decomposition on V. These behaviors indicate that the subsurface sites of V play a role in multilayer benzene decomposition. Decomposition of the n-hexane multilayer films is manifested by the desorption of methane at 105 K and gradual hydrogen desorption starting at this temperature, indicating that C-C bond scission precedes C-H bond cleavage. The n-hexane dissociation temperature is considerably lower than the thermal desorption temperature of the physisorbed species (140 K). The n-hexane multilayer morphology changes at the decomposition temperature, suggesting that a liquid-like phase formed after crystallization plays a role in the low-temperature decomposition of n-hexane.

  17. Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers.

    PubMed

    Yamashita, Taro; Waki, Kentaro; Miki, Shigehito; Kirkwood, Robert A; Hadfield, Robert H; Terai, Hirotaka

    2016-10-24

    We present superconducting nanowire single-photon detectors (SSPDs) on non-periodic dielectric multilayers, which enable us to design a variety of wavelength dependences of optical absorptance by optimizing the dielectric multilayer. By adopting a robust simulation to optimize the dielectric multilayer, we designed three types of SSPDs with target wavelengths of 500 nm, 800 nm, and telecom range respectively. We fabricated SSPDs based on the optimized designs for 500 and 800 nm, and evaluated the system detection efficiency at various wavelengths. The results obtained confirm that the designed SSPDs with non-periodic dielectric multilayers worked well. This versatile device structure can be effective for multidisciplinary applications in fields such as the life sciences and remote sensing that require high efficiency over a precise spectral range and strong signal rejection at other wavelengths.

  18. High-efficiency spectral purity filter for EUV lithography

    DOEpatents

    Chapman, Henry N [Livermore, CA

    2006-05-23

    An asymmetric-cut multilayer diffracts EUV light. A multilayer cut at an angle has the same properties as a blazed grating, and has been demonstrated to have near-perfect performance. Instead of having to nano-fabricate a grating structure with imperfections no greater than several tens of nanometers, a thick multilayer is grown on a substrate and then cut at an inclined angle using coarse and inexpensive methods. Effective grating periods can be produced this way that are 10 to 100 times smaller than those produced today, and the diffraction efficiency of these asymmetric multilayers is higher than conventional gratings. Besides their ease of manufacture, the use of an asymmetric multilayer as a spectral purity filter does not require that the design of an EUV optical system be modified in any way, unlike the proposed use of blazed gratings for such systems.

  19. Layer-by-Layer Motif Architectures: Programmed Electrochemical Syntheses of Multilayer Mesoporous Metallic Films with Uniformly Sized Pores.

    PubMed

    Jiang, Bo; Li, Cuiling; Qian, Huayu; Hossain, Md Shahriar A; Malgras, Victor; Yamauchi, Yusuke

    2017-06-26

    Although multilayer films have been extensively reported, most compositions have been limited to non-catalytically active materials (e.g. polymers, proteins, lipids, or nucleic acids). Herein, we report the preparation of binder-free multilayer metallic mesoporous films with sufficient accessibility for high electrocatalytic activity by using a programmed electrochemical strategy. By precisely tuning the deposition potential and duration, multilayer mesoporous architectures consisting of alternating mesoporous Pd layers and mesoporous PdPt layers with controlled layer thicknesses can be synthesized within a single electrolyte, containing polymeric micelles as soft templates. This novel architecture, combining the advantages of bimetallic alloys, multilayer architectures, and mesoporous structures, exhibits high electrocatalytic activity for both the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Theoretical Design of Multilayer Dental Posts Using CAD-Based Approach and Sol-Gel Chemistry.

    PubMed

    Maietta, Saverio; De Santis, Roberto; Catauro, Michelina; Martorelli, Massimo; Gloria, Antonio

    2018-05-07

    A computer-aided design (CAD)-based approach and sol-gel chemistry were used to design a multilayer dental post with a compositional gradient and a Young’s modulus varying from 12.4 to 2.3 GPa in the coronal-apical direction. Specifically, we propose a theoretical multilayer post design, consisting of titanium dioxide (TiO₂) and TiO₂/poly(ε-caprolactone) (PCL) hybrid materials containing PCL up to 24% by weight obtained using the sol-gel method. The current study aimed to analyze the effect of the designed multilayer dental post in endodontically treated anterior teeth. Stress distribution was investigated along and between the post and the surrounding structures. In comparison to a metal post, the most uniform distributions with lower stress values and no significant stress concentration were found when using the multilayer post.

  1. Characterization of Mo/Si multilayer growth on stepped topographies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boogaard, A. J. R. vcan den; Louis, E.; Zoethout, E.

    2011-08-31

    Mo/Si multilayer mirrors with nanoscale bilayer thicknesses have been deposited on stepped substrate topographies, using various deposition angles. The multilayer morphology at the stepedge region was studied by cross section transmission electron microscopy. A transition from a continuous- to columnar layer morphology is observed near the step-edge, as a function of the local angle of incidence of the deposition flux. Taking into account the corresponding kinetics and anisotropy in layer growth, a continuum model has been developed to give a detailed description of the height profiles of the individual continuous layers. Complementary optical characterization of the multilayer system using amore » microscope operating in the extreme ultraviolet wavelength range, revealed that the influence of the step-edge on the planar multilayer structure is restricted to a region within 300 nm from the step-edge.« less

  2. Electrically controlled band gap and topological phase transition in two-dimensional multilayer germanane

    NASA Astrophysics Data System (ADS)

    Qi, Jingshan; Li, Xiao; Qian, Xiaofeng

    2016-06-01

    Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z2 invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route to manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.

  3. Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits.

    PubMed

    Shang, Kuanping; Pathak, Shibnath; Guan, Binbin; Liu, Guangyao; Yoo, S J B

    2015-08-10

    We design, fabricate, and demonstrate a silicon nitride (Si(3)N(4)) multilayer platform optimized for low-loss and compact multilayer photonic integrated circuits. The designed platform, with 200 nm thick waveguide core and 700 nm interlayer gap, is compatible for active thermal tuning and applicable to realizing compact photonic devices such as arrayed waveguide gratings (AWGs). We achieve ultra-low loss vertical couplers with 0.01 dB coupling loss, multilayer crossing loss of 0.167 dB at 90° crossing angle, 50 μm bending radius, 100 × 2 μm(2) footprint, lateral misalignment tolerance up to 400 nm, and less than -52 dB interlayer crosstalk at 1550 nm wavelength. Based on the designed platform, we demonstrate a 27 × 32 × 2 multilayer star coupler.

  4. Fabrication and characterization of one-dimensional multilayer gratings for nanoscale microscope calibration

    NASA Astrophysics Data System (ADS)

    Wang, Xingrui; Zhao, Yang; Liu, Jie; Chen, Jie; Li, Tongbao; Cheng, Xinbin

    2016-09-01

    One-dimensional multilayer gratings were prepared by four steps. A periodic Si/SiO2 multilayer was firstly deposited on Si substrate using a magnetron sputtering coating process. Then, the multilayer was been bonded and split into small pieces by diamond wire cutting. The side-wall of the cut sample was subsequently grinded and polished until the surface roughness was less than 1nm. Finally, the SiO2 layers were selective etched using hydrofluoric acid to form the grating structure. In the above steps, special attentions were given to optimize the etching processes to achieve a uniform and smooth grating pattern. Transmission electron microscope (TEM) was used to characterize the multilayer gratings. The pitch size of the grating was evaluated by an offline image analysis algorithm and optimized processes are discussed.

  5. Fabrication of wedged multilayer Laue lenses

    DOE PAGES

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; ...

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more » This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less

  6. Protein-Containing Multilayer Capsules by Templating on Mesoporous CaCO3 Particles: POST- and PRE-Loading Approaches.

    PubMed

    Balabushevich, Nadezhda G; Lopez de Guerenu, Anna V; Feoktistova, Natalia A; Skirtach, Andre G; Volodkin, Dmitry

    2016-01-01

    Encapsulation of model proteins (catalase, insulin, aprotinin) into multilayer dextran sulphate/protamin capsules by templating on CaCO3 microparticles is investigated employing: (i) PRE-loading into CaCO3 particles by adsorption or co-synthesis and (ii) POST-loading into performed capsules. Protein encapsulation is governed by both its size and electrostatic interactions with the carbonate microparticles and multilayer shell. PRE-loading enables improved encapsulation compared to POST-loading (catalase content in capsules 630 and 70 mg · g(-1)). Bioactivity of encapsulated protein is not affected by interaction with multilayers but may be reduced at slightly alkaline pH due to CaCO3 hydrolysis. This study might help to successfully encapsulate fragile bio-macromolecules into multilayer capsules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Design guidelines for advanced LSI microcircuit packaging using thick film multilayer technology

    NASA Technical Reports Server (NTRS)

    Peckinpaugh, C. J.

    1974-01-01

    Ceramic multilayer circuitry results from the sequential build-up of two or more layers of pre-determined conductive interconnections separated by dielectric layers and fired at an elevated temperature to form a solidly fused structure. The resultant ceramic interconnect matrix is used as a base to mount active and passive devices and provide the necessary electrical interconnection to accomplish the desired electrical circuit. Many methods are known for developing multilevel conductor mechanisms such as multilayer printed circuits, welded wire matrices, flexible copper tape conductors, and thin and thick-film ceramic multilayers. Each method can be considered as a specialized field with each possessing its own particular set of benefits and problems. This design guide restricts itself to the art of design, fabrication and assembly of ceramic multilayer circuitry and the reliability of the end product.

  8. Design, Fabrication and Testing of Multilayer Coated X-Ray Optics for the Water Window Imaging X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Spencer, Dwight C.

    1996-01-01

    Hoover et. al. built and tested two imaging Schwarzschild multilayer microscopes. These instruments were constructed as prototypes for the "Water Window Imaging X-Ray Microscope," which is a doubly reflecting, multilayer x-ray microscope configured to operate within the "water window." The "water window" is the narrow region of the x-ray spectrum between the K absorption edges of oxygen (lamda = 23.3 Angstroms) and of carbon (lamda = 43.62 Angstroms), where water is relatively highly transmissive and carbon is highly absorptive. This property of these materials, thus permits the use of high resolution multilayer x-ray microscopes for producing high contrast images of carbon-based structures within the aqueous physiological environments of living cells. We report the design, fabrication and testing of multilayer optics that operate in this regime.

  9. Work and health, a blind spot in curative healthcare? A pilot study.

    PubMed

    Lötters, Freek J B; Foets, Marleen; Burdorf, Alex

    2011-09-01

    Most workers with musculoskeletal disorders on sick leave often consult with regular health care before entering a specific work rehabilitation program. However, it remains unclear to what extent regular healthcare contributes to the timely return to work (RTW). Moreover, several studies have indicated that it might postpone RTW. There is a need to establish the influence of regular healthcare on RTW as outcome; "Does visiting a regular healthcare provider influence the duration of sickness absence and recurrent sick leave due to musculoskeletal disorders?". A cohort of workers on sick leave for 2-6 weeks due to a-specific musculoskeletal disorders was followed for 12 months. The main outcomes for the present analysis were: duration of sickness absence till 100% return to work and recurrent sick leave after initial RTW. Cox regression analyses were conducted with visiting a general health practitioner, physical therapist, or medical specialist during the sick leave period as independent variables. Each regression model was adjusted for variables known to influence health care utilization like age, sex, diagnostic group, pain intensity, functional disability, general health perception, severity of complaints, job control, and physical load at work. Patients visiting a medical specialist reported higher pain intensity and more functional limitations and also had a worse health perception at start of the sick leave period compared with those not visiting a specialist. Visiting a medical specialist delayed return to work significantly (HR = 2.10; 95%CI 1.43-3.07). After approximately 8 weeks on sick leave workers visiting a physical therapist returned to work faster than other workers. A recurrent episode of sick leave during the follow up quick was initiated by higher pain intensity and more functional limitations at the moment of fully return to work. Visiting a primary healthcare provider during the sickness absence period did not influence the occurrence of a new sick leave period. Despite the adjustment for severity of the musculoskeletal disorder, visiting a medical specialist was associated with a delayed full return to work. More attention to the factor 'labor' in the regular healthcare is warranted, especially for those patients experiencing substantial functional limitations due to musculoskeletal disorders.

  10. Multilayer composites and manufacture of same

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi

    2006-02-07

    The present invention is directed towards a process of depositing multilayer thin films, disk-shaped targets for deposition of multilayer thin films by a pulsed laser or pulsed electron beam deposition process, where the disk-shaped targets include at least two segments with differing compositions, and a multilayer thin film structure having alternating layers of a first composition and a second composition, a pair of the alternating layers defining a bi-layer wherein the thin film structure includes at least 20 bi-layers per micron of thin film such that an individual bi-layer has a thickness of less than about 100 nanometers.

  11. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  12. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  13. Method for measurement of diffusivity: Calorimetric studies of Fe/Ni multilayer thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, JX; Barmak, K

    2015-07-15

    A calorimetric method for the measurement of diffusivity in thin film multilayers is introduced and applied to the Fe Ni system. Using this method, the diffusivity in [Fe (25 nm)/Ni (25 nm)](20) multilayer thin films is measured as 4 x 10(-3)exp(-1.6 +/- 0.1 eV/ k(B)T) cm(2)/s, respectively. The diffusion mechanism in the multilayers and its relevance to laboratory synthesis of L1(0) ordered FeNi are discussed. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Calibration of the Multi-Spectral Solar Telescope Array multilayer mirrors and XUV filters

    NASA Technical Reports Server (NTRS)

    Allen, Maxwell J.; Willis, Thomas D.; Kankelborg, Charles C.; O'Neal, Ray H.; Martinez-Galarce, Dennis S.; Deforest, Craig E.; Jackson, Lisa; Lindblom, Joakim; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.

    1993-01-01

    The Multi-Spectral Solar Telescope Array (MSSTA), a rocket-borne solar observatory, was successfully flown in May, 1991, obtaining solar images in eight XUV and FUV bands with 12 compact multilayer telescopes. Extensive measurements have recently been carried out on the multilayer telescopes and thin film filters at the Stanford Synchrotron Radiation Laboratory. These measurements are the first high spectral resolution calibrations of the MSSTA instruments. Previous measurements and/or calculations of telescope throughputs have been confirmed with greater accuracy. Results are presented on Mo/Si multilayer bandpass changes with time and experimental potassium bromide and tellurium filters.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Saptarshi; Bera, Mrinal K.; Roelofs, Andreas K

    A method of forming a TMDC monolayer comprises providing a multi-layer transition metal dichalcogenide (TMDC) film. The multi-layer TMDC film comprises a plurality of layers of the TMDC. The multi-layer TMDC film is positioned on a conducting substrate. The conducting substrate is contacted with an electrolyte solution. A predetermined electrode potential is applied on the conducting substrate and the TMDC monolayer for a predetermined time. A portion of the plurality of layers of the TMDC included in the multi-layer TMDC film is removed by application of the predetermined electrode potential, thereby leaving a TMDC monolayer film positioned on the conductingmore » substrate.« less

  16. Unexpected resonant response in [Fe(001)/Cr(001)]10/MgO(001) multilayers in a magnetic field.

    PubMed

    Aliev, F G; Pryadun, V V; Snoeck, E

    2009-01-23

    We observed unexpected resonant response in [Fe/Cr]10 multilayers epitaxially grown on MgO(100) substrates which exists only when both ac current and dc magnetic field are simultaneously applied. The magnitude of the resonances is determined by the multilayer magnetization proving their intrinsic character. The reduction of interface epitaxy leads to nonlinear dependence of the magnitude of resonances on the alternating current density. We speculate that the existence of the interface transition zone could facilitate the subatomic vibrations in thin metallic films and multilayers grown on bulk insulating substrates.

  17. Physics of X-ray Multilayer Structures: Summaries of Papers Presented at the Physics of X-ray Multilayer Structures Topical Meeting Held in Jackson Hole, Wyoming on March 2-5, 1992. (1992 Technical Digest Series Volume 7).

    DTIC Science & Technology

    1992-03-01

    Synchrotron Radiation Facility, France. A novel method for depositing large size multilayers is de - GRAND ROOM scribed. A plasma produced by distributed...explained by the uphill diffusion of metal Univ. Paris, France. The Born approximation is applied to de - atoms. (p. 27) scribe the diffractive properties of...D. G. TuAl Roughness evolution in films and multilayer struc- Steams, Lawrence Livermore National Laboratory. The de - tuns, M. G. Lagally, Univ

  18. A direct evidence of floating-off mechanism of Ag surfactant in Cu/Co multilayers probed by secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Amir, S. M.; Gupta, Mukul; Gupta, Ajay

    2012-06-01

    In this work we have investigated the floating-off mechanism of Ag surfactant added during the growth of Cu/Co multilayers. It was found that Ag surfactant added at the bottom of the multilayer floats towards the surface making Co-on-Cu and Cu-on-Co interfaces smooth and symmetric which are otherwise rough and asymmetric. The addition of Ag surfactant in Cu/Co multilayer balances the difference of the surface free energies of Cu and Co as a result smooth interfaces are obtained.

  19. Dengue Disease Risk Mental Models in the City of Dhaka, Bangladesh: Juxtapositions and Gaps Between the Public and Experts.

    PubMed

    Dhar-Chowdhury, Parnali; Haque, C Emdad; Driedger, S Michelle

    2016-05-01

    Worldwide, more than 50 million cases of dengue fever are reported every year in at least 124 countries, and it is estimated that approximately 2.5 billion people are at risk for dengue infection. In Bangladesh, the recurrence of dengue has become a growing public health threat. Notably, knowledge and perceptions of dengue disease risk, particularly among the public, are not well understood. Recognizing the importance of assessing risk perception, we adopted a comparative approach to examine a generic methodology to assess diverse sets of beliefs related to dengue disease risk. Our study mapped existing knowledge structures regarding the risk associated with dengue virus, its vector (Aedes mosquitoes), water container use, and human activities in the city of Dhaka, Bangladesh. "Public mental models" were developed from interviews and focus group discussions with diverse community groups; "expert mental models" were formulated based on open-ended discussions with experts in the pertinent fields. A comparative assessment of the public's and experts' knowledge and perception of dengue disease risk has revealed significant gaps in the perception of: (a) disease risk indicators and measurements; (b) disease severity; (c) control of disease spread; and (d) the institutions responsible for intervention. This assessment further identifies misconceptions in public perception regarding: (a) causes of dengue disease; (b) dengue disease symptoms; (c) dengue disease severity; (d) dengue vector ecology; and (e) dengue disease transmission. Based on these results, recommendations are put forward for improving communication of dengue risk and practicing local community engagement and knowledge enhancement in Bangladesh. © 2015 Society for Risk Analysis.

  20. Aging Perceptions in Older Gay and Bisexual Men in Portugal: A Qualitative Study.

    PubMed

    Pereira, Henrique; Serrano, Juan Pedro; de Vries, Brian; Esgalhado, Graça; Afonso, Rosa Marina; Monteiro, Samuel

    2018-07-01

    Aims and Objectives The purpose of this study was to explore the perceptions toward aging among Portuguese gay and bisexual men over 60 years old. Background Despite the growth of the older population, and the increased visibility and acceptance of lesbian, gay, and bisexual people in Western countries, the experience of aging in older gay and bisexual men is only beginning to be understood. Design We used a qualitative research methodology, based on critical gerontology, for establishing research questions and to identify the perspectives on the aging process in older gay and bisexual individuals. Methods We used a structured electronic inquiry with 25 gay and bisexual men over 60 years of age from Portugal. Data were analyzed using thematic analysis to help identify repeated patterns of meaning in the data set. Results The recurrent themes in the narratives of the aging experiences of the participants in the study were as follows: positive perceptions of aging, negative perceptions of aging, coping with being a gay/bisexual man and family ties, professional care, homophobia/discrimination, relationships and social support, intergenerational differences, mediating role of sexual orientation, sociopolitical changes, and personal characteristics. Conclusion Analysis of perceptions about the aging process in older gay and bisexual men emphasized the desire for normalization in the social awareness of sexual orientation. It is important to continue doing research on this topic and disseminate this information among professionals who work with older lesbian, gay, and bisexual people so that they may better understand how they can meet the specific needs of this population.

  1. Is knowledge important? Empirical research on nuclear risk communication in two countries.

    PubMed

    Perko, Tanja; Zeleznik, Nadja; Turcanu, Catrinel; Thijssen, Peter

    2012-06-01

    Increasing audience knowledge is often set as a primary objective of risk communication efforts. But is it worthwhile focusing risk communication strategies solely on enhancing specific knowledge? The main research questions tackled in this paper were: (1) if prior audience knowledge related to specific radiation risks is influential for the perception of these risks and the acceptance of communicated messages and (2) if gender, attitudes, risk perception of other radiation risks, confidence in authorities, and living in the vicinity of nuclear/radiological installations may also play an important role in this matter. The goal of this study was to test empirically the mentioned predictors in two independent case studies in different countries. The first case study was an information campaign for iodine pre-distribution in Belgium (N = 1035). The second was the information campaign on long-term radioactive waste disposal in Slovenia (N = 1,200). In both cases, recurrent and intensive communication campaigns were carried out by the authorities aiming, among other things, at increasing specific audience knowledge. Results show that higher prior audience knowledge leads to more willingness to accept communicated messages, but it does not affect people’s perception of the specific risk communicated. In addition, the influence of prior audience knowledge on the acceptance of communicated messages is shown to be no stronger than that of general radiation risk perception. The results in both case studies suggest that effective risk communication has to focus not only on knowledge but also on other more heuristic predictors, such as risk perception or attitudes toward communicated risks.

  2. Error or "act of God"? A study of patients' and operating room team members' perceptions of error definition, reporting, and disclosure.

    PubMed

    Espin, Sherry; Levinson, Wendy; Regehr, Glenn; Baker, G Ross; Lingard, Lorelei

    2006-01-01

    Calls abound for a culture change in health care to improve patient safety. However, effective change cannot proceed without a clear understanding of perceptions and beliefs about error. In this study, we describe and compare operative team members' and patients' perceptions of error, reporting of error, and disclosure of error. Thirty-nine interviews of team members (9 surgeons, 9 nurses, 10 anesthesiologists) and patients (11) were conducted at 2 teaching hospitals using 4 scenarios as prompts. Transcribed responses to open questions were analyzed by 2 researchers for recurrent themes using the grounded-theory method. Yes/no answers were compared across groups using chi-square analyses. Team members and patients agreed on what constitutes an error. Deviation from standards and negative outcome were emphasized as definitive features. Patients and nurse professionals differed significantly in their perception of whether errors should be reported. Nurses were willing to report only events within their disciplinary scope of practice. Although most patients strongly advocated full disclosure of errors (what happened and how), team members preferred to disclose only what happened. When patients did support partial disclosure, their rationales varied from that of team members. Both operative teams and patients define error in terms of breaking the rules and the concept of "no harm no foul." These concepts pose challenges for treating errors as system failures. A strong culture of individualism pervades nurses' perception of error reporting, suggesting that interventions are needed to foster collective responsibility and a constructive approach to error identification.

  3. Perceptions of low-income African-American mothers about excessive gestational weight gain

    PubMed Central

    Herring, Sharon J.; Henry, Tasmia Q.; Klotz, Alicia; Foster, Gary D.; Whitaker, Robert C.

    2013-01-01

    Objective A rising number of low-income African-American mothers gain more weight in pregnancy than is recommended, placing them at risk for poor maternal and fetal health outcomes. Little is known about the perceptions of mothers in this population that may influence excessive gestational weight gain. Methods In 2010–2011, we conducted 4 focus groups with 31 low-income, pregnant African-Americans in Philadelphia. Two readers independently coded the focus group transcripts to identify recurrent themes. Results We identified 9 themes around perceptions that encouraged or discouraged high gestational weight gain. Mothers attributed high weight gain to eating more in pregnancy, which was the result of being hungrier and the belief that consuming more calories while pregnant was essential for babies’ health. Family members, especially participants own mothers, strongly reinforced the need to “eat for two” to make a healthy baby. Mothers and their families recognized the link between poor fetal outcomes and low weight gains but not higher gains, and thus, most had a greater pre-occupation with too little food intake and weight gain rather than too much. Having physical symptoms from overeating and weight retention after previous pregnancies were factors that discouraged higher gains. Conclusions Low-income African American mothers had more perceptions encouraging high gestational weight gain than discouraging it. Interventions to prevent excessive weight gain need to be sensitive to these perceptions. Messages that link guideline recommended weight gain to optimal infant outcomes and mothers’ physical symptoms may be most effective for weight control. PMID:22160656

  4. Aminosilane multilayer formed on a single-crystalline diamond surface with controlled nanoscopic hardness and bioactivity by a wet process.

    PubMed

    Amemiya, Yosuke; Hatakeyama, Akiko; Shimamoto, Nobuo

    2009-01-06

    Diamond could be an excellent support for nanodevices utilizing biomolecules if it is covered with a polymer layer immobilizing a variety of biomolecules. We report a wet method to form a 3-aminopropyltriethoxysilane (APTES) multilayer with a controlled hardness, roughness, and capacity for immobilizing protein. The method is feasible in typical biochemical laboratories where biomolecules are prepared. Atomic force microscopy (AFM) revealed that the surface geometries and nanoscopic hardness of the multilayers on an oxygen-terminated single-crystalline diamond surface depended on the dielectric constant of the solvent; the smaller the constant, the harder the layer. The hard multilayers had holes and APTES aggregates on the surfaces, while less hard ones had homogeneous surfaces with rare holes and little aggregates. The secondary deposition of APTES in a solvent with a large dielectric constant on a hard multilayer removed the holes, and further treatment of the multilayer in acidic ethanol solution diminished the aggregates. Such a surface can immobilize streptavidin with enough specificity against nonspecific adsorption using a combination of polyethylene glycol reagents. The results of a scratching test and nanoindentation test with AFM provided consistent results, suggesting some universality of the scratching test independent of the tip structure of the cantilever. The mechanism of formation of multilayers on the diamond surface and their binding to it is discussed.

  5. Clustering network layers with the strata multilayer stochastic block model.

    PubMed

    Stanley, Natalie; Shai, Saray; Taylor, Dane; Mucha, Peter J

    2016-01-01

    Multilayer networks are a useful data structure for simultaneously capturing multiple types of relationships between a set of nodes. In such networks, each relational definition gives rise to a layer. While each layer provides its own set of information, community structure across layers can be collectively utilized to discover and quantify underlying relational patterns between nodes. To concisely extract information from a multilayer network, we propose to identify and combine sets of layers with meaningful similarities in community structure. In this paper, we describe the "strata multilayer stochastic block model" (sMLSBM), a probabilistic model for multilayer community structure. The central extension of the model is that there exist groups of layers, called "strata", which are defined such that all layers in a given stratum have community structure described by a common stochastic block model (SBM). That is, layers in a stratum exhibit similar node-to-community assignments and SBM probability parameters. Fitting the sMLSBM to a multilayer network provides a joint clustering that yields node-to-community and layer-to-stratum assignments, which cooperatively aid one another during inference. We describe an algorithm for separating layers into their appropriate strata and an inference technique for estimating the SBM parameters for each stratum. We demonstrate our method using synthetic networks and a multilayer network inferred from data collected in the Human Microbiome Project.

  6. Preparation of multi-layer film consisting of hydrogen-free DLC and nitrogen-containing DLC for conductive hard coating

    NASA Astrophysics Data System (ADS)

    Iijima, Yushi; Harigai, Toru; Isono, Ryo; Degai, Satoshi; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi; Yasui, Haruyuki; Kaneko, Satoru; Kunitsugu, Shinsuke; Kamiya, Masao; Taki, Makoto

    2018-01-01

    Conductive hard-coating films have potential application as protective films for contact pins used in the electrical inspection process for integrated circuit chips. In this study, multi-layer diamond-like carbon (DLC) films were prepared as conductive hard-coating films. The multi-layer DLC films consisting of DLC and nitrogen-containing DLC (N-DLC) film were prepared using a T-shape filtered arc deposition method. Periodic DLC/N-DLC four-layer and eight-layer films had the same film thickness by changing the thickness of each layer. In the ball-on-disk test, the N-DLC mono-layer film showed the highest wear resistance; however, in the spherical polishing method, the eight-layer film showed the highest polishing resistance. The wear and polishing resistance and the aggressiveness against an opponent material of the multi-layer DLC films improved by reducing the thickness of a layer. In multi-layer films, the soft N-DLC layer between hard DLC layers is believed to function as a cushion. Thus, the tribological properties of the DLC films were improved by a multi-layered structure. The electrical resistivity of multi-layer DLC films was approximately half that of the DLC mono-layer film. Therefore, the periodic DLC/N-DLC eight-layer film is a good conductive hard-coating film.

  7. Multilayer emulsions as a strategy for linseed oil and α-lipoic acid micro-encapsulation: study on preparation and in vitro characterization.

    PubMed

    Huang, Juan; Wang, Qiang; Li, Tong; Xia, Nan; Xia, Qiang

    2018-07-01

    Linseed oil and α-lipoic acid are bioactive ingredients, which play an important role in human nutrition and health. However, their application in functional foods is limited because of their instabilities and poor solubilities in hydrophilic matrices. Multilayer emulsions are particularly useful to protect encapsulated bioactive ingredients. The aim of this study was to fabricate multilayer emulsions by a high-pressure homogenization method to encapsulate linseed oil and α-lipoic acid simultaneously. Tween 20 and lecithin were used as surfactants to stabilize the oil droplets of primary emulsions. Multilayer emulsions were produced by using an electrostatic layer-by-layer deposition process of lecithin-chitosan membranes. Thermal treatment exhibited that chitosan encapsulation could improve the thermal stability of primary emulsions. During in vitro digestion, it was found that chitosan encapsulation had little effect on the lipolysis of linseed oil and bioaccessibility of α-lipoic acid. The oxidation stability of linseed oil in multilayer emulsions was improved effectively by chitosan encapsulation and α-lipoic acid. Chitosan encapsulation could inhibit the degradation of α-lipoic acid. A physical stability study indicated that multilayer emulsions had good centrifugal, dilution and storage stabilities. Multilayer emulsion is an effective delivery system to incorporate linseed oil and α-lipoic acid into functional foods and beverages. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  8. Development of a flat-field spectrometer with a wideband Ni/C multilayer grating in the 1–3.5 keV range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imazono, Takashi

    2016-07-27

    To develop a flat-field spectrometer with coverage of the 1–3.5 keV range, a wideband Ni/C multilayer grating was invented. The multilayer consists of two kinds of layer structures. One is a conventional periodic multilayer of thickness D{sub 1} = 5.6 nm, Ni thickness ratio to the multilayer period γ{sub 1} = 0.5 and the number of layers N{sub 1} = 79. Both the first and last layers are Ni. The other is a C/Ni bilayer of D{sub 2} = 8.4 nm, γ{sub 2} = 0.53 and N{sub 2} = 2. The first layer is C and then Ni. The aperiodicmore » multilayer from the topmost C/Ni bilayer was coated on a laminar-type grating having an effective grating constant of 1/2400 mm, groove depth of 2.8 nm, and duty ratio (land width/groove period) of 0.5. In a preliminary experiment, the diffraction efficiency was in excess of 0.8% in the energy range of 2.1-3.3 keV and the maximum of 5.4% at 3.1 keV at a constant angle of incidence of 88.54°, which is considerably higher than that of an Au-coated grating before deposition of the multilayer.« less

  9. Clustering network layers with the strata multilayer stochastic block model

    PubMed Central

    Stanley, Natalie; Shai, Saray; Taylor, Dane; Mucha, Peter J.

    2016-01-01

    Multilayer networks are a useful data structure for simultaneously capturing multiple types of relationships between a set of nodes. In such networks, each relational definition gives rise to a layer. While each layer provides its own set of information, community structure across layers can be collectively utilized to discover and quantify underlying relational patterns between nodes. To concisely extract information from a multilayer network, we propose to identify and combine sets of layers with meaningful similarities in community structure. In this paper, we describe the “strata multilayer stochastic block model” (sMLSBM), a probabilistic model for multilayer community structure. The central extension of the model is that there exist groups of layers, called “strata”, which are defined such that all layers in a given stratum have community structure described by a common stochastic block model (SBM). That is, layers in a stratum exhibit similar node-to-community assignments and SBM probability parameters. Fitting the sMLSBM to a multilayer network provides a joint clustering that yields node-to-community and layer-to-stratum assignments, which cooperatively aid one another during inference. We describe an algorithm for separating layers into their appropriate strata and an inference technique for estimating the SBM parameters for each stratum. We demonstrate our method using synthetic networks and a multilayer network inferred from data collected in the Human Microbiome Project. PMID:28435844

  10. Visual analytics in medical education: impacting analytical reasoning and decision making for quality improvement.

    PubMed

    Vaitsis, Christos; Nilsson, Gunnar; Zary, Nabil

    2015-01-01

    The medical curriculum is the main tool representing the entire undergraduate medical education. Due to its complexity and multilayered structure it is of limited use to teachers in medical education for quality improvement purposes. In this study we evaluated three visualizations of curriculum data from a pilot course, using teachers from an undergraduate medical program and applying visual analytics methods. We found that visual analytics can be used to positively impacting analytical reasoning and decision making in medical education through the realization of variables capable to enhance human perception and cognition on complex curriculum data. The positive results derived from our evaluation of a medical curriculum and in a small scale, signify the need to expand this method to an entire medical curriculum. As our approach sustains low levels of complexity it opens a new promising direction in medical education informatics research.

  11. Machine learning modelling for predicting soil liquefaction susceptibility

    NASA Astrophysics Data System (ADS)

    Samui, P.; Sitharam, T. G.

    2011-01-01

    This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT) data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN) based on multi-layer perceptions (MLP) that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM) that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT [(N1)60] and cyclic stress ratio (CSR). Further, an attempt has been made to simplify the models, requiring only the two parameters [(N1)60 and peck ground acceleration (amax/g)], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.

  12. Colloids in food: ingredients, structure, and stability.

    PubMed

    Dickinson, Eric

    2015-01-01

    This article reviews progress in the field of food colloids with particular emphasis on advances in novel functional ingredients and nanoscale structuring. Specific aspects of ingredient development described here are the stabilization of bubbles and foams by the protein hydrophobin, the emulsifying characteristics of Maillard-type protein-polysaccharide conjugates, the structural and functional properties of protein fibrils, and the Pickering stabilization of dispersed droplets by food-grade nanoparticles and microparticles. Building on advances in the nanoscience of biological materials, the application of structural design principles to the fabrication of edible colloids is leading to progress in the fabrication of functional dispersed systems-multilayer interfaces, multiple emulsions, and gel-like emulsions. The associated physicochemical insight is contributing to our mechanistic understanding of oral processing and textural perception of food systems and to the development of colloid-based strategies to control delivery of nutrients during food digestion within the human gastrointestinal tract.

  13. E-Nose Vapor Identification Based on Dempster-Shafer Fusion of Multiple Classifiers

    NASA Technical Reports Server (NTRS)

    Li, Winston; Leung, Henry; Kwan, Chiman; Linnell, Bruce R.

    2005-01-01

    Electronic nose (e-nose) vapor identification is an efficient approach to monitor air contaminants in space stations and shuttles in order to ensure the health and safety of astronauts. Data preprocessing (measurement denoising and feature extraction) and pattern classification are important components of an e-nose system. In this paper, a wavelet-based denoising method is applied to filter the noisy sensor measurements. Transient-state features are then extracted from the denoised sensor measurements, and are used to train multiple classifiers such as multi-layer perceptions (MLP), support vector machines (SVM), k nearest neighbor (KNN), and Parzen classifier. The Dempster-Shafer (DS) technique is used at the end to fuse the results of the multiple classifiers to get the final classification. Experimental analysis based on real vapor data shows that the wavelet denoising method can remove both random noise and outliers successfully, and the classification rate can be improved by using classifier fusion.

  14. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  15. Method of making coherent multilayer crystals

    DOEpatents

    Schuller, Ivan K.; Falco, Charles M.

    1984-01-01

    A new material consisting of a coherent multilayer crystal of two or more elements where each layer is composed of a single element. Each layer may vary in thickness from about 2 .ANG. to 2500 .ANG.. The multilayer crystals are prepared by sputter deposition under conditions which slow the sputtered atoms to near substrate temperatures before they contact the substrate.

  16. Integration of planar transformer and/or planar inductor with power switches in power converter

    DOEpatents

    Chen, Kanghua; Ahmed, Sayeed; Zhu, Lizhi

    2007-10-30

    A power converter integrates at least one planar transformer comprising a multi-layer transformer substrate and/or at least one planar inductor comprising a multi-layer inductor substrate with a number of power semiconductor switches physically and thermally coupled to a heat sink via one or more multi-layer switch substrates.

  17. 76 FR 33782 - Multilayered Wood Flooring From China; Scheduling of the Final Phase of Countervailing Duty and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... Wood Flooring From China; Scheduling of the Final Phase of Countervailing Duty and Antidumping... retarded, by reason of subsidized and less-than-fair-value imports from China of multilayered wood flooring... as `` * * * multilayered wood flooring, composed of an assembly of two or more layers or plies of...

  18. Exponential H(infinity) synchronization of general discrete-time chaotic neural networks with or without time delays.

    PubMed

    Qi, Donglian; Liu, Meiqin; Qiu, Meikang; Zhang, Senlin

    2010-08-01

    This brief studies exponential H(infinity) synchronization of a class of general discrete-time chaotic neural networks with external disturbance. On the basis of the drive-response concept and H(infinity) control theory, and using Lyapunov-Krasovskii (or Lyapunov) functional, state feedback controllers are established to not only guarantee exponential stable synchronization between two general chaotic neural networks with or without time delays, but also reduce the effect of external disturbance on the synchronization error to a minimal H(infinity) norm constraint. The proposed controllers can be obtained by solving the convex optimization problems represented by linear matrix inequalities. Most discrete-time chaotic systems with or without time delays, such as Hopfield neural networks, cellular neural networks, bidirectional associative memory networks, recurrent multilayer perceptrons, Cohen-Grossberg neural networks, Chua's circuits, etc., can be transformed into this general chaotic neural network to be H(infinity) synchronization controller designed in a unified way. Finally, some illustrated examples with their simulations have been utilized to demonstrate the effectiveness of the proposed methods.

  19. Forecasting the discomfort levels within the greater Athens area, Greece using artificial neural networks and multiple criteria analysis

    NASA Astrophysics Data System (ADS)

    Vouterakos, P. A.; Moustris, K. P.; Bartzokas, A.; Ziomas, I. C.; Nastos, P. T.; Paliatsos, A. G.

    2012-12-01

    In this work, artificial neural networks (ANNs) were developed and applied in order to forecast the discomfort levels due to the combination of high temperature and air humidity, during the hot season of the year, in eight different regions within the Greater Athens area (GAA), Greece. For the selection of the best type and architecture of ANNs-forecasting models, the multiple criteria analysis (MCA) technique was applied. Three different types of ANNs were developed and tested with the MCA method. Concretely, the multilayer perceptron, the generalized feed forward networks (GFFN), and the time-lag recurrent networks were developed and tested. Results showed that the best ANNs type performance was achieved by using the GFFN model for the prediction of discomfort levels due to high temperature and air humidity within GAA. For the evaluation of the constructed ANNs, appropriate statistical indices were used. The analysis proved that the forecasting ability of the developed ANNs models is very satisfactory at a significant statistical level of p < 0.01.

  20. Comparison of RF spectrum prediction methods for dynamic spectrum access

    NASA Astrophysics Data System (ADS)

    Kovarskiy, Jacob A.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2017-05-01

    Dynamic spectrum access (DSA) refers to the adaptive utilization of today's busy electromagnetic spectrum. Cognitive radio/radar technologies require DSA to intelligently transmit and receive information in changing environments. Predicting radio frequency (RF) activity reduces sensing time and energy consumption for identifying usable spectrum. Typical spectrum prediction methods involve modeling spectral statistics with Hidden Markov Models (HMM) or various neural network structures. HMMs describe the time-varying state probabilities of Markov processes as a dynamic Bayesian network. Neural Networks model biological brain neuron connections to perform a wide range of complex and often non-linear computations. This work compares HMM, Multilayer Perceptron (MLP), and Recurrent Neural Network (RNN) algorithms and their ability to perform RF channel state prediction. Monte Carlo simulations on both measured and simulated spectrum data evaluate the performance of these algorithms. Generalizing spectrum occupancy as an alternating renewal process allows Poisson random variables to generate simulated data while energy detection determines the occupancy state of measured RF spectrum data for testing. The results suggest that neural networks achieve better prediction accuracy and prove more adaptable to changing spectral statistics than HMMs given sufficient training data.

  1. EUV multilayer mirrors with enhanced stability

    NASA Astrophysics Data System (ADS)

    Benoit, Nicolas; Yulin, Sergiy; Feigl, Torsten; Kaiser, Norbert

    2006-08-01

    The application of multilayer optics in EUV lithography requires not only the highest possible normal-incidence reflectivity but also a long-term thermal and radiation stability at operating temperatures. This requirement is most important in the case of the collector mirror of the illumination system close to the EUV source where a short-time decrease in reflectivity is most likely. Mo/Si multilayer mirrors, designed for high normal reflectivity at the wavelength of 13.5 nm and deposited by dc magnetron sputtering, were directly exposed to EUV radiation without mitigation system. They presented a loss of reflectivity of more than 18% after only 8 hours of irradiation by a Xe-discharge source. Another problem of Mo/Si multilayers is the instability of reflectivity and peak wavelength under high heat load. It becomes especially critical at temperatures above 200°C, where interdiffusion between the molybdenum and the silicon layers is observed. The development of high-temperature multilayers was focused on two alternative Si-based systems: MoSi II/Si and interface engineered Mo/C/Si/C multilayer mirrors. The multilayer designs as well as the deposition parameters of all systems were optimized in terms of high peak reflectivity (>= 60 %) at a wavelength of 13.5 nm and high thermal stability. Small thermally induced changes of the MoSi II/Si multilayer properties were found but they were independent of the annealing time at all temperatures examined. A wavelength shift of -1.7% and a reflectivity drop of 1.0% have been found after annealing at 500°C for 100 hours. The total degradation of optical properties above 650°C can be explained by a recrystallization process of MoSi II layers.

  2. Layer-by-layer grown scalable redox-active ruthenium-based molecular multilayer thin films for electrochemical applications and beyond.

    PubMed

    Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M; Haga, Masa-aki; Wandlowski, Thomas

    2015-11-14

    Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g(-1) at a current density of 10 μA cm(-2) and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications.

  3. Comparing multilayer brain networks between groups: Introducing graph metrics and recommendations.

    PubMed

    Mandke, Kanad; Meier, Jil; Brookes, Matthew J; O'Dea, Reuben D; Van Mieghem, Piet; Stam, Cornelis J; Hillebrand, Arjan; Tewarie, Prejaas

    2018-02-01

    There is an increasing awareness of the advantages of multi-modal neuroimaging. Networks obtained from different modalities are usually treated in isolation, which is however contradictory to accumulating evidence that these networks show non-trivial interdependencies. Even networks obtained from a single modality, such as frequency-band specific functional networks measured from magnetoencephalography (MEG) are often treated independently. Here, we discuss how a multilayer network framework allows for integration of multiple networks into a single network description and how graph metrics can be applied to quantify multilayer network organisation for group comparison. We analyse how well-known biases for single layer networks, such as effects of group differences in link density and/or average connectivity, influence multilayer networks, and we compare four schemes that aim to correct for such biases: the minimum spanning tree (MST), effective graph resistance cost minimisation, efficiency cost optimisation (ECO) and a normalisation scheme based on singular value decomposition (SVD). These schemes can be applied to the layers independently or to the multilayer network as a whole. For correction applied to whole multilayer networks, only the SVD showed sufficient bias correction. For correction applied to individual layers, three schemes (ECO, MST, SVD) could correct for biases. By using generative models as well as empirical MEG and functional magnetic resonance imaging (fMRI) data, we further demonstrated that all schemes were sensitive to identify network topology when the original networks were perturbed. In conclusion, uncorrected multilayer network analysis leads to biases. These biases may differ between centres and studies and could consequently lead to unreproducible results in a similar manner as for single layer networks. We therefore recommend using correction schemes prior to multilayer network analysis for group comparisons. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The effects of layers in dry snow on its passive microwave emissions using dense media radiative transfer theory based on the quasicrystalline approximation (QCA/DMRT)

    USGS Publications Warehouse

    Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.

    2008-01-01

    A model for the microwave emissions of multilayer dry snowpacks, based on dense media radiative transfer (DMRT) theory with the quasicrystalline approximation (QCA), provides more accurate results when compared to emissions determined by a homogeneous snowpack and other scattering models. The DMRT model accounts for adhesive aggregate effects, which leads to dense media Mie scattering by using a sticky particle model. With the multilayer model, we examined both the frequency and polarization dependence of brightness temperatures (Tb's) from representative snowpacks and compared them to results from a single-layer model and found that the multilayer model predicts higher polarization differences, twice as much, and weaker frequency dependence. We also studied the temporal evolution of Tb from multilayer snowpacks. The difference between Tb's at 18.7 and 36.5 GHz can be S K lower than the single-layer model prediction in this paper. By using the snowpack observations from the Cold Land Processes Field Experiment as input for both multi- and single-layer models, it shows that the multilayer Tb's are in better agreement with the data than the single-layer model. With one set of physical parameters, the multilayer QCA/DMRT model matched all four channels of Tb observations simultaneously, whereas the single-layer model could only reproduce vertically polarized Tb's. Also, the polarization difference and frequency dependence were accurately matched by the multilayer model using the same set of physical parameters. Hence, algorithms for the retrieval of snowpack depth or water equivalent should be based on multilayer scattering models to achieve greater accuracy. ?? 2008 IEEE.

  5. Highly Crystalline CVD-grown Multilayer MoSe2 Thin Film Transistor for Fast Photodetector

    PubMed Central

    Jung, Chulseung; Kim, Seung Min; Moon, Hyunseong; Han, Gyuchull; Kwon, Junyeon; Hong, Young Ki; Omkaram, Inturu; Yoon, Youngki; Kim, Sunkook; Park, Jozeph

    2015-01-01

    Hexagonal molybdenum diselenide (MoSe2) multilayers were grown by chemical vapor deposition (CVD). A relatively high pressure (>760 Torr) was used during the CVD growth to achieve multilayers by creating multiple nuclei based on the two-dimensional crystal growth model. Our CVD-grown multilayer MoSe2 thin-film transistors (TFTs) show p-type-dominant ambipolar behaviors, which are attributed to the formation of Se vacancies generated at the decomposition temperature (650 °C) after the CVD growth for 10 min. Our MoSe2 TFT with a reasonably high field-effect mobility (10 cm2/V · s) exhibits a high photoresponsivity (93.7 A/W) and a fast photoresponse time (τrise ~ 0.4 s) under the illumination of light, which demonstrates the practical feasibility of multilayer MoSe2 TFTs for photodetector applications. PMID:26477744

  6. PageRank versatility analysis of multilayer modality-based network for exploring the evolution of oil-water slug flow.

    PubMed

    Gao, Zhong-Ke; Dang, Wei-Dong; Li, Shan; Yang, Yu-Xuan; Wang, Hong-Tao; Sheng, Jing-Ran; Wang, Xiao-Fan

    2017-07-14

    Numerous irregular flow structures exist in the complicated multiphase flow and result in lots of disparate spatial dynamical flow behaviors. The vertical oil-water slug flow continually attracts plenty of research interests on account of its significant importance. Based on the spatial transient flow information acquired through our designed double-layer distributed-sector conductance sensor, we construct multilayer modality-based network to encode the intricate spatial flow behavior. Particularly, we calculate the PageRank versatility and multilayer weighted clustering coefficient to quantitatively explore the inferred multilayer modality-based networks. Our analysis allows characterizing the complicated evolution of oil-water slug flow, from the opening formation of oil slugs, to the succedent inter-collision and coalescence among oil slugs, and then to the dispersed oil bubbles. These properties render our developed method particularly powerful for mining the essential flow features from the multilayer sensor measurements.

  7. X-ray polarimeter with a transmission multilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitamoto, Shunji; Murakami, Hiroshi; Shishido, Youich

    2010-02-15

    We fabricated a novel x-ray polarimeter with a transmission multilayer and measured its performance with synchrotron radiation. A self standing multilayer with seven Mo/Si bilayers was installed with an incident angle of 45 deg. in front of a back-illuminated CCD. The multilayer can be rotated around the normal direction of the CCD keeping an incident angle of 45 deg. This polarimeter can be easily installed along the optical axis of x-ray optics. By using the CCD as a photon counting detector with a moderate energy resolution, the polarization of photons in a designed energy band can be measured along withmore » the image. At high photon energies, where the multilayer is transparent, the polarimeter can be used for imaging and spectroscopic observations. We confirmed a modulation factor of 45% with 45% and 17% transmission for P- and S-polarization, respectively.« less

  8. Rhombohedral Multilayer Graphene: A Magneto-Raman Scattering Study.

    PubMed

    Henni, Younes; Ojeda Collado, Hector Pablo; Nogajewski, Karol; Molas, Maciej R; Usaj, Gonzalo; Balseiro, Carlos A; Orlita, Milan; Potemski, Marek; Faugeras, Clement

    2016-06-08

    Graphene layers are known to stack in two stable configurations, namely, ABA or ABC stacking, with drastically distinct electronic properties. Unlike the ABA stacking, little has been done to experimentally investigate the electronic properties of ABC graphene multilayers. Here, we report on the first magneto optical study of a large ABC domain in a graphene multilayer flake, with ABC sequences exceeding 17 graphene sheets. ABC-stacked multilayers can be fingerprinted with a characteristic electronic Raman scattering response, which persists even at room temperatures. Tracing the magnetic field evolution of the inter Landau level excitations from this domain gives strong evidence for the existence of a dispersionless electronic band near the Fermi level, characteristic of such stacking. Our findings present a simple yet powerful approach to probe ABC stacking in graphene multilayer flakes, where this highly degenerated band appears as an appealing candidate to host strongly correlated states.

  9. Release-rate calorimetry of multilayered materials for aircraft seats

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Duskin, F. E.; Spieth, H.; Trabold, E.; Parker, J. A.

    1979-01-01

    Multilayered samples of contemporary and improved fire resistant aircraft seat materials (foam cushion, decorative fabric, slip sheet, fire blocking layer, and cushion reinforcement layer) were evaluated for their rates of heat release and smoke generation. Top layers (decorative fabric, slip sheet, fire blocking, and cushion reinforcement) with glass fiber block cushion were evaluated to determine which materials based on their minimum contributions to the total heat release of the multilayered assembly may be added or deleted. Top layers exhibiting desirable burning profiles were combined with foam cushion materials. The smoke and heat release rates of multilayered seat materials were then measured at heat fluxes of 1.5 and 3.5 W/sq cm. Choices of contact and silicone adhesives for bonding multilayered assemblies were based on flammability, burn and smoke generation, animal toxicity tests, and thermal gravimetric analysis. Abrasion tests were conducted on the decorative fabric covering and slip sheet to ascertain service life and compatibility of layers.

  10. Electrically controlled band gap and topological phase transition in two-dimensional multilayer germanane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Jingshan, E-mail: qijingshan@jsnu.edu.cn, E-mail: feng@tamu.edu; Li, Xiao; Qian, Xiaofeng, E-mail: qijingshan@jsnu.edu.cn, E-mail: feng@tamu.edu

    2016-06-20

    Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z{sub 2} invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route tomore » manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.« less

  11. Multilayered Magnetic Gelatin Membrane Scaffolds

    PubMed Central

    Samal, Sangram K.; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L.; Dediu, V. Alek

    2016-01-01

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial–magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications. PMID:26451743

  12. Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

    DOE PAGES

    Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman; ...

    2014-01-20

    Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assistedmore » interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.« less

  13. Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman

    Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assistedmore » interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.« less

  14. Photo-crosslinkable polymers for fabrication of photonic multilayer sensors

    NASA Astrophysics Data System (ADS)

    Chiappelli, Maria; Hayward, Ryan C.

    2013-03-01

    We have used photo-crosslinkable polymers to fabricate photonic multilayer sensors. Benzophenone is utilized as a covalently incorporated pendent photo-crosslinker, providing a convenient means of fabricating multilayer films by sequential spin-coating and crosslinking processes. Colorimetric temperature sensors were designed from thermally-responsive, low-refractive index poly(N-isopropylacrylamide) (PNIPAM) and high-refractive index poly(para-methyl styrene) (P pMS). Copolymer chemistries and layer thicknesses were selected to provide robust multilayer sensors which show color changes across nearly the full visible spectrum due to changes in temperature of the hydrated film stack. We have characterized the uniformity and interfacial broadening within the multilayers, the kinetics of swelling and de-swelling, and the reversibility over multiple hydration/dehydration cycles. We also describe how the approach can be extended to alternative sensor designs through the ability to tailor each layer independently, as well as to additional stimuli by selecting alternative copolymer chemistries.

  15. Multilayered Magnetic Gelatin Membrane Scaffolds.

    PubMed

    Samal, Sangram K; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L; Dediu, V Alek

    2015-10-21

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial-magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications.

  16. Alignment of a multilayer-coated imaging system using extreme ultraviolet Foucault and Ronchi interferometric testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray-Chaudhuri, A.K.; Ng, W.; Cerrina, F.

    1995-11-01

    Multilayer-coated imaging systems for extreme ultraviolet (EUV) lithography at 13 nm represent a significant challenge for alignment and characterization. The standard practice of utilizing visible light interferometry fundamentally provides an incomplete picture since this technique fails to account for phase effects induced by the multilayer coating. Thus the development of optical techniques at the functional EUV wavelength is required. We present the development of two EUV optical tests based on Foucault and Ronchi techniques. These relatively simple techniques are extremely sensitive due to the factor of 50 reduction in wavelength. Both techniques were utilized to align a Mo--Si multilayer-coated Schwarzschildmore » camera. By varying the illumination wavelength, phase shift effects due to the interplay of multilayer coating and incident angle were uniquely detected. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}« less

  17. Method for characterizing mask defects using image reconstruction from X-ray diffraction patterns

    DOEpatents

    Hau-Riege, Stefan Peter [Fremont, CA

    2007-05-01

    The invention applies techniques for image reconstruction from X-ray diffraction patterns on the three-dimensional imaging of defects in EUVL multilayer films. The reconstructed image gives information about the out-of-plane position and the diffraction strength of the defect. The positional information can be used to select the correct defect repair technique. This invention enables the fabrication of defect-free (since repaired) X-ray Mo--Si multilayer mirrors. Repairing Mo--Si multilayer-film defects on mask blanks is a key for the commercial success of EUVL. It is known that particles are added to the Mo--Si multilayer film during the fabrication process. There is a large effort to reduce this contamination, but results are not sufficient, and defects continue to be a major mask yield limiter. All suggested repair strategies need to know the out-of-plane position of the defects in the multilayer.

  18. Perceived stress, recurrent pain, and aggregate salivary cortisol measures in mid-adolescent girls and boys.

    PubMed

    Lindfors, Petra; Folkesson Hellstadius, Lisa; Östberg, Viveca

    2017-02-01

    Measures of perceived stress have been criticized for theoretical inconsistency. However, the validated pressure activation stress scale has been suggested as a theoretically sound alternative. But it is unclear how pressure and activation stress relate to objective and subjective measures including commonly used aggregate cortisol measures and health complaints respectively. Specifically, this study aimed at investigating how pressure and activation stress were related to aggregate salivary cortisol measures and recurrent pain in mid-adolescent girls and boys. Mid-adolescents (119 girls and 56 boys) provided self-reports in questionnaires on activation and pressure stress and recurrent pain (headache, stomach ache, neck/shoulder and back pain). Additionally, adolescents sampled saliva during an ordinary school day: (1) immediately at awakening; (2) 30 minutes after waking up; (3) 60 minutes after waking up, and (4) at 8 p.m. These samples were analyzed for cortisol. Hierarchical regressions showed no statistically significant associations between activation and pressure stress and cortisol, neither for girls nor for boys. However, activation and pressure stress were significantly associated with recurrent pain but only for girls. The findings may relate to subjective and objective measures reflecting distinct aspects of stress-related functioning. However, the study participants included mid-adolescents whose bodily systems are flexible and still relatively unaffected by the strain of their daily stress perceptions. To conclude, the non-significant relationships between activation and pressure stress and commonly used aggregate measures of cortisol adds to the understanding of how perceived stress may relate to physiological functioning in the daily life of adolescents when using such aggregate measures. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  19. Prospective Clinical Utility Study of the Use of the 21-Gene Assay in Adjuvant Clinical Decision Making in Women With Estrogen Receptor-Positive Early Invasive Breast Cancer: Results From the SWITCH Study.

    PubMed

    Gligorov, Joseph; Pivot, Xavier B; Jacot, William; Naman, Hervé L; Spaeth, Dominique; Misset, Jean-Louis; Largillier, Rémy; Sautiere, Jean-Loup; de Roquancourt, Anne; Pomel, Christophe; Rouanet, Philippe; Rouzier, Roman; Penault-Llorca, Frederique M

    2015-08-01

    The 21-gene Oncotype DX Recurrence Score assay is a validated assay to help decide the appropriate treatment for estrogen receptor-positive (ER+), early-stage breast cancer (EBC) in the adjuvant setting. The choice of adjuvant treatments might vary considerably in different countries according to various treatment guidelines. This prospective multicenter study is the first to assess the impact of the Oncotype DX assay in the French clinical setting. A total of 100 patients with ER+, human epidermal growth factor receptor 2-negative EBC, and node-negative (pN0) disease or micrometastases in up to 3 lymph nodes (pN1mi) were enrolled. Treatment recommendations, physicians' confidence before and after knowing the Recurrence Score value, and physicians' perception of the assay were recorded. Of the 100 patients, 95 were evaluable (83 pN0, 12 pN1mi). Treatment recommendations changed in 37% of patients, predominantly from chemoendocrine to endocrine treatment alone. The proportion of patients recommended chemotherapy decreased from 52% pretest to 25% post-test. Of patients originally recommended chemotherapy, 61% were recommended endocrine treatment alone after receiving the Recurrence Score result. For both pN0 and pN1mi patients, post-test recommendations appeared to follow the Recurrence Score result for low and high values. Physicians' confidence improved significantly. These are the first prospective data on the impact of the Oncotype DX assay on adjuvant treatment decisions in France. Using the assay was associated with a significant change in treatment decisions and an overall reduction in chemotherapy use. These data are consistent with those presented from European and non-European studies. ©AlphaMed Press.

  20. Topology-Optimized Multilayered Metaoptics

    NASA Astrophysics Data System (ADS)

    Lin, Zin; Groever, Benedikt; Capasso, Federico; Rodriguez, Alejandro W.; Lončar, Marko

    2018-04-01

    We propose a general topology-optimization framework for metasurface inverse design that can automatically discover highly complex multilayered metastructures with increased functionalities. In particular, we present topology-optimized multilayered geometries exhibiting angular phase control, including a single-piece nanophotonic metalens with angular aberration correction, as well as an angle-convergent metalens that focuses light onto the same focal spot regardless of the angle of incidence.

  1. The transmission of finite amplitude sound beam in multi-layered biological media

    NASA Astrophysics Data System (ADS)

    Liu, Xiaozhou; Li, Junlun; Yin, Chang; Gong, Xiufen; Zhang, Dong; Xue, Honghui

    2007-02-01

    Based on the Khokhlov Zabolotskaya Kuznetsov (KZK) equation, a model in the frequency domain is given to describe the transmission of finite amplitude sound beam in multi-layered biological media. Favorable agreement between the theoretical analyses and the measured results shows this approach could effectively describe the transmission of finite amplitude sound wave in multi-layered biological media.

  2. Evaluation of Multilayer Cloud Detection Using a MODIS CO2-Slicing Algorithm With CALIPSO-CloudSat Measurements

    NASA Technical Reports Server (NTRS)

    Viudez-Mora, Antonio; Kato, Seiji

    2015-01-01

    This work evaluates the multilayer cloud (MCF) algorithm based on CO2-slicing techniques against CALISPO-CloudSat (CLCS) measurement. This evaluation showed that the MCF underestimates the presence of multilayered clouds compared with CLCS and are retrained to cloud emissivities below 0.8 and cloud optical septs no larger than 0.3.

  3. Multilayer thermal barrier coating systems

    DOEpatents

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  4. Coherent multilayer crystals and method of making

    DOEpatents

    Schuller, I.K.; Falco, C.M.

    1980-10-30

    A new material is described consisting of a coherent multilayer crystal of two or more elements where each layer is composed of a single element. Each layer may vary in thickness from about 2 A to 2500 A. The multilayer crystals are prepared by sputter deposition under conditions which slow the sputtered atoms to near substrate temperatures before they contact the substrate.

  5. Performance of multilayer coated diffraction gratings in the EUV

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A. M.; Thomas, Roger J.; Gum, Jeffrey S.; Condor, Charles E.

    1990-01-01

    The effect of multilayer coating application on the performance of a diffraction grating in the EUV spectral region was evaluated by examining the performance of a 3600-line/mm and a 1200-line/mm replica blazed gratings, designed for operation in the 300-A spectral region in first order. A ten-layer IrSi multilayer optimized for 304 A was deposited using electron-beam evaporation. The grating efficiency was measured on the SURF II calibration beamline in a chamber designed for calibrating the solar EUV rocket telescope and spectrograph multilayer coatings. A significant (by a factor of about 7) enhancement in grating efficiency in the 300-A region was demonstrated.

  6. Progressive magnetic softening of ferromagnetic layers in multilayer ferromagnet-nonmagnet systems and the role of granularity

    NASA Astrophysics Data System (ADS)

    Sahu, Siddharth S.; Siva, Vantari; Pradhan, Paresh C.; Nayak, Maheswar; Senapati, Kartik; Sahoo, Pratap K.

    2017-06-01

    We report a study of the structural and magnetic behavior of the topmost magnetic layer in a ferromagnet-nonmagnet (Co-Au) multilayer system. Glancing angle X-ray diffraction measurements performed on a series of multilayers showed a gradual decrease in the grain size of the topmost magnetic layer with the increasing number of bilayers. Concurrently, the magnetic hardness and magneto-crystalline anisotropy of the top Co layer were found to decrease, as observed by magneto-optical Kerr effect measurements. This magnetic softening has been discussed in the light of Herzer's random anisotropy model. Micromagnetic simulations of the multilayer system also corroborated these observations.

  7. Layer-by-layer design method for soft-X-ray multilayers

    NASA Technical Reports Server (NTRS)

    Yamamoto, Masaki; Namioka, Takeshi

    1992-01-01

    A new design method effective for a nontransparent system has been developed for soft-X-ray multilayers with the aid of graphic representation of the complex amplitude reflectance in a Gaussian plane. The method provides an effective means of attaining the absolute maximum reflectance on a layer-by-layer basis and also gives clear insight into the evolution of the amplitude reflectance on a multilayer as it builds up. An optical criterion is derived for the selection of a proper pair of materials needed for designing a high-reflectance multilayer. Some examples are given to illustrate the usefulness of this design method.

  8. Effect of Ag Surfactant on Cu/Co Multilayers Deposited by RF-Ion Beam Sputtering

    NASA Astrophysics Data System (ADS)

    Amir, S. M.; Gupta, M.; Gupta, A.; Wildes, A.

    2011-07-01

    In this work, the effect of Ag surfactant in RF-ion beam sputtered Cu/Co multilayers was studied. It was found that when a sub-monolayer of Ag (termed as surfactant) is deposited prior to the deposition of Cu/Co multilayers, the asymmetry in the Cu/Co or Co/Cu interfaces becomes small. Low surface free energy of Ag helps Ag atoms to float when a Cu or Co layer is getting deposited. This balances the difference between the surface free energy of Cu and Co making the interfaces in the multilayers smoother as compared to the case when no Ag surfactant was used.

  9. 18O-tracer diffusion along nanoscaled Sc2O3/yttria stabilized zirconia (YSZ) multilayers: on the influence of strain

    PubMed Central

    Aydin, Halit; Korte, Carsten; Janek, Jürgen

    2013-01-01

    The oxygen tracer diffusion coefficient describing transport along nano-/microscaled YSZ/Sc2O3 multilayers as a function of the thick­ness of the ion-conducting YSZ layers has been measured by isotope exchange depth profiling (IEDP), using secondary ion mass spec­trometry (SIMS). The multilayer samples were prepared by pulsed laser deposition (PLD) on (0001) Al2O3 single crystalline substrates. The values for the oxygen tracer diffusion coefficient were analyzed as a combination of contributions from bulk and interface contributions and compared with results from YSZ/Y2O3-multilayers with similar microstructure. Using the Nernst–Einstein equation as the relation between diffusivity and electrical conductivity we find very good agreement between conductivity and diffusion data, and we exclude substantial electronic conductivity in the multilayers. The effect of hetero-interface transport can be well explained by a simple interface strain model. As the multilayer samples consist of columnar film crystallites with a defined inter­face structure and texture, we also discuss the influence of this particular microstructure on the interfacial strain. PMID:27877580

  10. Structural diversity effects of multilayer networks on the threshold of interacting epidemics

    NASA Astrophysics Data System (ADS)

    Wang, Weihong; Chen, MingMing; Min, Yong; Jin, Xiaogang

    2016-02-01

    Foodborne diseases always spread through multiple vectors (e.g. fresh vegetables and fruits) and reveal that multilayer network could spread fatal pathogen with complex interactions. In this paper, first, we use a "top-down analysis framework that depends on only two distributions to describe a random multilayer network with any number of layers. These two distributions are the overlaid degree distribution and the edge-type distribution of the multilayer network. Second, based on the two distributions, we adopt three indicators of multilayer network diversity to measure the correlation between network layers, including network richness, likeness, and evenness. The network richness is the number of layers forming the multilayer network. The network likeness is the degree of different layers sharing the same edge. The network evenness is the variance of the number of edges in every layer. Third, based on a simple epidemic model, we analyze the influence of network diversity on the threshold of interacting epidemics with the coexistence of collaboration and competition. Our work extends the "top-down" analysis framework to deal with the more complex epidemic situation and more diversity indicators and quantifies the trade-off between thresholds of inter-layer collaboration and intra-layer transmission.

  11. Corrugated grating on organic multilayer Bragg reflector

    NASA Astrophysics Data System (ADS)

    Jaquet, Sylvain; Scharf, Toralf; Herzig, Hans Peter

    2007-08-01

    Polymeric multilayer Bragg structures are combined with diffractive gratings to produce artificial visual color effects. A particular effect is expected due to the angular reflection dependence of the multilayer Bragg structure and the dispersion caused by the grating. The combined effects can also be used to design particular filter functions and various resonant structures. The multilayer Bragg structure is fabricated by spin-coating of two different low-cost polymer materials in solution on a cleaned glass substrate. These polymers have a refractive index difference of about 0.15 and permit multilayer coatings without interlayer problems. Master gratings of different periods are realized by laser beam interference and replicated gratings are superimposed on the multilayer structure by soft embossing in a UV curing glue. The fabrication process requires only polymer materials. The obtained devices are stable and robust. Angular dependent reflection spectrums for the visible are measured. These results show that it is possible to obtain unexpected reflection effects. A rich variety of color spectra can be generated, which is not possible with a single grating. This can be explained by the coupling of transmission of grating orders and the Bragg reflection band. A simple model permits to explain some of the spectral vs angular dependence of reflected light.

  12. Structure and tribological behavior of Pb-Ti/MoS2 nanoscaled multilayer films deposited by magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Li, Hao; Xie, Mingling; Zhang, Guangan; Fan, Xiaoqiang; Li, Xia; Zhu, Minhao; Wang, Liping

    2018-03-01

    The Pb-Ti/MoS2 nanoscaled multilayer films with different bilayer period were deposited by unbalanced magnetron sputtering system. The morphology, microstructure, mechanical and tribological properties of the films were investigated. It was found that the film changed from multilayer structure to composite structure as the bilayer period decreased from 25 nm to 6 nm, due to the diffusion effect. The multilayer film showed a pronounced (002) diffraction peak, the growth of the MoS2 platelets below the interface were affected by Pb and Ti, and the c-axis of MoS2 platelets were inclined to the substrate at an angle of -30° to 30°. The hardness of the film ranged from 5.9 to 7.2 GPa depending on the bilayer period. The tribological behavior of the films was performed under vacuum, and the friction coefficient were typically below 0.25. Furthermore, the nanoscale multilayer film with a bilayer period of 20 nm exhibits much better mechanical and tribological properties than pure MoS2. The result indicates that the nanoscale multilayer is a design methodology for developing high basal plane oriented and vacuum solid lubricating MoS2 based materials.

  13. Study on Reduction Kinetics of Briquettes of Hematite Fines with Boiler Grade Coal and Coke Dust in Two Different Forms: Intermixing and Multilayered

    NASA Astrophysics Data System (ADS)

    Roy, Gopal Ghosh; Sarkar, Bitan Kumar; Chaudhuri, Mahua Ghosh; Mitra, Manoj Kumar; Dey, Rajib

    2017-10-01

    An attempt has been made to utilise hematite ore fines in the form of briquettes with two different form of mixing i.e. intermixing and multilayered by means of carbothermal reduction along with boiler grade coal and coke dust. The influence of reduction temperature (1323, 1373 and 1423 K) and reduction time (10, 20, 30, 45 and 60 min) has been investigated in detail and the reduced briquettes are characterised by XRD, SEM analyses. The reducibility of intermixing briquettes is found to be higher for multilayered briquettes. In addition, isothermal kinetic study has also been carried out for both intermixing and multilayered briquettes. The activation energy for intermixing briquettes are evaluated to be 125.88 kJ/mol for the initial stage of reaction (CG3 controlled mechanism) and 113.11 kJ/mol for the later part of reaction (D3 controlled mechanism), respectively. In case of multilayered briquettes, the corresponding activation energy is found to be 235.59 kJ/mol for reaction (CG3 controlled mechanism). These results corroborate the observed better reducibility of the intermixing briquettes over multilayered briquettes.

  14. The Role of Annealing Process in Ag-Based BaSnO3 Multilayer Thin Films.

    PubMed

    Wu, Muying; Yu, Shihui; He, Lin; Yang, Lei; Zhang, Weifeng

    2016-12-01

    The BaSnO3/Ag/BaSnO3 multilayer structure was designed and fabricated on a quartz glass by magnetron sputtering, followed by an annealing process at a temperature from 150 to 750 °C in air. In this paper, we investigated the influence of the annealing temperature on the structural, optical, and electrical properties of the multilayers and proposed the mechanisms of conduction and transmittance. The maximum value of the figure of merit of 31.8 × 10(-3) Ω(-1) was achieved for the BaSnO3/Ag/BaSnO3 multilayer thin films annealed at 150 °C, while the average optical transmittance in the visible ranges was >84 %, the resistivity was 5.71 × 10(-5) Ω cm, and the sheet resistance was 5.57 Ω/sq. When annealed at below 600 °C, the values of resistivity and transmittance of the multilayers were within an acceptable range (resistivity <5.0 × 10(-4) Ω cm, transmittance >80 %). The observed property of the multilayer film is suitable for the application of transparent conductive electrodes.

  15. Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy.

    PubMed

    Oh, Keun Sang; Kim, Kyungim; Yoon, Byeong Deok; Lee, Hye Jin; Park, Dal Yong; Kim, Eun-Yeong; Lee, Kiho; Seo, Jae Hong; Yuk, Soon Hong

    2016-01-01

    A mixture of docetaxel (DTX) and Solutol(®) HS 15 (Solutol) transiently formed nanodroplets when it was suspended in an aqueous medium. However, nanodroplets that comprised DTX and Solutol showed a rapid precipitation of DTX because of their unstable characteristics in the aqueous medium. The incorporation of nanodroplets that comprised DTX and Solutol through vesicle fusion and subsequent stabilization was designed to prepare multilayer nanoparticles (NPs) with a DTX-loaded Solutol nanodroplet (as template NPs) core for an efficient delivery of DTX as a chemotherapeutic drug. As a result, the DTX-loaded Solutol nanodroplets (~11.7 nm) were observed to have an increased average diameter (from 11.7 nm to 156.1 nm) and a good stability of the hydrated NPs without precipitation of DTX by vesicle fusion and multilayered structure, respectively. Also, a long circulation of the multilayer NPs was observed, and this was due to the presence of Pluronic F-68 on the surface of the multilayer NPs. This led to an improved antitumor efficacy based on the enhanced permeation and retention effect. Therefore, this study indicated that the multilayer NPs have a considerable potential as a drug delivery system with an enhanced therapeutic efficacy by blood circulation and with low side effects.

  16. Disentangling the co-structure of multilayer interaction networks: degree distribution and module composition in two-layer bipartite networks.

    PubMed

    Astegiano, Julia; Altermatt, Florian; Massol, François

    2017-11-13

    Species establish different interactions (e.g. antagonistic, mutualistic) with multiple species, forming multilayer ecological networks. Disentangling network co-structure in multilayer networks is crucial to predict how biodiversity loss may affect the persistence of multispecies assemblages. Existing methods to analyse multilayer networks often fail to consider network co-structure. We present a new method to evaluate the modular co-structure of multilayer networks through the assessment of species degree co-distribution and network module composition. We focus on modular structure because of its high prevalence among ecological networks. We apply our method to two Lepidoptera-plant networks, one describing caterpillar-plant herbivory interactions and one representing adult Lepidoptera nectaring on flowers, thereby possibly pollinating them. More than 50% of the species established either herbivory or visitation interactions, but not both. These species were over-represented among plants and lepidopterans, and were present in most modules in both networks. Similarity in module composition between networks was high but not different from random expectations. Our method clearly delineates the importance of interpreting multilayer module composition similarity in the light of the constraints imposed by network structure to predict the potential indirect effects of species loss through interconnected modular networks.

  17. Multilayer SnSb4-SbSe Thin Films for Phase Change Materials Possessing Ultrafast Phase Change Speed and Enhanced Stability.

    PubMed

    Liu, Ruirui; Zhou, Xiao; Zhai, Jiwei; Song, Jun; Wu, Pengzhi; Lai, Tianshu; Song, Sannian; Song, Zhitang

    2017-08-16

    A multilayer thin film, comprising two different phase change material (PCM) components alternatively deposited, provides an effective means to tune and leverage good properties of its components, promising a new route toward high-performance PCMs. The present study systematically investigated the SnSb 4 -SbSe multilayer thin film as a potential PCM, combining experiments and first-principles calculations, and demonstrated that these multilayer thin films exhibit good electrical resistivity, robust thermal stability, and superior phase change speed. In particular, the potential operating temperature for 10 years is shown to be 122.0 °C and the phase change speed reaches 5 ns in the device test. The good thermal stability of the multilayer thin film is shown to come from the formation of the Sb 2 Se 3 phase, whereas the fast phase change speed can be attributed to the formation of vacancies and a SbSe metastable phase. It is also demonstrated that the SbSe metastable phase contributes to further enhancing the electrical resistivity of the crystalline state and the thermal stability of the amorphous state, being vital to determining the properties of the multilayer SnSb 4 -SbSe thin film.

  18. [Polarization Modeling and Analysis of Light Scattering Properties of Multilayer Films on Slightly Rough Substrate].

    PubMed

    Gao, Hui; Gao, Jun; Wang, Ling-mei; Wang, Chi

    2016-03-01

    To satisfy the demand of multilayer films on polarization detection, polarized bidirectional reflectance distribution function of multilayer films on slightly rough substrate is established on the basis of first-order vector perturbation theory and polarization transfer matrix. Due to the function, light scattering polarization properties are studied under multi-factor impacts of two typical targets-monolayer anti-reflection film and multilayer high-reflection films. The result shows that for monolayer anti-reflection film, observing positions have a great influence on the degree of polarization, for the left of the peak increased and right decreased compared with the substrate target. Film target and bare substrate can be distinguished by the degree of polarization in different observation angles. For multilayer high-reflection films, the degree of polarization is significantly associated with the number and optical thickness of layers at different wavelengths of incident light and scattering angles. With the increase of the layer number, the degree of polarization near the mirror reflection area decreases. It reveals that the calculated results coincide with the experimental data, which validates the correctness and rationality of the model. This paper provides a theoretical method for polarization detection of multilayer films target and reflection stealth technology.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Li; Thompson, Gregory, E-mail: gthompson@eng.ua.edu

    A series of 40–2 nm bilayer spacing Ti/Fe multilayers were sputter-deposited. As the length scale of individual Ti layers equaled to 2 nm, Ti phase transforms from a hexagonal close packed (hcp)-to-body centered cubic (bcc) crystal structures for equal layer thicknesses in Ti/Fe multilayers. Further equal reductions in bilayer spacing to less than 1 nm resulted in an additional transformation from a crystalline to amorphous structure. Atom probe tomography reveals significant intermixing between layers which contributes to the observed phase transformations. Real-time, intrinsic growth stress measurements were also performed to relate the adatom mobility to these phase transformations. For the hcp Ti/bcc Femore » multilayers of equivalent volume fractions, the multilayers undergo an overall tensile stress state to a compressive stress state with decreasing bilayer thickness for the multilayers. When the above phase transformations occurred, a modest reduction in the overall compressive stress of the multilayer was noted. Depending on the Fe thickness, the Ti growth was observed to be a tensile to compressive growth change to a purely compressive growth for thinner bilayer spacing. Fe retained a tensile growth stress regardless of the bilayer spacing studied.« less

  20. Comparison of multilayer formation between different cellulose nanofibrils and cationic polymers.

    PubMed

    Eronen, Paula; Laine, Janne; Ruokolainen, Janne; Osterberg, Monika

    2012-05-01

    The multilayer formation between polyelectrolytes of opposite charge offers possibility for creating new tailored materials. Exchanging one or both components for charged nanofibrillated cellulose (NFC) further increases the variety of achievable properties. We explored this by introducing unmodified, low charged NFC and high charged TEMPO-oxidized NFC. Systematic evaluation of the effect of both NFC charge and properties of cationic polyelectrolytes on the structure of the multilayers was performed. As the cationic component cationic NFC was compared with two different cationic polyelectrolytes, poly(dimethyldiallylammoniumchloride) and cationic starch. Quartz crystal microbalance with dissipation (QCM-D) was used to monitor the multilayer formation and AFM colloidal probe microscopy (CPM) was further applied to probe surface interactions in order to gain information about fundamental interactions and layer properties. Generally, the results verified the characteristic multilayer formation between NFC of different charge and how the properties of formed multilayers can be tuned. However, the strong nonelectrostatic affinity between cellulosic fibrils was observed. CPM measurements revealed monotonically repulsive forces, which were in good correspondence with the QCM-D observations. Significant increase in adhesive forces was detected between the swollen high charged NFC. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. [The role of BCP in electroluminescence of multilayer organic light-emitting devices].

    PubMed

    Deng, Zhao-Ru; Yang, Sheng-Yi; Lou, Zhi-Dong; Meng, Ling-Chuan

    2009-03-01

    As a hole-blocking layer, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) is usually used in blue and white light electroluminescent devices. The ability of blocking holes of BCP layer depends on its thickness, and basically holes can tunnel through thin BCP layer. In order to know the role of BCP layer in electroluminescence (EL) of multilayer organic light-emitting diodes (OLEDs), in the present paper, the authors designed a multilayer OLED ITO/NPB/BCP/Alq3 : DCJTB/Alq3/Al and investigated the influence of thickness of BCP on the EL spectra of multilayer OLEDs at different applied voltages. The experimental data show that thin BCP layer can block holes partially and tune the energy transfer between different emissive layers, and in this way, it is easy to obtain white emission, but its EL spectra will change with the applied voltages. The EL spectra of multilayer device will remain relatively stable when BCP layer is thick enough, and the holes can hardly tunnel through when the thickness of BCP layer is more than 15 nm. Furthermore, the stability of EL spectra of the multilayer OLED at different applied voltages was discussed.

  2. Surface modification of titanium substrates with silver nanoparticles embedded sulfhydrylated chitosan/gelatin polyelectrolyte multilayer films for antibacterial application.

    PubMed

    Li, Wen; Xu, Dawei; Hu, Yan; Cai, Kaiyong; Lin, Yingcheng

    2014-06-01

    To develop Ti implants with potent antibacterial activity, a novel "sandwich-type" structure of sulfhydrylated chitosan (Chi-SH)/gelatin (Gel) polyelectrolyte multilayer films embedding silver (Ag) nanoparticles was coated onto titanium substrate using a spin-assisted layer-by-layer assembly technique. Ag ions would be enriched in the polyelectrolyte multilayer films via the specific interactions between Ag ions and -HS groups in Chi-HS, thus leading to the formation of Ag nanoparticles in situ by photo-catalytic reaction (ultraviolet irradiation). Contact angle measurement and field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy were employed to monitor the construction of Ag-containing multilayer on titanium surface, respectively. The functional multilayered films on titanium substrate [Ti/PEI/(Gel/Chi-SH/Ag) n /Gel] could efficiently inhibit the growth and activity of Bacillus subtitles and Escherichia coli onto titanium surface. Moreover, studies in vitro confirmed that Ti substrates coating with functional multilayer films remained the biological functions of osteoblasts, which was reflected by cell morphology, cell viability and ALP activity measurements. This study provides a simple, versatile and generalized methodology to design functional titanium implants with good cyto-compatibility and antibacterial activity for potential clinical applications.

  3. Electric and ferroelectric properties of PZT/BLT multilayer films prepared by photochemical metal-organic deposition

    NASA Astrophysics Data System (ADS)

    Park, Hyeong-Ho; Lee, Hong-Sub; Park, Hyung-Ho; Hill, Ross H.; Hwang, Yun Taek

    2009-01-01

    The electric and ferroelectric properties of lead zirconate titanate (PZT) and lanthanum-substituted bismuth titanate (BLT) multilayer films prepared using photosensitive precursors were characterized. The electric and ferroelectric properties were investigated by studying the effect of the stacking order of four ferroelectric layers of PZT or BLT in 4-PZT, PZT/2-BLT/PZT, BLT/2-PZT/BLT, and 4-BLT multilayer films. The remnant polarization values of the 4-BLT and BLT/2-PZT/BLT multilayer films were 12 and 17 μC/cm 2, respectively. Improved ferroelectric properties of the PZT/BLT multilayer films were obtained by using a PZT intermediate layer. The films which contained a BLT layer on the Pt substrate had improved leakage currents of approximately two orders of magnitude and enhanced fatigue resistances compared to the films with a PZT layer on the Pt substrate. These improvements are due to the reduced number of defects and space charges near the Pt electrodes. The PZT/BLT multilayer films prepared by photochemical metal-organic deposition (PMOD) possessed enhanced electric and ferroelectric properties, and allow direct patterning to fabricate micro-patterned systems without dry etching.

  4. Improving the tribological and corrosive properties of MoS2-based coatings by dual-doping and multilayer construction

    NASA Astrophysics Data System (ADS)

    Shang, Kedong; Zheng, Shaoxian; Ren, Siming; Pu, Jibin; He, Dongqing; Liu, Shuan

    2018-04-01

    The pure MoS2 coating always performs high friction coefficient and short service life when used in high humidity or after long-time storage in humid atmospheric environment. In this study, the MoS2/Pb-Ti composite and MoS2/Pb-Ti multilayer coatings are deposited to improve the corrosion resistance in 3.5 wt% NaCl solution and tribological performance in high humidity condition. The electrochemical impedance spectra and salt spray test shown that the MoS2/Pb-Ti composite and multilayer coatings can inhibit the permeation of oxygen and other corrosive elements, thus resulting a high corrosion resistance. Furthermore, compared with pure MoS2 coating, the tribological performance of the MoS2/Pb-Ti composite and multilayer coatings is also improved significantly owing to the high mechanical properties and compact structure. Moreover, the heterogenous interfaces in MoS2/Pb-Ti multilayer coating play an important role to improve the corrosion resistance and tribological performance of coatings. Overall, the dual-doping and multilayer construction are promising approaches to design the MoS2 coatings as the environmentally adaptive lubricants.

  5. An implemented method of asymmetric transmission for arbitrary polarization base in multi-layered chiral meta-surface

    NASA Astrophysics Data System (ADS)

    Xiao, Zhong-yin; Zou, Huan-ling; Xu, Kai-Kai; Tang, Jing-yao

    2018-03-01

    Asymmetric transmission of linearly or circularly polarized waves is a well-established property not only for three-layered chiral structures but for multi-layered ones. Here we show a method which can simultaneously implement asymmetric transmission for arbitrary base vector polarized wave in multi-layered chiral meta-surface. We systematically study the implemented method based on a multi-layered chiral structure consisting of a y-shape, a half gammadion and an S-shape in the terahertz gap. A numerical simulation was carried out, followed by an explanation of the asymmetric transmission mechanism in these structures proposed in this work. The simulated results indicate that the multi-layered chiral structure can realize a maximum asymmetric transmission of 0.89 and 0.28 for circularly and linearly polarized waves, respectively, which exhibit magnitude improvement over previous chiral metamaterials. Specifically, the maximum asymmetric transmitted coefficient of the multi-layered chiral structure is insensitivity to the incident angles from 0° to 45° for circularly polarized components. Additionally, we also study the influence of structural parameters on the asymmetric transmission effect for both linearly and circularly polarized waves in detail.

  6. Realistic absorption coefficient of each individual film in a multilayer architecture

    NASA Astrophysics Data System (ADS)

    Cesaria, M.; Caricato, A. P.; Martino, M.

    2015-02-01

    A spectrophotometric strategy, termed multilayer-method (ML-method), is presented and discussed to realistically calculate the absorption coefficient of each individual layer embedded in multilayer architectures without reverse engineering, numerical refinements and assumptions about the layer homogeneity and thickness. The strategy extends in a non-straightforward way a consolidated route, already published by the authors and here termed basic-method, able to accurately characterize an absorbing film covering transparent substrates. The ML-method inherently accounts for non-measurable contribution of the interfaces (including multiple reflections), describes the specific film structure as determined by the multilayer architecture and used deposition approach and parameters, exploits simple mathematics, and has wide range of applicability (high-to-weak absorption regions, thick-to-ultrathin films). Reliability tests are performed on films and multilayers based on a well-known material (indium tin oxide) by deliberately changing the film structural quality through doping, thickness-tuning and underlying supporting-film. Results are found consistent with information obtained by standard (optical and structural) analysis, the basic-method and band gap values reported in the literature. The discussed example-applications demonstrate the ability of the ML-method to overcome the drawbacks commonly limiting an accurate description of multilayer architectures.

  7. Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1−xFex)2O3 multilayer thin films

    PubMed Central

    Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua

    2016-01-01

    Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1−xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe2+ and Fe3+ are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What’s more, the Ga2O3/(Ga1−xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3. PMID:27121446

  8. Theory and practical considerations of multilayer dielectric thin-film stacks in Ag-coated hollow waveguides.

    PubMed

    Bledt, Carlos M; Melzer, Jeffrey E; Harrington, James A

    2014-02-01

    This analysis explores the theory and design of dielectric multilayer reflection-enhancing thin film stacks based on high and low refractive index alternating layers of cadmium sulfide (CdS) and lead sulfide (PbS) on silver (Ag)-coated hollow glass waveguides (HGWs) for low loss transmission at midinfrared wavelengths. The fundamentals for determining propagation losses in such multilayer thin-film-coated Ag hollow waveguides is thoroughly discussed, and forms the basis for further theoretical analysis presented in this study. The effects on propagation loss resulting from several key parameters of these multilayer thin film stacks is further explored in order to bridge the gap between results predicted through calculation under ideal conditions and deviations from such ideal models that often arise in practice. In particular, the effects on loss due to the number of dielectric thin film layers deposited, deviation from ideal individual layer thicknesses, and surface roughness related scattering losses are presented and thoroughly investigated. Through such extensive theoretical analysis the level of understanding of the underlying loss mechanisms of multilayer thin-film Ag-coated HGWs is greatly advanced, considerably increasing the potential practical development of next-generation ultralow-loss mid-IR Ag/multilayer dielectric-coated HGWs.

  9. Analysis of buried interfaces in multilayer mirrors using grazing incidence extreme ultraviolet reflectometry near resonance edges.

    PubMed

    Sertsu, M G; Nardello, M; Giglia, A; Corso, A J; Maurizio, C; Juschkin, L; Nicolosi, P

    2015-12-10

    Accurate measurements of optical properties of multilayer (ML) mirrors and chemical compositions of interdiffusion layers are particularly challenging to date. In this work, an innovative and nondestructive experimental characterization method for multilayers is discussed. The method is based on extreme ultraviolet (EUV) reflectivity measurements performed on a wide grazing incidence angular range at an energy near the absorption resonance edge of low-Z elements in the ML components. This experimental method combined with the underlying physical phenomenon of abrupt changes of optical constants near EUV resonance edges enables us to characterize optical and structural properties of multilayers with high sensitivity. A major advantage of the method is to perform detailed quantitative analysis of buried interfaces of multilayer structures in a nondestructive and nonimaging setup. Coatings of Si/Mo multilayers on a Si substrate with period d=16.4  nm, number of bilayers N=25, and different capping structures are investigated. Stoichiometric compositions of Si-on-Mo and Mo-on-Si interface diffusion layers are derived. Effects of surface oxidation reactions and carbon contaminations on the optical constants of capping layers and the impact of neighboring atoms' interactions on optical responses of Si and Mo layers are discussed.

  10. Designing multilayered nanoplatforms for SERS-based detection of genetically modified organisms

    NASA Astrophysics Data System (ADS)

    Uluok, Saadet; Guven, Burcu; Eksi, Haslet; Ustundag, Zafer; Tamer, Ugur; Boyaci, Ismail Hakki

    2015-01-01

    In this study, the multilayered surface-enhanced Raman spectroscopy (SERS) platforms were developed for the analysis of genetically modified organisms (GMOs). For this purpose, two molecules [11-mercaptoundecanoic acid (11-MUA) and 2-mercaptoethylamine (2-MEA)] were attached with Aurod and Auspherical nanoparticles to form multilayered constructions on the gold (Au)slide surface. The best multilayered platform structure was chosen depending on SERS enhancement, and this surface was characterised with atomic force microscopy (AFM) and attenuated total reflectance Fourier transform infrared spectroscopy. After the optimum multilayered SERS platform and nanoparticle interaction was identified, the oligonucleotides on the Aurod nanoparticles and Auslide were combined to determine target concentrations from the 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) signals using SERS. The correlation between the SERS intensities for DTNB and target concentrations was found to be linear within a range of 10 pM to 1 µM, and with a detection limit of 34 fM. The selectivity and specificity of the developed sandwich assay were tested using negative and positive controls, and nonsense and real sample studies. The obtained results showed that the multilayered SERS sandwich method allows for sensitive, selective, and specific detection of oligonucleotide sequences.

  11. Design and function of biomimetic multilayer water purification membranes

    PubMed Central

    Ling, Shengjie; Qin, Zhao; Huang, Wenwen; Cao, Sufeng; Kaplan, David L.; Buehler, Markus J.

    2017-01-01

    Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences. PMID:28435877

  12. Design and function of biomimetic multilayer water purification membranes.

    PubMed

    Ling, Shengjie; Qin, Zhao; Huang, Wenwen; Cao, Sufeng; Kaplan, David L; Buehler, Markus J

    2017-04-01

    Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences.

  13. Polyelectrolyte-mediated assembly of copper-phthalocyanine tetrasulfonate multilayers and the subsequent production of nanoparticulate copper oxide thin films.

    PubMed

    Chickneyan, Zarui Sara; Briseno, Alejandro L; Shi, Xiangyang; Han, Shubo; Huang, Jiaxing; Zhou, Feimeng

    2004-07-01

    An approach to producing films of nanometer-sized copper oxide particulates, based on polyelectrolyte-mediated assembly of the precursor, copper(II)phthalocyanine tetrasulfonate (CPTS), is described. Multilayered CPTS and polydiallyldimethylammonium chloride (PDADMAC) were alternately assembled on different planar substrates via the layer-by-layer (LbL) procedure. The growth of CPTS multilayers was monitored by UV-visible spectrometry and quartz crystal microbalance (QCM) measurements. Both the UV-visible spectra and the QCM data showed that a fixed amount of CPTS could be attached to the substrate surface for a given adsorption cycle. Cyclic voltammograms at the CPTS/PDADMAC-covered gold electrode exhibited a decrease in peak currents with the layer number, indicating that the permeability of CPTS multilayers on the electrodes had diminished. When these CPTS multilayered films were calcined at elevated temperatures, uniform thin films composed of nanoparticulate copper oxide could be produced. Ellipsometry showed that the thickness of copper oxide nanoparticulate films could be precisely tailored by varying the thickness of CPTS multilayer films. The morphology and roughness of CPTS multilayer and copper oxide thin films were characterized by atomic force microscopy. X-ray diffraction (XRD) measurements indicated that these thin films contained both CuO and Cu2O nanoparticles. The preparation of such copper oxide thin films with the use of metal complex precursors represents a new route for the synthesis of inorganic oxide films with a controlled thickness.

  14. High conductivity and transparent aluminum-based multi-layer source/drain electrodes for thin film transistors

    NASA Astrophysics Data System (ADS)

    Yao, Rihui; Zhang, Hongke; Fang, Zhiqiang; Ning, Honglong; Zheng, Zeke; Li, Xiaoqing; Zhang, Xiaochen; Cai, Wei; Lu, Xubing; Peng, Junbiao

    2018-02-01

    In this study, high conductivity and transparent multi-layer (AZO/Al/AZO-/Al/AZO) source/drain (S/D) electrodes for thin film transistors were fabricated via conventional physical vapor deposition approaches, without toxic elements or further thermal annealing process. The 68 nm-thick multi-layer films with excellent optical properties (transparency: 82.64%), good electrical properties (resistivity: 6.64  ×  10-5 Ω m, work function: 3.95 eV), and superior surface roughness (R q   =  0.757 nm with scanning area of 5  ×  5 µm2) were fabricated as the S/D electrodes. Significantly, comprehensive performances of AZO films are enhanced by the insertion of ultra-thin Al layers. The optimal transparent TFT with this multi-layer S/D electrodes exhibited a decent electrical performance with a saturation mobility (µ sat) of 3.2 cm2 V-1 s-1, an I on/I off ratio of 1.59  ×  106, a subthreshold swing of 1.05 V/decade. The contact resistance of AZO/Al/AZO/Al/AZO multi-layer electrodes is as low as 0.29 MΩ. Moreover, the average visible light transmittance of the unpatterned multi-layers constituting a whole transparent TFT could reach 72.5%. The high conductivity and transparent multi-layer S/D electrodes for transparent TFTs possessed great potential for the applications of the green and transparent displays industry.

  15. A diffusion-reaction scheme for modeling ignition and self-propagating reactions in Al/CuO multilayered thin films

    NASA Astrophysics Data System (ADS)

    Lahiner, Guillaume; Nicollet, Andrea; Zapata, James; Marín, Lorena; Richard, Nicolas; Rouhani, Mehdi Djafari; Rossi, Carole; Estève, Alain

    2017-10-01

    Thermite multilayered films have the potential to be used as local high intensity heat sources for a variety of applications. Improving the ability of researchers to more rapidly develop Micro Electro Mechanical Systems devices based on thermite multilayer films requires predictive modeling in which an understanding of the relationship between the properties (ignition and flame propagation), the multilayer structure and composition (bilayer thicknesses, ratio of reactants, and nature of interfaces), and aspects related to integration (substrate conductivity and ignition apparatus) is achieved. Assembling all these aspects, this work proposes an original 2D diffusion-reaction modeling framework to predict the ignition threshold and reaction dynamics of Al/CuO multilayered thin films. This model takes into consideration that CuO first decomposes into Cu2O, and then, released oxygen diffuses across the Cu2O and Al2O3 layers before reacting with pure Al to form Al2O3. This model is experimentally validated from ignition and flame velocity data acquired on Al/CuO multilayers deposited on a Kapton layer. This paper discusses, for the first time, the importance of determining the ceiling temperature above which the multilayers disintegrate, possibly before their complete combustion, thus severely impacting the reaction front velocity and energy release. This work provides a set of heating surface areas to obtain the best ignition conditions, i.e., with minimal ignition power, as a function of the substrate type.

  16. Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses

    NASA Astrophysics Data System (ADS)

    Tekgül, Atakan; Alper, Mürsel; Kockar, Hakan

    2017-01-01

    The CoFe/Cu magnetic multilayers were produced by changing CoFe ferromagnetic layers from 3 nm to 10 nm using electrodeposition. By now, the thinnest Cu (0.5 nm) layer thicknesses were used to see whether the GMR effect in the multilayers can be obtained or not since the pinning of non-magnetic layer between the ferromagnetic layers is required. For the proper depositions, the cyclic voltammograms was used, and the current-time transients were obtained. The Cu and CoFe layers were deposited at a cathode potential of -0.3 and -1.5 V with respect to saturated calomel electrode, respectively. From the XRD patterns, the multilayers were shown to be fcc crystal structures. For the magnetization measurements, saturation magnetization increases from 160 to 600 kA/m from 3 to 8 nm ferromagnetic layer thicknesses. And, the coercivity values increase until the 8 nm of the CoFe layer thickness. It is seen that the thin Cu layer (fixed at 0.5 nm) and pinholes support the random magnetization orientation and thus all multilayers exhibited the giant magnetoresistance (GMR) effect, and the highest GMR value was observed about 5.5%. And, the variation of GMR field sensitivity was calculated. The results show that the GMR and GMR sensitivity are compatible among the multilayers. The CoFe/Cu magnetic multilayers having GMR properties are used in GMR sensors and hard disk drive of the nano-technological devices.

  17. Effects of the use of multi-layer filter on radiation exposure and the quality of upper airway radiographs compared to the traditional copper filter.

    PubMed

    Klandima, Somphan; Kruatrachue, Anchalee; Wongtapradit, Lawan; Nithipanya, Narong; Ratanaprakarn, Warangkana

    2014-06-01

    The problem of image quality in a large number of upper airway obstructed patients is the superimposition of the airway over the bone of the spine on the AP view. This problem was resolved by increasing KVp to high KVp technique and adding extra radiographic filters (copper filter) to reduce the sharpness of the bone and increase the clarity of the airway. However, this raises a concern that patients might be receiving an unnecessarily higher dose of radiation, as well as the effectiveness of the invented filter compared to the traditional filter. To evaluate the level of radiation dose that patients receive with the use of multi-layer filter compared to non-filter and to evaluate the image quality of the upper airways between using the radiographic filter (multi-layer filter) and the traditional filter (copperfilter). The attenuation curve of both filter materials was first identified. Then, both the filters were tested with Alderson Rando phantom to determine the appropriate exposure. Using the method described, a new type of filter called the multi-layer filter for imaging patients was developed. A randomized control trial was then performed to compare the effectiveness of the newly developed multi-layer filter to the copper filter. The research was conducted in patients with upper airway obstruction treated at Queen Sirikit National Institute of Child Health from October 2006 to September 2007. A total of 132 patients were divided into two groups. The experimental group used high kVp technique with multi-layer filter, while the control group used copper filter. A comparison of film interpretation between the multi-layer filter and the copper filter was made by a number of radiologists who were blinded to both to the technique and type of filter used. Patients had less radiation from undergoing the kVp technique with copper filter and multi-layer filter compared to the conventional technique, where no filter is used. Patients received approximately 65.5% less radiation dose using high kVp technique with multi-layer filter compared to the conventional technique, and 25.9% less than using the traditional copper filter 45% of the radiologists who participated in this study reported that the high kVp technique with multi-layer filter was better for diagnosing stenosis, or narrowing of the upper airways. 33% reported that, both techniques were equal, while 22% reported that the traditional copper filter allowed for better details of airway obstruction. These findings showed that the multi-layered filter was comparable to the copper filter in terms of film interpretation. Using the multi-layer filter resulted in patients receiving a lower dose of radiation, as well as similar film interpretation when compared to the traditional copper filter.

  18. Polyimide-glass multilayer printed wiring boards

    NASA Astrophysics Data System (ADS)

    Lula, J. W.

    1984-07-01

    Multilayer printed wiring boards (PWBs) from a polyimide/glass reinforced copper clad laminate and prepreg were manufactured. A lamination cycle and innerlayer copper surface treatment that gave satisfactory delamination resistance at soldering temperatures were developed. When compared to similar epoxy/glass multilayer PWBs, the polyimide PWBs had higher thermal stability, greater resistance to raised lands, fewer plating voids, less outgassing, and adhesion that was equivalent to urethane foam encapsulants.

  19. Ti/Al multilayer zone plate and Bragg-Fresnel lens.

    PubMed

    Koike, M; Suzuki, I H; Komiya, S; Amemiya, Y

    1998-05-01

    By using a helicon plasma sputtering technique, a one-dimensional Ti/Al multilayer zone plate with an outermost layer width of 76 nm has been successfully fabricated. A Bragg-Fresnel lens has been made by combining this zone plate with a Ge(422) crystal. Comparison of the Ti/Al multilayer zone plate with the Ag/Al zone plate is discussed in terms of focusing efficiency.

  20. Contributions of the Ventral Striatum to Conscious Perception: An Intracranial EEG Study of the Attentional Blink.

    PubMed

    Slagter, Heleen A; Mazaheri, Ali; Reteig, Leon C; Smolders, Ruud; Figee, Martijn; Mantione, Mariska; Schuurman, P Richard; Denys, Damiaan

    2017-02-01

    The brain is limited in its capacity to consciously process information, necessitating gating of information. While conscious perception is robustly associated with sustained, recurrent interactions between widespread cortical regions, subcortical regions, including the striatum, influence cortical activity. Here, we examined whether the ventral striatum, given its ability to modulate cortical information flow, contributes to conscious perception. Using intracranial EEG, we recorded ventral striatum activity while 7 patients performed an attentional blink task in which they had to detect two targets (T1 and T2) in a stream of distractors. Typically, when T2 follows T1 within 100-500 ms, it is often not perceived (i.e., the attentional blink). We found that conscious T2 perception was influenced and signaled by ventral striatal activity. Specifically, the failure to perceive T2 was foreshadowed by a T1-induced increase in α and low β oscillatory activity as early as 80 ms after T1, indicating that the attentional blink to T2 may be due to very early T1-driven attentional capture. Moreover, only consciously perceived targets were associated with an increase in θ activity between 200 and 400 ms. These unique findings shed new light on the mechanisms that give rise to the attentional blink by revealing that conscious target perception may be determined by T1 processing at a much earlier processing stage than traditionally believed. More generally, they indicate that ventral striatum activity may contribute to conscious perception, presumably by gating cortical information flow. What determines whether we become aware of a piece of information or not? Conscious access has been robustly associated with activity within a distributed network of cortical regions. Using intracranial electrophysiological recordings during an attentional blink task, we tested the idea that the ventral striatum, because of its ability to modulate cortical information flow, may contribute to conscious perception. We find that conscious perception is influenced and signaled by ventral striatal activity. Short-latency (80-140 ms) striatal responses to a first target determined conscious perception of a second target. Moreover, conscious perception of the second target was signaled by longer-latency (200-400 ms) striatal activity. These results suggest that the ventral striatum may be part of a subcortical network that influences conscious experience. Copyright © 2017 the authors 0270-6474/17/371081-09$15.00/0.

  1. Volumetric 3D display with multi-layered active screens for enhanced the depth perception (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Hak-Rin; Park, Min-Kyu; Choi, Jun-Chan; Park, Ji-Sub; Min, Sung-Wook

    2016-09-01

    Three-dimensional (3D) display technology has been studied actively because it can offer more realistic images compared to the conventional 2D display. Various psychological factors such as accommodation, binocular parallax, convergence and motion parallax are used to recognize a 3D image. For glass-type 3D displays, they use only the binocular disparity in 3D depth cues. However, this method cause visual fatigue and headaches due to accommodation conflict and distorted depth perception. Thus, the hologram and volumetric display are expected to be an ideal 3D display. Holographic displays can represent realistic images satisfying the entire factors of depth perception. But, it require tremendous amount of data and fast signal processing. The volumetric 3D displays can represent images using voxel which is a physical volume. However, it is required for large data to represent the depth information on voxel. In order to simply encode 3D information, the compact type of depth fused 3D (DFD) display, which can create polarization distributed depth map (PDDM) image having both 2D color image and depth image is introduced. In this paper, a new volumetric 3D display system is shown by using PDDM image controlled by polarization controller. In order to introduce PDDM image, polarization states of the light through spatial light modulator (SLM) was analyzed by Stokes parameter depending on the gray level. Based on the analysis, polarization controller is properly designed to convert PDDM image into sectioned depth images. After synchronizing PDDM images with active screens, we can realize reconstructed 3D image. Acknowledgment This work was supported by `The Cross-Ministry Giga KOREA Project' grant from the Ministry of Science, ICT and Future Planning, Korea

  2. [The effects of transplantation of compound keratoprosthesis in clinical practice and managements of complications after operation].

    PubMed

    Yuan, Jin; Chen, Jia-qi; Zhou, Shi-you; Wang, Zhi-chong; Huang, Ting; Gu, Jian-jun; Shao, Ying-feng

    2009-02-01

    To explore the clinical value and management of complications of the transplantation of Titanium skirt compounded keratoprosthesis for severe corneal blindness eyes. It was a retrospective case series study. Nine eyes from 9 male patients, aged 28 to 52 years old, accepted permanent keratoprosthesis transplantation in Zhongshan Ophthalmic Center from March 2002 to June 2005. All patients had corneal lesion in both eyes for 1.5 to 5.0 years. Among the 9 treated eyes, 6 eyes was severe vascularization after alkali burns, 3 eyes explosive injuries. Light perception was remained in all patients before surgery, however, 2 eyes only had a questionable orientation of light perception among them. Surgical management was divided into two stages. In the first stage, transplantation of Titanium skirt compound keratoprosthesis was performed, and the explant was reinforced by the self auricular cartilage and Tendons capsule. The second stage of surgery was performed in 5 to 6 months later, in which the membrane in the front of keratoprosthesis was cut. After the surgery, visual acuity, visual field, intraocular pressure and retina were examined. The complications were noticed and managed. All treated eyes were followed up for 1 to 3 years. After the treatment, 7 eyes divorced from blindness with uncorrected visual acuity 20/200 (0.1), and 2 eyes among them got corrected visual acuity 20/30 (0.6). Two eyes with the questionable orientation of light perception before treatment gained uncorrected visual acuity 4/200 (0.02) and 8/200 (0.04) after treatment respectively. Complications were found to include 5 recurrent frontal membrane of keratoprosthesis, one back membrane of keratoprosthesis, and one limited corneal melting. Complications were controlled by the corresponding treatments, such as membrane resection for the recurrent frontal membrane of keratoprosthesis, courage under microscope for back membrane of keratoprosthesis, and reinforcement of acellular dermis for corneal melting. All keratoprosthesis were maintained in situ, and no rejection and leakage of aqueous humor happened. It is effective to use transplantation of keratoprosthesis for the severe corneal blindness eyes. Combination with self auricular cartilage and Tendons capsular reinforcement may reduce the complications and improve the biocompatibility of keratoprosthesis.

  3. Perceptions of childcare staff for preventing overweight in Mexican preschool children: A SWOT analysis.

    PubMed

    Ortega-Altamirano, Doris Verónica; Rodríguez-Oliveros, Guadalupe; González-Unzaga, Marco Aurelio; Reyes-Morales, Hortensia

    2018-01-01

    To identify strengths, weaknesses, opportunities, and threats (SWOT) perceived by childcare staff for preventing childhood overweight. Qualitative study using an interpretative phenomenological approach; 18 in-depth, semi-structured interviews and 12 focus groups with 89 key informants working in six Mexican public childcare centers (CCC) were conducted. Through content and SWOT analyses, experts further ranked fifty-nine recurrent perceptions regarding healthy feeding and physical activity (PA), using the Delphi method. Strengths: Acknowledgement of the CCC's responsibility in fostering healthy feeding, availability of organizational regulations, and access to PA infrastructure/indoor activities. Weaknesses: Disregard of preschool overweight as a health problem, nu- tritional misperceptions, and perceived risk of child injuries while conducting PA. Opportunities: Willingness to reduce children's access to junk foods, and parental active play with children during weekends. Threats: Limited family nutritional education, and restricted parental time/economic constraints/access to safe public spaces for PA. The identified SWOT must be considered when developing obesityprevention interventions targeted at CCC.

  4. Conscious and Nonconscious Processes:Distinct Forms of Evidence Accumulation?

    NASA Astrophysics Data System (ADS)

    Dehaene, Stanislas

    Among the many brain events evoked by a visual stimulus, which ones are associated specifically with conscious perception, and which merely reflect nonconscious processing? Understanding the neuronal mechanisms of consciousness is a major challenge for cognitive neuroscience. Recently, progress has been achieved by contrasting behavior and brain activation in minimally different experimental conditions, one of which leads to conscious perception whereas the other does not. This chapter reviews briefly this line of research and speculates on its theoretical interpretation. I propose to draw links between evidence accumulation models, which are highly successful in capturing elementary psychophysical decisions, and the conscious/nonconscious dichotomy. In this framework, conscious access would correspond to the crossing of a threshold in evidence accumulation within a distributed global workspace, a set of recurrently connected neurons with long axons that is able to integrate and broadcast back evidence from multiple brain processors. During nonconscious processing, evidence would be accumulated locally within specialized subcircuits, but would fail to reach the threshold needed for global ignition and, therefore, conscious reportability.

  5. Creating creationists: The influence of 'issues framing' on our understanding of public perceptions of clash narratives between evolutionary science and belief.

    PubMed

    Elsdon-Baker, Fern

    2015-05-01

    Clash narratives relating to evolutionary science and personal belief are a recurrent theme in media or public space discourse. However, a 2009 British Council poll undertaken in 10 countries worldwide shows that the perception of a necessary clash between evolutionary worldviews and belief in a God is a minority viewpoint. How then does the popular conception that there is an ongoing conflict between evolution and belief in God arise? One contributing factor is the framing and categorization of creationism and evolutionism within large-scale surveys for use within media campaigns. This article examines the issue framing within four polls conducted in the United Kingdom and internationally between 2008 and 2013. It argues that by ignoring the complexity and range of perspectives individuals hold, or by framing evolutionary science as atheistic, we are potentially creating 'creationists' - including 'Islamic creationists' - both figuratively and literally. © The Author(s) 2015.

  6. [Perceptions of healthcare providers toward body art: adornment or stigma?].

    PubMed

    Caroni, Mariana Malheiros; Grossman, Eloisa

    2012-04-01

    Nowadays, body art is widespread, especially among adolescents. This qualitative study seeks to assess whether the use of body art interferes with how nursing assistants care for hospitalized adolescents and to identify factors that influence the perceptions of these health care providers. Nursing assistants working in an adolescent-specific ward were interviewed. After the analysis, dominant themes emerged from the narratives, allowing for a better understanding of how nursing assistants perceive tattoos and piercing. Some themes were recurrent, especially the association of body art with deviant behavior, erotic appeal, consumerism, courage, health risks, and psychic disorders. Religion and family values prevail over professional knowledge in how body marks are perceived. It may thus be inferred that a negative attitude toward body art is directly related to quality of care. The number of marks, their location, their type, and the definite/temporary character of tattoos and piercing interfere with the providers' interpretation. However, piercing and tattoos are important semiological tools and must be included in the script for the evaluation of adolescents.

  7. Love and emotional well-being in people with intellectual disabilities.

    PubMed

    Arias, Benito; Ovejero, Anastasio; Morentin, Raquel

    2009-05-01

    Love has been a recurrent topic throughout history, and especially, literature. Moreover, there is generalized agreement about its relevance for health emotional well-being, and quality of life. This study was carried out with a sample of 376 persons with ID. The goals of the work were to analyze a theoretical model of love in people with intellectual disabilities by means of the methodology of structural equations, and to analyze their perception of love and of amorous relations with regard to other aspects such as amorous satisfaction, perceived satisfaction, absence of family interference, self-determination, and emotional well-being. The results revealed that (a) the construct under study has three factors: Commitment, stability, and idealization, Passion and physiological excitement, and Intimacy and romanticism; (b) the perception of love in this collective is, in general, idealized and affected by the context; and (c) self-determination and the lack of family interference are relevant variables to explain both love and emotional well-being.

  8. Patients’ perceptions of gene expression profiling in breast cancer treatment decisions

    PubMed Central

    Bombard, Y.; Rozmovits, L.; Trudeau, M.E.; Leighl, N.B.; Deal, K.; Marshall, D.A.

    2014-01-01

    Introduction Determining the likely benefit of adjuvant chemotherapy for early-stage breast cancer patients depends on estimating baseline recurrence risk. Gene expression profile (gep) testing of tumours informs risk prediction, but evidence of its clinical utility is limited. We explored patient perceptions of gep testing and the impact of those perceptions on chemotherapy decisions. Methods We conducted one focus group (n = 4) and individual interviews (n = 24) with patients who used gep testing, recruited through clinics at two hospitals in Ontario. Data were analyzed using content analysis and constant comparison techniques. Results Patients’ understanding of gep testing was variable, and misapprehensions were common. Patients valued the test because it provided them with certainty amidst confusion, with options and a sense of empowerment, and with personalized, authoritative information. They commonly believed that the test was better and fundamentally different from other clinical tests, attributing to it unique power and truth-value. This kind of “magical thinking” was derived from an amplified perception of the test’s validity and patients’ need for reassurance about their treatment choices. Despite misperceptions or magical thinking, gep was widely considered to be the deciding factor in treatment decisions. Conclusions Patients tend to overestimate the truth-value of gep testing based on misperceptions of its validity. Our results identify a need to better support patient understanding of the test and its limitations. Findings illustrate the deep emotional investment patients make in gep test results and the impact of that investment on their treatment decisions. PMID:24764705

  9. Study of all-angle negative refraction of light in metal-dielectric-metal multilayered structures based on generalized formulas of reflection and refraction

    NASA Astrophysics Data System (ADS)

    Chen, Jiangwei; Liu, Jun; Xu, Weidong

    2017-09-01

    In this paper, refraction behaviors of light in both metal single-layered film and metal-dielectric-metal multilayered films are investigated based on the generalized formulas of reflection and refraction. The obtained results, especially, dependence of power refractive index on incident angles for a light beam traveling through a metal-dielectric-metal multilayered structure, are well consistent with the experimental observations. Our work may offer a new angle of view to understand the all-angle negative refraction of light in metal-dielectric-metal multilayered structures, and provide a convenient approach to optimize the devised design and address the issue on making the perfect lens.

  10. Method of transferring strained semiconductor structure

    DOEpatents

    Nastasi, Michael A [Santa Fe, NM; Shao, Lin [College Station, TX

    2009-12-29

    The transfer of strained semiconductor layers from one substrate to another substrate involves depositing a multilayer structure on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the deposited multilayer structure is bonded to a second substrate and is separated away at the interface, which results in transferring a multilayer structure from one substrate to the other substrate. The multilayer structure includes at least one strained semiconductor layer and at least one strain-induced seed layer. The strain-induced seed layer can be optionally etched away after the layer transfer.

  11. Interface magnetic anisotropy for monatomic layer-controlled Co/Ni epitaxial multilayers

    NASA Astrophysics Data System (ADS)

    Shioda, A.; Seki, T.; Shimada, J.; Takanashi, K.

    2015-05-01

    The magnetic properties for monatomic layer (ML)-controlled Co/Ni epitaxial multilayers were investigated in order to evaluate the interface magnetic anisotropy energy (Ks) between Ni and Co layers. The Co/Ni epitaxial multilayers were prepared on an Al2O3 (11-20) substrate with V/Au buffer layers. The value of Ks was definitely larger than that for the textured Co/Ni grown on a thermally oxidized Si substrate. We consider that the sharp interface for the epitaxial Co/Ni played a role to increase the value of Ks, which also enabled us to obtain perpendicular magnetization even for the 1 ML-Co/1 ML-Ni multilayer.

  12. Multilayer Disk Reduced Interlayer Crosstalk with Wide Disk-Fabrication Margin

    NASA Astrophysics Data System (ADS)

    Hirotsune, Akemi; Miyauchi, Yasushi; Endo, Nobumasa; Onuma, Tsuyoshi; Anzai, Yumiko; Kurokawa, Takahiro; Ushiyama, Junko; Shintani, Toshimichi; Sugiyama, Toshinori; Miyamoto, Harukazu

    2008-07-01

    To reduce interlayer crosstalk caused by the ghost spot which appears in a multilayer optical disk with more than three information layers, a multilayer disk structure which reduces interlayer crosstalk with a wide disk-fabrication margin was proposed in which the backward reflectivity of the information layers is sufficiently low. It was confirmed that the interlayer crosstalk caused by the ghost spot was reduced to less than the crosstalk from the adjacent layer by controlling backward reflectivity. The wide disk-fabrication margin of the proposed disk structure was indicated by experimentally confirming that the tolerance of the maximum deviation of the spacer-layer thickness is four times larger than that in the previous multilayer disk.

  13. NASA/MSFC multilayer diffusion models and computer program for operational prediction of toxic fuel hazards

    NASA Technical Reports Server (NTRS)

    Dumbauld, R. K.; Bjorklund, J. R.; Bowers, J. F.

    1973-01-01

    The NASA/MSFC multilayer diffusion models are discribed which are used in applying meteorological information to the estimation of toxic fuel hazards resulting from the launch of rocket vehicle and from accidental cold spills and leaks of toxic fuels. Background information, definitions of terms, description of the multilayer concept are presented along with formulas for determining the buoyant rise of hot exhaust clouds or plumes from conflagrations, and descriptions of the multilayer diffusion models. A brief description of the computer program is given, and sample problems and their solutions are included. Derivations of the cloud rise formulas, users instructions, and computer program output lists are also included.

  14. Out-of-plane permeability of multilayer 0°/90° non-crimp fabrics

    NASA Astrophysics Data System (ADS)

    Fang, Liangchao; Wu, Wenyu; Xu, Chunting; Zhang, Hui

    2018-03-01

    Layer shift is the main source of the variations in permeability values for multilayer fabrics. This phenomenon could change the flow path and cause inadequate infiltration. In this paper, the out-of-plane permeability of multilayer 0°/90° non-crimp fabrics was analyzed statistically. Based on the prediction models of 2-layer fabrics, every two adjacent layers were regarded as porous media with different permeabilities. The out-of-plane permeability of multilayer fabrics was then modeled with the electrical resistance analogy. Analytical results were compared with experiment data. And the effect of number of layer on permeability was thoroughly researched based on the statistical point of view.

  15. Optimization design and laser damage threshold analysis of pulse compression multilayer dielectric gratings

    NASA Astrophysics Data System (ADS)

    Fan, Shuwei; Bai, Liang; Chen, Nana

    2016-08-01

    As one of the key elements of high-power laser systems, the pulse compression multilayer dielectric grating is required for broader band, higher diffraction efficiency and higher damage threshold. In this paper, the multilayer dielectric film and the multilayer dielectric gratings(MDG) were designed by eigen matrix and optimized with the help of generic algorithm and rigorous coupled wave method. The reflectivity was close to 100% and the bandwith were over 250nm, twice compared to the unoptimized film structure. The simulation software of standing wave field distribution within MDG was developed and the electric field of the MDG was calculated. And the key parameters which affected the electric field distribution were also studied.

  16. Evolution of topological skyrmions across the spin reorientation transition in Pt/Co/Ta multilayers

    NASA Astrophysics Data System (ADS)

    He, Min; Li, Gang; Zhu, Zhaozhao; Zhang, Ying; Peng, Licong; Li, Rui; Li, Jianqi; Wei, Hongxiang; Zhao, Tongyun; Zhang, X.-G.; Wang, Shouguo; Lin, Shi-Zeng; Gu, Lin; Yu, Guoqiang; Cai, J. W.; Shen, Bao-gen

    2018-05-01

    Magnetic skyrmions in multilayers are particularly appealing as next generation memory devices due to their topological compact size, the robustness against external perturbations, the capability of electrical driving and detection, and the compatibility with the existing spintronic technologies. To date, Néel-type skyrmions at room temperature (RT) have been studied mostly in multilayers with easy-axis magnetic anisotropy. Here, we systematically broadened the evolution of magnetic skyrmions with sub-50-nm size in a series of Pt/Co/Ta multilayers where the magnetic anisotropy is tuned continuously from easy axis to easy plane by increasing the ferromagnetic Co layer thickness. The existence of nontrivial skyrmions is identified via the combination of in situ Lorentz transmission electron microscopy (L-TEM) and Hall transport measurements. A high density of magnetic skyrmions over a wide temperature range is observed in the multilayers with easy-plane anisotropy, which will stimulate further exploration for new materials and accelerate the development of skyrmion-based spintronic devices.

  17. New local joining technique for metal materials using exothermic heat of Al/Ni multilayer powder

    NASA Astrophysics Data System (ADS)

    Izumi, Taisei; Kametani, Nagamasa; Miyake, Shugo; Kanetsuki, Shunsuke; Namazu, Takahiro

    2018-06-01

    The use of Al/Ni multilayer powders as a new heat source has been expected for metal joining technique owing to their instantaneous reaction and enormous amount of exothermic heat. In this study, the effects of the amount of Al/Ni multilayer powders on the electrical and mechanical properties of the joining part of Al strip specimens were examined. These electrical and mechanical properties were estimated by electric resistivity measurement using the four-terminal method and shear test, respectively. Experimental results show that Al specimens are successful joined under a limited condition and exhibit low electrical resistance and sufficiently high strength to maintain the joined state. However, overheating increases the amount of Al/Ni multilayer powder in the joined part, which causes considerable damage such as voids and dissolved loss. It is found that optimization of the amount of Al/Ni multilayer powder enables us to realize reliable joining of Al foils in electronics fields in the future.

  18. Multilayer thin film design as far ultraviolet quarterwave retarders

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Torr, Douglas T.; Wilson, Michele M.

    1993-01-01

    At short wavelengths, such as FUV, transparent, optically active materials are scarce. Reflection phase retardation by a multilayer thin film can be a good alternative in this wavelength region. We design a multilayer quarterwave retarder by calculating the electric fields at each boundary in the multilayer thin film. Using this method, we achieve designs of FUV multilayers which provide high, matched reflectances for both s- and p-polarization states, and at the same time a phase difference between these two states of nearly 90 deg. For example, a quarterwave retarder designed at the Lyman-alpha line (121.6 nm) has 81.05 percent reflectance for the s-polarization and 81.04 percent for the p-polarization state. The phase difference between these two polarization states is 90.07 deg. For convenience the retarders are designed for 45 deg angle of incidence, but our design approach can be used for any other angle of incidence. Aluminum and MgF2 are used as film materials and an opaque thick film of aluminum as the substrate.

  19. Enhanced photovoltaic property by forming p-i-n structures containing Si quantum dots/SiC multilayers

    PubMed Central

    2014-01-01

    Si quantum dots (Si QDs)/SiC multilayers were fabricated by annealing hydrogenated amorphous Si/SiC multilayers prepared in a plasma-enhanced chemical vapor deposition system. The thickness of amorphous Si layer was designed to be 4 nm, and the thickness of amorphous SiC layer was kept at 2 nm. Transmission electron microscopy observation revealed the formation of Si QDs after 900°C annealing. The optical properties of the Si QDs/SiC multilayers were studied, and the optical band gap deduced from the optical absorption coefficient result is 1.48 eV. Moreover, the p-i-n structure with n-a-Si/i-(Si QDs/SiC multilayers)/p-Si was fabricated, and the carrier transportation mechanism was investigated. The p-i-n structure was used in a solar cell device. The cell had the open circuit voltage of 532 mV and the power conversion efficiency (PCE) of 6.28%. PACS 81.07.Ta; 78.67.Pt; 88.40.jj PMID:25489285

  20. Impacts of Annealing Conditions on the Flat Band Voltage of Alternate La2O3/Al2O3 Multilayer Stack Structures.

    PubMed

    Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei

    2016-12-01

    The mechanism of flat band voltage (VFB) shift for alternate La2O3/Al2O3 multilayer stack structures in different annealing condition is investigated. The samples were prepared for alternate multilayer structures, which were annealed in different conditions. The capacitance-voltage (C-V) measuring results indicate that the VFB of samples shift negatively for thinner bottom Al2O3 layer, increasing annealing temperature or longer annealing duration. Simultaneously, the diffusion of high-k material to interfaces in different multilayer structures and annealing conditions is observed by X-ray photoelectron spectroscopy (XPS). Based on the dipole theory, a correlation between the diffusion effect of La towards bottom Al2O3/Si interface and VFB shift is found. Without changing the dielectric constant k of films, VFB shift can be manipulated by controlling the single-layer cycles and annealing conditions of alternate high-k multilayer stack.

  1. Multilayer and grazing incidence X-ray/EUV optics; Proceedings of the Meeting, San Diego, CA, July 22-24, 1991

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Editor)

    1992-01-01

    The present conference discusses the Advanced X-ray Astrophysics Facility (AXAF) calibration by means of synchrotron radiation and its X-ray reflectivity, X-ray scattering measurements from thin-foil X-ray mirrors, lobster-eye X-ray optics using microchannel plates, space-based interferometry at EUV and soft X-ray wavelengths, a water-window imaging X-ray telescope, a graded d-spacing multilayer telescope for high energy X-ray astronomy, photographic films for the multispectral solar telescope array, a soft X-ray ion chamber, and the development of hard X-ray optics. Also discussed are X-ray spectroscopy with multilayered optics, a slit aperture for monitoring X-ray experiments, an objective double-crystal spectrometer, a Ly-alpha coronagraph/polarimeter, tungsten/boron nitride multilayers for XUV optical applications, the evaluation of reflectors for soft X-ray optics, the manufacture of elastically bent crystals and multilayer mirrors, and selective photodevices for the VUV.

  2. Evaluation of electrical properties of Cr/CrN nano-multilayers for electronic applications.

    PubMed

    Marulanda, D M; Olaya, J J; Patiño, E J

    2011-06-01

    The electrical properties of Cr/CrN nano-multilayers produced by Unbalanced Magnetron Sputtering have been studied as a function of bilayer period and total thickness. Two groups of multilayers were produced: in the first group the bilayer period varied between 20 nm, 100 nm and 200 nm with total thickness of 1 microm, and in the second group the bilayer period varied between 25 nm, 50 nm and 100 nm and a total thickness of 100 nm. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were used in order to investigate the microstructure characteristics of the multilayers, and the Four Point Probe (FPP) method was used to evaluate in-plane and transverse electrical resistivity. XRD results show (111) and (200) orientations for all the CrN coatings and the presence of a multilayer structure was confirmed through SEM studies. Transverse electrical resistivity results show that this property is strongly dependent on the bilayer period.

  3. Formation of (Ti,Al)N/Ti{sub 2}AlN multilayers after annealing of TiN/TiAl(N) multilayers deposited by ion beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolique, V.; Jaouen, M.; Cabioc'h, T.

    2008-04-15

    By using ion beam sputtering, TiN/TiAl(N) multilayers of various modulation wavelengths ({lambda}=8, 13, and 32 nm) were deposited onto silicon substrates at room temperature. After annealing at 600 deg. C in vacuum, one obtains for {lambda}=13 nm a (Ti,Al)N/Ti{sub 2}AlN multilayer as it is evidenced from x-ray diffraction, high resolution transmission electron microscopy, and energy filtered electron imaging experiments. X-ray photoelectron spectroscopy (XPS) experiments show that the as-deposited TiAl sublayers contain a noticeable amount of nitrogen atoms which mean concentration varies with the period {lambda}. They also evidenced the diffusion of aluminum into TiN sublayers after annealing. Deduced from thesemore » observations, we propose a model to explain why this solid-state phase transformation depends on the period {lambda} of the multilayer.« less

  4. Analysis of the electromechanical characteristics of a piezoelectric multilayered structure for in-air ultrasound radiation

    NASA Astrophysics Data System (ADS)

    Shim, Hayeong; Roh, Yongrae

    2018-07-01

    Ultrasonic sensors in air are used to measure distances from obstacles in household appliances, automobiles, and other areas. Among these ultrasonic sensors in air, sensors using disk-shaped piezoelectric ceramics are composed of a multilayered structure having a vibrational plate, a piezoelectric ceramic disk, and a backing layer. In this study, we derived theoretical equations that can accurately analyze the acoustic characteristics of the piezoelectric multilayered structure, and then analyzed the performance of the ultrasonic sensor according to the geometrical change of the multilayered structure. The characteristics analyzed were the resonant frequency and the radiated sound pressure at a far field of the sensor. The validity of the theoretical analysis was verified by comparing the results with those obtained from the finite element analysis of the same structure. The exact functional forms of the resonant frequency of and the radiated sound pressure from the piezoelectric multilayered structure derived in this study can be directly utilized to maximize the performance of various ultrasonic sensors in air.

  5. An investigation on the electrochemical behavior of the Co/Cu multilayer system.

    PubMed

    Mahshid, S S; Dolati, A

    2010-09-01

    Co/Cu multilayers were deposited in a sulfate solution by controlling the current and potential for the deposition of cobalt and copper layer respectively. The electrochemical behavior of these multilayers was studied by cyclic voltammetry and current transients. In addition, a mathematical analysis was used to characterize the electrodeposition system. Simultaneously, the nucleation and growth mechanisms were monitored by these techniques. In this case, the results clearly showed that electrodeposition of cobalt layers was a kinetically controlled process while the reduction of copper ions was a diffusion-control process. Although nucleation mechanism of the single Co deposit was found as a progressive system, it was found as an instantaneous system with three-dimensional growth mechanism in the Co/Cu bilayer deposition. Atomic Forced Microscopy images of the Co/Cu multilayer also confirmed the aforementioned nucleation mechanism, where it was expected that the growth of multilayer films would form a laminar-type structure containing a large number of equally-sized rounded grains in each layer.

  6. Magnetic and magneto-optical properties and domain structure of Co/Pd multilayers

    NASA Technical Reports Server (NTRS)

    Gadetsky, S.; Wu, Teho; Suzuki, T.; Mansuripur, M.

    1993-01-01

    The domain structure of Co/Pd(1.6/6.3 A)xN multilayers and its relation to the bulk magnetic properties of the samples were studied. The Co/Pd multilayers were deposited by rf and dc magnetron sputtering onto different substrates. It was found that magnetic and magnetooptical properties and domain structure of the multilayers were affected by total film thickness and substrate condition. Magnetization, coercivity, and anisotropy of the films decreased significantly as the film thickness dropped below 100 A. However, Kerr rotation angle had a maximum at the same thickness. The width of the domain structure increased with the decrease of the film thickness attaining the single domain state at N = 10. The initial curves in Co/Pd multilayers were found to depend on demagnetization process. The samples demagnetized by inplane field showed the largest difference between initial curves and the corresponding parts of the loops. Different domain structures were observed in the samples demagnetized by perpendicular and in-plane magnetic fields.

  7. Surface modification of 316L stainless steel with magnetron sputtered TiN/VN nanoscale multilayers for bio implant applications.

    PubMed

    Subramanian, B; Ananthakumar, R; Kobayashi, Akira; Jayachandran, M

    2012-02-01

    Nanoscale multilayered TiN/VN coatings were developed by reactive dc magnetron sputtering on 316L stainless steel substrates. The coatings showed a polycrystalline cubic structure with (111) preferential growth. XPS analysis indicated the presence of peaks corresponding to Ti2p, V2p, N1s, O1s, and C1s. Raman spectra exhibited the characteristic peaks in the acoustic range of 160-320 cm(-1) and in the optic range between 480 and 695 cm(-1). Columnar structure of the coatings was observed from TEM analysis. The number of adherent platelets on the surface of the TiN/VN multilayer, VN, TiN single layer coating exhibit fewer aggregation and pseudopodium than on substrates. The wear resistance of the multilayer coatings increases obviously as a result of their high hardness. Tafel plots in simulated bodily fluid showed lower corrosion rate for the TiN/VN nanoscale multilayer coatings compared to single layer and bare 316L SS substrate.

  8. Sb7Te3/Ge multilayer films for low power and high speed phase-change memory

    NASA Astrophysics Data System (ADS)

    Chen, Shiyu; Wu, Weihua; Zhai, Jiwei; Song, Sannian; Song, Zhitang

    2017-06-01

    Phase-change memory has attracted enormous attention for its excellent properties as compared to flash memories due to their high speed, high density, better date retention and low power consumption. Here we present Sb7Te3/Ge multilayer films by using a magnetron sputtering method. The 10 years’ data retention temperature is significantly increased compared with pure Sb7Te3. When the annealing temperature is above 250 °C, the Sb7Te3/Ge multilayer thin films have better interface properties, which renders faster crystallization speed and high thermal stability. The decrease in density of ST/Ge multilayer films is only around 5%, which is very suitable for phase change materials. Moreover, the low RESET power benefits from high resistivity and better thermal stability in the PCM cells. This work demonstrates that the multilayer configuration thin films with tailored properties are beneficial for improving the stability and speed in phase change memory applications.

  9. Indium-saving effect and physical properties of transparent conductive multilayers

    NASA Astrophysics Data System (ADS)

    Kawamura, M.; Kiba, T.; Abe, Y.; Kim, K. H.

    2018-03-01

    Indium-free transparent conductive multilayer structures consisting of top and bottom MoO3 layers and an Ag interlayer (MoO3/Ag/MoO3; MAM) are deposited onto glass substrates by vacuum evaporation. The transmittance and sheet resistance of the structures are evaluated, and the optimum structure is determined to be MAM (20/14/30 nm) as it shows the best figure of merit (FOM), which is used as the index for transparent conductive films, with a value of 6.2 × 10-3 Ω-1. To further improve the performance of the films, we attempt to fabricate a multilayer consisting of MoO3 and indium zinc oxide (IZO), based on previous results. The obtained IAM (30/14/50 nm) multilayer shows an FOM higher than that of the MAM, with a value of 32 × 10-3 Ω-1. Moreover, it reduces the amount of required indium as compared with the IZO/Ag/IZO multilayer.

  10. Prediction of sound transmission loss through multilayered panels by using Gaussian distribution of directional incident energy

    PubMed

    Kang; Ih; Kim; Kim

    2000-03-01

    In this study, a new prediction method is suggested for sound transmission loss (STL) of multilayered panels of infinite extent. Conventional methods such as random or field incidence approach often given significant discrepancies in predicting STL of multilayered panels when compared with the experiments. In this paper, appropriate directional distributions of incident energy to predict the STL of multilayered panels are proposed. In order to find a weighting function to represent the directional distribution of incident energy on the wall in a reverberation chamber, numerical simulations by using a ray-tracing technique are carried out. Simulation results reveal that the directional distribution can be approximately expressed by the Gaussian distribution function in terms of the angle of incidence. The Gaussian function is applied to predict the STL of various multilayered panel configurations as well as single panels. The compared results between the measurement and the prediction show good agreements, which validate the proposed Gaussian function approach.

  11. Enhancement of electroluminescence from embedded Si quantum dots/SiO2multilayers film by localized-surface-plasmon and surface roughening.

    PubMed

    Li, Wei; Wang, Shaolei; Hu, Mingyue; He, Sufeng; Ge, Pengpeng; Wang, Jing; Guo, Yan Yan; Zhaowei, Liu

    2015-07-03

    In this paper, we prepared a novel structure to enhance the electroluminescence intensity from Si quantum dots/SiO2multilayers. An amorphous Si/SiO2 multilayer film was fabricated by plasma-enhanced chemical vapor deposition on a Pt nanoparticle (NP)-coated Si nanopillar array substrate. By thermal annealing, an embedded Si quantum dot (QDs)/SiO2 multilayer film was obtained. The result shows that electroluminescence intensity was significantly enhanced. And, the turn-on voltage of the luminescent device was reduced to 3 V. The enhancement of the light emission is due to the resonance coupling between the localized-surface-plasmon (LSP) of Pt NPs and the band-gap emission of Si QDs/SiO2 multilayers. The other factors were the improved absorption of excitation light and the increase of light extraction ratio by surface roughening structures. These excellent characteristics are promising for silicon-based light-emitting applications.

  12. Enhancement of electroluminescence from embedded Si quantum dots/SiO2multilayers film by localized-surface-plasmon and surface roughening

    PubMed Central

    Li, Wei; Wang, Shaolei; Hu, Mingyue; He, Sufeng; Ge, Pengpeng; Wang, Jing; Guo, Yan Yan; Zhaowei, Liu

    2015-01-01

    In this paper, we prepared a novel structure to enhance the electroluminescence intensity from Si quantum dots/SiO2multilayers. An amorphous Si/SiO2 multilayer film was fabricated by plasma-enhanced chemical vapor deposition on a Pt nanoparticle (NP)-coated Si nanopillar array substrate. By thermal annealing, an embedded Si quantum dot (QDs)/SiO2 multilayer film was obtained. The result shows that electroluminescence intensity was significantly enhanced. And, the turn-on voltage of the luminescent device was reduced to 3 V. The enhancement of the light emission is due to the resonance coupling between the localized-surface-plasmon (LSP) of Pt NPs and the band-gap emission of Si QDs/SiO2 multilayers. The other factors were the improved absorption of excitation light and the increase of light extraction ratio by surface roughening structures. These excellent characteristics are promising for silicon-based light-emitting applications. PMID:26138830

  13. A multilayered supramolecular self-assembled structure from soybean oil by in situ polymerization and its applications.

    PubMed

    Kavitha, Varadharajan; Gnanamani, Arumugam

    2013-05-01

    The present study emphasizes in situ transformation of soybean oil to self-assembled supramolecular multilayered biopolymer material. The said polymer material was characterized and the entrapment efficacy of both hydrophilic and hydrophobic moieties was studied. In brief, soybean oil at varying concentration was mixed with mineral medium and incubated under agitation (200 rpm) at 37 degrees C for 240 h. Physical observations were made till 240 h and the transformed biopolymer was separated and subjected to physical, chemical and functional characterization. The maximum size of the polymer material was measured as 2 cm in diameter and the cross sectional view displayed the multilayered onion rings like structures. SEM analysis illustrated the presence of multilayered honeycomb channeled structures. Thermal analysis demonstrated the thermal stability (200 degrees C) and high heat enthalpy (1999 J/g). Further, this multilayered assembly was able to entrap both hydrophilic and hydrophobic components simultaneously, suggesting the potential industrial application of this material.

  14. Tunable photonic multilayer sensors from photo-crosslinkable polymers

    NASA Astrophysics Data System (ADS)

    Chiappelli, Maria; Hayward, Ryan

    2014-03-01

    The fabrication of tunable photonic multilayer sensors from stimuli-responsive, photo-crosslinkable polymers will be described. Benzophenone is covalently incorporated as a pendent photo-crosslinker, allowing for facile preparation of multilayer films by sequential spin-coating and crosslinking processes. Copolymer chemistries and layer thicknesses are selected to provide robust multilayer sensors which can show color changes across nearly the full visible spectrum due to the specific stimulus-responsive nature of the hydrated film stack. We will describe how this approach is extended to alternative sensor designs by tailoring the thickness and chemistry of each layer independently, allowing for the preparation of sensors which depend not only on the shift in wavelength of a reflectance peak, but also on the transition between Bragg mirrors and filters. Device design is optimized by photo-patterning sensor arrays on a single substrate, providing more efficient fabrication time as well as multi-functional sensors. Finally, radiation-sensitive multilayers, designed by choosing polymers which will preferentially degrade or crosslink under ionizing radiation, will also be described.

  15. In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers

    DOE PAGES

    Chen, Youxing; Li, Nan; Bufford, Daniel Charles; ...

    2016-04-09

    By providing active defect sinks that capture and annihilate radiation induced defect clusters immiscible metallic multilayers with incoherent interfaces can effectively reduce defect density in ion irradiated metals. Although it is anticipated that defect density within the layers should vary as a function of distance to the layer interface, there is, to date, little in situ TEM evidence to validate this hypothesis. In our study monolithic Cu films and Cu/Fe multilayers with individual layer thickness, h, of 100 and 5 nm were subjected to in situ Cu ion irradiation at room temperature to nominally 1 displacement-per-atom inside a transmission electronmore » microscope. Rapid formation and propagation of defect clusters were observed in monolithic Cu, whereas fewer defects with smaller dimensions were generated in Cu/Fe multilayers with smaller h. Moreover, in situ video shows that the cumulative defect density in Cu/Fe 100 nm multilayers indeed varies, as a function of distance to the layer interfaces, supporting a long postulated hypothesis.« less

  16. Wrinkles enhance the diffuse reflection from the dragonfly Rhyothemis resplendens

    PubMed Central

    Nixon, M. R.; Orr, A. G.; Vukusic, P.

    2015-01-01

    The dorsal surfaces of the hindwings of the dragonfly Rhyothemis resplendens (Odonata: Libellulidae) reflect a deep blue from the multilayer structure in its wing membrane. The layers within this structure are not flat, but distinctly ‘wrinkled’, with a thickness of several hundred nanometres and interwrinkle crest distances of 5 µm and greater. A comparison between the backscattered light from R. resplendens and a similar, but un-‘wrinkled’ multilayer in the damselfly Matronoides cyaneipennis (Odonata: Calopterygidae) shows that the angle over which incident light is backscattered is increased by the wrinkling in the R. resplendens structure. Whereas the reflection from the flat multilayer of M. cyaneipennis is effectively specular, the reflection from the wrinkled R. resplendens multilayer spans 1.47 steradians (equivalent to ±40° for all azimuthal angles). This property enhances the visibility of the static wing over a broader angle range than is normally associated with a smooth multilayer, thereby markedly increasing its conspicuousness. PMID:25540236

  17. Vapor Responsive One-Dimensional Photonic Crystals from Zeolite Nanoparticles and Metal Oxide Films for Optical Sensing

    PubMed Central

    Lazarova, Katerina; Awala, Hussein; Thomas, Sebastien; Vasileva, Marina; Mintova, Svetlana; Babeva, Tsvetanka

    2014-01-01

    The preparation of responsive multilayered structures with quarter-wave design based on layer-by-layer deposition of sol-gel derived Nb2O5 films and spin-coated MEL type zeolite is demonstrated. The refractive indices (n) and thicknesses (d) of the layers are determined using non-linear curve fitting of the measured reflectance spectra. Besides, the surface and cross-sectional features of the multilayered structures are characterized by scanning electron microscopy (SEM). The quasi-omnidirectional photonic band for the multilayered structures is predicted theoretically, and confirmed experimentally by reflectance measurements at oblique incidence with polarized light. The sensing properties of the multilayered structures toward acetone are studied by measuring transmittance spectra prior and after vapor exposure. Furthermore, the potential of the one-dimensional photonic crystals based on the multilayered structure consisting of Nb2O5 and MEL type zeolite as a chemical sensor with optical read-out is discussed. PMID:25010695

  18. The investigation of large field of view eyepiece with multilayer diffractive optical element

    NASA Astrophysics Data System (ADS)

    Fan, Changjiang

    2014-11-01

    In this paper, a light-small hybrid refractive/diffractive eyepiece for HMD is designed, which introduces a multilayer Diffractive Optical Element for the first time. This eyepiece optical system has a 22mm eye relief and 8mm exit pupil with 60° FOV. The multilayer DOE overcomes the difficulties of single-layer DOE and double-layer DOE using in the optical system, and improve the image contrast and the performance significantly due to the diffraction efficiency of the multilayer DOE is lager than 90% in wide waveband and large FOV range. The material of multilayer DOE are FCD1 for first layer, FD6 for second layer, PS for the filler layer. Moreover, the weight of the eyepiece system is only 8g, and the diameter of lens is 16mm. The MTF performance can satisfy the requirement of display with VGA resolution. Besides, the lateral color and distortion are 4.8% and 10μm, respectively. The properties of the helmet eyepiece system are excellent.

  19. Electrochemical Formation of Multilayer SnO2-Sb x O y Coating in Complex Electrolyte

    NASA Astrophysics Data System (ADS)

    Maizelis, Antonina; Bairachniy, Boris

    2017-02-01

    The multilayer antimony-doped tin dioxide coating was obtained by cathodic deposition of multilayer metal-hydroxide coating with near 100-nm thickness layers on the alloy underlayer accompanied by the anodic oxidation of this coating. The potential regions of deposition of tin, antimony, tin-antimony alloy, and mixture of this metals and their hydroxides in the pyrophosphate-tartrate electrolyte were revealed by the cyclic voltammetric method. The possibility of oxidation of cathodic deposit consisting of tin and Sn(II) hydroxide compounds to the hydrated tin dioxide in the same electrolyte was demonstrated. The operations of alloy underlayer deposition and oxidation of multilayer metal-hydroxide coating were proposed to carry out in the diluted pyrophosphate-tartrate electrolyte, similar to the main electrolyte. The accelerated tests showed higher service life of the titanium electrode with multilayer antimony-doped tin dioxide coating compared to both electrode with single-layer electrodeposited coating and the electrode with the coating obtained using prolonged heat treatment step.

  20. Electrochemical Formation of Multilayer SnO2-Sb x O y Coating in Complex Electrolyte.

    PubMed

    Maizelis, Antonina; Bairachniy, Boris

    2017-12-01

    The multilayer antimony-doped tin dioxide coating was obtained by cathodic deposition of multilayer metal-hydroxide coating with near 100-nm thickness layers on the alloy underlayer accompanied by the anodic oxidation of this coating. The potential regions of deposition of tin, antimony, tin-antimony alloy, and mixture of this metals and their hydroxides in the pyrophosphate-tartrate electrolyte were revealed by the cyclic voltammetric method. The possibility of oxidation of cathodic deposit consisting of tin and Sn(II) hydroxide compounds to the hydrated tin dioxide in the same electrolyte was demonstrated.The operations of alloy underlayer deposition and oxidation of multilayer metal-hydroxide coating were proposed to carry out in the diluted pyrophosphate-tartrate electrolyte, similar to the main electrolyte.The accelerated tests showed higher service life of the titanium electrode with multilayer antimony-doped tin dioxide coating compared to both electrode with single-layer electrodeposited coating and the electrode with the coating obtained using prolonged heat treatment step.

  1. Understanding the neural basis of cognitive bias modification as a clinical treatment for depression.

    PubMed

    Eguchi, Akihiro; Walters, Daniel; Peerenboom, Nele; Dury, Hannah; Fox, Elaine; Stringer, Simon

    2017-03-01

    [Correction Notice: An Erratum for this article was reported in Vol 85(3) of Journal of Consulting and Clinical Psychology (see record 2017-07144-002). In the article, there was an error in the Discussion section's first paragraph for Implications and Future Work. The in-text reference citation for Penton-Voak et al. (2013) was incorrectly listed as "Blumenfeld, Preminger, Sagi, and Tsodyks (2006)". All versions of this article have been corrected.] Objective: Cognitive bias modification (CBM) eliminates cognitive biases toward negative information and is efficacious in reducing depression recurrence, but the mechanisms behind the bias elimination are not fully understood. The present study investigated, through computer simulation of neural network models, the neural dynamics underlying the use of CBM in eliminating the negative biases in the way that depressed patients evaluate facial expressions. We investigated 2 new CBM methodologies using biologically plausible synaptic learning mechanisms-continuous transformation learning and trace learning-which guide learning by exploiting either the spatial or temporal continuity between visual stimuli presented during training. We first describe simulations with a simplified 1-layer neural network, and then we describe simulations in a biologically detailed multilayer neural network model of the ventral visual pathway. After training with either the continuous transformation learning rule or the trace learning rule, the 1-layer neural network eliminated biases in interpreting neutral stimuli as sad. The multilayer neural network trained with realistic face stimuli was also shown to be able to use continuous transformation learning or trace learning to reduce biases in the interpretation of neutral stimuli. The simulation results suggest 2 biologically plausible synaptic learning mechanisms, continuous transformation learning and trace learning, that may subserve CBM. The results are highly informative for the development of experimental protocols to produce optimal CBM training methodologies with human participants. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. X-Ray Performance of Multilayer Diffraction Diagnostics

    DTIC Science & Technology

    1989-11-13

    wafers to fused quartz and superpolished Zerodur were used. Multilayers were deposited onto Si wafer substrates nd cleaved to rectangular sections 3.2...except it was noted that for depositions made on the supersmooth quartz and Zerodur substrates that the multilayer surfaces were slightly smoother than...values from the multilavers deposited on supersmooth quartz and Zerodur substrates were noticeabLe Lower than the U/Si multilav;ers on silicon

  3. Non-phase-matched enhancement of second-harmonic generation in multilayer nonlinear structures with internal reflections.

    PubMed

    Centini, Marco; D'Aguanno, Giuseppe; Sciscione, Letizia; Sibilia, Concita; Bertolotti, Mario; Scalora, Michael; Bloemer, Mark J

    2004-08-15

    Traditional notions of second-harmonic generation rely on phase matching or quasi phase matching to achieve good conversion efficiencies. We present an entirely new concept for efficient second-harmonic generation that is based on the interference of counterpropagating waves in multilayer structures. Conversion efficiencies are an order of magnitude larger than with phase-matched second-harmonic generation in similar multilayer structures.

  4. Corrosion protected, multi-layer fuel cell interface

    DOEpatents

    Feigenbaum, Haim; Pudick, Sheldon; Wang, Chiu L.

    1986-01-01

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. The multi-layer configuration for the interface comprises a non-cupreous metal-coated metallic element to which is film-bonded a conductive layer by hot pressing a resin therebetween. The multi-layer arrangement provides bridging electrical contact.

  5. Cast iron cutting with nano TiN and multilayer TiN-CrN coated inserts

    NASA Astrophysics Data System (ADS)

    Perucca, M.; Durante, S.; Semmler, U.; Rüger, C.; Fuentes, G. G.; Almandoz, E.

    2012-09-01

    During the past decade great success has been achieved in the development of duplex and multilayer multi-functional surface systems. Among these surface systems outstanding properties have nanoscale multilayer coatings. Within the framework of the M3-2S project funded in the 7th European Framework Programme, several nanoscale multilayer coatings have been developed and investigated for experimental and industrial validation. This paper shows the performance of TiN and TiN/CrN nanoscale multilayer coatings on WC cutting inserts when machining GJL250 cast iron. The thin films have been deposited by cathodic arc evaporation in an industrial PVD system. The multilayer deposition characteristic and its properties are shown. The inserts have been investigated in systematic cutting experiments of cast iron bars on a turning machine specifically equipped for force measurements, accompanied by wear determination. Furthermore, equivalent experiments have been carried out on an industrial turning unit. Industrial validation criteria have been applied to assess the comparative performance of the coatings. The choice of the material and the machined parts is driven by an interest in automotive applications. The industrial tests show the need to further optimise the multi-scale modelling approach in order to reduce the lead time of the coating development as well as to improve simulation reliability.

  6. Nonlinear multilayers as optical limiters

    NASA Astrophysics Data System (ADS)

    Turner-Valle, Jennifer Anne

    1998-10-01

    In this work we present a non-iterative technique for computing the steady-state optical properties of nonlinear multilayers and we examine nonlinear multilayer designs for optical limiters. Optical limiters are filters with intensity-dependent transmission designed to curtail the transmission of incident light above a threshold irradiance value in order to protect optical sensors from damage due to intense light. Thin film multilayers composed of nonlinear materials exhibiting an intensity-dependent refractive index are used as the basis for optical limiter designs in order to enhance the nonlinear filter response by magnifying the electric field in the nonlinear materials through interference effects. The nonlinear multilayer designs considered in this work are based on linear optical interference filter designs which are selected for their spectral properties and electric field distributions. Quarter wave stacks and cavity filters are examined for their suitability as sensor protectors and their manufacturability. The underlying non-iterative technique used to calculate the optical response of these filters derives from recognizing that the multi-valued calculation of output irradiance as a function of incident irradiance may be turned into a single-valued calculation of incident irradiance as a function of output irradiance. Finally, the benefits and drawbacks of using nonlinear multilayer for optical limiting are examined and future research directions are proposed.

  7. Design of a normal incidence multilayer imaging x-ray microscope.

    PubMed

    Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W

    1989-01-01

    Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  8. Localized surface plasmon resonance properties of symmetry-broken Au-ITO-Ag multilayered nanoshells

    NASA Astrophysics Data System (ADS)

    Lv, Jingwei; Mu, Haiwei; Lu, Xili; Liu, Qiang; Liu, Chao; Sun, Tao; Chu, Paul K.

    2018-06-01

    The plasmonic properties of symmetry-broken Au-ITO-Ag multilayered nanoshells by shell cutting are studied by the finite element method. The influence of the polarization of incident light and geometrical parameters on the plasmon resonances of the multilayered nanoshells are investigated. The polarization-dependent multiple plasmon resonances appear from the multilayered nanoshells due to symmetry breaking. In nanostructures with a broken symmetry, the localized surface plasmon resonance modes are enhanced resulting in higher order resonances. According to the plasmon hybridization theory, these resonance modes and greater spectral tunability derive from the interactions of an admixture of both primitive and multipolar modes between the inner Au core and outer Ag shell. By changing the radius of the Au core, the extinction resonance modes of the multilayered nanoshells can be easily tuned to the near-infrared region. To elucidate the symmetry-broken effects of multilayered nanoshells, we link the geometrical asymmetry to the asymmetrical distributions of surface charges and demonstrate dipolar and higher order plasmon modes with large associated field enhancements at the edge of the Ag rim. The spectral tunability of the multiple resonance modes from visible to near-infrared is investigated and the unique properties are attractive to applications including angularly selective filtering to biosensing.

  9. Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy

    PubMed Central

    Oh, Keun Sang; Kim, Kyungim; Yoon, Byeong Deok; Lee, Hye Jin; Park, Dal Yong; Kim, Eun-yeong; Lee, Kiho; Seo, Jae Hong; Yuk, Soon Hong

    2016-01-01

    A mixture of docetaxel (DTX) and Solutol® HS 15 (Solutol) transiently formed nanodroplets when it was suspended in an aqueous medium. However, nanodroplets that comprised DTX and Solutol showed a rapid precipitation of DTX because of their unstable characteristics in the aqueous medium. The incorporation of nanodroplets that comprised DTX and Solutol through vesicle fusion and subsequent stabilization was designed to prepare multilayer nanoparticles (NPs) with a DTX-loaded Solutol nanodroplet (as template NPs) core for an efficient delivery of DTX as a chemotherapeutic drug. As a result, the DTX-loaded Solutol nanodroplets (~11.7 nm) were observed to have an increased average diameter (from 11.7 nm to 156.1 nm) and a good stability of the hydrated NPs without precipitation of DTX by vesicle fusion and multilayered structure, respectively. Also, a long circulation of the multilayer NPs was observed, and this was due to the presence of Pluronic F-68 on the surface of the multilayer NPs. This led to an improved antitumor efficacy based on the enhanced permeation and retention effect. Therefore, this study indicated that the multilayer NPs have a considerable potential as a drug delivery system with an enhanced therapeutic efficacy by blood circulation and with low side effects. PMID:27042062

  10. Quantification of Protein-Induced Membrane Remodeling Kinetics In Vitro with Lipid Multilayer Gratings

    PubMed Central

    Lowry, Troy W.; Hariri, Hanaa; Prommapan, Plengchart; Kusi-Appiah, Aubrey; Vafai, Nicholas; Bienkiewicz, Ewa A.; Van Winkle, David H.; Stagg, Scott M.

    2016-01-01

    The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at micro- and nanoscopic scales. Consequently, quantitative methods for assaying the kinetics of supramolecular remodeling such as vesicle formation from planar lipid bilayers or multilayers are needed to understand cellular self-organization. Here, a new nanotechnology-based method for quantitative measurements of lipid–protein interactions is presented and its suitability for quantifying the membrane binding, inflation, and budding activity of the membrane-remodeling protein Sar1 is demonstrated. Lipid multilayer gratings are printed onto surfaces using nanointaglio and exposed to Sar1, resulting in the inflation of lipid multilayers into unilamellar structures, which can be observed in a label-free manner by monitoring the diffracted light. Local variations in lipid multilayer volume on the surface is used to vary substrate availability in a microarray format. A quantitative model is developed that allows quantification of binding affinity (KD) and kinetics (kon and koff). Importantly, this assay is uniquely capable of quantifying membrane remodeling. Upon Sar1-induced inflation of single bilayers from surface supported multilayers, the semicylindrical grating lines are observed to remodel into semispherical buds when a critical radius of curvature is reached. PMID:26649649

  11. Multilayer Membranes of Glycosaminoglycans and Collagen I Biomaterials Modulate the Function and Microvesicle Release of Endothelial Progenitor Cells.

    PubMed

    Dai, Bingyan; Pan, Qunwen; Li, Zhanghua; Zhao, Mingyan; Liao, Xiaorong; Wu, Keng; Ma, Xiaotang

    2016-01-01

    Multilayer composite membrane of biomaterials can increase the function of adipose stem cells or osteoprogenitor cells. Recent evidence indicates endothelial progenitor cells (EPCs) and EPCs released microvesicles (MVs) play important roles in angiogenesis and vascular repair. Here, we investigated the effects of biomaterial multilayer membranes of hyaluronic acid (HA) or chondroitin sulfate (CS) and Collagen I (Col I) on the functions and MVs release of EPCs. Layer-by-layer (LBL) technology was applied to construct the multilayer composite membranes. Four types of the membranes constructed by adsorbing either HA or CS and Col I alternatively with different top layers were studied. The results showed that all four types of multilayer composite membranes could promote EPCs proliferation and migration and inhibit cell senility, apoptosis, and the expression of activated caspase-3. Interestingly, these biomaterials increased the release and the miR-126 level of EPCs-MVs. Moreover, the CS-Col I membrane with CS on the top layer showed the most effects on promoting EPCs proliferation, EPCs-MV release, and miR-126 level in EPCs-MVs. In conclusion, HA/CS and Collagen I composed multilayer composite membranes can promote EPCs functions and release of miR-126 riched EPCs-MVs, which provides a novel strategy for tissue repair treatment.

  12. Multilayer Dye Aggregation at Dye/TiO2 Interface via π…π Stacking and Hydrogen Bond and Its Impact on Solar Cell Performance: A DFT Analysis.

    PubMed

    Zhang, Lei; Liu, Xiaogang; Rao, Weifeng; Li, Jingfa

    2016-10-21

    Multilayer dye aggregation at the dye/TiO 2 interface of dye-sensitized solar cells is probed via first principles calculations, using p-methyl red azo dye as an example. Our calculations suggest that the multilayer dye aggregates at the TiO 2 surface can be stabilized by π…π stacking and hydrogen bond interactions. Compared with previous two-dimensional monolayer dye/TiO 2 model, the multilayer dye aggregation model proposed in this study constructs a three-dimensional multilayer dye/TiO 2 interfacial structure, and provides a better agreement between experimental and computational results in dye coverage and dye adsorption energy. In particular, a dimer forms by π…π stacking interactions between two neighboring azo molecules, while one of them chemisorbs on the TiO 2 surface; a trimer may form by introducing one additional azo molecule on the dimer through a hydrogen bond between two carboxylic acid groups. Different forms of multilayer dye aggregates, either stabilized by π…π stacking or hydrogen bond, exhibit varied optical absorption spectra and electronic properties. Such variations could have a critical impact on the performance of dye sensitized solar cells.

  13. The Study of Electrical Properties for Multilayer La2O3/Al2O3 Dielectric Stacks and LaAlO3 Dielectric Film Deposited by ALD.

    PubMed

    Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei

    2017-12-01

    The capacitance and leakage current properties of multilayer La 2 O 3 /Al 2 O 3 dielectric stacks and LaAlO 3 dielectric film are investigated in this paper. A clear promotion of capacitance properties is observed for multilayer La 2 O 3 /Al 2 O 3 stacks after post-deposition annealing (PDA) at 800 °C compared with PDA at 600 °C, which indicated the recombination of defects and dangling bonds performs better at the high-k/Si substrate interface for a higher annealing temperature. For LaAlO 3 dielectric film, compared with multilayer La 2 O 3 /Al 2 O 3 dielectric stacks, a clear promotion of trapped charges density (N ot ) and a degradation of interface trap density (D it ) can be obtained simultaneously. In addition, a significant improvement about leakage current property is observed for LaAlO 3 dielectric film compared with multilayer La 2 O 3 /Al 2 O 3 stacks at the same annealing condition. We also noticed that a better breakdown behavior for multilayer La 2 O 3 /Al 2 O 3 stack is achieved after annealing at a higher temperature for its less defects.

  14. Effects of interfaces on the thermal conductivity in Si/Si0.75Ge0.25 multilayer with varying Au layers

    NASA Astrophysics Data System (ADS)

    Hu, Yangsen; Wu, Zhenghua; Ye, Fengjie; Hu, Zhiyu

    2018-02-01

    The manoeuvre of thermal transport property across multilayer films with inserted metal layers through controlling the metal-nonmetal interfaces is of fundamental interest. In this work, amorphous Si/Si0.75Ge0.25 multilayer films inserted with varying Au layers were fabricated by magnetron sputtering. The structure and sharp interface of multilayers films were characterized by low angle x-ray diffraction (LAXRD), grazing incidence small angle x-ray scattering (GISAXS) and scanning electron microscopy (SEM). A differential 3ω method was applied to measure the effective thermal conductivity. The measurements show that thermal conductivity has changed as varying Au layers. Thermal conductivity increased from 0.94 to 1.31 Wm-1K-1 while Si0.75Ge0.25 layer was replaced by different Au layers, which was attributed to the strong electron-phonon coupling and interface thermal resistance in a metal-nonmetal multilayered system. Theoretical calculation combined with experimental results indicate that the thermal conductivity of the multilayer film could be facilely controlled by introducing different number of nanoconstructed metal-nonmetal interfaces, which provide a more insightful understanding of the thermal transport manipulation mechanism of the thin film system with inserting metal layers.

  15. Roll-to-Roll sputtered ITO/Cu/ITO multilayer electrode for flexible, transparent thin film heaters and electrochromic applications.

    PubMed

    Park, Sung-Hyun; Lee, Sang-Mok; Ko, Eun-Hye; Kim, Tae-Ho; Nah, Yoon-Chae; Lee, Sang-Jin; Lee, Jae Heung; Kim, Han-Ki

    2016-09-22

    We fabricate high-performance, flexible, transparent electrochromic (EC) films and thin film heaters (TFHs) on an ITO/Cu/ITO (ICI) multilayer electrode prepared by continuous roll-to-roll (RTR) sputtering of ITO and Cu targets. The RTR-sputtered ICI multilayer on a 700 mm wide PET substrate at room temperature exhibits a sheet resistance of 11.8 Ω/square and optical transmittance of 73.9%, which are acceptable for the fabrication of flexible and transparent EC films and TFHs. The effect of the Cu interlayer thickness on the electrical and optical properties of the ICI multilayer was investigated in detail. The bending and cycling fatigue tests demonstrate that the RTR-sputtered ICI multilayer was more flexible than a single ITO film because of high strain failure of the Cu interlayer. The flexible and transparent EC films and TFHs fabricated on the ICI electrode show better performances than reference EC films and TFHs with a single ITO electrode. Therefore, the RTR-sputtered ICI multilayer is the best substitute for the conventional ITO film electrode in order to realize flexible, transparent, cost-effective and large-area EC devices and TFHs that can be used as flexible and smart windows.

  16. Roll-to-Roll sputtered ITO/Cu/ITO multilayer electrode for flexible, transparent thin film heaters and electrochromic applications

    NASA Astrophysics Data System (ADS)

    Park, Sung-Hyun; Lee, Sang-Mok; Ko, Eun-Hye; Kim, Tae-Ho; Nah, Yoon-Chae; Lee, Sang-Jin; Lee, Jae Heung; Kim, Han-Ki

    2016-09-01

    We fabricate high-performance, flexible, transparent electrochromic (EC) films and thin film heaters (TFHs) on an ITO/Cu/ITO (ICI) multilayer electrode prepared by continuous roll-to-roll (RTR) sputtering of ITO and Cu targets. The RTR-sputtered ICI multilayer on a 700 mm wide PET substrate at room temperature exhibits a sheet resistance of 11.8 Ω/square and optical transmittance of 73.9%, which are acceptable for the fabrication of flexible and transparent EC films and TFHs. The effect of the Cu interlayer thickness on the electrical and optical properties of the ICI multilayer was investigated in detail. The bending and cycling fatigue tests demonstrate that the RTR-sputtered ICI multilayer was more flexible than a single ITO film because of high strain failure of the Cu interlayer. The flexible and transparent EC films and TFHs fabricated on the ICI electrode show better performances than reference EC films and TFHs with a single ITO electrode. Therefore, the RTR-sputtered ICI multilayer is the best substitute for the conventional ITO film electrode in order to realize flexible, transparent, cost-effective and large-area EC devices and TFHs that can be used as flexible and smart windows.

  17. Chitosan/alginate multilayer film for controlled release of IDM on Cu/LDPE composite intrauterine devices.

    PubMed

    Tian, Kuan; Xie, Changsheng; Xia, Xianping

    2013-09-01

    To reduce such side effects as pain and bleeding caused by copper-containing intrauterine device (Cu-IUD), a novel medicated intrauterine device, which is coated with an indomethacin (IDM) delivery system on the surface of copper/low-density polyethylene (Cu/LDPE) composite intrauterine device, has been proposed and developed in the present work. The IDM delivery system is a polyelectrolyte multilayer film, which is composed of IDM containing chitosan and alginate layer by layer, is prepared by using self-assembled polyelectrolyte multilayer method, and the number of the layers of this IDM containing chitosan/alginate multilayer film can be tailored by controlling the cyclic repetition of the deposition process. After the IDM containing chitosan/alginate multilayer film is obtained on the surface of Cu/LDPE composite intrauterine device, its release behavior of both IDM and cupric ion has been studied in vitro. The results show that the release duration of IDM increase with the increasing of thickness of the IDM containing chitosan/alginate multilayer film, and the initial burst release of cupric ion cannot be found in this novel medicated Cu/LDPE composite IUD. These results can be applied to guide the design of novel medicated Cu-IUD with minimal side effects for the future clinical use. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Facile solvothermal synthesis of NaTi2(PO4)3/C porous plates as electrode materials for high-performance sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, Zhifeng; Liu, Li; Yi, Lingguang; Xiao, Wei; Li, Min; Zhou, Qian; Guo, Guoxiong; Chen, Xiaoying; Shu, Hongbo; Yang, Xiukang; Wang, Xianyou

    2016-09-01

    NaTi2(PO4)3/C porous plates have been successfully synthesized via solvothermal approach with ammonia as inductive agent combined in-situ carbon coating. It reveals that the inductive agent plays a critical role in morphology-controllable fabrication. The morphology, structure, and electrochemical properties of NaTi2(PO4)3/C composites with multilayered plates, single-layered plate, porous multilayered plates all have been investigated, which are prepared by using urea, triethylamine, and ammonia, respectively. Among these samples, NaTi2(PO4)3/C porous multilayered plates with ammonia addition exhibit the best electrochemical properties due to their unique mesoporous structure. NaTi2(PO4)3/C porous multilayered plates deliver an initial specific capacity of 125 and 110 mAh g-1 at 0.1 and 1 C, respectively. Furthermore, NaTi2(PO4)3/C porous multilayered plates show a good rate capability, whose capacity and corresponding capacity retention reach 85 mAh g-1 and 82.4%, respectively, after 120 cycles under the high rate of 10 C. The excellent results indicate that the NaTi2(PO4)3/C porous multilayered plates are a promising electrode candidate for sodium ion battery.

  19. Roll-to-Roll sputtered ITO/Cu/ITO multilayer electrode for flexible, transparent thin film heaters and electrochromic applications

    PubMed Central

    Park, Sung-Hyun; Lee, Sang-Mok; Ko, Eun-Hye; Kim, Tae-Ho; Nah, Yoon-Chae; Lee, Sang-Jin; Lee, Jae Heung; Kim, Han-Ki

    2016-01-01

    We fabricate high-performance, flexible, transparent electrochromic (EC) films and thin film heaters (TFHs) on an ITO/Cu/ITO (ICI) multilayer electrode prepared by continuous roll-to-roll (RTR) sputtering of ITO and Cu targets. The RTR-sputtered ICI multilayer on a 700 mm wide PET substrate at room temperature exhibits a sheet resistance of 11.8 Ω/square and optical transmittance of 73.9%, which are acceptable for the fabrication of flexible and transparent EC films and TFHs. The effect of the Cu interlayer thickness on the electrical and optical properties of the ICI multilayer was investigated in detail. The bending and cycling fatigue tests demonstrate that the RTR-sputtered ICI multilayer was more flexible than a single ITO film because of high strain failure of the Cu interlayer. The flexible and transparent EC films and TFHs fabricated on the ICI electrode show better performances than reference EC films and TFHs with a single ITO electrode. Therefore, the RTR-sputtered ICI multilayer is the best substitute for the conventional ITO film electrode in order to realize flexible, transparent, cost-effective and large-area EC devices and TFHs that can be used as flexible and smart windows. PMID:27653830

  20. Multilayer Dye Aggregation at Dye/TiO2 Interface via π…π Stacking and Hydrogen Bond and Its Impact on Solar Cell Performance: A DFT Analysis

    PubMed Central

    Zhang, Lei; Liu, Xiaogang; Rao, Weifeng; Li, Jingfa

    2016-01-01

    Multilayer dye aggregation at the dye/TiO2 interface of dye-sensitized solar cells is probed via first principles calculations, using p-methyl red azo dye as an example. Our calculations suggest that the multilayer dye aggregates at the TiO2 surface can be stabilized by π…π stacking and hydrogen bond interactions. Compared with previous two-dimensional monolayer dye/TiO2 model, the multilayer dye aggregation model proposed in this study constructs a three-dimensional multilayer dye/TiO2 interfacial structure, and provides a better agreement between experimental and computational results in dye coverage and dye adsorption energy. In particular, a dimer forms by π…π stacking interactions between two neighboring azo molecules, while one of them chemisorbs on the TiO2 surface; a trimer may form by introducing one additional azo molecule on the dimer through a hydrogen bond between two carboxylic acid groups. Different forms of multilayer dye aggregates, either stabilized by π…π stacking or hydrogen bond, exhibit varied optical absorption spectra and electronic properties. Such variations could have a critical impact on the performance of dye sensitized solar cells. PMID:27767196

  1. Mechanical and corrosive behavior of Ti/TiN multilayer films with different modulation periods

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Leng, Y. X.; Qi, F.; Tao, T.; Huang, N.

    2007-04-01

    Ti/TiN multilayer films with different periods Λ (Λ = λTiN + λTi) were synthesized on 17-4PH stainless steel and silicon wafer using unbalanced magnetron sputtering. The microstructure of the films was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mechanical properties such as hardness, sliding wear behavior and adhesion were analyzed by means of micro-hardness, ball-on-disc and scratch tests. The anodic polarization characteristics were measured in a 3% NaCl solution at room temperature to examine the corrosion resistance. Moreover, the corrosion resistance in a 350 °C water vapor ambience also was analyzed. XRD revealed a gradual TiNx transition layer between Ti and TiN. The SEM results confirmed the periodicity of the Ti/TiN multilayer films. The hardness and wear resistance of the Ti/TiN multilayer films increased with decrease of the modulation period. The adhesion strength between Ti/TiN multilayer films and 17-4PH substrate was improved with proper modulation period. The Ti/TiN multilayer films can for a corrosion protective coating on 17-4PH stainless steel in 3% NaCl solution, however the corrosion resistance at 350 °C vapor ambience decreased for the period Λ below 200 nm.

  2. Resistance of poly(ethylene oxide)-silane monolayers to the growth of polyelectrolyte multilayers.

    PubMed

    Buron, Cédric C; Callegari, Vincent; Nysten, Bernard; Jonas, Alain M

    2007-09-11

    The ability of poly(ethylene oxide)-silane (PEO-silane) monolayers grafted onto silicon surfaces to resist the growth of polyelectrolyte multilayers under various pH conditions is assessed for different pairs of polyelectrolytes of varying molar mass. For acidic conditions (pH 3), the PEO-silane monolayers exhibit good polyelectrolyte repellency provided the polyelectrolytes bear no moieties that are able to form hydrogen bonds with the ether groups of the PEO chains. At basic pH, PEO-silane monolayers undergo substantial hydrolysis leading to the formation of negatively charged defects in the monolayers, which then play the role of adsorption sites for the polycation. Once the polycation is adsorbed, multilayer growth ensues. Because this is defect-driven growth, the multilayer is not continuous and is made of blobs or an open network of adsorbed strands. For such conditions, the molar mass of the polyelectrolyte plays a key role, with polyelectrolyte chains of larger molar mass adsorbing on a larger number of defects, resulting in stronger anchoring of the polyelectrolyte complex on the surfaces and faster subsequent growth of the multilayer. For polyelectrolytes of sufficiently low molar mass at pH 9, the growth of the multilayer can nevertheless be prevented for as much as five cycles of deposition.

  3. Subjective visual horizontal during follow-up after unilateral vestibular deafferentation with gentamicin.

    PubMed

    Tribukait, A; Bergenius, J; Brantberg, K

    1998-07-01

    The subjective visual horizontal (SVH) was measured by means of a small, rotatable, luminous line in darkness in the upright head and body position and at 10, 20 and 30 degrees of tilt to the right and left before, and repeatedly during a follow-up period of 1 year after intratympanic gentamicin instillations in 12 patients with recurrent vertigo attacks. This treatment caused a loss of the bithermal caloric responses on the diseased side. Shortly after treatment there was a significant tilt of SVH towards the treated side (group mean = 10.6 degrees). Repeated testing made it possible to characterize mathematically the changes with time for SVH. For the group of patients as a whole this otolithic component of vestibular compensation was best described by a power function, SVH = 8.65t(-0.16) degrees, where t is time in days after maximum tilt of SVH. After 1 year, SVH was still significantly tilted towards the treated side (group mean = 3.16 degrees). Gentamicin treatment also caused a significant reduction in the perception of head and body tilt towards the deafferented side, while the perception of tilt towards the healthy side did not show any significant changes. During follow-up there was a gradual improvement in the perception of tilt towards the treated side. However, a significant asymmetry in roll-tilt perception was still present 1 year after deafferentation. There was no correlation between SVH in the upright position and roll-tilt perception, suggesting that these parameters are to some extent dependent on different afferent input from the vestibular organ. They were also found to be complementary for the detection of vestibular disturbance.

  4. Fabrication and nanoscale characterization of magnetic multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Elawayeb, Mohamed

    Magnetic multilayers nanowires are scientifically fascinating and have potential industrial applications in many areas of advanced nanotechnology. These applications arise due to the nanoscale dimensions of nanostructures that lead to unique physical properties. Magnetic multilayer nanowires have been successfully produced by electrodeposition into templates. Anodic Aluminium Oxide (AAO) membranes were used as templates in this process; the templates were fabricated by anodization method in acidic solutions at a fixed voltage. The fabrication method of a range of magnetic multilayer nanowires is described in this study and their structure and dimensions were analyzed using scanning electron microscope (SEM), Transmission electron microscope (TEM) and scanning transmission electron microscopy (STEM). This study is focused on the first growth of NiFe/Pt and NiFe/Fe magnetic multilayer nanowires, which were successfully fabricated by pulse electrodeposition into the channels of porous anodic aluminium oxide (AAO) templates, and characterized at the nanoscale. Individual nanowires have uniform structure and regular periodicity. The magnetic and nonmagnetic layers are polycrystalline, with randomly oriented fcc lattice structure crystallites. Chemical compositions of the individual nanowires were analyzed using TEM equipped with energy-dispersive x-ray analysis (EDX) and electron energy loss spectrometry (EELS). The electrical and magnetoresistance properties of individual magnetic multilayer nanowires have been measured inside a SEM using two sharp tip electrodes attached to in situ nanomanipulators and a new electromagnet technique. The giant magnetoresistance (GMR) effect of individual magnetic multilayer nanowires was measured in the current - perpendicular to the plane (CPP) geometry using a new in situ method at variable magnetic field strength and different orientations..

  5. Cucurbit[8]uril-Containing Multilayer Films for the Photocontrolled Binding and Release of a Guest Molecule.

    PubMed

    Nicolas, Henning; Yuan, Bin; Zhang, Xi; Schönhoff, Monika

    2016-03-15

    The powerful host-guest chemistry of cucurbit[8]uril (CB[8]) was employed to obtain photoresponsive polyelectrolyte multilayer films for the reversible and photocontrolled binding and release of an organic guest molecule. For this purpose, we designed and synthesized a polyelectrolyte with azobenzene side groups. Then, CB[8] was associated with the azo side group to obtain a supramolecular host-guest complex that was further used as building block in order to prepare photoresponsive and CB[8]-containing polyelectrolyte multilayer films. Ultraviolet spectroscopy and a dissipative quartz crystal microbalance are employed to monitor the formation of the host-guest complex and the layer-by-layer self-assembly of the multilayer films, respectively. We demonstrate that the photoresponsive properties of the azo side groups are maintained before and after host-guest complexation with CB[8] in solution and within the multilayer films, respectively. A guest molecule was then specifically included as second binding partner into the CB[8]-containing multilayer films. Subsequently, the release of the guest was performed by UV light irradiation due to the trans-cis isomerization of the adjacent azo side groups. Re-isomerization of the azo side groups was achieved by VIS light irradiation and enabled the rebinding of the guest into CB[8]. Finally, we demonstrate that the photocontrolled binding and release within CB[8]-containing multilayer films can reliably and reversibly be performed over a period of more than 2 weeks with constant binding efficiency. Therefore, we expect such novel type of photosensitive films to have promising future applications in the field of stimuli-responsive nanomaterials.

  6. pH-responsive ion transport in polyelectrolyte multilayers of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA) bearing strong- and weak anionic groups.

    PubMed

    Maza, Eliana; Tuninetti, Jimena S; Politakos, Nikolaos; Knoll, Wolfgang; Moya, Sergio; Azzaroni, Omar

    2015-11-28

    The layer-by-layer construction of interfacial architectures displaying stimuli-responsive control of mass transport is attracting increasing interest in materials science. In this work, we describe the creation of interfacial architectures displaying pH-dependent ionic transport properties which until now have not been observed in polyelectrolyte multilayers. We describe a novel approach to create pH-controlled ion-rectifying systems employing polyelectrolyte multilayers assembled from a copolymer containing both weakly and strongly charged pendant groups, poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA), alternately deposited with poly(diallyldimethylammonium chloride) (PDADMAC). The conceptual framework is based on the very contrasting and differential interactions of PSS and MA units with PDADMAC. In our setting, sulfonate groups play a structural role by conferring stability to the multilayer due to the strong electrostatic interactions with the polycations, while the weakly interacting MA groups remain "silent" within the film and then act as on-demand pH-responsive units. When these multilayers are combined with a strong cationic capping layer that repels the passage of cationic probes, a pH-gateable rectified transport of anions is observed. Concomitantly, we also observed that these functional properties are significantly affected when multilayers are subjected to extensive pH cycling as a consequence of irreversible morphological changes taking place in the film. We envision that the synergy derived from combining weak and strong interactions within the same multilayer will play a key role in the construction of new interfacial architectures displaying tailorable ion transport properties.

  7. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    DOE PAGES

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; ...

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore » both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less

  8. Novel application of polyelectrolyte multilayers as nanoscopic closures with hermetic sealing.

    PubMed

    Marcott, Stephanie A; Ada, Sena; Gibson, Phillip; Camesano, Terri A; Nagarajan, R

    2012-03-01

    Closure systems for personnel protection applications, such as protective clothing or respirator face seals, should provide effective permeation barrier to toxic gases. Currently available mechanical closure systems based on the hook and loop types (example, Velcro) do not provide adequate barrier to gas permeation. To achieve hermetic sealing, we propose a nonmechanical, nanoscopic molecular closure system based on complementary polyelectrolyte multilayers, one with a polycation outermost layer and the other with a polyanion outermost layer. The closure surfaces were prepared by depositing polyelectrolyte multilayers under a variety of deposition conditions, on conformable polymer substrates (thin films of polyethylene teraphthalate, PET or polyimide, PI). The hermetic sealing property of the closures was evaluated by measuring the air flow resistance using the dynamic moisture permeation cell (DMPC) at different humidity conditions. The DMPC measurements show that the polyelectrolyte multilayer closures provide significantly large resistance to air flow, approximately 20-800 times larger than that possible with conventional hook and loop type closure systems, at all humidity levels (from 5 to 95% relative humidity). Hence, from the point of view of providing a hermetic seal against toxic gas permeation, the polyelectrolyte multilayer closures are viable candidates for further engineering development. However, the adhesive strength of the multilayer closures measured by atomic force microscopy suggests that the magnitude of adhesion is much smaller than what is possible with mechanical closures. Therefore, we envisage the development of a composite closure system combining the mechanical closure to provide strong adhesion and the multilayer closure to provide hermetic sealing. © 2012 American Chemical Society

  9. Interviewing patients and practitioners working together in teams. A multi-layered puzzle: putting the pieces together.

    PubMed

    Ringstad, Oystein

    2010-08-01

    This paper presents and evaluates a methodological approach aiming at analysing some of the complex interaction between patients and different health care practitioners working together in teams. Qualitative health care research describes the values, perceptions and conceptions of patients and practitioners. In modern clinical work patients and professional practitioners often work together on complex cases involving different kinds of knowledge and values, each of them representing different perspectives. We need studies designed to capture this complexity. The methodological approach presented here is exemplified with a study in rehabilitation medicine. In this part of the health care system the clinical work is organized in multi-professional clinical teams including patients, handling complex rehabilitation processes. In the presented approach data are collected in individual in-depth interviews to have thorough descriptions of each individual perspective. The interaction in the teams is analysed by comparing different descriptions of the same situations from the involved individuals. We may then discuss how these perceptions relate to each other and how the individuals in the team interact. Two examples from an empirical study are presented and discussed, illustrating how communication, differences in evaluations and the interpretation of incidents, arguments, emotions and interpersonal relations may be discussed. It is argued that this approach may give information which can supplement the methods commonly applied in qualitative health care research today.

  10. Enhancement of surface mechanical properties by using TiN[BCN/BN] n/c-BN multilayer system

    NASA Astrophysics Data System (ADS)

    Moreno, H.; Caicedo, J. C.; Amaya, C.; Muñoz-Saldaña, J.; Yate, L.; Esteve, J.; Prieto, P.

    2010-11-01

    The aim of this work is to improve the mechanical properties of AISI 4140 steel substrates by using a TiN[BCN/BN] n/c-BN multilayer system as a protective coating. TiN[BCN/BN] n/c-BN multilayered coatings via reactive r.f. magnetron sputtering technique were grown, systematically varying the length period ( Λ) and the number of bilayers ( n) because one bilayer ( n = 1) represents two different layers ( tBCN + tBN), thus the total thickness of the coating and all other growth parameters were maintained constant. The coatings were characterized by Fourier transform infrared spectroscopy showing bands associated with h-BN bonds and c-BN stretching vibrations centered at 1400 cm -1 and 1100 cm -1, respectively. Coating composition and multilayer modulation were studied via secondary ion mass spectroscopy. Atomic force microscopy analysis revealed a reduction in grain size and roughness when the bilayer number ( n) increased and the bilayer period decreased. Finally, enhancement of mechanical properties was determined via nanoindentation measurements. The best behavior was obtained when the bilayer period ( Λ) was 80 nm ( n = 25), yielding the relative highest hardness (˜30 GPa) and elastic modulus (230 GPa). The values for the hardness and elastic modulus are 1.5 and 1.7 times greater than the coating with n = 1, respectively. The enhancement effects in multilayered coatings could be attributed to different mechanisms for layer formation with nanometric thickness due to the Hall-Petch effect; because this effect, originally used to explain increased hardness with decreasing grain size in bulk polycrystalline metals, has also been used to explain hardness enhancements in multilayered coatings taking into account the thickness reduction at individual single layers that make up the multilayered system. The Hall-Petch model based on dislocation motion within layered and across layer interfaces has been successfully applied to multilayered coatings to explain this hardness enhancement.

  11. ZrO2 Layer Thickness Dependent Electrical and Dielectric Properties of BST/ZrO2/BST Multilayer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, S. K.; Misra, D.; Agrawal, D. C.

    2011-01-01

    Recently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [Ba{sub x}Sr{sub 1-x}TiO{sub 3}, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found thatmore » inserting a ZrO{sub 2} layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO{sub 2} layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO{sub 2}/BST multilayer structure is studied. The multilayer Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}/ZrO{sub 2}/Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO{sub 2} layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO{sub 2} layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO{sub 2} layer thickness.« less

  12. Parental Perceptions and Practices toward Childhood Asthma

    PubMed Central

    Nofal, Abdullah; Heena, Humariya

    2016-01-01

    Introduction. Parental perceptions and practices are important for improving the asthma outcomes in children; indeed, evidence shows that parents of asthmatic children harbor considerable misperceptions of the disease. Objective. To investigate the perceptions and practices of parents toward asthma and its management in Saudi children. Methods. Using a self-administered questionnaire, a two-stage cross-sectional survey of parents of children aged between 3 and 15 years, was conducted from schools located in Riyadh province in central Saudi Arabia. Results. During the study interval, 2000 parents were asked to participate in the study; 1450 parents responded, of whom 600 (41.4%) reported that their children had asthma, dyspnea, or chest allergy (recurrent wheezing or coughing), while 478 (32.9%) of the parents reported that their children were diagnosed earlier with asthma by a physician. Therefore, the final statistical analyses were performed with 600 participants. Furthermore, 321 (53.5%) respondents believed that asthma is solely a hereditary disease. Interestingly, 361 (60.3%) were concerned about side effects of inhaled corticosteroids and 192 (32%) about the development of dependency on asthma medications. Almost 76% of parents had previously visited a pediatric emergency department during an asthma attack. Conclusions. Parents had misperceptions regarding asthma and exhibited ineffective practices in its management. Therefore, improving asthma care and compliance requires added parental education. PMID:27843948

  13. Evolving perception on the benefits of vaccination as a foot and mouth disease control policy: contributions of South America.

    PubMed

    Bergmann, Ingrid E; Malirat, Viviana; Falczuk, Abraham J

    2005-12-01

    Within the past decade, changes in perceptions on the benefits of vaccination as an appropriate tool to achieve complete foot and mouth disease eradication have become evident. The former negative view was derived from misconceptions, resulting mainly from the belief that vaccines are not entirely effective and that vaccination masks asymptomatic viral circulation. The advent in the 1990s of vaccination policies implemented within a strategic eradication plan in South America, and during recurrence of the disease in disease-free regions contributed towards generating more reliable and visible outcomes of vaccination programs, paving the way towards a new perception. Particularly relevant was the development and application of novel serodiagnostic approaches to assess silent viral circulation, irrespective of vaccination. The use in South America of vaccination allied to serosurveys to accompany viral clarification during eradication campaigns and after emergencies clearly established the importance of this control tool to stop the spread of viral infection. This alliance gave input to break many myths associated with the use of vaccines, including the belief that immunized carrier animals pose an epidemiologic risk. This experience launched new concepts that supported the internationally recognized status of foot and mouth disease-free regions with vaccination and the 'vaccination to live' policy as an alternative to 'stamping out'.

  14. First principles calculations of the magnetic and hyperfine properties of Fe/N/Fe and Fe/O/Fe multilayers in the ground state of cohesive energy

    NASA Astrophysics Data System (ADS)

    dos Santos, A. V.; Samudio Pérez, C. A.; Muenchen, D.; Anibele, T. P.

    2015-01-01

    The ground state properties of Fe/N/Fe and Fe/O/Fe multilayers were investigated using the first principles calculations. The calculations were performed using the Linearized Augmented Plane Wave (LAPW) method implemented in the Wien2k code. A supercell consisting of one layer of nitride (or oxide) between two layers of Fe in the bcc structure was used to model the structure of the multilayer. The research in new materials also stimulated theoretical and experimental studies of iron-based nitrides due to their variety of structural and magnetic properties for the potential applications as in high strength steels and for high corrosion resistance. It is obvious from many reports that magnetic iron nitrides such as γ-Fe4N and α-Fe16N2 have interesting magnetic properties, among these a high magnetisation saturation and a high density crimp. However, although Fe-N films and multilayers have many potential applications, they can be produced in many ways and are being extensively studied from the theoretical point of view there is no detailed knowledge of their electronic structure. Clearly, efforts to understand the influence of the nitrogen atoms on the entire electronic structure are needed as to correctly interpret the observed changes in the magnetic properties when going from Fe-N bulk compounds to multilayer structures. Nevertheless, the N atoms are not solely responsible for electronics alterations in solid compounds. Theoretical results showed that Fe4X bulk compounds, where X is a variable atom with increasing atomic number (Z), the nature of bonding between X and adjacent Fe atoms changes from more covalent to more ionic and the magnetic moments of Fe also increase for Z=7, i.e. N. This is an indicative that atoms with a Z number higher than 7, i.e., O, can produce several new alterations in the entire magnetic properties of Fe multilayers. This paper presents the first results of an ab-initio electronic structure calculations, performed for Fe-N and Fe-O multilayers. Firstly, the formation energy and the cohesive energy of the multilayers are discussed. For optimised values, the cohesive energy of the multilayers to obtain the lattice parameters at the equilibrium ground state was used, i.e. a new methodology for this calculus was applied. Secondly, the magnetic properties and hyperfine interactions (magnetic field, electric field gradient and the isomer shift) of the iron atoms of the multilayers are discussed.

  15. Ordered organic-organic multilayer growth

    DOEpatents

    Forrest, Stephen R.; Lunt, Richard R.

    2016-04-05

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  16. Method for the manufacture of phase shifting masks for EUV lithography

    DOEpatents

    Stearns, Daniel G.; Sweeney, Donald W.; Mirkarimi, Paul B.; Barty, Anton

    2006-04-04

    A method for fabricating an EUV phase shift mask is provided that includes a substrate upon which is deposited a thin film multilayer coating that has a complex-valued reflectance. An absorber layer or a buffer layer is attached onto the thin film multilayer, and the thickness of the thin film multilayer coating is altered to introduce a direct modulation in the complex-valued reflectance to produce phase shifting features.

  17. Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers

    PubMed Central

    Wilts, Bodo D.; Leertouwer, Hein L.; Stavenga, Doekele G.

    2008-01-01

    We studied the structural as well as spatial and spectral reflectance characteristics of the wing scales of lycaenid butterfly species, where the scale bodies consist of perforated multilayers. The extent of the spatial scattering profiles was measured with a newly built scatterometer. The width of the reflectance spectra, measured with a microspectrophotometer, decreased with the degree of perforation, in agreement with the calculations based on multilayer theory. PMID:18782721

  18. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    DOEpatents

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  19. Ordered organic-organic multilayer growth

    DOEpatents

    Forrest, Stephen R; Lunt, Richard R

    2015-01-13

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  20. X-Ray Standing Waves on Surfaces

    DTIC Science & Technology

    1993-01-01

    dependent distributional changes of iodine on Pt 6.3 X-ray standing wave study of a Langmuir - Blodgett multilayer film 7. Conclusions 8. Acknowledgments...4B. 6.3 X-ray standing wave study of a Langmuir - Blodgett multilayer film As mentioned previously the total external reflection condition occurs...for a Zn atom layer embedded in the top arachidate bilayer of a Langmuir - Blodgett (LB) multilayer film which was deposited on the surface of a gold

Top